
Characterizing Pspace with pointers

I. Oitavem∗

Abstract

This paper gives an implicit characterization of the class of func-
tions computable in polynomial space by deterministic Turing ma-
chines — Pspace. It gives an inductive characterization of Pspace
with no ad-hoc initial functions and with only one recursion scheme.
The main novelty of this characterization is the use of pointers (also
called path information) to reach Pspace. The presence of the point-
ers in the recursion on notation scheme is the main difference between
this characterization of Pspace and the well-known Bellantoni-Cook
characterization of the polytime functions — Ptime.

1 Introduction

This paper gives an implicit characterization of Pspace, in the vein of the
Bellantoni-Cook characterization of Ptime [3]. The Bellantoni-Cook charac-
terization of Ptime [3] was established in numeric notation, however it can
be rewritten over the word algebra W. Here we proceed in an analogous way
in order to describe an input-sorted term system, STTW. In STTW we have
only one recursion scheme which can be seen as the recursion on notation
scheme of [3] plus pointers. The presence of pointers leads to a branching
of the recursion, which generalizes the usual scheme of recursion on notation
and allows the simulation of parallel polytime computations. We prove that
STTW characterizes Pspace.

In contrast to the characterization of Pspace given in [8], here we use
only one recursion scheme and no ad-hoc initial functions. The present work

∗Dept. Matemática da FCT-UNL and CMAF-UL, e-mail: isarocha@ptmat.fc.ul.pt

1

also differs from the characterization of Pspace given by Leivant and Marion
in [7]. We allow only a very restricted form of recursion substitution — the
pointers. Moreover, instead of a (three) full sorted context, we work in a
(two) input-sorted context.

This paper comes in the vein of previous work about NC (alternating
polylog time and log space), [4]. There the concept of tree-recursion and, as
a consequence of it, the introduction of pointers in the recursion scheme are
used to characterize NC. The characterization given in [4] is established in
a two-sorted context and, just like the one we give here, the pointers are in
the highest tier, meaning that one can recurse on the pointers. Recent work
showed that for NC we can avoid to recurse on the pointers, see [10].

2 The sorted term system STTW

To define the term system STTW we consider the word constructors of W,
but we give a tree structure to the formulation of the recursion scheme.
Therefore, STT stands for “Sorted Term system with Tree-recursion”. In
order to give a tree structure to the recursion scheme, we use pointers. Such a
recursion scheme is substantially different from the standard recursion scheme
defined over the word algebra W, usually designated by recursion scheme on
notation.

W is a word algebra generated by one nullary and two unary constructors,
respectively, ε, S0 and S1. W can be interpreted over the set of all finite
binary words. As usually in word algebra contexts, one considers a destructor
(or predecessor) symbol of arity one — P. One also introduces a symbol C,
of arity 4, for the conditional function of the algebra. They are defined as
follows: P(ε) = ε, P(Six) = x and C(ε, x, y, z) = x, C(Siu, x, y0, y1) = yi,
i ∈ {0, 1}.

The recursion scheme, that we consider, has the shape: f(p, ε, x̄) =
g(p, ε, x̄) and f(p,Siz, x̄) = h(p,Siz, x̄, f(S0p, z, x̄), f(S1p, z, x̄)), i ∈ {0, 1}.
The first input of f is called pointer or path information. A recursion scheme
of the same sort is used in [4] to characterize NC. There, the starting algebra
is T — the tree algebra generated by 0, 1 and *, of arity 0, 0 and 2 respec-
tively. The designation of “path information” has there a literal meaning.
We use it also here, nevertheless that now the path information is not a path.

We define a class of input-sorted function terms following notation intro-
duced by Bellantoni and Cook in [3]. Function terms, in STTW, have two

2

sorts of input positions — normal and safe. As usual, we write normal and
safe input positions by this order, and we separate them by a semicolon —
f(x̄; ȳ).

Definition 1 STTW is the smallest class of input-sorted functions which
contains the constructors — ε, S0, S1 —, the destructor P, conditional C
and projection functions (over both input-sorts) and which is closed under
the schemes of input-sorted composition and input-sorted tree-recursion: re-
spectively,

f(x̄; ȳ) = g(r̄(x̄;); s̄(x̄; ȳ))

and

f(p, ε, x̄; ȳ) = g(p, ε, x̄; ȳ)

f(p,S0(z;), x̄; ȳ) = h(p,S0(z;), x̄; ȳ, f(S0(p;), z, x̄; ȳ), f(S1(p;), z, x̄; ȳ))

f(p,S1(z;), x̄; ȳ) = h(p,S1(z;), x̄; ȳ, f(S0(p;), z, x̄; ȳ), f(S1(p;), z, x̄; ȳ)).

Of course, in the previous definition, it would be enough to introduce, as
initial functions, the constructors, destructor and conditional having only
safe argument positions. The correspondent functions over normal input
positions could be then defined by input-sorted composition.

The main difference between the term systems STTW and PtimeBC —
the Bellantoni-Cook characterization of Ptime, reformulated over the algebra
W — is the recursion scheme. The recursion scheme of STTW generalizes the
one in PtimeBC by doubling the critical argument of h and using pointers
to distinguish them from each other. Therefore, one has that PtimeBC is
trivially contained in STTW. In particular, the concatenation and string
product functions can be defined and iterated in STTW:

1. We define a function ⊕ — concatenation — by input-sorted recursion
(without pointers) such that1 | ⊕ (y; x)| = |x|+ |y|.

⊕(ε; x) = x

⊕(S0(y;); x) = S0(;⊕(y; x))

⊕(S1(y;); x) = S1(;⊕(y; x))

1For x in W, |x| denotes the length of x, i.e. the number of S0 and S1 in x.

3

2. ⊗ — string product — is defined by input-sorted recursion (without
pointers), with step function ⊕.

⊗(ε, x;) = ε

⊗(S0(y;), x;) = ⊕(x;⊗(y, x;))

One has | ⊗ (y, x;)| = |x| · |y|.

3. For any natural number k > 1, one may define by input-sorted compo-
sition:

⊗2(y2, y1;) = ⊗(y2, y1;)

⊗k+1(yk+1, · · · , y1;) = ⊗k(⊗2(yk+1, yk;), · · · , y1;)

⊗k is the string product function of arity k. Thus, |⊗k (yk, · · · , y1;)| =
|y1| · . . . · |yk|.

Therefore, one has that:

Remark 1 For any polynomial (with natural coefficients) q, there exists a
term t ∈ STTW such that2 ∀x̄ q(|x̄|) = |t(x̄;)|.

Notice that, in this framework, one can run a recursion over an output of
a function which is itself defined by recursion, as done for ⊗k. This will be
important in the proof of lemma 3. That proof also uses the following:

Remark 2 For any polytime function f there exists a function f̂ , in STTW,
and a monotone polynomial qf such that ∀w̄∀y |y| ≥ qf (|w̄|) ⇒ f(w̄) =

f̂(y; w̄).

This remark is a consequence of the recursion simulation lemma for PtimeBC

— [2] and [3] — and the fact that PtimeBC is contained in STTW, as class
of input-sorted functions. The cited recursion simulation lemma states that
for any polytime function f there exists a function f̂ , in PtimeBC , and a
monotone polynomial qf such that ∀w̄∀y |y| ≥ qf (|w̄|) ⇒ f(w̄) = f̂(y; w̄).

2|x̄| = (|x1|, · · · , |xn|), where x̄ = (x1, · · · , xn).

4

3 STTW characterizes Pspace

We start by establishing a bounding lemma which is similar to the bounding
lemma for Ptime given in [3]. However, here one has to take into account
that, due to the pointers, during the recursion process the length of inputs
in normal position may increase.

Lemma 1 (Bounding lemma) If f ∈ STTW then there exists a polynomial
qf , with coefficients in IN, such that ∀x̄, ȳ |f(x̄; ȳ)| ≤ qf (|x̄|) + maxi |yi|.

Proof. The proof is by induction on the definition of f . For the initial
functions the statement is trivial. If f is defined by input-sorted composition
then one may consider qf (|x̄|) = qg(q̄r̄(|x̄|)) +

∑
i qsi

(|x̄|), where qg, qrj
and

qsi
are given by induction hypothesis. Finally, let f be given by input-sorted

tree-recursion from g and h. Let qg and qh be given by induction hypothesis.
Consider qf (|p|, |z|, |x̄|) = |z|·qh(|p|+|z|, |p|+|z|, |x̄|)+qg(|p|+|z|, |p|+|z|, |x̄|).
It is straightforward to prove, by induction on the length of z, that for all
p, z, x̄ and ȳ one has |f(p, z, x̄; ȳ)| ≤ qf (|p|, |z|, |x̄|) + maxi |yi|. This finishes
the proof.

Lemma 2 STTW is contained in Pspace.

Proof. The proof is straightforward, using the previous lemma. For the
recursion case, the machine description is analogous to the one given by
Leivant and Marion, in the proof of lemma 4.7, in [7].

To prove the lower bound, i.e. that Pspace ⊆ STTW, one uses the well-
known characterization of Pspace via alternating Turing machines (ATMs):

Fact 1 Let f be a function over W. f is computable in polynomial space
if, and only if, f is bitwise computable by an ATM in polynomial time, and
|f(w)| is polynomial in |w|.

The concept of an ATM was introduced by Chandra, Kozen and Stock-
meyer as a generalization of the non-deterministic Turing machine concept,
see [5]. Here we use ATMs as described in [1], but we assume that they
have only one tape. Thus, an ATM is a five-tuple 〈Q, Σ, δ, q0, g〉 where Q
is the finite set of internal states, Σ is the tape alphabet, δ : Q × Σ →
P(Σ×Q×{R,N, L}) is a partial function (the transition function), q0 is the

5

initial state and g : Q → {∧,∨, acc, rej} is a function which partitions the
states of Q into universal, existential, accepting and rejecting, respectively.
We assume that non-terminating configurations have universal or existential
states. To see if a ATM accepts an input x, we define a bottom-up labeling
of its computation tree (or part of it) by the following rules: 1) the accepting
leaves are labeled 1; 2) any existential node is labeled 1 if at least one of its
sons has been labeled 1; 3) any universal node is labeled 1 if all its sons are
labeled 1. The machine accepts the input if, and only if, the root is labeled 1.

Notice that if f(ε, 11;) is defined by recursion (with pointers)
on its second input based on g and h, then one has the term
h(ε; h(0; g(00;), g(01;)), h(1; g(10;), g(11;))) (some inputs are omitted),
which corresponds to the tree

hε∧
h0 h1∧ ∧

g00 g01 g10 g11

and it is suitable to carry out the bottom-up labeling described above (assum-
ing that non-terminating configurations have two successor configurations).
The first input of g and h is the pointer to the respective node, and it de-
termines a path on the computation tree, i.e. a sequential computation. g
should execute the computation determined by its first input and return 1
whenever it ends in an accepting configuration (otherwise returns 0). At
this stage one has the tree above but with the leaves labeled 1 or 0 and we
move one step up on the tree. h should execute the computation determined
by its first input to see whether one reaches an existential or a universal
state. Then, using the values returned by its last two inputs (i.e. the val-
ues returned by its left and right subtrees) h should return the label of the
correspondent node according to the items 2) and 3) above. This process
continues up to the root of the tree. What we described here for a tree of
high 2 can be generalized and it will be used in the proof of the next lemma.

Maybe at this point one should also notice that, for instance, 01 deter-
mines a path in the tree above — branch first left (0), and then right (1) —
leading to the leave labeled by g(01;). If g is defined by recursion on 01 (i.e.
on S1(S0(ε;);)) then it can be used to iterate two different function terms
(which can be associated with two transition functions of a given ATM), let

6

us say g0 (or g-left) and g1 (or g-right). Then one gets g(01;) = g1(; g0(ε;))
— apply first g-left, and then g-right. So, in both cases — following the path
01, or applying g-left/g-right — we do exactly the same thing: first left, and
then right. In general, to use an input to run a recursion as above, or to
determine a path on a tree, leads to the same left/right order.

Lemma 3 ATMs working in polynomial time can be simulated in STTW.

Proof. Let M be an ATM which runs in time q, for some polynomial q
in the length of the input. We are going to simulate M by STTW function
terms. Let us assume that all internal states of the machine are codified by
sequences of the same length. Codes of conjunctive, disjunctive, accepting
and rejecting states end by 10, 00, 11 and 01, respectively, and they are placed
at the end of the configurations. One may also assume that, for a given input
x, all the configuration codes have the same length, l(|x|), which is linear in
|x|, and that all non-terminating configurations have two successor configu-
rations. Therefore, we can split the transition function of M , δ, in δ0 and δ1.
Let c(x;) be the code of the initial configuration and let t(x;) be a STTW
term such that |t(x;)| = q(|x|). This is possible since q is a polynomial, cf.
remark 1. For i ∈ {0, 1}, one may consider polytime computable functions
∆i, which for a given configuration code w return the next configuration
code according to δi — notice that, in order to transform a configuration
code in its next configuration code, one just has to read the given configura-
tion code and to change in it a fixed number of bits (according to δi). Thus,
by remark 2, there exists a function ∆̂i in STTW and a polynomial q∆i

such
that ∀w ∀y |y| ≥ q∆i

(|w|) ⇒ ∆i(w) = ∆̂i(y; w). Replacing, in the previ-
ous expression, y by L∆i

(x;) one has that ∀w ∀x |L∆i
(x;)| ≥ q∆i

(|w|) ⇒
∆i(w) = ∆̂i(L∆i

(x;); w), where L∆i
is a STTW term as follows. Given an

input x, all configuration codes w verify |w| = l(|x|) where l is linear in |x|.
Thus, q∆i

(|w|) is equal to (q∆i
◦ l)(|x|). The composition of a polynomial

with a linear function is a polynomial, and so q∆i
◦ l is a polynomial in |x|.

Therefore, by remark 1, there exists a function term L∆i
in STTW such that

|L∆i
(x;)| = (q∆i

◦ l)(|x|). Now, recalling that q∆i
(|w|) is (q∆i

◦ l)(|x|), one
has |L∆i

(x;)| = q∆i
(|w|) (thus, a fortiori |L∆i

(x;)| ≥ q∆i
(|w|)). Therefore,

for any input x, given a configuration code w, ∆i(w) = ∆̂i(L∆i
(x;); w) where

∆̂i and L∆i
are in STTW. This means that (reusing the symbol ∆i) we can

consider a function term ∆i(x; w) = ∆̂i(L∆i
(x;); w) in STTW, which for any

input x and a given configuration code w returns the next configuration code
according to δi.

7

Let us define some auxiliary function terms: RUN and RETURN.
RUN is defined by recursion (without path information). For a path p

and a (initial) configuration code c(x;), RUN simulates the (sequential) com-
putation performed by M along the branch p starting with the configuration
code c(x;).

RUN(ε, x;) = c(x;)

RUN(S0p, x;) = ∆0(x;RUN(p, x;))

RUN(S1p, x;) = ∆1(x;RUN(p, x;))

RETURN is defined by composition. It gives the value returned by a con-
figuration of code u assuming that its successor configurations, if there are
any, return i and j.

RETURN(; i, j, u) = C(; u, ε, C(; P (; u), ε, i ∨ j, i ∧ j), C(; P (; u), ε, 0, 1)),

where i∨j = C(; i, ε, C(; j, ε, 0, 1), 1) and i∧j = C(; i, ε, 0, C(; j, ε, 0, 1)). One
has that: i∨ j is 0 if i and j are 0, and is 1 otherwise; i∧ j is 1 if i and j are
1, and is 0 otherwise. Of course, by 0 and 1 we mean S0(ε;) (or S0(; ε)) and
S1(ε;) (or S1(; ε)), respectively.

Let us consider the function f defined by input-sorted recursion over
STTW:

f(p, ε, x;) = RETURN(; ε, ε,RUN(p, x;))

f(p,S0z, x;) = RETURN(; f(S0p, z, x;), f(S1p, z, x;),RUN(p, x;))

f(p,S1z, x;) = RETURN(; f(S0p, z, x;), f(S1p, z, x;),RUN(p, x;)).

One has that M(x) = f(ε, t(x;), x;).

Lemma 4 Pspace is contained in STTW.

Proof. Let F be a Pspace function. By fact 1 F is bitwise computable by
an ATM, M , running in polynomial time. By the previous lemma one knows
that M can be simulated by function terms in STTW. Thus, one ensures
that there exists f ∈ STTW such that f(i, x̄;) = |i|’th bit of F (x̄). Now,
noticing that the outputs of Pspace functions are polynomially bounded and
attending to remark 1, the definition of the function F ∈ STTW by recursion
(without pointers) is straightforward.

From lemma 2 and lemma 4 one concludes that

8

Theorem 1 STTW characterizes Pspace.

Therefore, one has an implicit characterization of Pspace that is closely
related to the well-known Bellantoni-Cook characterization of Ptime —
PtimeBC [3]. STTW results from PtimeBC by giving a tree structure to the
recursion on notation scheme. This is achieved by allowing, in the usual re-
cursion on notation scheme, a specific form of substitution. The substitution
parameter is the pointer (or path information) and it leads to a branching of
the recursion which allows us to simulate parallel polytime computations.

4 An unsorted variant

A similar characterization of Pspace can be achieved working in a non-sorted
context, by use of explicit bounds on the recursion scheme. Such a character-
ization, here denoted by BTTW, is the parallel of Cobham’s characterization
of Ptime [6], now for Pspace.

Definition 2 BTTW is the smallest class of functions which contains the
constructors — ε,S0,S1 —, the destructor P, conditional C and projection
functions and which is closed under the schemes of composition and bounded
tree-recursion: respectively,

f(x̄) = g(h̄(x̄))

and

f(p, ε, x̄) = g(p, ε, x̄)

f(p,S0(y), x̄) = h(p,S0(y), x̄, f(S0(p), y, x̄), f(S1(p), y, x̄))|t(p,S0(y),x̄)

f(p,S1(y), x̄) = h(p,S1(y), x̄, f(S0(p), y, x̄), f(S1(p), y, x̄))|t(p,S1(y),x̄),

where t is a function explicitly definable from ε, S0, S1, string concatenation
and string product.

x|y denotes x truncated to the length of y. From the definition of the functions
bounding the recursion, it is obvious that they are polynomial in the length
of the inputs. Therefore, one trivially has that

Lemma 5 For all f ∈ BTTW there exists a polynomial qf , with coefficients
in IN, such that ∀x̄ |f(x̄)| ≤ qf (|x̄|).

This lemma is essential to ensure the upper bound.

9

Lemma 6 BTTW is contained in Pspace.

Proof. The proof is similar to the proof of lemma 2, using the lemma 5
above.

The lower bound is almost immediate.

Lemma 7 Pspace is contained in BTTW.

Proof. By lemma 4 we have that Pspace is contained in STTW. Therefore,
to prove that Pspace is contained in BTTW, we just have to show that
STTW is contained in BTTW. That means: for all F ∈ STTW there exists
f ∈ BTTW such that ∀x̄, ȳ F (x̄; ȳ) = f(x̄, ȳ). The proof is straightforward
by induction on the definition of F . The only non trivial case occurs when
F is defined by input-sorted tree-recursion, from G and H. In this case we
define f by bounded tree-recursion from g, h and t. g and h are functions
given by induction hypothesis. t is any function explicitly definable from ε,
S0, S1, string concatenation and string multiplication such that pF (|x̄|, |ȳ|) ≤
|t(x̄, ȳ)|, for some polynomial pF verifying ∀x̄, ȳ |F (x̄; ȳ)| ≤ pF (|x̄|, |ȳ|). The
existence of such a polynomial is a consequence of the bounding lemma for
STTW functions — lemma 1.

Thus, we have that

Theorem 2 BTTW characterizes Pspace.

This characterization of Pspace is machine independent, but not resource
independent. The bound of the recursion scheme is an explicit reference
to the polynomial resource constraints. However, it shows that the sorted
approach to Pspace developed in this paper can be reformulated in different
contexts. In this last section we reformulated it in a bounded context only,
but it is clear that it also holds in other contexts. Namely, an unsorted
version of the term system introduced here can be used, together with an
appropriated measure of complexity (rank), to characterize Pspace. By an
appropriated rank we mean, for instance, the rank σ̂ described in [9].

The unsorted version presented here might be of interest for further re-
search, namely for discussing induction schemes in the context of bounded
arithmetic.

10

Acknowledgements

Research done while staying at the Mathematisches Institut der Universität
München. I like to thank LMU, my home university (UNL), CMAF and
FCT (grant SFRH/BPD/9455/2002 and project POCI/MAT/61720/2004).

References

[1] Balcázar J. L., Dı́az J., Gabarró J.: Structural Complexity II. Springer-
Verlag (1990)

[2] Bellantoni S.: Predicative Recursion and Computational Complexity.
Ph. D. Dissertation, University of Toronto (1993)

[3] Bellantoni S., Cook S.: A New Recursion-Theoretic Characterization of
Polytime Functions. Computational Complexity 2, pp.97-110 (1992)

[4] Bellantoni S., Oitavem I.: Separating NC along the δ axis. ICC Special
issue of TCS 318, pp.57-78 (2004)

[5] Chandra A. K., Kozen D. C., Stockmeyer L. J.: Alternation. J.ACM,
pp.114-133 (1981)

[6] Cobham A.: The intrinsic computational difficulty of functions. Proc. of
the 1964 International Congress for Logic, Methodology, and the Philos-
ophy of Science, ed. Y. Bar-Hillel, North Holland, Amsterdam, pp.24-30
(1965)

[7] Leivant D., Marion J.: Ramified Recurrence and Computational Com-
plexity II: Substitution and poly-space. LNCS 993, 8th Proceedings of
CSL, pp.486-500 (1994)

[8] Oitavem I.: New recursive characterizations of the elementary functions
and the functions computable in polynomial space. Revista Matematica
de la Universidad Complutense de Madrid 10, N.1, pp.109-125 (1997)

[9] Oitavem I.: Implicit characterizations of Pspace. Proof Theory in Com-
puter Science, LNCS 2183, ed. R. Kahle et al., Springer, pp.170-190
(2001)

11

[10] Oitavem I.: Characterizing NC with tier 0 pointers. Mathematical Logic
Quarterly 50, N.1, pp.9-17 (2004)

[11] Thompson D.: Subrecursiveness: Machine-Independent Notions of
Computability in Restricted Time and Storage. Mathematical Systems
Theory 6, N.1, pp.3-15 (1971)

12

