
Halting problem undecidability and infinitely nested simulation (V4)

When a halt decider bases its halt status decision on the behavior of its simulated input then 
all of the conventional halting problem counter example inputs are determined to be non-
halting. A halt decider (because it is a decider) must report on the behavior specified by its 
finite string input. The behavior specified by this input is the actual behavior of this input 
when it is correctly simulated by its simulating halt decider (SHD) that contains a UTM. 

A SHD computes the mapping from its input to its own accept or reject state based on 
whether or not the pure simulation of its simulated input could reach its own final state in a 
finite number of simulated steps.  

It is self-evidently correct that when-so-ever a simulating halt decider must abort the 
simulation of its input to prevent the infinite simulation of this input that this input specifies an 
infinite sequence of configurations. 

H.q0 ⟨M⟩ w ⊢* H.qy ----- iff UTM( ⟨M⟩, w ) reaches the final state of M
H.q0 ⟨M⟩ w ⊢* H.qn ----- iff UTM( ⟨M⟩, w ) would never reach the final state of M

Simulating halt decider H performs a pure simulation of its input as if it was a UTM unless 
and until it detects an infinitely repeating pattern. Then it aborts the simulation of its input and
transitions to its final reject state. Otherwise H transitions to its accept state when its 
simulation ends. 

The following simplifies the syntax for the definition of the Linz Turing machine Ĥ, it is now a 
single machine with a single start state. A copy of Linz H is embedded at Ĥ.qx 

.qĤ 0 ⟨ ⟩ ⊢* .qĤ Ĥ x ⟨ ⟩ ⟨ ⟩ ⊢* .qĤ Ĥ Ĥ y ∞ 
If the pure simulation of ⟨ ⟩ ⟨ ⟩ by embedded_H Ĥ Ĥ would reach its final state. 

.qĤ 0 ⟨ ⟩ ⊢* .qĤ Ĥ x ⟨ ⟩ ⟨ ⟩ ⊢* .qĤ Ĥ Ĥ n 
If the pure simulation of ⟨ ⟩ ⟨ ⟩ by embedded_H Ĥ Ĥ would never reach its final state. 

             
             Figure 12.3 Turing Machine Ĥ applied to ⟨Ĥ⟩
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When Ĥ is applied to ⟨ ⟩Ĥ  
  Ĥ copies its input ⟨Ĥ0⟩ to ⟨Ĥ1⟩ then embedded_H simulates ⟨Ĥ0⟩ ⟨Ĥ1⟩

Then these steps would keep repeating:
  Ĥ0 copies its input ⟨Ĥ1⟩ to ⟨Ĥ2⟩ then embedded_H0 simulates ⟨Ĥ1⟩ ⟨Ĥ2⟩
  Ĥ1 copies its input ⟨Ĥ2⟩ to ⟨Ĥ3⟩ then embedded_H1 simulates ⟨Ĥ2⟩ ⟨Ĥ3⟩
  Ĥ2 copies its input ⟨Ĥ3⟩ to ⟨Ĥ4⟩ then embedded_H2 simulates ⟨Ĥ3⟩ ⟨Ĥ4⟩... 

The above shows that the simulated input to embedded_H never reaches its own final state 
whether or not its simulation is aborted. 
(a) If the simulation is not aborted the above sequence never ends. 
(b) If the simulation is aborted the entire chain of recursive simulations immediately stops. 

In no case does the simulated input ⟨ ⟩Ĥ  ⟨ ⟩ Ĥ ever reach its final state ⟨ ⟩.qnĤ  thus never meets 
the Linz definition of halting: 

computation that halts … the Turing machine will halt whenever it enters a final state. 
(Linz:1990:234) Thus if embedded_H rejects its input it is necessarily correct. 

Because all halt deciders are deciders they compute the mapping from their input finite 
strings inputs to their own accept or reject state. Halt deciders (because they are deciders) 
do not compute any mappings from non-finite string non-inputs.  

No halt decider ever determines the halt status of the computation that contains its actual self
thus embedded_H does not compute the mapping from  ⟨ ⟩Ĥ Ĥ  because it is neither an input 
nor a finite string. 

Even Linz was confused by this. embedded_H is not supposed to report on itself or the 
computation that it is contained within. 

In the conclusion of his proof Linz said that when the copy of Linz H embedded at Ĥ.qx 
transitions to Ĥ.qn on the basis that its input: ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  never halts that this forms a contradiction
with the fact that Ĥ ⟨ ⟩Ĥ  halts. This assumes that a halt decider must compute the halt status 
of the computation that contains itself. 

Ĥ applied to ⟨ ⟩Ĥ  does not have the same behavior as the simulated input to embedded_H ⟨ ⟩Ĥ
⟨ ⟩.Ĥ  This is because embedded_H recognizes the infinitely repeating pattern in its simulated 
input and aborts its simulation, thus forcing the simulated input to stop running without 
reaching its final state. 

Because embedded_H breaks the otherwise infinitely recursive chain at its second 
invocation the first element in this chain Ĥ applied to ⟨ ⟩Ĥ  stops running. Whenever a single 
element of an otherwise infinitely recursive sets of invocations is aborted this breaks 
otherwise infinitely recursive chain. 
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Appendix: Peter Linz Halting Problem Proof 

Definition 12.1 

Theorem 12.1 

Let WM describe a Turing machine M = (Q, I, r, 8, qo, D, F), and 
let W be any element of I +. A solution of the halting problem is a Tur
ing machine H, which for any W M and w, performs the computation 

if M applied to w halts, and 

if M applied to w does not halt. Here qy and qn are both final states of H. 

There does not exist any Turing machine H that behaves as required by 
Definition 12.1. The halting problem is therefore undecidable. 

Proof: We assume the contrary, namely that there exists an algorithm, 
and consequently some Turing machine H, that solves the halting problem. 
The input to H will be the description (encoded in some form) of M, say 
WM, as well as the input w. The requirement is then that, given any (WM' w), 
the Turing machine H will halt with either a yes or no answer. We achieve 
this by asking that H halt in one of two corresponding final states, say, q y or 
qn' The situation can be visualized by a block diagram like Figure 12.1. The 
intent of this diagram is to indicate that, if M is started in state qo with input 
(WM, w), it will eventually halt in state qy or qn' As required by Definition 
12.1, we want H to operate according to the following rules: 

if M applied to W halts, and 

if M applied to W does not halt. 



Figure 12.1 

Figure 12.2 

Next, we modify H to produce a Turing machine H' with the structure 
shown in Figure 12.2. With the added states in Figure 12.2 we want to 
convey that the transitions between state qy and the new states qa and qb are 
to be made, regardless of the tape symbol, in such a way that the tape 
remains unchanged. The way this is done is straightforward. Comparing H 
and H' we see that, in situations where H reaches qy and halts, the modified 
machine H' will enter an infinite loop. Formally, the action of H' is de
scribed by 

if M applied to w halts, and 

if M applied to w does not halt. 



From H' we construct another Turing machine Ii. This new machine 
takes as input WM, copies it, and then behaves exactly like H'. Then the 
action of Ii is such that 

if M applied to WM halts, and 

if M applied to WM does not halt. 

Now Ii is a Turing machine, so that it will have some description in l*, 
say w. This string, in addition to being the description of Ii can also be used 
as input string. We can therefore legitimately ask what would happen if Ii is 
applied to w. From the above, identifying M with Ii, we get 

if Ii applied to w halts, and 

A * 00 qow ~ if ' 

if Ii applied to w does not halt. This is clearly nonsense. The contradiction 
tells us that our assumption of the existence of H, and hence the assump
tion of the decidability of the halting problem, must be false. • 

Linz, Peter 1990. An Introduction to Formal Languages and Automata. 
LexingtonlToronto: D. C. Heath and Company. (317-320) 
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