

1

Minimal Type Theory (MTT) shows exactly how all of the constituent parts of an expression
relate to each other (in 2D space) when this expression is formalized using a directed acyclic
graph (DAG). This provides greater expressiveness than the 1D space of FOPL syntax.

X @ ~True(X) // assign alias operator “@” explained
"@" means the LHS is assigned as an alias for the RHS .
This extension to FOPL syntax provides the means for:
(1) Meaningful names to be assigned to expressions.
(2) Predicates to have other Predicates as terms. // enabling HOL of an unlimited finite order
(3) An Expression to refer directly to itself.

https://en.wikipedia.org/wiki/Logical_consequence#Syntactic_consequence
A formula A is a syntactic consequence within some formal system FS of a set Γ of formulas if
there is a formal proof in FS of A from the set Γ: Γ ⊢FS A
Translation to MTT notational conventions: Γ ⊢FS A ≡ (∃Γ ⊂ FS (Γ ⊢ A))

First Order Predicate Logic Syntax used the the basis for the Minimal Type Theory Language:

sentence
 : atomic_sentence
 | sentence IMPLIES sentence
 | sentence IFF sentence
 | sentence AND sentence
 | sentence OR sentence
 | sentence PROVES sentence // enhancement
 | quantifier IDENTIFIER sentence // MTT syntax is different
 | '~' sentence %prec NOT
 | '(' sentence ')'
 ;

atomic_sentence
 : IDENTIFIER '(' term_list ')' // ATOMIC PREDICATE
 | IDENTIFIER // SENTENTIAL VARIABLE (enhancement)
 ;

term
 : IDENTIFIER '(' term_list ')' // FUNCTION
 | IDENTIFIER // CONSTANT or VARIABLE
 ;

term_list
 : term_list ',' term
 | term
 ;

quantifier
 : THERE_EXISTS
 | FOR_ALL
 ;

Minimal Type Theory augments the above syntax in two key ways:
(a) Adding the Assign Alias Operator: “@”
(b) Requiring every variable to be associated with a specific type.

2

Provable(L, X) @ L ∈ Formal_Systems, X ∈ Finite_Strings, ∃Γ ⊂ L (Γ ⊢ X)

00 root (1)(4)(7)(10)
01 ∈ (2)(3)
02 L
03 Formal_Systems
04 ∈ (5)(6)
05 X
06 Finite_Strings
07 ∃ (8)
08 ⊂ (9)(2)
09 Γ
10 ⊢ (9)(5)

⊂

Γ

⊢

FS L

∈

X

root

∈

S

∃

Numbers on Directed
Graph Edges indicate
Order of Evaluation

(1) (1)(2)(1)(2) (2)

(1) (4) (2)

(1) (2)

(3)

3

Refutable(L, X) @ L ∈ Formal_Systems, X ∈ Finite_Strings, ∃Γ ⊂ L (Γ ⊢ ~X)

00 root (1)(4)(7)(10)
01 ∈ (2)(3)
02 L
03 Formal_Systems
04 ∈ (5)(6)
05 X
06 Finite_Strings
07 ∃ (9)
08 ⊂ (9)(2)
09 Γ
10 ⊢ (9)(11)
11 ~ (5)

⊂

Γ

⊢

FS L

∈

X

root

∈

S

∃

Numbers on Directed
Graph Edges indicate
Order of Evaluation

~

(1) (1)(2)(1)(2)

(1) (4) (2)

(1)

(2)

(3)

(2)

4

~Provable(L, X) @ L ∈ Formal_Systems, X ∈ Finite_Strings, ~∃Γ ⊂ L (Γ ⊢ X)

00 root (1)(4)(7)(11)
01 ∈ (2)(3)
02 L
03 Formal_Systems
04 ∈ (5)(6)
05 X
06 Finite_Strings
07 ~ (8)
08 ∃ (9)
09 ⊂ (10)(2)
10 Γ
11 ⊢ (10)(5)

⊂

Γ

⊢

FS L

∈

X

root

∈

S

∃

Numbers on Directed
Graph Edges indicate
Order of Evaluation

~

(1) (1)(2)(1)(2) (2)

(1) (4)

(2)

(1) (2)

(3)

5

G @ ∀L ∈ Formal_Systems, ~∃Γ ⊂ L (Γ ⊢ G)

"@" means the LHS is assigned as an alias for the RHS .
There is no referencing / dereferencing needed, G is one and the same thing as the expression
that refers to G. (Unlike Tarksi naming) G is not referring to its name, G is referring to itself.

00 root (1)(5)(9) // G is an alias for this node
01 ∀ (2)
02 ∈ (3)(4)
03 L
04 Formal Systems
05 ~ (6)
06 ∃ (7)
07 ⊂ (8)(3)
08 Γ
09 ⊢ (8)(0) // cycle indicates infinite evaluation loop error

FS

⊂

∃

⊢

Γ

~

∈

∀

L

rootNumbers on Directed
Graph Edges indicate
Order of Evaluation

(1)

(1)
(1)

(1)

(1)

(1)

(2) (2)

Cycle Indicates Error (2)

(2)

(1)

(3)

In the case of Pathological Self-Reference (PSR) the second argument to the ⊢ predicate forms
and infinite loop instead of ever reaching its expected sentential variable. This prevents the
evaluation of the expression from ever completing.

6

Gödel’s Proof (Revised Edition) 2001
Nagel, Newman, and Hofstadter page 97
(G) ~(∃x) Dem (x, Sub(n, 17, n))

completing the substitution
(G) ~(∃x) Dem (x, G)

converting to common notation
(G) ~(∃x)(x ⊢ G)

Example of Provable(L, R)
WFF of L
 (1) P // premise
 (2) P → Q // axiom
 (3) Q → R // axiom

 Proof (using finite string rewrite rules)
 Logical_Inference("P", "P → Q") ∴ "Q"
 Logical_Inference("Q", "Q → R") ∴ "R"
 ∴ Provable("R")

All of the above copyright 2017 Pete Olcott

