Minimal Type Theory (MTT) shows exactly how all of the constituent parts of an expression
relate to each other (in 2D space) when this expression is formalized using a directed acyclic
graph (DAG). This provides greater expressiveness than the 1D space of FOPL syntax.

X @ ~True(X) // assign alias operator “@" explained

"@" means the LHS is assigned as an alias for the RHS.

This extension to FOPL syntax provides the means for:

(1) Meaningful names to be assigned to expressions.

(2) Predicates to have other Predicates as terms. // enabling HOL of an unlimited finite order
(3) An Expression to refer directly to itself.

https://en.wikipedia.org/wiki/Logical consequence#Syntactic consequence

A formula A is a syntactic consequence within some formal system s of a set I' of formulas if
there is a formal proof in £§of Afrom thesetl: T g A

Translation to MTT notational conventions: T & A = (3r cFS (T~ A))

First Order Predicate Logic Syntax used the the basis for the Minimal Type Theory Language:

sentence
: atomic_sentence

sentence IMPLIES sentence

sentence IFF sentence

sentence AND sentence

sentence OR sentence

sentence PROVES sentence // enhancement

quantifier IDENTIFIER sentence // MTT syntax is different

'~" sentence %prec NOT

'(" sentence ')'

atomic_sentence ]
: IDENTIFIER '(' term_list ')' // ATOMIC PREDICATE

| IDENTIFIER // SENTENTIAL VARIABLE (enhancement)
’
term )
: IDENTIFIER '(' term_list ')' // FUNCTION
| IDENTIFIER // CONSTANT or VARIABLE
’
term_list
: term_list ',' term

| term

quantifier
: THERE_EXISTS
| FOR_ALL

Minimal Type Theory augments the above syntax in two key ways:
(a) Adding the Assign Alias Operator: “@"
(b) Requiring every variable to be associated with a specific type.



Provable(L, X) @ L € Formal_Systems, X € Finite_Strings, aF c L (I - X)

00 root (1)(4)(7)(10)

01e€ @)3)
02L

03 Formal_Systems
04 € (5)(6)

05 X

06 Finite_Strings
07 13 8)

08 c 9)(2)
o9r

10 - 9)(5)

Numbers on Directed
Graph Edges indicate
Order of Evaluation




Refutable(L, X) @ L € Formal_Systems, X € Finite_Strings, 3l c L (I - ~X)

00 root (1)(4)(7)(10)

01e€ @)3)
02L

03 Formal_Systems
04 € (5)(6)
05 X

06 Finite_Strings
07 13 9)

08 c 9)(2)
o9r

10 - 9011
11 ~ (5)

Numbers on Directed
Graph Edges indicate
Order of Evaluation




~Provable(L, X) @ L € Formal_Systems, X € Finite_Strings, ~3Ir c L (I -~ X)

00 root (1)(@)(7)(11)

01e€ @)3)
02L

03 Formal_Systems
04 € (5)(6)

05 X

06 Finite_Strings
07 ~ (8)

08 13 9)

09 c (10(2)
10T
11 (10)(5)

Numbers on Directed
Graph Edges indicate
Order of Evaluation




G @ VL € Formal_Systems, ~ar c L (' - G)

"@" means the LHS is assigned as an alias for the RHS..
There is no referencing / dereferencing needed, G is one and the same thing as the expression
that refers to G. (Unlike Tarksi naming) G is not referring to its name, G is referring to itself.

00 root (1)(5)(9) // G is an alias for this node

o1vY (@

02e (34

03 L

04 Formal Systems
05 ~ (6)

06 1 @

07 c 8)(3)
08r

09 + (8)(0) // cycle indicates infinite evaluation loop error

Numbers on Directed
Graph Edges indicate
Order of Evaluation

Cycle Indicates Error (2)

In the case of Pathological Self-Reference (PSR) the second argument to the I predicate forms
and infinite loop instead of ever reaching its expected sentential variable. This prevents the
evaluation of the expression from ever completing.



Godel’s Proof (Revised Edition) 2001
Nagel, Newman, and Hofstadter page 97
(G) ~(3x) Dem (x, Sub(n, 17, n))

completing the substitution
(G) ~(3x) Dem (%, G)

converting to common notation
(G) ~(INX - G)

Example of Provable(L, R)
WFF of L

(mnre // premise

(2) P->Q //axiom

(3) Q- R //axiom

Proof (using finite string rewrite rules)
Logical_Inference("P", "P - Q") .. "Q"
Logical_Inference("Q", "Q = R") .. "R"
- Provable("R")

All of the above copyright 2017 Pete Olcott



