
v

Contents

Preface ix

Abstracts of Invited Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Bahareh Afshari
Cyclic Proof Systems for Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Nick Bezhanishvili
Filtrations, canonical formulas, and axiomatizations of superintuitio-
nistic and modal logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Melvin Fitting
About ‘Binding Modalities’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Nina Gierasimczuk
Learning and Modal Logic: There and Back Again . . . . . . . . . . . . . . . . . . 9

Contributed Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Ana de Almeida Borges and Joost J. Joosten
Quantified Reflection Calculus with one modality . . . . . . . . . . . . . . . . . . . . 13

Philippe Balbiani, Hans van Ditmarsch and Saúl Fernández
González
Quantifying over Asynchronous Information Change . . . . . . . . . . . . . . . . . 33

Philippe Balbiani and Saúl Fernández González
Indexed Frames and Hybrid Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Fausto Barbero and Fan Yang
Counterfactuals and dependencies on causal teams: expressive power
and deduction systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Guram Bezhanishvili and Luca Carai
Temporal interpretation of intuitionistic quantifiers . . . . . . . . . . . . . . . . . . 95

Nick Bezhanishvili, Silvio Ghilardi and Lucia Landi
Model Completeness and Π2-rules: the case of Contact Algebras . . . . . 115



vi

Justin Bledin and Yitzhak Melamed
Spinozian Model Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Yifeng Ding and Wesley H. Holliday
Another Problem in Possible World Semantics . . . . . . . . . . . . . . . . . . . . . . . 149

Sebastian Enqvist
A circular proof system for the hybrid µ-calculus . . . . . . . . . . . . . . . . . . . . 169

Luis Estrada-González
Possibility, consistency, connexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Giulio Fellin, Sara Negri and Peter Schuster
Modal Logic for Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Jonas Forster and Lutz Schröder
Non-iterative Modal Logics are Coalgebraic . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Valentin Goranko
The modal logic of almost sure frame validities in the finite . . . . . . . . . . 249

Rajeev Goré and Ian Shillito
Bi-Intuitionistic Logics: a New Instance of an Old Problem . . . . . . . . . . 269

Jim de Groot, Helle Hvid Hansen and Alexander Kurz
Logic-Induced Bisimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Andreas Herzig and Elise Perrotin
On the axiomatisation of common knowledge . . . . . . . . . . . . . . . . . . . . . . . . 309

Wesley H. Holliday
Inquisitive Intuitionistic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Andrzej Indrzejczak
Existence, Definedness and Definite Descriptions in Hybrid Modal
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Stanislav Kikot, Ilya Shapirovsky and Evgeny Zolin
Modal Logics with Transitive Closure: Completeness, Decidability, Fil-
tration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Jȩdrzej Kołodziejski
Bisimulational Categoricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389



vii

Hirohiko Kushida
Reduction of Modal Logic and Realization in Justification Logic . . . . . 405

Stepan Kuznetsov
The ‘Long Rule’ in the Lambek Calculus with Iteration: Undecidability
without Meets and Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

George Metcalfe and Olim Tuyt
A Monadic Logic of Ordered Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . 441

Satoru Niki and Hitoshi Omori
Actuality in Intuitionistic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Hitoshi Omori and Daniel Skurt
A Semantics for a Failed Axiomatization of K . . . . . . . . . . . . . . . . . . . . . . . 481

Hitoshi Omori and Heinrich Wansing
An Extension of Connexive Logic C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Mikhail Rybakov and Dmitry Shkatov
Algorithmic properties of first-order modal logics of the natural number
line in restricted languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Katsuhiko Sano
Goldblatt-Thomason-style Characterization for Intuitionistic Inquisitive
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Igor Sedlár
Finitely-valued Propositional Dynamic Logic . . . . . . . . . . . . . . . . . . . . . . . . 561

Daniyar Shamkanov
Global neighbourhood completeness of the provability logic GLP . . . . . 581

Sara L. Uckelman
William of Sherwood on Necessity and Contingency . . . . . . . . . . . . . . . . . 597



viii

Preface

Advances in Modal Logic (AiML) is an initiative founded in 1995 and aimed
at presenting an up-to-date picture of the state of the art in modal logic and
its many applications. It consists of a conference series together with volumes
based on the conferences. The conference series is the main international forum
at which research on all aspects of modal logic is presented. The first install-
ment was held in 1996 in Berlin, Germany, and since then it has been organized
biennially, with meetings in 1998 in Uppsala, Sweden; in 2000 in Leipzig, Ger-
many (jointly with ICTL-2000); in 2002 in Toulouse, France; in 2004 in Manch-
ester, UK; in 2006 in Noosa, Australia; in 2008 in Nancy, France; in 2010 in
Moscow, Russia; in 2012 in Copenhagen, Denmark; in 2014 in Groningen, the
Netherlands; and in 2016 in Budapest, Hungary; in 2018 in Bern, Switzerland.
Information about AiML and related events, including conference proceedings,
is available at the website www.aiml.net.

The thirteenth conference in the AiML series was was organized at the Uni-
versity of Helsinki, Finland, by Sara Negri (University of Genova and University
of Helsinki) and Gabriel Sandu (University of Helsinki), with the assistance of
Fausto Barbero, Annika Kanckos, Eugenio Orlandelli, and Edi Pavlović. Due
to the exceptional situation caused by Covid 19, AiML 2020 was held online
on August 24–28, 2020.

The conference website can be found at
https://www.helsinki.fi/en/conferences/advances-in-modal-logic-2020.

This volume contains abstracts of invited talks and contributed papers from
the conference. The invited talks were given by

• Bahareh Afshari (University of Gothenburg and University of Amster-
dam)

• Nick Bezhanishvili (University of Amsterdam)
• Melvin Fitting (City University of New York)
• Nina Gierasimczuk (Technical University of Denmark)

The Programme Committee received 56 regular paper submissions. Of
these, 31 were selected for this volume by a reviewing process where every
paper received three independent expert reviews.

The volume includes papers on propositional modal logics, their products,
predicate modal logics, temporal and epistemic reasoning, modal logic with
non-boolean basis, provability and interpretability logics, inquisitive, dynamic,
connexive, intuitionistic, substructural, dependence logics and hybrid logics,
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and other related logics. The topics include history of modal reasoning, de-
cidability and complexity results, proof theory, model theory, interpolation, as
well as other related problems in algebraic logic.

In addition, there were 29 submissions for short presentations at the con-
ference, the great majority of them were accepted for presentation.

The members of the Programme Committee for the conference were

• Natasha Alechina (Utrecht University)
• Maria Aloni (University of Amsterdam)
• Philippe Balbiani (CNRS, IRIT Toulouse)
• Guram Bezhanishvili (New Mexico State University)
• Marta Bílková (Charles University Prague)
• Patrick Blackburn (University of Roskilde)
• Agata Ciabattoni (TU Wien)
• Giovanna Corsi (University of Bologna)
• Giovanna D’Agostino (University of Udine)
• Stéphane Demri (CNRS, LSV, ENS Paris-Saclay)
• Hans van Ditmarsch (CNRS, LORIA, University of Lorraine)
• David Fernández-Duque (Ghent University)
• David Gabelaia (TSE Razmadze Mathematical Institute)
• Didier Galmiche (CNRS, LORIA, University of Lorraine)
• Silvio Ghilardi (University of Milan)
• Valentin Goranko (Stockholm University)
• Rajeev Goré (The Australian National University)
• Davide Grossi (University of Groningen)
• Helle Hvid Hansen (Delft University of Technology)
• Wesley Holliday (UC Berkeley)
• Agi Kurucz (King’s College London)
• Roman Kuznets (TU Wien)
• Carsten Lutz (University of Bremen)
• George Metcalfe (University of Bern)
• Larry Moss (Indiana University)
• Cláudia Nalon (University of Brasilia)
• Sara Negri (University of Genova and University of Helsinki)
• Eric Pacuit (University of Maryland)
• Xavier Parent (University of Luxembourg)
• Valeria De Paiva (Samsung Research America, Birmingham University)
• Sophie Pinchinat (IRISA, University of Rennes I)
• Mark Reynolds (The University of Western Australia)
• Renate Schmidt (University of Manchester)
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• Ilya Shapirovsky (Institute for the Information Transmission Problems)
• Valentin Shehtman (Institute for the Information Transmission Problems)
• Thomas Studer (University of Bern)
• Sara L. Uckelman (Durham University)
• Yde Venema (University of Amsterdam)
• Yanjing Wang (Peking University)
• Michael Zakharyashev (Birbeck University of London)

The Programme Committee was chaired by

• Nicola Olivetti (Aix-Marseille University)
• Rineke Verbrugge (University of Groningen)

The Steering Committee of AiML for 2018–2020 consisted of

• Lev Beklemishev (Steklov Mathematical Institute)
• Guram Bezhanishvili (New Mexico State University)
• Rajeev Goré (Australian National University)
• Giovanna D’Agostino (University of Udine)
• Stéphane Demri (CNRS, France)
• Agi Kurucz (King’s College London)
• Sara Negri (University of Genova and University of Helsinki)

(local organizer of AiML 2020)
• Nicola Olivetti (Aix-Marseille University)
• Rineke Verbrugge (University of Groningen)

Many other people assisted with the reviewing process, including: Juan
Aguilera, Michael Baur, Hugo Bazille, Nick Bezhanishvili, Torben Braüner,
Luca Carai, Ivano Ciardelli, Tiziano Dalmonte, Anupam Das, Jeremy Dawson,
Sebastian Enqvist, Luis Estrada-González, Saúl Fernández González, Melvin
Fitting, Nissim Francez, Peter Fritz, Krisztina Fruzsa, Nikolaos Galatos, Rus-
tam Galimullin, Francesco Antonio Genco, Marianna Girlando, Christopher
Hampson, Joost Joosten, Max Kanovich, Stanislav Kikot, Antti Kuusisto,
Stepan Kuznetsov, Ori Lahav, Martin Lange, Eveline Lehmann, Bjoern Lell-
mann, Mateusz Łełyk, Yanjun Li, Churn-Jung Liau, Tim Lyon, Tommaso
Moraschini, Massimo Mugnai, Hoang Nga Nguyen, Eugenio Orlandelli, Fedor
Pakhomov, Edi Pavlovic, Marcin Przybyłko, Gabriele Pulcini, Vít Punčochář,
Ricardo Oscar Rodriguez, Daniel Rogozin, Mikhail Rybakov, Kiana Samadpour
Motalebi, Luigi Santocanale, Nenad Savic, Giorgio Sbardolini, Julian Schlöder,
François Schwarzentruber, Ian Shillito, Dmitry Shkatov, John Stell, Olim Tuyt,
Heinrich Wansing, Xuefeng Wen, Evgeny Zolin. We apologize to anyone whose
name was inadvertently left off this list.



xi

We thank the organizers of the conference for their dedication in bringing
the conference to life, and to move it online when that became necessary. In
particular, we are very grateful to Eugenio Orlandelli for his precious help in
the LATEX processing of the proceedings. We thank the members of the Pro-
gramme Committee and all other reviewers for the time, professional effort and
the expertise that they invested in ensuring the high scientific standards of the
conference and its proceedings. We also thank the authors for their excellent
contributions. Moreover we thank Jane Spurr for bringing this volume to pub-
lication. Special thanks go to Guram Bezhanishvili and Giovanna D’Agostino
(Program Chairs of AiML 2018), who supported us with their advice in all
phases of the conference.

We would like to thank the Academy of Finland for generously sponsoring
the conference within the project Modalities and conditionals: Systematic and
historical studies (project no. 1308664) and the University of Helsinki for help
in the organization and online facilities.

June 24th, 2020
Nicola Olivetti

Rineke Verbrugge
Sara Negri

Gabriel Sandu
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Cyclic Proof Systems for Modal Logics

Bahareh Afshari 1

University of Amsterdam
Institute for Logic, Language and Computation

Postbus 94242, 1090 GE Amsterdam, The Netherlands

University of Gothenburg
Department of Philosophy, Linguistics and Theory of Science

Box 200, 40530 Göteborg, Sweden

A cyclic proof is a, possibly infinite but, regular derivation tree in which
every infinite path satisfies a certain soundness criterion, the form of which
depends on the logic under study. Circular and, more generally, non-well-
founded derivations are not traditionally regarded as formal proofs but merely
as an intermediate machinery in proof-theoretic investigations. They are, how-
ever, an important alternative to finitary proofs and in the last decade have
helped break some important barriers in the proof theory of logics formalising
inductive and co-inductive concepts. Most prominently cyclic proofs have been
investigated for: first-order logic with inductive definitions [6,8,4], arithmetic
[18,5,9], linear logic [3,10], modal and dynamic logics [19,13,17,20,14,2,12,1],
program semantics [16,11] and automated theorem proving [7,15,21].

We focus on cyclic proofs for modal logics, ranging from Gödel-Löb logic
to more expressive languages such as the modal µ-calculus, and reflect on how
they can contribute to the development of the theory of fixed point modal logic.

References

[1] Afshari, B. and G.E. Leigh. Lyndon interpolation for the modal mu-calculus, in: TbiLLC
(2019), to appear.

[2] Afshari, B. and G.E. Leigh. Cut-free completeness for modal mu-calculus, in: LICS
(2017).

[3] Baelde, D., A. Doumane and A. Saurin. Infinitary proof theory: the multiplicative
additive case, in: CSL (2016).

[4] Berardi, S. and M. Tatsuta. Classical system of Martin-Löf ’s inductive definitions is not
equivalent to cyclic proof system, in: LMCS 15(3) (2019).

[5] Berardi, S. and M. Tatsuta. Equivalence of inductive definitions and cyclic proofs under
arithmetic, in: LICS (2017).

[6] Brotherston, J. Cyclic proofs for first-order logic with inductive definitions, in:
TABLEAUX (2005), pp. 78–92.

[7] Brotherston, J., N. Gorogiannis and R.L. Petersen. A generic cyclic theorem prover, in:
APLAS (2012).

1 b.afshari@uva.nl
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[8] Brotherston, J. and A. Simpson. Sequent calculi for induction and infinite descent, in:
Journal of Logic and Computation 21(6)(2011), pp. 1177–1216.

[9] Das, A. On the logical complexity of cyclic arithmetic, in: Logical Methods in Computer
Science 16(1) (2019).

[10] De, A. and A. Saurin. Infinets: The parallel syntax for non-wellfounded proof-theory, in:
TABLEAUX (2019), pp. 297–316.

[11] Docherty S. and R.N.S. Rowe. A non-wellfounded, labelled proof system for propositional
dynamic logic, in: TABLEAUX (2019), 335–352.

[12] Enqvist, S., H.H. Hansen, C. Kupke, J. Marti and Y. Venema. Completeness for Game
Logic, in: LICS (2019).

[13] Jungteerapanich N. A tableau system for the modal µ-calculus, in: TABLEAUX (2009),
pp. 220–234.

[14] Kokkinis, I. and T. Studer. Cyclic Proofs for Linear Temporal Logic, in: Ontos
Mathematical Logic 6 (2016), 171–192.

[15] Rowe, R.N.S. and J. Brotherston. Realizability in cyclic proof: Extracting ordering
information for infinite descent, in: TABLEAUX (2017), pp. 295–310.

[16] Santocanale, L. A calculus of circular proofs and its categorical semantics, in: FoSSaCS
(2002), pp. 357–371.

[17] Shamkanov, D. Circular proofs for the Gödel-Löb provability logic, in: Math. Notes 96
(2014), pp. 575–585.

[18] Simpson, A. Cyclic arithmetic is equivalent to Peano Arithmetic, in: FOSSACS (2017),
pp. 283–300.

[19] Sprenger, C. and M. Dam. On the structure of inductive reasoning: Circular and tree-
shaped proofs in the µ-calculus, in: FoSSaCS 2003 (2003), pp. 425–440.

[20] Stirling, C. A tableau proof system with names for modal mu-calculus, in: EPiCS 42
(2014), pp. 306–318.

[21] Tellez, G. and J. Brotherston. Automatically verifying temporal properties of pointer
programs with cyclic proof, in: Journal of Automated Reasoning 64(3)(2020), pp. 555–
578.



Filtrations, canonical formulas, and
axiomatizations of superintuitionistic

and modal logics

Nick Bezhanishvili

ILLC, University of Amsterdam
The Netherlands

There are two main tools for establishing the finite model property for modal
and superintuitionistic logics: the methods of standard and selective filtrations.
For superintutionistic logics standard filtration algebraically corresponds to
taking the implication-free reduct of Heyting algebras and selective filtration
corresponds to the join-free reduct. The key property that makes these methods
work is that these reducts are locally finite. These finite model property proofs
can be turned into axiomatization methods using canonical formulas. These
formulas were introduced model-theoretically by Zakharyaschev building on
the work of Jankov, de Jongh, Fine and Rautenberg. Zakharyaschev’s canoni-
cal formulas algebraically correspond to join-free reducts of Heyting algebras.
Every superintuitionistic logic is axiomatizable by these formulas. Important
subclasses of canonical formulas are Jankov-de Jongh, subframe and cofinal
subframe formulas giving rise to classes of join-splitting, subframe and cofinal
subframe logics, respectively. In this talk, I will also discuss recently introduced
stable canonical formulas, which algebraically correspond to implication-free
reducts of Heyting algebras. Every superintuionistic logic is also axiomatizable
by stable canonical formulas. These formulas give rise to a new class of stable
logics.

Modal logic counterpart of Zakharyaschev’s canonical formulas axiomatizes
all extensions of K4 (this was later generalized to all extensions of the weak
transitive logic wK4). This technique is based on the method of selective fil-
tration for transitive modal logics. While selective filtration is very effective
in the transitive case, it is less effective for K. This is one of the reasons why
canonical formulas do not work well for K. I will discuss how to generalize the
technique of stable superintuitionistic canonical formulas to the modal setting.
Since the technique of filtration works well for K, we show that this new tech-
nique is effective in the non-transitive case as well. However, due to the lack
of the master modality in the case of K we need to work with rules as opposed
to formulas. I will define stable canonical rules and show that each normal
modal logic is axiomatizable by stable canonical rules. For normal extensions
of K4 we prove that stable canonical rules can be replaced by stable canonical
formulas, thus providing an alternative to Zakharyaschev’s axiomatization.





About ‘Binding Modalities’

Melvin Fitting 1

Graduate Center, City University of New York
web page: melvinfitting.org

In classical logic the addition of quantifiers to propositional logic is essen-
tially unique, with some minor variations of course. In modal logic things are
not so monolithic. One can quantify over things or over intensions; domains
can be the same from possible world to possible world, or shrink, or grow, or
follow no pattern, as one moves from a possible world to an accessible one. In
1963 Kripke showed that shrinking or growing domains related to validity of
the Barcan and the converse Barcan formulas, but this was a semantic result.
Proof theory is trickier. Nested sequents are well behaved, but axiom systems
can be unruly. A direct combination of propositional modal axioms and rules
with standard quantificational axioms and rules simply proves the converse
Barcan formula. It’s not easy to get rid of it. Kripke showed how one could do
so, but he needed to use a less common axiomatization of the quantifiers. It
works, but one has the impression of having a formal proof system with road
blocks placed carefully to prevent proofs from veering into the ditch.

Some 40 or more years later, justification logic was created by Artemov, and
now there are justification systems that correspond to infinitely many different
modal logics. The first justification logic was called LP, for “logic of proofs”.
It is related to propositional S4. LP was extended to a quantified version by
Artemov and Yavorskaya, with a possible world semantics supplied by Fitting.
Subsequently Artemov and Yavorskaya transferred their ideas, concerning what
they called “binding modalities”, back from quantified LP to quantified S4 itself.
In the present work we carry their ideas on further to the basic normal modal
logic, K, which is not as well-behaved as S4 on these matters. It turns out that
this provides a natural intuition for Kripke’s non-standard axiomatization from
those many years ago. It also relates quite plausibly to the distinction between
de re and de dicto. But now the main work is done through a generalization
of the modal operator, instead of through a restriction on allowed quantifier
axiomatizations.

1 melvin.fitting@gmail.com





Learning and Modal Logic: There and Back
Again

Nina Gierasimczuk

Technical University of Denmark
Department of Applied Mathematics and Computer Science

Among many interpretations of modal logic the one pertaining to knowl-
edge and belief has been especially buoyant in recent years. The framework of
epistemic logic offers a platform for a systematic study of knowledge and belief.
Dynamic epistemic logic further extends that way of thinking to cover many
kinds of transformations knowledge undergoes in communication, and under
other informative events. Such iterated changes can be given a long-term hori-
zon of learning, i.e., they can be seen as ways to acquire a desirable kind of
epistemic state. Thus, the question arises: Can modal logic contribute to our
understanding of learning processes in general?

The link between dynamic epistemic logic and computational learning the-
ory was introduced in [10,11], where it was shown that exact learning in finite
time (also known as finite identification, see [16,17]) can be modelled in dy-
namic epistemic logic, and that the elimination process of learning by erasing
[15] can be seen as iterated upgrade of dynamic doxastic logic. This bridge
opened a way to study truth-tracking properties of doxastic upgrade methods
on positive, negative, and erroneous input [2,4]. Switching from relational to
topological semantics for modal logic allowed characterising favourable condi-
tions for learning in the limit in terms of general topology [3]. This line of
research recently culminated in proposing a Dynamic Logic for Learning The-
ory, which extends Subset Space Logics [7] with dynamic observation modalities
and a learning operator [1].

Finite identifiability and its connections with epistemic temporal logic have
been further studied in [9]. Learning seen as conclusive epistemic update re-
sulted in designing new types of learners, such as preset learners and fastest
learners [14]. Some of those results were later adopted to study learning of
action models in dynamic epistemic logic [5,6], and to investigate properties
of finite identification from complete data [8]. For an overview of some above
contributions one can also consult [12,13].

In my lecture I will overview the modal logic perspective on learnability,
drawing from the line of work described above.
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Abstract

This paper presents the logic QRC1, which is a strictly positive fragment of quantified
modal logic. The intended reading of the diamond modality is that of consistency of
a formal theory. Predicate symbols are interpreted as parametrized axiomatizations.
We prove arithmetical soundness of the logic QRC1 with respect to this arithmetical
interpretation.
Quantified provability logic is known to be undecidable. However, the undecidability
proof cannot be performed in our signature and arithmetical reading. We conjecture
the logic QRC1 to be arithmetically complete. This paper takes the first steps to-
wards arithmetical completeness by providing relational semantics for QRC1 with a
corresponding completeness proof. We further show the finite model property with
respect to domains and number of worlds, which implies decidability.

Keywords: Provability logic, strictly positive logics, quantified modal logic,
arithmetic interpretations, feasible fragments, decidable logics, finite model property.

1 Introduction

We present a new provability logic QRC1, standing for Quantified Reflection
Calculus with one modality. The best known provability logic is perhaps GL
[7]. Recall that GL is a PSPACE decidable propositional modal logic where
the modality 2 is used to model formal provability in some base theory such
as Peano Arithmetic (PA). Likewise, the dual modality 3 is used to model
consistency over the base theory. By Solovay’s celebrated completeness result
[20] we know that, in a sense, the logic GL generates exactly the provable-in-PA
structural behavior of formal provability.

Let us make this slightly more precise. By a realization ? we mean a map
from propositional variables to sentences in the language of Peano Arithmetic.

1 anadealmeidagabriel@ub.edu
2 jjoosten@ub.edu



14 Quantified Reflection Calculus with one modality

The realization is extended to all propositional modal formulas by defining
(ϕ∧ψ)? := ϕ?∧ψ? and likewise for other Boolean connectives. Finally, we define
(2ϕ)? := 2PAϕ

?, where 2PA is a formula in the language of PA satisfying the
Hilbert-Bernays-Löb derivability conditions (see [7]) that arithmetizes formal
provability in PA in the sense that PA ` χ if and only if N |= 2PAχ. 3 We can
now paraphrase Solovay’s result as GL = {ϕ | ∀ ? PA ` ϕ?}.

After Solovay’s completeness theorem, it was natural to ask whether one
could find a logic that generates exactly the provable-in-PA structural behavior
of formal provability for (relational) quantified modal logic. The main difference
with GL is that we now understand a realization ∗ as a map from relation
symbols to formulas in the language of Peano Arithmetic such that the free
variables match the arity of the relation symbol. Vardanyan showed in [21] that
this situation is completely different: now {ϕ | ∀ ∗ PA ` ϕ∗} is Π0

2-complete, a
big jump from the PSPACE decidability of GL.

Visser and de Jonge showed that Vardanyan’s result can be extended to
a wide range of arithmetical theories and called their paper No escape from
Vardanyan’s theorem [22]. Here we shall take some first steps to indeed find
an escape to Vardanyan’s theorem. We do so by making two adaptations to
the standard setting. First, we resort to a very small fragment of relational
predicate modal logic called the strictly positive fragment. Second, we slightly
change the realizations so that we interpret relation symbols not directly as
formulas, but as axiomatizations of theories. As such our study follows a recent
development of strictly positive logics in general (such as [18]) and reflection
calculi in particular (see [8], [4], and [9]).

Japaridze [17] generalized the logic GL to a polymodal version called GLP,
and Beklemishev [2] generalized this further to a transfinite setting yielding
GLPΛ, where for each ordinal ξ < Λ there is a provability modality [ξ], and
larger ordinals refer to stronger provability notions. The logic GLPω has been
successfully used in performing a modular ordinal analysis of PA and related
systems (see [1], and more recently [6]). A key feature in the ordinal analysis is
that consistency operators 〈n〉 can be interpreted as reflection principles, which
are finitely axiomatizable.

However, an interpretation of limit modalities like 〈ω〉 would require non
finitely axiomatizable reflection schemata. One way to overcome this problem
is by resorting to what was coined the Reflection Calculus [8], [3] and its trans-
finite version RCΛ [11]. Reflection calculi only allow strictly positive formulas,
which are based solely on propositional variables, a verum constant, consistency
operators, and conjunctions. As such, the arithmetical realizations as above
can be taken to be arithmetical theories instead of arithmetical formulas.

The logic QRC1 we present in this paper follows this set-up: we will work
with sequents of the form ϕ ` ψ where both ϕ and ψ are strictly positive
formulas built up from >, predicate symbols, conjunction, universal quantifi-
cation and the 3 modality. The latter will refer to the usual notion of formal

3 We refrain from distinguishing a formula ϕ from its Gödel number pϕq.
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consistency and predicate symbols are interpreted as theories parametrized by
the free variables.

Independently of the reflection calculi, other strictly positive modal logics
were studied because of their computational desirable properties when com-
pared to their non-strict counterparts (see [18] for an example). In this line,
the logic RC can be seen as a PTIME decidable fragment of the PSPACE com-
plete logic GLP (shown in [8]). If indeed the logic QRC1 we present in this
paper turns out to be arithmetically complete, this would yield, in a sense, a
shift from undecidability (Π0

2-completeness) to decidability when resorting to
a strictly positive fragment.

2 Quantified Reflection Calculus with one modality

The Quantified Reflection Calculus with one modality, or QRC1, is a sequent
logic in a strictly positive predicate modal language.

Towards describing the language of QRC1, we fix a countable set of variables
x0, x1, . . . (also referred to as x, y, z, etc.) and define a signature Σ as a set
of constants and a set of relation symbols with corresponding arity (we have
no function symbols). We use the letters c, ci, . . . to refer to constants and the
letters S, Si, . . . to refer to relation symbols.

Given a signature, a term t is either a variable or a constant of that sig-
nature. Both > and any n-ary relation symbol applied to n terms are atomic
formulas. The set of formulas is the closure of the atomic formulas under the
binary connective ∧, the unary modal operator 3, and the quantifier ∀x, where
x is a variable. Formulas are represented by Greek letters such as ϕ,ψ, χ, etc.

The free variables of a formula are defined as usual. The expression ϕ[x←t]
denotes the formula ϕ with all free occurrences of the variable x simultaneously
replaced by the term t. We say that t is free for x in ϕ if no occurrence of a
free variable in t becomes bound in ϕ[x←t].
Definition 2.1 Let Σ be a signature and ϕ, ψ, and χ be any formulas in that
language. The axioms and rules of QRC1 are the following:

(i) ϕ ` > and ϕ ` ϕ;

(ii) ϕ ∧ ψ ` ϕ and ϕ ∧ ψ ` ψ;

(iii) if ϕ ` ψ and ϕ ` χ, then
ϕ ` ψ ∧ χ;

(iv) if ϕ ` ψ and ψ ` χ, then ϕ ` χ;

(v) if ϕ ` ψ, then 3ϕ ` 3ψ;

(vi) 33ϕ ` 3ϕ;

(vii) 3 ∀xϕ ` ∀x3ϕ;

(viii) if ϕ ` ψ, then ϕ ` ∀xψ
(x /∈ fv(ϕ));

(ix) if ϕ[x←t] ` ψ then ∀xϕ ` ψ
(t free for x in ϕ);

(x) if ϕ ` ψ, then ϕ[x←t] ` ψ[x←t]
(t free for x in ϕ and ψ);

(xi) if ϕ[x←c] ` ψ[x←c], then ϕ ` ψ
(c not in ϕ nor ψ).

If ϕ ` ψ, we say that ψ follows from ϕ in QRC1. When the signature is not
clear from the context, we write ϕ `Σ ψ instead.

The following easy lemma presents a number of consequences of QRC1.
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Lemma 2.2 The following are theorems (or derivable rules) of QRC1:

(i) ∀x ∀ y ϕ ` ∀ y ∀xϕ;

(ii) ∀xϕ ` ϕ[x←t] (t free for x in ϕ);

(iii) ∀xϕ ` ∀ y ϕ[x←y] (y free for x in ϕ and y /∈ fv(ϕ));

(iv) if ϕ ` ψ, then ϕ ` ψ[x←t] (x not free in ϕ and t free for x in ψ);

(v) if ϕ ` ψ[x←c], then ϕ ` ∀xψ (x not free in ϕ and c not in ϕ nor ψ).

In order to analyze various aspects of our calculus we define two complexity
measures on formulas.

Definition 2.3 Given a formula ϕ, its modal depth d3(ϕ) is defined induc-
tively as follows:

• d3(>) := d3(S(x0, . . . , xn−1)) := 0;

• d3(ψ ∧ χ) := max{d3(ψ),d3(χ)};
• d3(∀xψ) := d3(ψ);

• d3(3ψ) := d3(ψ) + 1.

Given a finite set of formulas Γ, its modal depth is d3(Γ) := maxϕ∈Γ{d3(ϕ)}.
The definition of quantifier depth d∀ is analogous except for:

• d∀(∀xψ) = d∀(ψ) + 1; and

• d∀(3ψ) = d∀(ψ).

The modal depth provides a necessary condition for derivability, proven by
a straightforward induction on ϕ ` ψ.

Lemma 2.4 If ϕ ` ψ, then d3(ϕ) ≥ d3(ψ).

In particular, we get irreflexivity for free as stated in the next result. For
other calculi this usually requires hard work via either modal or arithmetical
semantics, as can be seen in [5], [10], and [12].

Corollary 2.5 For any formula ϕ, we have ϕ 6` 3ϕ.

The following lemma tells us that adding new constants to our signature
yields a conservative extension of the calculus.

Lemma 2.6 Let Σ be a signature and let C be a collection of new constants
not yet occurring in Σ. By ΣC we denote the signature obtained by including
these new constants C in Σ. Let ϕ,ψ be formulas in the language of Σ. Then,
if ϕ `ΣC ψ, so does ϕ `Σ ψ.

Proof. This is a standard result and a proof for a calculus similar to ours can
be found in Section 1.8 of [14]. The idea is to replace every constant from C
appearing in the proof of ϕ `ΣC ψ by a fresh variable. It can easily be seen that
axioms are mapped to axioms under this replacement, and that the rules are
also mapped correctly. The most interesting case is that of the generalization
of constants rule, because replacing new constants by variables in the premise



Borges and Joosten 17

ϕ[x←c] `ΣC ψ[x←c] may leave us unable to apply the same rule. Fortunately
the term instantiation rule (Rule 2.1.(x)) suffices to complete the proof. 2

3 Arithmetical semantics

In this section we look at the intended arithmetical reading of the logic QRC1.
We consider first-order theories in the language {0, 1,+,×,≤,=} of arithmetic.
We refer the reader to [15] for details and definitions. We recall that bounded
formulas are those formulas where each quantifier occurs bounded as in ∀y ≤ t,
where y does not occur in t. The Σ1 formulas are those that arise by existential
quantification of bounded formulas. Sets of numbers that can be defined by a
Σ1 formula are called c.e. for computably enumerable.

The theory IΣ1 contains the defining axioms for our constants and func-
tion symbols, say as in Robinson’s arithmetic, and moreover allows induc-
tion for Σ1 formulas. It is well-known that IΣ1 proves Σ1-collection, that is,
∀x<z ∃ y ϕ(x, y) → ∃ y0 ∀x<z ∃ y<y0 ϕ(x, y) where ϕ is a Σ1 formula. For
the sake of an easy exposition we shall assume that all the theories we work
with extend IΣ1. By τ(x) we denote the elementary formula that presents the
standard axiomatization of IΣ1. In particular, N |= τ(n) if and only if n is the
Gödel number of an axiom of IΣ1.

In the arithmetical interpretation of the propositional logic RC, the proposi-
tional variables are mapped to (axiomatizations of) theories, and the conjunc-
tion of two theories is interpreted as the union of both theories (corresponding
to a disjunction in the sense of either being an axiom of the one or of the other).
The arithmetical interpretation of each diamond modality is a consistency no-
tion.

We will fix a provability predicate 2αϕ formalizing the existence of a
Hilbert-style proof, which is a sequence of formulas the last of which is ϕ
and such that each element of the sequence is either a logical axiom, an axiom
in the sense of α, or the result of applying a rule to earlier elements in the
sequence. We denote the dual consistency notion by Conα(ψ) and sometimes
write Conα instead of Conα(>).

If we now interpret relation symbols from QRC1 as theories (parametrized by
the free variables), then a universal quantification (which can be conceived of as
an infinite conjunction) will be interpreted as an infinite union/disjunction, that
is, an existential quantifier. These observations are reflected in Definition 3.1
below.

In this section, we reserve the variables xi for variables in QRC1, and the
variables yi, zi and u are reserved for the arithmetic language with the under-
standing that the yi interpret the QRC1-constants ci and the zi interpret the
QRC1-variables xi. The variable u is reserved for (Gödel numbers of) axioms
of the theories that we denote.

Definition 3.1 A realization ∗ takes n-ary predicate symbols in the language
of QRC1 to (n+ 1)-ary Σ1-formulas in the language of arithmetic, each repre-
senting a set of axioms of theories indexed by n parameters. In particular, a
realization ∗ is such that S(c,x)∗ = σ(y, z, u) for some Σ1 formula σ such that
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for each concrete numerical values for y, z we have that N |= σ(y, z, u) if and
only if u is the Gödel number of an axiom of the intended corresponding theory.
When we use the vector notation in S(c,x)∗ = σ(y, z, u) we understand that
y matches with c and z matches with x, and thus if, say, yi occurs in σ, then
ci occurs in S(c,x).

We extend a given realization ∗ to ()∗ on any formula of QRC1 as follows:

• (>)∗ := τ(u);

• (S(c,x))∗ := S(c,x)∗ ∨ τ(u);

•
(
ψ(c,x) ∧ δ(c,x)

)∗
:=
(
ψ(c,x)

)∗ ∨
(
δ(c,x)

)∗
;

•
(
♦ψ(c,x)

)∗
:= τ(u) ∨ (u = pCon(ψ(c,x))∗q);

•
(
∀xi ψ(c,x)

)∗
:= ∃ zi

(
ψ(c,x)

)∗
.

From now on we omit outer brackets, using the same notation for ∗ and ()∗.
This may lead to confusion for predicate symbols, but the context should tell
us which reading to use. We fix the notation ψ(c,x)∗ = ψ∗(y, z) suppressing
mention of u when convenient.

Let T be a c.e. theory in the language of arithmetic which extends IΣ1. We
define (recall that χ∗ will in general depend on y and z):

QRC1(T ) := {ϕ(c,x) ` ψ(c,x) | ∀ ∗ T ` ∀ θ ∀y ∀ z (�ψ∗θ → �ϕ∗θ)}.

We defer the question of whether QRC1 = QRC1(T ) for any sound c.e. T
containing IΣ1 to a future paper and prove here only the soundness inclusion.

Theorem 3.2 (Arithmetical soundness) QRC1 ⊆ QRC1(IΣ1).

Proof. By induction on ϕ ` ψ. The details can be found in Appendix A. Here
we just observe the arithmetical content expressed by of some of the axioms. For
example, ϕ ` > is sound because all of our theories extend IΣ1. The 33ϕ ` 3ϕ
axiom reflects provable Σ1 completeness (see [7]). The 3∀xϕ ` ∀x3ϕ axiom
reflects that if a sum of theories is consistent, then each of the summands is
consistent too. 2

4 Relational semantics

There have been several proposals for relational semantics for modal predicate
logics, from Kripke [19] to many others. Overviews can be found in [16], [13] and
[14]. We essentially have first-order models glued together by an accessibility
relation. Our interpretation of the universal quantifiers is actualist, which
means that ∀xϕ is true at a world w if and only if ϕ[x←d] is true at w for
every d in the domain of w, i.e., for every entity d that exists in that world. It
might happen, however, that some other world u has a different domain, and
thus that it falsifies ϕ[x←e] for some specific e.

We proceed by defining frames and relational models.

Definition 4.1 A frame F is a tuple 〈W,R, {Mw}w∈W 〉 where:
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• W is a non-empty set (the set of worlds, where individual worlds are
referred to as w, u, v, etc);

• R is a binary relation on W (the accessibility relation); and

• each Mw is a finite set (the domain of the world w, whose elements are
referred to as d, d0, d1, etc).

The domain of the frame is M :=
⋃
w∈W Mw. We say that a frame is finite if

its set of worlds W is finite. In that case both the relation R and the domain
M will be finite as well.

Definition 4.2 A relational model M in a signature Σ is a tuple 〈F ,
{Iw}w∈W , {Jw}w∈W 〉 where:

• F = 〈W,R, {Mw}w∈W 〉 is a frame;

• for each w ∈ W , the interpretation Iw assigns an element of the domain
Mw to each constant c ∈ Σ, written cIw ; and

• for each w ∈ W , the interpretation Jw assigns a set of tuples SJw ⊆
℘((Mw)n) to each n-ary relation symbol S ∈ Σ.

Even though we interpret the universal quantifiers in the actualist way, we
cannot allow the domains of each world to be completely unrelated to each
other. This is because we want statements such as the axiom 3 ∀xϕ ` ∀x3ϕ
to be sound. This axiom forces us to have inclusive frames, which means that
if w sees a world u, then the domain of w is included or at least embedded in
the domain of u. We also require that our frames be transitive, for we want
the axiom 33ϕ ` 3ϕ to be sound. Finally, the interpretation of a constant
should indeed be constant throughout (the relevant part of) any useful model.
Thus, we introduce the notion of adequate frames and models.

Definition 4.3 A frame F is adequate if the accessibility relation R is:

• inclusive: if wRu, then Mw ⊆Mu; and

• transitive: if wRu and uRv, then wRv.

A model is adequate if it is based on an adequate frame and it is:

• concordant: if wRu, then cIw = cIu for every constant c.

Note that in an adequate and rooted model the interpretation of the constants
is the same at every world.

In order to define truth at a world in a first-order model, we use assignments.
A w-assignment g is a function assigning a member of the domain Mw to each
variable in the language. In an adequate frame, any w-assignment can be seen
as a v-assignment as long as wRv, because Mw ⊆ Mv and hence there is a
trivial inclusion (or coercion) ιw,v : Mw → Mv. If g is such a w-assignment,
we represent the corresponding v-assignment ιw,v ◦ g by gι when w and v are
clear from the context.

Two w-assignments g and h are Γ-alternative, denoted by g ∼Γ h, if they
coincide on all variables other than the ones in Γ. If Γ = {x}, then we write
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simply x-alternative and g ∼x h.
We extend a given w-assignment g to terms by defining g(c) := cIw where

c is any constant.

Definition 4.4 Let M = 〈W,R, {Mw}w∈W , {Iw}w∈W , {Jw}w∈W 〉 be a rela-
tional model in some signature Σ, and let w ∈ W be a world, g be a w-
assignment, S be an n-ary relation symbol, and ϕ,ψ be formulas in the lan-
guage of Σ.

We defineM, w g ϕ (ϕ is true at w under g) by induction on ϕ as follows.

• M, w g >;

• M, w g S(t0, . . . , tn−1) iff 〈g(t0), . . . , g(tn−1)〉 ∈ SJw ;

• M, w g ϕ ∧ ψ iff both M, w g ϕ and M, w g ψ;

• M, w g 3ϕ iff there is v ∈W such that wRv and M, v gι ϕ;

• M, w g ∀xϕ iff for all w-assignments h such that h ∼x g, we have
M, w h ϕ.

We now present a number of simple results needed to prove the relational
soundness of QRC1. These are standard observations about either first-order
models or Kripke models that we adapted to our case.

Remark 4.5 Let M be an adequate model, w be any world, g, h be any Γ-
alternative w-assignments, and ϕ be a formula with no free variables in Γ.
Then:

M, w g ϕ ⇐⇒ M, w h ϕ.
Lemma 4.6 (Substitution in formula) Let M be an adequate model, w be
a world, and g, g̃ be x-alternative w-assignments such that g̃(x) = g(t). Then
for every formula ϕ with t free for x:

M, w g̃ ϕ ⇐⇒ M, w g ϕ[x←t].

Proof. By induction on ϕ. We only present the cases of the diamond and of
the universal quantifier; the remaining cases are straightforward. We assume
without loss of generality that x is a free variable of ϕ, since otherwise we could
use Remark 4.5.

Suppose that ϕ is 3ψ and assume thatM, w g̃ 3ψ. Then there is a world
v such that wRv andM, v g̃ι ψ. Note that gι ∼x g̃ι and g̃ι(x) = gι(t) (either t
is a variable and this is a consequence of g̃(x) = g(t), or t is a constant and this
follows from tIw = tIv ) and thus by the induction hypothesisM, v gι ψ[x←t].
This gives us M, w g 3ψ[x←t], as desired. The other direction is analogous.

Suppose now that ϕ = ∀ z ψ and assume that M, w g̃ ∀ z ψ. Note that x
and z are different variables, for otherwise x would not be free in ϕ. Let h be
any w-assignment such that h ∼z g. We wish to showM, w h ψ[x←t]. Define
h̃ such that h̃ ∼x h and h̃(x) := h(t). Then by the induction hypothesis we can

reduce our goal to M, w h̃ ψ. By our assumption, it is enough to check that
h̃ ∼z g̃.
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In order to see this, note first that h̃ ∼{x,z} h (because h̃ ∼x h). Similarly,

h ∼{x,z} g and g ∼{x,z} g̃. Then h̃ ∼{x,z} g̃ by transitivity of ∼{x,z}. But
g̃(x) = g(t) by assumption; g(t) = h(t) because g ∼z h (z and t are not the
same variable because otherwise t would not be free for x in ϕ); and h(t) = h̃(x)
by construction of h̃. Thus g̃(x) = h̃(x), and h̃ ∼z g̃.

Towards the other direction, assume that M, w g (∀ z ψ)[x←t] and that
x and z are not the same variable. Let h̃ ∼z g̃ be a w-assignment. We wish

to show M, w h̃ ψ. Define h ∼x h̃ such that h(x) := g(x). Note that h ∼z g
by the transitivity of ∼x,z (using a similar argument to the one above). Thus
we know that M, w h ψ[x←t] by assumption. It only remains to show that
h̃(x) = h(t), as we can then finally use the induction hypothesis to finish. If t
is x there is nothing to show, and t cannot be z, because z is not free for x in
∀ z ψ. Thus, h(t) = g(t) = g̃(x) = h̃(x). 2

We need some more work to prove the soundness of Rule 2.1.(xi), which we
postpone to Appendix B. Otherwise we are ready to prove that QRC1 is sound
with respect to the relational semantics presented above.

Theorem 4.7 (Relational soundness) If ϕ ` ψ, then for any adequate
model M, for any world w ∈W , and for any w-assignment g:

M, w g ϕ =⇒ M, w g ψ.

Proof. By induction on the proof of ϕ ` ψ.
In the case of the axioms ϕ ` > and ϕ ` ϕ, the result is clear, as it is for the

conjunction elimination axioms. The conjunction introduction and cut rules
follow easily from the definitions.

For the necessitation rule assume the result for ϕ ` ψ and further assume
that M, w g 3ϕ. Then there is a world v such that wRv and M, v gι ϕ.
We wish to see M, w g 3ψ. Taking v as a suitable witness, our goal changes
to M, v gι ψ. Thus the induction hypothesis for v and gι finishes the proof.

For the transitivity axiom, 33ϕ ` 3ϕ, assume that M, w g 33ϕ. Then
there is a world v such that wRv and M, v ιw,v◦g 3ϕ, and also a subsequent
world u such that vRu andM, u ιv,u◦(ιw,v◦g) ϕ. Observing that ιv,u◦(ιw,v ◦g)
is the same as ιw,u◦g, we getM, u ιw,u◦g ψ, and the transitivity of R provides
wRu, which is enough to see M, w g 3ϕ, as desired.

In the case of 3 ∀xϕ ` ∀x3ϕ, assume that M, w g 3 ∀xϕ. Then there
is v ∈ W such that wRv and for every v-assignment h with h ∼x gι we have
M, v h ϕ. Let f be any w-assignment such that f ∼x g. Taking v as a
suitable world seen by w, we wish to check that M, v fι ϕ. By assumption,
it is enough to see f ι ∼x gι, and this follows from f ∼x g.

For the ∀-introduction rule on the right, assume the result for ϕ ` ψ towards
showing the soundness of ϕ ` ∀xψ with x 6∈ fv(ϕ). Assume further that
M, w g ϕ. Let h be a w-assignment such that h ∼x g. We wish to see that
M, w h ψ. Since x is not a free variable in ϕ, we know that M, w h ϕ
by Remark 4.5. The result follows from the induction hypothesis with w-
assignment h.
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Consider now the ∀-introduction rule on the left. Assume the result for
ϕ[x←t] ` ψ with t free for x in ϕ and assume further thatM, w g ∀xϕ. Then
for every w-assignment h such that h ∼x g we haveM, w h ϕ. Define h ∼x g
such that h(x) = g(t). We obtain M, w g ψ by the induction hypothesis and
Lemma 4.6.

The term instantiation rule, Rule 2.1.(x), is sound by Lemma 4.6, and the
generalization on constants rule, Rule 2.1.(xi), is sound by Lemma B.6. 2

5 Relational completeness

We now wish to prove the relational completeness of QRC1. For every under-
ivable sequent we provide a model that doesn’t satisfy it. These models are
term models where the worlds are akin to maximal consistent sets. However,
since we have no way to express negative formulas, each world is a pair of sets
of formulas instead: the set of positive formulas at that world and the set of
negative ones.

We start by defining some notions about pairs of formulas, and we write
p, q, . . . to refer to generic pairs that may not have all the necessary properties
to be a world in a term model. Given a pair of sets p, the first set is the positive
set, or p+, and the second one is the negative set, or p−.

Definition 5.1 Given a set of formulas Γ and a formula ϕ, we say that ϕ
follows from Γ, and write Γ ` ϕ (overloading the existing notation), if there
are formulas γ0, . . . , γn ∈ Γ such that γ0 ∧ · · · ∧ γn ` ϕ.

Definition 5.2 Let Φ be a set of formulas.

• A Φ-extension of a pair p = 〈p+, p−〉 is a pair q = 〈q+, q−〉 such that
p+ ⊆ q+ ⊆ Φ and p− ⊆ q− ⊆ Φ. In that case we write p ⊆ q ⊆ Φ.

• A pair p is consistent if for every δ ∈ p− we have p+ 6` δ.
• A pair p ⊆ Φ is Φ-maximal consistent if it is consistent and there is no

consistent Φ-extension of p.

• A pair p is fully witnessed if for every formula ∀xϕ ∈ p− there is a constant
c such that ϕ[x←c] ∈ p−.

• A pair p is Φ-MCW if it is Φ-maximal consistent and fully witnessed.

Lemma 5.3 A pair p is Φ-maximal consistent if and only if it is consistent
and for every ϕ ∈ Φ either ϕ ∈ p+ or ϕ ∈ p−.

Proof. The right-to-left implication is obvious. To check the other one assume
that p is Φ-maximal consistent and let ϕ ∈ Φ. If p+ ` ϕ, then 〈p+ ∪ {ϕ}, p−〉
is still consistent, and thus by maximality it must be that ϕ ∈ p+. If on the
other hand p+ 6` ϕ, then 〈p+, p−∪{ϕ}〉 is consistent, and thus we may conclude
ϕ ∈ p−. 2

Definition 5.4 Given a set of constants C, the closure of a formula ϕ under C,
written C`C(ϕ), is defined by induction on the formula as such: C`C(>) := {>};
C`C(S(t0, . . . , tn−1)) := {S(t0, . . . , tn−1)),>}; C`C(ϕ∧ψ) := {ϕ∧ψ}∪C`C(ϕ)∪
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C`C(ψ); C`C(3ϕ) := {3ϕ} ∪ C`C(ϕ); and

C`C(∀xϕ) := {∀xϕ} ∪
⋃

c∈C
C`C(ϕ[x←c]).

The closure under C of a set of formulas Γ is the union of the closures under
C of each of the formulas in Γ:

C`C(Γ) :=
⋃

γ∈Γ

C`C(γ).

The closure of a pair p is defined as the closure of p+ ∪ p−.

Note that the closure of a set of closed formulas is itself a set of closed
formulas. We often use the concept of closure under a set of constants on an
already Φ-maximal pair when we wish to extend the signature of the formulas
in Φ with a new set of constants.

Given a consistent pair p, we wish to generate a Φ-maximal consistent and
fully witnessed extension of p, for some set of formulas Φ. In the usual Henkin
construction this is traditionally accomplished in two steps: first extend the
signature to include a constant for each existential statement and add every
closed formula of the form ∃xϕ → ϕ[x←cϕ] to your set, proving that this
didn’t break consistency. Then prove a Lindenbaum Lemma to the effect that
consistent sets can be extended to maximal consistent sets. The resulting sets
will be maximal, consistent, and fully witnessed. However we can not do this
because we cannot express implications. Thus if we were to add a witness for
every existential formula in our original pair p (read: universal formula in p−)
and then use a Lindenbaum lemma to make it maximal, there could be new
existential formulas without witnesses. We might have to iterate the process
over and over again, or at least a proof of termination would be non-trivial.
Fortunately, this isn’t needed. We can manage with a finite set of witnesses,
as is shown by the following lemma.

Lemma 5.5 Given a finite signature Σ with constants C, a finite set of closed
formulas Φ in the language of Σ and a consistent pair p ⊆ C`C(Φ), there is a
finite set of constants D ⊇ C and a pair q ⊇ p in the language of Σ extended
by D such that q is C`D(Φ)-MCW and d3(q+) = d3(p+).

Proof. Let N := {c0, . . . , cd∀(Φ)−1} and D := C ∪N .
Let q0 := p. For every formula ϕi in C`D(Φ), if p+ ` ϕi, define qi+1 =

〈q+
i ∪ {ϕi}, q−i 〉; otherwise define qi+1 = 〈q+

i , q
−
i ∪ {ϕi}〉. Let q := qn, where

n is the size of C`D(Φ), i.e., q is what we have at the final iteration of this
process.

Now assume by way of contradiction that q is not consistent, and let ψ ∈ q−
be such that q+ ` ψ. Note that for every χ ∈ q+ we know that p+ ` χ, because
this was the required condition to add χ to q+ in the first place. Thus, it must
be that p+ ` ψ. But then the algorithm would have placed ψ in q+ instead of
q− and we reach a contradiction. We conclude that q is consistent.
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Lemma 5.3 tells us that q is C`D(Φ)-maximal consistent, because every
formula of C`D(Φ) is either in q+ or q−.

On the other hand, we know by Lemma 2.4 that d3(q+) ≤ d3(p+) because
every formula in q+ is a consequence of p+. We obtain the equality by observing
that p+ ⊆ q+.

It remains to show that q is fully witnessed. Let ∀xψ be a formula in q−.
We claim that there is ci ∈ N such that ci does not appear in ∀xψ. The
constants in N are new, so the only way to have a formula χ ∈ C`D(Φ) with
a constant cj ∈ N is if the formula ∀ y χ[cj←y] is also in C`D(Φ), for some
variable y that does not appear (free) in χ. Assume then that all the con-
stants in N appear in ψ, and let m be the size of N . Then the formula
∀ y0 · · · ∀ ym−1 ∀xψ[csm−1←ym−1] · · · [cs0←y0] must be in C`D(Φ) for some
variables yi and permutation s of the numbers between 0 and m − 1. But
this formula has quantifier depth m + 1, which is a contradiction because the
closure under any set of constants doesn’t change the depth of a set of formulas.

Let then ∀xψ ∈ q− and ci ∈ N be a constant that does not appear in ∀xψ.
Then we claim that ψ[x←ci] ∈ q−. Assume it is not the case. Then it must be
that p+ ` ψ[x←ci]. Note that ci does not appear in p+ and that x is not a free
variable of p+ due to it being a set of closed formulas. Then by Lemma 2.2.(v)
we obtain that p+ ` ∀xψ, which is a contradiction. 2

The next step is to link maximal consistent and fully witnessed pairs
through a relation that respects the diamond formulas in the pair. To that
end we define R̂ and prove some properties about it.

Definition 5.6 The relation R̂ between pairs is such that pR̂q if and only if
both of following hold:

(i) for any formula 3ϕ ∈ p− we have ϕ,3ϕ ∈ q−; and

(ii) there is some formula 3ψ ∈ p+ ∩ q−.

Lemma 5.7 The relation R̂ restricted to consistent pairs is transitive and ir-
reflexive.

Proof. In order to see that R̂ is transitive, assume that pR̂qR̂r. We wish to
see that pR̂r. Let 3ϕ ∈ p− be arbitrary. Then 3ϕ ∈ q− because pR̂q, and
then ϕ,3ϕ ∈ r− because qR̂r. Let now 3ψ ∈ p+ ∩ q−. Since qR̂r we know
that 3ψ ∈ r−. Then 3ψ ∈ p+ ∩ r−.

Regarding irreflexivity, suppose that there is a pair p such that pR̂p. Then
there must be 3ψ ∈ p+ ∩ p−, which contradicts the consistency of p. 2

There is an equivalent formulation of R̂ by looking at the positive sets.

Lemma 5.8 Given a set of formulas Φ, two sets of constants C ⊆ D, and
pairs p, q such that p is C`C(Φ)-maximal consistent and q is C`D(Φ)-maximal
consistent, we have that pR̂q if and only if both of the following hold:

(i) for every formula 3ϕ ∈ C`C(Φ), if either ϕ ∈ q+ or 3ϕ ∈ q+, then
3ϕ ∈ p+; and

(ii) there is some formula 3ψ ∈ p+ ∩ q−.



Borges and Joosten 25

Proof. Assume that pR̂q and let 3ϕ ∈ C`C(Φ) be such that either ϕ ∈ q+ or
3ϕ ∈ q+. Assume by contradiction that 3ϕ /∈ p+. Then by Lemma 5.3 we
know that 3ϕ ∈ p−. Thus since pR̂q, we obtain both ϕ ∈ q− and 3ϕ ∈ q−.
But this contradicts the consistency of q. The last condition holds by the
definition of R̂.

Assume now that these conditions hold, towards checking that pR̂q. Only
the first condition is in question. Let 3ϕ ∈ p− and assume that ϕ /∈ q−. By
Lemma 5.3, it must be that ϕ ∈ q+. Then 3ϕ ∈ p+, which contradicts the
consistency of p. Assume now that 3ϕ /∈ q−. By the same token, 3ϕ must be
in q+. Then 3ϕ ∈ p+, reaching a contradiction again. 2

The following lemma states that, given a suitable pair p where 3ϕ holds,
we can find a second suitable pair q where ϕ holds and pR̂q.

Lemma 5.9 (Pair existence) Let Σ be a signature with a finite set of con-
stants C, and Φ be a finite set of closed formulas in the language of Σ. If p is a
C`C(Φ)-MCW pair and 3ϕ ∈ p+, then there is a finite set of constants D ⊇ C
and a C`D(Φ)-MCW pair q such that pR̂q, ϕ ∈ q+, and d3(q+) < d3(p+).

Proof. Consider the pair r = 〈{ϕ}, {δ,3δ | 3δ ∈ p−} ∪ {3ϕ}〉. Assume that
r is not consistent, and thus that there is a formula ψ ∈ r− such that ϕ ` ψ.
It cannot be that ψ is 3ϕ due to Lemma 2.5. Thus there is 3δ ∈ p− such
that either ϕ ` δ or ϕ ` 3δ. By Rule 2.1.(v) we get either 3ϕ ` 3δ or
3ϕ ` 33δ, which also implies 3ϕ ` 3δ by Axiom 2.1.(vi). This contradicts
the consistency of p, which leads us to conclude that r is consistent.

We can now use Lemma 5.5 to obtain a finite set of constants D ⊇ C and
a C`D(Φ)-MCW pair q ⊇ r such that d3(q+) = d3(r+) = d3(ϕ) < d3(p+).

It remains to show that pR̂q, but this is clear by the definition of r: for
every 3δ ∈ p−, the formulas δ and 3δ are in r− (and hence in q−), and the
formula 3ϕ is both in p+ and in q−. 2

We are now ready to define an adequate model M[p] from any given finite
and consistent pair p such that M[p] satisfies the formulas in p+ and doesn’t
satisfy the formulas in p−. The idea is to build a term model where each world
w is a C`Mw(p)-MCW pair, and the worlds are related by (a sub-relation of)
R̂. The worlds in this model will be pairs of formulas in different signatures,
as we will add new constants every time we create a new world. However, the
model is intended to satisfy only formulas in the original signature of p.

Definition 5.10 Given a finite consistent pair p of closed formulas with con-
stants in a finite set C, we define an adequate model M[p].

We start by defining the underlying frame in an iterative manner. The root
is given by Lemma 5.5 applied to C and p, obtaining D and q. Frame F0 is
then defined such that its set of worlds is W 0 := {q}, its relation R0 is empty,
and the domain of q is M0

q := D.

Assume now that we already have a frame F i, and we set out to define F i+1

as an extension of F i. For each leaf w of F i, i.e., each world such that there is
no world v ∈ F i with wRiv, and for each formula 3ϕ ∈ w+, use Lemma 5.9 to
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obtain a finite set E ⊇M i
w and a C`E(w)-MCW pair v such that wR̂v, ϕ ∈ v+,

and d3(v+) < d3(w+). Now add v to W i+1, add 〈w, v〉 to Ri+1, and define
M i+1
v as E.
The process described above terminates because each pair is finite and the

modal depth of p+ (and consequently of C`X(p) for any set X) is also finite.

Thus there is a final frame Fd3(p+). This frame is inclusive by construction,
but not transitive. We obtain F [p] as the transitive closure of Fd3(p+), which
can be easily seen to still be inclusive. Thus the frame F [p] is adequate.

In order to obtain the model M[p] based on the frame F [p], let Iq take
constants in C to their corresponding version as domain elements and if w is
any other world, let Iw coincide with Iq. This is necessary to make sure that
the model is concordant, because q sees every other world, and is sufficient to
see that M[p] is adequate. Finally, given an n-ary predicate letter S and a
world w, define SJw as the set of n-tuples 〈d0, . . . , dn−1〉 ⊆ (Mw)n such that
S(d0, . . . , dn−1) ∈ w+.

Lemma 5.11 Let p be as above. The following are properties of F [p] =
〈W,R, {Mw}w∈W 〉 and M[p] = 〈F [p], {Iw}w∈W , {Jw}w∈W 〉:
(i) For every world w, its domain Mw is finite.

(ii) The set of worlds W is finite.

(iii) Every world w ∈W is C`Mw(p)-maximal consistent and fully witnessed.

(iv) For every world w ∈W , we have > ∈ w+.

(v) For any two worlds w, u ∈W , if wRu, then wR̂u.

Proof. These are simple consequences of the definition ofM[p]. The finiteness
of the domains is achieved in Lemma 5.5, while the finiteness of W is proved
in Definition 5.10. For the last property, note that R is the transitive closure
of Rd3(p+). If wRd3(p+)u, then wR̂u by construction. The result then follows
by the transitivity of R̂ (Lemma 5.7). 2

We are almost ready to state the truth lemma, which roughly states that
provability at a world w of M[p] is the same as membership in w+. However,
the signatures of the worlds of M[p] are more expressive than the signature
of the formulas we care about. Furthermore, all the formulas in the worlds of
M[p] are closed, while formulas in general may have free variables. In order to
deal with this, we replace the free variables of a formula with constants in the
appropriate signature first.

Definition 5.12 Given a formula ϕ in a signature Σ and a function g from the
set of variables to a set of constants in some signature Σ′ ⊇ Σ, we define the
formula ϕg in the signature Σ′ as ϕ with each free variable x simultaneously
replaced by g(x).

Given a variable x, the formula ϕg\x is as above, except that the variable
x doesn’t get replaced even if it is free in ϕ.

Lemma 5.13 (Truth lemma) Let Σ be a signature with a finite set of con-
stants C. For any finite non-empty consistent pair p of closed formulas in the
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language of Σ, world w ∈M[p], w-assignment g, and formula ϕ in the language
of Σ such that ϕg ∈ C`Mw

(p), we have that

M[p], w g ϕ ⇐⇒ ϕg ∈ w+.

Proof. By induction on ϕ. The cases of> and conjunction are straightforward,
so we focus on the other ones.

In the case of the relational symbols, we can take ϕ = S(x, c) without
loss of generality, where c ∈ C. Note that M[p], w g S(x, c) if and only if
〈g(x), cIw〉 ∈ SJw , if and only if S(g(x), cIw) ∈ w+. Since c ∈ C, we know by
the definition ofM[p] that cIw = c. Thus, we conclude thatM[p], w g S(x, c)
if an only if S(g(x), c) ∈ w+, as desired.

Consider now the case of the universal quantifier. For the left to right
implication, suppose that M[p], w g ∀xϕ. Then for every w-assignment
h ∼x g we haveM[p], w h ϕ. Thus for each such h we know that ϕh ∈ w+ by
the induction hypothesis (ϕh ∈ C`Mw

(p) because (∀xϕ)g ∈ C`Mw
(p)). We want

to show that (∀xϕ)g ∈ w+, i.e., that ∀xϕg\x ∈ w+. Assume by contradiction
that this is not the case. Then, since w is C`Mw

(p)-maximal consistent, it must
be that ∀xϕg\x ∈ w−. Let c ∈ Mw be a witness such that ϕg\x[x←c] ∈ w−,
which exists because w is fully witnessed. Let h be the w-assignment that
coincides with g everywhere except at x, where h(x) = c. Then g ∼x h and
ϕg\x[x←c] = ϕh. But this contradicts our earlier observation that for every
such h the formula ϕh is in w+.

For the right to left implication, let ∀xϕg\x ∈ w+, and let h ∼x g be any w-
assignment. We want to show thatM[p], w h ϕ. By the induction hypothesis
this is the same as showing that ϕh ∈ w+. But ϕh = ϕg\x[x←h(x)], and this
is in w+ by the completeness and consistency of w.

Finally, consider the case of the diamond. For the left to right implication,
assume that M[p], w g 3ϕ. Then there is some world u such that wRu and
M[p], u gι ϕ. 4 By the induction hypothesis we obtain ϕg

ι ∈ u+, and conse-
quently ϕg ∈ u+. Now, since wRu, we also know that wR̂u by Lemma 5.11.(v),
and thus by Lemma 5.8 we obtain 3ϕg ∈ w+ as desired.

For the right to left implication, assume that (3ϕ)g ∈ w+. By the con-
struction of M[p], there is a world u such that ϕg ∈ u+ (and hence ϕg

ι ∈ u+)
and wRu, and thenM[p], u gι ϕ by the induction hypothesis, from which we
finally conclude M[p], w g 3ϕ. 2

Theorem 5.14 (Completeness) If ϕ 6` ψ, then there are an adequate finite
model M, a world w ∈W , and a w-assignment g such that

M, w g ϕ and M, w 6g ψ.

Proof. Define a set of new constants C := {cxi | xi ∈ fv(p)} and let g be a
map from the set of variables to C that assigns cxi to xi for each i. Define p

4 Recall that if g is a w-assignment and wRu, we write gι to refer to the u-assignment that
behaves like g.
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as 〈ϕg, ψg〉, and assume it is not consistent, i.e., that ϕg ` ψg. Then by (a
generalization of) Rule 2.1.(xi) and Lemma 2.6 we would get that ϕ ` ψ. Thus
p is consistent. Let M[p] be the model generated from p as in Definition 5.10
and let w be the root of this model, which is an extension of p. Lemma 5.13
tells us thatM[p], w g ϕ andM[p], w 6g ψ because ϕg ∈ w+ and ψg /∈ w+.2

We observe that QRC1 has the finite model property with respect to domains
and number of worlds (as a consequence of Lemma 5.11 and Theorem 5.14). It
is interesting that QRC1 is this well behaved while, say, predicate intuitionistic
logic doesn’t enjoy the finite model property with respect to either of these.

Theorem 5.15 QRC1 is decidable.

Proof. Since QRC1 is recursively axiomatized, has the finite model property,
and it is easy to check whether a given finite model is adequate, Post’s Theorem
allows us to decide whether ϕ ` ψ. 2

Appendix

A Arithmetical soundness

Here we finally prove the soundness of QRC1 regarding the arithmetical seman-
tics. The following lemma is standard for Σ1 axiomatizations α and the reader
can consult [7] for details.

Lemma A.1 For any Σ1 formula α, we have that

(i) IΣ1 ` Conα(Conα)→ Conα;

(ii) IΣ1 ` ∃ z2αϕ→ 2α ∃ z ϕ.

Recall that we define QRC1(T ) for a a c.e. theory T in the language of
arithmetic which extends IΣ1 as follows.

QRC1(T ) = {ϕ(c,x) ` ψ(c,x) | ∀ ∗ T ` ∀ θ ∀y ∀ z (�ψ∗θ → �ϕ∗θ)}.

In the above we assume that all the free variables other than u in ψ∗ ∧ ϕ∗ are
among the y and z. The θ are sentences without free variables. Furthermore,
we stress that all realizations map to Σ1 formulas (modulo provable equiva-
lence).

Theorem A.2 (Arithmetical soundness) QRC1 ⊆ QRC1(IΣ1).

Proof. We proceed by (an external) induction on the proof of ϕ ` ψ. We
shall briefly comment on some of the cases. The case of the axiom ϕ ` > is
clear since by an easy induction on ϕ we van prove that over predicate logic
ϕ∗(y, z, u) ↔ τ(u) ∨ ϕ′(y, z, u) for some formula ϕ′. The axioms ϕ ∧ ψ ` ϕ
are easily seen to be sound since (ϕ ∧ ψ)∗ = ϕ∗ ∨ ψ∗, that is, the formula that
defines the union of two axiom sets.

The rule that if ϕ ` ψ and ψ ` χ, then ϕ ` χ is straightforward but the
rule that if ϕ ` ψ and ϕ ` χ, then ϕ ` ψ ∧χ is slightly more tricky. To see the
soundness, we fix a particular realization ∗ and reason in IΣ1. Inside IΣ1 we
fix arbitrary y, z and θ and assume 2(ψ∧χ)∗(y,z)θ, that is, 2ψ∗(y,z)∨χ∗(y,z)θ.
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Thus, 2ψ∗(y,z)

(
∀ i < n ξi → θ

)
for some collection of axioms {ξi}i<n satisfying

χ∗(y, z). By the induction hypothesis on ϕ ` ψ we obtain 2ϕ∗(y,z)

(
∀ i <

n ξi → θ
)
, so that 2τ

(
∀ i < n ξi → (∀ j < m ϕj → θ)

)
for some collection

of axioms {ϕj}j<m satisfying ϕ∗(y, z). Since all the ξi satisfy χ∗(y, z) we
conclude 2χ∗(y,z)

(
∀ j < m ϕj → θ

)
. Using now the induction hypothesis on

ϕ ` χ we conclude 2ϕ∗(y,z)

(
∀ j < m ϕj → θ

)
whence 2ϕ∗(y,z)θ as was to be

shown.
We will now see the soundness of the necessitation rule, that is, if ϕ ` ψ,

then 3ϕ ` 3ψ. We fix some realization ∗. The induction hypothesis for
ϕ ` ψ applied to the formula ⊥ gives us IΣ1 ` ∀y, z

(
2ψ∗(y,z)⊥ → 2ϕ∗(y,z)⊥

)
,

whence

IΣ1 ` ∀y, z
(
Conϕ∗(y,z) → Conψ∗(y,z)

)
. (A.1)

Let π be the standard proof of this. We reason in IΣ1, fixing parameters y, z, θ
and assuming 2(3ψ)∗(y,z)θ. Since (♦ψ)∗ := τ(u) ∨ (u = pConψ∗(y,z)q), we

conclude 2τ
(
Conψ∗(y,z) → θ

)
. We combine this proof with the proof π of

(A.1) to conclude 2τ
(
Conϕ∗(y,z) → θ

)
, whence 2(3ϕ)∗(y,z)θ.

The soundness of the axiom 33ϕ ` 3ϕ is similar, now using Lemma A.1.(i)
instead of (A.1).

To see the soundness of the axiom 3∀xi ϕ ` ∀xi3ϕ we start by proving a
First Claim:

IΣ1 ` Con(∀ xi ϕ)∗(y,z) → ∀ zi Conϕ∗(y,z). (A.2)

To prove this, we reason in IΣ1 and assume ∃ zi2ϕ∗(y,z)⊥, whence for
some number ζ we have that 2ϕ∗(y,z)[zi←ζ]⊥. Then a slight variation of
Lemma A.1.(ii) allows us to see that 2∃ zi ϕ∗(y,z)⊥, and thus 2(∀ xi ϕ)∗(y,z)⊥.

We now prove a Second Claim:

IΣ1 ` 2(∀ xi 3ϕ)∗(y,z)δ → 2τ(u)∨(u=p∀xiConϕ∗(y,z)q) δ. (A.3)

We observe (∀xi3ϕ)∗(y, z) = ∃ zi (3ϕ)∗(y, z) = ∃ zi
(
τ(u)∨u=pConϕ∗(y,z)q

)
,

the latter being provably equivalent to τ(u)∨ ∃ zi
(
u=pConϕ∗(y,z)q

)
. To prove

the Second Claim, we reason in IΣ1 and assume the antecedent 2(∀ xi 3ϕ)∗(y,z)δ
fixing some y, z, δ. Thus, we find a collection of numbers {ζj}j<m such that

2τ
(
∀ j < m Conϕ∗(y,z)[zi←ζj ] → δ

)
.

Clearly, 2τ
(
∀ zi Conϕ∗(y,z) → ∀ j < m Conϕ∗(y,z)[zj←ζj ]

)
, which suffices to

prove the Second Claim.
Let us now go back the soundness of the axiom 3 ∀xi ϕ ` ∀xi3ϕ. We fix

∗, reason in IΣ1, fix y, z, θ, and assume 2(∀ xi 3ϕ)∗(y,z)θ. By the Second Claim
and the formalized deduction theorem we get 2τ (∀ zi Conϕ∗(y,z) → θ). The
First Claim now gives us 2(3 ∀ xi ϕ)∗(y,z)θ as was to be shown.

The soundness of the ∀-introduction rule on the right, that if ϕ ` ψ, then
ϕ ` ∀xi ψ (xi /∈ fv(ϕ)), is not hard but contains a subtlety. To prove it we fix
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∗, reason in IΣ1, fix y, z, θ and assume 2(∀xiψ)∗(y,z)θ. Since (∀xiψ)∗(y, z) =
∃ziψ∗(y, z) we can find numbers {ζj}j<m such that

2τ (∀ j < m ψ∗(y, z)[zi←ζj ]→ θ).

Now by the induction hypothesis we get

∀ j < m 2ϕ∗(y,z)[zi←ζj ]ψ
∗(y, z)[zi←ζj ].

Since xi /∈ fv(ϕ) we have ∀ j < m 2ϕ∗(y,z)ψ
∗(y, z)[zi←ζj ]. Using Σ1-collection

we obtain 2ϕ∗(y,z) ∀ j < m ψ∗(y, z)[zi←ζj ], from which the required 2ϕ∗(y,z)θ
follows.

The soundness of the remaining axioms and rules is straightforward and
boils down to interchanging universal quantifiers. 2

B Relational soundness of the generalization on
constants rule

The generalization on constants rule, that if ϕ[x←c] ` ψ[x←c] then also ϕ ` ψ
as long as c does not appear in ϕ nor ψ, is indeed sound with respect to Kripke
models but the proof needs a couple of extra definitions and results.

We wish to provide counterparts to Remark 4.5 and Lemma 4.6 for when
the change happens in the interpretation of a constant instead of a variable. It
is straightforward to check that the interpretation of constants not appearing
in a formula is not relevant for the truth of that formula:

Remark B.1 Let M and M′ be adequate models differing only in their con-
stant interpretations {Iw}w∈W and {I ′w}w∈W . Let w be any world, g be any
w-assignment, and ϕ be a formula whose constants are interpreted in the same
way by both M and M′. Then

M, w g ϕ ⇐⇒ M′, w g ϕ.

However, we need a bit of work to be able to state a counterpart of
Lemma 4.6 for constants. We want to be able to replace the interpretation
of a constant by an element of the domain of some world w, but this element
may not exist in the domains of the worlds below w. Thus we need to first get
rid of that part of the model and keep only the sub-graph rooted at w.

Definition B.2 Given a frame F = 〈W,R, {Mw}w∈W 〉 and a world r ∈ W ,
the frame restricted at r, written F|r = 〈W |r, R|r, {Mw}w∈W |r 〉, is defined as
the restriction of F to the world r and all the worlds accessible from r by R.
Thus, W |r := {r} ∪ {w ∈ W | rRw}, and the relation R|r is R restricted to
W |r.

If M = 〈F , {Iw}w∈W , {Jw}w∈W 〉 is a model, then M|r is defined as 〈F|r,
{Iw}w∈W |r , {Jw}w∈W |r 〉.
Remark B.3 If F is an adequate frame, then so is F|r for any r ∈ W . Fur-
thermore, if M is an adequate model, then so is M|r.
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Remark B.4 Given an adequate model M and a world r ∈W , we have that
for any formula ϕ, any world w ∈Wr and any w-assignment g:

M, w g ϕ ⇐⇒ M|r, w g ϕ.
Definition B.5 Given an adequate model M = 〈F , {Iw}w∈W , {Jw}w∈W 〉, a
world r ∈ W , a constant c, and an element of the domain d ∈ Mr, we define
M|r[c←d] := 〈F|r, {I ′w}w∈W |r , {Jw}w∈W |r 〉 such that its frame is F truncated
at r, the relational symbols interpretation and the interpretation of all constants
except for c coincides with that of M|r, and the interpretation cI

′
w of the

constant c is d for every w ∈W |r.
Lemma B.6 Given a constant c, a formula ϕ where c does not appear, an
adequate model M, a world w, and a w-assignment g, we have:

M, w g ϕ ⇐⇒ M|w[c←g(x)], w g ϕ[x←c].

Proof. We proceed by induction on the formula ϕ. The cases of >, relational
symbols, and conjunction are trivial. We assume that x is free in ϕ, for other-
wise we could use Remarks B.1 and B.4.

Consider the diamond case. If M, w g 3ψ, then there is a world v
such that wRv and M, v gι ψ. By the induction hypothesis we obtain
M|v[c←gι(x)], v gι ψ[x←c]. Observe thatM|v[c←gι(x)] is the same model as
(M|w[c←g(x)])|v, since they share the same frame, the same constant interpre-
tation (because g(x) = gι(x)) and the same relational symbol interpretation.
Then by Remark B.4 we get M|w[c←g(x)], v gι ψ[x←c] and consequently
M|w[c←g(x)] g 3ψ[x←c], as desired. The other implication is analogous.

Finally, let ϕ = ∀ z ψ and assume that M, w g ∀ z ψ. Let h ∼z g be a
w-assignment, and set out to prove M|w[c←g(x)], w h ψ[x←c] (note that z
and x are not the same variable for otherwise x would not be free in ϕ). Since
h ∼z g, we know that g(x) = h(x), so by the induction hypothesis it is enough
to showM, w h ψ, which follows from our assumption. The other implication
is analogous. 2

The above lemma is now enough to show the soundness of Rule 2.1.(xi)
with respect to Kripke models.

Acknowledgments. We are grateful to the anonymous reviewers for suggest-
ing a number of improvements to the preliminary version of this paper.
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Abstract

We propose a logic AAA for Arbitrary Asynchronous Announcements. In this logic,
the sending and receiving of messages that are announcements are separated and
represented by distinct modalities. Additionally, the logic has a modality that repre-
sents quantification over information change in the shape of sequences of sending and
receiving events, called histories. We present a complete however infinitary axiomati-
sation, bisimulation invariance, and various results for the logical semantics, wherein
we consider both how the logic is different from asynchronous announcement logic
AA and how the logic is different from arbitrary public announcement logic APAL.
We also address the expressivity and we demonstrate the preservation of an extended
fragment of positive formulas (wherein negations do not occur before epistemic modal-
ities). Finally, we present work in progress on the logic AAM of Asynchronous Action
Models and the logic AAAM of Arbitrary Asynchronous Action Models.

Keywords: Modal logic, dynamic epistemic logic, asynchrony, quantifying over
information change

1 Introduction

We investigate what agents know and learn in distributed systems wherein
the sending and receiving of messages are separated. Notions of asynchronous
knowledge and common knowledge have been investigated in distributed com-
puting in works such as [7,13,18,19,20] and in temporal epistemic logics in
works such as [9,16,21,23]. Our take on such matters is from within so-called
Dynamic Epistemic Logic (DEL) [22,6,11], a modal logic of knowledge and
change of knowledge (or belief and change of belief), however not in its stan-
dard incarnation wherein message sending and receiving is synchronized and
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instantaneous, but in a recently investigated version by various researchers
wherein these are separated [17,4,5]. These approaches are somewhat different
from the asynchrony due to partial observation wherein histories (sequences of
messages) of different length may have become indistinguishable for an agent,
as in [10].

In [4] a logic AA is presented wherein messages that are announcements are
still sent by an ‘outside observer’ or by the environment, but wherein they are
individually received by the agents, unlike in public announcement logic [22]
wherein all agents receive the announcement simultaneously (synchronised).
The logic contains modalities for the announcement of ϕ, as in [ϕ]ψ. This has
still as precondition that ϕ must be true when announced, but it does not have
the effect the ϕ is received by any agent. For that, there are other modalities
[a]ψ, for ‘after the agent a has received the next announcement, ψ is true’. For
example, we can now say that [p][a]Bap: after p has been sent and agent a has
received it, the agent knows/believes p. Therefore, in this logic AA we cannot
obtain common knowledge that the announcement has been received, although
we can still approach common knowledge by iterating announcements such as
announcement p, all agents received p, announcement that everybody knows p,
everybody received that, announcement that everybody knows that everybody
knows p, etc. This is as in the concurrent common knowledge of [21]. In [4], a
complete axiomatisation for such a logic is given, as well as special results on
the class of S5 models (where all relations are equivalence relations).

Subsequently, [5] investigates the wide spectrum from individual reception
of messages as in AA, to partial synchronisation of messages by subgroups of
all agents, up to synchronised reception of messages by all agents much akin
to public announcement logic PAL — they also enrich the epistemic language
with common belief modalities.

In the present work we generalize [4] in two ways: to the logic AA of asyn-
chronous announcements we now add a quantifier [!]ϕ for ‘after any sequence
of events, ϕ’. It is motivated by a similar quantifier in the logic APAL [2], that
stands for ‘after any/arbitrary announcement, ϕ’. Clearly, in the asynchronous
setting we cannot have it merely quantifying over unreceived announcements,
as this would not affect the beliefs or knowledge of agents. As the order of re-
ception of announcements may vary greatly and may take place much later after
an announcement, and possibly many subsequent announcements, have been
sent, the natural form of quantification is therefore over arbitrary sequences of
such sending and receiving events. We show that the resulting logic AAA has
a complete axiomatisation, and varies in crucial respects from the motivating
precedent APAL [2]. Such a logic of arbitrary asynchronous announcement may
be, we hope, useful for diverse tasks such as: asynchronous epistemic planning,
formalising epistemic protocols in distributed computing, and analysing the
fine structure of interacting agents independently executing informative and
other actions.

One particular further generalisation is also presented in some detail,
namely the similar quantification over asynchronous non-public events (in the
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sense of events that are not known to be eventually received by all agents),
such as an agent a privately receiving information on a proposition p, where
an agent b also receives the information that a is privately receiving p although
not necessarily simultaneous with a. From the works of Hales and collaborators
[14,15] it is known that quantification over action models behaves much better
than quantification over announcements. It is decidable, and the quantifier
can be eliminated from the language: given 〈!〉ϕ, meaning ‘there is an action
model after which ϕ holds’, a specific action model can be synthesised that, if
executable, always results in ϕ. We conjecture similar results for quantifying
over asynchronous action models. In particular, asynchronous synthesis seems
a highly desirable future goal.

In Section 2 we present Arbitrary Asynchronous Announcement logic AAA,
for which we present various semantic results in Section 3. In Section 4 we
address the expressivity, and in Section 5 the preservation (after history ex-
tension) of the fragment of positive formulas. Section 6 presents a complete
infinitary axiomatisation. Finally, Section 7 adresses the generalisation of our
results to a logic for quantification over asynchronous action models.

2 The logic AAA

Syntax. Let A be a finite set of epistemic agents and P a countable set of
propositional variables. We consider the following language L:

ϕ ::= p|>|¬ϕ|(ϕ ∧ ϕ)|B̂aϕ|〈ϕ〉ϕ|〈a〉ϕ|〈!〉ϕ,
where p ∈ P, a ∈ A. We follow standard rules for omission of the parentheses.
The connectives ⊥,∨,→,↔ are defined by the usual abbreviations.

We define duals Baϕ = ¬B̂a¬ϕ, [a]ϕ = ¬〈a〉¬ϕ, [ψ]ϕ = ¬〈ψ〉¬ϕ, [!]ϕ =
¬〈!〉¬ϕ.

Let L−! be the fragment of this language without the 〈!〉 modality.
Consider A∪L as an alphabet, with agents and formulas as letters. Variables

for words in this language are α, β, . . . , and ε denotes the empty word. Given
a word α over A ∪ L, |α| is its length, |α|a is the number of its a’s (for each
a ∈ A), |α|! is the number of its formula occurrences, α�! is the projection of α
to L, and α�!a is the restriction of α�! to the first |α|a formulas. These notions
have obvious inductive definitions.

For each such word, the formula 〈α〉ϕ represents an abbreviation of the se-
quence of announcement and reading modalities corresponding to the formulas
and agents which appear in α, defined recursively as follows:

〈ε〉ϕ = ϕ; 〈α.ψ〉ϕ = 〈α〉〈ψ〉ϕ; 〈α.a〉ϕ = 〈α〉〈a〉ϕ,

where ε is the empty word. Every formula in L is thus of the form 〈α〉ϕ for
some α ∈ (L ∪A)∗.

A prefix β of α, notation β ⊆ α, is an initial sequence of α, inductively
defined as: α ⊆ α, and if β ⊆ α, then for all a ∈ A and ψ ∈ L, β ⊆ α.a and
β ⊆ α.ψ.
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For a sequence of announcements and readings to be executable, it is neces-
sary that, whenever an agent is doing her n-th reading, there have been at least
n formulas announced. Words satisfying this property will be called histories.

Histories. A word α in the language A∪L is a history if for all prefixes β ⊆ α
and for all a ∈ A, |β|! ≥ |β|a.

We denote by H the set of histories. Obviously, if β is a prefix of a history
α, then β is a history too.

View relation. Let α, β be histories and a ∈ A. We define: α .a β iff |β|a =
|α|a, β�!a = α�!a and |β|! = |α|a. (Note that α .a β iff α�!a = β�!a = β�!.) The
set viewa(α) := {β | α .a β} is the view of a given α. Informally, the view of
agent a given history α consists of all the different ways in which all agents can
receive the announcements that a received in α, in the same order in which
they were received.

Semantics. We will use the following well-founded preorder to define our
semantics 1 . First, we define degB ϕ, deg! ϕ and ‖ϕ‖ recursively: for k = !, B,

degk p = 0 ‖p‖ = 2
degk > = 0 ‖>‖ = 1
degk(¬ϕ) = degk ϕ ‖¬ϕ‖ = ‖ϕ‖+ 1
degk(ϕ ∧ ψ) = max{degk ϕ,degk ψ} ‖ϕ ∧ ψ‖ = ‖ϕ‖+ ‖ψ‖
degk(〈a〉ϕ) = degk ϕ ‖〈a〉ϕ‖ = ‖ϕ‖+ 2
degk(〈ϕ〉ψ) = degk ϕ+ degk ψ ‖〈ϕ〉ψ‖ = 2‖ϕ‖+ ‖ψ‖
degB(B̂aϕ) = degB ϕ+ 1 ‖B̂aϕ‖ = ‖ϕ‖+ 1

deg!(B̂aϕ) = deg! ϕ
degB(〈!〉ϕ) = degB ϕ ‖〈!〉ϕ‖ = ‖ϕ‖+ 1
deg!(〈!〉ϕ) = deg! ϕ+ 1

For a word α, we set degk α :=
∑{degk ψ : ψ occurs in α} and

‖ε‖ = 0, ‖α.a‖ = ‖α‖+ 1, ‖α.ψ‖ = ‖α‖+ ‖ψ‖.
Finally, for pairs (α,ϕ) we set: degk(α,ϕ) = degk α+degk ϕ, and ‖(α,ϕ)‖ =

‖α‖+ ‖ϕ‖, and we define a well-founded order � as a lexicographical ordering
on these quantities, i.e. (α,ϕ)� (β, ψ) iff




deg!(α,ϕ) < deg!(β, ψ), or

deg!(α,ϕ) = deg!(β, ψ) & degB(α,ϕ) < degB(β, ψ), or

deg!(α,ϕ) = deg!(β, ψ) & degB(α,ϕ) = degB(β, ψ) & ‖(α,ϕ)‖ < ‖(β, ψ)‖.

We interpret formulas on models (W,R, V ), where R : A → P(W 2), with
respect to pairs (w,α) where w ∈ W an α ∈ H. We define the relations “w
agrees with α” (w ./ α) and “(w,α) satisfies ϕ” (w,α |= ϕ) by �-induction as
it appears in Table 1. A formula ϕ is ε-valid, notation |=ε ϕ, iff for all models
(W,R, V ) and for all s ∈ W , s, ε |= ϕ. A formula ϕ is ∗-valid, notation |=∗ ϕ,
iff for all models (W,R, V ), for all s ∈W and for all histories α, s, ε |= [α]ϕ.

1 Similar preorders have been used in [1,3] whithin the context of proofs of completeness of
APAL.
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w ./ ε always;
w ./ α.ϕ iff w ./ α

and w,α |= ϕ;
w ./ α.a iff w ./ α;

w,α |= p iff w ∈ V (p);
w,α |= > always;
w,α |= ¬ϕ iff w,α 6|= ϕ;
w,α |= ϕ1 ∧ ϕ2 iff w,α |= ϕi, i = 1, 2;
w,α |= 〈a〉ϕ iff |α|a < |α|! and w,α.a |= ϕ;
w,α |= 〈ψ〉ϕ iff w,α |= ψ and w,α.ψ |= ϕ;

w,α |= B̂aϕ iff t, β |= ϕ for some (t, β) ∈W ×H
such that Rawt, α .a β, t ./ β

w, α |= 〈!〉ϕ iff w,α |= 〈β〉ϕ for some β ∈ (L−! ∪A)∗.

Table 1
Semantics of AAA

Note that the 〈!〉 modality only quantifies over words wherein 〈!〉 does not
occur. This is to avoid a circular definition. The dual of 〈!〉 is read as follows:
w,α |= [!]ϕ if and only if, for every possible sequence β ∈ (L−! ∪ A)∗, it is the
case that w,α |= [β]ϕ.

Note moreover that the relation .a is not reflexive (it is however postreflex-
ive, in the sense that α .a β implies β .a β). For this reason, it is not the case
that w,α |= Baϕ implies w,α |= ϕ. Our modality is not factual and this is one
of the reasons we favour a doxastic interpretation of it over an epistemic one.

We make the assumption that an agent forms her beliefs based on announce-
ments she has so far received, ignoring announcements that have already been
made but not yet received by that agent, and ignoring possible future an-
nouncements. The usual assumption in distributed computing is that agents
also consider it possible that other agents may have received more messages
than themselves. This results in a notion of asynchronous knowledge instead of
our notion of asynchronous belief. A technical reason for that restriction is that
we do not have a well-defined semantics for such knowledge (the presence of
dynamic modalities for information change, rather unlike the usual situation in
distributed computing, makes this problematic). However, there are also con-
ceptual reasons. In a dynamic epistemic logic without factual (ontic) change,
only a very weak notion of asynchronous knowledge would result. In the DEL
setting, all we can hope for about the future is that all facts eventually become
commonly known. Taking such histories into account, I can never know that
you are ignorant (as the dual of knowing whether) about the value of an atomic
proposition. After all, that value may already have been announced and you
may have received that, but not yet me. Whereas in our semantics I can (cor-
rectly) believe that you are ignorant, namely if this is even the case if you have
received the same information as me (all announcements that I have received
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you have also received), or possibly less. Because of the assumption to ignore
unreceived and possible future announcements, Ba[a]⊥ always true: an agent
never believes there are unread announcements.

Example 2.1 Consider a model consisting of two states s and t, indistin-
guishable for two agents a, b, and where p is only true in s. We then have
that s, ε |= 〈p〉〈a〉Bap, i.e., s, ε |= 〈p.a〉Bap: after the announcement of p
and a receiving it, agent a (correctly) believes that p. On the other hand,
s, ε |= 〈p.a〉¬Bbp, because agent b has not yet received the announcement p.
Indeed, we have that s, ε |= 〈p.a〉B̂a¬Bbp as well as s, ε |= 〈p.a〉B̂aBbp. The
view of a on history p.a consists of: p.a, p.b.a and p.a.b. In the former case (the
actual history), b is still uncertain about p, whereas in the latter two cases, b
would believe p.

For an example of the use of the quantifier, we note that (similarly to
APAL) 〈!〉(Bap ∨ Ba¬p) is a validity of AAA. Whatever the value of p, it can
be announced and after agent a receiving it she will either believe p or she will
believe ¬p.

The following lemma, whose proof is straightforward, will be useful:

Lemma 2.2 Given a model (W,R, V ), w ∈ W , ϕ ∈ L, α ∈ H such that
w ./ α, and β ∈ (L ∪A)∗, the following are equivalent:

i. w,α |= 〈β〉ϕ;

ii. The concatenation α.β is a history, w ./ α.β, and w,α.β |= ϕ.

3 Semantic results for the logic AAA

Bisimulation. The notion of bisimulation in this framework is, perhaps sur-
prisingly, the usual notion of bisimulation between Kripke models: given
(W,R, V ) and (W ′, R′, V ′), a bisimulation is a relation Z ⊆ W × W ′ such
that, if wZw′:

i. w ∈ V (p) iff w′ ∈ V ′(p);
ii. if Rawv, then there exists v′ ∈W ′ such that R′aw

′v′ and vZv′;

iii. if R′aw
′v′, then there exists v ∈W such that Rawv and vZv′.

As one might expect, we have the following:

Proposition 3.1 Let Z be a bisimulation such that wZw′, and let (α,ϕ) ∈
H × L. We have:

w, ε |= 〈α〉ϕ iff w′, ε |= 〈α〉ϕ.
Proof. See Appendix. 2

Under certain constraints, if two states satisfy the same formulas, they are
bisimilar. Indeed:

Proposition 3.2 Let (W,R, V ) and (W ′, R′, V ′) be two models such that
Ra[w] and R′a[w′] are finite sets for all a ∈ A, w ∈W , w′ ∈W ′. Set wZw′ iff,
for all (α,ϕ) ∈ H×L, w, ε |= 〈α〉ϕ iff w′, ε |= 〈α〉ϕ. Then Z is a bisimulation.
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Proof. See Appendix. 2

Properties of belief. As discussed above, while Baϕ→ ϕ is ε-valid, (as long
as the relation Ra is reflexive) it is not ∗-valid. Other properties of our doxastic
modality, however, are ∗-valid. Let S5 denote the class of models where the
relations Ra are equivalence relations. We have:

Proposition 3.3 Let ϕ ∈ L. Then:

i. S5 |=∗ Baϕ→ ¬Ba¬ϕ
ii. S5 |=∗ Baϕ→ BaBaϕ

iii. S5 |=∗ ¬Baϕ→ Ba¬Baϕ
Proof. See Appendix. 2

Belief before and after update. If an agent will believe ϕ after a certain
sequence of events then the agent believes that there is a sequence of events
after which ϕ holds, but not the other way around. Indeed:

Proposition 3.4 For all ϕ, |=ε 〈!〉B̂aϕ→ B̂a〈!〉ϕ, whereas, for some formula
ψ, 6|=ε B̂a〈!〉ψ → 〈!〉B̂aψ.

Proof. See Appendix. 2

Church-Rosser and McKinsey Let us see that neither of the formulas
(CR) 〈!〉[!]ϕ→ [!]〈!〉ϕ (McK) [!]〈!〉ϕ→ 〈!〉[!]ϕ

are ε-valid. It is known from APAL that these properties are valid for arbi-
trary announcement on the class of S5 models (where all accessibility relations
are equivalence relations) [2]. As we consider arbitrary relations, this is not
unexpected. We address the case S5 at the end of this paragraph.

First let us see (McK) is not ε-valid. Let ϕ = [a]⊥. Then ϕ will be satisfied
at a pair (w,α) if and only if |α|a = |α|!. For any history β it is the case
that |β|a ≤ |β|!: let aβ = a...a be the concatenation of |β|! − |β|a times the
letter a. Then, for every β there exists a word aβ such that w, ε |= [β]〈aβ〉[a]⊥.
However, 〈!〉[!][a]⊥ is never satisfied: indeed, for any history β, let >β be a
concatenation of the formula > enough times so that |β.>β |! > |β|a. Then we
have w, ε 6|= 〈β〉[>β ][a]⊥.

Let us now see a counterexample for (CR). Consider the following one-agent
model 2 :

Let W = {w1, w2, w3}, Ra = {(w1, w2), (w2, w2), (w2, w3)} and V (p) =
{w1, w2}. We have that w1, ε |= 〈!〉[!]B̂a>. Indeed, consider the history
p.a.[a]⊥.a. We can easily prove the following by induction on ϕ:

If β is a history having p.a.[a]⊥.a as a prefix, then for all ϕ, w1, β |= ϕ iff
w2, β |= ϕ.

In particular, any β having p.a.[a]⊥.a as a prefix will be executable at w1

iff it is executable at w2. Now, take any sequence γ such that p.a.[a]⊥.a.γ
is executable at w1. There exists a β such that p.a.[a]⊥.aγ .a β and β is

2 We thank Louwe Kuijer for this counterexample
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executable at w1. Note that β is necessarily of the form β = p.a.[a]⊥.a.γ′ for
some γ′. But this means, by the previous remark, that β is executable at w2,
and thus w1, p.a.[a]⊥.a.γ |= B̂a>, which means w1, ε |= 〈p.a.[a]⊥.a〉[!]B̂a> and
thus w1, ε |= 〈!〉[!]B̂a>.

However, w1, ε 6|= [!]〈!〉B̂a>: indeed, consider the sequence Bap.a. It is
never the case that w1, Bap.a |= 〈β〉B̂a> for any announcement, given that,
whenever Bap.a.β .a γ, γ has Bap as its first formula, and therefore γ cannot
be compatible with w2, since w2, ε 6|= Bap.

Also in APAL (CR) is not valid in general (this can be seen via a similar
counterexample), but, as said, only with equivalence relations. Whether CR is
valid on AAA on the class of S5 models is an open question.

4 Expressivity of AAA

We assume the usual terminology to compare the expressivity of logics or log-
ical languages with respect to a semantics and a class of models. Given two
languages L1 and L2 interpreted over the same class C of models, we say that
L1 is at least as expressive as L2 with respect to C iff for all formulas ϕ2 ∈ L2,
there exists a formula ϕ1 ∈ L1 such that for all models M ∈ C, M |= ϕ1 iff
M |= ϕ2.

If L1 is at least as expressive as L2 and L2 is at least as expressive as L1

then L1 and L2 are as expressive. If L1 is at least as expressive as L2 and
L2 is not at least as expressive as L1 then L1 is more expressive than L2. In
this section we show that the language of AAA is more expressive than that of
AA, by showing that there is a formula ϕ ∈ L to which no formula ϕ′ ∈ L−!
is equivalent. This is shown somewhat similarly to proving that APAL is more
expressive than PAL [2, Proposition 3.13]. 3

Proposition 4.1 L is more expressive than L−! for multiple agents, for the
class S5 of models wherein each Ra is an equivalence relation.

Proof. Suppose that AAA is as expressive as AA in S5 for multiple agents.
Consider the formula 〈!〉(Bap∧Ba¬Bbp). Then there must be a formula ϕ ∈ L−!
that is equivalent to 〈!〉(Bap∧Ba¬Bbp). Some propositional variable q will not
occur in ϕ. Now consider S5 models M and M ′ as below (indistinguishable
states are linked, and we assume transitivity of access). Of course, the states in
M also need a value for atom q, but this is irrelevant for the proof and therefore
not depicted (for example, we can assume q to be false in both).

3 However, with differences that may be considered of interest. In the APAL proof the prop-
erty used to demonstrate larger expressivity is 〈!〉(Bap ∧ ¬BbBap). This property uses that
in APAL an announcement results in a growth of common knowledge, it uses the synchronous
character of PAL announcements. We use another property, 〈!〉(Bap ∧ Ba¬Bbp), and on a
slightly different model.
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t(¬p) s(p)

pq

M :

ab
u′(¬p¬q) v′(p¬q)

t′(¬pq) s′(pq)

M ′ :

ab

ab

b b

We note that (M, s) is bisimilar to (M ′, s′) if we restrict the clause (i) (for
corresponding valuations) to the variable p only. If we now consider formulas
ϕ ∈ L−! and histories α ∈ (L−! ∪A)∗ that do not contain the variable q, it can
be easily shown by induction on (α,ϕ) that s ./ α iff s′ ./ α and s, α |= ϕ in
M if and only if s′, α |= ϕ in M ′. As a consequence, for any ϕ ∈ L−!, we have
that s, ε |= ϕ iff s′, ε |= ϕ.

However, this is not the case in the full language L. Indeed, we have
that s, ε 6|= 〈!〉(Bap ∧ Ba¬Bbp) in M , whereas s′, ε |= 〈!〉(Bap ∧ Ba¬Bbp) in
M ′. The former is because in M , for any history α executable in s, for any
announcement in α received by a, a considers it possible that b also received
this announcement and thus believes p. The latter is because in M ′ it holds
that s′, (p ∨ ¬q).a.b |= Bap ∧Ba¬Bbp.

This is a contradiction. 2

It seems likely, although we did not prove this, that on class S5 for a
single agent the 〈!〉 modality is definable in AA, such that AAA is then as
expressive as AA. However, without any frame properties single-agent AAA is
more expressive than AA, again shown similarly to the previous proposition
and [2, Prop. 3.14]

Proposition 4.2 L is more expressive than L−! for a single agent.

Proof. See Appendix. 2

A logic is called compact if a set of formulas is satisfiable whenever any
finite subset is satisfiable.

Proposition 4.3 The logic AAA is not compact.

Proof. Using the expressivity results, this can be shown by considering the
set of formulas

{〈!〉(Bap ∧Ba¬Bbp)} ∪ {¬〈β〉(Bap ∧Ba¬Bbp) : β ∈ (L−! ∪A)∗}.

This set is not satisfiable, but any finite subset is satisfiable, where we use that
some variable q must necessarily not occur in such a subset. We then consider
M , M ′ as above. The q-less finite subset will be satisfied at s′. 2

5 Positive formulas

In modal logic, the fragment of the language where negations do not bind epis-
temic modalities is known as the positive fragment [8,12,2]. It corresponds
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to the universal fragment in first-order logic. It has the property that it pre-
serves truth under submodels. In AAA, preservation under submodels is for-
malised by preservation after history extension. A formula ϕ ∈ L is preserved
iff |=∗ ϕ → [!]ϕ. We wish therefore to identify a fragment of the language L
that guarantees preservation.

For AA, it is shown in [4, Prop. 44] that the fragment ϕ ::= p | ¬p | ⊥ |
(ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Baϕ, that corresponds in a very direct way to the universal
fragment, is preserved.

For AAA we wish to expand that frontier, in the direction earlier taken in
[12] for synchronous announcements, where a further inductive clause [¬ϕ]ϕ is
added 4 , which is further expanded in [2] with an inductive clause [!]ϕ (where
[!] is the APAL quantifier over announcements). We will only define a fairly
minimal extension and subsequently present some of the difficulties in obtaining
a result analogous to those in [12,2], and what the desirable final goal seems to
be.

The proof uses a lemma that we therefore present first. Let preorder � on
histories be defined as follows: α � β iff α�! ⊆ β�!, for all a ∈ A |α|a ≤ |β|a,
and for any state s in any model s ./ β implies s ./ α. Note that α ⊆ β implies
α � β, but not vice versa.

Lemma 5.1 ([4, Lemma 42]) Let histories α, β and a ∈ A be given. Suppose
α � β and β .a δ. Then there is a history γ such that γ � δ and α .a γ.

Consider the following positive formulas L+:

ϕ ::= p | ¬p | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Baϕ | [!]ϕ.

We show that positive formulas are preserved.

Proposition 5.2 (Positive implies preserved)
Let ϕ ∈ L+. Then �∗ ϕ→ [!]ϕ.

Proof. We need to prove the following proposition:

Let ϕ ∈ L+. For all models M = (W,R, V ) and s ∈ W , and for all histories
α: s, ε |= [α](ϕ→ [!]ϕ).

This is equivalent to

Let ϕ ∈ L+. For all models M = (W,R, V ) and s ∈ W , and for all histories
α, β such that α ⊆ β: s, ε |= [α]ϕ implies s, ε |= [β]ϕ.

A standard inductive proof on the structure of ϕ fails because in the case Baϕ
we would need that if α ⊆ β and β .a δ, then there is a γ with γ ⊆ δ and
α .a γ. Such a γ may not exist, namely if many yet unread announcements in
δ precede the a in δ that corresponds to the last a in α. However, we can then
still find a γ such that γ � δ. Therefore, it suffices to show:

4 The possibly strange form of this clause wherein a negation appears has to do with the
semantics of public announcement. In PAL, M,w |= [¬ϕ]ψ iff (M,w |= ¬ϕ implies M ′, w |=
ψ) iff (M,w |= ϕ or M ′, w |= ψ), where M ′ is the model restriction to the states where ϕ is
false. In the disjunctive description, the negation has disappeared.
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Lemma 5.3 Let ϕ ∈ L+. For all models M = (W,R, V ) and s ∈ W , and for
all histories α, β such that α � β: s, ε |= [α]ϕ implies s, ε |= [β]ϕ.

A proof of this Lemma can be found in the Appendix. 2

There is no obvious way to expand this fragment of positive formulas with
inductive clauses for announcement and reception modalities. The obvious
analogue of the [¬ϕ]ψ from [12] would be [¬ϕ.A]ψ (and where A represents
an arbitrary permutation of all agents in A). But this does not work. For
example, consider a model M for one agent a and two variables p, q consisting
of four worlds for the four valuations of p and q, and such that these are all
indistinguishable for a. Let w be the world where p and q are true. We now
have that: w, ε |= [q.a]Baq whereas w, p 6|= [q.a]Baq, because the a in history q.a
reads announcement q in the first case, whereas it reads announcement p in the
second case. As long as agent a has not received announcement q, she remains
uncertain about the value of q. Differently said, even when [q.a]Baq is true,
[p.q.a]Baq may be false, so for ϕ = [q.a]Baq and the quantifier [!] witnessed by
[p], ϕ→ [!]ϕ is false. Further complications might occur when announcements
are not immediately received, as in [p.q.a.a]Ba(p ∧ q).

We would like to be able to say that a formula like [q.a]Baq is positive in the
sense that, given that the negation of q is positive (as well as, in this example,
q itself), then after q is announced, whenever it is eventually received, positive
Baq always remains true afterwards. But we do not have such an eventuality
(Kleene-*) modality 〈a〉∗ in our logical language (yet)! We currently believe
that a good candidate for the positive formulas in such a further expanded
language is the fragment

ϕ ::= p | ¬p | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Baϕ | [¬ϕ]ϕ | 〈a〉∗ϕ | [!]ϕ
and that such an expanded positive fragment might even syntactically char-
acterize the preserved formulas (with respect to ∗-validity), analogous to van
Benthem’s result for the (usual) positive fragment [8].

Before moving on, let us point out another property of the positive fragment:
when the believed formula ϕ is positive, and the accessibility relation reflexive,
belief becomes factive.

Proposition 5.4 Let ϕ ∈ L+. For any model (W,R, V ) such that Ra is re-
flexive, for all s ∈ W and α such that s ./ α, we have s, α |= Baϕ → ϕ. As a
consequence, S5 |=∗ Baϕ→ ϕ.

Proof. Suppose s, α |= Baϕ. Consider β = δ.ϕ.ak, as constructed in the proof
of Prop. 3.3 (δ.ϕ is the prefix of α up until its |α|a-th formula). We have Rass,
α.a β, and s ./ β, and thus s, β |= ϕ. Moreover, since δ.ϕ ⊆ α and |β|a = |α|a,
we have β � α. By Lemma 5.3, this entails s, α |= ϕ. 2

6 Axiomatisation of AAA

The axiomatisation of AAA and its completeness proof is based on the axioma-
tisation of AA [4] and on that of APAL [2] and its completeness uses the method
pioneered in [3].
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Recall that a formula ϕ ∈ L is called ε-valid if, for every model (W,R, V )
and every w ∈ W , it is the case that w, ε |= ϕ, and ϕ is ∗-valid if, for every
model (W,R, V ) and w ∈ W , and for every history α such that w ./ α, it
is the case that w,α |= ϕ. In the the present section we provide a complete
axiomatization of the logic of ε-validities.

Given a symbol # we define a set AF of admissible forms as follows:

L ::= #|BaL|ϕ→ L|〈α〉L,

where ϕ ∈ L, a ∈ A, α ∈ H. Given L ∈ AF and ϕ ∈ L, the formula L(ϕ) is
the result of substituting the unique occurrence of # in L by ϕ.

The following holds:

Lemma 6.1 Let L be an admissible form. For all M ∈ AF and for all modal
formulas ϕ,ψ, if L([!]ϕ) = M([!]ψ) then L = M and ϕ = ψ.

Proof. By induction on L. 2

The logic AAA consists of the following axioms and rules, for α ∈ H, p ∈ P ,
a ∈ A, L(#) ∈ AF :

(Taut) All propositional tautologies;
(MP) If ` ϕ and ` ϕ→ ψ, then ` ψ;
(NecB) If ` ϕ, then ` Baϕ;
(KB) Ba(ϕ→ ψ)→ (Baϕ→ Baψ);
(R>1) 〈α.a〉> ↔ 〈α〉> if |α|a < |α|!
(R>2) 〈α.a〉> ↔ ⊥ otherwise;
(R>3) 〈α.ϕ〉> ↔ 〈α〉ϕ;
(Rp) 〈α〉p↔ (〈α〉> ∧ p);
(R¬) 〈α〉¬ϕ↔ (〈α〉> ∧ ¬〈α〉ϕ);
(R∧) 〈α〉(ϕ ∧ ψ)↔ (〈α〉ϕ ∧ 〈α〉ψ);

(RB) 〈α〉B̂aϕ↔ (〈α〉> ∧∨α.aβ B̂a〈β〉ϕ);

([!]-elim) L([!]ϕ)→ L([β]ϕ) (where β ∈ (L−! ∪A)∗);
([!]-intω) If ` L([β]ϕ) for all β ∈ (L−! ∪A)∗, then ` L([!]ϕ)

Remark 6.2 If we remove the last two lines of the above table we obtain the
logic AA, defined in [4] for the language L−!.

From now on, AAA will denote both the above axiomatic system and set of
all formulas it can derive.

Completeness proof. A theory is a set of formulas T such that:

i. AAA ⊆ T ;

ii. T is closed under (MP): if ϕ,ϕ→ ψ ∈ T , then ψ ∈ T ;

iii. T is closed under the rule ([!]−intω):
If L([β]ϕ) ∈ T for all β ∈ (L−! ∪A)∗, then L([!]ϕ) ∈ T .

A theory is consistent if ⊥ /∈ T . Note that AAA is the least consistent theory,
and L is the only inconsistent theory. A consistent theory is maximal if no
proper superset of T is a consistent theory.
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The following holds:

Lemma 6.3 Given a theory T , a formula ψ, and an agent a ∈ A, the sets
TBa = {ϕ : Baϕ ∈ T} and Tψ = {ϕ : ψ → ϕ ∈ T} are also theories.

Moreover, T ⊆ Tψ, ψ ∈ Tψ and, if ¬ψ /∈ T , then Tψ is consistent.

Proof. See Appendix. 2

We also have:

Proposition 6.4 (Lindenbaum’s Lemma) A consistent theory can be ex-
tended to a maximal consistent theory.

Proof. See Appendix. 2

Now we define a relation between maximal consistent theories as: TRaS iff,
for all ϕ, Baϕ ∈ T implies ϕ ∈ S (equivalently, iff TBa

⊆ S).

Proposition 6.5 (Diamond Lemma) Suppose B̂aϕ ∈ T . Then there exists
a maximal consistent theory S such that TRaS and ϕ ∈ S.

Proof. Consider the theory (TBa)ϕ. First, note that TBa is a consistent theory,

because ` B̂aϕ→ ¬Ba⊥, so Ba⊥ /∈ T and thus⊥ /∈ TBa
. Moreover, Ba¬ϕ /∈ T ,

thus ¬ϕ /∈ TBa
. By Lemma 6.3, we thus have that TBa

⊆ (TBa
)ϕ, ϕ ∈ (TBa

)ϕ
and (TBa

)ϕ is consistent. It then suffices to extend (TBa
)ϕ by Lindenbaum’s

lemma to the desired successor. 2

Now we can define our canonical model: let W be the family of maximal
consistent theories, let Ra be defined as above and let V (p) = {T ∈W : p ∈ T}.
We have:

Proposition 6.6 (Truth Lemma) For any history α and formula ϕ, we
have: T, ε |= 〈α〉ϕ iff 〈α〉ϕ ∈ T .

Proof. See Appendix. 2

We will say that a formula ϕ is consistent if 0 ¬ϕ and that a set of formulas
Γ is consistent if it can be extended to a consistent theory. Note that ϕ is
consistent if and only if the singleton set {ϕ} is consistent (for if ¬ϕ /∈ AAA,
we can extend {ϕ} to the consistent theory AAAϕ).

We have:

Theorem 6.7 AAA is strongly complete with respect to Kripke models.

Proof. Let Γ be a consistent set of formulas. Then there exists a consistent
theory T0 ⊇ Γ and, by Lindenbaum’s lemma, a maximal consistent theory
T ⊇ T0. We construct the canonical model as above and we have that T, ε |= ϕ
for all ϕ ∈ Γ. 2

7 Asynchronous Action Models

In this final section we shortly present two logics for asynchronous reception
of partially observed actions, including quantification over such actions. The
reason to present these logics is that they contrast in, we think, interesting
ways with the logic AA and with the logic AAA, the main subject of this paper.
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7.1 Asynchronous Action Model Logic

Action model logic was proposed by Baltag, Moss and Solecki in [6]. An action
model is like a relational model but the elements of the domain are called actions
instead of states, and instead of a valuation a precondition is assigned to each
domain element. A public announcement corresponds to a singleton action
model where the precondition is the announced formula. Under synchronous
conditions, executing an action model into a Kripke model means constructing
what is known as the restricted modal product. This product encodes the new
state of information, after action execution. Under asynchronous conditions
we do not construct the product model but calculate the belief consequences
of actions from the histories, just as for the particular singleton action model
that is the public announcement we do not construct model restrictions in AA
but instead use the history.

The nature of an asynchronous non-public action is that it is partially ob-
served by the agents, just as in action model logic, but that it is unclear when
the different agents partially observe the action, just as in AA. An example of
an asynchronous partially observed action when two agents Anne and Bill, who
are both ignorant about p, are informed that Anne will receive the truth about
some proposition p but not Bill. Suppose that Anne is going to receive the in-
formation that p (is true). By the time Bill learns that Anne will be informed
in this way, he considers it possible that Anne has already been informed, in
which case she now believes p or believes ¬p, but he also considers it possible
that she has not yet been informed and thus remains igorant about p. Dually,
by the time Anne learns that p but Bill has not yet learnt that Anne will be
informed about p, Bill incorrectly believes that Anne is ignorant about p.

Action model Formally, an action model E = (E,S, pre) consists of a domain
E of actions e, f, . . . , an accessibility function S : A → P(E2), where each Sa
is an accessibility relation, and a precondition function pre : E → L, where L
is a logical language. A pointed action model is a pair (E , e) where e ∈ E, for
which we write Ee. We abuse the language and also call a pointed action model
an action.

Syntax Similarly to AA we can conceive a modal logical language with 〈Ee〉ϕ
as an inductive language construct, for action models E with finite domains.
The set of finite pointed action models is called AM.

Histories are words in (AM∪A)∗. Much like in AA, we will use α�! to refer
to the projection of α to AM and use α �!a, |α|!, |α|a as usual. For such a
word to be a history, we again demand that |β|a ≤ |β|! for all β ⊆ α, a ∈ A.

View relation The definition of the .a relation in this setting incorporates
the partial observablity of action models: given α .a β, we demand that the
action models appearing in α and β and seen by a are the same. However, for
agent a the actions in α (points of these action models) may be different from
the actions in β. That is, α .a β iff |α|a = |β|a = |β|!, and for all i ≤ |α|a,
if Ee is the i-th action of α and Ff is the ith action of β, then E = F and
Saef . This relation .a is post-reflexive, transitive and post-symmetric if we
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are dealing with S5 action models (wherein all accessibility relations Sa are
equivalence relations).

Semantics Define an executability relation ./ between states and histories as:

• w ./ ε,

• w ./ α.a iff w ./ α,

• w ./ α.Ee iff w ./ α and w,α |= pre(e).

With this, the semantics for belief and action model execution are what one
might expect, namely:
w,α |= 〈Ee〉ϕ iff w,α |= pre(e) and w,α.Ee |= ϕ.

w,α |= B̂aϕ iff t, β |= ϕ for some (t, β) such that t ./ β,Rawt, and α .a β.
We call this Asynchronous Action Model Logic AAM.

Reduction axioms and axiomatisation We recall that the axiomatisation
AAA presented in Section 6 consists of the rules and axioms of AA plus an
axiom and a rule dedicated to the quantifier (Remark 6.2).

It is straightforward to see that the axiomatisation of AAM is as the axioma-
tisation of AA where only axiom R>3 needs to be (analogously) reformulated
for action models, whereas the axiom RB is the same in AA and in AAM, except
that, clearly, the relation .a used in that axiom now refers to the much more
involved view relation for partial observability defined above, where an agent
considers all actions possible that are accessible for her given the actual action.
These two relevant axioms are:

(R′>3) 〈α.Ee〉> ↔ 〈α〉pre(e);
(R′B) 〈α〉B̂aϕ↔ (〈α〉> ∧∨α.aβ B̂a〈β〉ϕ).

Just as for AA we can show that this axiomatisation is complete with respect to
the class of models with empty histories, and that this is again a reduction sys-
tem, such that every formula in the logical language is equivalent to a formula
without dynamic modalities 〈Ee〉 for action execution and 〈a〉 for receiving that
information.

To prove that this system is a complete axiomatisation of AAM, we need to
define a total preorder � from a complexity measure |.| which takes into con-
sideration the precondition formulas present in action models Ee. It therefore
seems that this demands that

|(E , e)| =
∑
e′∈E |pre(e′)|

|α| =
∑{|(E , e)| : (E , e) occurs in α}.

We wish to investigate this later and thus show completeness.

7.2 Arbitrary Asynchronous Action Model Logic

A further generalisation is the extension of the logical language with a quantifier
〈⊗〉 over action models, such that 〈⊗〉ϕ means that ϕ is true after the execution
of some sequence of finite action models and readings in the current (s, α) pair
of the given model.

Let AM−⊗ be the class of finite pointed action models where 〈⊗〉 does not
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occur in the preconditions. We then get that

w,α |= 〈⊗〉ϕ iff there exists β ∈ (AM−⊗ ∪A)∗ such that w,α |= 〈β〉ϕ.

Let us call the logic with this quantifier AAAM (an extra A, for Arbitrary).
Although work on this logic is also very much work in progress, it is illuminating
to compare this extension AAAM of AAM with the logic AAA of this submis-
sion, wherein we quantify over histories containing announcements. For the
synchronous version of arbitrary action model logic, Hales showed in [14] that
the restriction to quantifier-free precondition formulas in action models can be
relaxed. Hales also showed that we can synthesise a multi-pointed action model
EF (where F ⊆ D(E)) from ϕ such that 〈⊗〉ϕ is equivalent to 〈EF 〉ϕ.

It it were possible to prove similar results for the logic AAAM of arbitrary
asynchronous action models, that would be of great interest, as this would then
show that AAAM is as expressive as AAM (without quantification), by reduc-
ing every formula to one without quantifiers, unlike the larger expressivity of
quantifying over asynchronous announcements in AAA; and it would also show
decidability of AAAM. Even independent from that, synthesis of asynchronous
partially observable actions, and the complexity of such tasks, seems of interest
to investigate further.

8 Conclusion

We presented the logic AAA of arbitrary asynchronous announcements, that
can be used to reason about agents receiving and sending each other infor-
mation under asynchronous conditions. We investigated the properties of the
arbitrary announcement quantifier, demonstrated bisimulation invariance, the
larger expressivity of the logical language with the quantifier, and we showed
preservation after history extension of the fragment of the positive formulas.
Then, we provided a complete infinitary axiomatisation. Finally, we tentatively
described a further generalisation to quantification over action models.
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Appendix

Proof of Prop. 3.1. By �-induction on (α,ϕ). Trivial for the cases where
(α,ϕ) = (ε,>) and (ε, p). For the case where (α,ϕ) = (β.a,>), we note that
w ./ β.a iff w ./ β and w, β.a |= > iff w, β |= >, and thus we can apply
induction hypothesis, for (β,>)� (β.a,>). For the case (α,ϕ) = (β.ψ,>), we
note that (β, ψ)� (β.ψ,>).

For the cases (α,ϕ) = (α,¬ψ) and (α,ψ) = (α,ψ1 ∧ ψ2), we note that
(α,ψ)� (α¬ψ) and (α,ψi)� (α,ψ1 ∧ ψ2).

For the case (α,ϕ) = (α, B̂aψ), we have: w ./ α iff w′ ./ α by induction
hypothesis applied to (α,>). If w,α |= B̂aψ, then there is some v ∈ W and
some history β such that Rawv, α .a β, v ./ β and v, β |= ψ. But then there is
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some v′ ∈W ′ with vZv′ and Raw
′v′ and thus, by induction hypothesis applied

to (β, ψ) � (α, B̂aψ), we have v′ ./ β, v′, β |= ψ and thus w′, α |= B̂aψ. The
converse is analogous.

For the cases (α,ψ) = (α, 〈a〉ψ) and (α,ψ) = (α, 〈θ〉ψ), we note that
(α.a, ψ)� (α, 〈a〉ψ) and (α.θ, ψ)� (α, 〈θ〉ψ).

For the case (α,ϕ) = (α, 〈!〉ψ), we have: on the one hand, w ./ α iff
w′ ./ α by induction hypothesis applied to (α,>). On the other hand, suppose
w,α |= 〈!〉ψ. Then w,α |= 〈β〉ψ for some history β which does not contain any
occurrences of 〈!〉. Therefore deg!〈β〉ψ < deg!〈!〉ψ, and thus by induction hy-
pothesis w′, α |= 〈β〉ψ, which entails w′, α |= 〈!〉ψ. The converse is analogous.2

Proof of Prop. 3.2. It is obvious that condition i. is satisfied. Now, suppose
condition ii. fails. That is, for some v ∈ W , we have Rawv but for all (the
finitely many) v′ such that Raw

′v′ it is not the case that vZv′. Let R′a[w′] =
{v′1, ..., v′n}. For each v′i there exists some pair (αi, ϕi) such that either v, ε |=
〈αi〉ϕi but v′i, ε 6|= 〈αi〉ϕi, or v, ε 6|= 〈αi〉ϕi but v′i, ε |= 〈αi〉ϕi . Let θi = 〈αi〉ψi
in the former case and θi = ¬〈αi〉ψi in the latter, and call ψ =

∧n
i=1 θi. Note

that v, ε |= ψ and thus w, ε |= B̂aψ. But then by the definition of Z we
have that w′, ε |= B̂aψ, and thus w′ has a successor satisfying each formula θi:
contradiction. Condition iii. is proven similarly. 2

Proof of Prop. 3.3. Let Ra be a relation defined on the set of pairs (s, α)
with s ./ α as follows:

(s, α)Ra(t, β) iff sRat, α .a β, and t ./ β.

Note that s, α |= Baϕ iff t, β |= ϕ for all (t, β) such that (s, α)Ra(t, β). The
proof of this result, then consists in showing that Ra is serial, transitive and
Euclidean.

Seriality. Let us see that, for all α, there exists a history β such that α.a β
and s ./ α implies s ./ β. Let n := |α|a ≤ |α|! and let ϕ be the n-th occurrence
of a formula in α, so that α = δ.ϕ.γ for some δ, γ. Let β = δ.ϕ.ak, where k is
a natural number such that |δ.ϕ|a + k = n. Then clearly α .a β, for β contains
n times a and exactly the first n formulas of α, and, if s ./ α, we have that
s ./ δ.ϕ, because δ.ϕ ⊆ α, and thus s ./ δ.ϕ.ak. Since Ra is reflexive, this gives
that, for any s such that s ./ α, (s, α)Ra(s, β).

Transitivity. Since Ra and .a are both transitive, then, clearly, so is Ra.
Euclidicity. Again, since Ra and .a are Euclidean, so is Ra.

Proof of Prop. 3.4. Let model M = (W,R, V ) and s ∈W be given, and let
α ∈ (L−!∪A)∗ be such that s, ε |= 〈α〉B̂aϕ. Therefore α is a history, s ./ α and
s, α |= B̂aϕ, so that there are t, β such that Rast, α .a β, t ./ β, and t, β |= ϕ.
As t ./ β and t, β |= ϕ, it follows that t, ε |= 〈β〉ϕ. It therefore follows that
t, ε |= 〈!〉ϕ. Finally, as Rast, ε .a ε and t ./ ε we conclude s, ε |= B̂a〈!〉ϕ.

On the other hand, B̂a〈!〉ϕ → 〈!〉B̂aϕ is not always ε-valid. Consider ϕ =
Ba¬p and the model M = (W,R, V ) for a single agent a and atom p and where
W = {s, t}, Ra = W 2, and V (p) = {s}. We then have that s, ε |= B̂a〈!〉Ba¬p,
because s, ε |= B̂a〈¬p.a〉Ba¬p (because t, ε |= 〈¬p.a〉Ba¬p), whereas clearly
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s, ε 6|= 〈!〉B̂aBa¬p. 2

Proof of Prop. 4.2. For a single agent we consider the formula 〈!〉(Bap ∧
Ba¬Bap) and proceed as in Prop. 4.1, where in this case we observe that in
model N ′ it holds that s′, (p ∨ ¬q).a |= Bap ∧Ba¬Bap.

t(¬p) s(p)

pq

N :

a
a a u′(¬p¬q) v′(p¬q)

t′(¬pq) s′(pq)

N ′ :

a

a

a a

Proof of Lemma 5.3. If s, ε |= [α]ϕ, then it is either the case that s 6./ α or
s, ε |= 〈α〉ϕ. In the former case, since α � β, we get s 6./ β and thus trivially
s, ε |= [β]ϕ. For the latter, let us see by induction on the structure of simple
positve ϕ that s, ε |= 〈α〉ϕ implies s, ε |= [β]ϕ.

Case ⊥. It is never the case that s, ε |= 〈α〉⊥.
Case atoms. If s, ε |= 〈α〉p, then s ∈ V (p), which in turn implies

s, ε |= [β]p. The case for ϕ = ¬p is analogous.
Case conjunction. If s, ε |= 〈α〉(ϕ1 ∧ ϕ2), then s, ε |= 〈α〉ϕi for i = 1, 2

and thus, by induction hypothesis, s, ε |= [β]ϕi, whence s, ε |= [β](ϕ1 ∧ ϕ2).
Case disjunction. Analogous.
Case belief. Suppose s, ε 6|= [β]Baϕ. Then s, ε |= 〈β〉B̂a¬ϕ, which means

there exist t, δ with Rast, β .a δ, t ./ δ and t, δ 6|= ϕ. By Lemma 5.1, there is
a γ with α .a γ and γ � δ, which gives, by induction hypothesis, t, γ 6|= ϕ and
thus s, α 6|= Baϕ.

Case [!]ϕ. Suppose s, ε 6|= [β][!]ϕ. This means that s, ε |= 〈β〉〈!〉¬ϕ, i.e.
there exists a word δ ∈ (L−! ∪ A)∗ such that s ./ β.δ and s, β.δ 6|= ϕ. Since
α � β.δ, this gives that s ./ α and s, α 6|= ϕ, and thus s, ε 6|= 〈α〉[!]ϕ. 2

Proof of Lemma 6.3. Checking the first item is easy: if ϕ ∈ AAA, then
Baϕ ∈ AAA (by necessitation) and ψ → ϕ ∈ AAA (by classical propositional
logic). Therefore Baϕ ∈ T and ψ → ϕ ∈ T , and thus ϕ ∈ TBa

∩ Tψ.
TBa

is closed under modus ponens because if ϕ → θ ∈ TBa
and ϕ ∈ TBa

,
then Ba(ϕ → θ), Baϕ ∈ T , which by the K axiom plus modus ponens gives
Baθ ∈ T and thus θ ∈ TBa

. For Tψ, suppose ϕ→ θ, ϕ ∈ Tψ. Then ψ → (ϕ→
θ) ∈ T and ψ → ϕ ∈ T . But note that the former is logically equivalent to
(ψ → ϕ) → (ψ → θ), and, since T is closed under logical equivalence, this
means by modus ponens that ψ → θ ∈ T and thus θ ∈ Tψ.

For the third condition, suppose L([β]ϕ) ∈ TBa
for all β. Then BaL([β]ϕ) ∈

T for all β and, since BaL(#) is an admissible form, then BaL([!]ψ) ∈ T , and
thus L([!]ϕ) ∈ TBa

. If L([β]ϕ) ∈ Tψ for all β, then ψ → L([β]ϕ) ∈ T for all β
and, again, since ψ → L(#) is an admissible form, this entails ψ → L([!]ϕ) ∈ T
and therefore L([!]ϕ) ∈ Tψ.

With respect to the last statement: ψ ∈ Tψ because ψ → ψ is a tautology; if
¬ψ /∈ T , then ψ → ⊥ /∈ T thus ⊥ /∈ Tψ, and if ϕ ∈ T , then (since ϕ→ (ψ → ϕ)
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is a tautology) ψ → ϕ ∈ T and thus ϕ ∈ Tψ. 2

Proof of Prop. 6.4. Let T0 be a consistent theory. Let {ϕ0, ϕ1, ϕ2, ...} be an
enumeration of the formulas in L where each formula appears infinitely many
times. For k ∈ ω we will construct a consistent theory Tk+1, which is a superset
of Tk, as follows:

i. If ¬ϕk /∈ Tk, then Tk+1 = (Tk)ϕk
;

ii. If ¬ϕk ∈ Tk and ϕk is of the form L([!]ψ), then there must exist some
β ∈ (L−! ∪ A)∗ such that L([β]ψ) /∈ Tk (for otherwise, by rule iii., we
would have that ϕk ∈ Tk, in contradiction with the consistency of Tk). We
set Tk+1 = (Tk)¬L([β]ψ).

iii. If ¬ϕk ∈ Tk and ϕk is not of the form L([!]ψ), then Tk+1 = Tk.

Each Tk is consistent due to the last statement in the previous Lemma.
Then T =

⋃
k∈ω Tk is consistent. T is trivially closed under modus ponens. For

any formula ϕk, either ¬ϕk was already in the k-th step of the construction,
or ϕk was added to Tk+1; therefore T cannot have proper consistent supersets
closed under modus ponens. Finally suppose L([β]ψ) ∈ T for all β. If L([!]ψ) /∈
T , then ¬L([!]ψ) ∈ T and thus ¬L([!]ψ) ∈ Tk for some k. Let m > k such that
ϕm = L([!]ψ). By construction there exists a β such that ¬L([β]ψ) ∈ Tm+1 ⊆
T : contradiction. Therefore T is a maximal consistent theory. 2

Proof of Prop. 6.6. By induction on (α,ϕ).
The case (α,ϕ) = (ε,>) is trivial. The cases (α,ϕ) = (α′.ψ,>) and (α′.a,>)

follow from the axioms R>1, R>2
and R>3 and the fact that (α′, ψ)� (α′.ψ,>)

and (α′,>)� (α′.a,>).
The case (α, p) follows from the definition of V (p) and axiom Rp combined

with the fact that (α,>)� (α, p).
The cases (α,¬ψ) and (α,ψ1∧ψ2) follow from R¬ and R∧, respectively, plus

the fact that (α,ψi) � (α,ψ1 ∧ ψ2) (for the first case), and (α,ψ) � (α,¬ψ)
(for the second case).

Let us see the case (α, B̂aϕ): if T, ε |= 〈α〉B̂aϕ, then on the one hand we
have that T ./ α (i.e., T, ε |= 〈α〉>, which by induction hypothesis paired
with the fact that (α,>) � (α, B̂aψ) gives us that 〈α〉> ∈ T ), and on the
other hand, S, β |= ϕ by some S, β such that RaTS, α .a β and S ./ β. This
means that S, ε |= 〈β〉ψ and thus (by induction hypothesis due to the fact that
(β, ψ) � (α, B̂aψ), we have that 〈β〉ψ ∈ S. This entails that B̂a〈β〉ψ ∈ T
and thus 〈α〉> ∧∨α.aβ B̂a〈β〉ψ ∈ T , which by RB gives 〈α〉B̂aψ ∈ T . For the
converse, we use RB and the Diamond Lemma.

The cases (α, 〈a〉ψ) and (α, 〈θ〉ψ) follow directly from the fact that
(α.x, ψ)� (α, 〈x〉ψ) for x ∈ L ∪A.

Let us see the case (α, [!]ψ). If T, ε |= 〈α〉[!]ψ, then T ./ α and T, α |= [!]ψ,
which means that, for all β ∈ (L−!∪A)∗, T, ε |= 〈α〉[β]ψ. By induction hypoth-
esis, noting that (α, [β]ψ)� (α, [!]ψ) whenever β does not contain occurrences
of [!], we have that 〈α〉[β]ψ ∈ T for all β and thus 〈α〉[!]ψ ∈ T . Conversely,
if 〈α〉[!]ψ ∈ T , then 〈α〉> ∈ T (and thus, by IH, T, ε |= 〈α〉>, which means
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T ./ α), and, for all β ∈ (L−! ∪ A)∗, 〈α〉[β]ψ ∈ T , which again by induc-
tion hypothesis gives T, ε |= 〈α〉[β]ψ for all β and thus T, α |= [!]ψ, whence
T, ε |= 〈α〉[!]ψ. 2
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Abstract

We define and study the notion of ‘indexed frames’, i.e., tuples (W1,W2, R1, R2)
where each Ri is a binary relation on W1 ×W2 such that Ri(w1, w2)(v1, v2) implies
wi = vi. They generalise, among other things, products of Kripke frames. We show
that the logic of indexed frames is the fusion logic K ⊕ K. We show the relation
between indexed frames and relativised products and we obtain the different logics
of indexed frames when we impose certain constraints on the relations R1 and R2.
Indexed frames were seemingly first used in [8], whithin a proposal for a broader multi-
modal framework called Epistemic Logic of Friendship, allowing for both an epistemic
accessibility relation and a ‘friendship’ relation. The set of agents is encoded in the
semantics, and these agents are named using nominal variables (a notion borrowed
from hybrid logic) with the novelty that these nominals only refer to the elements of
one of the sets. [7] provided an axiomatisation for a fragment of the language. We
give a simplified proof of this result and we axiomatise an extension of this fragment.

1 Introduction

This paper is concerned with the very interesting (and, to our knowledge, un-
charted) mathematical structure that underlies the framework of Epistemic
Logic of Friendship introduced by Seligman, Liu and Girard in [8]. (Also stud-
ied in [9,10]).

It is not in our scope to study the epistemic and social aspects of EFL. Let
us nonetheless briefly recall this framework here: we start off with a bimodal
language L, defined as:

φ ::= p|⊥|¬φ|(φ ∧ φ)|Kφ|Fφ,

where p ∈ Prop, a countable set of propositional variables. K is meant to be
read as an epistemic modality (“I know p”), whereas F is a ‘frienship’ modality
(“all my friends p”). We use K̂ and F̂ as the duals of these operators. Models
are of the form (W,A,∼,�, V ), where W and A are nonempty sets (“states”
and “agents”, respectively), ∼= {∼a: a ∈ A} is a family of binary relations on
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W indexed by A (∼a⊆ W 2 represents agent a’s epistemic accessibility), and
�= {�w: w ∈ W} is a family of binary relations on A indexed by W (each
representing which agents are friends at world w). V : Prop → 2W×A is a
valuation.

We interpret formulas of L with respect to pairs (w, a) ∈W ×A, as follows:
(w, a) |= Kφ iff (v, a) |= φ for all v such that w ∼a v;
(w, a) |= Fφ iff (w, b) |= φ for all b such that a �w b.

To illustrate this, see the following diagram. It represents a situation with
three agents, Alice, Bob and Charlie, wherein at world w Alice has a friend
with the property p (represented by the grey nodes) yet she does not know
that:

a b

c

a b

c

a b

c

ba

w w′ w′′

Indeed, it holds that w, a |= F̂ p∧¬KF̂p. We could also express more complex
things such as “Alice does not know Bob and Charlie are friends”. In order
to do this, we would need to extend the language, as we shall show later. For
now, let us focus on this relational structure.

Indexed frames. We have a multi-relational Kripke frame, whose relations
are indexed by a set A, in which each state contains a distinct Kripke frame
having A as its underlying set.

We shall call these structures indexed frames. In Section 2 we study them
and provide the complete axiomatisation of the modal logic they give rise to.
Note that indexed frames generalise other ways to combine Kripke frames,
such as products: recall that, given two Kripke frames (W1, R1), (W2, R2),
their product is the birelational Kripke frame (W1 × W2, R

H
1 , R

V
2 ), where

RH1 (w1, w2)(w′1, w
′
2) iff w2 = w′2 and R1w1w

′
1, and RV2 (w1, w2)(w′1, w

′
2) iff

w1 = w′1 and R2w2w
′
2. RH1 and RV2 are referred to as the horizontal and

vertical relations, respectively.
One can easily see that a product of two Kripke frames is simply an indexed

frame where ∼a=∼b and �w=�v for all a, b, w, v. In Subsection 2.2 we show
that any subframe of a product of Kripke frames can be turned in a truth-
preserving manner into an indexed frame, which will grant us a bunch of extra
completeness results.

In Section 3 we show that every formula that is satisfied in an indexed frame
can be satisfied in a finite indexed frame.

Naming the agents. Let us go back to the notion “Alice does not know
Bob and Charlie are friends”. In order to express this in our language, we
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need to name the agents. This is done in [8] via the introduction of nominal
variables and modality @n, directly imported from hybrid logic: see [1,3,5,6].
The language L(@) extends L with the atom n and the operator @nφ, where
n belongs to Nom, a countable set of nominal variables. A model for L(@) is
a tuple (W,A,∼,�, V ), as defined above, with the exception that V : Prop ∪
Nom → 2W×A and, for each n ∈ Nom, V (n) is of the form W × {a} for some
a ∈ A. The nominal n can thus be seen as the name of agent a. We now have:
w, a |= n iff V (n) = W ×{a}, and w, a |= @nφ iff w, b |= φ, where b is the agent
named by n.

A complete axiomatisation of L(@) was provided for the first time by Sano
in [7]. The proof of completeness works (roughly) as follows: first, a cut-
free tree sequent calculus is introduced, which is then shown to be sound and
complete. Then Sano shows that a formula which is provable in the Hilbert-
style system can be converted into a provable tree sequent and, conversely, that
from a provable tree sequent one can obtain a formula which is derivable in the
Hilbert-style system.

In the conclusion of [7] it is suggested that finding a proof of this result
using canonical models is an interesting area of future research. We present
such a proof in Section 4 (Subsection 4.1), along with a proof that the logic
possesses the finite model property (Subsection 4.2).

Back to friendship logic. For most of this paper we ignore many of the
constraints imposed in [8] upon the models in order to make them a realistic
framework for a logic of knowledge and friendship, namely: the set of agents A
should be finite, the epistemic relations ∼a should be equivalence relations, the
friendship relations �w should be symmetric and irreflexive, and, optionally, it
should be the case that an agent always knows who her friends are (if w ∼a v
and a �w b, then a �v b). We address these properties in Subsection 4.3 and
use all the previous results to provide a logic for the exact class of models
proposed in [8]. (It is worth noting that, although in Section 4 we stick to
the ∼ and � symbols to maintain the notation of [8,7], until this moment the
reader should not assume they denote equivalence or symmetric relations.)

Another extension. Another operator from hybrid logic is considered in [8].
The operator ↓x.φ allows to name the current agent x, making it possible to
refer to it indexically. The resulting extension of L(@), let us call it L(@↓),
allows to express things like “I have a friend who knows n is friends with me”,
↓x.F̂K@nF̂ x. In Section 5 we provide a sound and complete axiomatization
for L(@↓).

Some proofs have been moved to the Appendix.

2 Indexed Frames

Definition 2.1 An indexed frame is a tuple (W,A,R, S) where W and A are
nonempty sets, and R ⊆ A ×W 2, S ⊆ W × A2 are ternary relations. We use
Raww

′ and Swaa
′ to denote, respectively, (a,w,w′) ∈ R and (w, a, a′) ∈ S.

We can see R and S as families of binary relations {Ra}a∈A and {Sw}w∈W .
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Alternatively, we can see indexed frames as tuples (W,A,R, S) where R and
S are binary relations on W × A such that R(w, a)(w′, a′) implies a = a′ and
S(w, a)(w′, a′) implies w = w′.

Let Prop be a countable set of propositional variables. We will consider a
language L as defined in the introduction. We leave aside the epistemic and
social considerations and call our modal boxes �1 and �2 instead of K and F .

Thus our language L will be φ ::= p|⊥|¬φ|(φ∧ φ)|�1φ|�2φ, with p ∈ Prop.
We define the other Boolean connectives as usual, the dual modalities 3iφ :=
¬�i¬φ for i = 1, 2, and we adopt the standard rules for omission of the paren-
theses. Given φ ∈ L we define its set of subformulas subfφ in the standard way,
and its modal depth, md(φ), recursively as follows:
md(p) = md(⊥) = 0, md(¬φ) = md(φ), md(φ1 ∧ φ2) = maxi=1,2 md(φi),
md(�iφ) = 1 + md(φ).

Definition 2.2 An indexed model for L is a tuple M = (W,A,R, S, V ) where
(W,A,R, S) is an indexed frame and V : Prop→ 2W×A is a valuation.

We interpret formulas of L on indexed models with respect to pairs (w, a) ∈
W ×A as follows:

(w, a) |= �1φ iff w′, a |= φ for all w′ ∈W such that Raww
′;

(w, a) |= �2φ iff w, a′ |= φ for all a′ ∈ A such that Swaa
′.

Global truth of formulas in models and validity of formulas in frames are
defined as usual.

2.1 The logic of indexed models

Definition 2.3 Given a unimodal logic L, let FrL be the class of Kripke frames
F such that F |= L. Given unimodal Kripke-complete logics L1 and L2 we
define L1 ◦ L2 as the logic of indexed frames (W,A,R, S) such that (W,Ra) ∈
FrL1 for all a ∈ A and (A,Sw) ∈ FrL2 for all w ∈W .

Assuming no constraints on the relations Ra and Sw, the logic of indexed
models is the fusion logic K⊕K, i.e., the least normal modal logic in L containing
the axioms of the minimal modal logic K for each of the �i. To express this in
terms of the above definition:

Theorem 2.4 K ◦ K = K⊕ K.

This result can be proven using a step-by-step construction. For such a
proof, see the Appendix. In the next Subsection we shall prove a more general
result, and for this we will employ the notion of relativized products, studied in
[4].

2.2 Indexed frames and relativized products

The following definitions can be found in [4]:

Definition 2.5 Given two families of frames K1 and K2, let K1 × K2 be the
family of products of Kripke frames F1×F2 such that Fi ∈ Ki. Given Kripke-
complete unimodal logics L1, L2, we define their (arbitrary) relativized product
as the logic of arbitrary subframes of products of Kripke frames F1 ×F2 such
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that Fi ∈ FrLi, i.e.,

(L1 × L2)SF = Log{G : G ⊆ F for some F ∈ FrL1 × FrL2}.

(We say G = (W ′, R′1, ..., R
′
n) is a subframe of F = (W,R1, ..., Rn), denoted

G ⊆ F , whenever W ′ ⊆W and each R′i is the restriction of Ri to W ′.)

A logic L is a subframe logic if F ∈ FrL and G ⊆ F implies G ∈ FrL.
(Example: S4, because a subframe of a preorder is a preorder; nonexample:
the logic of serial frames K + 3>, because any finite subframe of (N, <) is not
serial.) The following holds:

Proposition 2.6 ([4, Thm. 9.2]) If L1, L2 are subframe logics, L1 ⊕ L2 ⊆
(L1 × L2)SF .

Moreover, if L1, L2 ∈ {K,T,K4,S4,S5,S4.3}, then L1 ⊕L2 = (L1 ×L2)SF .

Let us use these results to give a proof of completeness for the logic of
indexed frames. Let Fi = (Wi, R

′
i) for i = 1, 2. Let F = (W,R1, R2) be a

subframe of F1 × F2. This means that W ⊆ W1 ×W2, and R1 and R2 are
the restrictions to W of the horizontal and vertical relations (R′1)H and (R′2)V

respectively.
Consider the indexed frame G = (W1,W2, R

H , RV ), where, for w2 ∈W2,

RHw2
w1w

′
1 iff

{
(w1, w2) ∈W and (w′1, w2) ∈W and (w1, w2)R1(w′1, w2); or

(w1, w2) /∈W and w′1 = w1.

and, for w1 ∈W1,

RVw1
w2w

′
2 iff

{
(w1, w2) ∈W and (w1, w

′
2) ∈W and (w1, w2)R2(w1, w

′
2); or

(w1, w2) /∈W and w′2 = w2.

Now, let V be a valuation on F and set V ′(p) = V (p) as a valuation on the
indexed frame (W1,W2, R

H , RV ). The following holds:

Proposition 2.7 Let φ be a formula in the bimodal language, and let
(w1, w2) ∈W . Then F , V, (w1, w2) |= φ iff G, V ′, (w1, w2) |= φ.

Proof. By induction on φ. Let us see for instance the case φ = �1ψ.
If F , V, (w1, w2) |= �1ψ, then let w′1 such that RHw2

w1w
′
1. Since (w1, w2) ∈

W , by definition we have that (w′1, w2) ∈ W and (w1, w2)R1(w′1, w2) in
F , which means that F , V, (w′1, w2) |= ψ, and, by induction hypothesis
G, V ′, (w′1, w2) |= ψ. But since this is true for all w′1 such that RHw2

w1w
′
1,

we have that G, V ′, (w1, w2) |= �1ψ. The converse is analogous, noting that
(w1, w2)R1(w′1, w2) implies RHw2

w1w
′
1. 2

Moreover, we have the following:

Lemma 2.8 Suppose F is a subframe of (W1, R
′
1) × (W2, R

′
2). Suppose R′1

(respectively R′2) has one of the following properties: reflexive; transitive; sym-
metric; connected; Euclidean. Then, for all w2, RHw2

(resp. for all w1, RVw1
)

has the same property.
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Proof. Straightforward by construction of RH and RV . 2

As a consequence:

Theorem 2.9 If L1, L2 ∈ {K,T,K4,S4,S5,S4.3}, then L1 ◦ L2 = L1 ⊕ L2.

Proof. The inclusion L1◦L2 ⊇ L1⊕L2 holds by definition of L1◦L2. It suffices
to see that L1 ◦ L2 ⊆ L1 ⊕ L2. If φ /∈ L1 ⊕ L2, then by Proposition 2.6 there
exist frames (W1, R

′
1) ∈ FrL1 and (W2, R

′
2) ∈ FrL2, a frame F = (W,R1, R2) ⊆

(W1, R
′
1)× (W2, R

′
2), a valuation V on F and a world (w1, w2) ∈W such that

F , V, w1, w2 6|= φ. But then, the above construction G = (W1,W2, R
H , RV )

satisfies: (W1, R
H
w2

) ∈ FrL1 and (W2, R
V
w1

) ∈ FrL2 for all w1, w2 (Proposition
2.8), and G, V ′, w1, w2 6|= φ (Proposition 2.7); therefore, φ /∈ L1 ◦ L2. 2

3 Finite Indexed Model Property

All the logics mentioned so far have the Finite Model Property in the sense
that, if a formula is consistent in the logic, there will be a finite model satisfying
it 1 . But can we find a finite indexed model satisfying such a formula? The
answer is affirmative.

Definition 3.1 A logic L is said to have the Finite Indexed Model Property
(iFMP) if, given φ /∈ L, there exists an indexed model M = (W,A,R, S, V )
such that W and A are finite, (W,A,R, S) |= L, and, for some (w, a) ∈W ×A,
we have M, w, a 6|= φ.

Given Kripke-complete unimodal logics L1 and L2, let (L1 ◦ L2)f be the
logic of finite indexed frames of L1 ◦ L2.

Theorem 3.2 K⊕ K has the iFMP, i.e., (K ◦ K)f = K ◦ K = K⊕ K.

Proof. This amounts to showing that, if a formula φ0 is satisfied in an in-
dexed model, then there is a finite indexed model that satisfies it. Let
M = (W,A,R, S, V ) and (w0, a0) ∈W ×A such that M, w0, a0 |= φ0.

We define relations R and S on W ×A as follows: (w, a)R(w′, a′) iff a = a′

and Raww
′, and (w, a)S(w′, a′) iff w = w′ and Swaa

′. We will consider chains
starting at (w0, a0), of the form

α = (w0, a0)T1(w1, a1)...Tk(wk, ak),

with k ≥ 0, Ti ∈ {R,S} and (wi−1, ai−1)Ti(wi, ai) for 1 ≤ i ≤ k. We shall say
that such a chain has length k (and thus (w0, a0) is a chain of length 0). We
will call lastα = (wk, ak).

Fix n to be the modal depth of φ0. We shall construct a finite set of chains
of length up to n, in n steps. Let F0 = {(w0, a0)}. For 0 ≤ k ≤ n− 1, suppose
Fk is a finite set of chains of length k. Let Fk+1 be a finite set of minimal
cardinality satisfying the following property for all α ∈ Fk and all T ∈ {R,S}:

for any (w, a) ∈ W × A, if (lastα)T(w, a), then there exists an element
(w′, a′) ∼φ0

(w, a) such that αT(w′, a′) ∈ Fk+1,

1 Indeed, every logic in the set {K,T,K4, S4, S5, S4.3} has the FMP and this property is
preserved by fusions: see [11].
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where ∼φ0 is the equivalence relation

(w, a) ∼φ0
(w′, a′) iff for all ψ ∈ subf φ0(M, w, a |= ψ iff M, w′, a′ |= ψ).

It is not hard to see that there is a set of cardinality at most 2 · |Fk| ·2| subf φ0|

satisfying this property. Indeed, for any of the |Fk| choices of α and 2 choices
of T, Fk+1 will contain an element αT(w, a) for (at most) one representative
of each of the (at most) 2| subf φ0| equivalence classes of ∼φ0

.
Let F ′ = F0 ∪ ... ∪ Fn. Let F be the closure of F ′ under the following

property:

if α ∈ F , length(α) < n, T ∈ {R,S}, w ∈ W and a ∈ A occur in F , and
(lastα)T(w, a), then αT(w, a) ∈ F .

Obviously, F ′ is finite, and so is F .
We construct our finite model Mf = (W f , Af , Rf , Sf , V f ) where W f and

Af are the restrictions of W and A to those elements occuring in F , i.e,

W f = {w ∈W : w occurs in F}; Af = {a ∈ A : a occurs in F};

and Rf , Sf and V f are the corresponding restrictions of R, S, and V . The
following holds:

Lemma 3.3 Let α ∈ F be a chain of length k, i.e,

α = (w0, a0)T1(w1, a1)...Tk(wk, ak),

with Ti ∈ {R,S}. Let φ be a subformula of φ0 such that md(φ) ≤ n−k. Then,
M, wk, ak |= φ if and only if Mf , wk, ak |= φ.

This proves our theorem: it suffices to apply the previous Lemma to the
chain (w0, a0) of length 0 to obtain Mf , w0, a0 |= φ0. 2

Remark 3.4 The fact that we are taking a submodel of M grants us that we
can preserve the universal properties of the relations. This means that, if R
is reflexive/ transitive/ symmetric/ connected/ Euclidean, so is Rf . Likewise
for S and Sf . This fact, paired with Theorem 2.9, gives us the following result
immediately:

Theorem 3.5 If L1, L2 ∈ {K,T,K4,S4,S5,S4.3}, then L1⊕L2 has the iFMP.
In other words, (L1 ◦ L2)f = L1 ◦ L2 = L1 ⊕ L2.

4 Epistemic Logic of Friendship

We now consider the framework for an ‘epistemic logic of friendship’ proposed
by [8]. For now, this amounts to adding a set Nom = {n,m, ...} of nominal
variables to our language, and extending the language to L(@), defined as:

φ ::= p|n|⊥|¬φ|(φ ∧ φ)|Kφ|Fφ|@nφ,

where p ∈ Prop, n ∈ Nom.



60 Indexed Frames and Hybrid Logics

Definition 4.1 Models for L(@) are of the shape M = (W,A,∼,�, V ), where
(W,A,∼,�) is an indexed frame and V : Prop ∪ Nom → 2W×A is a valuation
function with the property that, for each n ∈ Nom, V (n) = W × {a} for some
a ∈ A. We refer to this unique a as a = nV (or a = n if there is no risk of
ambiguity).

A model is named whenever, for each a ∈ A, there exists n ∈ Nom such
that n = a. (Note that, in a named model, A is at most countable.)

We interpret formulas of L(@) in named models with respect to pairs
(w, a) ∈W ×A as follows:
M, w, a |= n iff (w, a) ∈ V (n) (iff n = a);
M, w, a |= @nφ iff M, w, n |= φ.

4.1 Axiomatising L(@) via canonical models

It is proven in [7], via an argument that employs a tree sequent calculus, that
the logic of L(@) is the system EFL, defined in the table below:

(Taut) all propositional tautologies (MP) from φ and φ→ ψ, infer ψ
(KK) K(φ→ ψ)→ (Kφ→ Kψ) (NecK) from φ, infer Kφ
(KF ) F (φ→ ψ)→ (Fφ→ Fψ) (NecF ) from φ, infer Fφ
(K@) @n(φ→ ψ)→ (@nφ→ @nψ) (Nec@) from φ, infer @nφ
(Ref) @nn (Selfdual) ¬@nφ↔ @n¬φ
(Elim) @nφ→ (n→ φ) (Agree) @n@mφ→ @mφ
(Back) @nφ→ F@nφ (DCom) @nK@nφ↔ @nKφ
(Rigid=) @nm→ K@nm (Rigid6=) ¬@nm→ K¬@nm

(Name) From @nφ infer φ, where n is fresh in φ

(LBG) From L(@nF̂m→ @mφ) infer L(@nFφ), m fresh in L(@nFφ).

In the last line of the above table, the necessity forms L(#) are defined as:

L ::= #|φ→ L|@nKL.

In this section we present a novel proof of this result using canonical models.
To do this, we consider instead the logic EFL+, obtained by replacing the rule
(LBG) in EFL by the following:

(LBG+) From L(@nF̂m→ @mφ) for all m fresh in L(@nFφ), infer L(@nFφ).
The following Lemma can be proven by a straightforward induction on

derivations.

Lemma 4.2 EFL and EFL+ prove the same formulas.

We thus prove completeness of EFL+. The following validities will be useful:

Proposition 4.3 The following are derivable in EFL:
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(T1) ` @m@nφ↔ @nφ;
(T2) ` n→ (@nφ↔ φ);
(T3) ` @nm→ (@nφ↔ @mφ);
(T4) ` @nm↔ @mn;
(T5) ` @n(φ→ ψ)↔ (@nφ→ @nψ);
(T6) ` @nm→ (φ[k/n]↔ φ[k/m]), where φ[k/n] is the formula obtained

from φ by replacing each occurrence of k by n.
(T7) ` @nm→ @iK@nm, and ` @n¬m→ @iK@n¬m;

(T8) ` @nF̂m ∧@mφ→ @nF̂ φ;

(T9) ` @nFψ ∧@nF̂m→ @mψ;

(R1) if ` @nF̂m ∧@mφ→ ψ, then ` @nF̂ φ→ ψ,
with m 6= n fresh in φ and ψ.

We will say that a formula in L(@) is a named formula whenever it is of the
form @nφ. A BCN formula is a Boolean combination of named formulas, and
we use BCN to denote the set of such formulas. The following is an immediate
consequence of (T1), (T5) and (Selfdual):

Corollary 4.4 If φ ∈ BCN , n ∈ Nom, then ` @nφ↔ φ.

A formula φ is consistent if ¬φ is not derivable. The following lemma will
be useful later.

Lemma 4.5 If n does not occur in φ, then φ is consistent if and only if @nφ
is consistent.

Proof. If φ is inconsistent we have ` ¬φ and thus by (Nec@), ` @n¬φ, which
by (Selfdual) gives that ` ¬@nφ. If @nφ is inconsistent then ` ¬@nφ which by
(Selfdual) means ` @n¬φ and thus, by (Name), ` ¬φ. 2

Now we can start our completeness proof. The two above results allow us
to focus only on BCN formulas. A theory is a set of BCN formulas T such that:

i. EFL+ ∩BCN ⊆ T ;

ii. T is closed under Modus Ponens;

iii. If L(@nF̂m → @mφ) ∈ T for all m 6= n not occurring in L or in φ, then
L(@nFφ) ∈ T .

A theory is consistent whenever @n⊥ /∈ T (for any/all n). It is easy to see
that EFL+∩BCN is the least consistent theory. A consistent theory is maximal
if no proper superset of it is a consistent theory.

Lemma 4.6 Given a theory T , the set

TKn
= {ψ ∈ BCN : ` ψ ↔ @nφ for some @nKφ ∈ T}

is a theory.

Proof. Note the following: for any φ ∈ BCN , we have that φ ∈ TKn iff
@nKφ ∈ T . Indeed,if φ ∈ TKn

, then ` φ ↔ @nψ for some @nKψ ∈ T . But
then, using (NecK), (Nec@) and (DCom) in that order we obtain ` @nKφ ↔
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@nKψ, and thus @nKφ ∈ T . The other direction is trivial and uses that
` @nφ↔ φ. With this:

Rule i. If φ ∈ EFL+∩BCN , m ∈ Nom, @nKφ ∈ EFL+∩BCN (by applying
two Nec rules) and thus @nKφ ∈ T , so φ ∈ TKn

.
Rule ii. If φ and φ → ψ ∈ TKn , then @nKφ, @nK(φ → ψ) ∈ T and, by

applying the K axioms and modus ponens, @nKψ ∈ T , and thus ψ ∈ TKn .
Rule iii. If L(@kF̂m→ @mφ) ∈ TKn

for all fresh m, then @nKL(@kF̂m→
@mφ) ∈ T for all fresh m, and thus, since @nKL is an admissible form,
@nKL(@kFφ) ∈ T , whence L(@kFφ) ∈ TKn

.

Lemma 4.7 Given a theory T and a formula φ ∈ BCN , the set Tφ = {ψ ∈
BCN : φ→ ψ ∈ T} is a theory containing T and including the formula φ, and
it is consistent whenever T is consistent and ¬φ /∈ T .

Proof. Rule i. If ψ ∈ EFL+∩BCN , then φ→ ψ ∈ EFL+∩BCN , thus ψ ∈ Tφ.
Rule ii. Follows from classical propositional logic.
Rule iii. Follows from the fact that, if L is an admissible form, so is φ→ L.
The fact that φ ∈ Tφ ⊇ T is because ` φ → φ and ` ψ → (φ → ψ). If

¬φ /∈ T , then @n¬φ /∈ T , thus @n(φ → ⊥) /∈ T . Using the K axiom and
` φ↔ @nφ, we obtain φ→ @n⊥ /∈ T , and thus @n⊥ /∈ Tφ.

Now,

Lemma 4.8 (Lindenbaum’s lemma) A consistent theory can be extended
to a maximal consistent theory.

Proof. Let T0 be a consistent theory and (φk)k∈ω be an enumeration of BCN
where each formula occurs infinitely many times.

Given a consistent theory Tk, we define a consistent theory Tk+1 (which
extends Tk) as follows:

• If ¬φk /∈ Tk, then Tk+1 = (Tk)φk
.

• If ¬φk ∈ Tk, then:
· If ¬φk is of the form ¬L(@nFφ), then for some fresh m it must be the

case that L(@nF̂m → @mφ) /∈ Tk, for otherwise we would have by rule
iii. that L(@nFφ) ∈ Tk, contradicting its consistency. Then we set Tk+1 =
(Tk)¬L(@nF̂m→@mφ).
· Otherwise, Tk+1 = Tk.

Let T =
⋃
k∈ω Tk. Then T is a maximal consistent theory. Consistency

is obvious, for each Tk is consistent. Maximality comes from the fact that,
for every formula φk, either ¬φk was already in Tk, or φk was added to Tk+1,
therefore it cannot have consistent supersets closed under modus ponens. To
see that it is a theory, it suffices to check that Rule iii. is satisfied. And
indeed, if L(@nFφ) /∈ T , then ¬L(@nFφ) ∈ Tk for some k. Consider some
k′ > k such that φk′ = ¬L(@nFφ). Then, by construction, Tk′+1 must contain
¬L(@nF̂m → @mφ) for some fresh m, and therefore it is not the case that
L(@nF̂m→ @mφ) ∈ T for all fresh m.

Let MCT denote the set of maximal consistent theories. Given T, S ∈
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MCT , and n ∈ Nom, we define: T ∼n S iff TKn ⊆ S.

Lemma 4.9 (Diamond Lemma) Let T ∈MCT . We have:

i. If @nK̂φ ∈ T , then there exists S ∈MCT such that T ∼n S 3 @nφ.

ii. If @nF̂ φ ∈ T , then there is some m 6= n fresh in φ such that @nF̂m ∧
@mφ ∈ T .

Proof. i. Take the consistent theory (TKn
)@nφ and extend it to the desired

successor using Lindenbaum’s lemma. Note that TKn
is consistent, for if not,

@n⊥ ∈ TKn
, and thus @nK@n⊥ ∈ T . But, since @n⊥ is equivalent to ⊥,

this means that @nK⊥ ∈ T , contradicting @nK̂φ ∈ T . Note moreover that
¬@nφ /∈ TKn , for if that was the case, @nK¬@nφ ∈ T , which is equivalent to
¬@nK̂φ ∈ T : contradiction. Thus (TKn

)@nφ is consistent.

ii. If @nF̂m ∧@mφ /∈ T for all fresh m, then ¬(@nF̂m) ∨ ¬(@mφ) ∈ T for
all fresh m, and thus, by logical equivalence, @nF̂m→ @m¬φ ∈ T for all fresh
m, which entails @nF¬φ ∈ T , and therefore ¬@nF̂ φ ∈ T .

Lemma 4.10 Let i ∈ Nom. If Γ ∼i ∆ then, for any n,m ∈ Nom, we have:
@nm ∈ Γ if and only if @nm ∈ ∆.

Proof. By (T7) of Prop. 4.3: if @nm ∈ Γ, then @iK@nm ∈ Γ, which entails
@i@nm ∈ ∆, and therefore, by the (Agree) axiom, @nm ∈ ∆. If @nm /∈ Γ, by
maximal consistency and the (Selfdual) axiom we have that @n¬m ∈ Γ and we
can proceed similarly to obtain that @n¬m ∈ ∆ and thus @nm /∈ ∆. 2

Let φ0 be a consistent formula and let us build a model satisfying it. Take
a nominal n0 not occurring in φ0 and note that @n0

φ0 is a consistent BCN
formula (by Lemma 4.5) and thus the consistent theory (BCN ∩ EFL+)@n0

φ0

can be extended (by Lindembaum’s lemma) to Γ0 ∈MCT .
Let W be the set of elements reachable from Γ0 by the ∼n relations, i.e.

W ={∆ ∈MCT : Γ0 = ∆0 ∼n1 ∆1 ∼n2 ... ∼nk
∆k = ∆

for some n1, ..., nk ∈ Nom,∆0, ...,∆k ∈MCT}.

Note that this construction guarantees (by Lemma 4.10) that for any Γ ∈ W ,
@nm ∈ Γ iff @nm ∈ Γ0. Note moreover that the theorems

` @nn (Ref); ` @nm↔ @mn (T4); ` @nm ∧@mi→ @ni (conseq. of T3)

guarantee that the binary relation on Nom defined as n ≡ m iff @nm ∈ Γ0 is
an equivalence relation. Let [n] denote the equivalence class of n ∈ Nom and
let A = {[n] :∈ Nom}.

For [n] ∈ A, we define ∼[n]=∼n. Let us see that this is well-defined, which
amounts to showing that ∼n=∼m whenever n ≡ m. But given Γ,∆ ∈W , and
n ≡ m, the fact that @nm ∈ Γ ∩∆ paired with (T3) give us that @nKφ ∈ Γ
iff @mKφ in Γ, and @nφ ∈ ∆ iff @mφ ∈ ∆, which entails Γ ∼n ∆ iff Γ ∼m ∆.

For Γ ∈W we define

[n] �Γ [m] iff @nF̂m ∈ Γ.
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Let us see that this definition does not depend on the choice of representative
for the equivalence classes: suppose @nF̂m ∈ Γ and take n′ ∈ [n],m′ ∈ [m].
We have that @n′ F̂m ∈ Γ, by (T3), and therefore, by (T6), @n′ F̂m′ ∈ Γ.

Finally we define a valuation by setting

V (p) ={(Γ, [n]) ∈W ×A : @np ∈ Γ}, p ∈ Prop;

V (n) ={(Γ, [n]) : Γ ∈W}, n ∈ Nom.

Note that we have defined V so that n = [n]. We have that

MC = (W,A,∼[n]∈A,�Γ∈W , V )

is a named model and, moreover:

Lemma 4.11 (Truth Lemma) For any formula φ ∈ L(@), it is the case that
MC ,Γ, [n] |= φ if and only if @nφ ∈ Γ.

Proof. By induction on φ. For the case φ = m ∈ Nom we recall that m = [m].
For the case φ = Kψ, we use the Diamond Lemma. For the case φ = Fψ, we
use the Diamond Lemma for one direction and (T9) for the other. 2

With this:

Theorem 4.12 EFL+ (and therefore EFL) is complete with respect to the class
of (not necessarily finite) named indexed models.

Proof. If φ0 is consistent, so is @n0φ0 for n0 not occurring in φ0, and thus we
can construct MC as above and we have that MC ,Γ0, [n0] |= φ0. 2

4.2 Finite models

The following also holds:

Theorem 4.13 EFL is complete with respect to the class of finite named in-
dexed models.

This is a consequence of a result very similar to Theorem 3.2: if a formula
is satisfied in a model (W,A,∼,�, V ), then there is a finite submodel which
satisfies it.

The proof of this result has minimal changes with respect to the proof of
Thm. 3.2, and it is sketched in the Appendix.

4.3 Extensions of EFL

In [8] some assumptions are made about the epistemic and social relations in
the models. The epistemic relations ∼a are equivalence relations, whereas the
friendship relation �w is irreflexive and symmetric.

One would expect, for instance, that if the relations ∼a that give the se-
mantics of the knowledge modality K are reflexive, transitive and symmetric,
then this modality should follow the axioms of S5, namely:

` Kφ→ φ; ` Kφ→ KKφ; ` φ→ K¬K¬φ.
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Similarly, if ∼a is a preorder, the extra axioms of S4 (i.e. the first two
above), should be included to the logic. Let EFL+S5K denote the logic resulting
from adding these three axioms to EFL, and let EFL+S4K be the logic resulting
from adding the first two. And indeed:

Theorem 4.14 ([7]) EFL + S5K is sound and complete with respect to the
class of models where the ∼a are equivalence relations. Moreover, EFL + S4K
is sound and complete with respect to the class of models where each ∼a is a
preorder.

The proof of this result in [7] consists in adding corresponding rules to the
tree sequent calculus and showing that a provable formula in the Hilbert-style
system can be transformed into a provable sequent and vice versa. With the
canonical models presented in this text this proof becomes quite straightfor-
ward. First, note that thanks to (T5) the following are easily provable in
EFL + S5K (and the first two in EFL + S4K):

` @nKφ→ @nφ; ` @nKφ→ @nKKφ; ` @nφ→ @nK¬K¬φ.

With this, the proof of the following lemma is straightforward:

Lemma 4.15 If the axioms of S5 for K (resp. S4) are present in the logic,
each relation ∼n in the canonical model is an equivalence relation (resp. a
preorder).

Remark 4.16 Given that @n distributes over →,∧,∨,¬, one can see that
there are many examples of formulas φ defining a certain frame property from
which it is trivial to compute a formula @nψ defining the same property in
the ∼n relations of indexed frames. Some obvious questions arise: is this true
of any Sahlqvist formula? Can we adapt the notion of Sahlqvist formula to
this setting and prove an analogue of the Sahlqvist Completeness Theorem ([2,
Thm. 4.42])? We conjecture the answer is affirmative.

Similarly, as pointed out by [7] the following axioms encode irreflexivity and
symmetry of the friendship relation �w:

(irr) ¬@nF̂ n (sym) @nF̂m→ @mF̂ n

The proof of this lemma is also straightforward:

Lemma 4.17 If (irr) and (sym) are present in the logic, each relation �Γ in
the canonical model is irreflexive and symmetric.

Therefore, and since the rest of the completeness proof proceeds as before,
we have a complete axiomatisation of the models proposed by [8]:

Theorem 4.18 EFL+S5K +(irr)+(sym) is the logic of finite indexed frames
(W,A,∼,�) where each ∼a is an equivalence relation and each �w is irreflexive
and symmetric.

Finally, an optional further constraint is that an agent should not doubt
who her own friends are. For this one would consider frames with the property:



66 Indexed Frames and Hybrid Logics

if w ∼a v, then a �w b implies a �v b. We will call these KYF frames (for
“know your friends”). It is again very easy to check that, by adding to the
logic the axiom

(kyf) F̂m→ KF̂m,

the resulting canonical model is a KYF frame.

5 Axiomatisation of L(@↓)
In [8] another operator is borrowed from hybrid logic, namely ↓x.φ, which
names the current agent ‘x’, allowing to refer to her indexically. We now have,
on top of Prop and Nom, a countable set SVar = {x, y, ...} of state variables.
L(@↓) is simply L(@) extended with x and ↓x.φ, where x ∈ SVar. Formulas
are read on named indexed models with respect to triples (g, w, a), where g :
SVar→ A is an assignment function, as follows:
M, g, w, a |= x iff g(x) = a;
M, g, w, a |= ↓x.φ iff M, gxa , w, a |= φ,

where gxa(y) = g(y) for y 6= x and gxa(x) = a.
Given a formula φ and a nominal n, we define φ[x/n] to be the formula

resulting from replacing each free occurence of x in φ by n. Formally:

Definition 5.1 Given x ∈ SVar, n ∈ Nom and φ ∈ L(@↓):
φ[x/n] = φ if φ = p ∈ Prop,⊥,m ∈ Nom or y ∈ SVar\{x}; x[x/n] = n;
(φ ∧ ψ)[x/n] = φ[x/n] ∧ ψ[x/n]; (↓x.φ)[x/n] = ↓x.φ;
(Bφ)[x/n] = B(φ[x/n]) if B = ¬,K, F,@m, or ↓y (y 6= x);

With this, we can define the logic of the fragment L(@↓):
Definition 5.2 EFL↓ is the logic containing the axioms and rules of EFL plus
the following axiom and rule:

(DA) @n(↓x.φ↔ φ[x/n]).
(FV) from φ[x/n] (with n fresh in φ), infer φ.

The fact that (DA) is sound can be checked by just unpacking the semantics.
The soundness of the (FV) rule is a consequence of the following Lemma, whose
proof is an easy induction on φ:

Lemma 5.3 Let φ ∈ L(@↓) and n be fresh in φ. Let M = (W,A,∼, R, V ) be
a model and g an assignment. We define a new valuation in M by: V ′(n) =
W × {g(x)}, V ′(m) = V (m) for n 6= m, V ′(p) = V (p) for p ∈ Prop. Let
M′ = (W,A,∼, R, V ′). Then M, w, a, g |= φ iff M′, w, a, g |= φ[x/n].

For completeness we shall use these two lemmas; respectively an application
of the (FV) rule, and a straightforward induction on φ:

Lemma 5.4 If φ is consistent and n1,...,nk are fresh, then φ[x1/n1]...[xk/nk]
is consistent.

Lemma 5.5 Let M be a model, φ be a formula, g an assignment and
x1, ..., xk ∈ SVar. Let n1, ..., nk ∈ Nom such that ni = g(xi). Then

M, w, a, g |= φ iff M, w, a, g |= φ[x1/n1]...[xk/nk].
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Now, we construct our canonical model exactly like before with one caveat:
our sets MCT will only contain BCN formulas without free variables (i.e. BCN
sentences). We prove the following variant of the Truth Lemma:

Proposition 5.6 Let g be an assignment and φ a formula whose free variables
are x1, ..., xk. Let [ni] = g(xi). Then

M,Γ, [n], g |= φ iff @nφ[x1/n1]...[xn/nk] ∈ Γ.

With this we can prove completeness:

Theorem 5.7 EFL↓ is complete with respect to indexed models.

Proof. Suppose φ0 is a consistent formula. Let x1, ..., xk be the free variables
of φ0 and n0, n1, ..., nk fresh. Then φ0[x1/n1]...[xk/nk] is a consistent sentence
(by Lemma 5.4) and so is

@n0φ0[x1/n1]...[xk/nk]

(by Lemma 4.5). We extend this to Γ0 ∈MCT , we construct the corresponding
canonical model and we let g be any assignment such that g(xi) = [ni]. Then
we have by Prop. 5.6 that M,Γ0, [n0], g |= φ0. 2

6 Conclusion

In this paper we have studied several aspects of indexed frames, introduced for
the first time (as far as we know) in [8]. We have as well provided axiomatisa-
tions for the fragments L (with several constraints in the relations) and L(@↓),
on top of a novel proof of completeness of EFL for the fragment L(@).

Some interesting directions for future work include studying the decidability
of L(@↓), resolving the conjecture in Remark 4.16, or otherwise providing a
more general version of Thm. 2.9.

But perhaps the most fruitful direction to go from here would be the ap-
plication of indexed frames to different modal logics wherein some interdepen-
dence between the modalities exists. Just as an example, we could think of an
epistemic temporal logic where each possible world is a timeline and the set of
epistemically accessible worlds changes at every time, modelled using indexed
frames.

Acknowledgements. Special acknowledgements are heartily granted to Mina
Pedersen and Valentin Shehtman for their valuable suggestions. We also wish to
thank the AiML reviewers for their comments helping us to improve the paper.

Appendix
Proof of Theorem 2.4. First we introduce a notion of indexed pseudo-model.

Definition .1 An indexed pseudo-model is a tuple (W,A,R, S, σ) where (W,A,R, S)
is an indexed frame and σ is a function which assigns to every pair (w, a) ∈ W × A
a K⊕ K-maximal consistent set, with the following properties:

(C1) If �1φ ∈ σ(w, a) and Raww
′, then φ ∈ σ(w′, s);

(C2) If �2φ ∈ σ(w, a) and Swaa
′, then φ ∈ σ(w′, s′).
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The right-to-left direction of C1 and C2 need not hold for certain formulas φ and
pairs (w, a). We call these situations defects. Formally:

Definition .2 A 1-defect is a tuple (φ,w, a) such that ¬�1φ ∈ σ(w, a) and, for all
w′ ∈ W such that Raww

′, φ ∈ σ(w′, a). A 2-defect is a tuple (φ,w, a) such that
¬�2φ ∈ σ(w, a) and, for all a′ ∈ A such that Swaa

′, φ ∈ σ(w, a′).

Given a 1-defect (φ,w, a) we can update our pseudo-model into a new pseudo-
model without this defect by simply adding a point, as we detail below.

Let M = (W,A,R, S, σ) be an indexed pseudo-model and (φ,w, a) be a 1-defect.
That means that ¬�1φ ∈ σ(w, a) yet φ ∈ σ(w′, a) for all w′ such that Raww

′. Note
that the set {¬φ} ∪ {ψ : �1ψ ∈ σ(w, a)} is consistent,therefore it can be extended by
Lindenbaum’s lemma to a maximal consistent set ∆. Let w0 /∈ W . We define a new
pseudo-model in which the defect is not present by M′1 = (W ′, A′, R′, S′, σ′), where:

• W ′ = W ∪ {w0}; A′ = A;

• R′ = R ∪ {(a,w,w0)}; S′ = S;

• for all a′ ∈ A, σ′(w0, a
′) = ∆ and σ′(w′, a′) = σ(w′, a′) for w′ 6= w0.

M′1 is an indexed pseudo-model. Indeed, suppose �1ψ ∈ σ′(w′, a′) and Ra′w
′w′′.

If w′′ 6= w0, then σ′(w′′, a′) = σ(w′′, a′) 3 ψ. Otherwise, if w′′ = w0, then by
construction we have that w′ = w and a′ = a. Therefore, since �1ψ ∈ σ′(w′, a′) =
σ(w, a) we have by construction that ψ ∈ ∆ = σ′(w′′, a′). Moreover, we have built
M′1 such that (φ,w, a) is no longer a 1-defect.

In a completely analogous manner, given a 2-defect (φ,w, a) we can add an extra
point a0 to A to build a pseudo-model which does not present this defect: M′2 =
(W ′, A′, R′, S′, σ′) with W = W ′, A′ = A ∪ {a0}, R′ = R, S′ = S ∪ {(w, a, a0)}, and
σ′(w′, a) = ∆, for some maximal consistent set ∆ containing {ψ : �2ψ ∈ σ(w, a)} ∪
{¬φ}.
Definition .3 Given an indexed pseudo-model M = (W,A,R, S, σ) and a 1-defect
(resp. a 2-defect) (φ,w, a), the (1, φ, w, a)-update (resp. (2, φ, w, a)-update) of M is
M′1 (resp. M′2) as constructed above.

We can now prove that K⊕ K is the logic of indexed frames.
Fix a maximal consistent set Σ0. Let us construct a chain of indexed pseudo-

models
(Mk)k∈ω = (W k, Ak, Rk, Sk, σk)k∈ω

such that, for all k,

i. Σ0 is in the image of σk;

ii. W k ⊆W k+1 ⊆ Q and Ak ⊆ Ak+1 ⊆ Q;

iii. Rk ⊆ Rk+1 and Sk ⊆ Sk+1;

iv. σk+1(w, a) = σk(w, a) if (w, a) ∈W k ×Ak.

Initial step: Take w0, a0 ∈ Q and set W 0 = {w0}, A0 = {a0}, R0 = S0 = ∅, and
σ0(w0, a0) = Σ0.

Recursive step. Let (in, ψn, wn, an)n∈ω be an enumeration of the set {1, 2} ×
L × Q × Q in which every element appears infinitely many times. Suppose we have
constructed Mk = (W k, Ak, Rk, Sk, σk). Then:

• If ik = 1 and (wk, ak) ∈W k ×Ak and (ψk, wk, ak) is a 1-defect of Mk, then Mk+1

is the (1, ψk, wk, ak)-update of Mk;
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• If ik = 2 and (wk, ak) ∈W k ×Ak and (ψk, wk, ak) is a 2-defect of Mk, then Mk+1

is the (2, ψk, wk, ak)-update of Mk;

• Otherwise, Mk+1 = Mk.

Finally, let Mω = (Wω, Aω, Rω, Sω, σω), where:

• Wω =
⋃
k∈ωW

k; Aω =
⋃
k∈ω A

k;

• Rω =
⋃
k∈ω R

k; Sω =
⋃
k∈ω S

k;

• σω is the unique function such that σω|Wk×Ak = σk for all k.

We have:

Lemma .4 Mω is an indexed pseudo-model with no defects.

Proof. The fact that Mω is an indexed pseudo-model is rather straightforward. Sup-
pose �1φ ∈ σ(w, a) and Rωaww

′ for some φ ∈ L, w,w′ ∈ Wω and a ∈ Aω. Let k ∈ ω
be the least natural number such that w,w′ ∈ W k and a ∈ Ak. Then we have that
�1φ ∈ σk(w, a) and Rkaww

′, and thus φ ∈ σk(w′, a) = σ(w′, a). Therefore, (C1) is
satisfied (and (C2) too via an analogous reasoning).

Let us now see there are no 1-defects (the proof that there are no 2-defects is
completely analogous). Suppose that (φ,w, a) is a 1-defect of Mω, i.e., ¬�1φ ∈
σω(w, a) yet φ ∈ σω(w′, a) whenever Rωaww

′.
Let us consider the least k ∈ ω such that (w, a) ∈W k×Ak and the least n ≥ k such

that (1, φ, w, a) = (in, ψn, wn, an) in the aforementioned enumeration. Then we have
that (φ,w, a) is a 1-defect in Mn, and therefore it gets “fixed” in the update Mn+1,
i.e., there exists some w′ ∈ Wn+1 \Wn such that Rn+1

a ww′ and ¬φ ∈ σn+1(w′, a).
But this means that Rωaww

′ and ¬φ ∈ σω(w′, a): a contradiction. 2

Now,

Lemma .5 (Truth lemma.) Define a valuation V on Mω by:

V (p) = {(w, a) ∈Wω ×Aω : p ∈ σω(w, a)}.
Then for all w ∈Wω, a ∈ Aω and φ ∈ L, Mω, w, a |= φ if and only if φ ∈ σω(w, a).

Proof. By induction on the structure of φ. If φ = p, then the definition of V gives
us the result trivially. The induction steps corresponding to ¬φ and φ1 ∧ φ2 are
straightforward.

Now let φ = �1ψ. If w, a |= �1ψ, this means that (w′, a) |= ψ for every w′ ∈
Wω such that Rωaww

′. But then by induction hypothesis ψ ∈ σω(w′, a) whenever
Raww

′. So, if �1ψ /∈ σω(w, a), then ¬�1ψ ∈ σω(w, a) and thus (ψ,w, a) is a 1-
defect, in contradiction with Lemma .4. Thus �1ψ ∈ σω(w, a). Conversely, suppose
�1ψ ∈ σω(w, a) and Rωaww

′. By (C1), this means that ψ ∈ σω(w′, a) which entails,
by induction hypothesis, that (w′, a) |= ψ. Since this is true for all w′ with Raww

′,
we have that w, a |= �1ψ.

The case φ = �2ψ is analogous. 2

With all this, we can prove the following theorem, from which Thm. 2.4 immedi-
ately follows:

Theorem .6 The fusion logic K⊕ K is complete with respect to indexed models.

Proof. Given a consistent formula φ, extend it to a maximal consistent set Σ0 and
construct Mω by the procedure described above, making sure that Σ0 is in the image
of σ0. Then we have that there exist w0, a0 ∈Wω×Aω such that σω(w0, a0) = Σ0 3 φ,
and therefore by the Truth Lemma w0, a0 |= φ. 2
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Remark .7 It is not hard to tweak this proof to show, for instance, that the fusion
logic S4�1

⊕ K�2
is the logic of indexed models (W,A,R, S) where Ra is a preorder

for all a ∈ A, or that K�1
⊕ S5�2

is the logic of indexed models wherein the Sw are
equivalence relations. More generally, this procedure can easily be tweaked in order to
provide a proof for every individual instance of Thm. 2.9. However, this proof can
help us to go beyond that Theorem and allows us to show, for instance, that the result
is true of the logic of serial frames, i.e., (K+3>)◦ (K+3>) = (K+3>)⊕ (K+3>).

Proof of Lemma 3.3. By induction on φ. The cases for φ = p and φ = > are
trivial, and so is the inductive step for φ = ¬ψ.

Case φ = ψ1 ∧ ψ2. If M, wk, ak |= ψ1 ∧ ψ2, then M, wk, ak |= ψi for i = 1 and
2. But then, since mdψi ≤ mdψ ≤ n − k, we have by induction hypothesis that
Mf , wk, ak |= ψi and thus Mf , wk, ak |= φ. The converse is analogous.

Case φ = �1ψ. Suppose that Mf , wk, ak |= �1ψ and take w such that Rakwkw.
Note that k < n because n − k ≥ md�1ψ > 0, and thus Fk+1 is defined and
contains an element αR(wk+1, ak+1) such that ak+1 = ak, Rakwkwk+1 (and therefore
Rfakwkwk+1) and (wk+1, ak+1) ∼φ0 (w, ak). We have that Mf , wk+1, ak+1 |= ψ and,
since n− (k + 1) = n− k − 1 ≥ md(�1ψ)− 1 = mdψ, induction hypothesis gives us
that M, wk+1, ak+1 |= ψ. By the ∼φ0 relation, this means that M, w, ak |= ψ, and we
have thus proven that M, wk, ak |= �1ψ.

Conversely, suppose M, wk, ak |= �1ψ and Rfakwkw. We have that Rakwkw
and thus M, w, ak |= ψ. Since αR(w, ak) ∈ F and its length is k + 1, and since
n − (k + 1) ≥ mdψ, induction hypothesis applies and we have that Mf , w, ak |= ψ.
This entails Mf , wk, ak |= �1ψ.

The case φ = �2ψ is completely analogous. 2

Proof of Prop. 4.3.
(T1) to (T6) are proven in Prop. 3 of [7] and Lemma 2 of [3].

(T7) ` @nm→ @iK@nm.

` @nm→ K@nm (Rigid=)
` @i@nm→ @iK@nm (K@+Nec@)
` @nm→ @iK@nm (T1)

The derivation of ` @n¬m → @iK@n¬m is identical but using (Rigid 6= + Selfdual)
in the first step.

(T8) ` @nF̂m ∧@mφ→ @nF̂ φ.

` @nF̂m ∧@mφ→ @nF̂m ∧ F@mφ (Back)

` @nF̂m ∧@mφ→ @nF̂m ∧@nF@mφ (Nec@+K@+T1)

` @nF̂m ∧@mφ→ @nF̂ (m ∧@mφ) (by modal reasoning:
�A ∧3B → 3(A ∧B))

` @nF̂m ∧@mφ→ @nF̂ φ (by T2: ` m ∧@mφ→ φ)

(T9) ` @nFψ ∧@nF̂m→ @mψ.

` @nFψ ∧@nF̂m→ @nF̂ (m ∧ ψ) (modal reasoning:
�A ∧3B → 3(A ∧B))

` m ∧ ψ → @mψ (T2)

` @nFψ ∧@nF̂m→ @nF̂@mψ (two above lines)

` F̂@mψ → @mψ (dual of Back)

` @nFψ ∧@nF̂m→ @mψ (two above lines plus (T1))

Before showing (R1), let us show this rule:



Balbiani and Fernández González 71

(Name’) If ` φ→ @mψ and m is fresh, then ` φ→ ψ.

` φ→ @mψ (Premise)
` @mφ→ @m@mψ (Nec@+K@)
` @mφ→ @mψ (Agree)
` @m(φ→ ψ) (T5)
` φ→ ψ (Name)

With this:

(R1) If ` @nF̂m ∧@mφ→ ψ,

then ` @nF̂ φ→ ψ,
with m 6= n fresh in φ and ψ.

` @nF̂m ∧@mφ→ ψ (Premise)

` @i@nF̂m ∧@i@mφ→ @iψ (Nec@+K@, i fresh)

` @nF̂m ∧@mφ→ @iψ (T1)

` @nF̂m ∧@mφ→ @m@iψ (Nec@+K@+T1)

` @nF̂m→ @m(φ→ @iψ) (T5)
` @nF (φ→ @iψ) (BG)

` @nF̂ φ→ @nF̂@iψ (�(A → B) → (3A →
3B))

` @nF̂ φ→ @n@iψ (Back)

` @nF̂ φ→ @iψ (T1)

` @nF̂ φ→ ψ (Name’)

Proof sketch of Thm. 4.13. Like Thm. 3.2, this amounts to showing that, given
a model satisfying a formula φ0, there is a finite submodel satisfying it.

We define nomφ0 to be the (finite) set of nominal variables occuring in φ0, we define
R, S as in Thm. 3.2 and, for n ∈ nomφ0 , we let (w, a)An(w′, a′) iff w = w′ and a′ = n.
Given a formula φ, we let mod φ be the total number of K, F and @n modalities
occurring in φ and we letN = mod φ0. We construct a finite set F of chains of length
at most N , with the property that, for each relation T ∈ {R,S,An : n ∈ nomφ0},
and each α ∈ F of length less than N , at least one T-successor of α per equivalence
class occurs in F .

Then we consider Mf to the the corresponding restriction of M to F and we prove
that, given a chain α of length k ≤ N and a subformula ψ of ψ0 with mod ψ ≤ N−k,
it is the case that M, lastα |= ψ iff Mf , lastα |= ψ. This is almost identical to the
proof of Lemma 3.3 with the addition of a straightforward induction step for the case
ψ = @nθ. This finishes the proof. 2

Proof of Prop. 5.6. First we note that if a formula has no free variables, the
assignment g does not play a role in the semantics (and thus M,Γ, [n], g |= ψ iff
M,Γ, [n], g′ |= ψ for any g, g′) and, with this in mind, we first prove:

If ψ is a sentence, then M,Γ, [n], g |= ψ iff @nψ ∈ Γ. (*)

This suffices to prove our result: let x1, ..., xk be all the free variables of φ. Then
M,Γ, [n], g |= φ if and only if (by Lemma 5.5, noting that g(xi) = [ni] = ni)

M,Γ, [n], g |= φ[xi/ni]
k
i=1,
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if and only if (by the result we just proved, noting that φ[xi/ni]
k
i=1 has no free

variables) @nφ[xi/ni]
k
i=1 ∈ Γ.

We prove (*) by induction on the length of ψ. It is exactly like the proof of
Lemma 4.11, with one extra induction step:
@n↓x.ψ ∈ Γ if and only if (by the (DA) axiom) @nψ[x/n] ∈ Γ, if and only if (by
induction hypothesis, since ψ[x/n] has no free variables) M,Γ, [n], g |= ψ[x/n], if
and only if (because the choice of g does not affect the truth value of a sentence)
M,Γ, [n], gxn |= ψ[x/n], if and only if (by Lemma 5.5) M,Γ, [n], gxn |= ψ, which is the
same as M,Γ, [n], g |= ↓x.ψ.
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Abstract

We analyze the causal-observational languages that were introduced in Barbero and
Sandu (2018), which allow discussing interventionist counterfactuals and functional
dependencies in a unified framework. In particular, we systematically investigate
the expressive power of these languages in causal team semantics, and we provide
complete natural deduction calculi for each language. As an intermediate step towards
the completeness, we axiomatize the languages over a generalized version of causal
team semantics, which turns out to be interesting also in its own right.

Keywords: Interventionist counterfactuals, causal teams, dependence logic, team
semantics.

1 Introduction

Counterfactual conditionals express the modality of irreality : they describe
what would or might be the case in circumstances which diverge from the actual
state of affairs. Pinning down the exact meaning and logic of counterfactual
statements has been the subject of a large literature (see e.g. [15]). We are
interested here in a special case: the interventionist counterfactuals, which
emerged from the literature on causal inference ([14,13,11]). Under this reading,
a conditional X = x� ψ states that ψ would hold if we were to intervene on the
given system, by subtracting the variables X to their current causal mechanisms
and forcing them to take the values x.

The logic of interventionist counterfactuals has been mainly studied in the
semantical context of deterministic causal models ([7,8,3,19]), which consist

1 The author was supported by grant 316460 of the Academy of Finland.
2 The author was supported by Research Funds of the University of Helsinki and grant
308712 of the Academy of Finland.
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of an assignment of values to variables together with a system of structural
equations that describe the causal connections. In [1], causal models were gen-
eralized to causal teams, in the spirit of team semantics ([12,16]), by allowing
a set of assignments (a “team”) instead of a single assignment. This opens the
possibility of describing e.g. uncertainty, observations, and dependencies.

One of the main reasons for introducing causal teams was the possibility
of comparing the logic of dependencies of causal nature (those definable in
terms of interventionist counterfactuals) against that of contingent dependen-
cies (such as those studied in the literature on team semantics, or in database
theory) in a unified semantic framework. [1,2] give anecdotal evidence of the
interactions between the two kinds of dependence, but offer no general axioma-
tizations for languages that also involve contingent dependencies. In this paper
we fill this gap in the literature by providing complete deduction systems (in
natural deduction style) for the languages COD and CO\\/ (from [1]), which
enrich the basic counterfactual language CO, respectively, with atoms of func-
tional dependence =(X; Y) (“Y is functionally determined by X”), or with the
intuitionistic disjunction \\/ , in terms of which functional dependence is defin-
able. We also give semantical characterizations, for COD, CO\\/ and the basic
counterfactual language CO, in terms of definability of classes of causal teams.

The strategy of the completeness proofs is the following. We introduce
a generalized causal team semantics, which encodes uncertainty over causal
models, not only over assignments. (This semantics is used as a tool towards
completeness, but also has independent interest.) We then prove completeness
results for this semantics, by incorporating techniques developed in [17,5] for
the pure (non-causal) team context. Finally, we extend the calculi to complete-
ness over causal teams by adding axioms which capture the property of being
a causal team (i.e. encoding certainty about the causal connections).

The paper is organized as follows. Section 2 introduces the formal lan-
guages and two kinds of semantics. Section 3 deepens the discussion of the
functions which describe causal mechanisms, addressing issues of definability
and the treatment of dummy arguments. Section 4 characterizes semantically
the language CO and reformulates in natural deduction form the CO calculi
that come from [2]. Section 5 gives semantical characterizations for COD and
CO\\/, and complete natural deduction calculi for both kinds of semantics.

2 Syntax and semantics

2.1 Formal languages

Let us start by fixing the syntax. Each of the languages considered in this paper
is parametrized by a (finite) signature σ, i.e. a pair (Dom,Ran), where Dom
is a nonempty finite set of variables, and Ran is a function that associates to
each variable X ∈ Dom a nonempty finite set Ran(X) (called the range of X) of
constant symbols or values. 3 We reserve the Greek letter σ for signatures.

3 Note that we do not encode a distinction between exogenous and endogenous variables
into the signatures, as done in [8]. Instead, we follow the style of Briggs [3]. Doing so will
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We use a boldface capital letter X to stand for a sequence 〈X1, . . . , Xn〉 of vari-
ables; similarly a boldface lower case letter x stands for a sequence 〈x1, . . . , xn〉
of values. We will sometimes abuse notation and treat X and x as sets. We
write Ran(X) = Ran(X1) × · · · × Ran(Xn).

Now fix a signature σ = (Dom,Ran). An atomic σ-formula is an equation
X = x, where X ∈ Dom and x ∈ Ran(X). The conjunction of n equations
(. . . ((X1 = x1 ∧ X2 = x2) ∧ X3 = x3) ∧ · · · ∧ Xn−1 = xn−1) ∧ Xn = xn is abbreviated
as X1 = x1 ∧ · · · ∧ Xn = xn or further as X = x, and is also called an equation.
Compound formulas of the basic language CO[σ] are formed by the grammar:

α ::= X = x | ¬α | α ∧ α | α ∨ α | X = x� α

where X ∪ {X} ⊆ Dom, x ∈ Ran(X), x ∈ Ran(X). The connective � is used to
form interventionist counterfactuals. We abbreviate ¬(X = x) as X , x, and
X = x ∧ X , x as ⊥. Throughout the paper, we reserve the first letters of the
Greek alphabet, α, β, . . . for CO[σ]-formulas.

Let us compare our language CO[σ] with the existing interventionist coun-
terfactual languages in the literature. The original formulation of CO[σ] in
[1,2] includes in the syntax another conditional ⊃, called selective implication,
which can be defined in our setting in terms of negation and disjunction as
α ⊃ β := ¬α ∨ β. Our primitive connective negation ¬ was treated in [1,2] as a
defined connective. The language CO[σ] as defined here can also be seen as the
fragment of the language considered by Briggs in [3] in which occurrences of ∨
and ¬ are not allowed in the antecedents of�. Differently from the language
for counterfactuals defined by Halpern in [9], in our language CO[σ] nesting of
counterfactuals to the right of � is allowed (i.e., in X = x � α, α can still
contain counterfactuals), and any type of variables (exogenous or endogenous)
can occur in the antecedents of counterfactuals (i.e., in X = x) as we do not
distinguish exogenous and endogenous variables in the signature σ.

We study in this paper also two extensions of CO[σ], obtained by adding
the intuitionistic disjunction \\/ , or the dependence atoms =(X; Y):
• CO\\/[σ] : ϕ ::= X = x | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ \\/ϕ | X = x� ϕ

• COD[σ] : ϕ ::= X = x | =(X; Y) | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | X = x� ϕ

Note that we only allow the negation ¬ to occur in front of CO[σ]-formulas.

2.2 Causal teams

We now define the team semantics of our logics over causal teams. We first
recall the definition of causal teams adapted from [2].

Fix a signature σ = (Dom,Ran). An assignment over σ is a mapping
s : Dom→ ⋃

X∈Dom Ran(X) such that s(X) ∈ Ran(X) for each X ∈ Dom. 4 Denote
by Aσ the set of all assignments over σ. A team T over σ is a set of assignments

result in more general completeness results.
4 We identify syntactical variables and values with their semantical counterpart, following
the conventions in most literature on interventionist counterfactuals, e.g. [7,8,3,19]. In this
convention distinct symbols (e.g., x, x′) denote distinct objects.
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over σ, i.e., T ⊆ Aσ.
A system of functions F over σ is a function that assigns to each variable

V in a domain En(F ) ⊆ Dom a set PAFV ⊆ Dom \ {V} of parents of V, and a

function FV : Ran(PAFV ) → Ran(V). 5 Variables in the set En(F ) are called
endogenous variables of F , and variables in Ex(F ) = Dom \En(F ) are called
exogenous variables of F .

Denote by Fσ the set of all systems of functions over σ, which is clearly
finite. We say that an assignment s ∈ Aσ is compatible with a system of
functions F ∈ Fσ if for all endogenous variables V ∈ En(F ), s(V) = FV (s(PAFV )).

Definition 2.1 A causal team over a signature σ is a pair T = (T−,F )
consisting of

• a team T− over σ, called the team component of T ,

• and a system of functions F over σ, called the function component of T ,

where all assignments s ∈ T− are compatible with the function component F .

Any system F ∈ Fσ of functions can be naturally associated with a (di-
rected) graph GF = (Dom, EF ), defined as (X,Y) ∈ EF iff X ∈ PAFY . We say that
F is recursive if GF is acyclic, i.e., for all n ≥ 0, EF has no subset of the
form {(X0, X1), (X1, X2), . . . , (Xn−1, Xn), (Xn, X0)}. The graph of a causal team T ,
denoted as GT , is the associated graph of its function component. We call T
recursive if GT is acyclic. Throughout this paper, for simplicity we assume
that all causal teams that we consider are recursive.

Intuitively, a causal team T may be seen as representing an assumption
concerning the causal relationships among the variables in Dom (as encoded
in F ) together with a range of hypotheses concerning the actual state of the
system (as encoded in T−). We now illustrate this idea in the following example.

Example 2.2 The following diagram illustrates a causal team T = (T−,F ).

T−:
U X Y Z
0 0 1 2
1 1 2 6



FX(U) = U
FY (X) = X + 1
FZ(X,Y,U) = 2 ∗ Y + X + U

The table on the left represents a team T− consisting of two assignments, each
of which is tabulated in the obvious way as a row in the table. For instance, the
assignment s of the first row is defined as s(U) = s(X) = 0, s(Y) = 1 and s(Z) = 2.
The arrows in the upper part of the table represent the graph GT of the causal
team T . For instance, the arrow from U to Z represents the edge (U,Z) in GT .
The graph contains no cycles, thus the causal team T is recursive. The variable
U with no incoming arrows is an exogenous variable. The other variables are
endogenous variables, namely, En(F ) = {X,Y,Z}. The function component is
determined by the system of functions on the right of the above diagram. Each
equation defines the “law” that generates the values of an endogenous variable.

5 We identify the set PAFV with a sequence, in a fixed lexicographical ordering.
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Let S = (S −,F ) and T = (T−,G) be causal teams over the same signature.
We call S a causal subteam of T , denoted as S ⊆ T , if S − ⊆ T− and F = G.

An equation X = x is said to be inconsistent if it contains two conjuncts
X = x and X = x′ with distinct values x, x′; otherwise it is said to be consistent.

Definition 2.3 (Intervention) Let T = (T−,F ) be a causal team over some
signature σ = (Dom,Ran). Let X = x (= X1 = x1 ∧ · · · ∧ Xn = xn) be a consistent
equation over σ. The intervention do(X = x) on T is the procedure that
generates a new causal team TX=x = (T−X=x,FX=x) over σ defined as follows:

• FX=x is the restriction of F to En(F ) \ X,

• T−X=x = {sX=x | s ∈ T−}, where each sX=x is an assignment compatible with
FX=x defined (recursively) as

sX=x(V) =



xi if V = Xi,

s(V) if V < En(T ) ∪ X,
FV (sX=x(PAFV )) if V ∈ En(T ) \ X

Example 2.4 Recall the recursive causal team T in Example 2.2. By applying
the intervention do(X = 1) to T , we obtain a new causal team TX=1 = (T−X=1,FX=1)
as follows. The function component FX=1 is determined by the equations:

{
(FX=1)Y (X) = X + 1
(FX=1)Z(X,Y) = 2 ∗ Y + X + U

The endogenous variable X of the original team T becomes exogenous in the
new team TX=1, and the equation FX(U) = U for X is now removed. The new
team component T−X=1 is obtained by the rewriting procedure illustrated below:

U X Y Z
0 1 ... ...
1 1 ... ...

 
U X Y Z
0 1 2 ...
1 1 2 ...

 
U X Y Z
0 1 2 5
1 1 2 6

In the first step, rewrite the X-column with value 1. Then, update (recursively)
the other columns using the functions from FX=1. In this step, only the columns
that correspond to “descendants” of X will be modified, and the order in which
these columns should be updated is completely determined by the (acyclic) graph
GTX=1 of TX=1. Since the variable X becomes exogenous after the intervention, all
arrows pointing to X have to be removed, e.g., the arrow from U to X. We refer
the reader to [2] for more details and justification for this rewriting procedure.

Definition 2.5 Let ϕ be a formula of the language CO\\/[σ] or COD[σ], and
T = (T−,F ) a causal team over σ. We define the satisfaction relation T |=c ϕ
(or simply T |= ϕ) over causal teams inductively as follows:

• T |= X = x ⇐⇒ for all s ∈ T−, s(X) = x. 6

• T |= =(X; Y) ⇐⇒ for all s, s′ ∈ T−, s(X) = s′(X) implies s(Y) = s′(Y).

6 Note once more that the symbol x is used as both a syntactical and a semantical object.
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• T |= ¬α ⇐⇒ for all s ∈ T−, ({s},F ) 6|= α.

• T |= ϕ ∧ ψ ⇐⇒ T |= ϕ and T |= ψ.

• T |= ϕ∨ψ ⇐⇒ there are two causal subteams T1,T2 of T such that T−1 ∪T−2 =

T−, T1 |= ϕ and T2 |= ψ.

• T |= ϕ \\/ψ ⇐⇒ T |= ϕ or T |= ψ.

• T |= X = x� ϕ ⇐⇒ X = x is inconsistent or TX=x |= ϕ.

We write a dependence atom =(; X) with an empty first component as =(X).
The semantic clause for =(X) reduces to:

• T |= =(X) iff for all s, s′ ∈ T−, s(X) = s′(X).

Intuitively, the atom =(X) states that X has a constant value in the team. It is
easy to verify that dependence atoms are definable in CO\\/[σ]:

=(Y) ≡ \\/
y∈Ran(Y)

Y = y and =(X; Y) ≡
∨

x∈Ran(X)

(X = x∧ =(Y)). (1)

It is easy to verify that the selective implication α ⊃ ϕ := ¬α ∨ ϕ, introduced
originally in [1], has the same semantic clause as that in [1]:

• T |= α ⊃ ϕ ⇐⇒ Tα |= ϕ, where Tα is the (unique) causal subteam of T with
team component {s ∈ T− | {s} |= α}.

Example 2.6 Consider the causal team T and the intervention do(X = 1) from
Examples 2.2 and 2.4. Clearly, TX=1 |= Y = 2, and thus T |= X = 1 � Y = 2.
We also have that T |== (Y; Z), while TX=1 6|== (Y; Z) (contingent dependencies
are not in general preserved by interventions). Observe that T |= Y , 2∨ Y = 2,
while T 6|= Y , 2 \\/Y = 2.

2.3 Generalized causal teams

We introduce here a more general semantics, which will be needed as a tool
towards the completeness results for CO\\/ and COD.

Given a signature σ, write

Semσ := {(s,F ) ∈ Aσ × Fσ | s is compatible with F }.

The pairs (s,F ) ∈ Semσ can be easily identified with the deterministic causal
models (also known as deterministic structural equation models) that are con-
sidered in the literature on causal inference ([14],[13], etc.). One can informally
identify a causal team T = (T−,F ) with the set

T g = {(s,F ) ∈ Semσ | s ∈ T−}
of deterministic causal models with a uniform function component F through-
out the team. In this section, we introduce a more general notion of causal
team, called generalized causal team, where the function component F does
not have to be constant thoroughout the team.

Definition 2.7 A generalized causal team T over a signature σ is a set of
pairs (s,F ) ∈ Semσ, that is, T ⊆ Semσ.
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Intuitively, a generalized causal team encodes uncertainty about which causal
model governs the variables in Dom - i.e., uncertainty both on the values of the
variables and on the laws that determine them. Our interest in such models
here is purely technical, but probabilistic variants of them have been used e.g.
to define formal notions of blame ([4,9,10]).

Distinct elements (s,F ), (t,G) of the same generalized causal team may also
disagree on what is the set of endogenous variables, or on whether the system
is recursive or not. A generalized causal team is said to be recursive if, for
each pair (s,F ) in the team, the associated graph GF is recursive. In this paper
we only consider recursive generalized causal teams.

For any generalized causal team T , define the team component of T to be
the set T− := {s | (s,F ) ∈ T for some F }. A causal subteam of T is a subset
S of T , denoted as S ⊆ T . The union S ∪ T of two generalized causal teams
S ,T is their set-theoretic union.

A causal team T can be identified with the generalized causal team T g,
which has a constant function component in all its elements. Conversely, if
T is a nonempty generalized causal team in which all elements have the same
function component F , i.e., T = {(s,F ) | s ∈ T−}, we can naturally identify T
with the causal team

T c = (T−,F ).

In particular, a singleton generalized causal team {(s,F )} corresponds to a
singleton causal team ({s},F ). Applying a (consistent) intervention do(X = x)
on ({s},F ) generates a causal team ({sX=x},FX=x) as defined in Definition 2.3.
We can then define the result of the intervention do(X = x) on {(s,F )} to be
the generalized causal team ({sX=x},FX=x)g = {(sX=x,FX=x)}. Interventions on
arbitrary generalized causal teams are defined as follows.

Definition 2.8 (Intervention over generalized causal teams) Let T be
a (recursive) generalized causal team, and X = x a consistent equation over
σ. The intervention do(X = x) on T generates the generalized causal team
TX=x := {(sX=x,FX=x) | (s,F ) ∈ T }.
Definition 2.9 Let ϕ be a formula of the language CO\\/[σ] or COD[σ], and T
a generalized causal team over σ. The satisfaction relation T |=g ϕ (or simply
T |= ϕ) over generalized causal teams is defined in the same way as in Definition
2.5, except for slight differences in the following clauses:

• T |=g ¬α iff for all (s,F ) ∈ T , {(s,F )} 6|= α.

• T |=g ϕ∨ψ iff there are two generalized causal subteams T1,T2 of T such
that T1 ∪ T2 = T , T1 |= ϕ and T2 |= ψ.

Example 2.10 Consider two function components F ,G over the domain
Dom = {X,Y,Z} with Z the only endogenous variable, and FZ(X) = 2 ∗ X
and GZ(X,Y) = X + Y. Clearly, F , G as, e.g., the graph of G con-
tains an additional arrow from X to Z. Consider the generalized causal team
T = {(s,F ), (s,G), (t,G)}, represented in the following left table:
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T :

X Y Z
2 2 4 F
2 2 4 G
1 3 4 G

TY=1 :

X Y Z
2 1 4 FY=1

2 1 3 GY=1

1 1 2 GY=1

Since both F and G are recursive, T is recursive. An intervention do(Y = 1)
on T updates each row in the above left table according to its own associated
function component, returning the right table. Since Y is exogenous both in F
and G, we have FY=1 = F and GY=1 = G. The value of Z in the first row of the
above updated table remains unchanged, because Y is not an argument of FZ.

We list some closure properties for our logics over both causal teams and
generalized causal teams in the next theorem, whose proof is left to the reader,
or see [2] for the causal team case.

Theorem 2.11 Let T, S be (generalized) causal teams over some signature σ.

Empty team property: If T− = ∅, then T |= ϕ.

Downward closure: If T |= ϕ and S ⊆ T , then S |= ϕ.

Flatness of CO-formulas: If α is a CO[σ]-formula, then
T |= α ⇐⇒ ({s},F ) |=c α for all s ∈ T− (resp. {(s,F )} |=g α for all (s,F ) ∈ T ).

The team semantics over causal teams and that over generalized causal
teams with a constant function component are essentially equivalent, in the
sense of the next lemma, whose proof is left to the reader.

Lemma 2.12 (i) For any causal team T , we have that T |=c ϕ ⇐⇒ T g |=g ϕ.

(ii) For any nonempty generalized causal team T with a unique function com-
ponent, we have that T |=g ϕ ⇐⇒ T c |=c ϕ.

Corollary 2.13 For any set ∆ ∪ {α} of CO[σ]-formulas, ∆ |=g α iff ∆ |=c α.

Proof. By Lemma 2.12, {(s,F )} |=g β iff ({s},F ) |=c β for any β ∈ ∆∪ {α}. Thus,
the claim follows from the flatness of CO[σ]-formulas. 2

3 Characterizing function components

3.1 Equivalence of function components

Various notions of similarity among causal models have been considered in the
literature (see e.g. [6]), which measure the “distance” between two models in
terms of their empirical or counterfactual consequences. We consider here a
stricter notion of equivalence, which, as we will see in theorem 3.4, characterizes
indistinguishability of causal structures by means of our languages.

Consider a binary function f and an (n+2)-ary function g defined as f (X,Y) =

X + Y and g(X,Y,Z1, . . . ,Zn) = X + Y. Essentially f and g are the same function:
Z1, . . . ,Zn are dummy arguments of g. We now characterize this idea in the
notion of two function components being equivalent up to dummy arguments.

Definition 3.1 Let F ,G be two function components over σ = (Dom,Ran).
• Let V ∈ Dom. Two functions FV and GV are said to be equivalent up to
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dummy arguments, denoted as FV ∼ GV , if for any x ∈ Ran(PAFV ∩ PAGV ), y ∈
Ran(PAFV \PAGV ) and z ∈ Ran(PAGV \PAFV ), we have that FV (xy) = GV (xz) (where
we assume w.l.o.g. the shown orderings of the arguments of the functions).

• Let Cn(F ) denote the set of endogenous variables V of F for which FV is a
constant function, i.e., for some fixed c ∈ Ran(V), FV (p) = c for all p ∈ PAFV .
We say that F and G are equivalent up to dummy arguments, denoted
as F ∼ G, if En(F ) \ Cn(F ) = En(G) \ Cn(G), and FV ∼ GV holds for all
V ∈ En(F ) \ Cn(F ).

It is easy to see that ∼ is an equivalence relation. The next lemma shows
that the relation ∼ is preserved under interventions.

Lemma 3.2 For any function components F ,G ∈ Fσ and consistent equation
X = x over σ, we have that F ∼ G implies FX=x ∼ GX=x.

Proof. Suppose F ∼ G. Then En(F ) \ Cn(F ) = En(G) \ Cn(G). Observe that
En(FX=x) = En(F ) \X and Cn(FX=x) = Cn(F ) \X; and similarly for G. It follows
that En(FX=x)\Cn(FX=x) =

(
En(F )\Cn(F )

)\X =
(
En(G)\Cn(G)

)\X = En(GX=x)\
Cn(GX=x). On the other hand, for any V ∈ En(FX=x)\Cn(FX=x) =

(
En(F )\Cn(F )

)\
X, by the assumption, (FX=x)V = FV ∼ GV = (GX=x)V . 2

We now generalize the equivalence relation ∼ to the team level. Let us first
consider causal teams. Two causal teams T = (T−,F ) and S = (S −,G) of the
same signature σ are said to be similar, denoted as T ∼ S , if F ∼ G. We say
that T and S are equivalent, denoted as T ≈ S , if T ∼ S and T− = S −.

Next, we turn to generalized causal teams. We call a generalized causal
team T a uniform team if F ∼ G for all (s,F ), (t,G) ∈ T . By Lemma 3.2, we
know that if T is uniform, so is TX=x, for any consistent equation X = x. For
any generalized causal team T with (t,F ) ∈ T , write TF := {(s,G) ∈ T | G ∼ F }.
Two generalized causal teams S and T are said to be equivalent, denoted as
S ≈ T , if (S F )− = (TF )− for all F ∈ Fσ.

Theorem 3.3 (Closure under causal equivalence) Let T, S be two (gen-
eralized) causal teams over σ such that T ≈ S . We have that T |= ϕ ⇐⇒ S |= ϕ.

Proof. The theorem is proved by induction on ϕ. The case ϕ = X = x � ψ
follows from the fact that TX=x ≈ S X=x (Lemma 3.2). The case ϕ = ψ ∨ χ
for causal teams follows directly from the induction hypothesis. We now give
the proof for this case for generalized causal teams. We only prove the left to
right direction (the other direction is symmetric). Suppose T |=g ψ ∨ χ. Then
there are T0,T1 ⊆ T such that T = T0 ∪ T1, T0 |=g ψ and T1 |=g χ. Consider
S i = {(s,F ) ∈ S | {(s,F )} ≈ {(s,G)} for some (s,G) ∈ Ti} (i = 0, 1). It is easy to
see that S i ≈ Ti (i = 0, 1) and S = S 0 ∪ S 1. By induction hypothesis we have
that S 0 |=g ψ and S 1 |=g χ. Hence S |=g ψ ∨ χ. 2

Thus, none of our languages can tell apart causal teams which are equivalent
up to dummy arguments. However, one might not be sure, a priori, that a
given argument behaves as dummy for a specific function, as this might e.g. be
unfeasible to verify if the variables range over large sets. For this reason, we
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are keeping this distinction in the semantics instead of quotienting it out.

3.2 Characterizing function components

For any function component F over some signature σ, define a CO[σ]-formula

ΦF :=
∧

V∈En(F )

ησ(V) ∧
∧

V∈(Dom\En(F ))∪Cn(F )

ξσ(V).

where ησ(V) :=
∧{

(W = w ∧ PAFV = p)� V = FV (p)
|W = Dom \ (PAFV ∪ {V}), w ∈ Ran(W), p ∈ Ran(PAFV )

}

and ξσ(V) :=
∧{

V = v ⊃ (WV = w� V = v)
| v ∈ Ran(V),WV = Dom \ {V},w ∈ Ran(WV )

}
.

Intuitively, for each non-constant endogenous variable V of F , the formula ησ(V)
specifies that all assignments in the (generalized) causal team T in question
behave exactly as required by the function FV . For each variable V which,
according to F , is exogenous or generated by a constant function, the formula
ξσ(V) states that V is not affected by interventions on other variables. If V ∈
Cn(F ), then V has both an ησ and a ξσ clause. Overall, the formula ΦF

is satisfied in a team T if and only if every assignment in T has a function
component that is ∼-equivalent to F : this nontrivial fact is proved in the next
theorem. This result is the crucial element for adapting the standard methods
of team semantics to the causal context.

Theorem 3.4 Let σ be a signature, and F ∈ Fσ.

(i) For any generalized causal team T over σ, we have that

T |=g ΦF ⇐⇒ for all (s,G) ∈ T : G ∼ F .
(ii) For any nonempty causal team T = (T−,G) over σ, we have that

T |=c ΦF ⇐⇒ G ∼ F .
Proof. (i). =⇒: Suppose T |=g ΦF and (s,G) ∈ T . We show G ∼ F . En(F ) \
Cn(F ) ⊆ En(G) \ Cn(G): For any V ∈ En(F ) \ Cn(F ), there are distinct p,p′ ∈
Ran(PAFV ) such that FV (p) , FV (p′). Since T |= ησ(V), for any w ∈ Ran(W), we
have that

{(s,G)} |= (W = w ∧ PAFV = p)� V = FV (p),
{(s,G)} |= (W = w ∧ PAFV = p′)� V = FV (p′).

Thus, sW=w∧PAFV =p(V) = FV (p) , FV (p′) = sW=w∧PAFV =p′ (V). So, V < Cn(G), and

furthermore V is not exogenous (since the value of an exogenous variable is not
affected by interventions on different variables). Thus, V ∈ En(G) \ Cn(G).

En(G)\Cn(G) ⊆ En(F )\Cn(F ): For any V ∈ En(G)\Cn(G), there are distinct
p,p′ ∈ Ran(PAGV ) such that GV (p) , GV (p′). Now, if V < En(F ) \ Cn(F ), then

T |= ξσ(V). Let v = s(V) and Z = WV \ PAGV . Since {(s,G)} |= V = v and V < PAGV ,
for any z ∈ Ran(Z), we have that

{(s,G)} |= (Z = z ∧ PAGV = p)� V = v,
{(s,G)} |= (Z = z ∧ PAGV = p′)� V = v.

By the definition of intervention, we must have that v = sZ=z∧PAGV =p(V) = GV (p) ,
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GV (p′) = sZ=z∧PAGV =p′ (V) = v, which is impossible. Hence, V ∈ En(F ) \ Cn(F ).

FV ∼ GV for any V ∈ En(F ) \ Cn(F ): For any x ∈ Ran(PAFV ∩ PAGV ), y ∈
Ran(PAFV \ PAGV ) and z ∈ Ran(PAGV \ PAFV ), since T |= ησ(V) and V < PAGV , for any

w ∈ Ran(W) with w � (PAGV \ PAFV ) = z, we have that

{(s,G)} |= (W = w ∧ PAFV = xy)� V = FV (xy).

Then FV (xy) = sW=w∧PAFV =xy(V) = GV (sW=w∧PAFV =xy(PAGV )) = GV (xz), as required.

⇐=: Suppose that G ∼ F for all (s,G) ∈ T . Since the formula ΦF is flat, it
suffices to show that {(s,G)} |= ησ(V) for all V ∈ En(F ), and {(s,G)} |= ξσ(V) for
all V ∈ (Dom \ En(F )) ∪ Cn(F ).

For the former, take any w ∈ Ran(W) and p ∈ Ran(PAFV ), and let Z = z
abbreviate W = w ∧ PAFV = p. We show that {(sZ=z,GZ=z)} |= V = FV (p). Since
G ∼ F , by Lemma 3.2 we have that GZ=z ∼ FZ=z. Thus,

sZ=z(V) = (GZ=z)V (sZ=z(PAGZ=z
V )) = (FZ=z)V (sZ=z(PAFZ=z

V )) (since GX=x ∼ FX=x)
= FV (sZ=z(PAFV )) (since V < Z)
= FV (p).

For the latter, take any v ∈ Ran(V) and w ∈ Ran(WV ). Assume that {(s,G)} |=
V = v, i.e., s(V) = v. Since V < En(F ) \ Cn(F ) and F ∼ G, we know that
V < En(G) or V ∈ Cn(G). In both cases we have that {(s,G)} |= WV = w� V = v.

(ii). Let T be a nonempty causal team. Consider its associated generalized
causal team T g. The claim then follows from Lemma 2.12 and item (i). 2

Corollary 3.5 For any generalized causal team T over some signature σ,

T |= \\/
F ∈Fσ

ΦF ⇐⇒ T is uniform.

The intuituionistic disjunction \\/ was shown to have the disjunction prop-
erty, i.e., |= ϕ \\/ψ implies |= ϕ or |= ψ, in propositional inquisitive logic ([5]) and
propositional dependence logic ([17]). It follows immediately from Theorem 3.4
that the disjunction property of \\/ fails in the context of causal teams, because
|=c \\/F ∈Fσ ΦF , whereas 6|=c ΦF for any F ∈ Fσ. Nevertheless, the intuitionistic
disjunction does admit the disjunction property over generalized causal teams.

Theorem 3.6 (Disjunction property) Let ∆ be a set of CO[σ]-formulas,
and ϕ, ψ be arbitrary formulas over σ. If ∆ |=g ϕ \\/ψ, then ∆ |=g ϕ or ∆ |=g ψ.
In particular, if |=g ϕ \\/ψ, then |=g ϕ or |=g ψ.

Proof. Suppose ∆ 6|=g ϕ and ∆ 6|=g ψ. Then there are two generalized causal
teams T1,T2 such that T1 |= ∆, T2 |= ∆, T1 6|= ϕ and T2 6|= ψ. Let T := T1 ∪T2. By
flatness of ∆, we have that T |= ∆. On the other hand, by downwards closure,
we have that T 6|= ϕ and T 6|= ψ, and thus T 6|= ϕ \\/ψ. 2

4 Characterizing CO
In this section, we characterize the expressive power of CO over causal teams
and present a system of natural deduction for CO that is sound and complete
over both causal teams and generalized causal teams.



84 Counterfactuals and dependencies on causal teams: expressive power and deduction systems

4.1 Expressivity

In this subsection, we show that CO-formulas capture the flat class of causal
teams (up to ≈-equivalence). Our result is analogous to known characteriza-
tions of flat languages in propositional team semantics ([18]), with a twist,
given by the fact that only the unions of similar causal teams are reasonably
defined. We define such unions as follows.

Definition 4.1 Let S = (S −,F ),T = (T−,G) be two causal teams over the same
signature σ with S ∼ T . The union of S and T is defined as the causal team
S ∪ T = (S − ∪ T−,H) over σ, where

• En(H) = (En(F ) \ Cn(F)) ∩ (En(G) \ Cn(G)),
• and for each V ∈ En(H), PAHV = PAFV ∩ PAGV , and HV (p) = FV (px) for any

p ∈ PAFV ∩ PAGV and x ∈ PAFV \ PAGV .

Clearly, H ∼ F ∼ G and thus S ∪ T ∼ S ∼ T .
A formula ϕ over σ determines a class Kϕ of causal teams defined as

Kϕ = {T | T |= ϕ}.
We say that a formula ϕ defines a class K of causal teams if K = Kϕ.

Definition 4.2 We say that a class K of causal teams over σ is

• causally downward closed if T ∈ K and S ⊆ T imply S ∈ K ;

• closed under causal unions if, whenever T1,T2 ∈ K and T1∪T2 is defined,
T1 ∪ T2 ∈ K ;

• flat if (T−,F ) ∈ K iff ({s},F ) ∈ K for all s ∈ T−;

• closed under equivalence if T ∈ K and T ≈ T ′ imply T ′ ∈ K .

It is easy to verify that K is flat iff K is causally downward closed and closed
under causal unions. Any nonempty downward closed class K of causal teams
over σ contains all causal teams over σ with empty team component. The class
Kϕ is always nonempty as the teams with empty team component are always
in Kϕ (by Theorem 2.11). By Theorems 2.11 and 3.3, if α is a CO-formula,
then Kα is flat and closed under equivalence. The main result of this section is
the following characterization theorem which gives also the converse direction.

Theorem 4.3 Let K be a nonempty (finite) class of causal teams over some
signature σ. Then K is definable by a CO[σ]-formula if and only if K is flat
and closed under equivalence.

In order to prove the above theorem, we introduce a CO-formula ΘT , inspired
by a similar one in [17], that defines the property “having as team component
a subset of T−”. For each causal team T over σ = (Dom,Ran), define

ΘT :=
∨

s∈T−

∧

V∈Dom

V = s(V).

Lemma 4.4 S |= ΘT iff S − ⊆ T−, for any causal teams S ,T over σ.

Proof. “=⇒”: Suppose S |= ΘT and S = (S −,F ). For any s ∈ S −, by downward
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closure, we have that ({s},F ) |= ΘT , which means that for some t ∈ T−, ({s},F ) |=
V = t(V) for all V ∈ Dom. Since {s} and {t} have the same signature, this implies
that s = t, thereby s ∈ T−.

“⇐=”: Suppose S − ⊆ T−. Observe that S |= ΘS and ΘT = ΘS ∨ΘT\S . Thus,
we conclude S |= ΘT by the empty team property. 2

Lemma 4.5 Let S = (S −,G) and T = (T−,F ) be causal teams over σ with
S −,T− , ∅. Then S |= ΘT ∧ ΦF ⇐⇒ S ≈ R ⊆ T for some R over σ.

Proof. By Lemma 4.4 and Theorem 3.4, we have that S |= ΘT ∧ΦF iff S − ⊆ T−

and G ∼ F . It then suffices to show that the latter is equivalent to S ≈ R ⊆ T
for some R. The right to left direction is clear; conversely, if S − ⊆ T− and
G ∼ F , then we can take R = (S −,F ). 2

Consider the quotient set Fσ/≈. For each equivalence class [F ] ∈ Fσ/≈ choose
a unique representative F0. Denote by F0

σ the set of all such representatives.

Proof of Theorem 4.3. It suffices to prove the direction “⇐=”. For each
F ∈ F0

σ, let KF := {(T−,G) ∈ K | G ∼ F }. Clearly K =
⋃
F ∈F0

σ
KF . Let

TF =
⋃KF , which is well-defined as in Definition 4.1. Since K is closed under

causal unions, TF ∈ K . We may assume w.l.o.g. that TF = (T−F ,F ). Let

ϕ =
∨

F ∈F0
σ

(ΘTF ∧ ΦF ).

It suffices to show that Kϕ = K . For any S = (S −,G) ∈ K , there exists
F ∈ F0

σ such that S ∈ KF . Let R = (S −,F ). Clearly, S ≈ R ⊆ ⋃KF = TF ,
which by Lemma 4.5 implies that S |= ΘTF ∧ΦF . Hence, S |= ϕ, namely S ∈ Kϕ.

Conversely, suppose S = (S −,G) ∈ Kϕ, i.e., S |= ϕ. Then for every F ∈ F0
σ,

there is S F ⊆ S such that S =
⋃
F ∈F0

σ
S F and S F |= ΘTF ∧ΦF . Thus, by Lemma

4.5, we obtain that S F ≈ RF ⊆ TF for some RF . In particular, we have that
S F = (S −F ,G) ∼ (T−F ,F ) = TF , which gives G ∼ F . But since no two distinct

elements in F0
σ are ∼-similar to each other, and S F ∼ S for each F ∈ F0

σ, this
can only happen if S −F = ∅ for all F ∈ F0

σ except one. Denote this unique

element of F0
σ by H . Now, S = SH ≈ RH ⊆ TF ∈ K . Hence we conclude that

S ∈ K , as K is causally closed downward and closed under equivalence. �

4.2 Deduction system

The logic CO[σ] over (recursive) causal teams was given in [2] a sound and
complete axiomatization which incorporated ideas from [7], [8], [3] and [9]. In
this section, we present an equivalent system of natural deduction and show it
to be sound and complete also over (recursive) generalized causal teams.

Definition 4.6 The system of natural deduction for CO[σ] consists of the fol-
lowing rules:

• (Parameterized) rules for value range assumptions:

ValDef∨
x∈Ran(X) X = x

X = x ValUnq
X , x′
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• Rules for ∧,∨,¬:

ϕ ψ ∧I
ϕ ∧ ψ

ϕ ∧ ψ ∧Eϕ
ϕ ∧ ψ ∧E
ψ

ϕ ∨I
ϕ ∨ ψ

ϕ ∨I
ψ ∨ ϕ ϕ ∨ ψ

[ϕ]
...
α

[ψ]
...
α ∨Eα

[α]
...
⊥ ¬I¬α

α ¬α ¬Eϕ

[¬α]
...
⊥

RAAα

• Rules for �:

�Eff(X = x ∧ Y = y)� Y = y
X = x� W = w X = x� γ

�Cmp(1)
(X = x ∧W = w)� γ

X = x� ⊥�⊥Eϕ
⊥�E(2)

(Y = y ∧ X = x ∧ X = x′)� ϕ

X = x� ϕ

[X = x]
...

Y = y

[Y = y]
...

X = x
�SubAY = y� ϕ

X = x� ϕ

[ϕ]
...
ψ
�SubCX = x� ψ

X = x� ϕ X = x� ψ
�∧IX = x� ϕ ∧ ψ

X = x� ϕ ∨ ψ
�∨Dst

(X = x� ϕ) ∨ (X = x� ψ)
X = x� (Y = y� ϕ)

�Extr (3)
(X′ = x′ ∧ Y = y)� ϕ

(X = x ∧ Y = y)� ϕ
�Exp (4)X = x� (Y = y� ϕ)

¬(X = x� α) ¬�EX = x� ¬α
X1 { X2 . . . . . . Xk−1 { Xk Recur (5)¬(Xk { X1)

(1) γ is �-free. (2) x , x′. (3) X = x is consistent, X′ = X \ Y, x′ = x \ y. (4) X ∩ Y = ∅.
(5) Xi , X j (i , j), and X { Y (meaning “X causally affects Y”) is defined as:

X { Y :=
∨{

Z = z�
(
(X = x� Y = y) ∧ (X = x′� Y = y′)

)

| Z ⊆ Dom \ {X,Y}, z ∈ Ran(Z), x, x′ ∈ Ran(X), y, y′ ∈ Ran(Y), x , x′, y , y′
}
.

Note that the above system is parametrized with the signature σ, and the
rules with double horizontal lines are invertible. We write Γ `σ ϕ (or simply
Γ ` ϕ when σ is clear from the context) if the formula ϕ can be derived from Γ

by applying the rules in the above system. It is easy to verify that all rules in
our system are sound for recursive (generalized) causal teams. The axioms and
rules in the Hilbert system of [2] are either included or derivable in our natural
deduction system, as shown in the next proposition. We refer the reader to [2]
for a commentary on the rules for� and a discussion of the soundness of the
rule �∨Dst (i.e. the Distribution rule typical of Stalnaker’s counterfactuals).



Barbero, Yang 87

Proposition 4.7 The following are derivable in the system for CO[σ]:

(i) α,¬α ∨ ϕ ` ϕ (weak modus ponens)

(ii) X = x� Y = y ` X = x� Y , y′ (Uniqueness)

(iii) X = x� ϕ ∧ ψ ` X = x� ϕ (Extraction)

(iv) ¬(X = x� α) a` X = x� ¬α
(v)

∨
y∈Ran(Y)(X = x� Y = y) (Definiteness)

Proof. Item (i) follows from ¬E and ∨E. Items (ii),(iii) follow from ValUnq,
∧E and �SubC. For item (iv), the left to right direction follows from ¬�E.
For the other direction, we first derive by applying �∧I, and �⊥E that

X = x� ¬α,X = x� α ` X = x� ¬α ∧ α ` X = x� ⊥ ` ⊥
Then, by ¬I we conclude that X = x� ¬α ` ¬(X = x� α).

For item (v), we first derive by�Eff that ` X = x� X = x, where X = x is
an arbitrary equation from X = x. By ValDef we also have that ` ∨

y∈Ran(Y) Y = y.
Thus, we conclude by applying �SubC that ` X = x�

∨
y∈Ran(Y) Y = y, which

then implies that ` ∨
y∈Ran(Y)(X = x� Y = y) by �∨Dst. 2

Theorem 4.8 (Completeness) Let ∆∪{α} be a set of CO[σ]-formulas. Then
∆ ` α ⇐⇒ ∆ |=c/g α.

Proof. Since our system derives all axioms and rules of the Hilbert system of
[2], the completeness of our system over causal teams follows from that of [2].
The completeness of the system over generalized causal teams follows from the
fact that ∆ |=c α iff ∆ |=g α, given by Corollary 2.13. 2

5 Extensions of CO
5.1 Expressive power of CO\\/ and COD
In this section, we characterize the expressive power of CO\\/ and COD over
causal teams. We show that both logics characterize all nonempty causally
downward closed team properties up to causal equivalence, and the two log-
ics are thus expressively equivalent. An analogous result can be obtained for
generalized causal teams, but we omit it due to space limitations.

Theorem 5.1 Let K be a nonempty (finite) class of causal teams over some
signature σ. Then the following are equivalent:

(i) K is causally downward closed and closed under equivalence.

(ii) K is definable by a CO\\/[σ]-formula.

(iii) K is definable by a COD[σ]-formula.

By Theorems 2.11 and 3.3, for every CO\\/[σ]- or COD[σ]-formula ϕ, the set
Kϕ is nonempty, causally downward closed and closed under causal equivalence.
Thus items (ii) and (iii) of the above theorem imply item (i). Since dependence
atoms =(X; Y) are definable in CO\\/[σ] (see Equation (1)), item (iii) implies item
(ii). It then suffices to show that item (i) implies item (iii). In this proof, we
make essential use of a formula ΞT that resembles, in the causal setting, a



88 Counterfactuals and dependencies on causal teams: expressive power and deduction systems

similar formula introduced in [17] in the pure team setting.
Given any causal team T = (T−,G) over σ, let T = (Aσ \ T−,G) and G0 ∈ F0

σ

be such that [G0] = [G]. If T− , ∅ and |T−| = k + 1, define a COD[σ]-formula

ΞT := (χk ∨ ΘT ) ∨
∨

F ∈F0
σ\{G0}

ΦF ,

where the formula χk is defined inductively as

χ0 = ⊥, χ1 =
∧

V∈Dom

=(V), and χk = χ1 ∨ · · ·︸︷︷︸
k times

∨χ1 (k > 1).

Lemma 5.2 Let S ,T be two causal teams over some signature σ with T− , ∅.
Then, S |= ΞT ⇐⇒ for all R : T ≈ R implies R * S .

Proof. First, observe that the formula χk characterize the cardinality of causal
teams S , in the sense that

S |= χk iff |S −| ≤ k. (2)

Indeed, clearly, S |= χ0 iff S − = ∅, S |= χ1 iff |S −| ≤ 1, and for k > 1, S |= χk iff
S = S 1 ∪ · · · ∪ S k with each S i |= χ1 iff |S −| ≤ k.

Now we prove the lemma. Let S = (S −,H). “=⇒”: Suppose S |= ΞT . If
H 6∼ G, then T = (T−,G) ≈ (T−,G′) = R implies G′ , H , thereby R * S . Now,
suppose H ∼ G ∼ G0. If S − = ∅, then since T− , ∅, the statement holds.
If S − , ∅, then by Lemma 3.4(ii), we know that no nonempty subteam of S
satisfies

∨
F ∈F0

σ\{G0}Φ
F . Thus there exist S 1, S 2 ⊆ S such that S −1 ∪ S −2 = S −,

S 1 |= χk and S 2 |= ΘT . (3)

By (2), the first clause of the above implies that |S −1 | ≤ k. Since |T−| = k + 1 > k,
this means that T− \S −1 , ∅. By Lemma 4.5, it follows from the second clause of

(3) and the fact that S 2 |= ΦG (given again by Lemma 3.4(ii)) that S 2 ≈ R0 ⊆ T
for some R0. Thus, T− ∩ S −2 = ∅. Altogether, we conclude that T− * S −. Thus,
for any R such that R ≈ T , we must have that R− = T− * S −, thereby R * S .

“⇐=”: Suppose T ≈ R implies R 6⊆ S for all R. If H 6∼ G ∼ G0, then by
Lemma 3.4(ii) we have that S |= ∨

F ∈F0
σ\{G0}Φ

F , thereby S |= ΞT , as required.
Now, suppose H ∼ G. The assumption then implies that T− * S −. Let S 1 =

(S −∩T−,H) and S 2 = (S −\T−,H). Clearly, S − = S −1 ∪S −2 , and it suffices to show

that (3) holds. By definition we have that S −2 ⊆ (T )−, which implies the second
clause of (3) by Lemma 4.4. To prove the first clause of (3), by (2) it suffices
to verify that |S −1 | ≤ k. Indeed, since T− * S −, we have that T− ) S − ∩T− = S −1 .
Hence, |S −1 | < |T−| = k + 1, namely, |S −1 | ≤ k. 2

Now we are in a position to prove the main theorem of the section.

Proof of Theorem 5.1. We prove that item (i) implies item (iii). Let K
be a nonempty finite class of causal teams as described in item (i). Since
K is nonempty and causally downward closed, all causal teams over σ with
empty team component belong to K . Thus, every causal team T ∈ Cσ \ K has
a nonempty team component, where Cσ denotes the (finite) set of all causal
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teams over σ. Now, define ϕ =
∧

T∈Cσ\K
ΞT . We show that K = Kϕ.

For any S < K , i.e., S ∈ Cσ \ K , since S ⊆ S and S − , ∅, by Lemma 5.2
we have that S 6|= ΞS . Thus S 6|= ϕ, i.e., S < Kϕ. Conversely, suppose S ∈ K .
Take any T ∈ Cσ \ K . If T ≈ R ⊆ S for some R, then since K is closed under
equivalence and causally closed downward, we must conclude that T ∈ K , which
is a contradiction. Thus, by Lemma 5.2, S |= ΞT . Hence S |= ϕ, i.e., S ∈ Kϕ. �

5.2 Axiomatizing CO\\/ over generalized causal teams

In this section, we introduce a sound and complete system of natural deduction
for CO\\/[σ], which extends of the system for CO[σ], and can also be seen as a
variant of the systems for propositional dependence logics introduced in [17].

Definition 5.3 The system of natural deduction for CO\\/[σ] consists of all
rules of the system of CO[σ] (see Definition 4.6) together with the following
rules, where note that in the rules ∨E, ¬I, ¬E, RAA and ¬� I from Definition
4.6 the formula α ranges over CO[σ]-formulas only:

• Additional rules for ∨:

ϕ ∨ ψ ∨Com
ψ ∨ ϕ

(ϕ ∨ ψ) ∨ χ ∨Ass
ϕ ∨ (ψ ∨ χ)

ϕ ∨ ψ

[ϕ]

...
χ ∨Sub

χ ∨ ψ
• Rules for \\/ :

ϕ
\\/I

ϕ \\/ψ
ϕ

\\/I
ψ \\/ϕ ϕ \\/ψ

[ϕ]

...
χ

[ψ]

...
χ

\\/Eχ

ϕ ∨ (ψ \\/ χ) ∨\\/Dst(ϕ ∨ ψ) \\/ (ϕ ∨ χ)
X = x� ψ \\/ χ

�\\/Dst(X = x� ψ) \\/ (X = x� χ)

The rules in our system are clearly sound. We now proceed to prove the
completeness theorem. An important lemma for the theorem states that every
CO\\/[σ]-formula ϕ is provably equivalent to the \\/ -disjunction of a (finite) set
of CO[σ]-formulas. Formulas of this type are called resolutions of ϕ in [5].

Definition 5.4 Let ϕ be a CO\\/[σ]-formula. Define the set R(ϕ) of its resolu-
tions inductively as follows:

• R(X = x) = {X = x},
• R(¬α) = {¬α},
• R(ψ ∧ χ) = {α ∧ β | α ∈ R(ψ), β ∈ R(χ)},
• R(ψ ∨ χ) = {α ∨ β | α ∈ R(ψ), β ∈ R(χ)},
• R(ψ \\/ χ) = R(ψ) ∪ R(χ),
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• R(X = x� ϕ) = {X = x� α | α ∈ R(ϕ)}.
The set R(ϕ) is clearly a finite set of CO[σ]-formulas.

Lemma 5.5 For any formula ϕ ∈ CO\\/[σ], we have that ϕ a` \\/R(ϕ).

Proof. We prove the lemma by induction on ϕ. If ϕ is X = x or ¬α for some
CO[σ]-formula α, then R(ϕ) = {ϕ}, and ϕ a` \\/R(ϕ) holds trivially.

Now, suppose ψ a` \\/R(ψ) and χ a` \\/R(χ). If ϕ = ψ ∧ χ, observing that
θ0 ∧ (θ1 \\/ θ2) a` (θ0 ∧ θ1) \\/ (θ0 ∧ θ2) (by \\/E, \\/ I,∧I,∧E), we derive by \\/ I, \\/E that

ψ ∧ χ a` ( \\/R(ψ)
) ∧ ( \\/R(χ)

) a` \\/{α ∧ β | α ∈ R(ψ), β ∈ R(χ)} a` \\/R(ψ ∧ χ).

If ϕ = ψ∨χ, we have analogous derivations using the fact that θ0∨(θ1 \\/ θ2) a`
(θ0 ∨ θ1) \\/ (θ0 ∨ θ2) (by ∨ \\/Dst, \\/ I, \\/E and ∨Sub) and \\/ I, \\/E.

If ϕ = ψ \\/ χ, then by applying \\/ I and \\/E, we have that

ψ \\/ χ a` ( \\/R(ψ)
) \\/ ( \\/R(χ)

) a` \\/ (R(ψ) ∪ R(χ)
) a` \\/R(ψ \\/ χ).

If ϕ = X = x� ψ, then

X = x� ψ a` X = x� \\/R(ψ) (�SubC)
a` \\/{X = x� α | α ∈ R(ψ)} (� \\/Dst, and \\/ I,�SubC , \\/E)

a` \\/R(X = x� ψ). (� \\/Dst, and \\/ I,�SubC , \\/E)
2

Theorem 5.6 (Completeness) Let Γ∪{ψ} be a set of CO\\/[σ]-formulas. Then
Γ ` ψ ⇐⇒ Γ |=g ψ.

Proof. We prove the “⇐=” direction. Observe that there are only finitely
many classes of causal teams of signature σ. Thus, any set of CO\\/[σ]-formulas
is equivalent to a single CO\\/[σ]-formula, and it then suffices to prove the state-
ment for Γ = {ϕ}.

Now suppose ϕ |= ψ. Then by Lemma 5.5 and soundness we have that
\\/R(ϕ) |= \\/R(ψ). Thus, for every γ ∈ R(ϕ), γ |=g \\/R(ψ), which further implies,
by Lemma 3.6, that there is an αγ ∈ R(ψ) such that γ |= αγ. Since γ, αγ are
CO[σ]-formulas, and the system for CO\\/[σ] extends that for CO[σ], we obtain
by the completeness theorem of CO[σ] (Theorem 4.8) that γ ` αγ. Applying \\/ I
and Lemma 5.5, we obtain γ ` \\/R(ψ) ` ψ for each γ ∈ R(ψ). Thus, by Lemma
5.5 and repeated applications of \\/E, we conclude that ϕ ` \\/R(ϕ) ` ψ. 2

5.3 Axiomatizing CO\\/ over causal teams

The method for the completeness proof of the previous subsection cannot be
used for causal team semantics, as it makes essential use of the disjunction
property of \\/ , which fails over causal teams. However, since causal teams
can be regarded as a special case of generalized causal teams, all the rules in
the system for CO\\/ over generalized causal teams are also sound over causal
teams. We can then axiomatize CO\\/ over causal teams by extending the system
of CO\\/ for generalized causal teams with an axiom characterizing the property
of being uniform, i.e. “indistinguishable” from a causal team.

Definition 5.7 The system for CO\\/[σ] over causal teams consists of all rules
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of CO\\/[σ] over generalized causal teams (Def. 5.3) plus the following axiom:

Unf\\/F ∈Fσ ΦF

By Theorem 3.4(ii), the axiom Unf is clearly sound over causal teams.

Lemma 5.8 For any set Γ∪{ψ} of CO\\/[σ]-formulas, Γ |=c ψ iff Γ, \\/
F ∈Fσ

ΦF |=g ψ.

Proof. ⇐=: Suppose T |=c Γ for some causal team T . Consider the generalized
causal team T g generated by T . By Lemma 2.12, T g |=g Γ. Since T g is uniform,
Corollary 3.5 gives that T g |=g \\/F ∈Fσ ΦF . Then, by assumption, we obtain that
T g |=g ψ, which, by Lemma 2.12 again, implies that T |=c ψ.

=⇒: Suppose T |=g Γ and T |=g \\/F ∈Fσ ΦF for some generalized causal team
T . By Corollary 3.5 we know that T is uniform. Pick (t,F ) ∈ T . Consider the
generalized causal team S = {(s,F ) | s ∈ T−}. Observe that T ≈ S . Thus, by
Theorem 3.3, we have that S |=g Γ, which further implies, by Lemma 2.12(ii),
that S c |=c Γ. Hence, by the assumption we conclude that S c |=c ψ. Finally, by
applying Lemma 2.12(ii) and Theorem 3.3 again, we obtain T |=g ψ. 2

Theorem 5.9 (Completeness) Let Γ∪{ψ} be a set of CO\\/[σ]-formulas. Then
Γ |=c ψ ⇐⇒ Γ `c ψ.

Proof. Suppose Γ |=c ψ. By Lemma 5.8, we have that Γ, \\/F ∈Fσ ΦF |=g ψ, which

implies that Γ, \\/F ∈Fσ ΦF ` ψ, by the completeness theorem (5.6) of the system
for CO\\/[σ] over generalized causal teams. Thus, Γ ` ψ by axiom Unf. 2

5.4 Axiomatizing COD
We briefly sketch the analogous axiomatization results for the language COD
over both semantics.

Over generalized causal teams, the system for COD[σ] consists of all the
rules of the system for CO[σ] (Definition 4.6) together with ∨Com, ∨Ass, ∨Sub
(the “additional rules for ∨” from Definition 5.3) and the new rules for depen-
dence atoms defined below:

X = x DepI0=(X)

[=(X1)] . . . [=(Xn)]

=(Y)
DepI

=(X1, . . . , Xn; Y)

ϕ

∀x ∈ Ran(X)
[ϕ[X = x/ =(X)]]

...
ψ

Dep0E (∗)
ψ

=(X1, . . . , Xn; Y) =(X1) . . . =(Xn)
DepE

=(Y)

(∗) ϕ[X = x/ =(X)] stands for the formula obtained by replacing a specific occurrence of

=(X) in ϕ with X = x.
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These rules for dependence atoms generalize the corresponding rules in the pure
team setting as introduced in [17]. The completeness theorem of the system can
be proved by generalizing the corresponding arguments in [17]. Analogously
to the case for CO\\/, in this proof we use the fact that every formula ϕ is
(semantically) equivalent to a formula \\/i∈I αi in disjunctive normal form, where
each αi is a CO[σ]-formula obtained from ϕ by replacing every dependence atom
=(X; Y) by a formula

∨
x∈Ran(X)(X = x ∧ Y = y) with y ranging over all of Ran(Y).

The disjunctive formula \\/i∈I αi is not in the language of COD, but we can prove
in the system of COD (by applying the additional rules in the table above) that
αi ` ϕ (i ∈ I), and that

Γ, αi ` ψ for all i ∈ I =⇒ Γ, ϕ ` ψ.
These mean in effect that “ϕ a` \\/i∈I αi”. The completeness theorem for COD
is then proved using essentially the same strategy as that for CO\\/ (Thm. 5.6).

Over causal teams, using the same method as in the previous section, the
complete system for COD[σ] can be defined as an extension of the above gen-
eralized causal team system with two additional axioms 1Fun and NoMix:

1Fun (1)∧

V∈Dom

(
βEn(V) ⊃ (

∧

w∈WV

WV = w�=(V))
)

NoMix (2)∧

V∈Dom

∧
{Ξ{a,b}∗ | (a, b) ∈ Sem2

σ, {a} |= βEn(V), {b} 6|= βEn(V)}

(1) WV = Dom \ {V}, and βEn(V) :=
∨

X∈WV βDC(X,V), where each βDC(X,V) is the CO[σ]-
formula from [2] expressing the property “X is a direct cause of V”:

βDC(X,V) :=
∨{

(Z = z ∧ X = x)� V = v, (Z = z ∧ X = x′)� V = v′

| x, x′ ∈ Ran(X), v, v′ ∈ Ran(V), Z = Dom \ {X,V}, z ∈ Ran(Z), x , x′, v , v′
}
.

(2) Ξ
{a,b}
∗ is defined otherwise the same as Ξ{a,b} except that χ1 is redefined as

χ1 :=
∧

V∈Dom

(
=(V) ∧

∧

w∈Ran(WV )

(WV = w�=(V))
)
.

The axiom 1Fun states that the endogenous variables are governed by a unique
function; the axiom NoMix guarantees that all members of the generalized
causal team agree on what is the set of endogenous variables. Together, these
two additional axioms characterize the uniformity of the generalized causal
team in question (or they are equivalent to the formula Unf in CO\\/[σ]), thus
allow for a completeness proof along the lines of Section 5.3.

6 Conclusion

We have answered the main questions concerning the expressive power and the
existence of deduction calculi for the languages that were proposed in [1] and
[2], and which involve both (interventionist) counterfactuals and (contingent)
dependencies. In the process, we have introduced a generalized causal team
semantics, for which we have also provided natural deduction calculi. We
point out that our calculi are sound only for recursive systems, i.e., when



Barbero, Yang 93

the causal graph is acyclic. The general case (and special cases such as the
“Lewisian” systems considered in [19]) will require a separate study. We point
out, however, that each of our deduction systems can be adapted to the case
of unique-solution (possibly generalized) causal teams by replacing the Recur
rule with an inference rule that expresses the Reversibility axiom from [7].

Our work shows that many methodologies developed in the literature on
team semantics can be adapted to the generalized semantics and, to a lesser
extent, to causal team semantics. On the other hand, a number of peculiarities
emerged that set apart these semantic frameworks from the usual team seman-
tics: for example, the failure of the disjunction property over causal teams. We
believe the present work may provide guidelines for the investigation of further
notions of dependence and causation in causal team semantics and its variants.
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Abstract

We show that intuitionistic quantifiers admit the following temporal interpretation:
∀xA is true at a world w iff A is true at every object in the domain of every future
world, and ∃xA is true at w iff A is true at some object in the domain of some
past world. For this purpose we work with a predicate version of the well-known
tense propositional logic S4.t. The predicate logic Q◦S4.t is obtained by weakening
the axioms of the standard predicate extension QS4.t of S4.t along the lines Corsi
weakened QK to Q◦K. The Gödel translation embeds the predicate intuitionistic
logic IQC into QS4 fully and faithfully. We provide a temporal version of the Gödel
translation and prove that it embeds IQC into Q◦S4.t fully and faithfully; that is,
we show that a sentence is provable in IQC iff its translation is provable in Q◦S4.t.
Faithfulness is proved using syntactic methods, while we prove fullness utilizing the
generalized Kripke semantics of Corsi.

Keywords: Intuitionistic quantifiers, temporal interpretation, Gödel translation.

1 Introduction

Unlike classical connectives, intuitionistic connectives lack symmetry. It was
noted already by McKinsey and Tarski [17] that Heyting algebras (which are
algebraic models of intuitionistic propositional calculus IPC) are not symmetric
even in the weak sense, meaning that the order-dual of a Heyting algebra
may no longer be a Heyting algebra. In contrast, Boolean algebras (which
are algebraic models of classical propositional calculus) are symmetric in the
strong sense, meaning that the order-dual of a Boolean algebra A is not only a
Boolean algebra, but even isomorphic to A.

This non-symmetry has been addressed by several authors, resulting in the
concepts of bi-Heyting algebras and symmetric Heyting algebras. Bi-Heyting

1 Email addresses: guram@nmsu.edu, lcarai@nmsu.edu
Acknowledgment: We would like to thank the reviewers whose comments have improved

the presentation of the paper.
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algebras are obtained by adding to the signature of Heyting algebras a binary
operation of co-implication, while symmetric Heyting algebras by adding a de
Morgan negation (and then co-implication becomes de Morgan dual of impli-
cation). The order-dual of a bi-Heyting algebra is again a bi-Heyting algebra,
and the order-dual of a symmetric Heyting algebra A is even isomorphic to A.
Thus, the class of bi-Heyting algebras is symmetric in the weak sense, while the
class of symmetric Heyting algebras is symmetric in the strong sense (hence
the name).

The Gödel translation of IPC into S4 extends to a translation of the Heyting-
Brouwer calculus HB of Rauszer [18] into the tense extension S4.t of S4, which
has the future S4-modality 2F and the past S4-modality 2P . The algebraic
models of HB are bi-Heyting algebras, and implication is interpreted using 2F
and co-implication using 2P .

This story of non-symmetry also extends to intuitionistic quantifiers. Let IQC
be the intuitionistic predicate calculus and QS4 the predicate S4. Not only the
intuitionistic quantifiers ∀x and ∃x are not definable from each other (unlike
the classical quantifiers), but the Gödel translation ( )t of IQC into QS4 is
asymmetric in that (∀xA)t = 2∀xAt and (∃xA)t = ∃xAt. This is manifested
in the interpretation of intuitionistic quantifiers in Kripke models. Indeed, a
world w of a Kripke model satisfies ∀xA iff A is true at every object of the
domain Dv of every world v accessible from w, while w satisfies ∃xA iff A is
true at some object in the domain Dw of w. If we think of the worlds of a
Kripke model as “states of knowledge,” and the order between the states is
temporal, then we can interpret the intuitionistic universal quantifier as “for
every object in the future,” while the existential quantifier as “for some object
in the present.”

In this article we present a more symmetric interpretation of intuitionistic quan-
tifiers as “for every object in the future” for ∀x and “for some object in the
past” for ∃x. We show that such interpretation is supported by translating IQC
fully and faithfully into a predicate tense logic by an appropriate modification
of the Gödel translation. As far as we know, this approach has not been con-
sidered in the past. One obvious obstacle is that it is unclear what predicate
tense logic to choose for such a translation. Indeed, a natural candidate would
be the standard predicate extension QS4.t of S4.t. However, since QS4.t proves
the Barcan formula, and hence the Kripke frames validating QS4.t have con-
stant domains, IQC does not translate fully into QS4.t. Instead we work with
a weaker logic in which the universal instantiation axiom

∀xA→ A(y/x)

is replaced by a weaker version

∀y(∀xA→ A(y/x)).

This approach is along the lines of Kripke [15], Hughes and Cresswell [13],
Fitting and Mendelsohn [6], and Corsi [3] who considered modal predicate logics



Bezhanishvili and Carai 97

without the Barcan and/or converse Barcan formulas. The generalized Kripke
frames considered in this semantics have two domains associated to each world,
an inner domain and an outer domain. The inner domains are always contained
in the outer domains and are not necessarily increasing. While variables are
interpreted in the outer domains, the scope of quantifiers is restricted to the
inner domains.

Utilizing this approach, we define a tense predicate logic Q◦S4.t which is sound
with respect to the generalized Kripke semantics with nonempty increasing
inner domains and constant outer domains. We modify the Gödel translation
to define a temporal translation of IQC into Q◦S4.t as follows:

⊥t = ⊥
P (x1, . . . , xn)t = 2FP (x1, . . . , xn) for each n-ary predicate symbol P

(A ∧B)t = At ∧Bt
(A ∨B)t = At ∨Bt

(A→ B)t = 2F (At → Bt)
(∀xA)t = 2F∀xAt
(∃xA)t = 3P∃xAt

Here 2F is the S4-modality interpreted as “always in the future” and 3P is
the S4-modality interpreted as “sometime in the past.” Thus, the modification
of the Gödel translation concerns the clause for ∃xA. Our main result states
that this translation is full and faithful in the following sense:

Main Theorem.

• For any formula A in the language of IQC, we have

IQC ` A iff Q◦S4.t ` ∀x1 · · · ∀xnAt

where x1, . . . , xn are the free variables in A.

• If A is a sentence, then

IQC ` A iff Q◦S4.t ` At.

The proof of this surprising result is along the lines of the standard proof of
fullness and faithfulness of the Gödel translation of IQC into QS4. We would
like to stress that the main challenge is not so much the proof itself, but rather
finding the “right” predicate tense modal logic into which to translate IQC. We
find it of interest to explore philosophical (as well as practical) consequences
of this new temporal point of view on IQC.

The paper is structured as follows. In Section 2 we recall the intuitionistic
predicate logic IQC and its Kripke completeness. In Section 3 we briefly re-
view the basics of modal predicate logics and their Kripke semantics, including
weaker modal predicate logics. In Section 4 we recall the tense propositional
logic S4.t, consider its standard predicate extension QS4.t, and then introduce
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its weakening Q◦S4.t which is our main tense predicate logic of interest. We
conclude the section by observing that Q◦S4.t is sound with respect to a ver-
sion of the generalized Kripke semantics studied by Kripke [15], Hughes and
Cresswell [13], Fitting and Mendelsohn [6], and Corsi [3]. Our main result, that
IQC embeds into Q◦S4.t fully and faithfully, is proved in Section 5. We prove
faithfulness syntactically, while fullness is proved semantically. We conclude
the paper with Section 6 in which we describe some open problems our study
has generated. Finally, the Appendix contains the proofs of some technical
lemmas used in Sections 4 and 5.

2 The intuitionistic predicate logic

Let IQC be the intuitionistic predicate logic. We recall that the language L of
IQC consists of countably many individual variables x, y, . . ., countably many
n-ary predicate symbols P,Q, . . . (for each n ≥ 0), the logical connectives
⊥,∧,∨,→, and the quantifiers ∀,∃. We do not add any constants to L since
this results in the temporal translation not being faithful (see Remark 5.11).

Formulas are defined as usual by induction and are denoted with upper case
letters A,B, . . .. Let x, y be individual variables and A a formula. If x is a free
variable of A and does not occur in the scope of ∀y or ∃y, then we denote by
A(y/x) the formula obtained from A by replacing all the free occurrences of x
by y.

The following definition of IQC is taken from [9, Sec 2.6]. We point out that,
unlike [9], we prefer to work with axiom schemes, and hence do not need the
inference rule of substitution.

Definition 2.1 The intuitionistic predicate logic IQC is the least set of for-
mulas of L containing all substitution instances of theorems of IPC, the axiom
schemes

(i) ∀xA→ A(y/x) Universal instantiation (UI)

(ii) A(y/x)→ ∃xA
(iii) ∀x(A→ B)→ (A→ ∀xB) with x not free in A

(iv) ∀x(A→ B)→ (∃xA→ B) with x not free in B

and closed under the inference rules

A A→ B
B

Modus Ponens (MP) A
∀xA Generalization (Gen)

We next describe Kripke semantics for IQC (see [16,8]).

Definition 2.2 An IQC-frame is a triple F = (W,R,D) where

• W is a nonempty set whose elements are called the worlds of F.

• R is a partial order on W .
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• D is a function that associates to each w ∈W a nonempty set Dw such that
wRv implies Dw ⊆ Dv for each w, v ∈ W . The set Dw is called the domain
of w.

Definition 2.3

• An interpretation of L in F is a function I associating to each world w and
any n-ary predicate symbol P an n-ary relation Iw(P ) ⊆ (Dw)n such that
wRv implies Iw(P ) ⊆ Iv(P ).

• A model is a pair M = (F, I) where F is an IQC-frame and I is an interpre-
tation in F.

• Let w be a world of F. A w-assignment is a function σ associating to each
individual variable x an element σ(x) of Dw. Note that if wRv, then σ is
also a v-assignment.

• Let σ and τ be two w-assignments and x an individual variable. Then τ is
said to be an x-variant of σ if τ(y) = σ(y) for all y 6= x.

We next recall the definition of when a formula A is true in a world w of a
model M = (F, I) under the w-assignment σ, written M �σw A.

Definition 2.4

M �σw ⊥ never
M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )
M �σw B ∧ C iff M �σw B and M �σw C
M �σw B ∨ C iff M �σw B or M �σw C
M �σw B → C iff for all v with wRv, if M �σv B, then M �σv C
M �σw ∀xB iff for all v with wRv and each v-assignment τ

that is an x-variant of σ, M �τv B
M �σw ∃xB iff there exists a w-assignment τ

that is an x-variant of σ such that M �τw B

Definition 2.5

• We say that A is true in a world w of M, written M �w A, if for all w-
assignments σ, we have M �σw A.

• We say that A is true in M, written M � A, if for all worlds w ∈W , we have
M �w A.

• We say that A is valid in a frame F, written F � A, if for all models M based
on F, we have M � A.

We have the following well-known completeness of IQC with respect to Kripke
semantics.
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Theorem 2.6 ([16]) The intuitionistic predicate logic IQC is sound and com-
plete with respect to Kripke semantics; that is, for each formula A,

IQC ` A iff F � A for each IQC-frame F.

3 Modal predicate logics

Modal predicate logics were first studied by Barcan [1] and Carnap [2] in 1940s.
The semantic study of modal predicate logics was initiated by Kripke [14,15]
in late 1950s/early 1960s. Since then many completeness results have been
obtained with respect to Kripke semantics, but there is also a large body of
incompleteness results, which is one of the reasons that the model theory of
modal predicate logics is less advanced than that of modal propositional logics
(see, e.g., [9,10] and the references therein).

Let K be the least normal modal propositional logic and let QK be the standard
predicate extension of K. The language L2 of QK is the extension of L with the
modality 2. Since the modal logics we consider are based on the classical logic,
it is sufficient to only consider the logical connectives ⊥,→ and the quantifier
∀. The logical connectives ∧,∨,¬,↔, the quantifier ∃, and the modality 3 are
treated as usual abbreviations.

We next recall the definition of QK (see, e.g., [9, Sec 2.6], but note, as in
Section 2, that we work with axiom schemes instead of having the inference
rule of substitution).

Definition 3.1 The modal predicate logic QK is the least set of formulas of
L2 containing all substitution instances of theorems of K, the axiom schemes
(i) and (iii) of Definition 2.1, and closed under (MP), (Gen), and

A
2A

Necessitation (N)

The definition of QK-frames F = (W,R,D) is the same as that of IQC-frames
(see Definition 2.2) with the only difference that R can be an arbitrary relation.
Models are also defined the same way, but without the requirement that wRv
implies Iw(P ) ⊆ Iv(P ). The connectives and quantifiers are interpreted at each
world in the usual classical way, and

M |=σ
w 2A iff (∀v ∈W )(wRv ⇒M |=σ

v A).

Truth and validity of formulas are defined as usual.

We next give a brief history of first Kripke completeness results for modal pred-
icate logics. In 1959 Kripke [14] proved Kripke completeness of predicate S5.
In late 1960s Cresswell [4,5] (see also Hughes and Cresswell [12]), Schütte [19],
and Thomason [20] proved Kripke completeness of predicate T and S4. Kripke
completeness of QK was first established by Gabbay [7, Thm. 8.5] 2 :

2 We would like to thank Ilya Shapirovsky and Valentin Shehtman for useful discussions on
the history of Kripke completeness for modal predicate logics.
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Theorem 3.2 The modal predicate logic QK is sound and complete with re-
spect to Kripke semantics.

The following two principles play an important role in the study of modal
predicate logics. They were first considered by Barcan [1].

2∀xA→ ∀x2A converse Barcan formula (CBF)
∀x2A→ 2∀xA Barcan formula (BF)

It is easy to see that CBF is a theorem of QK. Indeed, this follows from
Theorem 3.2 and the fact that domains of each QK-frame are increasing. On
the other hand, a QK-frame validates BF iff it has constant domains, meaning
that wRv implies Dw = Dv, and we have the following well-known theorem
(see, e.g., [7, Thm. 9.3]):

Theorem 3.3 The logic QK + BF is sound and complete with respect to the
class of QK-frames with constant domains.

A modal predicate logic whose Kripke frames have neither increasing nor de-
creasing domains was considered already by Kripke [15]. Building on this work,
Hughes and Cresswell [13, pp. 304–309] introduced a similar predicate modal
logic and proved its completeness with respect to a generalized Kripke seman-
tics. Fitting and Mendelsohn [6, Sec. 6.2] gave an alternate axiomatization of
this logic. Building on the work of Fitting and Mendelsohn, Corsi [3] defined
the system Q◦K whose axiomatization contains a weakening of the universal
instantiation axiom.

Definition 3.4 The logic Q◦K is the least set of formulas of L2 containing all
substitution instances of theorems of K, the axiom schemes

(i) ∀y(∀xA→ A(y/x)) (UI◦)

(ii) ∀x(A→ B)→ (∀xA→ ∀xB)

(iii) ∀x∀yA↔ ∀y∀xA
(iv) A→ ∀xA with x not free in A

and closed under (MP), (Gen), and (N).

Remark 3.5 In Definition 3.4, replacing UI◦ with UI yields an equivalent def-
inition of QK. Therefore, Q◦K is contained in QK.

Kripke frames for Q◦K generalize Kripke frames for QK by having two domains,
inner and outer.

Definition 3.6 A Q◦K-frame is a quadruple F = (W,R,D,U) where

• (W,R) is a K-frame.

• D is a function that associates to each w ∈W a set Dw. The set Dw is called
the inner domain of w.
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• U is a nonempty set containing the union of all the Dw. The set U is called
the outer domain of F.

Definition 3.6 is a particular case of the frames considered by Corsi [3] where
increasing outer domains are allowed. For our purposes, taking a fixed outer
domain U is sufficient. We recall from [3] how to interpret L2 in a Q◦K-frame
F = (W,R,D,U).

Definition 3.7

• An interpretation of L2 in F is a function I associating to each world w and
an n-ary predicate symbol P an n-ary relation Iw(P ) ⊆ Un.

• A model is a pair M = (F, I) where F is a Q◦K-frame and I is an interpre-
tation in F.

• An assignment in F is a function σ that associates to each individual variable
an element of U .

• If σ and τ are two assignments and x is an individual variable, τ is said to
be an x-variant of σ if τ(y) = σ(y) for all y 6= x.

• We say that an assignment σ is w-inner for w ∈ W if σ(x) ∈ Dw for each
individual variable x.

We next recall from [3] the definition of when a formula A is true in a world w
of a model M = (F, I) under the assignment σ, written M �σw A.

Definition 3.8

M �σw ⊥ never
M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )
M �σw B → C iff M �σw B implies M �σw C
M �σw ∀xB iff for all x-variants τ of σ with τ(x) ∈ Dw, M �τw B
M �σw 2B iff for all v such that wRv, M �σv B

Definition 3.9 A formula A is true in a model M = (F, I) at the world w ∈W
(in symbols M �w A) if for all assignments σ, we have M �σw A. The definition
of truth in a model and validity in a frame are the same as in Definition 2.5.

We have the following completeness result for Q◦K, see [3, Thm. 1.32] and its
proof.

Theorem 3.10 Q◦K is sound and complete with respect to the class of Q◦K-
frames.

Definition 3.11 Let F = (W,R,D,U) be a Q◦K-frame.

• We say that F has increasing inner domains if wRv implies Dw ⊆ Dv for
each w, v ∈W .
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• We say that F has decreasing inner domains if wRv implies Dv ⊆ Dw for
each w, v ∈W .

• If F has both increasing and decreasing inner domains, we say that it has
constant inner domains.

The following axiom scheme guarantees nonempty inner domains (hence the
abbreviation):

∀xA→ A with x not free in A (NID)

The next proposition is not difficult to verify (see, e.g., [6, Sec. 4.9] and [3,
pp. 1487–1488]).

Proposition 3.12 Let F = (W,R,D,U) be a Q◦K-frame.

• F validates CBF iff F has increasing inner domains.

• F validates BF iff F has decreasing inner domains.

• F validates NID iff F has nonempty inner domains.

We have the following completeness results for logics obtained by adding CBF,
BF, and NID to Q◦K (see [3, Thms. 1.30, 1.32, and Footnote 7]):

Theorem 3.13

• Q◦K + CBF is sound and complete with respect to the class of Q◦K-frames
with increasing inner domains.

• Q◦K+CBF+BF is sound and complete with respect to the class of Q◦K-frames
with constant inner domains.

• Adding NID to the above two logics or to Q◦K yields completeness of the
resulting logics with respect to the corresponding classes of frames which have
nonempty inner domains.

On the other hand, completeness of Q◦K + BF remains open (see [3, p. 1510]).

4 The logic Q◦S4.t
The tense predicate logic we will translate IQC into is based on the well-known
tense propositional logic S4.t. We use 2F (“always in the future”) and 2P
(“always in the past”) as temporal modalities. Then 3F (“sometime in the
future”) and 3P (“sometime in the past”) are usual abbreviations ¬2F¬ and
¬2P¬.

Definition 4.1 The logic S4.t is the least set of formulas of the tense proposi-
tional language containing all substitution instances of S4-axioms for both 2F
and 2P , the axiom schemes

(i) A→ 2P3FA
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(ii) A→ 2F3PA

and closed under (MP) and

A
2FA

2F -Necessitation (NF) A
2PA

2P -Necessitation (NP)

Relational semantics of S4.t consists of Kripke frames F = (W,R) where R
is reflexive and transitive. As usual, propositional letters are interpreted as
subsets ofW , classical connectives as the corresponding set-theoretic operations
on the powerset of W , and for temporal modalities we set:

w � 2FA iff (∀v ∈W )(wRv ⇒ v � A)
w � 2PA iff (∀v ∈W )(vRw ⇒ v � A)

It is well known that S4.t is sound and complete with respect to its relational
semantics.

Let LT be the bimodal predicate language obtained by extending L with two
modalities 2F and 2P .

Definition 4.2 The logic QS4.t is the least set of formulas of LT containing
all substitution instances of theorems of S4.t, the axiom schemes (i) and (iii)
of Definition 2.1, and closed under (MP), (Gen), (NF), and (NP).

The following are temporal versions of CBF and BF:

2F∀xA→ ∀x2FA converse Barcan formula for 2F (CBFF)
∀x2FA→ 2F∀xA Barcan formula for 2F (BFF)
2P∀xA→ ∀x2PA converse Barcan formula for 2P (CBFP)
∀x2PA→ 2P∀xA Barcan formula for 2P (BFP)

The proof that QK ` CBF (see, e.g., [15, p. 88]) can be adapted to prove that
QS4.t ` CBFF and QS4.t ` CBFP. It is also well known that CBFF and BFP,
as well as CBFP and BFF are derivable from each other in any tense predicate
logic. Therefore, all four are theorems of QS4.t. This is reflected in the fact that
QS4.t-frames have constant domains. Indeed, QS4.t is complete with respect
to this semantics (see Section 6). But this is problematic for translating IQC
fully into QS4.t since IQC-frames with constant domains validate the additional
axiom ∀x(A∨B)→ (A∨∀xB), where x is not free in A, which is not a theorem
of IQC (see, e.g., [8, p. 53, Cor. 8]).

Consequently, we need to work with a weaker logic than QS4.t. To this end, we
introduce the logic Q◦S4.t, which weakens QS4.t the same way Q◦K weakens
QK.

Definition 4.3 The logic Q◦S4.t is the least set of formulas of LT containing
all substitution instances of theorems of S4.t, the axiom schemes (i), (ii), (iii),
(iv) of Q◦K (see Definition 3.4), NID, CBFF, and closed under (MP), (Gen),
(NF), and (NP).
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As follows from Proposition A.1 in the Appendix, BFP is a theorem of Q◦S4.t.
In fact, CBFF and BFP are derivable from each other and the other axioms of
Q◦S4.t.

Definition 4.4 A Q◦S4.t-frame is a Q◦K-frame F = (W,R,D,U) (see Defini-
tion 3.6) with nonempty increasing inner domains whose accessibility relation
is reflexive and transitive.

Models and assignments are defined as in Definition 3.7. The clauses of when
a formula A of LT is true in a world w of a Q◦S4.t-model M = (F, I) under the
assignment σ, written M �σw A, are defined as in Definition 3.8, but we replace
the 2-clause with the following two clauses:

M �σw 2FB iff (∀v ∈W )(wRv ⇒M �σv B)
M �σw 2PB iff (∀v ∈W )(vRw ⇒M �σv B)

For formulas of LT we define truth in a model and validity in a frame as in
Definition 3.9.

Theorem 4.5 Q◦S4.t is sound with respect to the class of Q◦S4.t-frames; that
is, for each formula A of LT and Q◦S4.t-frame F, from Q◦S4.t ` A it follows
that F � A.

Proof. It is sufficient to show that each axiom scheme is valid in all Q◦S4.t-
frames and that each rule of inference preserves validity. This can be done
by direct verification. We only show that the axiom scheme CBFF is valid
in all Q◦S4.t-frames. Let M = (F, I) be a Q◦S4.t-model, w ∈ W , and σ an
assignment. If M �σw 2F∀xA, then for all v with wRv we have M �σv ∀xA.
This implies that for each x-variant τ of σ with τ(x) ∈ Dv we have M �τv A.
Since Dw ⊆ Dv, this is in particular true for x-variants τ of σ with τ(x) ∈ Dw.
Therefore, for each x-variant τ of σ with τ(x) ∈ Dw and for each v with wRv
we have M �τv A. Thus, for each x-variant τ of σ with τ(x) ∈ Dw, we have
M �σw 2FA. Consequently, M �σw ∀x2FA. This shows that F � 2F∀xA →
∀x2FA for each Q◦S4.t-frame F. 2

On the other hand, completeness of Q◦S4.t remains an interesting open prob-
lem, which is related to the open problem of completeness of Q◦K + BF (see
Section 6).

5 The translation

In this section we prove our main result that the temporal modification (de-
scribed in the Introduction) of the Gödel translation embeds IQC into Q◦S4.t
fully and faithfully. Our strategy is to prove faithfulness of the translation syn-
tactically, while fullness will be proved by semantical means, utilizing Kripke
completeness of IQC.
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Our syntactic proof of faithfulness is based on the following technical lemma,
the proof of which we give in the Appendix. To keep the notation simple, we
denote lists of variables by bold letters. If x = x1, . . . , xn, we write ∀x for
∀x1 · · · ∀xn. We point out that it is a consequence of axioms (ii) and (iii) of
Q◦K that from the point of view of provability in Q◦S4.t, the order of variables
in ∀x does not matter.

Lemma 5.1

(i) Let C be an instance of an axiom scheme of IQC and x the list of free
variables in C. Then Q◦S4.t ` ∀xCt.

(ii) Let A,B be formulas of L, x the list of variables free in A→ B, y the list
of variables free in A, and z the list of variables free in B. If Q◦S4.t `
∀x(A→ B)t and Q◦S4.t ` ∀yAt, then Q◦S4.t ` ∀zBt.

(iii) Let A be a formula of L, x a variable, y the list of variables free in A,
and z the list of variables free in ∀xA. If Q◦S4.t ` ∀yAt, then Q◦S4.t `
∀z (∀xA)t.

Proof. For (i) see the proof of Lemma A.5, for (ii) see the proof of Lemma A.6,
and for (iii) see the proof of Lemma A.7. 2

Theorem 5.2 Let A be a formula of L and x1, . . . , xn the free variables of A.
If IQC ` A, then Q◦S4.t ` ∀x1 · · · ∀xnAt.

Proof. The proof is by induction on the length of the proof of A in IQC. If A
is an instance of an axiom of IQC, then the result follows from Lemma 5.1(i).
Lemma 5.1(ii) takes care of the case in which the last step of the proof of A is an
application of (MP). Finally, if the last step of the proof of A is an application
of (Gen) to the variable x, use Lemma 5.1(iii). 2

Remark 5.3 We are prefixing the translation of A with ∀x1 · · · ∀xn because
it is not true in general that IQC ` A implies Q◦S4.t ` At. For example, if A
is an instance of the universal instantiation axiom, which is an axiom of IQC,
then At is not in general a theorem of Q◦S4.t.

Definition 5.4

• For an IQC-frame F = (W,R,D) let F = (W,R,D,U) where U =
⋃{Dw |

w ∈W}.
• For an IQC-model M = (F, I) let M = (F, I).

Remark 5.5

• It is obvious that F is a Q◦S4.t-frame.

• If I is an interpretation in F, then I is also an interpretation in F because
for each n-ary predicate letter P we have Iw(P ) ⊆ Dn

w ⊆ Un. Therefore, M
is well defined.
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• The w-assignments in F are exactly the w-inner assignments in F.

The proof of the following technical lemma is given in the Appendix.

Lemma 5.6 If A is a formula of L, then Q◦S4.t ` At → 2FA
t.

Proof. See the proof of Lemma A.2. 2

Lemma 5.7 Let A be a formula of L, M = (F, I) a Q◦S4.t-model, and σ an
assignment in F. If v, w ∈W with vRw, then M �σv At implies M �σw At.

Proof. Suppose vRw and M �σv At. By Lemma 5.6 and Theorem 4.5, M �σv
At → 2FA

t. Therefore, M �σv 2FA
t, which yields M �σw At because vRw. 2

Proposition 5.8 Let A be a formula of L, M = (F, I) an IQC-model based on
an IQC-frame F = (W,R,D), and w ∈W .

(i) For each w-assignment σ,

M �σw A iff M �σw At.

(ii) If x1, . . . , xn are the free variables of A, then

M �w A iff M �w ∀x1 · · · ∀xnAt.

Proof. (i). Induction on the complexity of A. Let A be an atomic formula
P (x1, . . . , xn). Since wRv implies Iw(P ) ⊆ Iv(P ) and R is reflexive, we have

M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )

iff (∀v ∈W )(wRv ⇒ (σ(x1), . . . , σ(xn)) ∈ Iv(P ))

iff M �σw 2FP (x1, . . . , xn)

iff M �σw P (x1, . . . , xn)t

The cases where A = ⊥, A = B ∧ C, and A = B ∨ C are straightforward.

If A = B → C, then using the inductive hypothesis, we have

M �σw B → C iff (∀v ∈W )(wRv ⇒ (M �σv B ⇒M �σv C))

iff (∀v ∈W )(wRv ⇒ (M �σv Bt ⇒M �σv Ct))
iff M �σw 2F (Bt → Ct)

iff M �σw (B → C)t
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If A = ∀xB, then using the inductive hypothesis, we have

M �σw ∀xB iff (∀v ∈W )(wRv ⇒ for each v-assignment τ that is

an x-variant of σ we have M �τv B)

iff (∀v ∈W )(wRv ⇒ for each assignment τ that is

an x-variant of σ with τ(x) ∈ Dv we have M �τv Bt)
iff M �σw 2F∀xBt

iff M �σw (∀xB)t

If A = ∃xB, then using the inductive hypothesis, reflexivity of R, Lemma 5.7,
and the fact that vRw implies Dv ⊆ Dw, we have

M �σw ∃xB iff there is a w-assignment τ that is an x-variant of σ

such that M �τw B
iff there is an assignment τ that is an x-variant of σ

with τ(x) ∈ Dw such that M �τw Bt
iff there is v ∈W such that vRw and an assignment ρ that is

an x-variant of σ with ρ(x) ∈ Dv such that M �ρv Bt

iff M �σw 3P∃xBt

iff M �σw (∃xB)t

(ii). By Definition 2.5, M �w A iff M �σw A for each w-assignment σ. As
noted in Remark 5.5, w-assignments in F are exactly the w-inner assignments
in F. Therefore, by (i), M �w A iff M �σw At for each w-inner assignment σ. It
follows from the interpretation of the universal quantifier in M that M �σw At
for each w-inner assignment σ iff M �w ∀x1 · · · ∀xnAt. Thus, M �w A iff
M �w ∀x1 · · · ∀xnAt. 2

Theorem 5.9 Let A be a formula of L and x1, . . . , xn the free variables of A.
If Q◦S4.t ` ∀x1 · · · ∀xnAt, then IQC ` A.

Proof. Suppose IQC 0 A. Theorem 2.6 implies that there is an IQC-
model M such that M 2w A for some world w. By Proposition 5.8(ii),
M 2w ∀x1 · · · ∀xnAt. Thus, Q◦S4.t 0 ∀x1 · · · ∀xnAt by Theorem 4.5. 2

By putting Theorems 5.2 and 5.9 together we arrive at the main result of the
paper mentioned in the introduction.

Theorem 5.10

• Let A be a formula of L and x1, . . . , xn the free variables of A. We have

IQC ` A iff Q◦S4.t ` ∀x1 · · · ∀xnAt.
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• If A is a sentence of L, then

IQC ` A iff Q◦S4.t ` At.
Remark 5.11 If we allow constants in L, Theorem 5.9 is no longer true in its
current form. Indeed, constants in IQC and Q◦S4.t behave like free variables
and we would have the problem described in Remark 5.3. However, it can be
adjusted as follows. Let A be a formula containing free variables x1, . . . , xn
and constants c1, . . . cm. If A(y1/c1, . . . , ym/cm) is the formula obtained by
replacing all the constants with fresh variables y1, . . . , ym, then IQC ` A iff
Q◦S4.t ` ∀x1 · · · ∀xn∀y1 · · · ∀ymAt(y1/c1, . . . , ym/cm).

6 Open problems

As follows from Theorem 4.5, Q◦S4.t is sound with respect to the class of
Q◦S4.t-frames. However, its completeness remains an interesting open problem.
The standard Henkin construction was modified by Hughes and Cresswell [13]
and Corsi [3] to obtain completeness of Q◦K. If we adapt their technique
to Q◦S4.t, we obtain two relations RF and RP on the canonical model, one
coming from 2F and the other from 2P . There does not seem to be an obvious
way to select an appropriate submodel in which the restrictions of these two
relations are inverses of each other because the outer domains of accessible
worlds are forced to increase by the construction. This problem disappears
when constructing the canonical model for QS4.t because the presence of BFF

and CBFP in each world allows us to select witnesses without expanding the
domains of accessible worlds, thus yielding that QS4.t is sound and complete
with respect to the class of QS4.t-frames.

The problem of completeness of Q◦S4.t seems to be closely related to the open
problem, stated in [3, p. 1510], of whether Q◦K + BF is Kripke complete. It
appears that answering one of these problems could also provide an answer to
the other.

One of the reviewers pointed out that another natural direction is to study the
intermediate predicate logics and the corresponding extensions of Q◦S4.t for
which our temporal translation remains full and faithful. Finally, it is worth
investigating whether other tense predicate logics (such as the ones considered
in [11]) could be used for translating IQC fully and faithfully. Some such systems
admit presheaf semantics which is more general than Kripke semantics.

Appendix

A Additional facts needed in Sections 4 and 5

Proposition A.1 Q◦S4.t ` BFP.

Proof. We first show that Q◦S4.t ` 3F∀xB → ∀x3FB for any formula B.
We have the proof
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1. ∀x(∀xB → B)
2. ∀x2F (∀xB → B)
3. 2F (∀xB → B)→ (3F∀xB → 3FB)
4. ∀x2F (∀xB → B)→ ∀x(3F∀xB → 3FB)
5. ∀x(3F∀xB → 3FB)
6. ∀x3F∀xB → ∀x3FB
7. 3F∀xB → ∀x3FB

Here 1 is an instance of UI◦; 2 is obtained from 1 by adding 2F inside ∀x by
applying (NF), CBFF, and (MP); 3 is a substitution instance of the K-theorem
2F (C → D) → (3FC → 3FD) for 2F ; 4 is obtained from 3 by first adding
and then distributing ∀x inside the implication by applying (Gen), axiom (ii)
of Q◦K, and (MP); 5 follows from 2 and 4 by (MP); 6 is obtained from 5 by
distributing ∀x; and 7 follows from 6 and axiom (iv) of Q◦K.

We now prove ∀x2PA→ 2P∀xA.

1. ∀x2PA→ 2P3F∀x2PA
2. 3F∀x2PA→ ∀x3F2PA
3. 2P3F∀x2PA→ 2P∀x3F2PA
4. 3F2PA→ A
5. ∀x3F2PA→ ∀xA
6. 2P∀x3F2PA→ 2P∀xA
7. ∀x2PA→ 2P∀xA

Here 1 is an instance of axiom (i) of S4.t; 2 is an instance of 3F∀xB → ∀x3FB
proved above; 3 and 6 follow from 2 and 5 by adding and distributing 2P in the
implication; 4 is an instance of the S4.t-theorem 3F2PC → C; 5 is obtained
from 4 by adding and distributing ∀x; and 7 follows from 1, 3, and 6. 2

Lemma A.2 If A is a formula of L, then Q◦S4.t ` At → 2FA
t and Q◦S4.t `

3PA
t → At.

Proof. We only prove that Q◦S4.t ` At → 2FA
t since it implies that Q◦S4.t `

3PA
t → At. The proof is by induction on the complexity of A. If A = ⊥, then

At = ⊥ and it is clear that Q◦S4.t ` ⊥ → 2F⊥.

If A is either an atomic formula P (x1, . . . , xn) or of the form B → C or ∀xB,
then At is of the form 2FD. Therefore, the 4-axiom 2FD → 2F2FD implies
that in all these cases Q◦S4.t ` At → 2FA

t.

If A = ∃xB, then At = 3P∃xBt. So 2FA
t = 2F3P∃xBt and Q◦S4.t `

3P∃xBt → 2F3P∃xBt because it is a substitution instance of the S4.t-
theorem 3PC → 2F3PC. Finally, if A = B ∧ C or A = B ∨ C, then we have
At = Bt ∧Ct or At = Bt ∨Ct. By inductive hypothesis, Q◦S4.t ` Bt → 2FB

t

and Q◦S4.t ` Ct → 2FC
t. Since Q◦S4.t ` (2FB

t ∧ 2FC
t) → 2F (Bt ∧ Ct)

and Q◦S4.t ` (2FB
t∨2FCt)→ 2F (Bt∨Ct), we obtain Q◦S4.t ` (Bt∧Ct)→

2F (Bt ∧ Ct) and Q◦S4.t ` (Bt ∨ Ct)→ 2F (Bt ∨ Ct). 2
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Lemma A.3 The following are theorems of Q◦S4.t:

(i) ∀y(A(y/x)→ ∃xA).

(ii) ∀x(A→ B)→ (A→ ∀xB) if x is not free in A.

(iii) ∀x(A→ B)→ (∃xA→ B) if x is not free in B.

Proof. Follows from [3, Lem. 1.3]. 2

Lemma A.4 For formulas A,B of L, the following are theorems of Q◦S4.t.

(i) 2F (2F∀xAt → At) if x is not free in A.

(ii) ∀y2F (2F∀xAt → A(y/x)t).

(iii) 2F (At → 3P∃xAt) if x is not free in A.

(iv) ∀y2F (A(y/x)t → 3P∃xAt).

(v) 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt)) if x is not free in A.

(vi) 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt)) if x is not free in B.

Proof. Note that x is free in A iff it is free in At, and A(y/x)t = At(y/x).

(i). We have the proof

1. ∀xAt → At

2. 2F∀xAt → At

3. 2F (2F∀xAt → At)

where 1 is an instance of NID because x is not free in At; 2 is obtained from 1
by applying the T-axiom for 2F ; 3 is obtained from 2 by (NF).

(ii). We have the proof

1. ∀y(∀xAt → At(y/x))
2. ∀y(2F∀xAt → At(y/x))
3. ∀y2F (2F∀xAt → At(y/x))

where 1 is an instance of UI◦; 2 follows from 1 by applying the T-axiom for 2F
inside ∀y; 3 is obtained from 2 by introducing 2F inside ∀y.

(iii). We have the proof

1. At → ∃xAt
2. At → 3P∃xAt
3. 2F (At → 3P∃xAt)

where 1 is an instance of C → ∃xC, with x not free in C, which is equivalent
to NID; 2 follows from 1 by the T-axiom for 3P ; 3 is obtained from 2 by (NF).

(iv). We have the proof
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1. ∀y(At(y/x)→ ∃xAt)
2. ∀y(At(y/x)→ 3P∃xAt)
3. ∀y2F (At(y/x)→ 3P∃xAt)

where 1 follows from Lemma A.3(i); 2 follows from 1 by applying the T-axiom
for 3P inside ∀y; 3 is obtained from 2 by introducing 2F inside ∀y.

(v). We have the proof

1. ∀x(At → Bt)→ (At → ∀xBt)
2. ∀x2F (At → Bt)→ (At → ∀xBt)
3. 2F∀x2F (At → Bt)→ (2FA

t → 2F∀xBt)
4. 2F∀x2F (At → Bt)→ (At → 2F∀xBt)
5. 2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt)
6. 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt))

where 1 follows from Lemma A.3(ii); 2 follows from 1 by applying the T-axiom
for 2F ; 3 is obtained from 2 by adding and distributing 2F ; 4 follows from 3 by
Lemma A.2; 5 is obtained from 4 by adding and distributing 2F and getting
rid of one 2F in the antecedent using the 4-axiom; 6 follows from 5 by (NF).

(vi). We have the proof

1. ∀x(At → Bt)→ (∃xAt → Bt)
2. ∀x(At → Bt)→ (∃x3PA

t → Bt)
3. ∀x2F (At → Bt)→ (∃x3PA

t → Bt)
4. ∀x2F (At → Bt)→ (3P∃xAt → Bt)
5. 2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt)
6. 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt))

where 1 follows from Lemma A.3(iii); 2 follows from 1 by Lemma A.2; 3 follows
from 2 by applying the T-axiom for 2F ; 4 follows from 3 and the fact that
Q◦S4.t ` 3P∃xAt → ∃x3PA

t because it is a consequence of BFP; 5 is obtained
from 4 by adding and distributing 2F ; 6 follows from 5 by (NF). 2

Lemma A.5 If C is an instance of an axiom scheme of IQC and x is the list
of free variables in C, then Q◦S4.t ` ∀xCt.

Proof. If C is an instance of a theorem of IPC, then it follows from the faith-
fulness of the Gödel translation in the propositional case that Ct is a theorem
of Q◦S4.t (since 2F is an S4-modality). Applying (Gen) to each free variable
of Ct then yields a proof of ∀xCt in Q◦S4.t. Translations of the axiom schemes
of Definition 2.1 give:

(∀xA→ A(y/x))t = 2F (2F∀xAt → A(y/x)t)

(A(y/x)→ ∃xA)t = 2F (A(y/x)t → 3P∃xAt)



Bezhanishvili and Carai 113

(∀x(A→ B)→ (A→ ∀xB))t

= 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt))
(∀x(A→ B)→ (∃xA→ B))t

= 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt))

If C is an instance of one of these axiom schemes, then we obtain a proof of
∀xCt in Q◦S4.t by Lemma A.4 and by applying (Gen) to the free variables of
C. More precisely, for the first axiom we use (i) of Lemma A.4 when x is not
free in A and (ii) when x is free in A. Similarly, for the second axiom we use
(iii) or (iv) of Lemma A.4. Finally, for the third axiom we use (v) and for the
fourth axiom we use (vi) of Lemma A.4. 2

Lemma A.6 Let A,B be formulas of L, x the list of variables free in A→ B,
y the list of variables free in A, and z the list of variables free in B. If Q◦S4.t `
∀x(A→ B)t and Q◦S4.t ` ∀yAt, then Q◦S4.t ` ∀zBt.

Proof. Let u be the list of variables free in A but not in B, v the list of
variables free in B but not in A, and w the list of variables free in both A
and B. We then have that x is the union of u, v, and w; y is the union
of u and w; and z is the union of v and w. Thus, we want to show that if
Q◦S4.t ` ∀u∀v ∀w(A → B)t and Q◦S4.t ` ∀u∀wAt, then Q◦S4.t ` ∀v ∀wBt.
We have the proof

1. ∀u ∀v ∀w2F (At → Bt)
2. ∀u ∀w ∀v2F (At → Bt)
3. ∀u∀w ∀v (2FA

t → 2FB
t)

4. ∀u∀w (2FA
t → ∀v2FB

t)
5. ∀u∀w2FA

t → ∀u ∀w ∀v2FB
t

6. ∀u∀wAt
7. ∀u∀w2FA

t

8. ∀u∀w ∀v2FB
t

9. ∀u∀w ∀vBt
10 ∀w ∀vBt
11 ∀v ∀wBt

where 1 and 6 are assumptions; 2 and 11 follow from 1 and 10 by switching
the order of quantification; 3 is obtained from 2 by distributing 2F inside the
universal quantifiers; 4 follows from Lemma A.3(ii) because all the variables in
v are not free in 2FA

t; 5 is obtained by distributing the universal quantifiers; 7
follows from 6 by introducing 2F inside the quantifiers; 8 is obtained by (MP)
from 5 and 7; 9 follows from 8 by the T-axiom for 2F ; 10 follows from 9 by
NID because no variable in u is free in Bt. 2

Lemma A.7 Let A be a formula of L, x a variable, y the list of variables
free in A, and z the list of variables free in ∀xA. If Q◦S4.t ` ∀yAt, then
Q◦S4.t ` ∀z (∀xA)t.
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Proof. If x is in y, then without loss of generality we may assume that y is
z concatenated with x. Therefore, by assumption we have Q◦S4.t ` ∀z ∀xAt.
If x is not in y, then y = z. Thus, by (Gen) for x and by switching the order
of quantifiers, we again obtain Q◦S4.t ` ∀z ∀xAt. We can then introduce 2F
inside the quantifiers to obtain Q◦S4.t ` ∀z2F∀xAt which means Q◦S4.t `
∀z (∀xA)t. 2
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Abstract

We give a sufficient condition for deciding admissibility of non-standard inference
rules inside a modal calculus S with the universal modality. The condition requires
the existence of a model completion for the discriminator variety of algebras which
are models of S. We apply the condition to the case of symmetric strict implication
calculus, i.e., to the modal calculus axiomatizing contact algebras. Such an applica-
tion requires a characterization of duals of morphisms which are embeddings (in the
model-theoretic sense). We supply also an explicit infinite set of axioms for the class
of existentially closed contact algebras. The axioms are obtained via a classification
of duals of finite minimal extensions of finite contact algebras.

Keywords: Contact Algebras, Non-Standard Inference Rules, Model Completeness,
Existentially Closed Structures.

1 Introduction
The use of non-standard rules has a long tradition in modal logic starting
from the pioneering work of Gabbay [18], who introduced a non-standard rule
for irreflexivity. Non-standard rules have been employed in temporal logic in
the context of branching time logic [7] and for axiomatization problems [19]
concerning the logic of the real line in the language with the Since and Until
modalities. General completeness results for modal languages that are suffi-
ciently expressive to define the so-called difference modality have been obtained
in [32]. For the use of the non-standard density rule in many-valued logics we
refer to [27] and [29].
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Recently, there has been a renewed interest in non-standard rules in the
context of the region-based theories of space [30]. One of the key algebraic
structures in these theories is that of contact algebras. These algebras form
a discriminator variety, see e.g., [4]. Compingent algebras are contact alge-
bras satisfying two ∀∃-sentences (aka Π2-sentences) [4,15]. De Vries [15] estab-
lished a duality between complete compingent algebras and compact Hausdorff
spaces. This duality led to new logical calculi for compact Hausdorff spaces in
[2] for two-sorted modal language and in [4] for a uni-modal language with a
strict implication. Key to these approaches is a development of logical calculi
corresponding to contact algebras. In [4] such a calculus is called the strict
symmetric implication calculus and is denoted by S2IC. The extra Π2-axoms
of compingent algebras then correspond to non-standard Π2-rules, which turn
out to be admissible in S2IC. This generates a natural question of investigating
admissibility of Π2-rules in S2IC and in general in logical calculi correspond-
ing to discriminator varieties of modal algebras. This is the question that we
address in this paper. We connect admissibility of non-standard Π2-rules with
the model completion of the first-order theory of the corresponding algebraic
structures. Motivated by this connection, we then provide (an infinite) axiom-
atization of the model completion of the theory of contact algebras. As far as
we are aware this is a first systematic study of admissibility in the context of
non-standard inference rules.

The definition of Π2-rules we give below is taken from [4] and is close to
that of Balbiani et al. [2].

Definition 1.1 [Π2-rule] A Π2-rule is a rule of the form

(ρ)
F (ϕ/x, p)→ χ

G(ϕ/x)→ χ

where F,G are formulas, ϕ is a tuple of formulas, χ is a formula, and p is a
tuple of propositional letters which do not occur in ϕ and χ.

Little is known about the problem of recognizing admissibility for non-
standard rules, although this problem was already raised in [32]. An immediate
easy computation shows that whenever a system S admits local uniform inter-
polants, then the above rule (ρ) is admissble iff the formula G(x)→ EpF (x, p)

is provable in S, where EpF (x, p) is the uniform pre-interpolant of F (x, p) wrt
the variables p. 1

Local uniform interpolants rarely exist: among the systems where they
are available we list K, GL, S4.Grz, S5 [6,20,22,28,33]. From the structural
point of view, global uniform interpolants (i.e. uniform interpolants for the
global consequence relation) are more informative, due to their relationship to

1 We consider part of the definition of uniform pre- and post- interpolants, the fact that
they are stable under substitution: in other words, substituing ϕ for the p in EpF (x, p) must
give the same result as computing EpF (ϕ/x, p) after the substitution (see [20] for a careful
analysis).
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compact congruences and model completions [22,24,31]. However, the above
simple argument for recognizing admissibility of non-standard rules seems not
to go through via global uniform interpolants. There is no direct implication
(in both senses) between the existence of local and of global uniform inter-
polants: global uniform interpolants fail to exists for K [24] whereas local
ones exists. Conversely, there are cases where global interpolants exist and
local interpolants do not (this is easily seen from the results of [26] for lo-
cally tabular S4-logics, where existence of uniform local/global interpolants
reduces to existence of ordinary local/global interpolants and hence to super-
amalgamation/amalgamation properties).

Non-standard rules are usually investigated in a system S of modal logic
with a global modality. The global modality is known to supply a discriminator
term for the class of S-algebras [23]. In such contexts, by the results of [22], ex-
istence of uniform interpolants imply (actually it is equivalent to) existence of a
model completion for the equational class of S-algebras. An easy modification
of the arguments in [22], shows also that the existence of global uniform inter-
polants for S implies the existence of a model completion TS? for the theory
TS axiomatizing the universal class of simple S-algebras. In this paper, we first
show that the latter condition (namely existence of a model completion TS

?

for TS) is sufficient to characterize non-standard S-rules. This characterization
yields effective recognizability of non-standard rules, if quantifier elimination in
T ?S is effective. The latter is certainly the case when S is decidable and locally
tabular. We apply this general result to the case of contact algebras, where
we show that the model completion of the theory of simple algebras exists and
provide also an axiomatization for it.

2 Π2-rules and model completions
A modal signature Σ is a finite signature comprising Boolean operators ∧,∨,→
,↔,¬ as well as additional operators of any arity called the modal operators.
Among modal operators, there is a distinguished unary operator [∀], called
the global or universal modality. Out of Σ-symbols and out of a countable
set of variables x, y, z, . . . , p, q, r, . . . one can build the set of propositional Σ-
formulae. Σ-formulae might be indicated both with the greek letters φ, ψ, . . .
and the latin capital letters F,G, . . . . Notations such as F (x) mean that the
Σ-formula F contains at most the variables from the tuple x. A modal system
S (over the modal signature Σ) is a set of Σ-formulae comprising tautologies,
the axioms:

[∀]φ→ φ, [∀]φ→ [∀][∀]φ,
φ→ [∀]¬[∀]¬φ, [∀](φ→ ψ)→ ([∀]φ→ [∀]ψ),∧

i

[∀](φi ↔ ψi)→ (O(...φi...)↔ O(...ψi...)) (for all O ∈ Σ).

and closed under the rules of modus ponens (MP) (form φ and φ → ψ infer
ψ), uniform substitution (US) (from F (x) infer F (ψ/x)), and necessitation (N)
(from φ infer [∀]φ). We often write S ` Φ or `S φ for φ ∈ S. We let a
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modal signature Σ and a modal system S be fixed for the remaining part of this
section. Formulas in S will be called S-axioms. We say that S is decidable
iff the relation S ` φ is decidable. We also say that S is locally tabular iff for
every finite tuple of propositional variables x there are finitely many formulae
ψ(x), . . . , ψn(x) such that for every further formula φ(x) there is some i in
1, . . . , n such that S ` φ↔ ψi.

We now consider the effect of the addition of Π2-rules (see Definition 1.1)
to a system S.
Definition 2.1 [Proofs with Π2-rules] Let Θ be a set of Π2-rules. For a formula
ϕ, we say that ϕ is derivable in S using the Π2-rules in Θ, and write `S+Θ ϕ,
provided there is a proof ψ1, . . . , ψn such that ψn = ϕ and each ψi is an instance
of an axiom of S, or is obtained either by (MP) or (N) from some previous ψj ’s,
or there is j < i such that ψi is obtained from ψj by an application of one of
the Π2-rules ρ ∈ Θ. The latter means the following, for ρ like in Definition 1.1:
ψj = F (ξ/x, p) → χ and ψi = G(ξ/x) → χ, where F,G are formulas, ξ is a
tuple of formulas, χ is a formula, and p is a tuple of propositional letters not
occurring in ξ, χ.

We are interested in characterizing those Π2-rules that can be freely used
in a system without affecting its deductive power.

Definition 2.2 A rule ρ is admissible in the system S if for each formula ϕ,
from `S+ρ ϕ it follows that `S ϕ.

We may view our modal signature Σ as a first-order signature and Σ-
formulae as terms in such a signature. For a modal system S, an S-algebra
is a Boolean algebra with operations (one operation of suitable arity for each
O ∈ Σ) satisfying [∀]> = > and φ = > for every S-axioms φ. We call an
S-algebra simple iff the universal first-order condition ∀x ([∀]x = >∨ [∀]x = ⊥)
holds. This agrees with the standard definition from universal algebra, be-
cause it can be shown that congruences in a S-algebra bijectively correspond
to [∀]-filters, i.e. to filters F satisfying the additional condition that a ∈ F
implies [∀]a ∈ F . We call TS the equational first-order theory of simple non
degenerate S-algebras (an S-algebra is non degenerate iff ⊥ 6= >). A standard
Lindenbaum construction proves the algebraic completeness theorem, namely
that for every φ we have S ` φ iff the identity φ = > holds in all S-algebras
(and hence iff φ = > holds in all simple S-algebras, because S-algebras are a
discriminator variety).

With each Π2-rule ρ given in Definition 1.1, we can associate the following
∀∃-statement in the first-order language of S-algebras:

Π(ρ) := ∀x, z
(
G(x) � z ⇒ ∃y : F (x, y) � z

)
.

Theorem 2.3 Suppose that the universal theory TS has a model completion
T ?S . Then a Π2-rule ρ is admissible in S iff T ?S |= Π(ρ).

Proof. In our general setting [4, Theorem 6.12] holds, replacing the system SIC
mentioned there with our generic system S (the proof of this generalization is
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reported in the Appendix below as Theorem A.4 and follows the very same
arguments as the analogous result of [4]). Using that theorem, we have to show
that T ?S |= Π(ρ) holds iff every simple S-algebra B can be embedded into some
simple S-algebra C which satisfies Π(ρ). This is shown below using the fact
that Π(ρ) is a Π2-sentence. Recall that models of T ?S are just the existentially
closed simple S-algebras (see [12, Proposition 3.5.15]).

Suppose for the left to right direction that T ?S |= Π(ρ) holds and let B be any
simple S-algebra. Then B embeds into an existentially closed simple S-algebra
C (this is a general model-theoretic fact [12]); as mentioned above, since TS
has a model completion T ?S , the existentially closed simple S-algebras are an
elementary class and are precisely the models of T ?S . Thus B embeds into C
and C satisfies Π(ρ), because T ?S |= Π(ρ).

Conversely, suppose that every simple S-algebra B can be embedded into
some simple S-algebra C which satisfies Π(ρ). Pick B such that B |= T ?S and
let Π(ρ) be ∀x∃yH(x, y), where H is quantifier free. Let b be a tuple from the
support of B. Then we have C |= ∃yH(b, y) for some extension C of B. As B is
existentially closed, this immediately entails that B |= ∃yH(b, y). Since the b
was arbitrary, we conclude that B |= Π(ρ), as required. 2

Checking whether a Π2-rule is admissible or not now amounts to check-
ing whether T ?S |= Π(ρ) holds or not. The latter can be done via quantifier
elimination in T ?S . We give sufficient conditions for this to be effective.

Corollary 2.4 Let S be decidable and locally tabular. Assume also that simple
S-algebras enjoy the amalgamation property. Then admissibility of Π2-rules in
S is effective.

Proof. Local tabularity of S implies local finiteness 2 of TS . For universal
locally finite theories in a finite language, amalgamability is a necessary and
sufficient condition for existence of a model completion [25,34]. Quantifier
elimination in T ?S is effective because there are only finitely many non-equivalent
formulae in a fixed finite number of variables, because of Lemma A.3 from the
Appendix and because of the following folklore lemma. 2

Lemma 2.5 The quantifier-free formula R(x) provably equivalent in T ?S to an
existential formula ∃yH(x, y) is the strongest quantifier free formula G(x) im-
plied (modulo TS) by H(x, y).

Proof. Recall that TS and T ?S are co-theories [12], i.e. they prove the same
universal formulae. Thus we have the following chain of equivalences:

TS ` H(x, y)→ G(x)

T ?S ` H(x, y)→ G(x)

T ?S ` ∃yH(x, y)→ G(x)

T ?S ` R(x)→ G(x)
TS ` R(x)→ G(x)

2 Recall that a class of algebras is locally finite if every finitely generated algebra in this class
if finite, see [11, Section 14.2] for the connection between local finiteness and local tabularity.
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yielding the claim. 2

We point out that there might be different ways (other than Corollary 2.4)
to exploit Theorem 2.3 in order to decide admissibility of Π2-rules (for instance,
as mentioned in the introduction, computability of global interpolants offers a
powerful opportunity, given the relationship between model completions and
uniform global interpolants [22]). However Corollary 2.4 gives a simple cri-
terion, independent of more sophisticated machinery, which is useful for the
application of this paper. In Section 4, we give an example of the application
of Corollary 2.4 for recognizing an admissible rule.

The usefulness of Corollary 2.4 lies in the fact that its only real require-
ment is the amalgamation property, besides local tabularity. Whenever local
tabularity holds, finitely presented algebras are finite, thus it is sufficient to es-
tablish amalgamability for finite algebras (this is easily seen by compactness of
first-order logic, because, in the end, amalgamation property can be established
by showing the consistency of some joined Robinson diagrams). Whenever a
“good” duality is established, amalgamation of finite algebras turns out to be
equivalent to dual amalgamation for finite frames, which is usually much easier
to check. We will now give a couple of simple (non-)examples.

Example 2.6 If the modal signature contains only the global modality [∀],
we have the locally tabular logic S5. Finite simple non degenerate S5-algebras
are dual to finite nonempty sets and onto maps, for which dual amalgamation
trivially holds (by standard pullback construction), see, e.g., [11, Thm. 14.23].

Example 2.7 The logic of difference [14,32] has in addition to the global
modality a unary operator D subject to the axioms

[∀]φ↔ (φ ∧ ¬D¬φ), φ→ D¬D¬φ, DDφ→ φ ∨Dφ.

This logic axiomatizes Kripke frames where the accessibility relation is in-
equality. Local finiteness can be established for instance by the method of
irreducible models [21]. Amalgamation however fails. To see this, notice
that the simple frames for this logic are sets endowed with a relation E such
that w1 6= w2 → w1Ew2. Now let X = {x1, . . . , x5}, Y = {y1, . . . , y5} and
Z = {z1, z2}. Let xiEXxj iff i 6= j for 1 ≤ i, j ≤ 5, yiEY yj iff i 6= j
for 1 ≤ i, j ≤ 5 and ziEZzj for i, j = 1, 2. Let also f : X → Z and
g : Y → Z be such that f(x1) = f(x2) = f(x3) = g(y1) = g(y2) = z1 and
f(x4) = f(x5) = g(y3) = g(y4) = g(y4) = z5. Then it is easy to see that f and
g are p-morphisms. If a dual amalgam exists, then there must exist a frame
(U,EU ) and onto p-morphims h : U → X and j : U → Y such that f ◦h = g◦j.
However, an easy argument shows that U should contain more than 5 points.
Moreover, for u, v ∈ U with u 6= v we should have uEUv. But then there will
be distinct points in U mapped by f to some xi, which would entail that xi is
reflexive, which is a contradiction.
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3 Symmetric Strict Implication and Contact Algebras
In this section we first review some material from [4]. Let us consider the
modal signature comprising, besides the global modality [∀], a binary operator
;, which we call strict implication, subject to the following axioms (we keep
the same numeration as in [4] and add axiom (A0) which is seen as a definition
of [∀] in [4]).
(A0) [∀]ϕ↔ (>; ϕ),
(A1) (⊥; ϕ) ∧ (ϕ; >),
(A2) [(ϕ ∨ ψ) ; χ]↔ [(ϕ; χ) ∧ (ψ ; χ)],
(A3) [ϕ; (ψ ∧ χ)]↔ [(ϕ; ψ) ∧ (ϕ; χ)],
(A4) (ϕ; ψ)→ (ϕ→ ψ),
(A5) (ϕ; ψ)↔ (¬ψ ; ¬ϕ),
(A8) [∀]ϕ→ [∀][∀]ϕ,
(A9) ¬[∀]ϕ→ [∀]¬[∀]ϕ,
(A10) (ϕ; ψ)↔ [∀](ϕ; ψ),
(A11) [∀]ϕ→ (¬[∀]ϕ; ⊥),
Inference rules are modus ponens and necessitation. It can be shown (see [4])
that this system (called symmetric strict implication calculus S2IC) matches
our requirements from Section 2. Moreover S2IC is locally tabular and simple
S2IC-algebras are those S2IC-algebras B where we have that a ; b is either ⊥
or >. Thus in a simple non-degenerate S2IC-algebra, the operation ; is in fact
the characteristic function of a binary relation ≺. It can be proved that the
characteristic function of a binary relation ≺ on a Boolean algebra gives rise
to an S2IC-algebra structure iff it satisfies the following conditions:
(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a.

Non-degenerate Boolean algebras endowed with a relation ≺ satisfying the
above conditions (S1)-(S6) are called contact algebras. 3 Since the theory of non
degenerate simple S2IC-algebras is essentially the same (in fact, it is a syntactic
variant) as the universal theory Con of contact algebras, we shall investigate
the latter in order to apply Corollary 2.4. What we have to show in order to
check the hypotheses of such a corollary is just that Con is amalgamable.

To prove amalgamability, we need a duality theorem. In [5,10,16] a duality
theorem is established for the category of contact algebras and ≺-maps (a map
µ : (B,≺) → (C,≺) among contact algebras is said to be a ≺-map iff it is a
Boolean homomorphism such that a ≺ b implies µ(a) ≺ µ(b)). We shall make
use of that theorem but we shall modify it, because for amalgamation we need

3 It is more common to use in contact algebras the contact relation δ [30] which is given by
aδb iff a 6≺ ¬b. However, we stick with our notation to stay close to our main reference [4].
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a duality for contact algebras and embeddings in the model theoretic sense (this
means that an embedding is an injective map that not only preserves but also
reflects the relation ≺). We first recall the duality theorem of [5], giving just
the minimum information that is indispensable for our purposes.

We say that a binary relation R on a topological space X is closed if R is
a closed subset of X × X in the product topology. Let StR be the category
having (i) as objects the pairs (X,R), where X is a (non empty) Stone space
and R is a closed, reflexive and symmetric relation on X, and (ii) as arrows
the continuous maps f : (X,R) → (X ′, R′) which are stable (i.e. such that
xRy implies f(x)R′f(y) for all points x, y in the domain of f). We define a
contravariant functor

(−)? : StRop → Cons

into the category Cons of contact algebras and ≺-maps as follows:
• for an object (X,R), the contact algebra (X,R)? has Clop(X) the clopens
of X as carrier set (with union, intersection and complement as Boolean
operations) and its relation ≺ is given by C ≺ D iff R[C] ⊆ D (here we
used the abbreviation R[C] = {x ∈ X | sRx for some s ∈ C});

• for a stable continuous map f : (X,R) → (X ′, R′), the map f? is the
inverse image along f .

Theorem 3.1 ([5,16]) The functor (−)? establishes an equivalence of cate-
gories.

We now intend to restrict this equivalence to the category Cone of contact
algebras and embeddings. To this aim we need to identify a suitable subcat-
egory StRe of StR. Now StRe has the same objects as StR, however a stable
continuous map f : (X1, R1)→ (X2, R2) is in StRe iff it satisfies the following
additional condition:

∀x, y ∈ X2 [xR2y ⇔ ∃x̃, ỹ ∈ X1 s.t. f(x̃) = x, f(ỹ) = y & x̃R1ỹ] (1)

Notice that, since R2 is reflexive, it turns out that a map satisfying (1) must be
surjective. We call the stable maps satisfying (1) regular stable maps, because it
can be shown that these maps are just the regular epimorphisms in the category
StR.

Theorem 3.2 The functor (−)?, suitably restricted in its domain and
codomain, establishes an equivalence of categories between StRe and Cone.

Proof. We need to show that f satisfies condition (1) above iff f? is an em-
bedding between contact algebras, i.e. iff it satisfies the condition

(R1[f−1(U)] ⊆ f−1(V ) ⇔ R2[U ] ⊆ V ) ∀ U, V ∈ Clop(X2) (2)

where Clop(X2) is the set of clopens of the Stone space X2. We tranform
condition (2) up to equivalence. First notice that, by the adjunction between
direct and inverse image, (2) is equivalent to

(f(R1[f−1(U)]) ⊆ V ⇔ R2[U ] ⊆ V ) ∀ U, V ∈ Clop(X2) (3)
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Now, in compact Hausdorff spaces, closed relations and continuous functions
map closed sets to closed sets, hence f(R1[f−1(U)]) is closed and so, since
clopens are a base for closed sets, (3) turns out to be equivalent to

(f(R1[f−1(U)]) = R2[U ]) ∀ U ∈ Clop(X2) (4)

We now claim that (4) is equivalent to

f(R1[f−1({x})]) = R2[{x}] ∀x ∈ X2 (5)

In fact, (5) implies (4) because all operations f(−), R[−], f−1(−) preserve set-
theoretic unions. The converse implication holds because of Esakia’s lemma
below applied to the down-directed system {U ∈ Clop(X2) | x ∈ U}. Notice
that Esakia’s lemma applies because f◦R1◦fop and R2 are symmetric relations,
since R1 and R2 are symmetric (here we view f and f−1 = fop as relations via
their graphs).

Now it is sufficient to observe that (5) is equivalent to the conjunction of (1)
and stability. 2

We will now prove a version of Esakia’s lemma for our spaces. Esakia’s
lemma normally speaks about the inverse of a relation R, but here we need a
version which holds for R-images because our relation is symmetric.

Lemma 3.3 (Esakia, Lemma 3.3.12 in [17]) Let X be a compact Haus-
dorff space, and R a point-closed 4 symmetric binary relation on X. Then
for each downward directed family C ={Ci}i∈I of nonempty closed subsets of
X, we have R[

⋂
i∈I
Ci] =

⋂
i∈I
R[Ci].

Proof. The inclusion R[
⋂
i∈I
Ci] ⊆

⋂
i∈I
R[Ci] is trivial. Now suppose x ∈ ⋂

i∈I
R[Ci].

Then x ∈ R[Ci] for each Ci and, by symmetry, R[x] ∩Ci is nonempty for each
i ∈ I. But as Ci-s are downward directed, all the finite intersections R[x] ∩
Ci1 ∩ ... ∩ Cin (with ij ∈ I for j ∈ {1, ..., n}) are nonempty. By compactness,
the infinite intersection (which equals R[x] ∩ ⋂

i∈I
Ci) is nonempty and so, by

symmetry, x ∈ R[
⋂
i∈I
Ci]. 2

Now we are ready to show that Corollary 2.4 applies.

Theorem 3.4 The universal theory Con of contact algebras has the amalgama-
tion property. Therefore, as it is also locally finite, Con has a model completion.

Proof. As we observed in Section 2, it is sufficient to prove amalgamation for
finite algebras (by local finiteness and by a compactness argument based on
Robinson diagrams). Finite algebras are dual to discrete Stone spaces, hence
it is sufficient to show the following.

4 A binary relation R on a topological space X is said to be point-closed if ∀x ∈ X R[x] is
closed in X. A closed relation in a compact Hausdorff space maps closed sets to closed sets
via R[−], hence it is point-closed.
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(+) Given finite nonempty sets XA, XB , XC endwed with reflexive and sym-
metric relations RA, RB , RC and given regular stable maps f : (XB , RB) →
(XA, RA), g : (XB , RB) → (XA, RA), there exist (XD, RD) (with reflexive
and symmetric RD) and regular stable maps π1 : (XD, RD) → (XB , RB),
π2 : (XD, RD)→ (XC , RC), such that f ◦ π1 = g ◦ π2.

Statement (+) is easily proved by taking as (XD, RD), π1, π2 the obvious
pullback with the two projections. 2

4 A Set of Axioms for Con?

Theorem 3.4 gives the possibility of applying Corollary 2.4 to recognize ad-
missible rules. We give here another algorithm, slightly different from that of
Corollary 2.4. We recall that Con? is the theory of existentially closed contact
algebras [12]. The following result (given that Con is locally finite) is folklore
(a detailed proof of the analogous statement for Brouwverian semilattices is in
the ArXiv version of [9] as [8, Proposition 2.16]).

Theorem 4.1 Let (B,≺) be a contact algebra. We have that (B,≺) is exis-
tentially closed iff for any finite subalgebra (B0,≺) ⊆ (B,≺) and for any finite
extension (C,≺) ⊇ (B0,≺) there exists an embedding (C,≺) ↪→ (B,≺) such that
the following diagram commutes

(B0,≺) (B,≺)

(C,≺)

Example 4.2 Consider the Π2-rule:

(ρ9)
(p; p) ∧ (ϕ; p) ∧ (p; ψ)→ χ

(ϕ; ψ)→ χ

This rule is admissible in S2IC [4, Theorem 6.15]. We will now give an alter-
native and more automated proof of this result. Translating Π(ρ9) into the
equivalent language of contact algebras, we obtain (see statement (S9) from
Section 6.3 of [4])

x ≺ y ⇒ ∃z (z ≺ z ∧ x ≺ z ≺ y) (6)

According to Theorem 2.3, we have to show that (6) is provable in Con?.
Note that (6) expresses interesting (order-)topological properties. It is valid
on (X,R) iff R is a Priestley quasi-order [5, Lemma 5.2]. Also it is valid on a
compact Hausdorff space X iff X is a Stone space [3, Lemma 4.11].

If we follow the procedure of Corollary 2.4 (which is based on Lemma 2.5),
we first compute the quantifier-free formula equivalent in Con? to ∃z (z ≺ z ∧
x ≺ z ≺ y) by taking the conjunction of the (finitely many) quantifier-free first-
order formulae φ(x, y) which are implied (modulo Con) by z ≺ z ∧ x ≺ z ≺ y:
this is, up to equivalence, x ≺ y. Now, in order to show the admissibility of
(ρ9) is sufficient to observe that Con |= x ≺ y ⇒ x ≺ y.
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As an alternative, we can rely on Theorem 4.1 and show that (6) is true
in every existentially closed contact algebra. To this aim, it is sufficient to
enumerate all contact algebras B0 generated by two elements a, b such that
B0 |= a ≺ b and to show that all such algebras embed in a contact algebra C
generated by three elements a, b, c such that C |= c ≺ c∧ a ≺ c ≺ b (this can be
done automatically for instance using a model finder tool). Both of the above
procedures are heavy and not elegant, but they are nevertheless mechanical and
do not require ingenious ad hoc constructions (such as e.g., the construction of
Lemma 5.4 in [4]).

Theorem 4.1 implicitly supplies an infinite set of axioms for the model com-
pletion of the theory of contact algebras. Such an axiomatization is not however
very informative, as it comes from generic model-theoretic facts. In this section,
we supply a better axiomatization, following the same strategy used in [13] for
the case of amalgamable locally finite varieties of Heyting algebras and in [9]
for the case of Brouwverian semilattices. The strategy consists of classifying
minimal extensions via the so-called ‘signatures’.

It is evident that the Theorem 4.1 still holds if we limit its statement to
finite minimal extensions (C,≺) of (B0,≺) (such an extension (C,≺) is said
to be minimal iff it is proper and every proper extension contains it, up to
isomorphism). Using our Duality Theorem 3.2 restricted to the finite discrete
case, we can characterize the dual spaces (XC , RC) and (XB0

, RB0
) and the

dual stable map f : (XC , RC) → (XB0
, RB0

) corresponding to such minimal
extensions.

Proposition 4.3 Let (B0,≺) ↪→ (C,≺) be an embedding between finite contact
algebras, with dual regular stable map f : (XC , RC)→ (XB0

, RB0
). The embed-

ding is minimal iff (up to isomorphism) there are a finite set Y , finite subsets
S1, S2 ⊆ Y and elements x ∈ XB0 , x1 ∈ XC , x2 ∈ XC such that:

(i) XB0
is the disjoint union Y ⊕ {x};

(ii) XC is the disjoint union Y ⊕ {x1, x2};
(iii) f restricted to Y is the identity map and f(x1) = f(x2) = x;
(iv) the restrictions of RC and of RB0 to Y coincide;
(v) RC [x1] \ {x1} = S1 and RC [x2] \ {x2} = S2;
(vi) RB0

[x] \ {x} = S1 ∪ S2.

Proof. First notice that, as a consequence of (1), if the cardinality of XB0 and
of XC are the same, then f is an isomorphism. This is seen as follows: we
already observed that condition (1) implies surjectivity and in case of the same
finite cardinality surjectivity implies injectivity. Preservation and reflection of
the relation follow by stability and (1) again.

In addition, if the cardinality of XC is equal to the cardinality of XB0 plus
one (this is precisely the case mentioned in the statement of the proposition),
then f cannot be properly factored, hence it is minimal. We show that all
minimal maps arise in this way.
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In general, if the cardinality of XC is bigger than the cardinality of XB0 ,
we can define the following factorization of f . Pick some x ∈ XB0

having more
than one preimage and split f−1({x}) as T1 ∪T2, where T1, T2 are disjoint and
non-empty. We have that XC is the disjoint union X ⊕ T1 ⊕ T2 for some set X
and XB0 is the disjoint union Y ⊕ {x} for some set Y . Define a discrete dual
space (Z,RZ) as follows. Z is the disjoint union Y ⊕{x1, x2} for new x1, x2 and
RZ is the reflexive and symmetric closure of the following sets of pairs: (i) the
pairs (z1, z2) for z1RB0

z2 and z1, z2 ∈ Y ; (ii) the pairs (xi, u) for u ∈ f(RC [Ti])
(i = 1, 2); (iii) the pair (x1, x2), but only in case T1 ∩ RC [T2] 6= ∅. Then it is
easily seen that f factorizes as h ◦ f̃ in StRe, where: (I) f̃ maps T1 to x1, T2 to
x2 and acts as f on X; (II) h is the identity on Y and maps both x1, x2 to x.

Now h produces the data required by the proposition and f̃ must be an
isomorphism if f is minimal. 2

Notice that the above conditions (i)-(vi) determine uniquely the finite min-
imal extension over the contact algebras dual to (XB0

, RB0
) except for a detail:

they do not specify whether we have x1RCx2 or not. So the data x, S1, S2 and
Y = XB0 \ {x} (lying inside XB0) determine in fact two minimal expansions of
the contact algebra dual to (XB0

, RB0
).

The next step is to re-dualize the data of Proposition 4.3 inside a given
finite contact algebra. We first need some notation.

Definition 4.4 Let (B0,≺B0) be a finite subalgebra of the contact algebra
(B,≺B). Then, for b ∈ B, we define [b]≺B0 :=

⋂{x ∈ B0 | b ≺B x}.
The notion of a signature given below dualizes and internalizes the data

of Proposition 4.3 (the further bit ? is used to distinguish the two possible
minimal extensions).

Definition 4.5 Let (B0,≺B0
) be a finite contact algebra. We call a signature

in (B0,≺B0
) a tuple (b, c̃1, c̃2), where b ∈ B0 is an atom, and c̃1, c̃2 ∈ B0 are

such that [b]≺B0 ∧ ¬b = c̃1 ∨ c̃2. A marked signature in (B0,≺B0
) is a tuple

(b, c̃1, c̃2, ?), where (b, c̃1, c̃2) is a signature and ? ∈ {0, 1}.
We are now ready to produce our first-order axiomatization of existentially

closed contact algebras.

Theorem 4.6 A contact algebra (B,≺B) is existentially closed if and only if,
for any finite subalgebra (B0,≺B0) ⊆ (B,≺B), the following conditions hold:

(i) for every marked signature (b, c̃1, c̃2, 1) in (B0,≺B0
), there exist b1, b2 ∈

B \ {0} such that b = b1 ∨ b2, b1 ∧ b2 = ⊥, [bi]
≺B0 = c̃i ∨ b for i ∈ {1, 2}

and b1 6≺B ¬b2;
(ii) for every marked signature (b, c̃1, c̃2, 0) in (B0,≺B0

), there exist b1, b2 ∈
B \ {0} such that b = b1 ∨ b2, b1 ∧ b2 = ⊥, [bi]

≺B0 = c̃i ∨ b for i ∈ {1, 2}
and b1 ≺B ¬b2.

Proof. (⇒) Let (B0,≺B0
) ↪→ (B,≺B) be a finite subalgebra, and let (b, c̃1, c̃2, ?)

be a signature in (B0,≺B0
). Let (B0,≺B0

) ↪→ (C,≺C) be the finite minimal
extension whose dual satisfies the conditions (i)-(vi) of Proposition 4.3 (and
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also x1RCx2 iff ? = 1). Then it is clear that there exist b1, b2 satisfying (i) (for
the case ? = 1) or (ii) (for the case ? = 0) inside (C,≺C). Thanks to Theorem
4.1, we know that there exists an embedding (C,≺C) ↪→ (B,≺B) that fixes
(B0,≺B0

). Via this embedding, the required b1, b2 are moved to (B,≺B): they
still satisfy the conditions required by (i) and (ii) because such conditions can
be expressed as first-order ground conditions with parameters in (B0,≺B0) 5

and hence they are preserved through embeddings.
(⇐) Here we use our Duality Theorem 3.2. We are given a finite contact

subalgebra (B0,≺B0
) of (B,≺B) and a finite minimal extension (C,≺C) of its.

The situation, in the dual category is the following:

(XB0 , RB0) (XB, RB)

(XC , RC)

f̄

f̃
f

where f̄ is dual to the inclusion (B0,≺B0
) ↪→ (B,≺B) and f satisfies the condi-

tions (i)-(vi) of Proposition 4.3. We need to define f̃ so that the above triangle
commutes in the category StRe. Recall that the two spaces XB0

, XC are dis-
crete, but XB is not.

By hypothesis, we know that there exist non empty disjoint clopens
Ub1 , Ub2 ∈ Clop(XB) such that f̄−1({x}) = Ub1 ∪ Ub2 . According to Defini-
tion 4.4, we have that the clopen defined by [bi]

≺B0 is the intersection of the
family f̄−1(T ) varying T among the subsets ofXB0

such thatRB[Ubi ] ⊆ f̄−1(T ),
i.e. varying T among the subsets of XB0 such that f̄(RB[Ubi ]) ⊆ T . Since this
intersection is precisely f̄−1(f̄(RB[Ubi ])), according to our hypothesis, we have
f̄−1(f̄(RB[Ubi ])) = f̄−1(Si) ∪ f̄−1({x}). Since f̄−1 is injective, we conclude

f̄(RB[Ub1 ])) = S1 ∪ {x} and f̄(RB[Ub2 ])) = S2 ∪ {x}. (7)

In case x1RCx2 holds, we use hypothesis (i) and in case it does not hold, we use
hypothesis (ii). To sum up, recalling that b1 6≺ ¬b2 dualizes to RB[Ub1 ]∩Ub2 6=
∅, we get

x1RCx2 ⇐⇒ RB[Ub1 ] ∩ Ub2 6= ∅. (8)

We define f̃ as follows: f̃(z) = f̄(z) for z 6∈ Ub1 ∪Ub2 , f̃(z) = x1 for z ∈ Ub1 ,
f̃(z) = x2 for z ∈ Ub2 . By Proposition 4.3(iii), it is clear that f̃ ◦ f = f̄ . The
continuity of f̃ is also immediate.

Let us check stability, namely that for y1, y2 ∈ XB such that y1RBy2, we
have f̃(y1)RC f̃(y2). We distinguish three cases:

1. y1, y2 6∈ Ub1 ∪ Ub2
2. y1 ∈ Ub1 , y2 6∈ Ub1 ∪ Ub2
3. y1, y2 ∈ Ub2 ∪ Ub2

5 If a1, . . . , an are the elements of B0, then [bi]
≺B0 = c̃i ∨ b can be written as∧n

j=1 (bi ≺ aj ↔ (c̃i ∨ b ≤ aj)).
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(by the symmetry of RB, this enumeration is exhaustive, up to exchanging the
role of Ub1 and of Ub2). Case 1 is covered by the stability of f̄ and Proposi-
tion 4.3(iv). Case 3 is covered by the reflexivity of RC and (8). In Case 2,
we have y2 ∈ RB[Ub1 ], thus f̃(y2) = f̄(y2) ∈ S1 by (7) (and by the fact that
f̄(y2) 6= x). Thus we conclude x1 = f̃(y1)RC f̃(y2) by Proposition 4.3(v).

It remains to prove that for all z1, z2 ∈ XC such that z1RCz2 we have

∃y1, y2 ∈ XB s.t. f̃(y1) = z1 & f̃(y2) = z2 & y1RBy2 (9)

(this is condition (1)). Again we distinguish three cases:

a. z1, z2 6∈ {x1, x2}
b. z1 = x1, z2 6∈ {x1, x2}
c. z1 = x1, z2 = x2.

Case a is covered by Proposition 4.3(iii) and by the fact that f̄ satisfies con-
dition (1). Case c is covered by (8). In Case b, z2 ∈ S1 by Proposition 4.3(v)
and by (7) there are y1 ∈ Ub1 and y2 such that y1RBy2 and f̄(y2) = z2. Then,
f̃(y1) = x1 = z1 and f̃(y2) = f̄(y2) = z2 (we have f̃(y2) = f̄(y2) because
f̄(y2) = z2 6= x, so that y2 6∈ Ub1 ∪ Ub2). 2

Theorem 4.6 gives a first order axiomatization because the reference to
finite subalgebras can be replaced by a suitable string of universal quantifiers.
However, the above axiomatization is infinite, thus determining whether there
exists a finite axiomatization (and supplying one, in case of a positive answer)
remains at the moment an open question.

In principle, the axiomatization supplied by Theorem 4.6 should be natu-
rally convertible (using Lemma A.3 below) into a basis for admissible Π2-rules
for the symmetric strict implication calculus, once the notion of a basis for
admissible Π2-rules is suitably defined. We leave this task for future research.
Connections with the literature on admissibility of standard inference rules in
contact algebras [1] should also be developed: our non-standard rules have the
particular shape (ρ) outlined in Definition 1.1 and they trivialize if they are
standard (i.e., if p does not occur in the formula F from the premise); however
it could be interesting to analyze more general formats for non-standard rules
encompassing standard inference rules.
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Appendix
A An Admissibility Criterion
We report here the statement and the proof of Theorem 6.12 of [4], generalized
to a system S satisfying the conditions of Section 2. We need the same series
of results as in [4], starting from Theorem 6.6 of [4] (we need only a slightly
simplified version of the last theorem because we do not consider proofs with
assumptions):

Theorem A.1 For every set of Π2-rules Θ and for every formula ψ, we have
that TS ∪ {Π(ρ) | ρ ∈ Θ} |= ψ = > ⇐⇒ `S+Θ ψ.

Proof. The right-to-left direction is a trivial induction on the length of a proof
witnessing `S+Θ ψ. For the other side, we need a modified Lindembaum con-
struction. Suppose that 6`S+Θ ψ. For each rule ρi ∈ Θ, we add a countably
infinite set of fresh propositional letters to the set of existing propositional
letters. Then we build the Lindenbaum algebra B over the expanded set of
propositional letters, where the elements are the equivalence classes [ϕ] under
provable equivalence in S + Θ. Next we construct a maximal [∀]-filter M of B
such that ¬[∀]ψ ∈M and for every rule ρi ∈ Θ

(ρi)
Fi(ϕ/x, p)→ χ

Gi(ϕ/x)→ χ

and formulas ϕ, χ:

(†) if [Gi(ϕ)→ χ] 6∈M , then there is a tuple p such that [Fi(ϕ, p)→ χ] 6∈M .

To constructM , let ∆0 := {¬[∀]ϕ}, a consistent set. We enumerate all formulas
ϕ as (ϕk : k ∈ N) and all tuples (i, ϕ, χ) where i ∈ N and ϕ, χ are as in the
particular rule ρi, and we build the sets ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆n ⊆ . . . as follows
(notice that, according to the construction below, for all n and θ ∈ ∆n, we
have `S+Θ θ ↔ [∀]θ).
• For n = 2k, if 6`S+Θ

∧
∆n → [∀]ϕk, let ∆n+1 = ∆n ∪ {¬[∀]ϕk}; otherwise

let ∆n+1 = ∆n.
• For n = 2k+ 1, let (l, ϕ, χ) be the k-th tuple. If 6`S+Θ

∧
∆n → (Gl(ϕ)→

χ), let ∆n+1 = ∆n ∪ {¬[∀](Fl(ϕ, p) → χ)}, where p is a tuple of proposi-
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tional letters for ρl not occurring in ϕ, χ, and any of θ with θ ∈ ∆n (we can
take p from the countably infinite additional propositional letters which
we have reserved for the rule ρl). Otherwise, let ∆n+1 = ∆n.

Let M be

{ [θ] | there are θ1, . . . , θn ∈
⋃

n∈N
∆i such that `S+Θ θ1 ∧ · · · ∧ θn → θ} .

It is clear that M is a proper [∀]-filter not containing [ψ]. 6 Also, by the even
steps of the construction of the sets ∆n, it contains either [[∀]θ] or [¬[∀]θ] for
every θ, thusM is a maximal [∀]-filter. Finally, the odd steps of the construction
of the sets ∆n ensure that M satisfies (†): in fact, if [Gi(ϕ)→ χ] 6∈M , then by
step n = 2k+ 1, we have [¬[∀](Fl(ϕ, p)→ χ)] ∈M and if also [Fi(ϕ, p)→ χ] ∈
M , then [[∀](Fi(ϕ, p) → χ)] ∈ M (because M is a [∀]-filter) and so M would
not be proper, a contradiction. Therefore, we can conclude that M satisfies all
the desired properties.

By (†), the quotient of B by M satisfies each Π(ρi); such a quotient is a
simple algebra, because M is maximal as a [∀]-filter. Moreover, since [¬[∀]ψ] ∈
M , we have that [¬[∀]ψ] maps to >, so [[∀]ψ] maps to ⊥ in the quotient. Thus,
[ϕ] does not map to > in the quotient, and hence TS ∪ {Π(ρ) | ρ ∈ Θ} 6|= ψ =
>. 2

Definition A.2 Given a quantifier-free first-order formula Φ(x), we associate
with it the term (aka the propositional modal formula) Φ∗(x) as follows:

(t(x) = u(x))∗ = [∀](t(x)↔ u(x))

(¬Ψ)∗(x) = ¬Ψ∗(x)

(Ψ1(x) ∧Ψ2(x)∗ = Ψ∗1(x) ∧Ψ∗2(x).

The following lemma is immediate:

Lemma A.3 Let B be a simple S-algebra and let Φ(x) be a quantifier-free
formula. Then we have B |= Φ(a/x) iff B |= (Φ(a/x))∗ = >, for every tuple a
from B.
Theorem A.4 (Admissibility Criterion) A Π2-rule ρ is admissible in S
iff for each simple S-algebra B there is a simple S-algebra C such that B is a
substructure of C and C |= Π(ρ).

Proof. (⇒) Suppose that the rule ρ

(ρ)
F (ϕ/x, p)→ χ

G(ϕ/x)→ χ

6 The fact that M is proper comes from the fact that 6`S+Θ
∧

∆n → ⊥. This is clear for
even n and for n = 0. For odd n = 2k + 1, suppose that `S+Θ

∧
∆k → [∀](Fl(ϕ, p) → χ)

and that 6`S+Θ
∧

∆k → (Gl(ϕ) → χ). Then, by the axiom [∀]φ → φ from Section 2,
we have `S+Θ Fl(ϕ, p) → (

∧
∆k → χ) and also (applying the rule ρl of the k-th tuple)

`S+Θ Gl(ϕ)→ (
∧

∆k → χ), yielding a contradiction.
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is admissible in S. It is sufficient to show that there exists a model C of the
theory

T = TS ∪ {Π(ρ)} ∪∆(B)

where ∆(B) is the diagram of B [12, p. 68]. Suppose for a contradiction that
T has no models, hence is inconsistent. Then, by compactness, there exists a
quantifier-free first-order formula Ψ(x) and a tuple x of variables corresponding
to some a ∈ B such that

TS ∪ {Π(ρ)} |= ¬Ψ(a/x) and B |= Ψ(a/x).

By Theorem A.1, S + ρ is complete with respect to the simple S-algebras sat-
isfying Π(ρ). Therefore, by Lemma A.3, we have TS ∪{Π(ρ)} |= (¬Ψ(x))∗ = >
and also `S+ρ (¬Ψ(x))∗, where (−)∗ is the translation given in Definition A.2.
By admissibility, `S (¬Ψ(x))∗. Thus, for the valuation v into B that maps x to
a, we have v((¬Ψ(x))∗) = 1, so v((Ψ(x))∗) = 0. This contradicts the fact that
B |= Ψ(a/x). Consequently, T must be consistent, and hence it has a model.

(⇐) Suppose `S F (ϕ, p) → χ with p not occurring in ϕ, χ. Let B be a
simple S-algebra and let v be a valuation on B. By assumption, there is a
simple S-algebra C such that B is a substructure of C and C |= Π(ρ). Let
i : B ↪→ C be the inclusion. Then v′ := i ◦ v is a valuation on C. For any
c ∈ C, let v′′ be the valuation that agrees with v′ except for the fact that it
maps the p into the c. Since `S F (ϕ/x, p)→ χ, by the algebraic completeness
theorem 7 we have v′′(F (ϕ/x, p) → χ) = >. This means that for all c ∈ C,
we have F (v′(ϕ), c) ≤ v′(χ). Therefore, C |= ∀y

(
F (v′(ϕ), y) ≤ v′(χ)

)
. Since

C |= Π(ρ), we have C |= G(v′(ϕ)) ≤ v′(χ). Thus, as G(v′(ϕ)) ≤ v′(χ) holds in
C, we have that G(v(ϕ)) ≤ v(χ) holds in B. Consequently, v(G(ϕ)→ χ) = >.
Applying the algebraic completeness theorem again yields that `S G(ϕ) → χ
because B is arbitrary, and hence ρ is admissible in S. 2

7 This is Theorem A.1 for Θ = ∅.
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1 Introduction

Spinoza’s magnum opus Ethica More Geometrico Demonstrata (Ethics for
short) is not an easy or clear work, to put it mildly. 1 To make matters worse,
many commentators have complained of shoddy construction, arguing that
Spinoza’s logical argumentation breaks down often and early in the text (see
for instance [11,10,1]). In this paper, we present part of a broader effort to
reevaluate this pessimistic story of “Spinoza, the Logician” by reconstructing
an initial fragment of the Ethics through E1p15 within the modern framework
of quantified modal logic [8].

In his opening definitions and axioms, Spinoza introduces the building
blocks of his ontology—substance [substantia], attribute [attributum], mode

1 All quotations from Spinoza’s works and letters are from Curley’s translation [17]. We rely
on Gebhardt’s critical edition [16] for the Latin text. Passages in the Ethics are referred to
using the following standard abbreviations: ‘a’ for axiom, ‘c’ for corollary, ‘e’ for explanation,
‘p’ for proposition, ‘s’ for scholium, and ‘d’ for a definition when it appears immediately to
the right of the part of the book or a demonstration in all other cases (so, for example, E1d1
is the first definition of Part One of the Ethics, and E1p15d is the demonstration of the
fifteenth proposition of Part One). We use the abbreviation ‘KV’ for Short Treatise on God,
Man, and His Well-Being and ‘Ep.’ for Letters.



134 Spinozian Model Theory

[modus], and God [Deus]—and presents several constraints on the ontological,
conceptual, and causal relations that obtain between these protagonists. In
the propositions themselves, he establishes core properties of substance, such
as that it is self-caused (E1p7) and infinite in its own kind (E1p8). By the
time he reaches E1p15, Spinoza has already established his substance monism:
God, a substance with an infinity of attributes (E1d6), exists (E1p11), and is
unique (E1p14), and all inheres in God (E1p15). To the extent that Spinoza’s
demonstrations fail in this crucial early stage of the Ethics, this threatens the
metaphysical foundations of his entire project.

The semantic backbone of our reconstruction is a custom-made Spinozian
model theory, which we develop in the present installment of our work. This
theory lays out some of the formal prerequisites for more fine-grained formal
investigations into Spinoza’s fundamental ontology and modal metaphysics. We
implement Spinoza’s theory of attributes using many-sorted models with a rich
system of identity—our models include no less than three distinct notions of
numerical identity—that allows us to clarify the puzzling status of such logical
principles as the Substitution of Identicals [2,3] and Transitivity of Identity [9]
in Spinoza’s thought. The intensional structure of our Spinozian models also
captures his proposal that states of affairs can be necessitated or excluded by
the essences of particular things, an essence-relative modality that should be of
interest to philosophers who have sought to rehabilitate the concept of essence
in contemporary analytic metaphysics [5,6,7].

Given Spinoza’s metaphysical views, bringing in the modern apparatus
of possible worlds—and, indeed, allowing for domains consisting of multiple
entities—might seem like overkill, or even plain distortion. In addition to his
substance monism, we take Spinoza to establish a necessitarianism later in
Part One according to which every actual state of affairs is necessary—things
could not have been otherwise. However, it is important to keep in mind that
Spinoza has to argue for these doctrines, and some of his main conclusions are
drawn only after a lot of careful preliminary work (see E1p33 and its scholia).
So, we don’t want to build too much of Spinoza’s metaphysics directly into
our models, which must be capable of representing not only the positions that
Spinoza eventually arrives at in the Ethics but also alternative metaphysical
possibilities that he rules out through his argumentation, such as universes
with multiple co-existing substances and non-necessary facts.

That said, to capture some of Spinoza’s own idiosyncratic views about the
universe, our Spinozian models have a few non-standard twists. We motivate
these in sections 2 and 3, where we implement Spinoza’s theory of attributes
and essence-relative notions of possibility and conceivability—and provide more
overview of Spinoza’s philosophy in the process. We then present our full
Spinozian model theory in §4 and conclude in §5.

2 Modeling the Attributes

At the heart of Spinoza’s ontology is the distinction between substance and
mode. The hallmark of substance, according to Spinoza, is its independence.
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In his definition of substance (E1d3), he tells us that substance is “in itself [in
se]” (i.e., inheres in itself) and “conceived through itself [per se concipitur ]”.
Later, in E1p7d, Spinoza proves that substance is independent in a third sense:
substance is the cause of itself and is not caused by any other thing.

In contrast, modes are by their nature dependent beings. In his definition of
mode (E1d5), Spinoza asserts that a mode is an “affection” (roughly, a quality)
of substance, and then he spells out how modes are dependent in two senses
in which substance is not: a mode is “in another [in alio] through which it
is also conceived [per alio concipitur ]”—that is, a mode inheres in and must
be understood through something other than itself. In E1p16c1, Spinoza also
establishes that modes are causally dependent in that they must be caused by
another, namely God.

The other two protagonists of Spinoza’s metaphysical system—attributes
and God—raise some pressing interpretative puzzles. In E1d4, Spinoza defines
an attribute as “what the intellect perceives of substance, as constituting its
essence [id, quod intellectus de substantia percipit, tanquam ejusdem essentiam
constituens]”. Spinoza then defines God in E1d6 as “a being absolutely infinite
[ens absolutè infinitum]”, which is spelled out further as “a substance consisting
of an infinity of attributes, of which each one expresses an eternal and infinite
essence”. Unlike Descartes [4], who rules out the possibility of one substance
having more than one principal attribute, Spinoza allows substances—or rather
the one divine substance, God—to have multiple attributes. Of God’s many
attributes, we humans have access to only two: Thought and Extension (see
E2a5, E2p13, and Ep. 64). But God has infinitely more attributes beyond our
epistemic and causal reach (E1d6 and Ep. 56 (IV/261/14)).

A common, though oversimplified, taxonomy divides interpretations of
Spinoza’s attributes into two camps: subjectivist and objectivist. While the
subjective position goes back to Hegel, the locus classicus is Wolfson [19] where
Spinoza is taken to claim that attributes are inventions of the finite perceiving
mind. Because Wolfson’s reading has been subjected to devastating (and to our
mind justified) critique, we mention it only to set it aside. Our own working
position is objectivist, in at least the sense that we do not take attributes to
be inventions of the human mind. Following Garrett [9] (and echoing Melamed
[12]), we regard Spinoza as a proponent of a “strong ontological pluralism”
according to which one thing can have more than one “fundamental manner or
kind of existence, reality, or being”. The idea that there can be more than one
kind of existence—this is the “ontological pluralism” part—might not strike
at least some philosophers as especially peculiar given the distinction between
concrete and abstract objects, particulars and universals, or the divine and
mundane. On Garrett’s interpretation, however, Spinoza takes this further in
proposing that a single thing can have existence of different kinds—this is the
“strong” part. Indeed, God is a substance having infinitely many fundamental
kinds of existence, each of which might be regarded as one of God’s attributes.
Spinoza’s “thinking substance” (E2p7s) is God existing as a thinking thing,
“extended substance” (E1p15s, E2p7s) is God existing as extended, and like-
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wise for the other unknown attributes shrouded in darkness—they too should
be regarded as different kinds of existence (E1p20d: “each of [God’s] attributes
expresses existence”). The same goes for finite things: on Spinoza’s ingenious
solution to the Mind-Body Problem, your mind is you existing as a thinking
thing while your body is you existing as an extended thing (E2p21s, E3p2s). 2

To formally capture Spinoza’s idea that one and the same thing can have
existence of many different kinds, we adopt a many-sorted model theory
[14,15,18]. Unlike single-sorted models for modal logic, which include a set
of possible worlds W where each world w ∈ W is assigned a single domain
D(w) consisting of the entities that exist in this world, many-sorted models
assign a potentially infinite number of domains of quantification to each world.
Where S = {s1, s2, ...} is an index set of sorts, a many-sorted model M for S
assigns each w ∈ W a domain Ds1(w) of existents of sort s1, a domain Ds2(w)
of existents of sort s2, and so forth (we work with variable domain models).
Given a sort s ∈ S, the variables xs, ys, ... range over things of this sort and
∀xs, ∃ys, ... quantify over Ds(w). While entities in different sortal domains of
a world are generally regarded as distinct, we repurpose these models to allow
for one and the same thing to exist in multiple sortal domains.

For purposes of modeling Spinoza’s metaphysics, we work with an infinite
set of sorts that includes the sort Th of thinking entities (or rather, entities
existing as thinking), the sort Ex of extended entities (or entities existing as
extended), and sorts corresponding to all the other attributes. We call these
“secondary sorts” because our models also include a “primary sort” ℵ whose
domain Dℵ(w) at a world w ∈ W consists of all the entities having any kind of
existence in w conceived in their fullness as multifaceted beings: 3

Spinozian sorts: SSpinoza = {ℵ, Th, Ex, ...}

The ℵ-sort affords a bird’s-eye view of a pluralistic ontology. To theorize at
this global layer is not to substract (or abstract away) the attributes from
substance and its modes because on the interpretation we work with, to strip
away all the attributes of a thing would be to deny it existence of any kind. On
the contrary, entities are regarded from the “ℵ-perspective” as having all their
attributes—for instance, Spinoza adopts this all-encompassing perspective in
defining God as a being consisting of an infinity of attributes in E1d6.

To help keep track of the identity of entities across different sortal domains,

2 While Garrett doesn’t emphasize the role of the intellect in all this, we take E1d4 to impose
a substantive condition on fundamental kinds of existence—these kinds correspond to how
substance and its modes can be perceived by the infinite intellect (see E2p7s). Adopting one
perspective, the infinite intellect perceives God as a thinking thing (E2p1) and its various
modes as modes of thought. Adopting another perspective, the infinite intellect perceives
God as an extended thing (E2p2) and its modes as modes of extension.
3 For Spinoza, substance and its modes are infinitely-faceted, existing as thinking, extended,
and so forth. However, our models can also represent alternative universes with entities
existing in only finitely many sortal domains, and perhaps only one. While we often speak
of the entities in Dℵ(w) as “multifaceted”, strictly speaking they needn’t be.
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we assume that Spinozian models come equipped with a family of (partial)
projection functions πTh, πEx, ... that at each world w ∈ W “project” the
multifaceted beings dwelling in the primary domain Dℵ(w) of this world to
single-faceted entities in its secondary sortal domains (to project a multifaceted
thing is to home in on its having existence of this or that kind):

Projection into secondary domains
For any world w ∈ W and secondary sort s ∈ {Th, Ex, ...}, the projection
function πs(w) maps entities from Dℵ(w) into Ds(w). When defined,
πs(w)(aℵ) is aℵ in w as perceived by the (infinite) intellect as a being
of sort s. 4

For instance, if ‘Godℵ’ denotes Spinoza’s absolutely infinite substance at w,
then πTh(w)(Godℵ) is the thinking substance (i.e., GodTh), πEx(w)(Godℵ) is the
extended substance (i.e., GodEx), and so forth. Because any single entity is
singular under any kind of existence, and the primary domain Dℵ(w) of a world
w includes all the entities with any kind of existence in w, we require that each
πs(w) is a one-one injective function, each member of a secondary domain
Ds(w) is the πs(w)-projection of some member of Dℵ(w), and (in the other
direction) every multifaceted being aℵ ∈ Dℵ(w) is projected into at least one of
the secondary domains of w—i.e., πs(w)(aℵ) is defined for some s ∈ {Th, Ex, ...}.

Given the different sortal layers in Spinozian models, we can identify a
number of (genuine) identity relations. First, there is the “standard” identity
relation = that any element in any domain of a model stands in with respect
to itself and to no other element (i.e., = is the diagonal relation):

Standard identity
as = bs′ at w iff as, bs′ are the same element in a model.

Second, there is what we call the “projective” identity of any multifaceted being
in the ℵ-domain with each of its projections. For s ∈ {Th, Ex, ...},

Projective identity
aℵ =P bs at w iff πs(w)(aℵ) = bs.

Third, there is the “cross-attribute” or “trans-attribute” identity of these pro-
jections. For s, s′ ∈ {Th, Ex, ...},

Cross-attribute identity
as =C bs′ at w iff there is some cℵ s.t. cℵ =P as and cℵ =P bs′ at w.

All three relations are genuine identity relations in the sense that if as = bs′ ,
as =C bs′ , or as =P bs′ , then as and bs′ are one and the same thing, though
as and bs′ might still differ in terms of their kind or kinds of existence. In

4 Spinoza rephrases his definition of attribute in E2p7s, referring to an attribute as “whatever
can be perceived by an infinite intellect as constituting the essence of substance” (italics
added). So, apparently, Spinoza has God’s infinite intellect in mind in E1d4.
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monistic ontologies involving only a single kind of existence, there is room for
only a single notion of identity. However, in a pluralistic setting where one is
referring to and quantifying over entities with more than one fundamental kind
of existence, it is useful to have multiple notions of identity in play to capture
more fine-grained notions of sameness and difference.

Note that the three identity relations differ with respect to their logical
properties. Standard identity is an equivalence relation, as is cross-attribute
identity on the secondary sortal domains where it applies. However, projective
identity is neither reflexive nor symmetric, and is transitive only in a vacuous
sense as we can never have as =P bs′ and bs′ =P cs′′ for any as, bs′ , cs′′ . That
said, we can get failures of transitivity if we consider combinations of our iden-
tity relations. As discussed above, we can have Godℵ =P GodTh (E2p1: “God
is a thinking thing”) and Godℵ =P GodEx (E2p2: “God is an extended thing”),
but while GodTh =C GodEx, GodTh 6= GodEx. This transitivity failure reveals
how standard identity is a stricter notion than cross-attribute identity over the
secondary domains where these notions both apply. Cross-attribute identity is
the appropriate notion of identity when we are counting substances and modes
in the ontology but are not concerned with the distinction between different
kinds of existence. From this coarse-grained perspective, GodTh and GodEx are
numerically identical because we are talking about one and the same substance.
On the other hand, standard identity is the appropriate notion when we are
counting things as distinct when they have different kinds of existence. From
this more fine-grained perspective, GodTh and GodEx are numerically distinct
because the former is God existing as thinking while the latter is God existing
as extended. 5

Our identity relations also differ in terms of their substitutional properties.
All the predicates introduced in this paper are referentially transparent contexts
with respect to the standard identity relation. For instance, where ‘Extended(t)’
and ‘Affection(t, t′)’ formalize t is extended and t is an affection of t′, the
following conditionals hold:

If Extended(as) and as = bs′ , then Extended(bs′).
If Affection(as, bs′), as = cs′′ , and bs′ = ds′′′ , then Affection(cs′′ , ds′′′).

In models that accurately capture Spinoza’s philosophy, many predicates will
also turn out to be referentially transparent with respect to projective identity
in the restricted sense that if they hold with respect to some elements in the
primary domain Dℵ(w), and these elements are all projected into the same
secondary sortal domain Ds(w), then the predicates hold with respect to these
projections as well. For instance, where ‘Substance(t)’ and ‘t t′’ formalize t
is a substance and t causes t′, the following conditionals hold:

If Substance(aℵ) and aℵ =P bs, then Substance(bs).
If aℵ  bℵ, aℵ =P cs, and bℵ =P ds, then cs  ds.

5 See also [9] for discussion of the status of the transitivity of identity in Spinoza’s philosophy.
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On the other hand, many predicates will be referentially opaque contexts for
projective identity in its full generality—for example, it can be the case that
Affection(aℵ, bℵ), aℵ =P cEx, bℵ =P dTh, but ¬Affection(cEx, dTh). As Della Rocca
observes in [2,3], “attribute contexts” like ‘Extended(t)’ and related attribute-
sensitive predicates are also referentially opaque with respect to cross-attribute
identity (though Della Rocca does not phrase his observation in these terms)—
for example, we can have Extended(aEx), aEx =C bTh, but ¬Extended(bTh).

3 Modeling Possibility and Conceivability

While Spinoza’s modal metaphysics remains the subject of considerable debate
(see [13] for helpful discussion and references), we interpret him as a strict
necessitarian. This commitment is strongly suggested in various places in the
Ethics, such as in E1p29, where Spinoza proves that “in nature there is nothing
contingent”, and in E1p33, where he proves that “Things could have been
produced by God in no other way, and in no other order than they have been
produced.” Even though Spinoza is a necessitarian, there are still good reasons
to have multiple worlds available in our models.

First, as mentioned, Spinoza argues for his necessitarianism only in the
second half of Part One—the argumentation only really gets going in E1p16,
where this paper leaves off—so we don’t want to presuppose this doctrine in
our model theory, which should be capable of representing rival views. While
any model that accurately incorporates Spinoza’s modal commitments will be
one in which the actual world is the sole metaphysical possibility, we allow for
models that include more than one metaphysically possible world in order to
represent alternative views that Spinoza rejects.

Furthermore, even in models encoding Spinoza’s necessitarianism wherein
actuality and metaphysical possibility coincide, there are benefits to having
metaphysically impossible worlds around. With such worlds, we can capture
Spinoza’s rich modal metaphysics and more nuanced necessitarianism, which
asserts not simply that things could not have been otherwise but that things
could not have been otherwise by virtue of God’s essence—the full natural
order flows from the necessity of God’s essence (E1p16). In the first scholium
immediately following E1p33d, Spinoza goes on to distinguish between two
different sources or grounds of the necessary existence/nonexistence of things: 6

A thing is called necessary either by reason of its essence or by reason of
its cause. For a thing’s existence follows necessarily either from its essence
and definition or from a given efficient cause. And a thing is also called
impossible from these same causes—namely, either because its essence, or
definition, involves a contradiction, or because there is no external cause
which has been determined to produce such a thing.

For Spinoza, everything that exists necessarily exists and everything that does

6 Spinoza famously endorses a strong version of the Principle of Sufficient Reason according
to which there is a cause or reason for the existence or nonexistence of each thing (E1p11d2).
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not exist necessarily fails to exist, but there are different reasons that things
are ruled into or out of existence. The existence and nonexistence of some
things is necessitated by their own essence or nature. In E1p7, for instance,
Spinoza proves that “it pertains to the nature of a substance to exist”. As for
nonexistence, there are square circles and other “Chimeras [Chymaeram]” that
fail to exist by virtue of their essence (E1p11d2). In contrast, the existence
or nonexistence of other things is due to their (external) efficient cause—thus,
for example, the existence of a broken window (and the nonexistence of a non-
broken window) might be due to the impact of a rock crashing through it. More
generally, we can think of the essence or real definition of a thing (or things)
as settling certain subject matters while leaving open how things stand with
respect to other matters. Spinoza argues that God’s essence necessitates the
full ordo naturae, but the essence of any nonsubstance, taken by itself, must
leave many subject matters unsettled, such as the matter of this nonsubstance’s
own existence (E1p24).

Though we might need as few as one possible world to represent the meta-
physically possible, the abundance of worlds in our Spinozian models is helpful
for modeling what is necessitated by the essences of things and what is possible
relative to these essences, which for Spinoza can outstrip the metaphysically
possible. At this point, it is helpful to assume that the domain assignments
Dℵ, DTh, DEx, ... map each world w ∈ W to sets of existents (“local domains”)
drawn from “global domains” Dℵ, DTh, DEx, ... of the respective sorts; that is,
Ds(w) ⊆ Ds for each s ∈ SSpinoza. The global domains include all the things we
wish to theorize about, whether existent or nonexistent, possible or impossible,
conceivable or inconceivable—a global domain can even include Chimeras like
square circles, mountains without valleys, and so forth. Let D∗ be the union of
these global domains. We assume that along with the world-internal structure
already introduced to implement Spinoza’s theory of attributes, a Spinozian
model includes an essence function E that assigns to each a ∈ D∗ the set of
propositions necessitated or forced by its essence:

Essence-relative necessity
The essence function E maps each element a ∈ D∗ to a set of propositions
E(a) ⊆ P(W), where P ∈ E(a) iff P is true in virtue of a’s essence. 7

The worlds in the intersection
⋂ E(a), which we call the “essence set” of a,

are compatible with every proposition necessitated by a’s essence or nature
whereas worlds outside this intersection are excluded by a’s essence. Spinoza’s
claim in E1p7 that it pertains to the essence of a substance to exist entails
that if a is a substance, then E(a) includes the proposition that a exists, and
therefore every world in

⋂ E(a) is one in which a exists. In contrast, if a is
a nonsubstance (i.e., a is a mode (E1p4d)), and thus, for Spinoza it exists by
virtue of its efficient causes (E1p24), then E(a) cannot include the proposition

7 To represent what follows from the essences of multiple things taken together, one could
define essence functions on the set of nonempty subsets of D∗, rather than on D∗ itself.
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that a exists, and
⋂ E(a) can include worlds in which a fails to exist.

As for metaphysical possibility itself, we assume that what is metaphysically
possible is dependent on what is possible with respect to essences—specifically,
to be metaphysically possible is to be possible relative to the essences of all
things (in fact, for Spinoza only God’s essence need be taken into account):

Metaphysical possibility
w is a metaphysical possibility iff w ∈ ⋂ E(a) for each a ∈ D∗.

Introducing the name ‘@’ for the actual world in a model, we require that
@ ∈ W be possible relative to the essence of any thing, which ensures that the
actual world is metaphysically possible:

Actual is possible: @ ∈ ⋂ E(a) for each a ∈ D∗.

Spinoza’s claim that God’s essence fixes the order of Nature can be captured
by the requirement that

⋂ E(Godℵ) = {@}. This enforces that @ is the only
metaphysically possible world in the model. But, again, Spinoza has to argue
for this position, and so we also allow for models in which God’s essence leaves
open multiple metaphysical possibilities.

To summarize, there are three kinds of worlds in Spinozian models. First,
there are metaphysically possible worlds, such as @, which are compatible with
the essences of all things. Second, there are metaphysically impossible worlds
which are compatible with the essence of no thing. These worlds will not play
an important role in what follows and can be disregarded. 8 Third, there are
metaphysically impossible worlds which, though ruled out by the essences of
all things when taken together, are nevertheless compatible with the essence of
some particular thing (or things) and can therefore be used to capture how this
essence leaves various subject matters unsettled. A metaphysically impossible
world w ∈ W lying in the essence set

⋂ E(a) of some a ∈ D∗ might still be
regarded as an open possibility in the restricted sense that the essence of a
alone doesn’t rule out this world.

This brings us to the notion of conceivability, which is intimately related
to essence-relative modality in Spinoza’s philosophy and appears in several
key texts at the beginning of the Ethics (see for example E1d1, E1a7, E1p10s,
E1p11d1, and E1p14). At least in his early period, Spinoza seems to think that
conceivability amounts to the possibility of positing certain ideas in an infinite
intellect (see P4 in the KV). However, we want to remain fairly noncommittal
about how Spinoza understands conceivability in his later philosophy. So, we
hardwire conceivability into our Spinozian models by taking them to include
a conceivability function C that assigns to each a ∈ D∗ the set of propositions
conceivable about it in the “narrow sense”—when attending only to its essence
(see [13])—which we call the “conceivability set” of a:

8 These metaphysically impossible worlds might still be regarded as epistemically possible
(see E1p33s1). The notion of epistemic possibility is crucial to Spinoza’s theory of human
psychology and the supervening disciplines of ethics and political philosophy.



142 Spinozian Model Theory

Conceivability
The conceivability function C maps each member a ∈ D∗ to a set of
propositions C(a) ⊆ P(W), where P ∈ C(a) iff P is conceivable about a
when considering only a’s essence.

Spinoza’s notion of conceivability is a rich topic that requires a great deal more
attention than we can offer here (see [13] for further discussion). Particularly
important is the connection between what pertains to the essence of a thing
and what is conceivable about it given its essence, which can be made precise
using the essence and conceivability functions in our models. For instance, E1a7
requires that if the proposition that a does not exist lies in the conceivability set
C(a) (“If a thing can be conceived as not existing...”), then the proposition that
a exists is not a member of E(a), and the essence set

⋂ E(a) can include worlds
in which a fails to exist (“...its essence does not involve existence”). More
generally, Spinoza seems to think that if the essence of a thing necessitates
certain facts about this thing, then the thing cannot be conceived in ways
that conflict with these essentialist facts, and this can be spelled out as the set-
theoretic constraint that every proposition in its conceivability set is compatible
with its essence set. 9

4 The Spinozian Language and Model Theory

In this section, we present (most of) the formal Spinozian language used in our
project and describe its model theory. First, the language: to represent the
logical forms of sentences in the initial fragment of Ethics up through E1p15,
we adopt a language whose logical symbols include the standard sentential
connectives, the actualist quantifiers ‘∀’ and ‘∃’, the possibilist quantifiers ‘Π’
and ‘Σ’, and variables indexed to every Spinozian sort. For quantificational
purposes, we also help ourselves to unindexed variables ‘x’, ‘y’, ... and overlined
unindexed variables ‘x̄’, ‘ȳ’, ... for denoting things of any sort in SSpinoza and
of any secondary sort in {Th, Ex, ...} respectively. Whereas standard first-order
languages have only a single symbol for identity, we have three:

Identity symbols: ‘=’, ‘=P’, and ‘=C’ for standard, projective, and
cross-attribute identity

The Spinozian language also includes the following modal operators:

Necessity-by-essence operators: ‘�t’ (read: It is necessitated by the
essence of t that...) for each term t (constant or variable) in the language

Metaphysical necessity and possibility operators: ‘�’ (read: It
is metaphysically necessary that...) and ‘♦’ (read: It is metaphysically
possible that...)

Conceivability operators: ‘�t’ (read: It is conceivable about t when
conceived solely in terms of its essence that...) for each term t

9 We do not build such correspondences between E and C directly into our Spinozian models
so that axioms like E1a7 have some work to do.
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The remaining logical symbols enable us to talk about sorts (notation: the
sortal subscripts or lack thereof on argument positions of predicates indicate
whether they can be instantiated by things of any sort (t), multifaceted things
only (tℵ), single-faceted things only (t̄), or things of some specific secondary
sort (tTh, tEx, ...)):

Sortal-projective predicates

Same-sort(t, t′) : t and t′ are the same sort of thing
All-sorts(tℵ) : tℵ is projected into each of the infinitely many

secondary sortal domains

Turning to the nonlogical symbols of the language, we need a long laundry list
of additional predicate for translating the text. Among these are the following
predicates, which Spinoza defines in E1d1-E1d8:

Causa-sui(t) : t is a cause of itself
Finite-in-kind(t̄) : t̄ is finite in its own kind

Substance(t) : t is substance
Attribute(t̄) : t̄ is an attribute

Mode(t) : t is a mode
Affection(t, t′) : t is an affection of t′

God(tℵ) : tℵ is God
Abs-infinite(tℵ) : tℵ is absolutely infinite

Free(t) : t is free
Eternal(t) : t is eternal

In addition to the predicate ‘God(tℵ)’, the language also has the constants
‘Godℵ’, ‘GodTh’, ‘GodEx’, ... for referring directly to God, both as a multifaceted
substance existing in the ℵ-domain and as a single-faceted substance (thinking
substance, extended substance, and so on) existing in a secondary domain.

Well-formed formulae of the formal Spinozian language are generated from
its lexicon through the usual grammar. We interpret these formulae relative
to a pointed Spinozian model and to a variable assignment g that maps each
variable of the language to some member of the corresponding global sortal
domain(s)—where D∗ is the union of all the global domains and D̄∗ is the union
of only the global secondary domains, g(xs) ∈ Ds, g(x) ∈ D∗, and g(x̄) ∈ D̄∗.
Our official definition of a Spinozian model integrates the intraworld structure
from section 2 with the interworld structure from section 3 and adds a function
for interpreting the nonlogical symbols in the language:

Spinozian models
A many-sorted Spinozian model M is an ordered tuple consisting of a
nonempty set W with designated point @ ∈ W, a domain assignment
Ds for each sort s ∈ SSpinoza mapping every world w ∈ W to a set of
entities drawn from a global domain Ds, a projection function πs for each
secondary sort s ∈ {Ex, Th, ...}, an essence function E , a conceivability
function C, and an interpretation function I mapping each constant in
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the language to a member of the corresponding global domain and each
n-adic nonlogical predicate symbol and world w to an n-ary relation
over the global domains:

a. For each constant cs, I(cs) ∈ Ds.
b. For each nonlogical predicate P , I(P (t1, ..., tn), w) ⊆ D∗n.

Note that we interpret constant and predicate symbols over the global domains
of the model, and not just over the local domains of worlds. This keeps the
model theory flexible: constants can refer to both existing and non-existing
things at a world, and predicates can be instantiated by both existents and
nonexistents.

The semantics for the non-modal fragment of the language is relatively
standard. We first compute the extensions of terms in the usual way:

Term denotations
The denotation JtKM,g,w of term t at w with respect to M and g is
defined as follows:

a. JcsKM,g,w = I(cs).
b. JxsKM,g,w = g(xs), JxKM,g,w = g(x), and Jx̄KM,g,w = g(x̄).

We then compositionally assign satisfaction conditions to well-formed formulae
using these denotations. Starting with atomic formulae, there are three cases to
consider: predications, equations, and sortal-projective claims. To evaluate an
n-adic nonlogical predicate symbol applied to n terms, we check to see whether
the denotations of these terms stand in the n-ary relation expressed by the
predicate:

Interpretation of predications
M, g, w |= P (t1, ..., tn) iff 〈Jt1KM,g,w, ..., JtnKM,g,w〉 ∈ I(P (t1, ..., tn), w)

Standard, projective, and cross-attribute identity claims are evaluated by
checking whether the denotations of terms on either side of the relevant identity
symbol are identical in the senses discussed in Section 2:

Interpretation of identity claims
M, g, w |= t = t′ iff JtKM,g,w = Jt′KM,g,w

M, g, w |= tℵ =P t̄ iff JtℵKM,g,w =P Jt̄KM,g,w

M, g, w |= t̄ =C t̄′ iff Jt̄KM,g,w =C Jt̄′KM,g,w

As for the sortal predicates ‘Same-sort(t, t′)’ and ‘All-sorts(tℵ)’, the former
checks whether its arguments are of the same sort while the latter checks
whether the multifaceted entity denoted by its argument is projected into each
of the infinitely many secondary sortal domains:
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Interpretation of sortal-projective claims
M, g, w |= Same-sort(t, t′) iff JtKM,g,w ∈ Ds iff Jt′KM,g,w ∈ Ds

for each sort s ∈ SSpinoza
M, g, w |= All-sorts(tℵ) iff πs(w)(JtℵKM,g,w) is defined for each

secondary sort s ∈ {Th, Ex, ...}

Moving on to the sentential connectives, we assume that they have the classical
semantics:

Interpretation of sentential connectives
M, g, w |= ¬ϕ iff M, g, w 6|= ϕ
M, g, w |= ϕ ∧ ψ iff M, g, w |= ϕ and M, g, w |= ψ
M, g, w |= ϕ ∨ ψ iff M, g, w |= ϕ or M, g, w |= ψ
M, g, w |= ϕ→ ψ iff M, g, w 6|= ϕ or M, g, w |= ψ
M, g, w |= ϕ ≡ ψ iff M, g, w |= ϕ→ ψ and M, g, w |= ψ → ϕ

We also give a standard treatment of universal/existential quantification,
though we have a range of quantificational options corresponding to the dif-
ferent quantificational domains in our models (reflected in the availability of
both actualist and possibilist quantifiers and the range of variable types in the
language). Starting with actualist quantification over specific local secondary
domains and letting g[xs 7→as] be the variant assignment that is exactly like
the variable assignment g except it sends the variable xs to as, we evaluate
quantified statements of the form ‘∀xsϕ’ and ‘∃xsϕ’ as follows:

Interpretation of actualist quantifiers
M, g, w |= ∀xsϕ iff for all as ∈ Ds(w), M, g[xs 7→as], w |= ϕ
M, g, w |= ∃xsϕ iff for some as ∈ Ds(w), M, g[xs 7→as], w |= ϕ

Actualist quantification with unindexed variables is analogous—where D∗(w)
is the union of all the local domains of w (i.e., the set of all existents of any
sort in w) and D̄∗(w) is the union of only the local secondary domains (i.e., the
set of all existents of any secondary sort in w), we give the following additional
semantic entries:

Interpretation of actualist quantifiers (continued)
M, g, w |= ∀xϕ iff for all a ∈ D∗(w), M, g[x 7→a], w |= ϕ
M, g, w |= ∃xϕ iff for some a ∈ D∗(w), M, g[x 7→a], w |= ϕ
M, g, w |= ∀x̄ϕ iff for all ā ∈ D̄∗(w), M, g[x̄ 7→ā], w |= ϕ
M, g, w |= ∃x̄ϕ iff for some ā ∈ D̄∗(w), M, g[x̄ 7→ā], w |= ϕ

We also allow for possibilist quantification over the global domains of a model.
Whereas ‘∀’ and ‘∃’ quantify over only the existing things in a world, the
possibilist universal and existential quantifiers ‘Π’ and ‘Σ’ quantify over all
things, whether they exist or not, and whether they are conceivable at the world
of evaluation or not. We provide the following clauses for general quantified
statements of the form ‘Πxϕ’ and ‘Σxϕ’ (the remaining cases are similar):
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Interpretation of possibilist quantifiers
M, g, w |= Πxϕ iff for all a ∈ D∗, M, g[x 7→a], w |= ϕ
M, g, w |= Σxϕ iff for some a ∈ D∗, M, g[x 7→a], w |= ϕ

In some parts of the Ethics, Spinoza clearly has actualist quantification in mind.
In others, he needs possibilist quantification. In still others it is unclear what
he intends to quantify over. In our broader project, we adopt a conservative
methodology and try to get by with only actualist quantification as much as
possible. We introduce possibilist quantification only when it is absolutely
required (starting with our treatment of E1p11d2).

The remaining entries are for the modal operators whose semantics involves
the essence and conceivability functions. The essence of a thing necessitates
that ϕ iff the proposition expressed by ϕ with respect toM and g (i.e., the set
{w :M, g, w |= ϕ}) lies in the essence function E applied to this thing:

Interpretation of necessary-by-essence operators
M, g, w |= �tϕ iff {w :M, g, w |= ϕ} ∈ E(JtKM,g,w)

Metaphysical necessity/possibility is necessity/possibility relative to the
essences of all members of the global domains of the model:

Interpretation of metaphysical modality operators
M, g, w |= �ϕ iff for all v ∈ W s.t. v ∈ ⋂ E(a) for each a ∈ D∗,

M, g, v |= ϕ
M, g, w |= ♦ϕ iff for some v ∈ W s.t. v ∈ ⋂ E(a) for each a ∈ D∗,

M, g, v |= ϕ

Finally, it is conceivable about a thing that ϕ when attending to only its essence
iff the proposition expressed by ϕ with respect toM and g is a member of the
conceivability set of this thing:

Interpretation of conceivability operators
M, g, w |= �tϕ iff {w :M, g, w |= ϕ} ∈ C(JtKM,g,w)

Having recursively assigned satisfaction conditions to every formulae of the
Spinozian language relative to a pointed model and variable assignment, we
can next define truth for its sentences in the usual way, and we identify valid
arguments as those that preserve truth in all pointed models.

5 Conclusion

With this model theory in place, one can next get down to work formally
reconstructing Spinoza’s demonstrations in the Ethics (as we have done in the
full version of this project). The strict requirement of formal proof provides
a powerful diagnostic tool for identifying tacit premises, redundancies, and
potential errors in Spinoza’s “Geometric manner”. Spoiler: pace Leibniz [11],
Bennett [1], and others, we find Spinoza to be a skilled logician whose deductive
argumentation, for the most part, holds together remarkably well. While many
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of Spinoza’s proofs are enthymemes that require implicit unstated premises to
go through, prolonged exegetical gymnastics isn’t required to fill in most of the
holes, and many of the unstated premises are trivial. Our positive assessment
extends to Spinoza’s modal reasoning: far from being an incompetent modal
logician, Spinoza operates nimbly with complex modal concepts in many of his
demonstrations, which is all the more impressive given that he had nothing like
the modern technology of modal logic at his disposal.

Making this case on Spinoza’s behalf must be left for another occasion. But
even from developing the core model theory in this paper, we hope to have
already helped to undermine a common perception among philosophers and
scholars of the history of philosophy that precise philosophical formalization is
inconsistent with historical precision. Precise philosophy and precise history of
philosophy needn’t come at the expense of one another, and in the current study
we strived to achieve both kinds of precision by developing a rigorous formal
architecture for theorizing about Spinoza’s ontology and modal metaphysics.
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Abstract

In “A Problem in Possible-World Semantics,” David Kaplan presented a consistent
and intelligible modal principle that cannot be validated by any possible world frame
(in the terminology of modal logic, any neighborhood frame). However, Kaplan’s
problem is tempered by the fact that his principle is stated in a language with propo-
sitional quantification, so possible world semantics for the basic modal language with-
out propositional quantifiers is not directly affected, and the fact that on careful in-
spection his principle does not target the world part of possible world semantics—the
atomicity of the algebra of propositions—but rather the idea of propositional quan-
tification over a complete Boolean algebra of propositions. By contrast, in this paper
we present a simple and intelligible modal principle, without propositional quanti-
fiers, that cannot be validated by any possible world frame precisely because of their
assumption of atomicity (i.e., the principle also cannot be validated by any atomic
Boolean algebra expansion). It follows from a theorem of David Lewis that our logic is
as simple as possible in terms of modal nesting depth (two). We prove the consistency
of the logic using a generalization of possible world semantics known as possibility se-
mantics. We also prove the completeness of the logic (and two other relevant logics)
with respect to possibility semantics. Finally, we observe that the logic we identify
naturally arises in the study of Peano Arithmetic.

Keywords: modal logic, Kripke incompleteness, Kripke inconsistency, atomic
inconsistency, possibility semantics, algebraic semantics, Kaplan’s paradox

1 Introduction

In his paper “A Problem in Possible-World Semantics” [17], written for a
festschrift for Ruth Barcan Marcus, David Kaplan argued that there is “a
problem in the conceptual/mathematical foundation of possible-world seman-
tics (PWS) which threatens its use as a correct basis for doing the model theory
of intensional languages” (p. 41). The problem is that certain consistent and
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intelligible modal principles cannot be true in any possible world model. Ka-
plan’s example is the following principle, stating that for any proposition p,
it is possible that the property expressed by Q holds of p and only p (up to
necessary equivalence of propositions):

∀p3∀q(Qq ↔ 2(p↔ q)). (A)

For what sentential operators Q does (A) hold? As Kaplan writes:

Perhaps, for every proposition, it is possible that it and only it is Queried
[That is, it is asked whether it is the case that p. . . .]. Or Perhaps not. It
shouldn’t really matter. There may be no operator expressible in English
which satisfies (A). Still, logic shouldn’t rule it out. (p. 43)

Yet standard possible world semantics rules out (A). For if propositions are in
one-to-one correspondence with sets of possible worlds, 3 and 3ϕ (resp. 2ϕ)
is true if and only if ϕ is true at some (resp. all) worlds, then the truth of
(A) requires that for every set P of worlds, there is a world wP where the Q-
property holds only of P . In other words, the truth of (A) requires an injective
function sending every set of worlds to a world, contradicting Cantor’s theorem.

Kaplan’s paradox, as it has come to be called, has been much discussed (see,
e.g., [19,20,27,1,24]). From our perspective, it has at least two weaknesses as a
problem for possible world semantics. First, as (A) involves quantification over
propositions in the object language, Kaplan’s paradox does not pose a direct
problem for possible world semantics for modal languages without propositional
quantifiers. Second, even if we want propositional quantification, on careful
inspection (A) does not in fact target the world part of possible world semantics.

To see why not, let us first consider a general algebraic semantics for proposi-
tional modal logic with propositional quantifiers as in, e.g., [12,3,4]. We expand
a Boolean algebra B with a unary operation f on B. A valuation v assigns
to each propositional variable an element of B as its semantic value. Semantic
values are then assigned recursively to all formulas of the language with respect
to v using operations on B associated with the sentential connectives. Boolean
connectives are interpreted using the corresponding Boolean operations in B;
the sentential operator Q is interpreted using the operation f ; and 3 (resp. 2)
is interpreted using the operation that sends a to > if a 6= ⊥, and otherwise
sends a to ⊥ (resp. the operation that sends a to > if a = >, and otherwise
sends a to ⊥). Finally, the most natural way to interpret the propositional
quantifiers is to assume that B is a complete Boolean algebra and then to take
the semantic value of ∀pϕ with respect to v to be the meet in B of all the
semantic values of ϕ with respect to every valuation that differs from v at most
in the semantic value it assigns to p.

This algebraic semantics does not make the crucial “world” assumption of

3 General frame semantics, in the terminology of modal logic (see, e.g., [2, § 5.5]), is not
committed to the view that every set of worlds corresponds to a proposition, so it does not
fall under what we call “standard possible world semantics” here.
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possible world semantics—that the algebra of propositions is atomic—and yet
on this algebraic semantics, the semantic value of (A) must still be ⊥. 4 Thus,
(A) targets the idea of propositional quantification over a complete Boolean
algebra of propositions. Over an incomplete Boolean algebra of propositions,
there is a way of interpreting (A) as true—see [14, § 4].

In this paper, we present another problem in possible world semantics,
which is not subject to the two criticisms of Kaplan’s problem above. After a
brief review of possible world semantics in Section 2, in Section 3 we present a
simple and intelligible modal principle, without propositional quantifiers, that
cannot be validated by any possible world frame precisely because of their
assumption of atomicity, i.e., the principle also cannot be validated by any
atomic Boolean algebra expansion. It follows from a theorem of David Lewis
[18] that our logic is as simple as possible in terms of modal nesting depth
(two). Using a generalization of possible world semantics known as possibility
semantics, reviewed in Section 4, we prove the consistency of the logic in Section
5. We also prove the completeness of the logic (and two other relevant logics)
with respect to possibility semantics, via completeness with respect to algebraic
semantics in Section 6. In Section 7, we observe that the logic we identify
naturally arises in the study of Peano Arithmetic. Finally, we conclude in
Section 8 with some open questions for future research.

2 Possible World Semantics

We are interested in semantics for the following bimodal language.

Definition 2.1 Let L be the language generated by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2ϕ | Qϕ,

where p belongs to a countably infinite set Prop of propositional variables. We
treat the other connectives ∨, →, and ↔ as abbreviations as usual, and we
define 3ϕ := ¬2¬ϕ.

According to possible world semantics, propositions (what sentences ex-
press) are in one-to-one correspondence with sets of possible worlds, as propo-
sitions are in one-to-one corresopndence with truth conditions and truth condi-

4 For if not, then noting that the semantic value of a formula of the form 3ϕ is either ⊥ or
>, no matter what the valuation of p is the semantic value of ∀q(Qq ↔ 2(p↔ q)) must not
be ⊥. Given that the semantic value of 2(p ↔ q) is either > or ⊥, and it is the former iff
the valuations of p and q are the same, we see that the semantic value of Qq ↔ 2(p ↔ q)
is either just the semantic value of Qq in case that p and q have the same value, or it is the
complement of the semantic value of Qq in case that p and q have different values. Taking
the meet of them as we vary the value of q, if the value of p is b ∈ B, then the value of
∀q(Qq ↔ 2(p↔ q)) is h(b) := f(b) ∧∧

b′∈B\{b} ¬f(b′), and as we said, h(b) > ⊥. However,

it is also easy to see that for any b1 6= b2 in B, h(b1)∧h(b2) ≤ f(b1)∧¬f(b2)∧f(b2) = ⊥, and
given that both h(b1) and h(b2) are not ⊥, h(b1) 6= h(b2). Thus, we have found an antichain
C = {h(b) | b ∈ B} in B, whose cardinality is the same as the cardinality of B. But this
is impossible: by the completeness of B, any subset of C has a join in B, and for any two
different subsets, they have different joins, rendering the cardinality of B to be 2|C| > |C|.
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tions are satisfied or not satisfied at possible worlds. On this view, neighborhood
models [22,25,23] give us the most general way to model propositional opera-
tors, operators that do not distinguish different syntactic ways of expressing
the same proposition. We review the definitions in the current bimodal setting.

Definition 2.2 A neighborhood frame is a tuple F = 〈W,N2, NQ〉 where:

(i) W is a nonempty set,

(ii) N2 : W → ℘(℘(W )) and NQ : W → ℘(℘(W )).

A model based on F is a pair M = 〈F, V 〉 where V : Prop→ ℘(W ).

Definition 2.3 Given a model M = 〈F, V 〉 based on F = 〈W,N2, NQ〉,
w ∈W , and formula ϕ, we define M, w � ϕ as follows:

(i) M, w � p iff w ∈ V (p);

(ii) M, w � ¬ϕ iff M, w 2 ϕ;

(iii) M, w � (ϕ ∧ ψ) iff M, w � ϕ and M, w � ψ;

(iv) M, w � 2ϕ iff {v ∈W | M, v � ϕ} ∈ N2(w);

(v) M, w � Qϕ iff {v ∈W | M, v � ϕ} ∈ NQ(w).

Moreover, for each formula ϕ, let JϕKM = {w ∈W | M, w � ϕ}.
Definition 2.4 A neighborhood frame F = 〈W,N2, NQ〉 validates a formula
ϕ (F � ϕ) iff for any model M based on F and w ∈W , M, w � ϕ.

On the logical side, we start with the definition of congruential modal log-
ics, which can be seen as the broadest class of extensions of classical logic
with propositional operators (under the assumption that formulas are logi-
cally equivalent iff they express the same proposition). For any frame F,
{ϕ ∈ L | F � ϕ} is such a logic.

Definition 2.5 A congruential modal logic for L is a set L of formulas con-
taining all propositional tautologies and closed under modus ponens, uniform
substitution, and the congruence rule for each O ∈ {2, Q}: if ϕ↔ ψ ∈ L, then
Oϕ ↔ Oψ ∈ L. L is inconsistent if L = L. For any Γ ⊆ L, let Cong(Γ) be
the smallest congruential modal logic extending Γ. For any congruential modal
logic L and ϕ ∈ L, define L + ϕ to be Cong(L ∪ {ϕ}).

3 The Split Principle

Let S be the smallest congruential modal logic containing 2> and

p→
(
3(p ∧Qp) ∧3(p ∧ ¬Qp)

)
. (Split)

Suppose 2 is the knowledge modality of an agent a. Then intuitively (Split)
says that if p is true, then it is compatible with a’s knowledge that p is true
while property Q holds of p, and it is also compatible with a’s knowledge that
p is true while property Q does not hold of p. For example, if we interpret
Qp as Kaplan suggested, as p is queried, then (Split) says that if p is true,
then it is compatible with a’s knowledge that p is true while p is queried by
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some agent, and it is also compatible with a’s knowledge that p is true while
p is not queried by some agent. We do not think that semantics should forbid
an epistemic logic for reasoning about a’s knowledge in which (Split) is a
theorem. 5 (Later we will see an arithmetic interpretation validating (Split)
in which 3 has an “epistemic” reading as consistency in Peano Arithmetic;
and before then we will see an interpretation involving future contingents after
Theorem 5.2.) And yet, it is forbidden by possible world semantics:

Theorem 3.1 No neighborhood frame validates S.

In fact, no atomic Boolean algebra expansion validates S, but for readers more
familiar with possible world semantics we first give the proof in terms of neigh-
borhood frames (see Proposition 6.5 for the algebraic analogue).

Proof. Suppose F = 〈W,N2, NQ〉 validates S. Define a model M = 〈F, V 〉
such that for some w ∈ W , V (p) = {w}, so M, w � p. Then since F validates
(Split), we haveM, w � 3(p∧Qp)∧3(p∧¬Qp), i.e., J¬(p∧Qp)KM 6∈ N2(w)
and J¬(p∧¬Qp)KM 6∈ N2(w). Since V (p) is a singleton set, either Jp∧QpKM =
∅ or Jp ∧ ¬QpKM = ∅, so J¬(p ∧ Qp)KM = W or J¬(p ∧ ¬Qp)KM = W .
Combining the previous two steps, we have W 6∈ N2(w), which contradicts the
fact that F validates 2>. 2

Syntactically, this logic is inconsistent with some additional principles for
Q that are common in the study of specific propositional operators such as
necessity and knowledge. However, these principles should not be imposed
on arbitrary propositional operators (and they are even dubious for a certain
notion of querying).

Proposition 3.2

(i) S + (Q(p ∧ q)→ Qp) is inconsistent. In other words, the Q operator in S
cannot be monotone.

(ii) S + (Q(p ∨ q)→ Qp) is inconsistent. In other words, the Q operator in S
cannot be antitone.

(iii) In S, the following two rules are derivable:

ϕ→ Qϕ

¬ϕ ,
ϕ→ ¬Qϕ
¬ϕ .

(iv) If we expand the language with propositional quantifiers and consider SΠ,
the congruential extension of S with the standard axioms and rules for
propositional quantifiers (see [3] for the axioms and rules), then ∃pQp
and hence 2∃pQp are derivable.

5 One objection, suggested by a referee, is to consider p being the proposition nothing is
queried. Then it is not plausible that it is consistent with a’s knowledge that p∧Qp. Indeed,
(Split) only makes sense in an epistemic logic for reasoning about the knowledge of an agent
a who knows that some proposition is queried (see Proposition 3.2.iv below). Once again,
however, semantics should not forbid such an epistemic logic with (Split) as a theorem.
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Proof. In S + (Q(p ∧ q)→ Qp), we have the following derivation:

1 ` Q(p ∧ ¬Qp)→ Qp [Monotonicity]

2 ` ((p ∧ ¬Qp) ∧Q(p ∧ ¬Qp))↔ ⊥ [Boolean reasoning]

3 ` 3((p ∧ ¬Qp) ∧Q(p ∧ ¬Qp))↔ ⊥ [Congruence and 2>]

4 ` (p ∧ ¬Qp)→ 3((p ∧ ¬Qp) ∧Q(p ∧ ¬Qp)) [(Split), Boolean reasoning]

5 ` (p ∧ ¬Qp)↔ ⊥ [From 3 and 4]

6 ` 3(p ∧ ¬Qp)↔ ⊥ [Congruence and 2>]

7 ` p→ 3(p ∧ ¬Qp) [(Split) and Boolean reasoning]

8 ` p↔ ⊥ [Boolean reasoning]

Clearly, then, S + (Q(p ∧ q) → Qp) is inconsistent. For S + (Q(p ∨ q) → Qp),
we have the following derivation:

1 ` p↔ ((p ∧Qp) ∨ p) [Boolean reasoning]

2 ` Qp↔ Q((p ∧Qp) ∨ p) [Congruence]

3 ` Qp→ Q(p ∧Qp) [Boolean reasoning and Antitonicity]

4 ` ((p ∧Qp) ∧ ¬Q(p ∧Qp))↔ ⊥ [Boolean reasoning]

5 ` 3((p ∧Qp) ∧ ¬Q(p ∧Qp))↔ ⊥ [Congruence and 2>]

6 ` (p ∧Qp)→ 3((p ∧Qp) ∧ ¬Q(p ∧Qp)) [(Split) and Boolean reasoning]

7 ` (p ∧Qp)↔ ⊥ [From 5 and 6]

8 ` 3(p ∧Qp)↔ ⊥ [Congruence and 2>]

9 ` p→ 3(p ∧Qp) [(Split) and Boolean reasoning]

10 ` p↔ ⊥ [Boolean reasoning]

For the two rules, note that if ` ϕ → Qϕ, then ` (ϕ ∧ ¬Qϕ) ↔ ⊥. Then
by the congruence of 3 and 2>, ` 3(ϕ ∧ Qϕ) ↔ ⊥. Using (Split), we have
` ϕ → 3(ϕ ∧ Qϕ). Thus ` ¬ϕ. The derivation for the other rule is similar,
using ` ϕ→ 3(ϕ ∧ ¬Qϕ).

Finally, we derive ∃pQp:
1 ` ¬∃pQp→ 3(¬∃pQp ∧Q¬∃pQp) ∧3(¬∃p¬Qp ∧ ¬Q¬∃pQp) [(Split)]

2 ` Q¬∃pQp→ ∃pQp [Π-principles]

3 ` (¬∃pQp ∧Q¬∃pQp)→ (¬∃pQp ∧ ∃pQp) [Boolean reasoning]

4 ` (¬∃pQp ∧Q¬∃pQp)↔ ⊥ [Boolean reasoning]

5 ` 3(¬∃pQp ∧Q¬∃pQp)↔ ⊥ [Congruence and 2>]

6 ` ¬∃pQp→ ⊥ [From 1 and 5]

7 ` ∃pQp [Boolean reasoning]

Since we have the congruence rule and 2>, we can necessitate ∃pQp and then
obtain 2∃pQp. 2

Remark 3.3 A referee informed us of a paper by Hansson and Gärdenfors [10]
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in which four bimodal axioms are identified that are (i) valid in an atomless
Boolean algebra expanded with two operations for interpreting the two modal-
ities but (ii) not valid on any neighborhood frame. The congruential logic
axiomatized by these four axioms is strictly stronger than S (but weaker than
the logic EST below). We will go beyond Hansson and Gärdenfors by proving
the soundness and completeness of our neighborhood-inconsistent logic S—and
the logics ES and EST below—with respect to complete Boolean algebra ex-
pansions, as well as by providing an arithmetic interpretation of EST.

4 Possibility Semantics

Below we will prove that S is consistent using a generalization of possible world
semantics known as possibility semantics [16,11,13]. A key feature of possibility
semantics is that it does not require the algebra of propositions to be atomic.
The basic ideas are that (i) formulas are evaluated at partial possibilities, or-
dered by a refinement relation v, so that x v y (“x refines y”) implies that x
settles as true (resp. false) every formula that y settles as true (resp. false) and
possibly more; (ii) a formula is true (resp. false) at a possibility iff there is no
refinement of the possibility that makes the formula false (resp. true); and (iii)
a possibility settling a formula as false is equivalent to settling its negation as
true (so it suffices to keep track of just the relation  of settling true), and a
possibility settling a conjunction as true is equivalent to settling both conjuncts
as true. As for the modal operators, we interpret them using the neighborhood
version of possibility semantics from [11, Remark 2.42] and [13] defined below.

Given a partially ordered set 〈S,v〉, let RO(S,v) be the collection of all
X ⊆ S that are regular downsets of 〈S,v〉:

(i) for every x ∈ X, ↓x := {x′ ∈ S | x′ v x} ⊆ X (“persistence”);

(ii) for every x 6∈ X, ∃x′ v x ∀x′′ v x′ x′′ 6∈ X (“refinability”).

In possibility semantics, propositions are regular downsets in a poset of pos-
sibilities. Below we define the analogue of neighborhood frames in possibility
semantics, which differ from neighborhood frames in possible world semantics
by (i) replacing the set W of worlds with a poset 〈S,v〉 or possibilities and (ii)
putting conditions on the neighborhood functions such that for any operator
O and proposition X ∈ RO(S,v), the set {x ∈ S | X ∈ NO(x)} of possibilities
in which “O(X) is true” is also a proposition in RO(S,v).

Definition 4.1 A neighborhood possibility frame is a tuple F = 〈S,v, N2, NQ〉
where:

(i) 〈S,v〉 is a partially ordered set;

(ii) N2 : S → ℘(RO(S,v)) and NQ : S → ℘(RO(S,v)) are such that for
O ∈ {2, Q}:
(a) if X ∈ NO(x) and x′ v x, then X ∈ NO(x′) (“persistence”);
(b) if X 6∈ NO(x), then ∃x′ v x ∀x′′ v x′ X 6∈ NO(x′′) (“refinability”).

A model based on F is a pair M = 〈F, V 〉 where V : Prop→ RO(S,v).
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Definition 4.2 Given a model M = 〈F, V 〉 based on F = 〈S,v, N2, NQ〉,
x ∈ S, and formula ϕ, we define M, x  ϕ as follows:

(i) M, x  p iff x ∈ V (p);

(ii) M, x  ¬ϕ iff for all x′ v x, M, x′ 1 ϕ

(iii) M, x  (ϕ ∧ ψ) iff M, x  ϕ and M, x  ψ;

(iv) M, x  2ϕ iff {y ∈ S | M, y  ϕ} ∈ N2(x);

(v) M, x  Qϕ iff {y ∈ S | M, y  ϕ} ∈ NQ(x).

Moreover, for each formula ϕ, let JϕKM = {x ∈ S | M, x  ϕ}.
Lemma 4.3 For any formula ϕ and model M based on a neighborhood possi-
bility frame F = 〈S,v, N2, NQ〉, JϕKM ∈ RO(S,v).

Definition 4.4 A neighborhood possibility frame F = 〈S,v, N2, NQ〉 vali-
dates a formula ϕ iff for any model M based on F and x ∈ S, M, x  ϕ.

Proposition 4.5 Given a model M = 〈F, V 〉 based on F = 〈S,v, N2, NQ〉,
x ∈ S, and formulas ϕ and ψ:

• M, x  (ϕ ∨ ψ) iff ∀x′ v x ∃x′′ v x′: M, x′′  ϕ or M, x′′  ψ;

• M, x  (ϕ→ ψ) iff ∀x′ v x, if M, x′  ϕ, then M, x′  ψ;

• M, x  (ϕ↔ ψ) iff ∀x′ v x, M, x′  ϕ iff M, x′  ψ.

5 Consistency

Our goal in this section is to show that S is consistent by constructing a pos-
sibility frame validating it. For this, we first extend S so that we can treat 2

in the simplest way possible and focus on the behaviour of Q.

Definition 5.1 Let ES be the smallest congruential modal logic extending S
with the following axioms:

2p→ p, p→ 23p, 2p→ 22p, 2(p↔ q)→ 2(Qp↔ Qq).

Let EST be the smallest congruential modal logic extending ES by the T axiom
for Q: Qp→ p.

Note that in ES, the first three extra axioms make 2 an S5 box. The last
extra axiom 2(p↔ q)→ 2(Qp↔ Qq) intuitively says that if two propositions
are indistinguishable by 2, then their Q’ed versions are also indistinguishable
by 2. The reason we can further add the T axiom forQ and retain consistency 6

is, roughly speaking, that what Qp ∧ ¬p means is not essential to the validity
of (Split). More precisely, letting Q∗ϕ abbreviate (Qϕ∧ϕ), note that (Split)
is in a congruential modal logic if and only if

p→ (3(p ∧Q∗p) ∧3(p ∧ ¬Q∗p))

6 We make no claim that the T axiom should hold for a particular operator Q such as
Queried, but the stronger the logic we prove to be consistent, the stronger our result.
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is also in the logic, since simply by Boolean reasoning, p ∧ Q∗p is provably
equivalent to p ∧Qp, and p ∧ ¬Q∗p is provably equivalent to p ∧ ¬Qp. Clearly
Q∗p → p is in any congruential modal logic. Thus, Q∗p is in a sense the
essential part of Qp that makes (Split) valid, and Qp ∧ ¬p is not relevant to
the splitting of p by Q. Now we show that not only is S consistent, but in fact
the stronger logic EST is consistent.

Theorem 5.2 The logic EST is consistent.

Proof. Consider the full infinite binary tree 2<ω:

ε

0 1

00 01 10 11
. .

. . . . . .
. . . .

. . .. .
.. . .. .

.

For x ∈ 2<ω, let Par(x) be the parent of x in the tree and x0 and x1 the
two extensions of x by 0 and 1, respectively. In general, when y is an initial
segment of x, we write x v y (refinements are lower down). To facilitate the
definition of NQ, for any P ∈ RO(2<ω) := RO(2<ω,v) and any x ∈ 2<ω, if
x ∈ P , let Firstin(x, P ) be the shortest initial segment of x that is in P , and
otherwise let it be undefined. Since P is a downset, Firstin(x, P ) is also the only
y such that x v y, y ∈ P , and Par(y) 6∈ P . Moreover, P =

⋃
x∈P ↓Firstin(x, P ).

Now define NQ by the following clause: for any P ∈ RO(2<ω) and x ∈ w<ω,

P ∈ NQ(x) iff x ∈ P and x v Firstin(x, P )0. (1)

We can also define NQ inductively as follows:

NQ(ε) = ∅;

NQ(x0) = NQ(x) ∪ {P ∈ RO(2<ω) | x ∈ P, Par(x) 6∈ P};
NQ(x1) = NQ(x);

but this definition is slightly harder to work with. We invite readers to verify
that the inductive definition is equivalent to the definition by (1).

To show that this definition will give us a possibility frame, we claim that
for any P ∈ RO(2<ω), Q(P ) := {x ∈ 2<ω | P ∈ NQ(x)} ∈ RO(2<ω). Pick any
P ∈ RO(2<ω). Now we show the two requirements for Q(P ) ∈ RO(2<ω).

• Suppose that P ∈ NQ(x) and x′ v x. By (1), x ∈ P and x v
Firstin(x, P )0. Since P is a downset, x′ ∈ P . By the definition of Firstin,
clearly Firstin(x′, P ) = Firstin(x, P ). Hence x′ v x v Firstin(x, P )0 =
Firstin(x′, P )0. Thus, P ∈ NQ(x′). This shows that Q(P ) is a downset.

• Suppose that x 6∈ Q(P ), that is, P 6∈ NQ(x). Now we want to find a x′ v x
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such that ↓x′ ∩Q(P ) = ∅. If x 6∈ P , then given that P ∈ RO(2<ω), pick
x′ such that x′ v x and ↓x′ ∩ P = ∅. Clearly, by the first conjunct
of (1), Q(P ) ⊆ P , and so ↓x′ ∩ Q(P ) = ∅. Hence we are left with
the case where x ∈ P . In this case, since P 6∈ NQ(x), it must be that
x 6v Firstin(x, P )0. But then, for any x′ v x, Firstin(x′, P ) = Firstin(x, P ),
and hence x′ 6v Firstin(x′, P )0 (note that we are in a tree here, and there
can be only one path from Firstin(x, P ) to x′ through x). Thus, every
x′ v x fails the second conjunct of (1), and ↓x∩Q(P ) = ∅. This concludes
the case where x ∈ P . Note that the above proof establishes the following:

whenever x ∈ P yet x 6∈ Q(P ), ↓x ∩Q(P ) = ∅. (2)

This will be useful when we show that (Split) is valid.

Now define N2 such that for every x ∈ 2<ω, N2(x) = {2<ω}. Then it is
easy to see that for any P ∈ RO(2<ω),

2(P ) := {x ∈ 2<ω | P ∈ N2(x)} =

{
2<ω if P = 2<ω

∅ otherwise.

Clearly, either way, 2(P ) ∈ RO(2<ω). Hence, T := 〈2<ω,v, N2, NQ〉 is a
possibility frame. It is routine to verify that T validates 2p → p, p → 23p,
and 2p → 22p. They all amount to discussing two cases: V (P ) = 2<ω and
V (P ) 6= 2<ω. It is also not hard to verify 2(p↔ q)↔ 2(Qp↔ Qq). The cases
to discuss here are V (p) = V (q) and V (p) 6= V (q). In the former case, for all
x ∈ 2<ω, 〈T, V 〉, x  p↔ q and 〈T, V 〉, x  Qp↔ Qq. Hence the same goes for
2(p ↔ q) and 2(Qp ↔ Qq). In the case that V (p) 6= V (q), 〈T, V 〉, ε 6 p ↔ q.
Then trivially for any x ∈ 2<ω, 〈T, V 〉, x  2(p↔ q)→ 2(Qp↔ Qq).

Now consider (Split) = p → (3(p ∧ Qp) ∧ 3(p ∧ ¬Qp)). To see that
this is valid, first note that 〈T, V 〉, x  3ϕ iff there exists x′ ∈ T such that
〈T, V 〉, x′  ϕ. Now suppose that 〈T, V 〉, x  p. This means that x ∈ V (p).
Now consider y = Firstin(x, V (p)). Clearly, by definition, y0 ∈ Q(V (p)) and
hence 〈T, V 〉, y0  Qp. Now consider y1. Clearly, y1 ∈ V (p) since V (p) is
a downset. But y1 6∈ Q(V (p)) since y1 6v y0 = Firstin(y1, V (p))0. Hence
↓y1 ∩ Q(V (p)) = ∅ by (2). Thus, 〈T, V 〉, y1  ¬Qp. By the semantics of 3

and ∧ then, 〈T, V 〉, x � (3(p∧Qp)∧3(p∧¬Qp)). Since V and x are arbitrary,
we have shown that (Split) is valid on T. 2

The possibility frame T in the above proof can be given a natural interpreta-
tion. The partially ordered set 〈2<ω,v〉 naturally models the finitary outcomes
of an infinite sequence of coin flips (say that 0 represents heads and 1 represents
tails), and a crucial property is that every possibility can be further extended
into two incompatible possibilities. This matches our intuitive understanding
of a world with future contingencies such as random coin flips: at any time,
there is at least one more coin to be flipped, and either outcome is possible.

Then our formal definition of NQ clearly makes Qϕ express the following:
ϕ is now true, and the first coin flipped after ϕ became true landed heads up.
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We can also avoid temporal talk and instead speak of truth-making: ϕ, and the
coin after the one that (exactly) makes ϕ true lands heads up. On this reading
of Q, (Split) says that if ϕ is true, then it is possible that ϕ is true and the
coin after the one that makes ϕ true lands heads up, and it is also possible that
ϕ is true and the coin after the one that makes ϕ true lands tails up.

In addition to consistency, we will prove the following completeness theorem.

Theorem 5.3 The logic EST (resp. ES, S) is the logic of all neighborhood
possibility frames that validate EST (resp. ES, S). In other words, EST, ES,
and S are possibility complete.

This will be a corollary of the completeness theorem in the next section based
on algebraic semantics.

6 Completeness

In this section, we consider algebraic semantics that generalizes possible world
semantics and possibility semantics. This will help us understand exactly what
it takes to validate S, ES, and EST and show that they are possibility complete.

Definition 6.1 A Boolean algebra expansion (BAE) B is a triple 〈B,2, Q〉
where B is a Boolean algebra and 2, Q are two unary functions on B. We
define 3 and other derived operations on B as usual. For convenience, we omit
the parentheses for the argument of unary functions as appropriate.

A valuation V on B is function V : Prop→ B. Then the semantics for L is
defined by extending V to V̂ : L → B homomorphically:

• V̂ (p) = V (p) for p ∈ Prop;

• V̂ (¬ϕ) = ¬V̂ (ϕ); V̂ (ϕ ∧ ψ) = V̂ (ϕ) ∧ V̂ (ψ);

• V̂ (2ϕ) = 2V̂ (ϕ); V̂ (Qϕ) = QV̂ (ϕ).

To highlight the algebra whose operations are used when obtaining V̂ from
V , especially when V may be regarded as a valuation on two different BAEs,
we may write V̂ B. We say that ϕ is valid on B if for all valuation V on B,
V̂ (ϕ) = >, where > is the top element of B.

Considering the structure of the underlying Boolean algebra, we call a BAE
complete or a C-BAE (resp. atomic, an A-BAE) if its Boolean algebra part is
a complete (resp. atomic) Boolean algebra. Then CA-BAEs are complete and
atomic BAEs. On the logical side, for X ∈ {C,A, CA}, we say a set of formulas
Γ is X-consistent iff there is an X-BAE validating Γ, and we say that it is
X-complete iff it is the logic of the class of X-BAEs validating it (cf. [21]).

From the algebraic perspective, neighborhood frames correspond to CA-
BAEs while neighborhood possibility frames corresponds to C-BAEs. We spell
this out for possibility frames, the key fact being that the regular downsets of
〈S,v〉—which are just the regular open sets in the topology on S whose opens
are downsets of 〈S,v〉—form a complete Boolean algebra (see, e.g., [9, § 4]).
For proofs and further discussion of the following facts relating neighborhood
possibility frames and BAEs, see [13].



160 Another Problem in Possible World Semantics

Proposition 6.2 For any possibility frame F = 〈S,v, N2, NQ〉, let Fb =
〈RO(S,v),2, Q〉 where:

• RO(S,v) is the complete Boolean algebra of regular downsets of 〈S,v〉;
• O(P ) = {x ∈ S | P ∈ NO(x)} for O ∈ {2, Q}.

Then Fb is a C-BAE, and any valuation V : Prop→ RO(S,v) on F is also a
valuation on Fb and vice versa. Moreover, by a simple induction, for any ϕ,
JϕK〈F,V 〉 = V̂ (ϕ). Hence F validates ϕ iff Fb validates ϕ.

Proposition 6.3 For any complete Boolean algebra B, let B⊥ be the result of
deleting ⊥ from B and ≤⊥ the result of restricting ≤, the lattice ordering of B,
to B⊥. Then RO(B⊥,≤⊥) is isomorphic to B through the least upper bound
lub operation. (Note that lub(∅) = ⊥.)

Thus, for any C-BAE B = 〈B,2, Q〉, define Bu = 〈B⊥,≤⊥, N2, NQ〉 where
NO(b) = {P ∈ RO(B⊥,≤⊥) | b ≤ O(lub(P ))} for O ∈ {2, Q}. Then Bu is a
possibility frame, and (Bu)b is isomorphic to B, again through lub. Hence B
validates a formula ϕ iff Bu validates ϕ.

A simple corollary of these two propositions is that a congruential modal
logic is possibility complete iff it is C-complete. Hence to show that S, ES, and
EST are possibility complete, we show first that they are C-complete. To this
end, we begin by translating the two defining axioms of S into their conditions
for being valid on BAEs.

Proposition 6.4 A BAE B = 〈B,2, Q〉 validates S iff the following hold:

(i) 3⊥ = ⊥ and

(ii) for any b ∈ B, 3(b ∧Qb) ≥ b and 3(b ∧ ¬Qb) ≥ b.
A simple corollary is the following (cf. the more complicated A-inconsistent

normal polymodal logic in [28]).

Proposition 6.5 If a BAE validates S, then it is atomless. Hence S is A-
inconsistent.

Proof. Suppose a BAE B validates S. Pick any b ∈ B such that b 6= ⊥. Then
consider b1 = b ∧ Qb and b2 = b ∧ ¬Qb. Since B validates S, by the previous
proposition, we have (i) and (ii). By (ii), 3b1 ≥ b and 3b2 ≥ b. Hence neither
b1 nor b2 is ⊥ since 3⊥ = ⊥ by (i). But clearly b1 ∨ b2 = b. Hence neither of
them is b as otherwise the other is ⊥. Thus, ⊥ < b1 < b, so b is not an atom.2

Now we are already able to show that S is C-complete.

Theorem 6.6 S is the logic of the C-BAEs validating it. Indeed, letting H =
〈H,2, Q〉 be the Lindenbaum algebra of S and H+ the MacNeille completion
of the Boolean algebra H, there is a way to extend 2 and Q to 2+ and Q+ on
H+ such that H is a subalgebra of H+ = 〈H+,2+, Q+〉 (so that H+ refutes all
formulas not in S) and H+ still validates S.

Proof. Let H = 〈H,2, Q〉 be the Lindenbaum algebra of S. By standard
algebraic logical theory, H validates S, and for every ϕ 6∈ S, there is a valuation
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Vϕ on H such that V̂ϕ(ϕ) 6= >. Since H validates S, by Proposition 6.5, H
is atomless. Now let H+ be the MacNeille completion of H, which is the
unique (up to isomorphism) complete Boolean algebra with H being a dense
subalgebra of it (in the sense that for every b ∈ H+ such that ⊥ < b, there
is a b′ ∈ H such that ⊥ < b′ ≤ b). (See Chap. 25 of [7] for more.) Clearly
then H+ is also atomless. Now we extend 2 and Q to H+. First, note that
for any b ∈ H+ \H, there exist b1, b2 ∈ H+ \H such that b = b1 ∨ b2. To find
such b1 and b2, first by density pick an a ∈ H such that ⊥ < a < b (note that
b 6∈ H and hence ⊥ < b). Then b′ = b ∧ ¬a must not be in H since otherwise
b = a ∨ b′ would also be in H. Now that H is atomless, pick a1, a2 ∈ H \ {⊥}
such that a = a1∨a2. Then let b1 = a1∨b′ and b2 = a2∨b′. Clearly b = b1∨b2.
To see that b1 6∈ H, note that if it is in H, then b′ = b1 ∧ ¬a1 must also be
in H, contradicting that b′ 6∈ H. The same reasoning applies to b2. To fix
the construction of b1 and b2, we can first fix an enumeration of H, which is
countable, and then pick a and a1, a2 by going through this enumeration.

Now we define 2+ and Q+ by the following:

2+b =

{
2b if b ∈ H
⊥ if b ∈ H+ \H, Q+b =

{
Qb if b ∈ H
b1 if b ∈ H+ \H.

Then it is easy to see by the construction of b1 and b2 that for every b ∈ H+\H,
b ∧Q+b (which is just b1) and b ∧ ¬Q+b (which is just b2) are also in H+ \H.
Also, 3+b := ¬2+¬b = > for all b ∈ H+ \H since b 6∈ H iff ¬b 6∈ H. Hence
for any b ∈ H+ \ H, 3+(b ∧ Q+b) = 3+(b ∧ ¬Q+b) = > ≥ b. Thus, by a
simple discussion by cases, Proposition 6.4 applies, and H+ validates S. By
construction, H is a subalgebra of H+. So H+ does not validate any formula
not in S since H does not. Therefore, S is the logic of H+, a C-BAE. 2

The above strategy by MacNeille completion applies almost identically to
ES and EST except that we need to focus on simple S5 algebras, those BAEs
such that the 2 operator essentially tests whether a proposition is > or not, so
that the 2+ defined in the above proof does not destroy the validity of the S5
axioms. To this end, we first need the following definitions.

Definition 6.7 Let B = 〈B,2, Q〉 be a BAE. Then:

• B is simple S5 if for any b ∈ B, if b = ⊥ then 3b = ⊥, and otherwise
3b = >;

• B is splitting if for any b ∈ B, if b 6= ⊥, then b∧Qb 6= ⊥ and b∧¬Qb 6= ⊥;

• B is deflationary if Qb ≤ b for all B ∈ B;

• B is properly deflationary if it is both splitting and deflationary; note that
this is equivalent to: ⊥ < Qb < b for all b ∈ B \ {⊥} and Q⊥ = ⊥.

Proposition 6.8 A simple S5 BAE validates ES (resp. EST) iff it is also split-
ting (resp. properly deflationary).

Proof. Let B be a simple S5 BAE. Then automatically B validates the S5
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axioms for 2 and also the axiom 2(p ↔ q) → 2(Qp ↔ Qq), since for any

valuation V on B, V̂ (2(p↔ q)) is either > or ⊥. If it is ⊥, the axiom is trivially

evaluated to >. If it is >, then V̂ (p↔ q) = >, and hence V (p) = V (q). Then

V̂ (Qp) = V̂ (Qq) and hence V̂ (2(Qp↔ Qq)) is also >.

For (Split), it is enough to see that V̂ (3(p∧Qp)) (resp. V̂ (3(p∧¬Qp))) is
either > or ⊥, and it is the former iff V (p)∧QV (p) 6= ⊥ (resp. V (p)∧¬QV (p) 6=
⊥). Then the validity of (Split) translates to the condition that B is splitting
by a simple discussion of whether V (p) = ⊥.

For the axiom Qp→ p, clearly it is valid iff B is deflationary. 2

Theorem 6.9 ES is complete with respect to the class of all simple S5 splitting
C-BAEs. EST is complete with respect to the class of all simple S5 properly
deflationary C-BAEs.

Proof. Let L be either ES or EST. Then take an arbitrary δ 6∈ L. We need to
find a simple S5 splitting C-BAE that refutes δ, and in the case that L = EST,
the algebra should also be deflationary.

Consider the Lindenbaum algebra H of L, with [·] the function that sends
formulas to their equivalence classes under the provable equivalence relation
in L. Since δ 6∈ ES, [δ] 6= >H. Let U be an ultrafilter of the Boolean algebra
base of H that does not contain [δ]. Now define ∼ on H by [ϕ] ∼ [ψ] iff
2(ϕ↔ ψ) ∈ U . This is well defined because if both ϕ↔ ϕ′ and ψ ↔ ψ′ are in
ES ⊆ L, then 2(ϕ↔ ψ)↔ 2(ϕ′ ↔ ψ′) is also in ES ⊆ L. More importantly, ∼
is a congruence relation because in L we have the following theorems, with the
last being a defining axiom:

• (2(ϕ↔ ψ) ∧2(ϕ′ ↔ ψ′))→ 2((ϕ ∧ ϕ′)↔ (ψ ∧ ψ′));
• 2(ϕ↔ ψ)→ 2(¬ϕ↔ ¬ψ);

• 2(ϕ↔ ψ)→ 2(2ϕ↔ 2ψ);

• 2(ϕ↔ ψ)→ 2(Qϕ↔ Qψ).

Hence we can take the quotient S = H/∼. Let π be the quotient map for ∼,
and let V be the composition of π after [·]. Now we make three claims:

(i) S validates L. It is a standard exercise to show that H validates L. Since
S is a quotient of H, S also validates L.

(ii) S is a simple S5 algebra. For this, we just need to show that if b ∈ S is
not >S , then 2Sb = ⊥S . This is again standard using the S5 axioms.

(iii) V |Prop is a valuation on S, V = V̂ |Prop, and V (δ) 6= >S .

By Proposition 6.5 and 6.8, we know then that S is atomless and splitting.
Thus S is a simple S5 splitting algebra that refutes δ by V , and moreover if
L = EST, S is also deflationary. Thus, all that is left to do is to complete S while
preserving the three properties: being simple S5, splitting, and deflationary (if
S is deflationary). For this, write S = 〈S,2, Q〉, and let S+ be the MacNeille
completion S. Then pick a function j : S+ → S+ such that for every non-
bottom b ∈ S+, ⊥ < j(b) < b. Such a j exists since S and hence S+ are
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atomless. In fact, since S is dense in S+ by the construction of MacNeille
completion, j(b) can be picked in S according to an enumeration of S (note
that S is countable). Then define S+ = 〈S+,2+, Q+〉 by

2+b =

{
> if b = >
⊥ otherwise,

Q+b =

{
Qb if b ∈ S
j(b) if b ∈ S+ \ S.

Then clearly:

• S embeds into S+ by the identity map, and hence VProp is also a valuation

on S+ and V = V̂ |Prop;
• S+ is a simple S5 splitting algebra since b ∧ j(b), b ∧ ¬j(b) > ⊥;

• if S is deflationary, meaning that Qb ≤ b for all b ∈ S, then S+ is also
deflationary, since j(b) ≤ b for all b ∈ S+ \ S as well;

• S+ is complete.

Hence δ is refuted by V on S+, a simple S5 splitting C-BAE that is deflationary
if L = EST. 2

An important observation about the two proofs of the C-completeness of
S, ES, and EST is that the refuting C-BAEs we constructed are very special:
their Boolean reducts are all (isomorphic to) the MacNeille completion of the
countable atomless Boolean algebra, since the Lindenbaum algebra of S and the
quotients of the Lindenbaum algebra of ES and EST are all countable (since the
language we started with is countable) and atomless (since they all validate S).
Let us call this special complete Boolean algebra Bmca. Then we can say that
S, ES, and EST are not just C-complete, but also Bmca-complete. A corollary of
this is that these three logics are not just possibility complete but also complete
with respect to possibility frames based on the full infinite binary tree 2<ω.

To see this, we observe that just as C-completeness and possibility com-
pleteness are equivalent by Propositions 6.2 and 6.3, Bmca-completeness and
2<ω-completeness are also equivalent. The following proposition is the core of
this new equivalence.

Proposition 6.10 RO(2<ω) is (isomorphic to) the MacNeille completion of
the countable atomless Boolean algebra.

Proof. Given the defining property of MacNeille completion, it is enough to see
that there is a dense subalgebra of RO(2<ω) that is countable and atomless.
The subalgebra generated by principal downsets (i.e., downsets of the form
{x ∈ 2<ω | x v s} for s ∈ 2ω) is such a subalgebra. 2

With the above proposition, we can state the analogues of Proposition 6.2
and Proposition 6.3.

Proposition 6.11 For any possibility frame F = 〈2<ω, N2, NQ〉 based on 2<ω,
Fb is of the form 〈Bmca,2, Q〉, a BAE based on Bmca.

Proposition 6.12 For any BAE 〈Bmca,2, Q〉 based on Bmca, define neigh-
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borhood functions N2 and NQ on 2<ω by the following clause where σ is any
isomorphism from RO(2<ω) to Bmca: for any O ∈ {2, Q}, s ∈ 2<ω, and
X ∈ RO(2<ω), X ∈ NO(s) iff s ∈ σ−1(O(σ(X))). Then, (〈2<ω, N2, NQ〉)b ∼=
〈Bmca,2, Q〉 with σ being the isomorphism.

Thus, a logic is complete with respect to neighborhood possibility frames
based on 2<ω iff it is complete with respect to BAEs based on Bmca. This
completes the proof of the following strengthening of Theorem 5.3.

Theorem 6.13 The logic S (resp. ES, EST) is the logic of all neighborhood
possibility frames based on 2<ω that validate S (resp. ES, EST).

Now that we have seen that S, which is defined by two very simple axioms, is
consistent and C-complete yet A-inconsistent, we briefly comment on whether
we may have a logic that is also consistent and A-inconsistent but is defined
by even simpler axioms. Recall that given a set Γ of formulas, Cong(Γ) is the
smallest congruential modal logic containing Γ. Now let BAE(Γ) be the class
of BAEs validating Γ. Then the following theorem is due to Lewis [18].

Theorem 6.14 (Lewis) For every set Γ of formulas of modal depth at most
1, Cong(Γ) is complete with respect to all finite BAEs in BAE(Γ). Since finite
BAEs are all complete and atomic, Cong(Γ) is CA-complete.

Hence, {2>, (Split)} is optimal in terms of modal depth: depth 2. We can
also show that it is optimal in terms of the number of propositional variables
used: just 1. For this, let the language L now include the propositional constant
> 6∈ Prop such that for any valuation V , V̂ (>) = > on any BAE. Then we have
the following simple theorem.

Theorem 6.15 If Γ ⊆ L contains only formulas that do not use any proposi-
tional variable in Prop, then Cong(Γ) is CA-complete.

Proof. Let Γ be a set of variable-free formulas and L = Cong(Γ). L is trivially
CA-complete if it is inconsistent. Hence we assume that it is consistent. Con-
sider H = 〈H, 〈∇i〉i≤n〉, the Lindenbaum algebra of L (here we do not assume
that L has only 2 and Q as modalities). Let H+ be the BAE where its Boolean
base H+ is the canonical extension of H, and its operations ∇+

i are defined by

∇+
i (a) =

{
∇L(a) if a ∈ Harity(∇i)

> otherwise.

Then let V1 be the constantly > valuation V1 on H+, which is also a valuation

on H. Since by construction H is a subalgebra of H+, V̂1
H+

= V̂1
H

. In

particular, for any ϕ ∈ Γ, V̂1
H+

(ϕ) = V̂1
H

(ϕ) = > since ϕ is valid on H. But
a variable-free formula is valid iff it is evaluated to > in any valuation. So all
formulas in Σ are still valid on H+. Since H is a subalgebra of H+, formulas
that are invalid in H are still invalid in H+. Hence the validities of H+ are
precisely Cong(Γ). Since H+ is a canonical extension, H+ is a CA-BAE. Hence
Cong(Γ) is CA-complete. 2
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However, {2>, (Split)} is not optimal in terms of the number of modal
operators used. Peter Fritz in his presentation [6] of his paper [5] defined
the unimodal logic Uni3, the smallest congruential modal logic containing the
following axioms:

(2> ∧ p)↔ 2(2> → (p ∧2(2> ∧ p))) (Uni3Ax1)

(2> ∧ p)↔ 2(2> → (p ∧ ¬2(2> ∧ p))) (Uni3Ax2)

222> (Uni3Ax3)

¬2⊥. (Uni3Ax4)

It can be shown that Uni3 is consistent yet A-inconsistent. Hence, an open
problem here is whether there is a consistent yet A-inconsistent logic that
can be axiomatized by using only 1 modal operator, 1 (or more) propositional
variables, and modal depth 2. It is also not known whether Uni3 is C-complete.

7 Split in Peano Arithmetic

In this section, we show how EST arises naturally in the study of Peano Arith-
metic and in particular the problem of uniform density [26]. Following [26],
define the following sequence of subtheories of PA:

AR0 = I∆0 + Exp, ARn+1 = IΣn+1.

Recall that Exp is the formula stating the totality of the exponential function
defined by a ∆0 formula (see [8, p. 299]), I∆0 is Peano Arithmetic with the
induction schema applied only to ∆0 formulas, and IΣn+1 is Peano Arithemetic
with the induction schema only applied to Σn+1 formulas. For each n, ARn+1

extends ARn, with their union being the usual PA. AR0 is also known as
elementary arithmetic (EA). These theories are uniformly recursively axioma-
tized. Hence there is a formula with two free variables, Prov(x, y), such that
Prov(n, dϕe) expresses “ϕ is provable in ARn” in PA. For convenience, let Prxϕ
stand for Prov(x, dϕe). Then define Qϕ to be

ϕ ∧ ∀x(Prx(ϕ→ Prx(ϕ→ ⊥))→ Prx(ϕ→ ⊥)).

If we write Connϕ for “ϕ is consistent in ARn”, then Qϕ can be equivalently
defined as

ϕ ∧ ∀x(Conxϕ→ Conx(ϕ ∧ Conxϕ)).

For example, Q> is equivalent to the formula ∀x(Conx> → ConxConx>), which
intuitively says that for every n, if ARn is consistent, then it is consistent in
ARn that the system ARn is consistent. While it sounds trivial to us, PA is not
able to prove or disprove this Q>. The following two lemmas are shown in [26]
(note that their notation is Cϕ instead of Qϕ).

Lemma 7.1 ([26], Lemma 3.4) For any ϕ and ψ, if PA ` ϕ ↔ ψ, then
PA ` Qϕ↔ Qψ.
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Lemma 7.2 ([26], Lemma 3.5) If ϕ is consistent in PA, then both ϕ ∧ Qϕ
and ϕ ∧ ¬Qϕ are consistent in PA.

Then it follows immediately from Proposition 6.8 that the logic of this
arithmetic Q is at least EST.

Theorem 7.3 Let H be the Lindenbaum algebra of PA. Let 2 be defined on
H by 2[ϕ] = [>] if PA ` ϕ and 2[ϕ] = [⊥] otherwise. Define Q on H by
Q[ϕ] = [Qϕ]. Then 〈H,2, Q〉 validates EST.

Thus, (Split) is not only consistent and intelligible but even has a natural
arithmetic interpretation.

8 Conclusion

As with other results showing that certain modal logics are incomplete with
respect to possible world semantics but complete with respect to more general
semantics (see [15] and references therein), we take the results of this paper to
be more positive than negative, as they lead to interesting new questions for
the foundations of modal logic. We conclude by mentioning a few questions.

First, on the more philosophical side, we would like to identify more modal
operators for which (Split) is intuitively valid. We think that the study of
truth-makers or counterfactuals is the most promising path. A related question:
as we have shown in Theorem 5.2, monotonicity is inconsistent with S, but what
other principles are inconsistent with S? Answering this question will help us
narrow down possible interpretations of the 2 and Q operators validating S.

On the more technical side, a first question is whether there are congruential
extensions of S (or ES or EST) that are not C-complete. This is essentially a
test of how widely applicable our method of MacNeille completion is in proving
completeness with respect to C-BAEs. A further question is which extensions
of S (or ES or EST) are tree complete, that is, complete with respect to a class
of possibility frames whose underlying posets of possibilities are trees or even
finitely branching trees. We have seen in Theorem 6.13 that the three logics,
S, ES, and EST, are all tree complete (indeed, 2<ω-complete). But the general
picture for congruential logics extending these logics is not clear. It may also
be interesting to see how we can axiomatize the logic of the possibility frame
based on 2<ω defined in the proof of Theorem 5.2.

Finally, as we mentioned in Section 6, it remains to be seen whether there
is a consistent but A-inconsistent congruential modal logic axiomatized using
1 modality, 1 propositional variable, and modal nesting depth 2.

Acknowledgements

A version of this paper was presented as a Philosophy Colloquium talk at UC
San Diego on October 19, 2018. We thank the audience for helpful feedback.
We also thank the three anonymous referees for AiML for valuable comments.



Ding, Holliday 167

References

[1] Bacon, A., J. Hawthorne and G. Uzquiano, Higher-order free logic and the Prior-Kaplan
paradox, Canadian Journal of Philosophy 46 (2016), pp. 493–541.

[2] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge University Press,
New York, 2001.

[3] Ding, Y., On the logics with propositional quantifiers extending S5Π, in: G. Bezhanishvili,
G. D’Agostino, G. Metcalfe and T. Studer, editors, Advances in Modal Logic, Vol. 12,
College Publications, London, 2018 pp. 219–235.

[4] Ding, Y., On the logic of belief and propositional quantification (2020), UC Berkeley
Working Paper in Logic and the Methodology of Science.
URL https://escholarship.org/uc/item/7476g21w

[5] Fritz, P., Post completeness in congruential modal logics, in: L. D. Beklemishev, S. Demri
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Abstract

We present a cut-free circular proof system for the hybrid µ-calculus, and prove its
soundness and completeness. The system is an adaptation of a circular proof system
for the modal µ-calculus due to Stirling, and uses a system of annotations to keep
track of fixpoint unfoldings. The language considered here extends the µ-calculus with
nominals and satisfaction operators, but not the converse modality. This version of
the hybrid µ-calculus is known to have the finite model property, unlike the version
that includes converse. The presence of nominals and satisfaction operators causes
some non-trivial difficulties to deal with in the completeness proof. In particular we
need to be careful about what information attached to nominals to keep and what
to discard, and furthermore the structure of traces in a proof-tree becomes more
complicated. Still, it turns out that the proof system is complete with the same
global condition for validity as Stirling’s system. The key tool that we develop for
the completeness proof is a proof-search game, in which one of the players attempts
to construct a proof in a restricted normal form making use of certain derived rules.
We conclude the paper with some tasks for future research, which include proving
completeness of a cut-free non-circular sequent calculus, and extending the system
developed here to incorporate converse modalities.

Keywords: Hybrid logic, µ-calculus, circular proofs, completeness, automata

1 Introduction

Circular and non-wellfounded proofs are a powerful method for reasoning with
fixpoints, and have been considered in a number of contexts [19,6,22,3,4,21].
For the modal µ-calculus, a circular proof system with names for keeping track
of fixpoint unfoldings was developed by Stirling [23], building on work by Jung-
teerapanich [12] and bearing similarities with earlier systems using variables for
ordinal approximations [6]. Recently Stirling’s system has been simplified and
used by Afshari and Leigh to give a cut-free complete sequent system for the

1 This research was supported by the Swedish Research Council grant 2015-01774.
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modal µ-calculus [2]. This provides a novel completeness proof for Kozen’s ax-
iomatization [15] that avoids the intricate detour via disjunctive normal forms
in Walukiewicz’s proof [27]. Building on this work, circular proofs were used in
[8] to settle the open problem of completeness of Parikh’s logic of games [17].

The present work is intended as a step towards exploring the use of circular
proofs to provide complete finitary proof systems for richer extensions of the
modal µ-calculus. A number of such extensions have been presented in the lit-
erature, including the two-way or “full” µ-calculus [26], hybrid µ-calculus [20]
and guarded fixpoint logic [11]. In many cases such extensions remain decid-
able. However, complete proof systems mostly appear to be lacking. Some work
in this area does exist: a generic completeness result for coalgebraic versions of
the µ-calculus (including extensions like the graded µ-calculus) was presented
in [10]. This general result does not cover the hybrid µ-calculus however, since
the sort of global conditions that are expressible in hybrid logics are out of
scope for the framework in [10]. An infinitary proof system for the two-way
µ-calculus was proved complete in [1].

As a proof of concept, we shall develop a cut-free Stirling-style circular proof
system for the hybrid µ-calculus. Orignally introduced by Sattler and Vardi in
[20], the hybrid µ-calculus features nominals, which are used to name points in
a model, and satisfaction operators that describe what is true at a named point
in a model. We shall follow Tamura [24] by not including converse modalities
in our language, unlike Sattler and Vardi. Tamura shows that the hybrid
µ-calculus without converse has the finite model property, unlike the more
expressive version considered by Sattler and Vardi. We also mention a version
of the hybrid µ-calculus involving a binder modality, which was investigated in
[13] under the name “fully hybrid µ-calculus”. This logic is undecidable, and
therefore seems out of scope for the kind of methods that we consider here.

The presence of nominals and satisfaction operators already presents some
non-trivial challenges for the completeness proof, and addressing these difficul-
ties gives some guidelines on how to deal with proof theory for fixpoint logics
that lack the tree model property. In a manner of speaking, we are continuing
here along Sattler and Vardi’s line of working with logics that lack the tree
model property “as if they had the tree model property” [20], but taking the
idea in a proof-theoretic direction.

Proofs have been removed or shortened due to page limitations. For a longer
version of this paper including detailed proofs, see the preprint availabe online
at https://arxiv.org/abs/2001.04971.

2 Preliminaries

2.1 The hybrid µ-calculus

The hybrid µ-calculus was initially introduced by Sattler and Vardi in [20].
Their version of the language included a global modality and converse modali-
ties. Here, we shall be considering the weaker version of the hybrid µ-calculus
that was studied by Tamura in [24]. For ease of notation we consider the
language with only a single box and diamond, but all the results and proofs
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presented here easily extend to a multi-modal version of the language.
The language L of the hybrid µ-calculus is given by the following grammar:

ϕ := p | ¬p | i | ¬i | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ | i :ϕ | µx.ϕ | νx.ϕ
Here, p and x are members of a fixed countably infinite supply Prop of

propositional variables, and i comes from a fixed countably infinite supply Nom
of nominals. For ηx.ϕ with η ∈ {µ, ν}, we impose the usual constraint that no
occurrence of x in ϕ is in the scope of a negation, and we also require that each
occurrence of x in ϕ is within the scope of some modality (2 or 3). This latter
extra constraint means that we restrict attention to guarded formulas. This is
a fairly common assumption, and it is well known that removing the constraint
of guardedness does not increase the expressive power of the language. It is not
an entirely innocent assumption however, since putting a formula in its guarded
normal form may cause an exponential blow-up in the size of a formula [5].

Note also that the language is presented in negation normal form. It is
routine to verify, given the semantics presented below, that the language is
semantically closed under negation, and furthermore there is a simple effec-
tive procedure for converting formulas in the extended language with explicit
negation of all formulas into formulas in negation normal form.

Free and bound variables of a formula are defined in the usual manner. A
literal is a formula of the form p or ¬p where p ∈ Prop, or of the form i or ¬i
where i ∈ Nom. We introduce the following abbreviations:

i ≈ j := i : j i 6≈ j := i :¬j
These formulas express identity and non-identity, respectively, of the values
assigned to the nominals i, j in a model.

Definition 1 Let ϕ be any formula in L and let x, y ∈ Prop be bound variables
in ϕ. We say that y is dependent on x, written x <ϕ y, if there is a subformula
of ϕ of the form ηy.ψ in which there is a free occurrence of x. We denote the
reflexive closure of <ϕ by ≤ϕ.

Definition 2 We say that a formula ϕ is locally well-named if <ϕ is irreflex-
ive, no variable occurs both free and bound in ϕ, and no variable is bound by
both µ and ν in ϕ.

Note that every formula is equivalent to a locally well-named one up to renam-
ing of bound variables (α-equivalence).

Proposition 2.1 (Afshari & Leigh -17) If ηx.ϕ(x) is locally well-named
then so is ϕ(ηx.ϕ).

Convention 1 We shall assume throughout the paper that all formulas are
locally well-named. Given a locally well-named formula we refer to a bound
variable x as a µ-variable if it is bound (only) by µ in ϕ, and a ν-variable if it
is bound (only) by ν.

Semantics of the hybrid µ-calculus is a simple extension of the usual Kripke
semantics for the modal µ-calculus.
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Definition 3 A Kripke model is a tuple M = (W,R, V,A) where W is a
non-empty set members of which will be referred to as points, R ⊆ W ×W
is the accessibility relation over W , V : Prop → P(W ) is a valuation of the
propositional variables and A : Nom→W is an assignment of a value in W to
each nominal.

Given a Kripke model M = (W,R, V,A), the interpretation [[ϕ]]M of a for-
mula ϕ is defined by the usual recursive clauses for boolean connectives and
modalities. Semantics of least fixpoint operators is given according to the
Knaster-Tarski Theorem [14,25] as:

[[µx.ϕ(x)]]M :=
⋂
{Z ⊆W | [[ϕ]]M[Z/x] ⊆ Z},

where M[Z/x] is like M except that its valuation maps the variable x to Z.
For greatest fixpoint operators we have the dual definition:

[[νx.ϕ(x)]]M :=
⋃
{Z ⊆W | Z ⊆ [[ϕ]]M[Z/x]}.

For nominals and satisfaction operators, we have the following clauses: [[i]]M =
{A(i)} and [[i : ϕ]]M = {w ∈ W | A(i) ∈ [[ϕ]]}. In other words, [[i : ϕ]]M = W
if A(i) ∈ [[ϕ]], and [[i : ϕ]]M = ∅ otherwise. Given a formula ϕ and a pointed
Kripke model (M, w) (a model with a distinguished point), we writeM, w  ϕ
to say that w ∈ [[ϕ]]M.

This semantics may be referred to as the denotational semantics of the
µ-calculus. The µ-calculus also has an operational semantics in the form of
a game semantics, which is often easier to work with and neatly captures the
intuitive meaning of least and greatest fixpoints (i.e. “finite looping” vs “infinite
looping”). In this game semantics it is convenient to work with the (Fischer-
Ladner) closure c(ϕ) of a formula. The precise definition is a straightforward
adaptation of that in [20], with the new clause that i :θ ∈ c(ϕ) imples θ ∈ c(ϕ).

Throughout the paper we assume familiarity with basic notions concerning
board games and parity games (see [9] for a very brief introduction). Given a
Kripke model M = (W,R, V,A), the evaluation game for a formula ρ ∈ L in
the model M is a two-player board game between players Ver,Fal, the set of
positions of which is W × c(ρ), with player assignments and moves defined as
follows:

• For a position of the form (w, l) where l is a literal, the set of available moves
is ∅. The position is assigned to Fal if M, w  l and is assigned to Ver
otherwise.

• For a position of the form (w,ϕOψ) where O ∈ {∧,∨}, the available moves
are (w,ϕ) and (w,ψ). The position is assigned to Ver if O = ∨ and is
assigned to Fal if O = ∧.

• For a position of the form (w,Oϕ) where O ∈ {3,2}, the set of available
moves is {(v, ϕ) ∈W | wRv}. The position is assigned to Ver if O = 3 and
is assigned to Fal if O = 2.
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• For a position of the form (w, i : ϕ), the unique avaliable move is (A(i), ϕ).
The player assignment is arbitrary in this case since there is only one move,
but as a convention we assign such positions to player Ver.

• For a position of the form (w, ηx.ϕ(x)), the unique available move is
(w,ϕ(ηx.ϕ)). By convention we assign such positions to Ver.

Partial plays, full plays and strategies for players are defined as usual. Note
that if a full play is finite, then the player to which the last position is assigned
must be “stuck”, i.e. the set of available moves is empty. So the winning
condition of finite full plays is defined by declaring the player who got stuck to
be the loser of the play. For infinite plays (w1, ϕ1)(w2, ϕ2)(w3, ϕ3)..., say that
a fixpoint variable x is unfolded at the index i if ϕi is of the form ηx.ψ(x).

Proposition 2.2 For any (locally well-named) formula ρ and any infinite play
π in the evaluation game in M, there is a unique <ρ-minimal variable x that
is unfolded infinitely many times on π.

We shall often refer to the <ρ-minimal variable unfolded infinitely often on π
as the highest ranking variable that is unfolded infinitely often. We can now
define the winning condition of infinite plays: the winner is Ver if the highest
ranking variable that gets unfolded infinitely often is a ν-variable (relative to
ρ), and the winner is Fal otherwise.

A strategy is called positional if it only depends on the last position of a
play, i.e. it can be described as a choice function from positions to available
moves. Since the evaluation game is a parity game, and parity games have
positional determinacy [7,28], we have:

Proposition 2.3 The evaluation game of any formula in a model is determi-
nate, and the winning player at any given position has a positional winning
strategy.

As expected the operational semantics agrees with the denotational one:

Proposition 2.4 Given a pointed Kripke model (M, w) and a formula ρ, we
have M, w  ρ if and only if the position (w, ρ) is winning for Ver in the
evaluation game.

3 Infinite proofs

In this section we define an infinite sequent-style proof system Inf for the hy-
brid µ-calculus. This proof system will be used as a tool to prove completeness
of the finite circular proof system that will be introduced in Section 5.1. The
infinite system presented here is essentially dual to an infinite tableau system
for the hybrid µ-calculus. An important difference from the tableaux developed
by Sattler and Vardi in [20] is that the system is cut-free, which is required
since the finitary circular system we shall present later will also be cut-free.
Sattler and Vardi’s automata-theoretic approach relies on “guessing” all the
relevant information about some nominals at the start of the tableau construc-
tion. In the dual setting of sequent calculi this amounts to starting the proof
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construction with a series of cuts.

3.1 The system Inf

We will work with a sequent style proof system, where a sequent is a finite
set of formulas interpreted as an implicit disjunction. It will be convenient to
require that every formula in a sequent starts with some satisfaction operator,
so each sequent has the form:

i1 :ϕ1, ..., in :ϕn

This means that our proof system will only prove formulas of this shape. How-
ever, this is not a serious restriction: given a formula ϕ that is not in the
required format, we can always replace it with the formula i :ϕ where i is some
arbitrarily chosen, fresh nominal not appearing in ϕ. Clearly i : ϕ is then se-
mantically valid if and only if ϕ is, and we may regard any proof of i :ϕ as a
proof of ϕ.

The system has two axioms, which are the law of exluded middle and an
identity axiom:

i :p, i :¬p i ≈ i

Here, p is a nominal or a propositional variable. Rules of inference are given
in Figure 1. We remark that, in the modal rule Mod, the nominal j must be
fresh, i.e. it cannot appear in any formula in the conclusion of the rule.

Γ, i :ϕ ∧ ψ, i :ϕ Γ, i :ϕ ∧ ψ, i :ψ ∧
Γ, i :ϕ ∧ ψ

Γ, i :φ, j :φ, i 6≈ j
Eq

Γ, i :φ, i 6≈ j

Γ, i :2ϕ, i :3Ψ, j :ϕ, j :Ψ
Mod

Γ, i :2ϕ, i :3Ψ

Γ, i :ηx.φ(x), i :φ(ηx.φ(x))
ηx

Γ, i :ηx.φ(x)

Γ, i : (j :ϕ), j :ϕ
Glob

Γ, i : (j :ϕ)

Γ, i :ϕ ∨ ψ, i :ϕ, i :ψ ∨
Γ, i :ϕ ∨ ψ

Γ, i 6≈ j, j 6≈ i
Com

Γ, i 6≈ j

Γ
Weak

Γ ∪Ψ

Fig. 1. Rules of Inf

In an application of the modal rule as shown in Figure 1, we refer to i :2ϕ as
the principal formula. The expression i :3Ψ is short-hand for {i :3ψ | ψ ∈ Ψ},
and likewise j : Ψ abbreviates {j :ψ | ψ ∈ Ψ}. The intuition behind the modal
rule is that, if the formulas 2ϕ,3ψ1, ...,3ψn are all false at a point named i,
then this must be witnessed by some point that we can give an arbitrary name
j, and at which all the formulas ϕ,ψ1, ..., ψn are false. In an application of the
rule Eq as shown in the figure, the formula i :φ is called the principal formula
and i 6≈ j the side formula. In all other cases where a notion of principal formula
makes sense, it should be clear from the form of the rules what the principal
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formula is. Note that we do allow that the premises and conclusion of a rule
application are all the same sequent.

Definition 4 A rule application is said to be repeating if all premises are equal
to the conclusion.

Definition 5 A Inf -proof, or proof-tree, is a ranked labelled tree where the
label of a node specifies the sequent appearing at the node, the rule application
of which the node is the conclusion (if any), and the principal formula (if any),
and such that the labels of children of a node are the premises of the specified
rule application.

We shall often abuse terminology slightly by referring to the sequent appearing
at a node in a proof as the label of the node. To distinguish valid proofs from
invalid ones, we need a notion of trace.

Definition 6 A partial trace t (of length k ≤ ω) on a branch β of an Inf-proof
Π is a sequence (uj , ij :ψj)j<k such that for each j, uj is a node on β whose
label contains ij :ψj, uj+1 is the unique successor of uj in β whenever j+1 < k,
and one of the following conditions holds if j + 1 < k:

(i) ij :ψj = ij+1 :ψj+1. We sometimes refer to such parts of traces as “silent
steps”.

(ii) ij :ψj = ij : (θ1∨θ2) is the principal formula in an application of the ∨-rule,
and ij+1 :ψj+1 ∈ {ij :θ1, ij :θ2)}.

(iii) ij :ψj = ij : (θ1∧θ2) is the principal formula in an application of the ∧-rule,
and ij+1 :ψj+1 = ij :θ1 or ij+1 :ψj+1 = ij :θ2 depending on whether uj+1 is
the left or right premise of the rule.

(iv) ij :ψj = ij : i′ :θ is the principal formula in an application of the Glob-rule,
and ij+1 :ψj+1 = i′ :θ.

(v) ij : ψj is the principal formula in an application of the Eq-rule with side
formula ij 6≈ i′, and ij+1 :ψj+1 = i′ :ψj.

(vi) ij :ψj = ij :ηx.θ(x) is the principal formula in an application of the η-rule,
and ij+1 :ψj+1 = ij : θ(ηx.θ(x)). In this case we say that an unfolding of
variable x occurs on the trace t at the index j.

(vii) uj is the conclusion of an application of the Mod-rule labelled Γ, i :2θ, i :
3Ψ, the premise is labelled Γ, j : θ, j : Ψ, i : 2θ, i : 3Ψ, ij : ψj = i : 2θ, and
ij+1 :ψj+1 = j :θ.

(viii) uj is the conclusion of an application of the Mod-rule labelled Γ, i :2θ, i :
3Ψ, the premise is labelled Γ, j : θ, j : Ψ, i :2θ, i :3Ψ, and for some ψ ∈ Ψ,
ij :ψj = i :3ψ and ij+1 :ψj+1 = j :ψ.

A trace is said to be infinite if it is of length ω. We say that the infinite trace
t is trivial if for some j < ω, ij :ψj = im :ψm for all j ≤ m < ω. A non-trivial
infinite trace is said to be good if the highest ranking fixpoint variable that is
unfolded infinitely many times on t is a ν-variable.
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Note that traces move along branches in the direction from conclusions to
premises, i.e. traces travel away from the root, and not the other way around.
Note also that we do not require traces to start at the root, but adding this
constraint would make no substantial difference since every formula appearing
in a sequent somewhere in a proof can be connected to a trace starting at the
root.

Definition 7 An Inf-proof is said to be valid if every infinite branch contains
a good trace, and every leaf is labelled by an axiom.

In order to produce finite circular proofs later on it will be important to
carefully apply the weakening rule to discard formulas that are no longer needed
and so maintain an upper bound on the size of sequents. The following termi-
nology will play an important role in this regard.

Definition 8 Given an Inf-proof Π for some formula r : ρ, a nominal j ap-
pearing in Π is said to be original if it appears in r :ρ. A formula appearing in
Π is said to be a ground formula if it is of the form j :ψ where j is an original
nominal.

Definition 9 An Inf-proof is said to be frugal if at most finitely many sequents
appear in the proof.

3.2 Derived rules

We shall allow the use of derived rules in proof constructions, as abbreviations
of their derivations. These derived rules will be used to formulate a proof search
game, which is the main technical tool needed for our completeness proof for
Inf , and are based on two ideas:

• For all rules except Weak we define what we will call its narrow counterpart,
which is a derived rule of Inf. These rules will be used to automatically
discard formulas that will no longer be needed (using Weak), but keep those
formulas that might be needed later in the proof construction.

• Two additional derived rules that we call the deterministic rule and the
ground rule will be used to isolate the “essential” choices for the player that
tries to construct a proof. These choices will be restricted to two types:

(i) Applications of the Mod-rule to introduce new nominals.
(ii) Repeating applications of other rules, which only serve to introduce traces.

Narrow rules We define the narrow rule versions as follows. For the ∧- and
∨-rules, the η-rules, the Com-rule, the Glob-rule and the Eq-rule, if the principal
formula is a ground formula, then the narrow version of the rule is the same
as the standard one. Otherwise, it is defined as follows: we first apply the
standard version of the rule, and immediately after we apply the weakening
rule to all premises in order to remove the principal formula. For example, if i
is a non-original nominal then an instance of the narrow ∧-rule is:

Γ, i :ϕ Γ, i :ψ

Γ, i : (ϕ ∧ ψ)
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corresponding to the derivation:

Γ, i :ϕ
Weak

Γ, i : (ϕ ∧ ψ), i :ϕ

Γ, i :ψ
Weak

Γ, i : (ϕ ∧ ψ), i :ψ ∧
Γ, i : (ϕ ∧ ψ)

The narrow version of the rule Mod is a bit different from the others: if
the principal formula i : 2ϕ is a ground formula then the rule is the same as
Mod. Otherwise, an instance of the narrow rule consists of an application of
the modal rule immediately followed by an application of the weakening rule in
order to remove all formulas of the form k :θ that appear in the premise, and for
which k is not an original nominal. For example, if i is a non-original nominal
and j is original, then the following is an instance of the narrow Mod-rule:

k :ϕ, k :ψ, j :θ

i :2ϕ, i :3ψ, i :p, j :θ

If j is non-original then the corresponding instance would be:

k :ϕ, k :ψ

i :2ϕ, i :3ψ, i :p, j :θ

Note that what counts as an instance of the narrow rules depends on what
nominals are considered original, which in turn depends on the root formula of
the proof-tree. We therefore emphasize that these rules are not explicitly part
of the proof system Inf , but only serve as tools for the completeness proof.

Next, we define the deterministic rule and the ground rule. To make these
rules precise we need the following:

Convention 2 Throughout the rest of the paper we fix an arbitrary well-
ordering ≺ over all formulas (which restricts to a well-ordering over the set
of nominals since each nominal is a formula). Furthermore we fix an arbitrary
well-ordering over the set of all instances of rules in Inf. We overload the
notation and denote also this well-ordering by ≺.

The deterministic rule The deterministic rule is defined as follows: given
a sequent Γ, if there are no applicable instances of the narrow ∧-rule, the
narrow ∨-rule, the narrow Glob or narrow η-rules except repeating ones, then
the deterministic rule does not apply. Otherwise, the deterministic rule applies
uniquely as follows: we pick the ≺-smallest formula in Γ which is the principal
formula in an applicable non-repeating instance of one of these rules, we pick
the ≺-smallest such rule instance for which it is the principal formula, and we
apply that rule.

Note that if we repeatedly apply the deterministic rule starting from some
sequent Γ until it no longer applies, then this process must eventually terminate.
The assumption that all formulas are guarded plays an important role here,
without guardedness the process could go on indefinitely via fixpoint unfoldings.

The ground rule The ground rule is designed to deterministically apply the
Eq-rule and the Com-rule in the same way as the deterministic rule, but also
to ensure that original nominals are given special treatment. It is defined as
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follows: we consider the original nominals appearing in a sequent Γ. If possible,
apply the ≺-smallest applicable rule instance for which one of the following
conditions holds:

(i) it is a non-repeating instance of the narrow Com-rule with principal for-
mula i 6≈ j, where both i and j are original nominals, or:

(ii) it is a non-repeating instance of the narrow Eq-rule with principal formula
j : ϕ and side formula j 6≈ i, where i is a ≺-minimal original nominal for
which such a rule instance applies.

If there are no such rule instances available then the ground rule does not apply.
Like the deterministic rule, the process of repeatedly applying the ground rule
must eventually terminate.

4 Completeness for Inf

4.1 A game for building Inf-proofs

To prove completeness we shall make use of a proof search game, played between
two players Ver (the proponent) and Fal (the opponent). We fix a root formula
r :ρ, so that what counts as a narrow rule is defined relative to this root formula
as before, and similarly with the deterministic rule and the ground rule.

Definition 10 An instance of the weakening rule is called terminal if its
premise is an axiom.

Definition 11 The Inf -game is a board game, defined as usual by specify-
ing its positions, player assignments and admissible moves for positions and
winning conditions on full (finite or infinite) plays.

Positions: Game positions are of two types: sequents, which belong to Ver,
and pairs of sequents, which belong to Fal. We sometimes refer to positions
belonging to Ver as “basic positions”.

Moves for Fal: Given a position belonging to Fal, consisting of a pair of
sequents, the player simply chooses one of the sequents from the pair.

Moves for Ver: Given a position belonging to Ver, consisting of a se-
quent Γ, if Γ is an axiom then the game ends and Ver is declared the winner.
Otherwise available moves are defined as follows:

• If the deterministic rule is applicable to Γ then this is the only move allowed
for Ver.

• If the deterministic rule is not applicable, but the ground rule is applicable,
then this is the only move allowed for Ver.

• If neither the deterministic rule nor the ground rule are applicable, then
the possible moves of Ver are the narrow modal rule, terminal applications
of the weakening rule, repeating applications of narrow rules or repeating
applications of Weakening.

If π is a partial play ending with some sequent Γ, then we often refer to Γ as
the label of π. Note that since we allow repeating applications of Weakening,
Ver never gets stuck. So the only full finite plays are those that end in an
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axiom, and are won by Ver. Thus to finish the construction of the Inf-game
it remains only to decide the winner of an infinite play. Traces on a play of
the Inf-game are defined similarly as traces in proof trees, the only difference
being that a trace on a play π of length k ≤ ω is now an object of the form
(πn, in :ϕn)n<k where each πn is an initial segment of the play π, and for each
n + 1 < k the initial segment πn+1 extends πn with a single move. Given an
infinite play π, Ver is then declared the winner if the play contains a good
trace, and otherwise the winner is Fal.

We now draw some simple consequences of how the Inf -game has been de-
signed.

Proposition 4.1 In any sequent of the form Γ, i :ψ appearing in a play of the
Inf-game, ψ contains no non-original nominals.

Proof. Just observe that all the admissible moves preserve this condition. 2

From this proposition a few useful facts follow:

Proposition 4.2 If a play of the Inf-game contains any sequent of the form
Γ, i 6≈ j, then j is an original nominal.

Proof. Special case of Proposition 4.1. 2

Proposition 4.3 For each nominal i, and each partial play π in the Inf-game,
the label of π contains at most k formulas of the form i :ψ, where k is linear in
the size of the root formula.

Proof. Easy using Proposition 4.1. . 2

Proposition 4.4 For any sequent Γ appearing in a play of the Inf-game, at
most one non-original nominal appears in Γ.

Proof. The only moves that can introduce new non-original nominals are ap-
plications of the narrow modal rule, and by design each instance of this rule
erases all occurrences of non-original nominals other than the new nominal that
was introduced. 2

Like the games for satisfiability checking for the modal µ-calculus intro-
duced in [16], the proof search game is determinate:

Proposition 4.5 The Inf-game is determinate, i.e. at every position there is
a player who has a winning strategy.

A crucial part of proving completeness of Inf is to show that the standard
“good trace” condition on valid proofs, in terms of traces going from the root
up along a single branch, is not too strong. At first sight it may seem that
we need to consider a more general condition, allowing traces to jump between
different occurrences of the same nominal. In this subsection we prove a useful
result that deals with this issue.

Definition 12 Let S be a set of plays in the Inf-game. A good trace loop on
S in the Inf-game is a sequence of partial traces 〈t1....tn〉 for which there exist
π1, ..., πn ∈ S such that:
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• Each ti is a partial trace on πi,

• Each ti starts and ends with ground formulas,

• Each ti+1 starts with the last formula of ti,

• The trace t1 starts with the last formula of tn, and

• At least one variable is unfolded on some trace ti and the highest ranking
such variable is a ν-variable.

Note that in the following lemma, our focus is on analyzing winning strate-
gies for Fal in the proof search game, rather than strategies for Ver. The
explanation for this is as follows. As winning strategies for Ver correspond to
proofs, we may think of strategies of Fal as providing refutations. The com-
pleteness proof for Inf will build counter-models from such refutations. Rather
than building the counter-model from an arbitrary refutation of the root for-
mula, we will start by showing that if such a refutation exists, then there is a
refutation of some sequent containing the root formula, with certain properties
that make it ideally suited for constructing a counter-model.

Lemma 4.6 Suppose that Fal has a winning strategy in the Inf-game for i :ρ.
Then there exists a sequent Φ containing i :ρ and a winning strategy σ for Fal
in the Inf-game with starting position Φ, such that the following conditions
hold:

(i) For every sequent appearing in a σ-guided play, its ground formulas are
the same as the ground formulas in Φ.

(ii) The set of σ-guided plays does not contain any good trace loops.

Proof. We first prove the following claim:

Claim 4.7 There exists some sequent Φ such that:

• r :ρ ∈ Φ,

• Fal has a winning strategy σ in the Inf-game at the starting position Φ,

• For every sequent Γ that appears in some σ-guided partial play, the ground
formulas appearing in Γ are the same as the ground formulas in Φ.

Proof of Claim Let τ be the winning strategy assumed to exist for Fal.
First note that the ground formulas appearing in τ -guided partial plays in the
Inf -game are increasing in the sense that, whenever Γ′ appears later than Γ
in a partial play, all ground formulas in Γ are also in Γ′. This is because
the only admissible rule application that can remove a ground formula is a
terminal application of the weakening rule, the premise of which is an axiom.
Such applications of weakening never happen in any τ -guided partial play, since
such a play would be a loss for Fal.

We construct a series of τ -guided partial plays π0, π1, π2..., where each πi is
an initial segment of πi+1. For each i we let Gi be the set of ground formulas
appearing on the last position of πi. We shall maintain the invariant that, for
all proper initial segments π′ of πi+1, the ground formulas appearing in the
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last sequent of π′ are contained in Gi. Let π0 be the start position of the Inf -
game. Suppose that πi has been constructed. If there is no τ -guided partial
play π′ extending πi in which the last sequent contains ground formulas not
in Gi, then we are done: for all τ -guided partial plays extending this play, the
ground formulas appearing in all sequents must be equal to Gi, and τ provides
a winning strategy for Fal in the Inf -game for the label of πi. If there is some
τ -guided partial play π′ extending πi in which the last sequent contains ground
formulas not in Gi, then just pick πi+1 to be its smallest initial segment for
which this holds. This procedure must eventually terminate, since otherwise
we get an infinite and strictly increasing sequence of sets of ground formulas
G0 ⊂ G1 ⊂ G2..., which is impossible since there are only finitely many possible
ground formulas that can appear in any play. J

Now let Φ and σ be as in the previous claim. Given a σ-guided play π, let
↑ π be the set of partial plays π′ such that π ·π′ is a σ-guided partial play. Our
aim is to find a σ-guided play π such that ↑ π does not contain any good trace
loops; we can then simply take the label of π to the sequent claimed to exist in
the statement of the Proposition, and we obtain the required winning strategy
for Fal by assigning the move σ(π · π′) to a partial play π′.

Given a good trace loop 〈t1, ..., tn〉, let its kind be the set of triples:

{(i1 :ϕ1, X1, j1 :ψ1), ..., (in :ϕn, Xn, jn :ψn)}
such that for each m ∈ {1, ..., n}, the trace tm begins with im :ϕm, ends with
jm : ψm, and the variables unfolded on tm are precisely the members of the
set Xm. Since each trace in a good trace loop begins and ends with a ground
formula, and since there are only finitely many ground formulas, there are
finitely many kinds of good trace loops. We shall show how to find a σ-guided
play π such that ↑ π does not contain any good trace loops of a given kind. By
simply repeating the argument, we can then kill off all the kinds of good trace
loop one by one.

So let the kind K be {(i0 :ϕ0, X0, j0 :ψ0), ..., (in−1 :ϕn−1, Xn−1, jn−1 :ψn−1)}.
We construct a sequence of partial plays π0, π1, π2..., where each πi is an initial
segment of πi+1, as follows. If the set of all σ-guided plays does not contain
any good trace loops of kind K, we are done. Otherwise, let π0 be some play
on which the part (i0 :ϕ0, X0, j0 :ψ0) appears, which must exist. Note that we
have a partial trace t0 on π0 leading from i0 :ϕ0 to j0 :ψ0 on which exactly the
variables X0 were unfolded; since the first formula is a ground formula, and
these are the same in all positions in all σ-guided plays, we can simply “pad”
the partial trace with silent steps repeating the same formula to extend it to
a trace on the whole play π0. Now we repeat the procedure: if ↑ π0 does not
contain any good trace loop, then we are done. Otherwise, we can extend π0
in the same way to a partial play π1 containing a trace t1 appearing after π0,
such that t1 starts with i1 : ϕ1, ends with j1 : ψ1 and the variables unfolded
are precisely X1. Then since t0 and t1 end and start respectively with the
same ground formula, and ground formulas stay the same, they can be linked
together by “padding with silent steps” repeating this formula to form a trace
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on π1. It is not hard to see that, if this procedure never terminates, then we
end up building an infinite σ-guided play containing a good trace, which is a
contradiction since σ was a winning strategy. So the procedure terminates with
some πm, and the proof is finished. 2

Note that, since the set of finite partial plays in the Inf -game is a count-
able set (being a set of finite sequences over a countable set), we can define
a surjective mapping F from the set of nominals to the set of finite σ-guided
partial plays, such that F−1[π] is infinite for each finite partial play π. We
leave the little set theoretic exercise of proving this to the reader. Throughout
the rest of this section we fix such a map F . Informally, we think of F (i) as a
tag attached to the nominal i to remember where it was introduced.

Definition 13 We say that a full or partial play π of the Inf-game is clean
if, for every initial segment π′ of the play ending with the conclusion of an
application of the (narrow) modal rule introducing a new nominal j, we have
F (j) = π′.

When proving completeness of Inf we shall construct a counter-model to the
root formula from a winning strategy for Fal, and it will then be convenient to
restrict attention to clean plays. We are now ready for the main result about
the system Inf .

Theorem 1 Let ρ be any formula. The following are equivalent: (a) ρ is valid,
(b) Ver has a winning strategy in the Inf-game for r :ρ, where r is some fresh
nominal, (c) ρ has a valid and frugal Inf-proof, (d) ρ has a valid Inf-proof.

Proof. We sketch the proof of the implication (a) ⇒ (b), which is the most
difficult part of the proof. We prove this by contraposition: suppose there is
a winning strategy for Fal in the Inf -game for r :ρ. Let Φ be a set of ground
formulas containing r :ρ and let σ be a winning strategy for Fal in the Inf -game
for premise Φ such that the ground formulas stay the same in every σ-guided
play, and the set of σ-guided plays contains no good trace loops. Such Φ and
σ exist by Lemma 4.6. We shall construct a countermodel to (the disjunction
of) Φ, which gives a countermodel to ρ since r :ρ ∈ Φ.

We construct the model M = (W,R,A, V ) using the strategy σ as follows.
Let N be the set of nominals i such that i appears in some position in some
clean σ-guided play π, and let ≡ be the smallest equivalence relation over N
containing all pairs (i, j) for which i 6≈ j appears in some position in some clean
σ-guided play π.

Claim 4.8 For each i, the equivalence class [i] modulo ≡ is either a singleton
or contains at least one of the nominals in ϕ.

Motivated by this claim, we call a nominal representative if its equivalence
class is a singleton, or it is the ≺-smallest original nominal belonging to its
equivalence class. We let W be the set of representative members of N . We set
iRj iff there is some j′ ≡ j and a clean σ-guided play in which j′ is introduced
by an application of the modal rule to the nominal i. Set A(i) to be the
representative of [i]. Finally, for a representative i set i ∈ V (p) iff i :¬p appears
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on some clean σ-guided play. We shall show that M is a counter-model to the
sequent Φ. The key claims used to prove this are the following:

Claim 4.9 Suppose that i ≡ j and that j is an original nominal. Then for any
basic position u appearing in a clean σ-guided play, and any θ, if i : θ belongs
to u then so does j :θ.

Claim 4.10 Suppose that t is some partial trace on a clean partial σ-guided
play π, such that the last element of the trace t is of the form (π, k′ :ψ) where
A(k′) = k. If ψ is of the form 2θ or 3θ, then there is a clean σ-guided play υ
extending π and a partial trace on υ of the form (π, k′ :ψ) · u · (υ, k :ψ), which
contains no fixpoint unfoldings.

We now proceed to show that the sequent Φ is not valid in M . Pick any
formula i : ϕ ∈ Φ. We shall construct a winning strategy σ′ for Fal in the
evaluation game in M at the starting position (A(i), ϕ). Inductively, as an
invariant we associate with each partial σ′-guided partial play of π′ of the
form:

(j1, ψ1) · p · (jn, ψn)

a sequence of non-empty partial traces 〈t1, ..., tn〉 such that each of these traces
tk belongs to some clean σ-guided partial play πk, and such that the following
conditions hold:

I1: The last element of each trace tk is of the form (πk, j
′
k :ψk) where A(j′k) = jk.

Furthermore, if ψk is of the form 2θ or 3θ, then j′k = jk.

I2: For each k < n, if the last element of tk is (πk, j
′
k : ψk) then the first

element of tk+1 is of the form (πk+1, j
′
k : ψk). Furthermore, if jk is not an

original nominal then πk = πk+1.

I3: For k < n, a fixpoint unfolding occurs on the trace tk+1 iff the same fixpoint
is unfolded on (jk, ψk) · (jk+1, ψk+1).

Suppose we are given a clean σ′-guided partial play π′ of the form (j1, ψ1) ·
p · (jn, ψn), and that the associated sequence of partial traces 〈t1, ..., tn〉 has
been constructed. Then we can show that, if the last position on π′ belongs
to Fal, then we can define a move for which the invariant (I1) – (I3) can be
maintained, and if the last position belongs to Ver then the invariant can be
maintained for any possible move. This is proved by a case distinction as to
the shape of the last position, and uses the claims 4.9, and 4.10. The details of
the argument are omitted here.

To finish the proof of (a) ⇒ (b), we have given a strategy σ′ to Fal in
the evaluation game such that the invariant (I1) – (I3) is maintained. The
strategy σ′ ensures that Fal never gets stuck, and any lost infinite σ′-guided
play produces either an infinite clean σ-guided shadow-play in the Inf -game
containing a good infinite trace, or a good trace loop on the set of all clean
σ-guided plays. In either case we get a contradiction, so σ′ is winning for Fal
and therefore we have found a falsifying model for ρ. 2
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5 Finite proofs with names

5.1 The system Saf

In this section we introduce the finitary proof system Saf , which is an an-
notated circular proof system in Stirling’s style [23]. We will borrow a more
streamlined version of the rules for manipulating annotations from Afshari and
Leigh [2]. For each fixpoint variable x we assume that we have a countably
infinite supply x0, x1, x2... of names for that variable. We assume that we have
a fixed enumeration of the set of variable names for each variable x, so that we
can speak of the n-th variable name for x. The system will be defined taking a
strict linear order < over fixpoint variables as a parameter, and in the presen-
tation we assume such an order as given. Given < we write x < y for names x, y
of variables x, y respectively if x < y. Given a word a over the set of variable
names and a variable x, we write a ≤ x if there is no variable y > x for which
a contains a name of y. Given two words a, b over the set of variable names we
write a v b to say that b contains a as a subsequence. For example xy v xzy.
We write au b for the longest word c such that c v a and c v b (provided that
a longest word with this property exists, otherwise a u b is undefined).

Definition 14 Annotated sequents will be structures of the form:

a ` i1 :ϕb1
1 , ..., in :ϕbn

n

where a, b1, ..., bn are non-repeating words over the set of variable names (i.e.
no variable name appears twice in any of these words), each bi is non-decreasing
with respect to the order <, and bi v a for each i ∈ {1, ..., n}. The tuple a is
called the control of the sequent.

A formula ρ will be said to be provable in the system if the sequent ε ` r :ρ
ε

is
provable, where the order < on variable names is some arbitrary linearization
of <ρ, ε is the empty word, and r is a fresh nominal. We will allow suppressing
occurrences of the empty word in our notation, including the control, so that
for example the sequent ε ` r :ρ

ε

can be written simply as r :ρ.

Definition 15 A sequent in the sense of the system Inf will be called a plain
sequent. Given an annotated sequent Γ = a ` i1 :ϕb1

1 , ..., in :ϕbn
n , the underlying

plain sequent Γ is the plain sequent i1 :ϕ1, ..., in :ϕn.

The system has two axioms, which are the law of exluded middle and an
identity axiom, which now have the form:

ε ` i :p
ε

, i :¬pε

ε ` i ≈ i
ε

Here, p is a nominal or a propositional variable. Rules of inference are given
in Figure 2. Note that Γ,Ψ here denote sets of annotated formulas rather than
plain formulas. The rules are subject to the following constraints:

Mod: The nominal j must be fresh.

ηx: b ≤ x.

Rec(x): b ≤ x, and x is a fresh variable name for x.
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Exp: a v a′, bi v b′i and b′i u a v bi for each i 2 .

Reset(x): The variable x does not appear in any formula in Γ.

a ` Γ, i :ϕ ∧ ψb, i :ϕb a ` Γ, i :ϕ ∧ ψb, i :ψb

∧
a ` Γ, i :ϕ ∧ ψb

a ` Γ, i :ϕ ∨ ψb, i :ϕb, i :ψb

∨
a ` Γ, i :ϕ ∨ ψb

a ` Γ, i :2ϕb, i :3Ψ, j :ϕb, j :Ψ
Mod

a ` Γ, i :2ϕb, i :3Ψ

a ` Γ, i :ηx.φ(x)b, i :φ(ηx.φ(x))b
ηx

a ` Γ, i :ηx.φ(x)b

ax ` Γ, i :νx.ϕ(x)b, i :ϕ(νx.ϕ(x))bx
Rec(x)

a ` Γ, i :νx.ϕ(x)b

a ` Γ, i1 :ϕbx
1 , ...., in :ϕbx

n Reset(x)
a ` Γ, i1 :ϕbxx1c1

1 , ...., in :ϕbxxncn
n

a ` Γ, i :φb, j :φb, i 6≈ jc
Eq

a ` Γ, j :φb, i 6≈ jc

a ` Γ, i 6≈ jb, j 6≈ ib
Com

a ` Γ, i 6≈ jb

a ` Γ, i : (j :ϕ)b, j :ϕb

Glob
a ` Γ, i : (j :ϕ)b

a ` Γ
Weak

a ` Γ ∪Ψ

a ` i1 :ϕb1
1 , ...., in :ϕbn

n Exp
a′ ` i1 :ϕ

b′1
1 , ...., in :ϕ

b′n
n

Fig. 2. Rules of Saf

A Saf -proof is a labelled tree where the labels specify a sequent assigned to
a node and the last rule application (for non-leaf nodes), and such that the chil-
dren of a node are labelled with the premises of the specified rule application.
Although valid proofs will always be finite it will be useful to consider infinite
Saf -proofs as well. We say that the variable name x is reset in an instance of
the rule Reset(x).

Definition 16 A Saf-proof will be considered valid if it is a finite proof-tree,
and there is a map f from non-axiom leaves to non-leaves, such that:

2 Note that b′iua is well-defined here: since b′i v a′ and a v a′, and since a′ is non-repeating,
any two variable names occurring in both b′i and a must appear only once and in the same
order in both words. From this follows that the set of words c such that c v b′i and c v a is
a v-directed finite set, so it contains a v-maximal word.
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• f(l) is an ancestor of l, and has the same label.

• There is a variable name x that is contained in the control of every node in
the path from f(l) to l, and is reset at least once on this path.

A map f from non-axiom leaves to non-leaves satisfying the first of these condi-
tions is called a back-edge map, and is good if it satisfies the second condition
as well. So a finite proof-tree is a valid proof iff it has a good back-edge map.

We can now state the main result of the paper.

Theorem 2 (Completeness of Saf) A formula i :ϕ has a valid Saf-proof if
and only if it is semantically valid.

Proof. We only sketch the proof here. For the soundness part, it is a fairly
simple exercize to “unfold” a valid Saf -proof to an infinite proof-tree in which
every infinite branch has a good trace. By forgetting the annotations we can
view this as a valid Inf -proof, and soundness thus follows from Theorem 1.

For the completeness proof, we reason as follows: first, any valid formula i :ϕ
has a valid and frugal Inf -proof Π by Theorem 1. We need to add annotations
to the sequents in this proof, possibly inserting some rules of Saf for updating
annotations, in such a way that we produce an infinite Saf -proof for the same
conclusion which is still frugal, i.e. contains only finitely many annotated
sequents, and satisfies the constraint that on every infinite branch there is
some variable name that is reset infinitely many times. The construction of this
infinite Saf -proof essentially uses annotations to mimick the Safra construction
for automata on infinite words, and follows the same reasoning as in [12]. Since
the class of proof trees satisfying these criteria is definable in monadic second-
order logic, we may apply Rabin’s Basis Theorem [18] to find a regular infinite
Saf -proof for the same conclusion, in which every infinite branch has a variable
name that is reset infinitely often. Finally, we note that any such regular proof
can be “folded back” into a finite proof-tree with a back-edge map that yields
a valid finite Saf -proof. 2

Example 1 We show a valid Saf-proof of the formula i : (2¬i∨νx.3x), which
is equivalent to:

i : (3i→ νx.3x)

The “†” labels show how the back-edge map connects the leaf to an ancestor.

x0 ` i :2¬i, i :3νx.3xx0 †
Reset(x0)

x0x1 ` i :2¬i, i :3νx.3xx0x1
Rec(x1) + Weak

x0 ` i :2¬i, i :νx.3xx0
Eq + Weak

x0 ` i :2¬i, j 6≈ i, j :νx.3xx0
Mod + Weak

x0 ` i :2¬i, i :3νx.3xx0 †
Rec(x0) + Weak

i :2¬i, i :νx.3x∨+ Weak
i : (2¬i ∨ νx.3x)
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6 Concluding remarks

We conclude with some directions for future work. First of all, with the Stirling-
style proof system in place for the hybrid µ-calculus, we should be able to
prove cut-free completeness of a sequent system for the hybrid µ-calculus by
following the same method of translation between proof systems as in [2]. The
proof should not involve any substantial novelties, although the details remain
to be checked.

We hope that the methods developed here can be extended to other ex-
tended µ-calculi, like guarded fixpoint logic. A first task in this direction is to
consider converse modalities, and obtain a Stirling-style circular system for the
hybrid µ-calculus including converse modalities. In Vardi’s automata-theoretic
decision procedure for the two-way µ-calculus, the key component is a finite
data structure for encoding generalized traces that can go upwards or down-
wards along branches in a tableau. This extra component is then removed
through a projection operation on automata recognizing valid tableaux. It
would be interesting to investigate this construction from a proof-theoretic
perspective.
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Abstract

In this paper I explore how to retain Lewis and Langford’s characterization of possibil-
ity in terms of consistency and Nelson’s idea that all propositions are self-consistent.
This would amount to having as logical truths all the formulas of the form ♦A. I show
that in using a very simple three-valued connexive logic to evaluate the Lewis and
Langford’s definition of modalities, one gets some very interesting results connecting
possibilism, the thesis according to which everything is possible, with certain styles
of connexivism, especially those with room for contradictory theorems.

Keywords: Aristotle’s Theses; connexive logic; possibilism; LP.

1 Introduction

In their Symbolic Logic, [9], C.I. Lewis and C.H. Langford, building upon pre-
vious work of the former (see [8]), famously defined implication in terms of
possibility, negation and conjunction. Slightly less famously, Lewis and Lang-
ford characterized possibility in terms of consistency, and this led to a definition
of implication in terms of consistency, which is a very common idea in the field
of connexive logic. Then, there are a number of valid arguments with a connex-
ive flavor in Symbolic Logic. All of them include instances of Aristotle’s Thesis,
∼ (A →∼ A), in the premises (or as part of the antecedent, in implicational
theorems), and in the system are invalid without such instances of instances of
Aristotle’s Thesis as premises or antecedents.

Unlike Lewis and Langford, and explicitly reacting against some previous
work of the former, Everett J. Nelson held in “Intensional relations” ([16]) that
all propositions are self-consistent, so he retained the definition of implication in
terms of consistency, but rejected the characterization of possibility in terms of
consistency. With Aristotle’s Thesis as a logical truth, all the valid arguments

1 This work was written under the support of the PAPIIT project IN403719 “Intensionality
all the way down. A new plan for logical relevance”. I presented a previous version at the
Ninth Conference Non-Classical Logic. Theory and Applications, held in Toruń. I want to
thank Hitoshi Omori, Ricardo Arturo Nicolás-Francisco and Heinrich Wansing for extremely
helpful comments on previous drafts, as well as the AiML referees for their comments and
advice.



190 Possibility, consistency, connexivity

with a connexive flavor in Symbolic Logic became fully connexive and remain
valid even without including Aristotle’s Thesis as a premise (or as an antecedent
in the implicational theorems).

In this paper, I probe the prospects of having my cake and eating it too.
That is, I want to explore how to retain Lewis and Langford’s characterization
of possibility in terms of consistency and Nelson’s idea that all propositions are
self-consistent, which amounts in Lewis and Langford’s framework to validate
all the formulas of the form ♦A. And here enters a further connexive twist: I
will show that in using a very simple three-valued connexive logic introduced
in [20] to evaluate Lewis and Langford’s definition of modalities, one gets some
very interesting results connecting possibilism, the thesis according to which
everything is possible, with certain styles of connexivism, especially those with
room for contradictory theorems.

Some provisos are in order here. First, my contribution here is not a brand
new logic. I am using instead a logic already in circulation to model both
Lewis and Langford’s characterization of possibility in terms of consistency
and Nelson’s idea that all propositions are self-consistent, which results in a
connexive logic where possibilism is valid. Second, in showing such a model I
am not claiming that connexivity and possibilism are equivalent, because they
are not. The idea is rather that certain recent brands of connexivity imply
possibilism under some characterizations of possibility proposed in the early
20th century, and that the connection has several ramifications for the study
of modalities. Third: truth-functional modal logic, of the likes I will analyze
here, has been declared a “dead end” many times now, most notably in [5]. I
do not think it is, though. True, there are many objections to be overcome,
and I will do so in due time in this paper. Lastly: I am not making any strong
claims about the truth, correctness or the like of the views presented here. My
main claim is about the existence of the connection already mentioned and the
worthiness of studying it.

The structure for the remaining of the paper is as follows. In Section 2,
I present Lewis and Langford’s conceptualization of the notions mentioned in
the title. In Section 3, I present Nelson’s reaction towards some of the con-
sequences of the Lewis and Langford’s proposal and his arguments to prefer
a primitive notion of consistency, not definable in terms of possibility. These
applications were not considered when such a logic was first presented. In Sec-
tion 4, I present a limitative result for an attempt to combine both approaches.
In Section 5 I show that Omori’s dLP, which is a connexive logic built upon
the {∼,∧,∨}-fragment of González-Asenjo/Priest’s Logic of Paradox LP en-
riched with a suitable conditional, can support the combination of Lewis and
Langford’s characterization of possibility in terms of consistency with Nelson’s
idea that every proposition is self-consistent. By adding more conceptual tools,
one can even get a connexive model of Mortensen’s possibilism, where not only
everything is possible, but nothing is necessary. In Section 6 I address some
concerns about this approach. Finally, in Section 7 I present some sets more of
modalities allowed in this framework and then I present some conclusions and
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suggest some paths for future work in this area.

2 Possibility and connexivity

In Lewis and Langford’s Symbolic Logic, there is a tight connection between
the notions of possibility, consistency and (strict) implication. In their for-
malization ordering, possibility comes first, and implication is defined in the
well-known way. However, at the conceptual level, all of them are equally basic.
Thus we read, for example: 2

The primitive or undefined ideas assumed are the following: (. . . )
4. Self-consistency or possibility: ♦p. This may be read “p is self-

consistent” or “p is possible” or “It is possible that p be true”. As will
appear later, ♦p is equivalent to “It is false that p implies its own negation,”
(. . . ). The precise logical significance of ♦p will be discussed in Section 4.
(. . . )

The relation of strict implication can be defined in terms of negation,
possibility and product:
11.02 (p→ q) =def.∼♦(p∧ ∼q)
And then in Section 4 there is, as promised, the discussion of the precise

logical significance of possibility. Lewis and Langford say:

When we speak of two propositions as ‘consistent,’ we mean that it is not
possible, with either of them as premise, to deduce the falsity of the other.
Thus if p→ q has the intended meaning “q is deducible from p,” then “p is
consistent with q” may be defined as follows:
17.01 (p ◦ q) =def.∼(p→∼q) 3

From this, it easily follows that (p ◦ q) ↔ ♦(p ∧ q). Thus, possibility or self-
consistency ♦p would amount to (p ◦ p), which in turn would be equivalent to
∼(p→∼p).

The other usual modalities can be defined then as follows:
18.12 ∼♦p =∼(p ◦ p) =∼∼(p→∼p)
18.13 ♦∼p = (∼p◦ ∼p) =∼(∼p→∼∼p)
18.14 ∼♦∼p =∼ (∼p◦ ∼p) =∼∼(∼p→∼∼p)

Now, Lewis and Langford’s characterization of possibility, namely
♦p = (p ◦ p) =∼(p→∼p)
might look familiar to a logician acquainted with contra-classical logics, as this
is a form of Aristotle’s Thesis, which is one of the characteristic valid schemas

2 Throughout the paper, the notation of Symbolic Logic will be adjusted. Also, Lewis and
Langford take classical logic to be basically correct, and that is why they allow certain logical
moves that might be in question for other logicians, especially connexivists. Since in this
section I am merely presenting their views, I will leave their classical assumptions untouched.
3 Note that, unlike its Brazilian sibling introduced several years after by da Costa, Nelson’s
consistency connective is not intended to control Explosion, A,∼ A  B. Note also that this
is, at least typographically, the same definition for a connective named variously ‘fusion’,
‘intensional conjunction’ or ‘multiplicative conjunction’ in the relevance logic literature. I
will come back to this issue at the end of Section 5.
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of connexive logics. 4 And this part of Symbolic Logic ([9, 154–178]) is indeed
full with theorems with a connexive flavor, among them:
17.52 ((p→ q) ∧ (p→∼q))→∼(p ◦ p)
17.57 ((p→ q)∧ ∼(p ◦ q))→∼(p ◦ p)
17.58 ((p ◦ p)∧ ∼(p ◦ q))→∼(p→ q)
17.59 ((p ◦ p) ∧ (p→ q))→∼(p→∼q)
17.591 (p ◦ p)→∼((p→ q) ∧ (p→∼q))
17.6 p→ (p ◦ p)

To see this more clearly, consider the contrapositive forms of 17.52 and
17.57 :
∼∼(p ◦ p)→∼((p→ q) ∧ (p→∼q))
∼∼(p ◦ p)→∼((p→ q)∧ ∼(p ◦ q))
Substituting all the occurrences of the consistency connective by its definition
and employing Double Negation Elimination, one gets that the two above are
equivalent to
∼(p→∼p)→∼((p→ q) ∧ (p→∼q))
which is very close to 17.591, too. One can read this as expressing that if
Aristotle’s Thesis holds, Abelard’s Principle, ∼ ((p→ q) ∧ (p→∼q)), holds as
well. With Residuation, ((p ∧ q) → r) ↔ (p → (q → r)), and the definition of
the consistency connective, 17.59 becomes
(p ◦ p)→ ((p→ q)→∼(p→∼q))
that is, if Aristotle’s Thesis holds, Boethius’ Thesis, (p → q) →∼ (p →∼ q),
holds too. Given the equivalence between p ◦ p, ∼ (p →∼ p) and ♦p, these
seem to be, although probably unintended, among the earliest appearances
of “hypothetical”, “default” (in the terminology of [23]) or “humble” (in the
terminology of [7]) connexive theses.

3 Consistency and connexivity

Lewis and Langford’s theory of consistency, possibility and implication has the
following well-known consequences:
19.1 ∼(p ◦ p)→∼(p ◦ q)
19.11 (p ◦ q)→ (p ◦ p)
19.74 ∼♦p→ (p→ q)
19.75 ∼♦∼p→ (q → p)

The latter two are the infamous paradoxes of strict implication: an impos-
sible proposition implies every other proposition, and a necessary proposition
is implied by every other proposition. From 19.1, given the interdefinibility of

4 A connexive logic validates
∼(A→∼A) Aristotle’s Thesis
∼(∼A→ A) Variant of Aristotle’s Thesis
(A→ B)→∼(A→∼B) Boethius’ Thesis
(A→∼B)→∼(A→ B) Variant of Boethius’ Thesis
and invalidates
(A→ B)→ (B → A) Non-symmetry of implication
For good introductions to connexive logics, see [11] or [25].
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possibility and consistency, it easily follows that
∼♦p→∼(p ◦ q)
whose intuitive phrasing would be “Something impossible is incompatible with
everything”. From 19.11, given again the interdefinibility of possibility and
consistency, one gets:
(p ◦ q)→ ♦p
that is, if p is compatible with anything at all, p is possible.

Everett J. Nelson [16] reacted against all these consequences. As the re-
actions and objections to the paradoxes of strict implication are well-known
and have come from different sources, I will focus on Nelson’s objections to the
unnumbered consequences. His starting point is a notion of consistency dif-
ferent from Lewis and Langford’s, because according to Nelson there are pairs
of propositions p and q such that each of them is impossible but which are
nonetheless mutually consistent, for example “(2 + 2) 6= 4” and “(3 + 3) 6= 6”.
Nelson not only held that there are impossible propositions that are mutually
consistent, but he also held that every proposition is self-consistent, even an
impossible one, and that this self-consistency of an impossible does not pre-
vent that it might be inconsistent with some other propositions. For example,
“1 = 0” is consistent with itself, but it is inconsistent with “3 6= 2”. Thus, for
Nelson, (in)consistency and (im)possibility come apart, and (p ◦ p) is a logical
truth, it holds even for “1 = 0”, but ♦p is not, as “1 = 0” is not possible.
Contradictoriness is a sufficient condition for Nelsonian inconsistency, that is,
p and ∼ p are inconsistent, but as the example regarding “(2 + 2) 6= 4” and
“(3 + 3) 6= 6” shows, ∼ p and ∼ q might be inconsistent too. Surely Nelson’s
notion of consistency needs a more precise treatment, and below I will offer
a precisification, but this should suffice for now as an exemplification of the
differences with his and Lewis and Langford’s notions of consistency.

Nelson used the notion of consistency sketched above to give a validity
condition for the conditional:
(p → q) is true if and only if the antecedent is inconsistent with the negation
of the consequent.
Thus, for him ∼ (p →∼ p) is also a logical truth. 5 Were Nelson right that
every proposition is self-consistent, that is, if Aristotle’s Thesis was a logical
truth, all the theorems with a connexive flavor in Symbolic Logic would become
fully connexive in the sense that they would be valid even without including
Aristotle’s Thesis as a premise (or antecedent), because if a logical truth implies
a certain proposition p, p itself is a logical truth. Of course, this is not the case
with Aristotle’s Thesis in Lewis and Langford’s theory, but it is in Nelson’s
(and connexive logics in general). 6

5 The intuitive argument for it goes as follows. Suppose that every proposition is either true
or false, and that a proposition is false if and only if its negation is true. Now consider the
conditional p →∼ p. The negation of the consequent, ∼∼ p, is never inconsistent with the
antecedent; hence, the conditional is never true. Then, the negation of the conditional is
always true.
6 For a recent detailed study of Nelson’s ideas against the background of Lewis’ work, see
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Now, both ideas —Lewis and Langford’s characterization of possibility in
terms of consistency and Nelson’s self-consistency of every proposition— have
certain independent appealing. The problem is that they together entail pos-
sibilism, i.e. that every proposition is possible, which is maybe too much to
swallow.

4 A limitative result

In fact, Omori proved in [19] that in any logic L satisfying

• A→ A

• ((A→ A)→ B)↔ B

• (A→ B)→ ((C → A)→ (C → B))

• A↔∼∼ A
• ∼ (A→ B)↔ (A→ ♦ ∼ B)

• ∼ (A→ B)↔ (A→∼ B)

plus the rules

• A,A→ B ` LB

• A→ B `L ♦A→ ♦B
• Uniform Substitution

♦B ↔ B holds as well. It easily follows then that if the possibilist thesis, ♦B,
is added to L, it becomes trivial.

For the sake of the argument, one could leave the rules and the first three
items out of the discussion as they are valid in positive logic. Double negation
can be granted, too. This reduces the room for disagreement to ∼ (A →
B) ↔ (A → ♦ ∼ B) and ∼ (A → B) ↔ (A →∼ B), the Egré-Politzer’s and
Wansing’s theses, respectively. In order to get more sense of what is going in
here, let me describe briefly what is behind each of the theses.

Wansing has employed in several contexts a non-standard falsity condition
for the conditional. (See for example [24].) More specifically, he has suggested
to take the condition of the form “If A is true then B is false” rather than the
condition of the form “A is true and B is false” as the falsity condition for a
conditional of the form “If A then B”, where truth and falsity are not neces-
sarily exclusive. As a byproduct, the resulting logics turn out to be connexive
logics which moreover validate the converses of Boethius’ Theses, in particular
∼(A→ B)→ (A→∼B).

On the other hand, Paul Egré and Guy Politzer [3] carried out an exper-
iment related to the negation of indicative conditionals and considered weak
conjunctive and conditional formulas of the forms A ∧ ♦ ∼B and A→ ♦ ∼B,
respectively, besides the more familiar strong conjunctive and conditional for-
mulas of the forms A∧ ∼B and A→∼B, respectively, as formulas equivalent

[10].
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to ∼(A→ B).
Thus, Omori’s result means that, up to non-triviality, it is not possible

to have in a single framework, on the one hand, possibilism, and on the
other, Wansing’s view on negated conditionals and Egré and Politzer’s view
on negated conditionals. As I have showed, a form of possibilism results from
combining Lewis and Langford’s view on possibility with Nelson’s ideas about
consistency. The triviality result means that this mixture cannot be further
combined with Wansing’s and Egré and Politzer’s views on negated condition-
als.

The expected casualty is possibilism, i.e. the combination of Lewis and
Langford’s view on possibility with Nelson’s ideas about consistency. Nonethe-
less, one could also question the assumptions leading to ♦B ↔ B. In a sense,
this result is more problematic than possibilism itself because, informally, it
identifies the possible with the actual. Possibilism may not be that much to
swallow, at least in comparison with other options. Fortunately, there are cer-
tain formal tools already in circulation that can serve to model this strange
mixture. The model is decidedly simple, but it has some notorious features.

In the following section it will be clear that, with good reason, one can blame
instead half of the Egré-Politzer Thesis —namely, (A→ ♦∼B)→∼(A→ B)—
and make room for possibilism. In particular, one can show that, according
to the model, ♦A has to be always false in order to validate the Egré-Politzer
Thesis. 7

5 Connexivity

Consider a language L with a countable set of propositional variables and with
at least the connectives of negation, ∼, and conditional, →. Let V = {1, 0}
be a set of truth values. Consider a family of interpretations of L, that is,
relations σ : L −→ V —excluding, for any A ∈ L, that both 1 /∈ σ(A) and
0 /∈ σ(A)—, with logical validity defined in the following way (where Γ stands
for a collection of formulas of L):

Γ |= A if and only if, for every σ, if 1 ∈ σ(B) for every B ∈ Γ, 1 ∈ σ(A)
Consider now the following evaluation conditions for the conditional:

1 ∈ σ(A→ B) if and only if 1 /∈ σ(A) or 1 ∈ σ(B)
0 ∈ σ(A→ B) if and only if 1 /∈ σ(A) or 0 ∈ σ(B)
Such a conditional, together with a relatively uncontroversial evaluation con-
dition for negation, like
1 ∈ σ(∼A) if and only if 0 ∈ σ(A)
0 ∈ σ(∼A) if and only if 1 ∈ σ(A)
satisfies the core of connexive logics, that is, it validates all of Aristotle’s and

7 Note that one could also decide to save the Egré-Politzer Thesis and blame instead hyper-
connexivity, i.e. the converse of Boethius’ Thesis: ∼ (A → B) → (A →∼ B). However,
discussing this would require a more complex apparatus; actually, the usual relational se-
mantics for modalities would be more suitable. This is left for the forthcoming second part
of this investigation. For a different take on Omori’s result, see [17].
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Boethius’ Theses and their variants, and invalidates the Non-Symmetry of Im-
plication.

What one has got so far is the LP negation and the Olkhovikov-Cantwell-
Omori (OCO) conditional, first introduced in [18] and then introduced inde-
pendently in [2] and [20]:

A B ∼ A A→ B
{1} {1} {0} {1}
{1} {1, 0} {0} {1, 0}
{1} {0} {0} {0}
{1, 0} {1} {1, 0} {1}
{1, 0} {1, 0} {1, 0} {1, 0}
{1, 0} {0} {1, 0} {0}
{0} {1} {1} {1, 0}
{0} {1, 0} {1} {1, 0}
{0} {0} {1} {1, 0}

In what follows, and unless the contrary is stated, the arrow will stand for the
OCO conditional.

One nice thing about this choice of connectives is that it allows for dou-
ble negation elimination, and thus some formulas can be simplified to more
manageable and familiar forms, for example
∼∼(A→∼A) (∼♦A) can be simplified to (A→∼A),
∼(∼A→∼∼A) (♦∼A) can be simplified to ∼(∼A→A), and
∼∼(∼A→∼∼A) (∼♦∼ A) can be simplified to (∼A→ A).

Below there are the evaluations of the Lewis-Langford modalities according
to the OCO conditional and the LP negation:

A ♦LA ∼♦LA ♦L∼A ∼♦L∼A
∼(A→∼A) ∼∼(A→∼A) ∼(∼A→∼∼A) ∼∼(∼A→∼∼A)

{1} {1} {0} {1, 0} {1, 0}
{1, 0} {1, 0} {1, 0} {1, 0} {1, 0}
{0} {1, 0} {1, 0} {1} {0}
It is easy to check that Wansing’s Thesis is valid according to these valua-

tions, but Egré-Politzer’s is not. Consider the case when B is true only and A is
at least true, and then the right-to-left direction, (A→ ♦ ∼ B)→∼ (A→ B),
is invalid. This seems correct: From the possibility of the consequent’s falsity
one cannot infer the actual falsity of the whole conditional, this a way too
strong falsity condition.

There are several nice things to say about modalities so defined and evalu-
ated with these connectives.

No modal collapse. A, ♦LA and ∼ ♦L ∼ A are different propositions be-
cause they are not equivalent, they do not have the same values under all in-
terpretations, as can be simply checked by looking at the truth tables, and the
same goes for ∼A, ♦L∼A and ∼♦LA. True, given the definition of logical con-
sequence as (forwards) truth-preservation in all interpretations, A a`∼ ♦L ∼ A
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holds, which can be seen as a collapse if ‘∼ ♦L ∼ A’ is understood as “A is nec-
essary”. Nonetheless, equivalence and inter-derivability (and co-implication, I
would add) are conceptually different, no matter their simultaneous occurrence
in several logics, and one has to be careful on what concept is employing to
evaluate claims of collapse. I stick to difference in some interpretations as proof
of non-equivalence. Nonetheless, A a`∼ ♦L ∼ A is a modal anomaly that has
to be explained in due course.

Dualities between modalities and usual modal axioms. For the rest of
the paper I will use ‘�LA’ as a shorthand for ‘∼ ♦L ∼ A’. This is justified,
and this is a second nice thing to say about this framework, because the usual
dualities between ♦LA and �LA hold 8 :
For all σ,
σ(♦LA) = σ(∼�L∼ A)
σ(∼♦LA) = σ(�L∼ A)
σ(♦L∼A) = σ(∼�LA)
σ(∼♦L∼ A) = σ(�LA)

Also, all the usual modal axioms
(K) �L(A→ B)→ (�LA→ �LB)
(T) �LA→ A
(4) �LA→ �L�LA
hold, as well as the Necessitation Rule
(NEC) From  A to infer  �LA

So much for the attractive features of the modalities so defined. In the next
section, I will discuss some possible objections to this way of combining possi-
bilism and connexivity, but before that, and to make things more interesting,
let me add also conjunction and disjunction as evaluated in LP, plus the unary
consistency connective ‘◦’ defined as
1 ∈ σ(◦A) if and only if 1 ∈ σ(A) and 0 /∈ σ(A) or 0 ∈ σ(A) and 1 /∈ σ(A)
0 ∈ σ(◦A) if and only if 1 ∈ σ(A) and 0 ∈ σ(A)
Then one gets the logic dLP. 9 Summarizing, (zeroth-order) dLP is charac-
terized by the following truth tables:

A B ∼ A ◦A A ∧B A ∨B A→ B
{1} {1} {0} {1} {1} {1} {1}
{1} {1, 0} {0} {1} {1, 0} {1} {1, 0}
{1} {0} {0} {1} {0} {1} {0}
{1, 0} {1} {1, 0} {0} {1, 0} {1} {1}
{1, 0} {1, 0} {1, 0} {0} {1, 0} {1, 0} {1, 0}
{1, 0} {0} {1, 0} {0} {0} {1, 0} {0}
{0} {1} {1} {1} {0} {1} {1, 0}
{0} {1, 0} {1} {1} {0} {1, 0} {1, 0}
{0} {0} {1} {1} {0} {0} {1, 0}

8 The dualities fail in, for example, Wansing’s connexive modal logic CK; see [24]. The
failure might be a good thing, though; see [26] for an argument to that effect.
9 First presented, with different primitives though, in [18] and then independently in [20].
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which is basically LP in the {∼,∧,∨}-fragment, augmented with the expressive
power allowed by the unary consistency connective and the OCO conditional.

It is easy to check that ♦LA and ◦A are not equivalent, a result that would
have pleased Nelson, and this means that A ◦ A (self-consistency) and ◦A
(consistency simpliciter) are not equivalent, either. This seems in the right
track: one thing is that a proposition does not imply its own negation (self-
consistency), and another is that a proposition does not imply an arbitrary
contradiction (consistency).

When one goes fully to dLP, the dualities and the validities are preserved,
and even more nice things appear. For example, two “relative consistency”
binary connectives can be defined. One of them is more “Lewisian”, order-
sensitive, non-symmetric, as discussed for example in [21]:
σ(A ◦L B) = σ(B) unless σ(A) = {0}, and σ(A ◦L B) = {1, 0} in that latter
case 10

which is but the OCO condtional. The other is more “Nelsonian”:
1 ∈ σ(A ◦N B)
0 ∈ σ(A ◦N B) if and only if 0 ∈ σ(A) or 0 ∈ σ(B)

While in general A ◦LB and A ◦N B are not equivalent, A ◦LA and A ◦N A
are for any A, so let me write A ◦X A to express such indistinctness. Thus,
the self-consistency A ◦X A of any proposition A is a theorem of dLP; again,
a result that would have pleased Nelson. Nonetheless, the (Nelsonian) relative
consistency of any two propositions, A ◦N B, also becomes a theorem in dLP,
something that definitely would not have pleased Nelson, “because some propo-
sitions are inconsistent with others.” [16, 443] However, Nelson thought that
the inconsistency of two distinct propositions cannot be determined by pure
logic alone, and that is reflected both in his truth table and the evaluation
conditions of A ◦N B. 11

6 Some concerns

Combining zeroth-order logic, functionality, finite many-valuedness, modalities
and highly non-classical theses seems like a recipe for disaster. Let me address
three potential worries here. I do not aim at dispelling all air of doubt, that
seems nearly impossible in philosophical issues; I only want to show that some
objections usually raised to approaches like the one presented above are far
from being knock-down.

10For simplicity, I use the following convention. Let vj and vk be our two truth values. Then
‘σ(X) = {vj}’ means that vj ∈ σ(X) and vk /∈ σ(X), whereas ‘σ(X) = {vj , vk}’ means that
vj ∈ σ(X) and vk ∈ σ(X).
11Finally, recall that
(A ◦B) =def.∼(A→∼B)
is the usual definition of fusion (an intensional conjunction) A◦B in the logic R. But (A◦LB)
can difficultly be regarded as a conjunction, for it is true even when no component is true.
This reflects the fact that the OCO conditional is false when both antecedent and consequent
are false.
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Modal anomalies. It has been a long time since  Lukasiewicz offered a many-
valued analysis of modalities. Since then, such an approach has lived in
discredit because they give rise to modal anomalies, that is, highly counter-
intuitive arguments regarding modalities are validated.

The typical criticism raised against the many-valued approaches to possi-
bility and necessity is of the sort of those found in [5]. The objection is basi-
cally that the many-valued notions of possibility and necessity validate several
counterintuitive arguments. Dugundji’s theorem, that no modal logic between
Lewis’ S1 and S5 can be characterized by a finite many-valued matrix, seems
to give more content to the criticisms.

Dugundji’s result would be a devastating problem if all and only modalities
worth considering lied between S1 and S5, but that is not the case. Consider
a modality J satisfying the following two axiom schemas, where ‘→’ stands
again for a generic conditional:
J (A→ B)→ (JA→ JB)
A→ JA
When JA is identified with �A and the two axioms schemas above are added
to classical logic, the resulting logic is simply K+(A → �A), which is char-
acterized by certain single-element frames. However, JA cannot be rightly
identified with � precisely because of A → JA; on the other hand, it cannot
be rightly identified with ♦ because of J (A → B) → (JA → JB). Moving
to a different logic, intuitionistic logic, for example, allows to study interesting
models for these axiom schemas. The resulting modality JA has an hybrid
nature, but still closer to possibility, and has appeared in different contexts,
interpreted as variedly as “(at some underlying topological space), it is locally
the case that” (as in topos theory, where it first appeared) or “under some
family of constraints, the hardware device behaves according to” (as in propo-
sitional lax logic); see [6, Section 7.6] for an overview of the different standard
incarnations of J . This means that in the presence of different logics, some
counterintuitive axiom schemas can make sense for certain modalities. And
that was  Lukasiewicz’s reaction to the modal anomalies in his logic: one could
try to make sense of the modalities involved as defined within the logic so as
to explain away the unintuitiveness of certain axiom schemas. Whether his
personal attempt succeeded or not for his logics is a different issue from the
correctness of the methodological advice. The case of JA proves that the
attempts are not a priori doomed to fail.

Let me consider explicitly the schemas that worry Font and Hájek, all of
them valid in dLP:
FH1. (♦A ∧ ♦B)→ ♦(A ∧B)
FH2. (A→ B)→ (�A→ �B)
FH3. (A→ B)→ (♦A→ ♦B)
FH4. �A→ (B ↔ �B)
FH5. �A→ (♦B ↔ �B)

What I have said above on logics not between S1 and S5 could serve
to partially alleviate the concerns by Font and Hájek. Nonetheless, a more
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substantial reply can be given. FH1 seemed problematic because contra-
dictions were for a long time the archetype of impossibility. The instance
(♦A ∧ ♦ ∼A)→ ♦(A∧ ∼A) was regarded as a counterexample to the schema:
even if A and ∼ A were separately possible, jointly they are not. That they
could be true at some states of evaluation in certain semantics —the objection
continues— does not make them less impossible: those states are impossible
states after all. That is a moot point: one could argue that possibility is a prop-
erty of propositions relative to states, not of states themselves, and that being
possible (at a state) just means to be true at some accessible state. Nonetheless,
♦(A∧ ∼A) should be expected in a framework where the idea that everything
is possible is taken seriously. More than a drawback of the logic, this should
be a welcomed result. However, there is more to be said in favor of it, and it
will become evident when discussing the next objection about possibilism.

Of the next couple of schemas, FH2 and FH3, Font and Hájek said that,
had  Lukasiewicz decided to interpret the arrow in the antecedent as a strict
implication and not as a material one, the resulting schemas would have been
more acceptable. The schemas also hold in the dLP setting. Note that the
charge of unacceptability due to the material nature of the arrow in the an-
tecedent does not apply here, as A →OCO B is neither equivalent nor inter-
derivable with ∼ (A∧ ∼ B) nor ∼ A ∨ B. It is not a strict conditional ei-
ther, but it still encapsulates a sort of intensionality in not making plainly
true a conditional whose antecedent is not true (only). One could object that
even if A →OCO B comes with some intensionality within it, it is not strong
enough as to be counted as a sufficient condition for (�A →OCO �B), so
(A →OCO B) →OCO (�A →OCO �B) could still be regarded as genuinely
anomalous. Nonetheless, the intensionality within A→OCO B seems sufficient
to imply (♦A→OCO ♦B).

Nevertheless, Font and Hájek say that the validity of the last two schemas
“is the main reason for [their] claim that as a logic of possibility and necessity, it
[ Lukasiewicz four-valued modal logic] is a dead end.” Informally, �A→ (B ↔
�B) expresses that if something is necessary, any truth simpliciter is also a
necessary truth. But just recall what the modalities mean in this context.
‘♦LA’ means that it is false that A implies its own negation, and ‘�LA’ means
that A is implied by its own negation. So B →OCO �LB becomes B →OCO

(∼B →OCO B). The validity of this does not seem so abhorrent.
Nonetheless, even if B is true, (∼B →OCO B) contradicts Aristotle’s The-

sis, so it must be false. And it is. This implies that both �A → (B ↔OCO

�LB) and ∼ (�A →OCO (B ↔ �B)) are valid in dLP, and the same holds
for �LA→OCO (♦LB ↔OCO �LB) and ∼ (�LA→OCO (♦LB ↔OCO �LB)),
as can be easily checked. This means that there is inconsistency surround-
ing certain combinations of truth, possibility and necessity, and notice that
they are the modal anomalies: both (♦LA ∧ ♦L ∼ A) →OCO ♦L(A∧ ∼ A)
and∼((♦LA∧♦L ∼A)→OCO ♦L(A∧ ∼A)) hold as well in dLP. In fact, among
all the axiom schemas highlighted by Font and Hájek, (A→ B)→ (♦A→ ♦B)
is the only one that does not come with its negation validated too in dLP, and
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I have already argued that this should not count as a so terribly bad anomaly.
(Modal anomalies are not so widespread; ♦LA→OCO A and ♦LA→OCO �LA
simply fail, for example.)

There is another route to alleviate the concerns regarding the modal anoma-
lies, namely that in non-classical contexts not all theorems need to be created
equal: one could distinguish between different degrees of satisfiability; in par-
ticular, between different degrees of theoremhood. This does not mean that
one needs to change the notion of logical validity of dLP to get a more refined
set of logical truths; one can keep the usual definition of logical validity, and
regarding as an extra task selecting among the logically true propositions those
that meet additional criteria. Given that theorems are limit cases of logically
valid arguments, I can borrow some terminology from the variety of notions of
logical validity already available in the literature. 12

Let me call then ‘p-theorems’ those formulas that are never antidesignated;
‘T -theorems’ those formulas that are always designated; ‘supertheorems’ those
formulas that are always designated and at least once (just) true; and ‘q-
theorems’ those formulas that are always (just) true. 13

Unlike LP, dLP has q-theorems and they might take the following forms:
(q-t i) ◦◦A,
(q-t ii) A c©B, for c© ∈ {∧,∨,→} and where both A and B are themselves
q-theorems, or
(q-t iii) ∼A, where A has the form ∼B and B is a dLP q-theorem.

Then, in dLP, for any formula A, both ♦LA and �L♦LA are dLP T -
theorems, but in general only ♦LA is a dLP-supertheorem and sometimes it
can be a q-theorem (when A already is one), while �L♦LA can only be at
most a dLP T -theorem. Also, A→ �LA is always just a dLP T -theorem, but
cannot even be a dLP-supertheorem, let alone a q-theorem, because it is never
just true.

With such a distinction between theorems, dLP can become even closer
to Mortensen’s possibilism. If all dLP-theorems are treated on equal footing,
there are some dLP-theorems of the form �LA, whereas according to logi-
cal possibilism there should be no logical truths of such form. But with the
further distinctions just drawn, formulas of the form �LA are at most dLP
T -theorems, whereas all formulas of the form ♦LA are at the very least dLP-
supertheorems.

Possibilism. Another concern is about a very special “modal anomaly”,
namely the commitment to possibilism, as per the validity of ♦LA. For exam-
ple, Béziau [1] has objected to evaluations of modalities like the ones presented
here on the grounds that they make possibility “trivial”, in the sense that they
make everything possible, and that is not a good result for a theory of the

12For a good introduction to the topic and critical discussion of it, see [27].
13And I will stop here. If one gives falsity a treatment independent of truth, as it should
be done logically, one could obtain even more shades of theoremhood, but those already
introduced suffice for my purposes here.
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possible.
However, beyond the incredulous stare towards the validity of ♦LA, no

reasons to reject possibilism have been put forward. Let me consider two
potential objections. The first is that possibilism entails trivialism; another is
that possibilism is ruled out by the very definitions of logical notions.

The proof that possibilism entails triviality is as follows:
1. ♦�A→ �A Axiom (5)
2. �A→ A Axiom (T)
3. ♦A Possibilism
4. ♦�A 3, Uniform Substitution
5. �A 1, 4, Detachment
6. A 2, 5, Detachment
However, notice that the axiom (5) occurring in the first line of the proof is
not validated by the tables in Section 5: make A just false. What is validated
is its “contraposed” version, ♦LA → �L♦LA. They are not equivalent, and
that is rightly so because they are conceptually distinct. ‘♦LA → �L♦LA’
expresses that one can go, so to speak, from the possibility of something to
the necessity of its possibility, which is right according to this version of possi-
bilism. ‘♦L�LA→ �LA’ expresses something different, namely that from the
possibility of necessity of something, one can go to its necessity, which is wrong
according to possibilism because nothing, except possibilities, is necessary. So,
neither the argument from possibilism to triviality is valid here, nor one has
anything as strong as S5 modalities in the current setting. 14

There is also the concern that possibilism is ruled out by the very definitions
of logical notions. By this I mean that logical notions as characterized by, say,
evaluation conditions, imply the untruth of possibilism. Let me consider first
the very notion of possibility. To minimize the risk of begging the question,
let me move to more common ground, the usual relational falsity condition for
possibility:

• ♦A is false at a state i iff A is false at all state j related to i.

Suppose for the sake of the argument that A is in fact false at all state j
related to i. Does this mean that there is no j related to i where A is true? If
the answer is affirmative, one should ask whether that conclusion comes from
the falsity condition alone or whether it comes from additional considerations,
for example, certain ideas about the structure of truth values, that they are
exclusive maybe.

Of course, more elaborate anti-possibilist arguments can be given. They
might involve the characterization of other logical notions, such as condition-
als, quantifiers or even logical consequence itself. I cannot go through all those
arguments. What I want to highlight is that, in any case, one must won-
der whether possibilism is ruled out by evaluation conditions alone or whether
other, logic-specific elements —such as the number and structure of truth val-

14Note that the “contraposed” versions of (K), (T), and (4) do hold, though.
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ues, or the properties of the accessibility relation— are used as well. 15

Finally, as we have seen, possibilism does not prevent having a sensible the-
ory of modalities that satisfies their mutual distinguishability, their usual in-
terdefinability through negation and without a plethora of non-standard modal
theorems accompanying ♦LA. 16

Dialetheism. Finally, there is the concern that dLP is not only dialetheist,
that is, that it makes room for sentences of the forms A and ∼ A that are
simultaneously satisfiable, but is also dialetheic (or contradictory or negation-
inconsistent, hence the ‘d’ in front of ‘LP’ !), since it validates contradictory
theorems such as
(A∧ ∼A)→∼A and ∼((A∧ ∼A)→∼A);
(A∧ ∼A)→ (B∨ ∼B) and ∼((A∧ ∼A)→ (B∨ ∼B))
Furthermore, one can define in dLP a new negation ¬A as ∼ A ∧ ◦A (or
∼◦(A→∼◦◦A), if conjunction is not available), and then obtain the following
dLP theorems:
(A ∧ ¬A)→ B and ∼((A ∧ ¬A)→ B).

People way more than talented than I have spent up to 40 years trying to
convince others that dialetheism is not outrageous, and they are still struggling;
see [22] for a book-length defense of dialetheism. In these paragraphs I can only
aspire to push further to the already converted: if they have given dialetheism
a chance, maybe they can give a contradictory logic a chance too.

One attempt of reassurance might use the terminology from the discus-
sion about modal anomalies: the contradictory theorems of dLP are just
dLP T -theorems. Furthermore, it must also be noticed that dLP exhibits
contradictions in already expected and significant places for some connexive
logicians, namely around Explosion, certain forms of Simplification —more
specifically, simplification of contradictories— and the irrelevant Safety, i.e.
(A∧ ∼A) → (B∨ ∼B). This reminds me of the situation in faced by Meyer
and Martin in investigating Aristotle’s syllogistic. Meyer and Martin wanted
to provide a logic for Aristotle’s syllogistic, which was not reflexive. In their
logic SI∼I, see [12], A → A was treated as a borderline case, both a fallacy
and a validity, hence the validity of both A→ A and ∼(A→ A). Perhaps the
contradictory theorems in dLP can be treated similarly as borderline cases:
they should be invalid, as many connexivists have said, but also the validity
of such schemas is almost necessitated by a truth-functional, truth-preserving
logic, with the standard evluations for negation, conjunction and disjunction.

15Chris Mortensen in [14] defends “(logical) possibilism”, by which he means the idea that
everything is possible (possibilism stricto sensu, I would say) and nothing is necessary (non-
necessitarianism). See also [15] to complete his picture about possibilism. I have addressed
some lacunae and further consequences elsewhere (see [4]).
16Mortensen himself found a sort of possibilism around connexivity when in [13] he proved
that the logic E plus Aristotle’s Thesis implies ♦A for every A, with ♦A defined as ∼ ((∼
A→∼A)→∼A), which would amount to A in the present context.
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7 More modalities

The presence of another, more classical negation in dLP allows further defini-
tons of modalities in dLP, for example, as follows:

A ♦A ¬♦A ♦¬A ¬♦¬A
¬(A→ ¬A) ¬¬(A→ ¬A) ¬(¬A→ ¬¬A) ¬¬(¬A→ ¬¬A)

{1} {1} {0} {0} {1}
{1, 0} {1} {0} {0} {1}
{0} {0} {1} {1} {0}

Let me write ‘♦LC ’ for the possibility defined with Aristotle’s Thesis written
with such a strong negation. In this case, possibilism is lost and ♦LCA and
¬♦LC¬A, on the one hand, and ¬♦LCA and ♦LC¬A, on the other, collapse.

But the two negations can interact in interesting ways. For example,
¬ (A → ¬ A) defines in the three-valued setting what can be called ‘the
Béziau possibility’, a unary connective c© such that
σ( c©A) = {0} if and only if σ(A) = {0}, and σ( c©A) = {1} in all other cases,
so let me write it as ‘♦B ’. Defining modalities based on the Béziau possibility
with ∼ instead of ¬—namely, ∼♦BA, ♦B ∼A, ∼♦B ∼A— produce modalities
different from the LC modalities as follows:

A ♦BA ∼♦BA ♦B ∼A ∼♦B ∼A
¬(A→ ¬A) ∼¬(A→ ¬A) ¬(∼A→ ¬ ∼A) ∼¬(∼A→ ¬ ∼A)

{1} {1} {0} {0} {1}
{1, 0} {1} {0} {1} {0}
{0} {0} {1} {1} {0}

∼ ¬(∼ A → ¬ ∼ A) defines ‘Béziau’s necessity’, a unary conective c©A such
that it is true if and only if A is true and is false in every other case.

Dually, defining modalities based on the Lewis-Langford possibility with ¬
instead of ∼ —namely, ¬♦LA, ♦L¬A, ¬♦L¬A— produce yet another set of
new modalities as follows:

A ♦LA ¬♦LA ♦L¬A ¬♦L¬A
∼(A→∼A) ¬ ∼(A→∼A) ∼(¬A→∼¬A) ¬ ∼(¬A→∼¬A)

{1} {1} {0} {1, 0} {0}
{1, 0} {1, 0} {0} {1, 0} {0}
{0} {1, 0} {0} {1} {0}

Notice that these modalities are even closer to Mortensen’s possibilism (possi-
bilism proper and non-necessitarianism) right from the outset, without distin-
guishing between kinds of theorems: all necessities and impossibilities are just
false, and all possibilities are always designated. 17

17 Incidentally, rewriting ‘∼((∼A→∼A)→∼A)’ —the possibility used in [13] to show that
E plus Aristotle’s Thesis is possibilist— as ‘¬((¬A → ¬A) → ¬A)’ makes it equivalent to
♦B , not to A as before.
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8 Conclusions

In this paper, I explored how to retain Lewis and Langford’s characterization
of possibility in terms of consistency and Nelson’s idea that all propositions
are self-consistent. I started by presenting Lewis and Langford’s conceptu-
alization of the notions of consistency and possibility, and how certain con-
nexive notions appear there. Then I quickly reconstructed Nelson’s reaction
towards some of the consequences of Lewis and Langford’s proposal and his
arguments to prefer a primitive notion of consistency, not definable in terms
of possibility. After that, I showed that Omori’s logic dLP can support the
combination of Lewis and Langford’s characterization of possibility in terms
of consistency with Nelson’s idea that every proposition is self-consistent, with
the corresponding outcome that all the formulas of the form ♦A are theorems.
By adding more conceptual tools, I showed that one can even get a connex-
ive model of Mortensen’s possibilism, where not only everything is possible,
but nothing is necessary. Finally, I discussed some worries about the project,
for example, regarding some modal anomalies or the motivations for a logic
with contradictory theorems. Discussing one of those concerns led me to pay
closer attention to the two negations available in dLP and then consider how
the modalities behave in the presence of each negation, to find further con-
ceptual insights and new formulations of modalities even closer to Mortensen’s
possibilism.

A paper would not be as enjoyable if it did not open at least twice the
number of questions it tried to address. Let me indicate then some avenues
for further exploration. It is well-known that the expressive power of a logic
is inversely proportional to its deductive power: the more you can prove, the
less distinctions you can draw. As dLP is based on LP, the obvious choice
for a weaker logic is one based on FDE. If one adds the OCO conditional
to FDE then one gets a connexive dialetheic expansion of FDE, already dis-
cussed in [25] under the name ‘material connexive logic’. 18 An open problem
is then, investigating the exact shape of the multi-modal features of both dLP
and dFDE, including further interactions between possibilism and connexivity.
Going four-valued could also alter the truth conditions given for the relative
consistency connective and this in turn could produce a non-Nelsonian split
between self-implication and self-consistency, with tremendous consequences
for the theories of modalities, connexivity itself and so on.

Further connections between connexivity and possibilism, that is, how start-
ing with versions of one can lead to versions of the other, using frameworks not
necessarily in the vicinity of dLP and dFDE, would be worth exploring too.

18A connexive variant of the more general version of Belnap-Dunn logic, including the nega-
tion ¬, was studied in [20] under the name ‘dBD’.
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Abstract

We use modal logic to obtain syntactical, proof-theoretic versions of transfinite in-
duction as axioms or rules within an appropriate labelled sequent calculus. While
transfinite induction proper, also known as Noetherian induction, can be represented
by a rule, the variant in which induction is done up to an arbitrary but fixed level
happens to correspond to the Gödel–Löb axiom of provability logic. To verify the
practicability of our approach in actual practice, we sketch a fairly universal pattern
for proof transformation and test its use in several cases. Among other things, we
give a direct and elementary syntactical proof of Segerberg’s theorem that the Gödel–
Löb axiom characterises precisely the (converse) well-founded and transitive Kripke
frames.

Keywords: Induction principles, elementary proofs, modal logic, proof theory,
Kripke model, sequent calculus.

1 Introduction

At least since Peano formalised what we all know as mathematical induction,
induction as a proof principle has been the main tool for tidily unwrapping the
potential infinite as generated by an a priori incomplete process. This is well
reflected by the ubiquity of definitions and proofs by induction in today’s ever
more formal sciences.

Transfinite induction is a generalisation of mathematical induction from the
natural numbers to less down-to-earth well-founded orders, such as the ordinal
numbers. More precisely, if (and only if) any given order is well-founded,
then induction holds: in the sense that a predicate holds everywhere in the
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given order provided that the predicate is progressive, i.e. propagates from all
predecessors of a given element to the element itself.

As a rule of thumb, instances of induction are applicable more directly,
and are better behaved proof-theoretically, than the corresponding instances
of well-foundedness, which come as extremum principles or chain conditions
(see, e.g., Proposition 4.2 below). Characteristic examples include Aczel’s Set
Induction [1–3] versus von Neumann and Zermelo’s Axiom of Foundation or
Regularity, and Raoult’s Open Induction [4,11,27] as opposed to Zorn’s Lemma.

Awareness of this phenomenon brought us to carry over to the inductive side
some occurrences of well-foundedness in the modal logic of provability. Perhaps
Segerberg’s theorem [35], which stood right at the beginning of an impressive
development [9], is the most prominent case: the Gödel–Löb axiom charac-
terises exactly the (converse) well-founded and transitive Kripke frames. 1 The
observation that those occurrences are rather about induction prompted the
present investigation.

Inasmuch as instances of induction are about predicates or subsets, they
typically go beyond the given logical level, and actually have a somewhat se-
mantic flavour [12, 13]. By modal logic [5, 24, 26] we now obtain syntactical,
proof-theoretic variants of induction: they are expressed as axioms or rules
within an adequate labelled sequent calculus [21, 23]. While induction proper,
for which we say Noetherian induction, can be mirrored by a rule (Lemma
3.3), the variant in which induction is done up to an arbitrary but fixed point
of the given order, which we dub Gödel–Löb induction, happens to correspond
(Lemma 3.1) to the homonymous axiom of provability logic [6,7,19,36,38]. 2 In
fact the usual way to define validity in a Kripke model for the modal operator
2 lends itself naturally to capture universal validity up to a point.

To verify the practicability of our approach in proof practice, we give a
fairly universal pattern for proof transformation, from rather algebraic induc-
tive proofs to formal proofs with the required rules, and test this in several
cases. Among other things, we prove with the corresponding modal rules that
induction necessitates the order under consideration to be irreflexive (Lemma
4.1), and that every meet-closed inductive predicate on a poset propagates from
the irreducible elements to any element whatsoever (Example 3.5) [28, 31, 32].
As a by product we gain the curiosity that Noetherian induction is tantamount
to the corresponding chain condition plus irreflexivity (Proposition 4.2). 3 Last
but not least we give a direct and elementary syntactical proof (Theorem 4.3) of
Segerberg’s aforementioned theorem that the Gödel–Löb axiom holds exactly
in the (converse) well-founded and transitive Kripke frames. All this can also
be useful in proof practice: while it might be cumbersome to prove directly
that an induction principle holds for a given order, it is often easier to check
properties such as irreflexivity and transitivity, or even chain conditions.

1 See also, for example, Theorem 3.5 of [37], Example 3.9 of [5] and Teorema 7.2 of [24].
2 This was also called axiom A3 [37], the Löb formula L [5] and axiom G or axiom W [17,23].
3 Needless to say, this requires some countable choice.
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2 Basic modal logic K

Modal logic is obtained from propositional logic by adding the modal operator
� to the language of propositional logic. A Kripke model [18] (X,R, val) is a
set X together with an accessibility relation R, i.e. a binary relation between
elements of X, and a valuation val, i.e. a function assigning one of the truth
values 0 or 1 to an element x of X and an atomic formula P . The usual notation
is for val(x, P ) = 1 is x  P .

We read “xRy” as “y is accessible from x” and we read “x  P” as “x
forces P”. Valuations are extended in a unique way to arbitrary formulae by
means of inductive clauses:

x 1 ⊥
x  A ⊃ B if and only if x  A⇒ x  B
x  A ∧B if and only if x  A and x  B
x  A ∨B if and only if x  A or x  B
x  �A if and only if ∀y(xRy ⇒ y  A)

We assume that x  P is decidable for every x ∈ X and each atomic formula
P , which carries over to arbitrary formulae by the inductive clauses. With the
intended applications in mind, in place of R we use the inverse accessibility
relation <, i.e. we stipulate that y < x if and only if xRy . The pair (X,<) is
then dubbed Kripke frame.

We adopt the variant G3K< (see Table 2) of the calculus G3K introduced
in [21] for the basic modal logic K with the additional initial sequents

y < x,Γ→ ∆, y < x (σ<)

y = x,Γ→ ∆, y = x (σ=)

and the rules for equality (see Table 2). With ¬A defined as A ⊃ ⊥, the rules
L¬, R¬ are special cases of L ⊃, R ⊃, and we do not give them explicitly.

The basic idea of the calculus is the syntactical internalisation of Kripke
semantics: the calculus operates on labelled formulae x : A, to be read as “x
forces A”, and on relational formulae y < x. For each connective and for the
modality 2 the rules are obtained directly from the inductive forcing clauses
for compound formulae.

As is common, we denote by G3K∗< the extension of G3K< with additional
rules corresponding to frame properties ∗, The situation is as as laid out in Table
1, in which we use the common abbreviation ∀y < xA for ∀y(y < x⇒ A).
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Frame property Rule
Reflexivity x < x,Γ→ ∆

Ref
Γ→ ∆∀x(x < x)

Irreflexivity
Irref

x < x,Γ→ ∆∀x(x ≮ x)
Transitivity x < z, x < y, y < z,Γ→ ∆

Trans
x < y, y < z,Γ→ ∆∀x∀y < x∀z < y(z < x)

Table 1
Additional rules for G3K∗

< and the corresponding frame properties

Initial sequents

x : P,Γ→ ∆, x : P

x : �A,Γ→ ∆, x : �A
y < x,Γ→ ∆, y < x

x = y,Γ→ ∆, x = y

Propositional rules

x : A, x : B,Γ→ ∆
L∧

x : A ∧B,Γ→ ∆

Γ→ ∆, x : A Γ→ ∆, x : B
R∧

Γ→ ∆, x : A ∧B
x : A,Γ→ ∆ x : B,Γ→ ∆

L∨
x : A ∨B,Γ→ ∆

Γ→ ∆, x : A, x : B
R∨

Γ→ ∆, x : A ∨B
Γ→ ∆, x : A x : B,Γ→ ∆

L⊃
x : A ⊃ B,Γ→ ∆

x : A,Γ→ ∆, x : B
R⊃

Γ→ ∆, x : A ⊃ B
L⊥

x : ⊥,Γ→ ∆

Modal rules

y : A, x : �A, y < x,Γ→ ∆
L�

x : �A, y < x,Γ→ ∆

y < x,Γ→ ∆, y : A
R� (y fresh)

Γ→ ∆, x : �A

Rules for equality

x = x,Γ→ ∆
Eq-Ref

Γ→ ∆

x = z, x = y, y = z,Γ→ ∆
Eq-Trans

x = y, y = z,Γ→ ∆

y < z, x = y, x < z,Γ→ ∆
Repl<1

x = y, x < z,Γ→ ∆

x < y, z = y, x < z,Γ→ ∆
Repl<2

z = y, x < z,Γ→ ∆

y : P, x = y, x : P,Γ→ ∆
ReplAt

x = y, x : P,Γ→ ∆

Table 2
The sequent calculus G3K<
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Derivable sequents

x : A,Γ→ ∆, x : A

x : A ⊃ B, x : A,Γ→ ∆, x : B

→ x : �(A ⊃ B) ⊃ (�A ⊃ �B)

Admissible rule: Substitution

Γ→ ∆
Subs

Γ[y/x]→ ∆[y/x]

Admissible rules: Weakening

Γ→ ∆
LW

x : A,Γ→ ∆

Γ→ ∆
RW

Γ→ ∆, x : A

Γ→ ∆
LW<

y < x,Γ→ ∆

Γ→ ∆
RW<

Γ→ ∆, y < x

Admissible rule: Necessitation

→ x : A
N→ x : �A

Admissible rules: Contraction

x : A, x : A,Γ→ ∆
LC

x : A,Γ→ ∆

Γ→ ∆, x : A, x : A
RC

Γ→ ∆, x : A

y < x, y < x,Γ→ ∆
LC<

y < x,Γ→ ∆

Γ→ ∆, y < x, y < x
RC<

Γ→ ∆, y < x

Admissible rule: Replacement

y : A, x = y, x : A,Γ→ ∆
Repl

x = y, x : A,Γ→ ∆

Admissible rules: Cut

Γ→ ∆, x : A x : A,Γ′ → ∆′
Cut

Γ,Γ′ → ∆,∆′

Γ→ ∆, y < x y < x,Γ′ → ∆′
Cut<

Γ,Γ′ → ∆,∆′
Γ→ ∆, y = x y = x,Γ′ → ∆′

Cut=
Γ,Γ′ → ∆,∆′

Table 3
Structural properties and admissible rules of the sequent calculus G3K<
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The calculus G3K< satisfies the following structural properties (for more
detail see Table 3, and for a proof see Section 11.4 of [23]):

(i) Sequents of the forms

x : A,Γ→ ∆, x : A

x : A ⊃ B, x : A,Γ→ ∆, x : B

→ x : �(A ⊃ B) ⊃ (�A ⊃ �B)

are derivable in G3K∗< for arbitrary modal formulae A and B.

(ii) The rules of substitution, weakening, contraction and replacement for ar-
bitrary formulae are height-preserving admissible in G3K∗<.

(iii) The rule of necessitation is admissible in G3K∗<.

(iv) All the rules of the system G3K∗< are height-preserving invertible.

(v) The Cut rule is admissible in G3K<.

Since we add the initial sequents σ<, σ=, we also need the following:

Lemma 2.1 Rules Cut< and Cut= are admissible in G3K<.

Proof. The proof is induction as the proof of admissibility of Cut (see [23],
Theorem 11.9), from which we exclude the cases in which the cut formula
is principal as no rule has instances of =, < as principal formulae. All the
remaining cases are completely analogous to their counterparts in the proof of
admissibility of Cut. 2

Two important results, to which we will collectively refer as completeness,
carry over from [22]:

Theorem 2.2 Let Γ → ∆ be a sequent in the language of G3K∗<. Then
either the sequent is derivable in G3K∗< or it has a Kripke countermodel with
properties ∗.
Corollary 2.3 If a sequent Γ → ∆ is valid in every Kripke model with the
frame properties ∗, then it is derivable in the system G3K∗<.

2.1 Connective-like rules for propositional variables

In some of the applications below, we will need to add a propositional variable P
to the language of K that will have a “connective-like” behavior. For instance,
suppose that we want a variable P to behave at x as Q(x) ⊃ R(x). In order
to avoid self-referential definitions, we ask Q and R not to contain P . We then
add the following clause to the definition of val:

x  P if and only if Q(x)⇒ R(x)

Doing so, we further add to G3K∗< a pair of rules that mirror the logical rules:

Γ→ ∆, Q(x) R(x),Γ→ ∆
LP

x : P,Γ→ ∆

Q(x),Γ→ ∆, R(x)
RP

Γ→ ∆, x : P
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Since they have the same behavior as the logical connectives, all proofs given or
referred to in the last section can easily be generalised to extensions of G3K<

by rules of this kind. In particular, LP and RP are invertible and completeness
still holds. We just point out that in the proof of admissibility of Cut, we have
to be careful when considering the case in which the cut formula is principal
in both premisses. For instance when we transform

Q(x),Γ→ ∆, R(x)
RP

Γ→ ∆, x : P

Γ′ → ∆′, Q(x) R(x),Γ′ → ∆′
LP

x : P,Γ′ → ∆′
Cut

Γ,Γ′ → ∆,∆′

into

Γ′ → ∆′, Q(x)

Q(x),Γ→ ∆, R(x) R(x),Γ′ → ∆′
Cut(<,=)

Q(x),Γ,Γ′ → ∆,∆′
Cut(<,=)

Γ,Γ′,Γ′ → ∆,∆′,∆′
LC,RC (multiple times)

Γ,Γ′ → ∆,∆′

we have to take into consideration that Q(x), R(x) may be instances of <,=.

3 Induction principles

Induction principles are typically not expressible within a first-order language.
We now present them as ordinary rules of labelled sequent calculus. To start
with, we recall Noetherian Induction and define Gödel–Löb Induction:

∀y(∀z < y Ez ⇒ Ey)⇒ ∀y Ey (Noeth-Ind)

∀x(∀y < x(∀z < y Ez ⇒ Ey)⇒ ∀y < xEy) (GL-Ind)

They prompt us to consider two rules and an axiom on top of G3K< (rule
R�-GLI is rule R�-L of [23]):

y : �A,Γ→ ∆, y : A
NI

Γ→ ∆, y : A

y < x, y : �A,Γ→ ∆, y : A
R�-GLI

Γ→ ∆, x : �A

�(�A ⊃ A) ⊃ �A (W )

Both rules come with the variable condition that y does not appear in Γ,∆.

Lemma 3.1 Let a Kripke frame (X,<) be given. The following are equivalent:

(i) Axiom W is valid in X for every formula A.

(ii) Axiom W is valid in X for every propositional variable A.

(iii) Gödel–Löb Induction holds in X, i.e.

∀x(∀y < x(∀z < y Ez ⇒ Ey)⇒ ∀y < xEy) (GL-Ind)

for any given predicate E(x) on X.



216 Modal Logic for Induction

Proof. (i)⇒(ii). Trivial.
(ii)⇒(iii). Given E(x), pick a propositional variable A and take a valuation
such that x  A if and only if E(x). Then by expanding the definitions we
have the following:

x  �(�A ⊃ A) ⊃ �A
=⇒x  �(�A ⊃ A)⇒ x  �A
=⇒∀y < x y  �A ⊃ A⇒ ∀y < x y  A
=⇒∀y < x (y  �A⇒ y  A)⇒ ∀y < x y  A
=⇒∀y < x (∀z < y z  A⇒ y  A)⇒ ∀y < x y  A
=⇒∀y < x (∀z < y Ez ⇒ Ey)⇒ ∀y < xEy

(iii)⇒(i). Given a formula A, define E(x) as x  A and read backwards the
proof of (ii)⇒(iii). 2

Lemma 3.2 The following are equivalent over G3K< without R� (including
the structural rules):

(i) Rule R�-GLI,

(ii) Rule R� plus axiom W.

Proof. Claim 1: R�-GLI⇒ R�.

y < x,Γ→ ∆, y : A
LW

y < x, y : �A,Γ→ ∆, y : A
R�-GLI

Γ→ ∆, x : �A

Claim 2: R�-GLI⇒W.

y < x, y : �A ⊃ A, y : �A, x : �(�A ⊃ A)→ y : A
L�

y < x, y : �A, x : �(�A ⊃ A)→ y : A
R�-GLI

x : �(�A ⊃ A)→ x : �A
R⊃→ x : �(�A ⊃ A) ⊃ �A

Claim 3: R�+ W⇒ R�-GLI.

y < x, y : �A,Γ→ ∆, y : A
R⊃

y < x,Γ→ ∆, y : �A ⊃ A
R�

Γ→ ∆, x : �(�A ⊃ A) x : �(�A ⊃ A)→ x : �A
Cut

Γ→ ∆, x : �A

where x : �(�A ⊃ A)→ x : �A is derivable from W by invertibility of R⊃. 2

Therefore the sequent calculus obtained by replacing R� by R�-GLI is an
extension of G3K<. If we further add the mathematical rules Trans and Irref ,
we get the variant G3KGL< of the calculus G3KGL [21] obtained by adding
the initial sequents σ<, σ= and removing the mathematical rules Trans, Irref.
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Lemma 3.3 Let a Kripke frame (X,<) be given. The following are equivalent:

(i) Rule NI is sound in X.

(ii) For every propositional variable A, in X we have

∀y (y  �A⇒ y  A)⇒ ∀y y  A
for any given valuation  on X.

(iii) Noetherian Induction holds in X, i.e.

∀y(∀z < y Ez ⇒ Ey)⇒ ∀y Ey (Noeth-Ind)

for any given predicate E(x) on X.

Proof. (i)⇒(ii). Suppose that, for all y, y  �A implies y  A. It follows
that the sequent y : �A → y : A is valid, hence, by completeness, derivable.
Applying rule NI we can therefore derive → y : A

y : �A→ y : A
NI→ y : A

and by soundness we obtain that for all y, y  A.
(ii)⇒(iii). Given E(x), pick a propositional variable A and take a valuation
such that x  A if and only if E(x). Then:

∀y (y  �A⇒ y  A)⇒ ∀y y  A
=⇒∀y (∀z < y z  A⇒ y  A)⇒ ∀y y  A
=⇒∀y (∀z < y Ez ⇒ Ey)⇒ ∀y Ey

(iii)⇒(i). Given a formula A, define E(x) as x  A and read backwards the
proof of (ii)⇒(iii). 2

The lemmata proved in this section allow us to transform rather algebraic
proofs using induction into tree-like derivations in modal logic, following a
certain pattern:

Proof transformation pattern Let X be a set endowed with a binary re-
lation <. Suppose that we need to show either

(i) a statement of the form ∀y E(y) by way of Noeth-Ind, or

(ii) a statement of the form ∀x∀y < xE(y) by way of GL-Ind.

We consider (X,<) as a Kripke frame, and build a Kripke model as follows.
First, we consider a suitable subformula U(x) of E(x) such that it can be
encoded in a sequent Q(x) → R(x), and fix a propositional variable P . We
define a valuation such that val : (x, P ) = 1 if and only if U(x). This is done
by adding (variants of) the following rules to the calculus:

Γ→ ∆, Q(x) R(x),Γ→ ∆
LP

x : P,Γ→ ∆

Q(x),Γ→ ∆, R(x)
RP

Γ→ ∆, x : P

By means of P , we find a formula A such that x  A if and only if E(x). We
then proceed as follows:
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(i) For Noeth-Ind : Derive the sequent y : �A → y : A by using G3K< plus
RP and LP, then apply rule NI :

...

y : �A→ y : A
NI→ y : A

(ii) For GL-Ind : Derive the sequent y < x, y : �A → y : A by using G3K<

plus RP and LP, then apply rule R�-GLI :

...

y < x, y : �A→ y : A
R�-GLI

Γ→ ∆, x : �A

We point out that this pattern is not fully general, as we do not yet have a
universal method to find the subformula U(x) needed to define the valuation.

3.1 Examples

Example 3.4 GL-Ind implies that ∀y < x(y 6= x). 4

Proof. [algebraic] In order to apply GL-Ind, we need to show that ∀y < x(∀z <
y(z 6= x)⇒ y 6= x). Fix y < x such that ∀z < y(z 6= x). We need to show that
y 6= x. Suppose y = x. Then x < x and ∀z < x(z 6= x), from which we derive
x 6= x. Therefore y 6= x and we proved our claim. 2

Proof. [modal] Fix x. Pick P such that y  P if and only if y = x. This
corresponds to the rules

y = x,Γ→ ∆
LP

y : P,Γ→ ∆

Γ→ ∆, y = x
RP

Γ→ ∆, y : P

Then our thesis is equivalent to say that → x : �¬P is derivable in G3K<

plus R�-GLI, LP and RP :

y = x, y < y, y : �¬P → y : ⊥, y = x
RP

y = x, y < y, y : �¬P → y : ⊥, y : P
L¬

y : ¬P, y = x, y < y, y : �¬P → y : ⊥
L�

y = x, y < y, y : �¬P → y : ⊥
Repl

y = x, y < x, y : �¬P → y : ⊥
LP

y < x, y : �¬P, y : P → y : ⊥
R⊃

y < x, y : �¬P → y : ¬P
R�-GLI→ x : �¬P

2

4 If we observe that ∀y < x(y 6= x) is just a variant of irreflexivity ∀x(x ≮ x), then this
result will be for free once we have proved Lemma 4.1 and Theorem 4.3.



Fellin, Negri and Schuster 219

Example 3.5 What follows is a somewhat more general formulation of the fact
that by Noetherian induction every meet-closed predicate on a poset propagates
from the irreducible elements to any element whatsoever [28,31,32].

Consider a ternary predicate x = y ◦ z. We say that x is ◦-reducible (for
short R◦(x)) if there are y < x and z < x such that x = y ◦ z.

Let E(x) be a predicate satisfying

x = y ◦ z E(y) E(z)

E(x) (∗)

for every y, z. Then Noeth-Ind implies ∀x(R◦(x) ∨ E(x))⇒ ∀xE(x).

Proof. [algebraic] Assume that ∀x(R◦(x)∨E(x)). In order to apply induction,
we need to show that ∀x(∀y < xE(y)⇒ E(x)). Fix x such that ∀y < xE(y).
It now suffices to show E(x). By assumption, we can distinguish two cases:

• Case E(x): Trivial.

• Case R◦(x): Take y < x and z < x such that x = y ◦ z. By ∀y < xE(y) we
know that E(y) and E(z). This, by (∗) implies E(x).

2

Proof. [modal] Pick a propositional variable P such that x  P if and only if
E(x). The hypothesis (∗) can be written as:

x : P, y : P, z : P, x = y ◦ z,Γ→ ∆
(∗)

y : P, z : P, x = y ◦ z,Γ→ ∆

The definition of being ◦-reducible can be used in the calculus via the rule

x = y ◦ z, y < x, z < x,Γ→ ∆
LR◦

R◦(x),Γ→ ∆

where y, z are fresh, together with the appropriate RR◦ rule. The thesis be-
comes that from the sequent → R◦(x), x : P we can derive → x : P in G3K<

using NI, (∗), LR◦ and RR◦. In fact:

→ R◦(x), x : P

x = y ◦ z, y < x, z < x, x : P, z : P, y : P, x : �P → x : P
(∗)

x = y ◦ z, y < x, z < x, z : P, y : P, x : �P → x : P
L�

x = y ◦ z, y < x, z < x, y : P, x : �P → x : P
L�

x = y ◦ z, y < x, z < x, x : �P → x : P
LR◦

R◦(x), x : �P → x : P
Cut

x : �P → x : P
NI→ x : P

2
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4 Consequences

In this section we apply the tools that we have just developed, in order to
revisit certain common properties of the accessibility relation <. In particular,
this will lead us to useful characterisations of the induction principles that can
simplify the task of controlling that they hold in a given structure. We will
further shed some more light on the role of transitivity in the calculus.

4.1 Irreflexivity & Noetherianity

The binary relation < on X is said to be irreflexive if ∀x(x ≮ x), which
corresponds to the following rule

Irref
x < x,Γ→ ∆

Lemma 4.1 Noetherian Induction implies irreflexivity. 5

Proof. To show this claim, we use the syntactical proof pattern introduced in
Section 3. Pick P such that x  P if and only if x < x, i.e. such that

x < x,Γ→ ∆
LP

x : P,Γ→ ∆

Γ→ ∆, x < x
RP

Γ→ ∆, x : P

Then we just need to show → x : ¬P in G3K< plus NI, LP and RP :

x : �¬P, x < x→ x < x
RP

x < x, x : �¬P → x : P
L¬

x : ¬P, x < x, x : �¬P →
L�

x < x, x : �¬P →
LP

x : P, x : �¬P →
R¬

x : �¬P → x : ¬P
NI→ x : ¬P

From this we also get admissibility of the rule version of irreflexivity:

→ x : ¬P

x < x,Γ→ ∆, x < x
RP

x < x,Γ→ ∆, x : ¬P
L¬

x : ¬P, x < x,Γ→ ∆
Cut

x < x,Γ→ ∆

2

As in mathematical practice one often talks about ascending chains, we now
occasionally switch back to R. So let y < x if and only if xRy: that is, < and
R are converse to each other. Notice that < is irreflexive if and only if so is R.

5 This lemma is a formal direct version of “every well-founded relation is irreflexive”, to be
compared with “Set Induction implies ∀x(x /∈ x)” [1–3] as a direct version of “Foundation
implies ∀x(x /∈ x)” in axiomatic set theory.
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An infinite R-sequence is a sequence (xi)i∈N of elements of X such that
xiRxi+1 for all i ∈ N. An infinite R-sequence (xi)i∈N is convergent if there
is i ∈ N such that xj = xi for all j > i. We say that R is well-founded if
there is no infinite R-sequence; and that R is Noetherian—for short, R satisfies
Noeth—if every infinite R-sequence converges.

While the first and second item of the next lemma are well-known to be
equivalent, the occurrence of irreflexivity in the third item is due to the fact
that a priori R and < need not possess this feature of an order relation.

Proposition 4.2 The following are equivalent:

(i) < satisfies Noetherian Induction.

(ii) R is well-founded.

(iii) R is irreflexive and Noetherian.

Proof. The equivalence of the first and the second item is folklore. See Lemma
4.1 for a formal proof that Noetherian Induction implies irreflexivity. If R is
well-founded, i.e. there are no infinite R-sequences at all, then R is trivially
Noetherian. As for the converse, if R is irreflexive, then no infinite R-sequence
converges; whence if, in addition, R is Noetherian, then R is well-founded. 2

Notice in this context that if R is Noetherian, it is not always the case that
< satisfies Noeth-Ind. In fact, the relation R with the following graph

x

does not satisfy Noeth-Ind because it is not irreflexive, but R is Noetherian
because the only infinite R-sequence, which is xRxRxR..., converges.

4.2 Transitivity & Induction

The binary relation < on X is said to be transitive if ∀x∀y < x∀z < y(z < x),
which corresponds to the following rule

z < x, z < y, y < x,Γ→ ∆
Trans

z < y, y < x,Γ→ ∆

In the light of Proposition 4.2, what we prove next in G3K< is a formal
version of Segerberg’s theorem [35] that the Gödel–Löb axiom describes exactly
the (converse) well-founded transitive Kripke frames.

Theorem 4.3 The following are equivalent:

(i) Gödel–Löb Induction,

(ii) Noetherian Induction + Transitivity.
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Proof. Claim 1: GL-Ind⇒ Noeth-Ind. It suffices to show that rule NI is ad-
missible in G3KGL<:

x : �A,Γ→ ∆, x : A
Subs

y : �A,Γ→ ∆, y : A
LW

y < x, y : �A,Γ→ ∆, y : A
R�-GLI

Γ→ ∆, x : �A x : �A,Γ→ ∆, x : A
Cut

Γ,Γ→ ∆,∆, x : A
LC,RC (multiple times)

Γ→ ∆, x : A

Claim 2: GL-Ind⇒ Trans. To show this claim, we use the syntactical proof
pattern introduced in Section 3. Fix x. Pick P such that y  P if and only if
y < x, i.e. such that

y < x,Γ→ ∆
LP

y : P,Γ→ ∆

Γ→ ∆, y < x
RP

Γ→ ∆, y : P

It suffices to show that rule Trans is admissible in G3KGL< plus LP and RP:

→ x : �(�P ∧ P )

z < x, z < y, y < x,Γ→ ∆
LW

z < x, y : �P, y : P, x : �(�P ∧ P ), z < y, y < x,Γ→ ∆
LP

z : P, y : �P, y : P, x : �(�P ∧ P ), z < y, y < x,Γ→ ∆
L�

y : �P, y : P, x : �(�P ∧ P ), z < y, y < x,Γ→ ∆
L∧

y : �P ∧ P, x : �(�P ∧ P ), z < y, y < x,Γ→ ∆
L�

x : �(�P ∧ P ), z < y, y < x,Γ→ ∆
Cut

z < y, y < x,Γ→ ∆

where → x : �(�P ∧ P ) is derived as follows: 6

y < x, y : �(�P ∧ P )→ y : �P
y < x, y : �(�P ∧ P )→ y < x

RP
y < x, y : �(�P ∧ P )→ y : P

R∧
y < x, y : �(�P ∧ P )→ y : �P ∧ P

R�-GLI→ x : �(�P ∧ P )

where y < x, y : �(�P ∧ P )→ y : �P is derived as follows:

z : �P, z : P, z < y, z : �P, y < x, y : �(�P ∧ P )→ z : P
L∧

z : �P ∧ P, z < y, z : �P, y < x, y : �(�P ∧ P )→ z : P
L�

y < x, y : �(�P ∧ P )→ y : �P

6 Notice that the sequent→ x : �(�P ∧P ) corresponds to ∀x∀y < x(∀z < y(z < x) & y < x),
which is a redundant version of transitivity as y < x is repeated both in the premisses and
in the conclusions. The reason why we need this version and not the “standard” one (as, for
instance, in the case of Irref in Lemma 4.1), will become clear in the next subsection.
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Claim 3: Noeth-Ind + Trans⇒ GL-Ind. It suffices to show that Axiom W is
derivable in G3K< plus NI and Trans:

y : A, y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A)→ y : A D1
L⊃

y : �A ⊃ A, y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A)→ y : A
L�

y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A)→ y : A
R�

x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A)→ x : �A
R⊃

x : �(�(�A ⊃ A) ⊃ �A)→ x : �(�A ⊃ A) ⊃ �A
NI→ x : �(�A ⊃ A) ⊃ �A

where D1 is the following derivation:
y : �A, y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A)→ y : A, y : �A D2

L⊃
y : �(�A ⊃ A) ⊃ �A, y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A)→ y : A, y : �A

L�
y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A)→ y : A, y : �A

where D2 is the following derivation:

z : �A ⊃ A, z < x, z < y, y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A) → y : A, y : �A, z : �A ⊃ A
L�

z < x, z < y, y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A) → y : A, y : �A, z : �A ⊃ A
Trans

z < y, y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A) → y : A, y : �A, z : �A ⊃ A
L⊃

y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A) → y : A, y : �A, y : �(�A ⊃ A)
R�

y < x, x : �(�(�A ⊃ A) ⊃ �A), x : �(�A ⊃ A) → y : A, y : �A, y : �(�A ⊃ A)

2

Proposition 4.2 and Theorem 4.2 help to see that Noeth-Ind ; GL-Ind. In
fact, the structure

y xz

satisfies both Noeth and Irref, but not Trans.

4.3 Transitivity & Cut

The rule Cut is known to be admissible in the calculus G3GL and thus, by
equivalence, in G3KGL [23, Theorem 12.20]. As a consequence, Cut is also
admissible in G3KGL< if we add Trans and Irref . Are these two rules really
needed for Cut admissibility?

Lemma 4.4 The following sequents are Cut-free derivable in G3KGL<:

(i) x : �A→ x : �(A ∧�A), 7

(ii) x : �(A ∧�A)→ x : ��A.

Proof. (i)

y : A, y < x, y : �(A ∧�A), x : �A→ y : A
L�

y < x, y : �(A ∧�A), x : �A→ y : A D
R∧

y < x, y : �(A ∧�A), x : �A→ y : A ∧�A
R�-GLI

x : �A→ x : �(A ∧�A)

7 This is actually the redundant version of transitivity that we had in the proof of Theorem
4.3. Here, the definition of y  A as y < x is gained by the addition of the premiss x : �A.
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where D is the following derivation:

z : A, z : �A, z < y, z : �A, y < x, y : �(A ∧�A), x : �A→ z : A
L∧

z : A ∧�A, z < y, z : �A, y < x, y : �(A ∧�A), x : �A→ z : A
L�

z < y, z : �A, y < x, y : �(A ∧�A), x : �A→ z : A
R�-GLI

y < x, y : �(A ∧�A), x : �A→ y : �A

(ii)

y : A, y : �A, y < x, y : ��A, x : �(A ∧�A)→ y : �A
L∧

y : A ∧�A, y < x, y : ��A, x : �(A ∧�A)→ y : �A
L�

y < x, y : ��A, x : �(A ∧�A)→ y : �A
R�-GLI

x : �(A ∧�A)→ x : ��A

2

Theorem 4.5 The Cut rule is not admissible in G3KGL< without Trans.

Proof. If Cut were admissible, then by Lemma 4.4 the sequent x : �A →
x : ��A would be Cut-free derivable. 8 Let’s try to give a Cut-free proof:

y : A, z < y, z : �A, y < x, y : ��A, x : �A→ z : A
L�

y : A, z < y, z : �A, y < x, y : ��A, x : �A→ z : A
R�-GLI

y < x, y : ��A, x : �A→ y : �A
R�-GLI

x : �A→ x : ��A

Observe, however, that the upper-most sequent is not derivable in general. In
fact, we have a countermodel:

x  �Ay  A, y  ��Az  �A, z 1 A

Notice that this is a non-transitive model. 2

As a consequence, we get that the assumption of Trans is necessary in the
aforementioned proof of Cut-admissibility in G3KGL<. 9

8 The sequent x : �A → x : ��A corresponds to transitivity the same way the sequent
x : �A → x : �(A ∧ �A) corresponds to redundant transitivity from footnote 6. What we
are showing is actually that the “standard” version of transitivity can be deduced from the
redundant version by using Cut and that Cut is necessary in any proof of transitivity. This
is why we needed the redundant version in the first place.
9 This may look a bit counterintuitive: a mathematical principle, transitivity, corresponds
to a derivable sequent, but is also equivalent, modulo irreflexivity, to a structural rule. How-
ever, this is not really astonishing: Cut can be viewed as a form of transitivity, as it is a
generalisation of the following:

∀C∀B(B ⊃ C ⇒ ∀A(A ⊃ B ⇒ A ⊃ C))

which is just transitivity of ⊃ seen as a relation. This is also the reason for which the Cut in
literature is sometimes called Trans, e.g. when dealing with Scott-style entailment relations
(cf [34]; for recent work see, e.g., [10, 15,16,29,30,33,39]).
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5 Future work

The calculus G3K< is classical, but the applications studied up to now have
a purely constructive proof in their algebraic counterpart. This makes us con-
fident that we can replace G3K< by an intuitionistic modal calculus, such as
the one presented in [20].

Furthermore, those applications have not yet suggested a general method
to find the subformula U(x) required to define the valuation; whence we will
next try to pin down such a general method.

Other principles related to induction are worth a closer look. Apart from
the notions of Noetherianity discussed in [13, 25], there is Grzegorczyk induc-
tion [14], which is a weaker form of induction compatible with reflexivity. Also
the principles of transitivity and irreflexivity deserve further investigation, es-
pecially in connection with Cut-elimination, as well as the variant GH of the
Gödel–Löb axiom [8]. There is already some work in progress on relating this
approach with Peano Induction, which will likely lead to similar results in Or-
dinal Induction.
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Non-iterative Modal Logics are Coalgebraic
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Abstract

A modal logic is non-iterative if it can be defined by axioms that do not nest modal op-
erators, and rank-1 if additionally all propositional variables in axioms are in scope of
a modal operator. It is known that every syntactically defined rank-1 modal logic can
be equipped with a canonical coalgebraic semantics, ensuring soundness and strong
completeness. In the present work, we extend this result to non-iterative modal logics,
showing that every non-iterative modal logic can be equipped with a canonical coal-
gebraic semantics defined in terms of a copointed functor, again ensuring soundness
and strong completeness via a canonical model construction. Like in the rank-1 case,
the coalgebraic semantics is equivalent to a neighbourhood semantics with suitable
frame conditions, so that our main result may be phrased as saying that every non-
iterative modal logic is complete over its neighbourhood semantics. As an example
application of these results, we establish strong completeness of deontic logics with
factual detachment, strengthening previous weak completeness results.

Keywords: Coalgebraic logic, neighbourhood semantics, strong completeness,
canonical models, deontic logic

1 Introduction

Modal frame axioms are called non-iterative if they do not nest modal op-
erators, and rank-1 if additionally all occurrences of propositional variables
are under modal operators; logics are non-iterative or rank-1, respectively, if
they can be axiomatized by axioms of the correspondingly restricted shape.
Prominent examples include the K-axiom 2(a → b) → 2a → 2b, which is
rank-1, and the T-axiom 2a → a, which is non-iterative. Lewis [10] shows
that every non-iterative modal logic is weakly complete over neighbourhood
semantics (i.e. every consistent formula is satisfiable). Without restrictions on
the axioms, there are modal logics that are weakly complete but not strongly
complete (in the sense that every consistent set of formulae is satisfiable) over
neighbourhood semantics [18]. Previous work in coalgebraic logic [17] shows
that every rank-1 modal logic is even strongly complete over a canonical coal-
gebraic semantics that coincides with neighbourhood semantics. In the present
paper, we extend this result to non-iterative logics: We show that every (syn-
tactically given) non-iterative modal logic is strongly complete over a canonical
coalgebraic semantics, and hence over the equivalent neighbourhood semantics.
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Generally, the semantic framework of coalgebraic logic [2] supports general
proof-theoretic, algorithmic, and meta-theoretic results that can be instantiated
to the logic of interest, cutting out much of the repetitive labour associated with
the iterative process of designing an application-specific logic. The framework
is based on casting state-based models of various types (e.g. relational, proba-
bilistic, neighbourhood-based, or game-based) as coalgebras for a functor, the
latter to be thought of as encapsulating the structure of the successors of a
state.

It has been shown that the modal logic of the class of all coalgebras for a
given functor can always be axiomatized in rank 1 [15]. Conversely, as indicated
above, every rank-1 logic has a coalgebraic semantics [17]; that is, rank-1 ax-
ioms can be absorbed into a functor. The coalgebraic treatment of non-iterative
axioms thus requires a generalization to copointed functors, to be thought of
as incorporating the present state as well as its successors. Indeed it turns out
that to obtain strong completeness, it is useful to generalize further to weakly
copointed functors, in which the present state is virtualized as an ultrafilter,
and subsequently restrict to proper coalgebras of such weakly copointed func-
tors, in which all these virtual points actually materialize. Our main result thus
states more precisely that every non-iterative logic is sound and strongly com-
plete for the class of proper coalgebras of a canonical weakly copointed functor
we construct; strong completeness w.r.t. a canonical copointed subfunctor then
follows. As indicated above, this result translates back into strong completeness
w.r.t. neighbourhood semantics. We complement this statement with an (eas-
ier) result showing that the modal logic of a copointed functor can always be
equipped with a weakly complete non-iterative axiomatization, justifying the
slogan that non-iterative logics are precisely the logics of copointed functors.

We illustrate the use of this result on certain deontic logics that on the
one hand avoid the deontic explosion problem (ruling out normality, and hence
Kripke semantics) and on the other hand allow for factual detachment, embod-
ied in properly non-iterative axioms [20]. The only known semantics for such
logics is neighbourhood semantics, and it is only known to be weakly complete
(by the mentioned results of Lewis [10], alternatively by a concrete proof given
in the online appendix of [20]); our results imply that it is in fact strongly
complete.

Organization We recall the syntactic notion of non-iterative modal logic [10]
in Section 2. In Section 3, we recall the semantic framework of coalgebraic
logic, and discuss copointed and weakly copointed functors. Our main techni-
cal tool is the 0-1-step logic of a non-iterative coalgebraic logic, introduced in
Section 4. We establish the easier direction of the relationship between non-
iterative modal logics and coalgebraic modal logic in Section 5, where we show
that the modal logic of coalgebras for a copointed functor is always non-iterative
(and has the finite model property). Our main result, which states that con-
versely, every non-iterative modal logic is strongly complete over a canonical
coalgebraic semantics that coincides with neighbourhood semantics, is shown
in Sections 6 and 7. In Section 8, we present applications to deontic logics.
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Proofs that are omitted or only sketched can be found in the full version [3].

2 Non-iterative Modal Logics

A (modal) similarity type Λ is a set of modal operators with associated finite
arity. The set F(Λ) of Λ-formulae is given by the grammar

φ1, . . . , φn ::= ⊥ | ¬φ1 | φ1 ∧ φ2 | L(φ1, . . . , φn)

where L ∈ Λ has arity n. Additional Boolean operators →, ↔, ∨ and > can
then be defined as usual. We denote by |φ| the size of a formula φ, measured
as the number of subformulae of φ. The grammar does not include proposi-
tional atoms as a separate syntactic category; however, these can be cast as
nullary modalities. We thus distinguish propositional atoms from propositional
variables, which are used to formulate axioms and rules.

Definition 2.1 Let Prop(V ) denote the set of propositional formulae φ over a
given set V (i.e. φ ::= ⊥ | a | ¬φ | φ1 ∧ φ2, with a ranging over V ), and put

Λ(V ) = {L(a1, . . . , an) | L ∈ Λ n-ary, a1, . . . , an ∈ V }.

The elements of V are typically thought of as propositional variables. A one-
step formula or rank-1 formula over V is a formula in Prop(Λ(Prop(V ))),
and a 0-1-step formula or a non-iterative formula over V is a formula in
φ ∈ Prop(Λ(Prop(V )) ∪ V ). In words, a formula φ over V is non-iterative
if it does not contain nested modal operators, and a non-iterative formula φ
is rank-1 if additionally every variable in φ lies under a modal operator. We
generally refer to maps of the form σ : V → Z that we use to replace entities of
type V with entities of type Z in formulae as Z-substitutions on V , and write
φσ for the result of applying σ to a formula φ over V .

As indicated previously, the axiom 2(a → b) → 2a → 2b (with a, b propo-
sitional variables) is rank-1, and 2a → a is non-iterative. We define modal
logics L = (Λ,A) syntactically by a similarity type Λ and a set A of axioms
(in the given similarity type), determining the set of derivable formulae via the
usual proof system as recalled below. A logic is non-iterative (rank-1 ) if all
its axioms are non-iterative (rank-1). Given a logic L = (Λ,A), we say that a
Λ-formula ψ is derivable, and write `L ψ, if ψ can be derived in finitely many
steps via the following rules:

(Ax)
ψσ

(ψ ∈ A, σ an F(Λ)-substitution)

(P )
φ1 . . . φn

ψ
({φ1, . . . , φn} `PL ψ) (C)

φ1 ↔ ψ1 . . . φn ↔ ψn
L(φ1, . . . , φn)↔ L(ψ1, . . . , ψn)

where by {φ1, . . . , φn} `PL ψ we indicate that ψ is derivable from assumptions
φ1, . . . , φn by propositional reasoning (e.g. propositional tautologies and modus
ponens). The last rule is known as the congruence rule or replacement of
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equivalents. For a set Φ of Λ-formulae, we write Φ `L ψ if `L (φ1∧. . .∧φn)→ ψ
for some φ1, . . . , φn ∈ Φ. We say that Φ is L-consistent, or just consistent, if
Φ 6`L ⊥. A formula φ is consistent if {φ} is consistent.

Remark 2.2 Non-iterative logics can alternatively be presented in terms of
proof rules: A non-iterative rule φ/ψ over V consists of a premiss φ ∈ Prop(V )
and a conclusion ψ ∈ Prop(Λ(V ) ∪ V ). There are mutual conversions between
the two formats, the conversion from axioms to rules being straightforward, and
the conversion from rules to axioms being based on Boolean unification: Given
a non-iterative rule φ/ψ, pick a projective unifier [4] of φ, i.e. a substitution σ
such that φσ and φ→ (a↔ σ(a)), for all variables a in ψ, are tautologies, and
replace φ/ψ with the axiom ψσ; further details are as in the rank-1 case [15].

Remark 2.3 As the syntax of the logic itself does not include propositional
variables, the above system also does not derive formulae with variables. If de-
sired, propositional variables in formulae can be emulated by introducing fresh
propositional atoms (treated as nullary modal operators as indicated above). In
particular, if substitution is made to apply to these fresh propositional atoms,
then the standard substitution rule φ/φσ becomes admissible.

3 Coalgebraic Semantics

We next recall basic definitions in universal coalgebra [14] and coalgebraic
logic [2], which will form the underlying semantic framework for our main
result. We briefly recall requisite categorical definitions; some familiarity with
basic category theory will nevertheless be helpful (e.g. [1]).

The underlying principle of (set-based) universal coalgebra is to encapsulate
a type of state-based systems as an endofunctor T : Set → Set (briefly called
a set functor) where Set is the category of sets and functions. Thus, T assigns
to each set X a set TX, and to each map f : X → Y a map Tf : TX → TY ,
preserving identities and composition. We think of TX as a type of structured
collections over X. A basic example is the (covariant) powerset functor P,
which assigns to each set X its powerset PX, and to each map f : X → Y
the map Pf : PX → PY that takes direct images, i.e. Pf(A) = f [A] for A ∈
PX. The most relevant example for our present purposes is the neighbourhood
functor N , defined as follows. The contravariant powerset functor Q is a
functor of type Setop → Set, i.e. reverses the direction of maps; it maps a
set X to its powerset QX = PX, and a map f : X → Y to the preimage map
Qf : QY → QX, i.e. Qf(B) = f−1[B] for B ∈ QY . For any functor F , we
indicate by F op the functor that acts like F but on the opposite categories, i.e.
with arrows reversed in both domain and codomain. Then, we define N as the
composite

N = Q ◦ Qop : Set→ Set.

We think of elements of NX as neighbourhood systems over X.
Given a functor T , systems are then abstracted as T -coalgebras C = (X, ξ)

consisting of a set X of states and a transition function ξ : X → TX. We think
of ξ as assigning to each state x a structured collection ξ(x) of successors. E.g.
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P-coalgebras are just Kripke frames, assigning as they do to each state a set
of successors, and N -coalgebras are neighbourhood frames, where each state
receives a collection of neighbourhoods.

Modal operators are semantically interpreted by predicate liftings [12,16]:

Definition 3.1 An n-ary predicate lifting for a set functor T is a natural trans-
formation λ : Qn → Q ◦ T op, with Q being the contravariant powerset functor
recalled above. So λ is a family of functions λX , indexed over all sets X, such
that for all f : X → Y and Bi ⊆ Y , i = 1, . . . , n,

λX(f−1[B1], . . . , f−1[Bn]) = (Tf)−1[λY (B1, . . . , Bn)].

A Λ-structure M = (T, JLKL∈Λ) for a signature Λ consists of a functor T and an
n-ary predicate lifting JLK for every n-ary modal operator L ∈ Λ; we say thatM
is based on T . When there is no danger of confusion, we will occasionally refer
to the entire Λ-structure just as T .

Given a Λ-structureM based on T , we define the satisfaction relation x |=C φ
between states x in T -coalgebras C = (X, ξ) and Λ-formulae φ inductively by

x 6|=C ⊥
x |=C ¬φ iff x 6|=C φ

x |=C φ ∧ ψ iff x |=C φ and x |=C ψ

x |=C L(φ1, . . . φn) iff ξ(x) ∈ JLK(Jφ1KC , . . . , JφnKC)

where we write JφKC (or just JφK) for the extension {x ∈ X | x |=C φ} of φ.

Example 3.2 (i) As indicated above, Kripke frames are coalgebras for the
powerset functor P. The standard 2 modality is interpreted over P via the
predicate lifting

J2KX(A) = {B ∈ PX | B ⊆ A},
which in combination with the above definition of the satisfaction relation in-
duces precisely the usual semantics of 2.

(ii) Probabilistic modal logic [9,6] has unary modal operators Lp indexed
over p ∈ [0, 1] ∩Q, with Lpφ read ‘φ holds with probability at least p after the
next transition step’. It is interpreted over probabilistic transition systems (or
Markov chains), which are coalgebras for the discrete distribution functor D,
given on sets X by taking DX to be the set of discrete probability distributions
on X. The modal operators are then interpreted using the predicate liftings

JLpKX(A) = {µ ∈ DX | µ(A) ≥ p}.

(iii) As seen above, neighbourhood frames are coalgebras for the neighbour-
hood functor N . We capture the usual neighbourhood semantics of the 2

modality by the predicate lifting

J2KX(A) = {N ∈ NX | A ∈ N},
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that is, a state satisfies 2φ iff the extension JφK is a neighbourhood of x. More
generally, a Λ-neighbourhood frame for a similarity type Λ is a pair (X, (νL)L∈Λ)
consisting of a set X of states and a family of functions νL : X → P((PX)n)
for L ∈ Λ n-ary. We refer to subsets of (PX)n as n-ary neighbourhood systems,
and to their elements as n-ary neighbourhoods; if (A1, . . . , An) ∈ νL(x) for n-
ary L ∈ Λ, then (A1, . . . , An) is an (n-ary) L-neighbourhood of x. Satisfaction
of modalized formulae by states x ∈ X is then defined by

x |= L(φ1, . . . , φn) iff (Jφ1K, . . . , JφnK) ∈ νL(x);

in words, x |= L(φ1, . . . , φn) iff (Jφ1K, . . . , JφnK) is an L-neighbourhood of x.
Λ-neighbourhood frames are coalgebras for the functor NΛ defined by

NΛ =
∏
L∈Λ n-aryQ ◦ ((Qop)n)

where product and n-th power (−)n are pointwise, i.e. NΛX =∏
L∈Λ n-aryQ((QX)n). The corresponding predicate liftings are

JLKX(A1, . . . , An) = {(NL)L∈Λ ∈ NΛX | (A1, . . . , An) ∈ NL}.

Since we work with classical negation, we can reduce all reasoning problems to
satisfiability in the usual manner. Given a Λ-structure based on T , a formula φ
is valid if x |=C φ for all states x in T -coalgebras C, and a set Φ of formulae
is satisfiable if there exists a state x in a T -coalgebra C such that x |=C φ
for all φ ∈ Φ. A formula φ is satisfiable if {φ} is satisfiable. A logic L =
(Λ,A), or just A, is sound forM if all L-derivable formulae are valid overM,
weakly complete if all consistent formulae are satisfiable (equivalently all valid
formulae are derivable), and strongly complete if all consistent sets of formulae
are satisfiable (which is equivalent to completeness w.r.t. local consequence
from possibly infinite sets of assumptions.)

It has been shown that coalgebraic modal logics coincide with rank-1 log-
ics. More precisely, for every Λ-structure M there exists a rank-1 logic that is
weakly complete for M [15] (strong completeness cannot be expected as coal-
gebraic modal logics often fail to be compact, e.g. probabilistic modal logic as
described in Example 3.2.ii is not compact [15]). Conversely, given a rank-1
logic L = (Λ,A), there is a Λ-structure M such that L is sound and strongly
complete for M [17]; this Λ-structure is isomorphic to neighbourhood seman-
tics. Generally speaking, rank-1 axioms can be absorbed into the functor; as
a very simple example, the seriality axiom for Kripke frames, ¬2⊥, can be
captured by replacing the powerset functor P with the non-empty powerset
functor P?, where P?X = {A ∈ PX | A 6= ∅}.

To cover non-iterative logics, we therefore need additional structure on the
functor that additionally caters for base points: A copointed functor (T, ε), or
just T when ε is clear from the context, consists of a functor T and a copoint ε,
i.e. a natural transformation ε : T → id where id denotes the identity functor.
Coalgebras C = (X, ξ) for a copointed functor are by default required to be



Forster and Schröder 235

proper, i.e. εX ◦ ξ = idX . Intuitively, a plain functor encapsulates only the
possible (structured collections of) successors that can be assigned to a given
present state, while a copointed functor additionally retains the information
about the present state itself, accessed via the copoint; the properness condition
εX ◦ ξ on coalgebras (X, ξ) of a copointed functor effectively demands that this
information is accurate, i.e. applying the copoint to ξ(x) actually returns the
present state x.

The main purpose of the information about the present state included in T
is to allow imposing relationships between the present point and its collection
of successors. Indeed, every functor T can be made copointed by passing to
the functor T × id (given on sets X by (T × id)X = TX ×X), with ε(t, x) =
x; we refer to copointed functors of this shape as trivially copointed, as they
impose no relationship between the present state and its collection of successors.
Copointed functors can absorb non-iterative axioms; e.g. the modal logic T is
captured by the copointed functor T given by TX = {(A, x) ∈ PX×X | x ∈ A}
(more details are given in Section 4), which imposes that the present state is
among its own successors; that is, proper T -coalgebras are precisely reflexive
Kripke frames. This functor T is our first example of a non-trivially copointed
functor; note that it is a subfunctor of the trivially copointed functor P × id.
For purposes of our strong completeness result, we make use of a relaxed notion
of copointed functor:

Definition 3.3 A weakly copointed functor (T, ε) (or just T when ε is clear
from the context) consists of a functor T and a weak copoint ε, i.e. a natural
transformation ε : T → U , where U denotes the (functor part of) the ultrafilter
monad. That is, UX is the set of ultrafilters on X, and Uf(α) = {B ⊆ Y |
f−1[B] ∈ α} for f : X → Y , α ∈ UX (so U is a subfunctor of the neighbourhood
functor N as in Example 3.2.iii). Then, a T -coalgebra structure ξ : X → TX
is proper if εX ◦ ξ = ηX where η : Id→ U is the unit of the ultrafilter monad,
given by ηX(x) = ẋ = {A ∈ PX | x ∈ A}. Every functor T induces a trivially
weakly copointed functor T × U , with second projection as the weak copoint.

Instead of the identity of the present state, a weakly copointed functor contains
only a description of the present state, which in general may fail to be realized as
an actual state. However, weakly copointed functors relate tightly to copointed
functors in the standard sense:

Lemma and Definition 3.4 Let (T, ε) be a weakly copointed functor. Then

TcX = {t ∈ TX | ε(t) principal}

defines a copointed subfunctor of Tc, the copointed part of T , with copoint εc
defined by εc(t) ∈

⋂
ε(t). Moreover, every proper T -coalgebra C = (X, ξ)

factors through the inclusion TcX ↪→ TX, inducing a coalgebra Cc for the
copointed functor Tc. Given a similarity type Λ with assigned predicate liftings
for T , we obtain predicate liftings for Tc by restriction; then, a state x ∈ X
satisfies the same Λ-formulae in C as in Cc.
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(Recall that an ultrafilter α is principal if
⋂
α 6= ∅, and then necessarily |⋂α| =

1.)

Remark 3.5 Indeed, the above lemma implies that weakly copointed functors
are not strictly required for our current target results, which are all formulated
over proper coalgebras. We nevertheless do involve them in the technical de-
velopment because of their natural role within coalgebraic logic: The 0-1-step
logic, in the sense introduced in the next section, of the canonical Λ-structure,
which will be based on a weakly copointed functor, is strongly complete; this
would be impossible for any Λ-structure based on a copointed functor. For
details, see Remark 6.7.

Remark 3.6 The standard coalgebraic semantics of rank-1 modal logics as
recalled above embeds into the copointed setting by converting plain functors T
into trivially copointed functors T × id or trivially weakly copointed functors
T × U , with modalities interpreted via first projections: Given a Λ-structure
based on the functor T , we obtain a Λ-structure based on the trivially copointed
functor T × id by putting

(t, x) |= L(A1, . . . , An) iff t |= L(A1, . . . , An)

for A1, . . . , An ⊆ X and (t, x) ∈ TX×X, similarly for T×U . Proper coalgebras
for T×id and proper coalgebras for T×U are both essentially the same as (plain)
coalgebras for T , and it is easy to see that the respective modal semantics over
T -coalgebras and over proper T × id- or T × U-coalgebras are equivalent.

Remark 3.7 The categorical concept of a comonad extends the notion of co-
pointed functor by additionally assuming an unfolding operation δ : T → T ◦T
(the comultiplication) satisfying certain equational laws. This amounts to let-
ting T contain information about the entire finite-time future development of
the present state: Iterating δ, we can extract evolutions of any depth n, i.e. el-
ements of TnX, from a given element of TX. Comonads can thus be employed
to capture iterative frame conditions such as 2a → 22a, with the technical
caveat that this requires restricting the branching degree of models to avoid
set-theoretic existence problems. Since the meta-theory of iterative frame con-
ditions is in general much less well-behaved than that of non-iterative ones (e.g.
recall the cited result on failure of strong completeness over neighbourhood se-
mantics [18]), one should manage expectations regarding the perspective of
results in comparable generality as the present one.

4 The 0-1-Step Logic

An important driving principle of coalgebraic logic is to reduce metatheoretic
properties of a full-blown modal logic with nested modalities, interpreted over
coalgebras, to similar properties of a much simpler one-step logic where formu-
lae feature precisely one layer of modalities, and are interpreted over structures
that essentially model just one transition step (hence the name). To cover non-
iterative logics, we need to extend this principle to cover also the current state
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(besides its successors), arriving at the 0-1-step logic of the given modal logic.
For readability, we restrict the technical development to unary modalities from
now on; covering higher arities requires no more than additional indexing, and
we continue to use higher arities in the examples.

Syntax and derivations In formulae of the 0-1-step logic, we intentionally
mix syntax and semantics, replacing propositional variables by their values in a
powerset Boolean algebra. That is, given a non-iterative logic L = (Λ,A) and a
set X, we take Prop(Λ(PX)∪PX) to be the set of 0-1-step formulae over PX,
referring to elements of PX as (interpreted) propositional atoms. We denote
the evaluation of a Prop(PX)-formula φ in the Boolean algebra PX by JφK,
and say that φ is propositionally valid over PX if JφK = X. We will identify
occurrences of subformulae φ ∈ Prop(PX) with JφK when they lie in scope of a
modal operator but not otherwise, i.e. on the uppermost level. This evaluation
of inner propositional formulae allows us to omit the modal congruence rule.
We thus define 0-1-step derivability `0-1

L ψ of 0-1-step formulae ψ inductively
by the rules

ψσ
(ψ ∈ A, σ a Prop(PX)-substitution)

φ1, . . . , φn
ψ

({φ1, . . . , φn} `PL ψ)
φ

(φ ∈ Prop(PX), JφK = X).

(Non-iterative rules φ/ψ as in Remark 2.2, if present, are also applied in sub-
stituted form: if JφσK = X for a Prop(PX)-substitution σ, then derive ψσ.)
That is, `0-1

L ψ iff ψ is propositionally entailed by

{ψσ | ψ ∈ A, σ a Prop(PX)-substitution} ∪ {φ | φ ∈ Prop(PX), JφK = X}.

We write Φ `0-1
L ψ if `0-1

L (φ1∧ . . .∧φn)→ ψ for some φ1, . . . , φn ∈ Φ. A set Φ
of 0-1-step formulae over PX is 0-1-step consistent if Φ 6`0-1

L ⊥.

Semantics Fix a weakly copointed functor (T, ε) and a Λ-structureM based
on T . Define the unary predicate lifting ι by ιX(A) = {t ∈ TX | A ∈ ε(t)}.
The 0-1-step satisfaction relation t |=0-1

X ψ between functor elements t ∈ TX
and 0-1-step formulae ψ over PX is inductively defined by

t 6|=0-1
X ⊥

t |=0-1
X ¬φ iff t 6|=0-1

X φ

t |=0-1
X φ ∧ ψ iff t |=0-1

X φ and t |=0-1
X ψ

t |=0-1
X Lφ iff t ∈ JLKX(φ)

t |=0-1
X B iff t ∈ ιX(B)

where B ∈ PX in the last clause, and JψK0-1
X = {t ∈ TX | t |=0-1

X ψ}. The last
clause thus deals with top-level interpreted propositional atoms. Note that in
accordance with the above convention, the second to last clause omits inter-
pretation of modal arguments, which are already identified with their interpre-
tation. We say that ψ is satisfiable if JψK0-1

X 6= ∅, and we write TX |=0-1
X ψ
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if JψK0-1
X = TX. We generally refer to maps τ : V → PX as PX-valuations.

Given a non-iterative axiom ψ, we write ψτ for the 0-1-step formula obtained
from ψ by substituting according to τ . Then, ψ is 0-1-step sound for M if
TX |=0-1

X ψτ for every set X and every PX-valuation τ . Conversely, the
logic L = (Λ,A), or just A, is 0-1-step complete for M if every 0-1-step for-
mula ψ over PX such that TX |=0-1

X ψ is 0-1-step derivable (`0-1
L ψ), equiva-

lently if every 0-1-step consistent formula is satisfiable. The same terminology
applies to non-iterative rules (Remark 2.2) (specifically, a non-iterative rule
φ/ψ is 0-1-step sound if TX |=0-1

X ψτ whenever JφτK = X).
To enable an appropriate statement of soundness, we extend the semantics

of the logic to allow for frame conditions: We refer to a pair (C, π) consisting
of a T -coalgebra C = (X, ξ) and a valuation π : V → PX of the propositional
variables as a T -model. We define satisfaction x |=(C,π) ψ of 0-1-step formulae
ψ ∈ Prop(Λ(Prop(V ) ∪ V )) in states x of T -models (C, π) by the same clauses
as for |=C (Section 3), and additionally

x |=(C,π) a iff x ∈ π(a)

for a ∈ V . We say that C satisfies the frame condition ψ if x |=(C,π) ψ for
all T -models (C, π). Of course, if C satisfies the frame condition ψ then ψ is
sound for C, i.e. every state in C satisfies all substitution instances of ψ.

Lemma 4.1 (Soundness) If a non-iterative axiom ψ over V is 0-1-step
sound over a Λ-structure M based on a weakly copointed functor T , then every
proper T -coalgebra satisfies the frame condition ψ; hence, ψ is sound for the
class of all proper T -coalgebras.

We proceed to discuss in more detail how non-iterative axioms are absorbed
into (weakly) copointed functors. Given a (weakly) copointed functor T and a
set A′ of additional non-iterative axioms, we can pass to the (weakly) copointed
subfunctor TA′ of T given by

TA′X = {t ∈ T | t |=0-1
X φσ for all φ ∈ A′ and all PX-substitutions σ}

and restrict the Λ-structure to TA′ in the evident way. By construction, the
axioms in A′ are 0-1-step sound over TA′ , and the proper TA′ -coalgebras are
precisely those proper T -coalgebras that satisfy the axioms in A′ as frame
conditions. Moreover, we have

Lemma 4.2 In the notation introduced above, suppose that the set A of non-
iterative axioms is 0-1 step sound and 0-1 step complete over T . If A′ mentions
only finitely many modalities, then A ∪A′ is 0-1-step complete over TA′ .

Proof (sketch) Observe that if ψ is a 0-1-step formula over PX such that
TA′X |=0-1

X ψ, with X assumed to be finite w.l.o.g., then TX |=0-1
X (

∧
Φ)→ ψ

where Φ contains representatives up to propositional equivalence of all instances
of axioms in A′ under PX-substitutions; the assumptions guarantee that we
can take Φ to be finite. 2
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Example 4.3 (i) We have recalled the coalgebraic view on standard
Kripke semantics in Example 3.2.i. The usual axioms of the modal logic K
(2> and 2(a → b) → 2a → 2b) are 0-1-step complete over the trivially co-
pointed functor P × id induced by the functor P; this is implied by translating
the known one-step completeness of these axioms over P [11] into the copointed
setting as indicated in Remark 3.6. It follows by Lemma 4.2 that these axioms,
together with the T -axiom 2a → a, are 0-1-step complete for the copointed
functor T given by

TX = {(B, x) ∈ PX ×X | (B, x) |= 2A→ A for all A ∈ PX}.

It is easy to see that TX = {B, x) ∈ PX×X | x ∈ B}, i.e. T coincides with the
copointed functor recalled on p. 235, whose proper coalgebras are the reflexive
Kripke frames.

(ii) The assumption that the additional axioms only mention finitely many
modalities is really needed; without it, the claim fails even in the rank-1 case.
For instance, let S be the subdistribution functor, which assigns to a set X the
set SX of discrete subdistributions on X, where a subdistribution is defined
like a distribution except that the weight of the whole set is required to be at
most 1 rather than equal to 1. We use modalities Lp ‘with weight at least p’
with the same semantics as in the probabilistic case (Example 3.2.ii). Take the
set

A′ = {¬L1>} ∪ {L1−1/n> | n ≥ 1}

of rank-1 axioms. Then (S × id)A′X = ∅ for all X, so that (S × id)A′X |=0-1
X

⊥, but ⊥ is not derivable under the given axioms (together with any sound
axiomatization of S), as any derivation of ⊥ could only use a finite subset
of A′, and all such finite subsets are clearly consistent.

A key role in the completeness proof will be played by the following subformula
property of the 0-1-step logic, which extends [17, Proposition 24] from rank-1
to non-iterative logics.

Proposition 4.4 Let ψ be a 0-1-step formula over PX such that `0 -1
L ψ.

Then ψ is 0-1-step derivable using only Prop(A)-instances of axioms and
Prop(A)-formulae valid over PX, where A ⊆ PX are the sets occurring in ψ.

The proof requires some facts about propositional logic.

Lemma 4.5 Let V and W be disjoint finite sets. For an A-valuation τ on V
with A ⊆ PX and a system of Boolean equations φiτ = ψiτ for i = 1, . . . , n
where φi, ψi ∈ Prop(V ∪W ), if there exists an A-valuation κ for W such that
φiτκ = ψiτκ for i = 1, . . . , n, then there exists a Prop(V )-substitution σ on W
such that

(i) φiστ = ψiστ for i = 1, . . . , n

(ii) xκ ⊆ JxστK for x ∈W if |W | = 1.
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(Claim (i) says effectively that if Boolean equations with coefficients in A are
solvable in A, then they are solvable by Boolean combinations of the coefficients
that actually occur. Claim (ii) is only needed later.)

Proof. (i): This is well-known but we need the construction for Claim (ii). We
immediately reduce to a single equation φτ = > where φ =

∧n
i=1(φi ↔ ψi). We

construct σ by induction over |W |, with trivial base |W | = 0. In the inductive
step, we pick x ∈W and obtain, by Boolean expansion,

φ ≡ (x→ φ[>/x]) ∧ (¬x→ φ[⊥/x])

≡ (x→ φ[>/x]) ∧ (¬φ[⊥/x]→ x),

which in turn entails ¬φ[⊥/x] → φ[>/x], so by assumption the equation
(¬φ[⊥/x] → φ[>/x])τ = > over W \ {x} is solved by κ, and hence by in-
duction solvable by some Prop(V )-substitution σ′. Thus, the substitution

σ = [φ[>/x]/x]σ′

for W satisfies φστ = >.
(ii): Let W = {x}; we then have constructed σ = [φ[>/x]/x] in (i). We

have to show κ(x) ⊆ Jφ[>/x]τK. Let y ∈ κ(x) and assume w.l.o.g. that φ
is in CNF, and that x appears in at most one literal in every clause ψ in φ.
We have to show that y ∈ Jψ[>/x]τK. If the literal x appears in ψ, then this
holds trivially. Otherwise, ψ must contain some literal not mentioning x whose
interpretation contains y, since ψτκ = > by assumption and y /∈ J(¬x)κK =
J(¬x)τκK. Therefore y ∈ Jφ[>/x]τK as required. 2

Lemma 4.6 Let Φ ⊆ Prop(V ), let ψ ∈ Prop(V ), and let σ be a W -substitution
on V and τ a U -substitution on V such that τ(a) = τ(b) whenever σ(a) = σ(b)
for all a, b ∈ V , and moreover Φσ `PL ψσ. Then Φτ `PL ψτ .

Lemma 4.7 Let Φ ⊆ Prop(V ), and let ψ ∈ Prop(V ). Given a U -substitution σ
and a W -substitution τ on V , if Φσ `PL ψσ then Φτ ∪ Ψ `PL ψτ , where
Ψ = {τ(a)↔ τ(b) | a, b ∈ V, σ(a) = σ(b)}.
Lemma 4.8 Let V and W be disjoint sets, let W0 ⊆ W , let Φ ⊆ Prop(V ), let
ψ ∈ Prop(W0), and let σ and τ be W -substitutions on V such that τ(a) = τ(b)
whenever σ(a) = σ(b) and τ(a) = c whenever σ(a) = c for all a, b ∈ V and
c ∈W0, and moreover Φσ `PL ψ. Then Φτ `PL ψ.

Proof. Let σ′ and τ ′ be the W -substitutions on V ∪W0 such that σ′(w) =
τ ′(w) = w for w ∈ W0 and σ′(v) = σ(v), τ ′(v) = τ(v) for v ∈ V . The claim
then follows by Lemma 4.6. 2

Proof of Proposition 4.4. Let V be a sufficiently large set of proposi-
tional variables. Then there are finite sets Φ1 of Prop(V )-instances of axioms
and Φ2 ⊆ Prop(V ) that we can assume to be instantiated by a single PX-
valuation σ such that the formulae in Φ2σ are propositionally valid over PX
and (Φ1 ∪ Φ2)σ `PL ψ. By Lemma 4.8, it suffices to show that there is a
Prop(A)-substitution τ that solves the following system of equations:
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• For all subformulae Lρ,Lρ′ in Φ1 such that (Lρ)σ = (Lρ′)σ in Λ(PX), we
have (Lρ)τ = (Lρ′)τ in Λ(PX). This amounts to an equation ρ = ρ′.

• For all subformula LA in ψ and Lρ in Φ1 such that LA = (Lρ)σ in Λ(PX),
we have LA = (Lρ)τ in Λ(PX). This amounts to an equation A = ρ.

• For all subformulae ρ, ρ′ in Φ1∪Φ2 that do not lie beneath a modal operator
and are such that ρσ = ρ′σ, we have ρτ = ρ′τ in PX. This amounts to
an equation ρ = ρ′.

• For all subformulae A in ψ and ρ in Φ1 ∪ Φ2 that do not lie beneath a
modal operator and are such that ρσ = A in PX, we have ρτ = A in PX.
This amounts to an equation A = ρ.

By construction, this system of Boolean equations is solvable by σ, and since
only sets from A appear in the equations, by Lemma 4.5.(i) it is also solvable
by a Prop(A)-substitution with the required properties. 2

5 Copointed Coalgebraic Logics are Non-Iterative

We next establish that weakly copointed functors are indeed characterized by
non-iterative axioms; that is, we fix for this section a Λ-structureM based on a
weakly copointed functor T and show that there is a set of non-iterative axioms
that is sound and weakly complete over the class of all proper T -coalgebras.
(We necessarily restrict to weak completeness, since coalgebraic modal logics
in general fail to be compact [15]). In more detail, we show that 0-1-step com-
pleteness of a non-iterative axiomatization implies its weak completeness over
finite models, and we show that the set of all 0-1-step sound non-iterative ax-
ioms is 0-1-step complete. The proofs are fairly straightforward generalizations
of the rank-1 case [15]. We begin with the latter step:

Theorem 5.1 The set of all 0-1-step sound 0-1-step axioms is 0-1-step com-
plete.

Proof. By Remark 2.2, it suffices to show that the set of all 0-1-step sound non-
iterative rules is 0-1-step complete. Let TX |=0-1

X ψ for a 0-1-step formula ψ
over PX. Then ψ has the form ψ = ψ0τ for ψ0 ∈ Prop(Λ(V0)∪V0), with V0 ⊆ V
finite, and a PX-valuation τ . Let φ be the conjunction of all clauses χ over V0

such that JχτK = X; then JφτK = X. We are thus done once we show that
φ/ψ0 is 0-1-step sound. So assume JφσK = Y for a PY -valuation σ. We have
to show TY |=0-1

Y ψ0σ. For each y ∈ Y there is x ∈ X such that for all a ∈ V0

we have x ∈ τ(a) iff y ∈ σ(a) (otherwise there is a clause χ over V0 such that
X |= χτ but Y 6|= χσ, contradicting Y |= φσ). Therefore there is f : Y → X
such that σ(a) = f−1[τ(a)] for all a ∈ V0. By naturality of predicate liftings
(including ι) and commutation of preimage with all Boolean operations, we
have Jψ0σK0-1

Y = Tf−1[Jψ0τK0-1
X ], and therefore TY |=0-1

Y ψ0σ as required. 2

We will base all our model constructions on the following central notions:

Definition 5.2 A set Σ of formulae is closed if it is closed under subformulae
and negations of formulae that are not themselves negations. We write CΣ
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for the set of maximally consistent subsets of Σ. For a Λ-formula φ, we write
φ̂ = {Φ ∈ CΣ | φ ∈ Φ}.
Lemma 5.3 [15, Lemma 27] Let φ be a propositional formula over V , σ a

Σ-substitution and σ̂ a P(CΣ)-valuation with σ̂(a) = ψ̂ when σ(a) = ψ. Then
Jφσ̂K = CΣ iff `L φσ.

Definition 5.4 Let Σ be closed. A coalgebra (CΣ, ξ) is coherent if for all
Lψ ∈ Σ, Φ ∈ CΣ,

ξ(Φ) ∈ JLKCΣ
(ψ̂) iff Lψ ∈ Φ.

Lemma 5.5 (Truth lemma [15]) Let Σ be closed, and let C = (CΣ, ξ) be a
coherent T -coalgebra and let φ ∈ Σ. For all φ ∈ Σ we then have Φ |=C φ iff
φ ∈ Φ.

Thus, model constructions reduce to showing the existence of coherent coalge-
bra structures. The latter requires the following lemma, which for later reuse
we prove for possibly infinite Σ:

Lemma 5.6 Let VΣ denote the set {aφ | φ ∈ Σ}, and let Φ ⊆ Prop(Λ(VΣ)∪VΣ).
Let σ be the substitution given by σ(aφ) = φ, and let σ̂ be the PCΣ-valuation

given by σ̂(aφ) = φ̂. If Φσ is consistent, then Φσ̂ is 0-1-step consistent.

Proof. By contraposition; so assume Φσ̂ `0-1
Σ ⊥. By Proposition 4.4, there is

a derivation that uses only Prop(A)-instances of axioms and Prop(A)-formulae

valid over PCΣ, for A = {φ̂ | φ ∈ F(Λ)}. We can write the set of these formulae
as Θσ̂ for a set Θ ⊆ Prop(Λ(VΣ)∪VΣ). By the definition of 0-1-step derivations,
it follows that (Φ∪Θ)σ̂ `PL ⊥. Now let Ψ denote the set {Lρ↔ Lρ′ | ρ̂ = ρ̂′}.
The formulae in Ψ are derivable in L by Lemma 5.3 and the congruence rule.
Similarly, let Γ = {φ ↔ φ′ | φ̂ = φ̂′}; the formulae in Γ are L-derivable by
Lemma 5.3. By Lemma 4.7, it follows that (Φ ∪ Θ)σ ∪ Ψ ∪ Γ `PL ⊥ and
therefore (again using Lemma 5.3) Φσ `L ⊥. 2

Lemma 5.7 (Finite existence lemma) Let A be 0-1-step complete, and
let Σ be a finite closed set of formulae. Then there exists a coherent proper
T -coalgebra structure ξ on CΣ.

Proof. Let Φ ∈ CΣ. We show that the requirements on ξ(Φ) form a 0-1-step
consistent 0-1-step formula, implying existence of ξ(Φ) by 0-1-step complete-
ness. Take VΣ, σ and σ̂ as in Lemma 5.6. Let

χ =
∧
Lψ∈Φ Laψ ∧

∧
¬Lψ∈Φ ¬Laψ ∧

∧
ψ∈Φ aψ.

We need to show that χσ̂ is 0-1-step consistent. By Lemma 5.6, this follows
from consistency of χσ, which in turn is implied by consistency of Φ. 2

The announced weak completeness result now follows:

Theorem 5.8 (Weak completeness and bounded model property)
Let A be 0-1-step complete for the Λ-structure M. Then A is weakly complete
over finite proper T -coalgebras; specifically, every consistent formula φ is
satisfiable in a finite proper T -coalgebra of size at most 2|φ|.
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Proof. Let Σ be the smallest closed set containing φ. By the finite existence
lemma (Lemma 5.7), there is a proper and coherent T -coalgebra ξ on CΣ; note
|CΣ| ≤ 2|φ|. Since Σ has only finitely many consistent subsets, the consistent
set {φ} is contained in some Φ ∈ CΣ. By the truth lemma, Φ |=(CΣ,ξ) φ. 2

Remark 5.9 Previous work on the connection between algebraic and coalge-
braic semantics [13] has led to results that in particular cover non-iterative
frame conditions. The technical setup in the mentioned work features an un-
derlying rank-1 logic, equipped with standard coalgebraic semantics using plain
functors, and imposes additional frame conditions as axioms, e.g. non-iterative
frame conditions. One of the results obtained [13, Corollary 37] shows that a
coalgebraic logic with non-iterative frame conditions is weakly complete over
coalgebras satisfying the frame conditions, provided that the frame conditions
mention only finitely many modalities. By Remark 3.6 and Lemma 4.2, these
assumptions allow combining the given rank-1 logic and the additional frame
conditions into a 0-1-step complete logic for the copointed functor defined by
the axioms. The weak completeness result therefore follows also from our The-
orem 5.8, which moreover applies also to sets of non-iterative frame conditions
that mention infinitely many modalities; of course, 0-1-step completeness then
needs to be proved without the help of Lemma 4.2. E.g. this will turn out to be
possible for the canonical Λ-structure introduced next (Lemma 6.3). All that
said, we emphasize again that the results of the present section are obtained by
easy extension of previous results in rank-1 coalgebraic logic [15], and included
primarily to complete the overall picture; the main technical contribution of the
present work lies in the converse implication (to provide a coalgebraic semantics
for a given non-iterative logic), tackled next.

6 The Canonical Λ-Structure

We now construct, for a given non-iterative logic L = (Λ,A) that we fix from
now on, a canonical Λ-structure ML based on a weakly copointed functor
ML w.r.t. which we show soundness and strong completeness by means of a
canonical model construction. As usual, the state space of the canonical model
will be the set of maximally consistent sets, denoted CL (so CL = CF(Λ) in the
notation of Section 5).

We construct the functor ML as follows. For a set X, MLX is the set of
maximally 0-1-step consistent subsets of Prop(Λ(PX) ∪ PX) (i.e. of the set of
0-1-step formulae over PX). For a function f : X → Y , we define MLf by

MLf(Φ) = {φ ∈ Prop(Λ(PY ) ∪ PY ) | φσf ∈ Φ}

where σf is the PX-substitution on PY given by σf (A) = f−1[A]. We define
a weak copoint ε : ML → U by εX(Φ) = Φ ∩ PX for Φ ∈ MLX, and interpret
L ∈ Λ by

JLKXA = {Φ ∈MLX | LA ∈ Φ} for A ⊆ X.

Of course, we intend an element of MLX to satisfy precisely the 0-1-step for-
mulae that it contains; indeed, we have
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Lemma 6.1 (0-1-step truth lemma) Let ψ be a 0-1-step formula over PX.
Then Φ |=0 -1

X ψ iff ψ ∈ Φ, for Φ ∈MLX.

Since a maximally consistent set in MLX must in particular contain all PX-
instances of the axioms in A, it follows that A is 0-1-step sound, and hence
sound by Lemma 4.1, for ML.

With a view to proving also 0-1-step completeness, we note a 0-1-step ver-
sion of the well-known Lindenbaum lemma:

Lemma 6.2 (0-1-step Lindenbaum lemma) Every 0-1-step consistent set
of 0-1-step formulae over PX is contained in a maximal such set.

From the 0-1-step truth lemma and the 0-1-step Lindenbaum lemma, 0-1-step
completeness is immediate:

Lemma 6.3 The logic L is 0-1-step complete for ML.

By Theorem 5.8, this implies weak completeness and the finite (in fact,
bounded) model property:

Corollary 6.4 The logic L is weakly complete over finite proper ML-
coalgebras.

Our main result, established in the next section, will show that L is in fact
strongly complete over proper ML-coalgebras (of course, one can then no longer
restrict to finite coalgebras). As indicated in the introduction, the canonical
Λ-structure is essentially neighbourhood semantics. We proceed to elaborate
details.

Recall from Example 3.2.iii that the Λ-neighbourhood functor NΛ is defined
as NΛ =

∏
L∈Λ n-aryQ ◦ ((Qop)n). Recall that NL induces a weakly copointed

functor NΛ × U . Take NL to be the weakly copointed subfunctor of NΛ × U
defined by the the axioms A, i.e.

NL = (NΛ × U)A

in notation introduced in Section 4. It is straightforward to see that the proper
NL-coalgebras are precisely the Λ-neighbourhood frames satisfying the frame
conditions A. The functors NL and ML are naturally isomorphic via the trans-
formation θ : ML → NL given by

θX(Φ)L = ({A ⊆ X | LA ∈ Φ}, {A ⊆ X | A ∈ Φ}),

which is also compatible with the predicate liftings. We can thus translate
Corollary 6.4 into the language of neighbourhood semantics:

Corollary 6.5 The logic L = (Λ,A) is weakly complete over the class of finite
neighbourhood frames that satisfy the axioms in A as frame conditions.

That is, one instance of the coalgebraic weak completeness theorem (Theo-
rem 5.8) is weak completeness of non-iterative modal logics over their neigh-
bourhood semantics as originally proved by Lewis [10]
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Remark 6.6 The weak completeness result in the above-mentioned previous
work on algebraic-coalgebraic semantics [13, Corollary 37] (see Remark 5.9)
similarly puts weak neighbourhood completeness of non-iterative logics in a
coalgebraic context: Given a rank-1 logic L, the canonical Λ-structure for the
given rank-1 logic satisfies the conditions of [13, Corollary 37], in particular is
one-step complete (the simpler version of 0-1-step completeness that applies to
rank-1 logics) [17], and is isomorphic to the subfunctor of the neighbourhood
functor defined by the given rank-1 axioms; [13, Corollary 37] then guarantees
that weak completeness is retained in any extension of L with non-iterative
axioms mentioning only finitely many modalities. By comparison, Corollary 6.5
above removes the restriction to finitely many modalities.

Remark 6.7 (Strong 0-1-step completeness) The strong completeness
proof for rank-1 canonical structures [17] (which shows that every rank-1 logic
is strongly complete over its neighbourhood semantics) can be factored through
establishing strong one-step completeness, i.e. showing that the one-step logic
(the simpler version of the 0-1-step logic that suffices in the rank-1 case) of a
canonical structure is strongly complete [17, Remark 55]. Similarly, the 0-1-
step logic of the canonical Λ-structureML defined above is strongly complete;
that is, for every set X, every consistent set of 0-1-step formulae over PX is
satisfiable over ML. Indeed, this is immediate from the 0-1-step truth lemma
(Lemma 6.1) and the 0-1-step Lindenbaum lemma (Lemma 6.2). On the other
hand, the 0-1-step logic of the copointed part of the canonical Λ-structure, or
indeed of any copointed functor, clearly fails to be strongly complete: Let α be
a non-principal ultrafilter on a set X; then α can be seen as a set of 0-1-step
formulae over PX, and as such is consistent; but α is clearly not satisfiable over
any copointed functor. Strong completeness of the 0-1-step logic is the moral
reason we include weakly copointed functors in the technical development even
though, as indicated in Remark 3.5, we could in principle short-circuit them.

7 Strong Completeness

We proceed to prove our main result, strong completeness of non-iterative
modal logics over their canonical structure, and hence over their neighbourhood
semantics. The centrepiece of the technical development is an existence lemma;
we set out to prepare its proof. As usual, one has

Lemma 7.1 (Lindenbaum Lemma) Every consistent set of Λ-formulae is
contained in a maximally consistent set.

The existence lemma requires us to show 0-1-step consistency of a set of 0-1-
step formulae specifying coherence and properness. We start with the following
observation, which is fairly immediate by Lemma 5.6:

Lemma 7.2 Let Φ ∈ CL be a maximally consistent set. Then the set

{Lφ̂ | Lφ ∈ Φ} ∪ {¬Lφ̂ | ¬Lφ ∈ Φ} ∪ {φ̂ | φ ∈ Φ}

of 0-1-step formulae over PCL is 0-1-step consistent.
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The key step is then to extend the last component of the union above from
expressible subsets of CL to arbitrary subsets:

Lemma 7.3 Let Φ ∈ CL be a maximally consistent set. Then the set

{Lφ̂ | Lφ ∈ Φ} ∪ {¬Lφ̂ | ¬Lφ ∈ Φ} ∪ Φ̇

of 0-1-step formulae over PCL is 0-1-step consistent.

Recall here that Φ̇ = {A ⊆ CL | Φ ∈ A} is the principal ultrafilter generated

by Φ, and note Φ̇ ⊇ {φ̂ | φ ∈ Φ}. The proof makes central use of Lemma 4.5.(i)

and (ii) in a step-wise elimination of atoms in Φ̇ \ {φ̂ | φ ∈ Φ} from 0-1-step
derivations. With Lemma 7.3 in place, the existence lemma follows straight-
forwardly:

Lemma 7.4 (Existence lemma) There exists a coherent proper ML-
coalgebra on CL.

Using the Lindenbaum lemma 7.1 and the truth lemma (Lemma 5.5) in the
standard fashion, we then obtain our main result:

Theorem 7.5 The logic L is strongly complete over proper ML-coalgebras,
and hence over coalgebras for the copointed part (Lemma and Definition 3.4)
of ML.

By the equivalence between the canonical structure and neighbourhood seman-
tics as outlined in Section 6, we thus obtain

Corollary 7.6 Every non-iterative logic L = (Λ,A) is (sound and) strongly
complete over its neighbourhood semantics, i.e. over the class of neighbourhood
frames that satisfy the axioms in A as frame conditions.

8 Application to Deontic Logic

Deontic logic is concerned with modalities of obligation, such as Oφ ‘φ is oblig-
atory’ and O(φ|ψ) ‘given ψ, φ is obligatory’ (conditional obligation). It is faced
with with specific challenges; e.g., conditional obligations are defeasible, and
it is therefore nontrivial to come with principles of factual detachment, i.e. of
deriving actual from conditional obligations, and moreover one needs to avoid
the deontic explosion that would be caused by unrestricted normality of the
obligation modality: If one had an axiom (Oa ∧Ob)→ O(a ∧ b), then a single
dilemma (Oa ∧O¬a) would cause impossible obligations (O⊥), making every-
thing obligatory if additionally monotonicity is imposed. Recent developments
in deontic logic often are driven mostly axiomatically, so that the only available
semantics is neighbourhood semantics.

As an example, we treat axioms for factual detachment proposed by
Straßer [20]. The full logical framework uses principles of adaptive logic to
govern the actual factual detachment mechanism; here, we concentrate on the
underlying deontic logics called the base logics of the framework. The logic
distinguishes specific types of obligation respectively called instrumental and
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proper (we refer to [20] for their philosophical definition), and has modali-
ties O(− | −) (binary conditional obligation), Oi (unary instrumental obliga-
tion), Op (unary proper obligation), and •iO(− | −) , •pO(− | −); the latter
two binary modalities serve to block factual detachment of instrumental and
proper obligations from conditional obligations, respectively. Corresponding
dual permission modalities are denoted by replacing O with P . Various ax-
iomatizations are developed as extensions of Goble’s logic CPDM, which is
aimed at avoiding the deontic explosion and is axiomatized in rank 1 [5]. In
the online appendix [19] to [20], it is shown that two such logics CDPM.2d+

and CDPM.2e+ are weakly complete w.r.t. neighbourhood semantics when
nesting of modalities is excluded. These logics are non-iterative; they include
congruence rules and various rank-1 axioms that we refrain from listing in full,
and properly non-iterative axioms

(O(a | b) ∧ b ∧ ¬ •p O(a | b))→ Opa (FDp)

(O(a | b) ∧ b ∧ ¬ •i O(a | b))→ Oia (FDi)

(O(a | b) ∧ ¬a ∧ b)→ •iO(a | b) (fV)

((P (¬a | b ∧ c) ∨O(¬a | b ∧ c)) (Ep)

∧ b ∧ c ∧ P (b ∧ c | b) ∧O(a | b))→ •pO(a | b)
((P (¬a | b ∧ c) ∨O(¬a | b ∧ c)) (oV-Ei)

∧ b ∧ c ∧O(a | b))→ •iO(a | b)

where we have converted (Ep) and (oV-Ei) from rules to axioms (Remark 2.2).
E.g. (FDp) says that we can detach a proper obligation Opa from a conditional
O(a | b) if this is not blocked and b is actually the case, and (fV ) say that
detaching an instrumental obligation Oia from a conditional obligation O(a | b)
is blocked if the obligation is factually violated (¬a∧ b). By our Corollary 7.6,
the fully modal versions (with nested modalities) of both CDPM.2d+ and
CDPM.2e+ are strongly complete w.r.t. neighbourhood semantics.

9 Conclusion and Future Work

We have shown that every non-iterative modal logic is strongly complete over
neighbourhood semantics, complementing a classical result by Lewis stating
that every such logic is weakly complete and has the finite model property over
neighbourhood semantics. Our proof is via coalgebraic semantics, and indeed
our main result can be phrased as saying that non-iterative logics are strongly
complete over their canonical coalgebraic semantics. A fine point in the coal-
gebraic semantics is that conceptually, the proof needs to use weakly copointed
functors, equipped with a natural transformation into the ultrafilter functor
instead of the identity functor like copointed functors, to incorporate non-
iterative frame conditions, instead of copointed functors as one would expect.
That is, the natural generalization of the construction for the rank-1 case [17],
which uses maximally consistent sets in the so-called 0-1-step logic, produces
only a weakly copointed functor. Ex post, however, our main result then does
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imply completeness w.r.t. a copointed subfunctor. We have applied these re-
sults to deontic logics allowing factual detachment, obtaining that these logics
are strongly complete over neighbourhood semantics, improving on previous
weak completeness results [20]. It will be interesting to connect our results to
coalgebraic ultrafilter extensions [7] and the coalgebraic Goldblatt-Thomason
theorem [8].
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Abstract

A modal formula is almost surely valid in the finite if the probability that it is valid
in a randomly chosen finite frame with n states is asymptotically 1 as n grows un-
boundedly. This paper studies the normal modal logic MLas of all modal formulae
that are almost surely valid in the finite. Because of the failure of the zero-one law
for frame validity in modal logic, the logic MLas extends properly the modal logic
of the countable random frame MLr, which was completely axiomatized in a 2003
paper by Goranko and Kapron. The present work studies the logic MLas, provides
a model-theoretic characterisation of its additional validities beyond those in MLr,
and raises some open problems and conjectures regarding the missing additional ax-
ioms over MLr and the explicit description of the complete axiomatisation of MLas

which may turn out to hinge on difficult combinatorial-probabilistic arguments and
calculations.

Keywords: modal logic, asymptotic probabilities, almost sure frame validities, 0-1
laws, countable random frame, bounded morphisms, axiomatisation

1 Introduction: asymptotic probabilities of logical
formulae, 0-1 laws, and almost sure validities

1 What is the probability that a given modally defined property of Kripke
frames holds of a randomly chosen finite Kripke frame? What does it mean
for such a property to be ‘almost surely valid’ in finite Kripke frames? These
questions have a good intuitive sense and some potential practical importance
(to be discussed briefly further) but, as currently stated, they are imprecise
and cannot be answered in general. To make these questions precise, one has
to (at least) specify a probability distribution over the class of all finite frames.
There is no unique natural such distribution, for at least two reasons:

(i) Finite frames may be considered as labelled structures over a concrete finite
domain, e.g. a finite set of natural numbers, or as abstract, unlabelled

1 This is a long, but hopefully useful for modal logicians, introduction to the topic.
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structures, defined up to isomorphism. These two notions of a structure
define two different sample spaces (but, see further).

(ii) In either case, the result is a countably infinite space of structures, which
admits uncountably many probability distributions, and none of them can
be uniform over all finite structures, because of the countable additivity
of the probability measure.

To address the second point we will make some standard assumptions, viz
that we first relativise the question above to all finite frames (in either sense)
of a fixed size (number of possible worlds) n, all of which we assume to have
the same domain Un = {1, ..., n}. Then we consider a uniform distribution
over all frames with that domain. The latter is equivalent to assuming that
a random frame of size n is constructed by assigning with probability 1/2 an
arrow (transition) to each ordered pair of possible worlds in the domain Un.
The difference between the cases of labelled and unlabelled frames is that two
randomly constructed frames over Un that turn out isomorphic are considered
the same as unlabelled frames, but not as labelled frames, unless they are
identically labelled. Thus, one can define labelled and unlabelled probability 2

of a given frame property P to hold in a randomly chosen/constructed frame
of size n. Then we consider the asymptotic behaviour of these probabilities
and their limits as n increases without bound. If these exist, they define the
labelled (resp. unlabelled) (asymptotic) probability in the finite of the property
P . In particular, we define the respective probabilities Prl(φ) and Pru(φ) for
the frame validity of any modal formula φ. It turns out, as shown in [10] (cf.
also [18]), that these probabilities coincide. The reason for this is that

i) the property of a frame to be rigid, i.e. not to have non-trivial automor-
phisms, has asymptotic probability 1, and

ii) every rigid n-element frame has the same number, viz. n!, of non-
isomorphic labellings, whence the equality of the asymptotic probabilities.

When Pr(P ) = 1 we say that P is almost surely true in the finite, while
if Pr(P ) = 0 we say that P is almost surely false in the finite. These apply
respectively to first-order (FO) sentences, in terms of the frame properties they
define. Since in modal logic we traditionally talk about validity and non-validity
of a modal formula in a given frame, rather than truth and falsity, we say that
φ is almost surely valid in the finite when Pr(φ) = 1, while φ is almost surely
invalid in the finite if Pr(φ) = 0. See the precise technical details in Section 2.

It turns out that many natural properties of frames are either almost surely
true or almost surely false in the finite. In particular, this is the case for all
first-order definable properties, which is the celebrated Zero-one Law for first-
order logic (FOL), proved first in [13] and independently (and quite differently)
in [10]. In the latter, Fagin gave an insightful proof of the 0-1 law for the FO
logic of arbitrary relational languages of finite signature, with the case of graphs
(i.e. a single binary relation) being representative. Fagin related the almost

2 Note that computing the labelled probabilities is easy, whereas computing the unlabelled
ones is difficult, because it only counts numbers of structures up to isomorphism.
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sure truth of FO sentences on finite graphs to the FO theory of the co-called
countable random graph R (aka Radó graph) for which Gaifman had proved
in [12] that Th(R) is ω-categorical and axiomatized by an infinite set EXT
of extension axioms: sentences claiming that every n-tuple of elements in the
structure can be extended to an (n+ 1)-tuple in all possible (consistent) ways.
The probabilistic aspect of this result is rather surprising: assuming uniform
distribution, any randomly constructed countable relational structure is, with
probability 1, isomorphic to R – thus justifying the term ‘the countable random
structure’. That notion and Gaifman’s results extend 3 to any finite relational
language L. Fagin applied these results, by showing that every extension ax-
iom is almost surely true in the finite. Thus, he provided two purely logical
descriptions of the FO sentences σ of any relational language L that are almost
surely true in the finite, viz. he showed that the following are equivalent for
any FO sentence:

• σ is almost surely true in finite L-structures.
• σ follows from (finitely many) extension axioms in L.
• σ is true in the countable random structure for L.

Consequently, for every FO sentence σ, either it is in Th(R), hence almost
surely true, or its negation is in Th(R), hence σ is almost surely false; whence
the 0-1 law. Fagin’s result, which, in particular, states that almost sure truth
in the finite is equivalent to logical truth in the respective countable random
structure, is often referred to as a transfer theorem. That result sparked much
interest in the area of finite model theory and further extensive research on 0-1
laws. Such results were proved for several extensions of first-order logic, incl:
the extension FOL+LFP of FOL with fixed point operators, in [6]; later sub-
sumed by the 0-1 law for the infinitary logic over bounded number of variables
Lω∞,ω, in [23]; for some prefix-defined fragments of monadic second-order logic
[22], where also strong relations were established between decidability and 0-1
laws of such fragments, etc. Most of these results were proved, like Fagin’s
result, by a means of suitable versions of the transfer theorem. For a popular
and very readable exposition of 0-1 laws in FOL and some extensions see [18],
and for such results in fragments of Σ1

1 see [24].
On the other hand, the 0-1 law easily fails in the presence of a single constant

in the language (consider a sentence saying that a given unary predicate is true
at the element interpreting that constant) 4 . In second-order logic the 0-1 law

3 A model-theoretic aside: the random graph R is a particular example of a countably infinite
homogeneous structure that can be constructed as a Fräıssé limit of a family of sets of finite
structures satisfying certain natural closure properties. There are deep model-theoretic con-
nections between homogeneous (more generally, homogenizable) structures, extension proper-
ties, asymptotic probabilities and almost sure theories, that generalise Gaifman’s and Fagin’s
results and enable further relativisations and refinements of 0-1 laws (and more generally,
limit laws), which go beyond the scope of this paper, so I refer the reader e.g. to [25], [2],
and further references therein.
4 Still, it was proved in [30] that a first-order language with only unary functions does have
a limit law, in sense that every sentence in that language has an asymptotic probability,
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fails badly: think, for instance, of the property of having an odd number of
elements. Even its monadic existential fragment MΣ1

1 contains sentences with
no asymptotic probability, as first proved by Kaufmann (see [27] for a very
accessible account of Kaufmann’s counterexample, and [28], [29] for stronger
such results). While for prefix-defined fragments of MΣ1

1 the boundary of 0-1
laws seems to be essentially delineated (see [24] for a survey), little is known
in general on that for the full (monadic) second-order logic (M)SOL.

Now, what about modal logic? There are at least two basic relevant notions
of modal validity: in Kripke models and in Kripke frames. In the former case
the 0-1 law follows immediately from 0-1 law in FOL, since validity of a modal
formula in a Kripke model is a FO property [19]. However, for the case of
frame validity, which is an essentially universal monadic second-order (MΠ1

1)
property, the 0-1 law cannot be claimed as a consequence of Fagin’s theorem.
Actually, that 0-1 law was claimed to be proved (by complex combinatorial-
probabilistic calculations) in [19]. However, later it was proved in [14] that the
respective transfer theorem fails for modal frame validity in the finite, which
then cast a doubt on the 0-1 law, too. Indeed, that claim turned out to be
wrong, as proved by Le Bars in [29], who provided there a very non-trivial
counterexample. Soon thereafter, an erratum [20] was published, pointing out
the mistake in [19].

A relatively independent from the 0-1 laws concept, which is in the focus
of the present work, is the almost sure theory Thas

L of a given logical language
L, with respect to the notion of truth or validity under consideration – that is,
the set consisting precisely of those sentences of L that are almost surely true
(resp. valid) in the finite. Clearly, Thas

L is a well-defined logical theory in a
very traditional sense: it contains all valid sentences of the logic and is closed
under all finitary rules of inference (as the semantic consequence preserves
truth and the asymptotic probability measure is finitely additive). What can
one say about the theory Thas

L , in terms of axiomatization and deduction in it,
decidability, model-theoretic properties, etc?

The cases of classes of FO structures where 0-1 laws holds by way of transfer
theorem are generally easy to analyse thoroughly, because in these cases Thas

L

is precisely the (ω-categorical and complete, hence decidable) theory of the
countable random structure (resp. universal homogeneous structure. cf. [25],
[2], [1]). Curiously, as shown in [19], the respective modal logic of almost
sure Kripke model validity, turned out to be already known, viz. Carnap’s
modal logic ([7]), the axioms of which are all modal formulae ♦φ where φ is a
satisfiable propositional formula. (NB: this is not a normal modal logic, as it
is not closed under substitutions.)

However, in cases where 0-1 law fails, or when it holds but not by a suitable
transfer from a countable random structure, the question of logical character-
isation and, in particular, axiomatization of the respective almost sure theory
seems generally quite difficult, and very few such results are known. This ques-

though in general not just 0 or 1.
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tion arises, in particular, for the modal logic of almost sure frame validity in
the finite, hereafter denoted by MLas, and it is the topic of the present study.

What do we know about MLas so far? Both much and little. We know
that it is a normal modal logic, extending the normal modal logic MLr of
the countable random frame Fr (the frame analogue of the countable random
graph R). The logic MLr was studied and axiomatized in [14] where it was also
proved to be strictly included in MLas. (See details in Section 3.) What is not
known yet is how the additional axioms, needed to extend the axiomatization
of MLr to a complete axiomatization of MLas, look, and even whether MLas

is recursively axiomatizable. Such questions are inherently difficult, because
MLas lacks a priori explicit logical semantics in terms of truth and validity in
a specific class of models or frames, but rather involves the class of all finite
frames as a whole, so it is an essentially global concept. In this paper I study the
logic MLas, provide partial answers to these questions, and raise conjectures
for their solutions.

Lastly, why should one be interested in MLas, or in any almost sure theory?
Besides being driven by a sheer intellectual curiosity, one can argue that know-
ing – or being able to identify – the almost sure truths in a given logic may
have some practical advantages, e.g. for reducing the average case complexity
of checking whether a given formula of that logic is valid, by first checking
(or, guessing) whether it is almost surely valid. While such argument would
probably not make good computational sense for the basic normal modal logic,
it may do so for some extensions that are of higher computational complexity,
have no finite model property, or are even undecidable. The idea certainly
sounds quite reasonable in the case of FOL, which is not only undecidable, but
satisfiability of FOL sentences in the finite is not even recursively enumerable
(by Trachtenbrot’s theorem), whereas the almost sure theory of FOL, being the
same as Th(R), is decidable, and in fact only PSPACE-complete, as proved in
[17]. Similar argument might work for other extensions of FOL and (M)SOL,
too. As for MLas, it seems still early to judge whether and what its practical
importance may be. One immediate goal of this paper is to at least attract the
attention of the modal logic community to this logic.

The paper is organized as follows. After this long introduction and brief
technical preliminaries in Section 2, I introduce and compare the logics MLr

and MLas in Section 3. In Section 4, I explore the question of axiomatization
of MLas and raise some open problems and conjectures. I conclude briefly in
Section 5.

2 Preliminaries on modal logic, asymptotic probabilities
and almost sure frame validity

Here I provide some technical details on the basic concepts in this paper intro-
duced informally in the introduction. Besides, I assume that the reader has the
necessary background in modal logic, including the notions of Kripke model,
Kripke frame, truth and validity of modal formulae in these. Familiarity with
some basics of the model theory of modal logic, incl. bounded-morphism (aka
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p-morphism) and characteristic (aka Jankov-Fine) formulae would be helpful,
but for the reader’s convenience I have included the definitions here.

2.1 Bounded morphisms and characteristic formulae

Definition 2.1 Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be frames. A mapping
h : W1 →W2 is a bounded morphism from F1 to F2 if the following hold:

(i) For all x, y ∈W1, if xR1y then h(x)R2h(y).

(ii) For all x ∈ W1, t ∈ W2, if h(x)R2t then xR1y for some y ∈ W1 such that
h(y) = t.

If h is onto, F2 is called a bounded-morphic image of F1.

Following a commonly used notation, I will often denote by F1 � F2 the
claim that F2 is bounded-morphic image of F1. An important fact: frame
validity of modal formulae is preserved in bounded-morphic images, i.e., if
F1 |= φ and F1 � F2, then F2 |= φ (cf. [35], [5], and [15], which are also
recommended general references on all other modal logic concepts used here).

The universal modality (interpreted by the full Cartesian square of the
domain, cf. [16]) will be denoted by [U], its dual, existential modality – by
〈U〉, and the basic normal logic K extended with [U] – by KU. The language
of K will be denoted by ML and the extended one with [U] – by MLU.

Definition 2.2 ([14]) Let F = 〈W,R〉 be any finite frame with W =
{w1, . . . , wn} and let {p1, . . . , pn} be fixed different propositional variables.
The characteristic formula 5 of F over 〈p1, . . . , pn〉 is the formula
χF(p1, . . . , pn) := ¬[U]δF(p1, . . . , pn), where δF is the ‘modal diagram’ of F:

δF(p1, . . . , pn) :=
n∧

i=1

〈U〉pi ∧
n∨

i=1

pi ∧
∧

1≤i 6=j≤n
(pi → ¬pj) ∧

∧

1≤i,j≤n
{pi → ♦pj |wiRwj} ∧

∧

1≤i,j≤n
{pi → ¬♦pj |¬wiRwj}.

When {p1, . . . , pn} are fixed or known from the context, I will write simply χF.

The following is a variation of a folklore fact (see Remark 2.5). I nevertheless
sketch a proof, for the sake of the reader hitherto unfamiliar with it.

Lemma 2.3 ([8], [14]) For every frame G and finite frame F: G � F iff
G 6|= χF.

Proof. (Sketch) Suppose G, V 6|= χF for some valuation V . Then every point
y ∈ G satisfies exactly one variable pi(y) from {p1, . . . , pn}. Furthermore, the
mapping f : G −→ F defined by f(y) = wi(y) is a surjective bounded morphism.
Vice versa, if f : G −→ F is a surjective bounded morphism, then the valuation
V on G defined by V (pi) = f−1(wi) satisfies ¬χF. 2

5 See Remark 2.5.
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When both F and G are finite, the lemma above can be strengthened to the
claims of the forthcoming Lemma 2.4, where ML(F) is the normal modal logic
of the validities in the frame F and KU + φ is the axiomatic extension of the
modal logic KU with the axiom scheme φ.

Lemma 2.4 ([37]) For any finite frames F, G the following are equivalent:

(i) G� F.

(ii) G 6|= χF.

(iii) ML(G) ⊆ML(F).

(iv) KU + χF ` χG.

(v) For every modal formula φ, if KU + χG ` φ then KU + χF ` φ.

Proof. Most of these equivalences are straightforward variations (involving
[U]) of widely known and frequently re-discovered facts, that can be found
scattered elsewhere (cf. [8] for most of them). One implication is not completely
trivial, viz. the implication from (i), (ii), or (iii) to (iv). As noted in [37], the
implication from (ii) to (iv) holds in a more general form, viz. for any formula
φ instead of χF, with essentially the same proof as for this special case which
suffices for our purpose. As [37] has pointed out, the same claim was proved
for intuitionistic logic in [33], itself referring to earlier works by Jankov. For
further references and more, see the forthcoming Remark 2.5. Nevertheless, I
provide here a proof sketch, to make the presentation relatively self-contained
for readers not familiar with the more general theory, and also to help them
see why this result holds, because it is of importance for the logic MLas, as
discussed in Section 4.

(i) ⇒ (iv): Suppose G � F and fix a bounded morphism h : G → F.
Let F = 〈WF, RF〉 with WF = {w1, ..., wn} and G = 〈WG, RG〉 with WG =
{u1, ..., um}. Suppose χF = χF(p1, . . . , pn) = ¬[U]δF(p1, . . . , pn) and χG =
χG(q1, . . . , qm) = ¬[U]δG(q1, . . . , qm). Let us define a substitution σh on the
propositional variables p1, ..., pn as follows: for each i = 1, ..., n, σh(pi) :=∨
{j|h(uj)=wi} qj . Intuitively, if we regard p1, ..., pn as nominals for w1, ..., wn

and q1, ..., qm respectively as nominals for u1, ..., um then σh substitutes each
pi with the syntactic description of the inverse image of wi in G under h.
Now, let us apply σh to χF(p1, . . . , pn) and denote the resulting formula by
ξG→F(q1, ..., qm). After simple equivalent transformations in KU, for which
there is no space here (but, see them illustrated on an example in the Appendix)
ξG→F(q1, ..., qm) is transformed to a formula ξ′G→F(q1, ..., qm) of the type ¬[U]δ′F,
where δ′F is a (long) conjunction with the following property, which can be
seen by direct inspection: every conjunct in δ′F is either identical, or follows
propositionally (essentially by only applying A → B |= A → (B ∨ C)) from
a conjunct in δG(q1, . . . , qm). Thus, |= δG → δ′F, hence |= [U]δG → [U]δ′F,
Thus, |= ¬χG → ¬ξ′G→F, hence |= ξ′G→F → χG. Equivalently, |= σh(χF) → χG.
Therefore, KU ` σh(χF)→ χG, by completeness of KU, hence KU + χF ` χG.2
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Remark 2.5 The characteristic formulae defined here 6 are simplified (due to
the availability of the universal modality) variations of the widely called Jankov-
Fine formulae, cf. [8, Ch. 9.4]. Such formulae were introduced independently
by V.A. Jankov in 1963 [21] (for the intuitionistic logic and finite Heyting
algebras) and by D. de Jongh in his 1968 doctoral thesis (for the intuitionistic
logic and finite intuitionistic Kripke frames). Their modal logic analogues were
invented later, by K. Fine in 1974 [11] for modal logics extending S4 and finite
modal algebras, and by W. Rautenberg [31] for modal logics extending K4 and
finite Kripke frames. These formulae are at the core of the so called splitting
techniques and results, initially developed by Jankov (for Heyting algebras),
McKenzie (for splitting lattices), Blok, Rautenberg, Kracht, Wolter and others
(for splitting lattices of modal logics); see [4] for references. In particular,
such formulae were later used by Rautenberg [31] to axiomatize modal logics
of finite frames, and generalised and applied further by Kracht [26] and by
Zakharyaschev to what he called ‘canonical formulae’ in [8], used to axiomatize
any normal extension of K4. For an algebraic treatment of canonical formulae,
see [3].

Thus, the results listed in lemmas 2.3 and 2.4 are essentially not new and
apply in a much more general setting 7 .

2.2 Asymptotic probabilities and almost sure frame validity in the
finite of modal formulae

The class of all finite frames will be denoted by Ffin. Given a modal formula
φ, the MΠ1

1-formula expressing the frame condition defined by φ (or, any FO
sentence equivalent to it, if that frame condition is first-order definable) will be
denoted by FC (φ), and for any class of finite frames F , the subclass of frames
in F where φ is valid – by F(φ). The set of positive integers is denoted by N.

Given n ∈ N, let Un := {1, . . . , n}. A random (labelled) frame of size
n is a frame F = (Un, R) obtained by random and independent assignments
of truth/falsity of the binary relation R on every pair (x, y) from the set Un,
with probability for truth p(n). The probability space on all n-element frames
constructed as above will be denoted by S(n, p). In this paper I assume p(n)
to be the constant 0.5, so the random frame can be obtained by a random
assignment of a binary relation on the domain, using uniform distribution.
However, the results used and those obtained here hold likewise for any constant
probability p ∈ (0, 1) (cf. [10], [18]).

For any property of frames P , by µn,p(P ) we denote the classical probability
of P in S(n, p), i.e. the probability that P holds for a randomly constructed
n-element frame. In particular, if φ is a first-order sentence or a modal formula,
µn,p(φ) will denote the probability for φ to be true (resp. valid) in a frame from
S(n, p). Note that these are discrete probabilities since S(n, p) is finite.

6 I prefer to work with these formulae, rather than with their negations, as defined in [5],
for reasons that will become clear in Section 4.
7 Thanks to Evgeny Zolin [37] for pointing out these links and references.
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Now, let us define µp(φ) := limn→∞ µn,p(φ). If that limit exists, it will be
called the asymptotic probability 8 (in the finite) of φ. As the probability
is fixed here to p = 0.5 we will omit the subscript. We define likewise µp(P )
and µ(P ) for any frame property P . A property P is said to be almost surely
true in the finite if µ(P ) = 1 and, respectively, almost surely false if µ(P ) = 0.

Definition 2.6 A modal formula φ is said to be almost surely valid (in the
finite) if µ(φ) = 1; respectively, almost surely invalid if µ(φ) = 0.

Note that, by the 0-1 law for FOL, every first-order definable modal formula
is either almost surely valid or almost surely invalid in the finite. Moreover 9 ,
this also holds for all modal formulae that define FO property on finite frames.
For instance, Gödel-Löb formula 2(2p → p) → 2p defines in the finite the
class of irreflexive and transitive finite frames (cf. [8]); thus it also satisfies the
0-1 law (being almost surely invalid).

Hereafter, for technical convenience we will assume w.l.o.g., that every fi-
nite frame of size n that we consider is defined over the set Un = {1, . . . , n}.
Thus, the collection of all finite frames Ffin can be regarded as a proper set.
Now, given any set of finite frames F which contains at least one frame of every
(sufficiently large) size n, the probabilities and concepts defined above read-
ily relativise to F , incl. a modal formula being almost surely valid (resp.
invalid) in F . Further, we say that a set of finite frames F has an asymp-
totic measure 1 (resp. 0) if the membership to that set has asymptotic
probability 1 (resp. 0). An important observation is that for every set with
asymptotic measure 1 the absolute and relativised probabilities are equal, hence
the absolute and relativised notions of almost sure validity/invalidity coincide.

2.3 The countable random frame Fr

The construction of random frames by means of a random pairwise assignment
of a binary relation with a given probability p for truth of the relation can be
performed on infinite sets, too. The outcome of such a random construction
on the set N of natural numbers is called a countable random frame. Using
combinatorial-probabilistic argument, it was proved in [10] that any countable
random relational structure satisfies with probability 1 an infinite sequence
EXT of schemes of first-order sentences, called extension axioms. For every
n ∈ N, the extension axiom (EXT)n for frames (directed graphs with loops)
is the conjunction of finitely many sentences, each involving a tuple of n dis-
tinct variables x = x1, ..., xn plus another variable y and parameterised by two
subsets I, J ⊆ Un, as follows:

(EXT)n = ∀x∃y


∧

i 6=j
xi 6= xj →

( ∧

i∈Un

xi 6= y ∧ T (y, y)∧

8 Note that this probability measure is not countably additive: µ(|F| = n) = 0 for every
fixed n, while µ(∃n(|F| = n)) = 1.
9 Thanks to Evgeny Zolin [37] for this added remark.
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∧

i∈I
Rxiy ∧

∧

i∈Un\I
¬Rxiy ∧

∧

i∈J
Ryxj ∧

∧

j∈Un\J
¬Ryxj




 ,

where T (y, y) is either Ryy or ¬Ryy,
The extension axiom (EXT)n, intuitively says that for every n different

points in the frame there is a point which is related to and from each of those,
and with itself, in any explicitly prescribed way. Note that if m < n then
(EXT)n implies (EXT)m on all frames of size at least n. Consequently, every
finite set of extension axioms follows almost surely in the finite from a single
extension axiom (EXT)n for a large enough n.

By a result of Gaifman [12] the theory EXT is consistent and ω-categorical,
hence complete. The unique countable model Fr of EXT is called the count-
able random frame. Using Gaifman’s results, Fagin proved (for graphs) in
[10] the following transfer theorem that for any sentence ψ of FOL:

(i) If Fr |= ψ then µ(ψ) = 1.

(ii) If Fr 6|= ψ then µ(ψ) = 0.

This theorem immediately implies the 0-1 law for FOL for frames: every FO
sentence is either almost surely true or almost surely false in the finite. Then,
by compactness, every almost surely true FO sentence follows from finitely
many extension axioms, hence from some instance of (EXT)n. These claims
apply likewise to all FO definable (in terms of frame validity) modal formulae.

3 The modal logics of the countable random frame and
of almost sure validity

Here we will explore the two normal modal logics in the focus of this study.
Most of the content of this section comes from [14], but is included here for the
reader’s convenience and self-containment of the paper.

Definition 3.1 MLr is the modal logic of all formulae valid in Fr. MLas is
the modal logic of all formulae which are almost surely valid in the finite.

Proposition 3.2 ([14])

(i) MLr and MLas are normal modal logics.

(ii) A modal formula φ is in MLr iff FC (φ) follows from some extension
axiom, hence every such formula is in MLas. Consequently, MLr ⊆MLas.

3.1 Complete axiomatization of MLr

First, we need some basic facts about the countable random frame Fr, which
easily follow from the extension axioms (cf. [14]):

• Fr has a diameter 2: every point can be reached from any point (incl. itself)
in 2 R-steps. Indeed, by an instance of the extension axiom scheme (EXT)3:
Fr |= ∀x∀y∃z(Rxz ∧Rzy).

• Every point in Fr has infinitely many R-predecessors and infinitely many
R-successors and every finite frame is embeddable as a subframe in Fr.
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For some useful validities and non-obvious non-validities in MLr, see [14].
Since the extension axiom (EXT)3 is almost surely true in the finite, the

subset Fd2 of all finite frames of diameter 2 has asymptotic measure 1. This
fact will be of crucial importance further, because it enables us to restrict
attention from Ffin to almost sure validity in Fd2 without extensional change
of that notion: every property of finite frames is almost surely true in Ffin iff
it is almost surely true in Fd2. Here is the first important consequence. Note
that the universal modality [U] and the existential modality 〈U〉 are simply
definable in every frame in Fd2:

[U]p ≡ ��p, respectively 〈U〉p ≡ ♦♦p.

Therefore, these equivalences hold in almost every finite frame, and also in Fr.
Hereafter, to distinguish the primitives from the definable versions wherever
necessary, I use [U] and 〈U〉 as the standard universal/existential modalities,
taken as primitives (extending ad hoc the basic modal language) and [U] and
〈U〉 when referring to the operators in the basic modal language defined by the
equivalences above. Respectively, MLr

U and MLas
U will denote the extensions

of MLr and MLas to the language MLU. Note, that every formula φ of MLU

is trivially translated into a formula φd of the basic language ML by replacing
all occurrences of [U] and 〈U〉 respectively with [U] and 〈U〉. The important
property of that translation is that φ and φd are equivalent, hence equally valid,
in every frame from Fd2, hence in almost every finite frame, which will suffice
for our purposes. In particular, every axiom in MLas

U generates its translated
axiom in MLas, which will enable me to state most of the claims and results
about MLas in the language MLU and for MLas

U , with the understanding that
they apply accordingly to the logic MLas of my primary interest.

Theorem 3.3 ([14]) The following axiomatic system Ax(MLr) is sound and
complete for MLr (recall that [U] and 〈U〉 are the defined operators):

(MLr1) K: �(p→ q)→ (�p→ �q).

(MLr2) [U]p→ p.

(MLr3) [U]p→ [U]�p.

(MLr4) p→ [U]〈U〉p.

(MLr5) Scheme MODEXT, consisting of the following axioms for each n ∈ N:

MODEXTn =
n∧

k=1

〈U〉(pk ∧�qk)→ 〈U〉
n∧

k=1

(♦pk ∧ qk).

The first 4 axiom schemes above come from the axiomatization of KU ([16]).
It is easy to see that the axiom MODEXTn is valid in a frame F ∈ Fd2 iff for
every n points w1, . . . , wn in F there is a point u that is R-reachable from each
w1, . . . , wn, and each of them is R-reachable from u. This holds for every finite
frame, with [U] and 〈U〉 replaced by the primitives [U], 〈U〉. Thus, MODEXT
is the modally definable approximation of the extension axioms EXT for FOL.
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Proposition 3.4 ([14]) MLr has the finite model property and is decidable,
but it is not finitely axiomatizable.

Thus, Ax(MLr) derives the ‘well-behaved’ formulae in MLas, viz. those
that follow from the extension axioms of FOL. As we will see in Prop.4.1,
these include all first-order definable formulae in MLas. What about the rest?
Maybe, that is all and the logics MLrand MLascoincide? It turns out, the
answer, rather surprisingly on the background of Fagin’s Transfer theorem, is
‘No’, as shown further. To see that, we need to learn more about Fr and MLr.

3.2 Kernels in finite frames and in Fr.

Every bounded morphic image F of a given frame G determines a kernel parti-
tion PF in G, defined as follows. Given a bounded morphism h : G→ F, where
F = 〈WF, RF〉 and G = 〈WG, RG〉, the kernel partition PF(G) in G consists
of the family of clusters {h−1(w) | w ∈ WF}. Thus, PF(G) is generated by the
equivalence relation ∼h in WG, where u ∼h v holds iff h(u) = h(v). It sat-
isfies the following properties, determined by F and the definition of bounded
morphism. For any two clusters X = h−1(x) and Y = h−1(y) in PF(G), either

(i) for each u ∈ X there is v ∈ Y such that uRGv, (when xRFy holds),
or

(ii) for no u ∈ X there is v ∈ Y such that uRGv (when xRFy does not hold).
Conversely, for every kernel partition in G generated by mapping h : G→ F

and satisfying the conditions (i) and (ii) above, the mapping h is a bounded
morphism from G onto F.

Thus, kernel partitions are an equivalent, and often more visually intuitive
way of describing bounded morphisms. Note that existence of a kernel partition
with specific FO-definable properties in a frame, like those above, is a MΣ1

1-
property and, as stated in lemma 2.3, the existence of the kernel partition
determined by F in a (randomly selected) frame G is characterised by the non-
validity of the respective χF in that frame. Thus, using existence or non-
existence of kernel partitions one can show the non-validity or validity in a
given frame of various formulae that are not first-order definable. Here I will
give two very simple examples, that will suffice to distinguish MLr from MLas.
Consider the following two frames:

K2 = 〈{x, y}, {(x, x), (x, y), (y, x)}〉 and
K3 = 〈{x, y1, y2}, {(x, x), (x, y1), (x, y2), (y1, x), (y2, x)}〉.
(Note that K2 is a bounded morphic image of K3.)

K2

x y

x

K3 y1

y2

It turns out that the kernel partition PK2
that K2 generates in any frame
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G for which K2 is a bounded morphic image corresponds to the well-known
notion of a kernel in digraphs (cf.[9] but, taking into account that frames
are digraphs with loops), whereas the kernel partition that K3 generates is
called double kernel in [14] (see details there). Thus, the ML-translated
characteristic formula χdK2

(resp. χdK3
) is valid precisely in those frames in Fd2

which do not have kernels (resp. double kernels). Here are slightly simpler
equivalent formulae, where the falsifying valuation of p, (resp. p and q), in any
frame with a kernel (resp. double kernel) is that kernel (resp. each of the two
sub-kernels).

NO-KER = 〈U〉(p↔ ♦p),
NO-DKER = 〈U〉((p ∨ q) ∧ ♦(p ∨ q)) ∨ 〈U〉(¬(p ∨ q) ∧ (�¬p ∨�¬q)).

3.3 The finite frames of MLr.

Even though MLr is defined as the logic of the single infinite frame Fr, it does
have finite frames, as evident from Prop. 3.4. It turns out that they are very
simple to describe, as precisely those finite frames that have a ‘central point’
– a point which is R-related to and from every point (incl. itself). Formally,
given a frame F = 〈W,R〉, a point x ∈ W is a central point in F if Rxy and
Ryx hold for every y ∈ W . The existence of a central point is forced by the
axiom scheme MODEXT, and every frame with central point is easily seen to
validate MODEXT. Note that both K2 and K3 above have central points.

Proposition 3.5 ([14], Lemma 2.4) For every finite frame F the following
are equivalent.

(i) F |= MLr

(ii) F has a central point.

(iii) F is a bounded-morphic image of Fr.

(iv) Fr 6|= χF.

(v) F can be obtained from Fr by filtration.

In particular, K2 and K3 are bounded morphic images of Fr, hence both χK2

and χK3 fail in Fr, i.e. Fr has a kernel and a double kernel.

Corollary 3.6 For every finite frame G without central point: Fr |= χG, and
hence existence of kernel partition PG is almost surely false in the finite.

Thus, Corollary 3.6 provides plenty of (generally) non-first-order definable
modal formulae in MLr

U, respectively in MLr.

Here is the main technical result in [14], proved by a non-trivial
combinatorial-analytic estimation of the expected number of double kernels
in a random finite frame from Fd2.

Theorem 3.7 ([14]) Existence of a double kernel is almost surely false in
finite frames. Consequently, χK3 is almost surely valid, hence it is in MLas.

Thus, χK3
∈ MLas but χK3

/∈ MLr, hence the inclusion MLr ⊂ MLas is
proper. Also, Fagin’s transfer theorem fails for frame validity in modal logic.
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The technique used in the proof of Theorem 3.7 did not help the authors
of [14] to prove the same results for single kernels and χK2

, and these were left
as open questions there. They were proved a little later by Le Bars in [29]. He
also proved there that the 0-1 law fails for frame validity in modal logic, by
showing that a modified kernel property, defined by the formula

MODAL-KERNEL : ¬p ∧ q ∧��((p ∨ q)→ ¬3(p ∨ q))→ 3�¬p

has no asymptotic probability in the finite.

4 On the axiomatization of the modal logic MLas

What axioms are needed to add to Ax(MLr) in order to axiomatize completely
MLas? We explore this question here, starting with some useful observations.
For technical convenience, most of the results will be stated for MLas

U , instead of
MLas, but they are readily translated to MLas. I will denote by Ax(MLr

U) the
axiomatic system Ax(MLr) where [U] and 〈U〉 are replaced by the primitives
[U] and 〈U〉, with the relevant axioms added (cf. [16]).

4.1 Towards understanding the logic MLas

Proposition 4.1

(i) Every first-order definable modal formula which is in MLas is also in MLr.

(ii) ([14]) Every modal formula φ in MLas that defines a purely universal
frame condition FC (φ) is valid.

Proof. (i) If φ ∈ MLas and φ is first order definable, then FC (φ) is almost
surely true in the finite, hence it follows from an extension axiom. Therefore,
φ ∈MLr, by Proposition 3.2[ii].

(ii) Suppose φ is not valid. Then ¬φ is satisfiable in a finite frame F. The
satisfiability of ¬φ is an existential property, hence preserved in extensions. As
F is embeddable in Fr, ¬φ is satisfiable there, too, which contradicts (i). 2

So, the missing axioms are neither first-order definable, nor purely universal.

More notation: Given a (possibly infinite) set of frames F , a set of formulae
Γ, and a formula φ, we denote by Γ |=fr

F φ the claim that φ is valid in every
frame from F in which all formulae of Γ are valid 10 . When F is the class of
all frames I will write simply Γ |=fr φ and when F = Ffin I will write Γ |=fr

fin φ.
When Γ = {ψ}, I will write just ψ |=fr

F φ, respectively ψ |=fr φ and ψ |=fr
fin φ.

I denote by BM−1(F) the set of finite frames G (over N) such that G� F.

Note that MLas (resp. MLas
U ) is closed under |=fr

fin. Now, what are the finite
frames for MLas like? (Note that they are the same as those for MLas

U .) A
partial answer follows, that essentially employs for our purpose more general
facts listed in Lemma 2.4.

10This consequence relation is generally not arithmetically definable, hence not recursively
axiomatizable, as first shown in [34] by reduction from logical consequence in second-order
logic, cf. also discussion in [35]. However, we are only interested here in very special cases of
that consequence relation, so no general results can be assumed a priori to hold.
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Proposition 4.2 For every finite frame F and a modal formula φ ∈ MLU:

(i) F 6|= φ iff φ |=fr
fin χF iff φ |=fr χF.

(ii) F |= MLas
U iff χF /∈MLas

U .

Proof. (i) Let F 6|= φ. Then G 6|= φ for every frame G such that G � F.
Therefore, for every G such that G |= φ, it follows that G 6� F, hence G |= χF.
Thus, F 6|= φ implies φ |=fr χF. Further, φ |=fr χF obviously implies φ |=fr

fin χF.
Lastly, if φ |=fr

fin χF then F 6|= φ because F 6|= χF.
(ii) By contraposition, if χF ∈ MLas

U then F 6|= MLas
U because F 6|= χF.

Conversely, take φ ∈MLas
U . If F 6|= φ then φ |=fr

fin χF by (i), so χF ∈MLas
U . 2

From Proposition 4.2 we immediately obtain the following useful fact.

Corollary 4.3 For any finite frame F and φ ∈MLas
U , if F 2φ then χF∈MLas

U .

Proposition 4.4 For any finite frames F,G:

(i) G� F iff χF |=fr
fin χG.

(ii) Moreover, if χF |=fr
fin χG then KU + χF ` χG.

Proof.
(i) Directly from Lemma 2.3 and Proposition 4.2.(i)
(ii) By (i) and Lemma 2.4. Also, χdG is derived in the same way in the

respectively axiomatized version K[U] +χdF in ML as sketched in Lemma 2.4.2

As noted in the proof of Lemma 2.4, Proposition 4.4(ii) holds likewise for
any formula φ instead of χF, but the greater generality seems to be of no use
in our case, as all conjectured axioms of MLas

U over MLr
U are of the type χF,

so the respective conjectured axioms of MLas over MLr are of the type χdF.

4.2 Towards axiomatizing the logics MLas
U and MLas

From the observations made so far we see that natural candidates for additional
axioms of MLas

U over Ax(MLr
U) are the almost surely valid formulae of the type

χF for frames F with central point (recall Corollary 3.6). So, let C be the set
of all finite frames with a central point. Note that C ⊆ Fd2. Let

Ξas
U := {χF | F ∈ C and χF ∈MLas

U }.

Then, let Ξas be the set of translated axioms in ML.
The following conjecture, stated in two equivalent versions, seems natural.

Conjecture 4.5 Ax(MLr
U) ∪ Ξas

U axiomatizes MLas
U .

Respectively, Ax(MLr) ∪ Ξas axiomatizes MLas.

Let us first make an encouraging observation in support of that conjecture.
I state the version for MLas

U ; the one for MLas is completely analogous.

Proposition 4.6 For any φ ∈MLas
U :

(i) Ξas
U (φ) |=fr

C φ, where Ξas
U (φ) = Ξas

U ∩ {χF | φ |=fr
fin χF}.

(ii) MLr
U ∪ Ξas

U |=fr
fin φ.
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Proof. Take φ ∈MLas
U and any finite frame F such that F 2 φ.

Then, by Corollary 4.3, χF ∈MLas
U . Now:

(i) If F ∈ C then F 2 Ξas
U (φ) because F 2 χF and χF ∈ Ξas

U (φ).
(ii) Consider two cases:
– If F ∈ C then F 2 MLr

U ∪ Ξas
U by (i).

– if F /∈ C then F 2 MLr
U ∪ Ξas

U because F 2 MLr
U.

Thus, in either case, F 2 MLr
U ∪ Ξas

U .
By contraposition, if F �MLr

U ∪ Ξas
U then F � φ.

Hence, MLr
U ∪ Ξas

U |=fr
fin φ. 2

The proposition above provides a model-theoretic characterisation of the
additional validities of MLas

U (resp. MLas), beyond those in MLr
U (resp. MLr).

Still, there are two major issues with proving Conjecture 4.5, if true at all:

(i) How to identify the axioms in Ξas
U ?

(ii) How to prove the completeness?

On the first question, let us first make the task a little easier by noting that,
due to Corollary 4.3, we only need to identify the axioms χF for the minimal
frames F ∈ C such that χF ∈ MLas

U , where ‘minimal’ is in sense (cf. Propo-
sition 4.4) that there is no F′ ∈ C such that χF′ ∈ MLas

U and F ∈ BM−1(F′),
but F 6∼= F′. Equivalently, we are looking for the maximal sets of frames of the
type BM−1(F) for F ∈ C which have asymptotic measure 0. For that, the mem-
bership in BM−1(F) should almost surely contradict (EXT); equivalently, χF

should follow from (EXT). Being a MΠ1
1-condition, by compactness χF should

then follow from some (EXT)n, hence some extension axiom ηF should fail in
all frames in BM−1(F). To ensure the latter, one should naturally look for ηF

that fails in F but is preserved in bounded morphic images, so it must fail in
all frames from BM−1(F). A classic result by van Benthem [35, Thm 15.11]
characterises the first-order sentences in the language with = and R that are
preserved by bounded morphisms as precisely those that are equivalent to ones
constructed from atomic formulae, >, and ⊥ using ∧,∨,∃,∀, and restricted
universal quantification ∀z(Ryz → . . .) for z 6= y. By looking at the syntactic
shape of (EXT), one can see that only few of them satisfy the description above.
Still, they generate infinitely many axioms, as the next proposition shows.

Proposition 4.7 There is a subset Φ of infinitely many axioms in Ξas
U , none

of which follows in terms of |=fr
fin from all others.

Proof. Consider the sequence of frames {Fn}n∈N defined as follows.
Let Fn = 〈Wn, Rn〉 where Wn = {0, 1, ...n}, and

Rn = {(k, 0) | k ∈Wn} ∪ {(0, k) | k ∈Wn} ∪ {(k, k + 1) | k = 1, ..., n− 1}.
Now, let Φ = {χFn

| n ∈ N}.
Clearly, 0 is a central point, so each Fn is in C. Next, each χFn

is in
MLas

U . Indeed, note that BM−1(Fn) has an asymptotic measure 0 because
∀x∃y(Rxy ∧ ¬Ryy) is an instance of the extension axiom (EXT)1 that fails in
each Fn, hence in every G ∈ BM−1(Fn), because it is preserved in bounded
morphic images. Lastly, each Fn is minimal in the sense above, as it is easy to
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see that neither of them has proper bounded morphic images (different from
Fn and F0). Let Φ−n = {χFm

| 0 < m,m 6= n}. Then Φ−n 6|=fr
fin χFn

for each
n ∈ N, because Fn |= Φ−n, while Fn 6|= χFn

. 2

The translated set Φd provides likewise infinitely many independent axioms
in Ξas. The proposition above makes the following conjecture very likely, but in
order to prove it we need either a provably complete infinitary axiomatization
of MLas

U over MLr
U or a proof that MLas

U is not recursively axiomatizable.

Conjecture 4.8 The logic MLas
U is not finitely axiomatizable over MLr

U.
Respectively, MLas is not finitely axiomatizable over MLr.

It is conceivable that additional axioms from Ξas
U may be needed to add to Φ

for the axiomatization of MLas
U , and likewise for MLas. To speculate a little on

these, note first that the extension axioms η that fit van Benthem’s syntactic
description for preservation under bounded morphisms can have at most one
universally quantified variable, i.e., be of the type ∀x∃y. Furthermore, for η
to fail in some BM−1(F) such that χF ∈ Ξas

U , there must be a negative atom,
which can only be ¬Ryy. This restricts the syntactic possibilities for η to just
a few, that can be easily described. Thereafter, the frames F ∈ C for which
such η fails in BM−1(F), hence the further axioms χF ∈ Ξas

U that are generated
by them, are also easily describable. And, now the big unknown is: are these
all axioms that are missing, or are there more, that are not identifiable in such
way? If these are all, then the logic MLas

U is recursively (even if not finitely)
axiomatizable over MLr

U and even stands a chance to be decidable, too, like
MLr

U is; likewise for MLas. Otherwise, the problem with the identification of
all missing axioms is very likely going beyond logic. Indeed, the question for
which frames F ∈ C it holds that χF ∈MLas

U may then hinge on rather difficult
combinatorial-probabilistic calculations, as results in [14] and [29], as well as
an empirical study in [32], have indicated.

To sum up: it is currently unknown whether the set Ξas
U is even recursively

enumerable, though I would conjecture that it is. But even if that is the case,
the question whether MLr

U ∪Ξas
U axiomatizes MLas

U remains open. The core of
the problem is that we cannot conclude MLr

U∪Ξas
U ` φ from MLr

U∪Ξas
U |=fr

fin φ,
because we have no recursive axiomatization of |=fr

fin in MLU (and I currently
do not know if one exists). It seems a currently open question whether and
when Γ |=fr

fin φ implies derivability over a suitably recursively axiomatized base
logic, beyond the special case established in Proposition 4.4. This is currently
unknown to me even for the special case when χF |=fr

fin φ, where χF ∈ MLas
U .

Likewise for |=fr
fin in ML.

An important related question 11 is whether the logic MLas
U (resp. MLas)

is Kripke complete, i.e. whether it is the modal logic of any class of Kripke
frames. If so, it is certainly the modal logic of the class of all (not necessarily
finite) frames F such that F |= MLas

U . Equivalently, the question is whether
every non-validity of MLas

U is refuted in some (finite, or not) frame F such that

11Raised by Evgeny Zolin [37].
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F |= MLas
U ; likewise for MLas. While this is rather plausible, it does not seem

to follow obviously from what is currently known about MLas
U (resp. MLas),

so I would add it to the list of currently open problems.
Finally, briefly on the question of proving the completeness of the axiom-

atization of MLas
U and the respective translation for MLas, if and when it is

identified. It is very easy to see that they would be equally complete. This prob-
lem seems not less challenging, because – unlike the axioms from the scheme
MODEXT – the truly second-order axioms, like those from Ξas

U , are likely not to
be canonical, as the kernel partitions generated in the canonical model by the
axioms χF ∈ Ξas

U need not be syntactically definable there. Still, how difficult
that problem is can only be assessed when all axioms are explicitly known.

On this note, I leave the question of establishing a provably complete ax-
iomatization of MLas, while better understood now, still open.

5 Concluding remarks and further challenges

Besides the open questions regarding the axiomatization of MLas, stated above,
many other related problems arise. To mention just one such generic question:
given a classK of Kripke frames, what is the modal logic of almost sure validities
of K? The case when the modal logic of K satisfies the 0-1 law seems to be
considerably easier (though, by no means trivial) than the case of K = Ffin

studied here, as it then boils down to axiomatizing the modal logic of the
respective analogue of countable random frame, relativised to the class K, if it
exists. Quite promising recent results of that type were announced in [36] for
the provability logic and two versions of Grzegorczyk logic.

Further open problems arise when going beyond modal logic, to the full
MΣ1

1 and MΠ1
1 on graphs, digraphs, and other important classes of structures.

Axiomatizing the almost sure theories of these may very likely lead to quite
complicated combinatorial-probabilistic computations proving almost sure ex-
istence (resp., non-existence) of kernel partitions. In general, little is known
about these so far and the challenge to understand them is wide open.
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Appendix

Example. This example illustrates the details of the derivation sketched in
the proof of Lemma 2.4. Consider the frames K2 and K3 defined in Section 3.

For convenience, I will rename the points in K3:
K2 = 〈{x, y}, {(x, x), (x, y), (y, x)}〉 and
K3 = 〈{u, v1, v2}, {(u, u), (u, v1), (u, v2), (v1, u)(v2, u)}〉.
The (slightly simplified) characteristic formulae of these are as follows:

χK2
(px, py) := ¬[U]

(
〈U〉px ∧ 〈U〉py ∧ (px ∨ py) ∧ (px → ¬py)∧

(px → ♦px) ∧ (px → ♦py) ∧ (py → ♦px) ∧ (py → �¬py)
)
.

χK3
(qu, qv1 , qv2) := ¬[U]

(
〈U〉qu ∧ 〈U〉qv1 ∧ 〈U〉qv2 ∧ (qu ∨ qv1 ∨ qv2)∧

(qu → ¬qv1) ∧ (qu → ¬qv2) ∧ (qv1 → ¬qv2)∧
(qu → ♦qu)∧(qu → ♦qv1)∧(qu → ♦qv2)∧(qv1 → ♦qu)∧(qv2 → ♦qu)∧
(qv1 → �¬qv1) ∧ (qv1 → �¬qv2) ∧ (qv2 → �¬qv1) ∧ (qv2 → �¬qv2)

)
.

It is easy to check that the mapping h : K3 → K2 defined by h(u) =
x, h(v1) = h(v2) = y is a bounded morphism.

The substitution σh defined in the proof of Lemma 2.4 acts as follows:

σh(px) := qu, σh(py) := (qv1 ∨ qv2).

Respectively,
ξK3→K2(qu, qv1 , qv2) = σh(χK2(px, py)) =

¬[U]
(
〈U〉qu ∧ 〈U〉(qv1 ∨ qv2) ∧ (qu ∨ (qv1 ∨ qv2)) ∧ (qu → ¬(qv1 ∨ qv2)) ∧

(qu → ♦qu)∧(qu → ♦(qv1∨qv2))∧((qv1∨qv2)→ ♦qu)∧((qv1∨qv2)→ �¬(qv1∨qv2))
)
.

After simple equivalent transformations in KU, it is transformed to

ξ′K3→K2
(qu, qv1 , qv2) =

¬[U]
(
〈U〉qu ∧ (〈U〉qv1 ∨ 〈U〉qv2)∧ (qu ∨ qv1 ∨ qv2)∧ (qu → ¬qv1)∧ (qu → ¬qv2) ∧

(qu → ♦qu) ∧ (qu → (♦qv1 ∨ ♦qv2)) ∧ (qv1 → ♦qu) ∧ (qv2 → ♦qu) ∧
(qv1 → �¬qv1) ∧ (qv1 → �¬qv2) ∧ (qv2 → �¬qv1) ∧ (qv2 → �¬qv2)

)
.

By a direct inspection, one can see that every conjunct inside the scope of
¬[U] in ξ′K3→K2

(qu, qv1 , qv2) is either identical, or follows propositionally from a
conjunct inside the scope of ¬[U] in χK3(qu, qv1 , qv2).

Therefore, |= ¬χK3
(qu, qv1 , qv2)→ ¬ξ′K3→K2

(qu, qv1 , qv2),
hence |= ξ′K3→K2

(qu, qv1 , qv2)→ χK3
(qu, qv1 , qv2).

Equivalently, |= σh(χK2
(px, py))→ χK3

(qu, qv1 , qv2).
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Abstract

As anyone who reads the literature on bi-intuitionistic logic will know, the numerous
papers by Cecylia Rauszer are foundational but confusing. For example: these papers
claim and retract various versions of the deduction theorem for bi-intuitionistic logic;
they erroneously claim that the calculus is complete with respect to rooted canonical
models; and they erroneously claim the admissibility of cut in her sequent calculus for
this logic. Worse, authors such as Crolard, have based some of their own foundational
work on these confused and confusing results and proofs.
We trace this confusion to the axiomatic formalism of RBiInt in which Rauszer first
characterized bi-intuitionistic logic and show that, as in modal logic, RBiInt can be
interpreted as two different consequence relations. We remove this ambiguity by using
generalized Hilbert calculi, which are tailored to capture consequence relations.
We show that RBiInt leads to two logics, wBIL and sBIL, with different extensional
and meta-level properties, and that they are, respectively, sound and strongly com-
plete with respect to the Kripkean local and global semantic consequence relations of
bi-intuitionistic logic. Finally, we explain where they were conflated by Rauszer.

Keywords: Bi-Intuitionistic Logic, Axiomatic Proof Theory, Consequence Relations,
Deduction Theorems, Kripke Semantics.

1 Introduction: Confusions

Rauszer’s Bi-Intuitionistic logic (RBiInt), introduced in 1974 via an axiomatic
calculus [17], is a conservative extension of intuitionistic propositional logic.
It adds an extra binary operator , dual to the intuitionistic arrow and
variously called exclusion, subtraction, or co-implication, and a unary weak
negation operator ∼ definable from . In an interdependent series of ar-
ticles [16,18,19,20,21,22,23], Rauszer studied the algebraic, axiomatic and
Kripke-style aspects of this logic. Alas, reviewing the literature on RBiInt can
be quite confusing, because, in many places, the status of theorems is unclear
if not puzzling. An account of this confusion can be given by three elements.

1 rajeev.gore@anu.edu.au
2 ian.shillito@anu.edu.au
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First, as is well-known, the usual deduction theorem is: Γ, ϕ ` ψ iff Γ `
ϕ→ ψ. However the“deduction theorem”is claimed under the following various
forms in chronological order: (1) Γ, ϕ ` ψ iff Γ ` ¬∼ ...¬∼ϕ→ ψ [17]; (2) the
usual version above [18]; an explicit retraction of (2) and replacement by (3)
Γ, ϕ ` ψ iff Γ ` ¬∼ϕ→ ψ [21]; (4) a return to (1) without retracting (3) [23].
Crolard [3] claims that yet another form of the deduction theorem fails to hold.

Second, the Pinto-Uustalu counterexample [14] not only breaks the admissi-
bility of cut in Rauszer’s sequent calculus [16] for RBiInt, but also casts doubts
on Crolard’s work on a formulas-as-types interpretation for RBiInt because of
his claim that “as a by-product of the previous properties [proved by Crolard],
we obtain a new proof of this result [Rauszer’s cut admissibility]” [4, p.3].

Third, Rauszer’s [20] strong completeness of RBiInt w.r.t. rooted canonical
models contradicts Crolard’s [3] result that it is not complete for this class.

All this confusion arises from a fundamental problem in the axiomatic proof
theory of RBiInt: traditional Hilbert calculi are not designed to treat logics as
consequence relations. They lead to an ambiguous notion of derivation from
assumptions that can cause us to conflate distinct logics. For example, modal
logic as a consequence relation splits into a strong and a weak version, depend-
ing on how the necessitation rule is interpreted. Conflating these logics leads to
great confusion, notably regarding the deduction theorem [11]. A similar phe-
nomenon, as yet undetected, occurs in RBiInt where traditional Hilbert calculi
cannot adequately separate two interpretations of a bi-intuitionistic rule called
DN (an analogue of the necessitation rule from modal logic).

To pinpoint the confusion, we generalize traditional Hilbert calculi to treat
consequence relations rather than just theoremhood. Then, the rules, such as
necessitation or DN , are expressed in a way that prevents ambiguities about
their shape. We use such calculi to explain and fix the fundamental problem
of the axiomatic proof theory of RBiInt. Specifically, we give two generalized
Hilbert calculi, wBIC and sBIC, for bi-intuitionistic logic that differ only in
the shape of the DN rule. Unsurprisingly, these systems capture two distinct
logics wBIL and sBIL, which have been conflated in parts of the literature.

Finally, the logics wBIL and sBIL are shown, respectively, to be sound and
strongly complete w.r.t. the Kripkean local and global semantic consequence
relations for bi-intuitionistic logic, mimicking similar results in modal logic via
a canonical model construction while using techniques of Sano and Stell [25].

Section 2 contains general definitions of logics as consequence relations and
generalized Hilbert calculi. Section 3 contains the problems caused by tradi-
tional Hilbert calculi in modal logics, and how generalized Hilbert calculi solve
them. Rauszer’s traditional Hilbert calculus is in Section 4. Section 5 contains
the two generalized Hilbert calculi obtained from Rauszer’s axiomatization. In
Section 6, we show they define two extensionally distinct logics. Section 7 con-
tains significant theorems distinguishing these logics. Section 8 contains our
completeness proofs. In Section 9, we use these results to prove pending claims
from Sections 5 and 7. In Section 10, we use the distinctions between our two
bi-intuitionistic logics to expose the flaws in Rauszer’s results.
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2 Preliminaries

In this section we provide the general definitions required to both understand
confusions arising in both modal and bi-intuitionistic logic, and avoid them.

We define logics as conventional consequence relations [6,12] where uniform
substitution, formal language L and the set FormL of all formulae of L is as
usual. We use ϕ,ψ, χ, ... for formulae and Γ,∆, ... for sets of formulae.

Definition 2.1 Let L be a formal language. A logic in L is a set L ⊆ {(Γ, ϕ) |
Γ ∪ {ϕ} ⊆ FormL} that satisfies the following properties:

Identity: if ϕ ∈ Γ, then (Γ, ϕ) ∈ L;

Monotonicity: if (Γ, ϕ) ∈ L and Γ ⊆ Γ′, then (Γ′, ϕ) ∈ L;

Compositionality: if (Γ, ϕ) ∈ L and (∆, γ) ∈ L for all γ ∈ Γ, then (∆, ϕ) ∈ L;

Structurality: if (Γ, ϕ) ∈ L, then (Γσ, ϕσ) ∈ L for uniform substitution σ.

A logic L is finitary if (Γ, ϕ) ∈ L implies there is a finite Γ′ ⊆ Γ with (Γ′, ϕ) ∈ L.

Thus, technically, a logic is not just a set of theorems but is a consequence
relation containing pairs (Γ, ϕ). Wójcicki [27, pp.xii-xiii, pp.43-51] discusses
some interesting aspects of this notion. We then formalize axiomatic systems
in a way that generalizes and disambiguates traditional Hilbert calculi. In what
follows the notions of formula schema and schema instance are as usual. The
letters A,B,C... refer to schemata and X,Y, Z, ... to sets of schemata. We call
the axiomatic systems obtained generalized Hilbert calculi.

Definition 2.2 Let L be a language. An axiom is a formula schema of L. If
A is a set of axioms, we define AI to be the set of instances of axioms of A.
An n-ary rule R = (P,C) is a pair where P = {X1 ` B1, ..., Xn ` Bn} is a set

of n premises and C = (Xn+1 ` Bn+1) is the conclusion, and
n+1⋃
i=1

Xi ∪ {Bi} is

a set of schemata of formulae. If R is a rule then we define RI to be the set of
instances of R. A generalized Hilbert calculus in L is a pair S = (A,R).

To let a generalized Hilbert calculus define a binary relation we must say
which statements of the form Γ ` ϕ follow from this calculus. To do so, we
need to define the notion of derivation in a generalized Hilbert calculus:

Definition 2.3 Let L be a language. Let Γ ∪ {ϕ} ∈ FormL and S = (A,R)
a generalized Hilbert calculus in L. A derivation in S is a tree of expressions,
defined inductively as follows:

(Ax): if ϕ ∈ AI then the following is a derivation: Γ ` ϕ Ax

(El): if ϕ ∈ Γ then the following is a derivation: Γ ` ϕ El

(R): if π1, π2, ..., πk are derivations with respectively Γ1 ` ϕ1, ...,Γk ` ϕk as
roots and ({Γ1 ` ϕ1, ...,Γk ` ϕk},Γ ` ϕ) ∈ RI for some R ∈ R, then the
following is a derivation:

π1 ... πk

Γ ` ϕ R
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A branch, its length and the length l(π) of a derivation π are defined as usual.
If there is a derivation in S with Γ ` ϕ as root, we write Γ `S ϕ.

Note that a generalized Hilbert calculus might not define a logic: the rela-
tion defined by a system with the lone rule R = (∅, A ` B) fails Monotonicity.

3 Theorems and Consequences in Classical Modal Logic

As an example, generalized Hilbert calculi clearly demarcate the existence of
two modal logics based on the usual axiomatization AK of the basic modal
logic K. In that setting, the modus ponens rule MP is formalized as:

X ` A X ` A→ B

X ` B MP

The Necessitation rule, often written as in the middle, can be interpreted either
as a weak or strong rule as shown at left and right.

∅ ` A
X ` 2A

Necw

A

2A
Nec

X ` A
X ` 2A

Necs

The calculi wKC = (AK, {MP,Necw}) and sKC = (AK, {MP,Necs}) respec-
tively define the (distinct) logics wK and sK, corresponding to the extension-
ally different local and global Kripkean semantic consequence relations [12].

The most obvious example of their difference, as consequence relations, is
that we have p `sKC 2p but p 6`wKC 2p. Then, the long-standing debate [11]
about the modal deduction theorem is resolved immediately via two simple
facts: (1) p `sKC 2p but 6`sKC p→ 2p; (2) p `wKC 2p iff `wKC p→ 2p.

Not only does this example show that the two rules added to the same
axiomatization do not capture the same logics, as consequence relations, but
it also gives sufficient tools to show that these logics differ on their meta-
properties. In fact, this partly justifies the fact that the deduction theorem
doesn’t hold for sK, while it is proven to hold for wK.

That is, traditional Hilbert calculi allow us to easily confuse the logics wK
and sK. To capture both of them in a traditional Hilbert setting, one has to
provide debatable modifications on the notion of derivation. In fact, to capture
sK one defines the notion of derivation from assumptions as follows [2]:

Definition 3.1 A derivation of ϕ from assumptions Γ is a list l of formulae
ending with ϕ such that each formula in l is an instance of an axiom of AK, a
member of Γ, or follows via MP or Nec from formulae appearing earlier in l.

While this definition is natural and unproblematic, the notion of derivation
from assumptions has to be bent to capture wK:

Definition 3.2 A derivation of ϕ from assumptions Γ is a list of formulae
ending with ϕ, and such that every formula in the list is an instance of an
axiom, a member of Γ, follows from formulae appearing before it in the list by
MP or follows from a derivable formula by Nec.
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First, this definition relies on the notion of derivability which really should
just be a special case of derivation from assumptions. Second, as it involves
the derivability of a formula in the application of Nec, to determine if a list of
formulae is a derivation from assumptions or not it is not sufficient to check the
list of formulae itself. In other words, the notion defined here is not local as the
application of Nec is conditioned on the existence of another derivation. These
features bring a lot of confusion on the nature of derivations from assumptions.

A common way to avoid these contortions is to define the notion of deriva-
tion from assumptions from the notion of derivation [1,15]:

Definition 3.3 A derivation of ϕ from assumptions Γ is a derivation of the
formula (γ0 ∧ ... ∧ γn)→ ϕ for some n ∈ N and γi ∈ Γ for 0 ≤ i ≤ n.

Here, some other criticisms can be given. Mainly, it is the striking lack
of generality of this definition that we address. More precisely, this definition
is not general as there are four types of logics that it cannot capture. First,
logics without a conjunction, such as implicational ticket entailment, cannot be
captured. Second, the same remark can be made of logics devoid of implication,
such as positive modal logic and geometric logic. Third, logics that are not
compact are ruled out: it is in their nature to be unable, in some circumstances,
to reduce an infinite set of assumptions to a finite one, while this is forced here
by the presence of γ0, ..., γn. Finally, no logic for which the deduction theorem
fails can be characterized via this definition, as this theorem is built in here.

Generalized Hilbert calculi avoid these issues while easily capturing the
logic wK by interpreting the necessitation rule as Necw. Of course, all of this
is well-known for modal logic. We next use generalized Hilbert calculi to show
that RBiInt is the victim of a similar confusion: whence our title.

4 Rauszer’s Hilbert Calculus for Bi-Intuitionistic Logic

Before showing how bi-intuitionistic logic is captured via generalized Hilbert
calculi, we recall Rauszer’s traditional Hilbert calculus RBiInt from 1974 [20].

As mentioned above, RBiInt is expressed in the language of intuitionistic
logic extended with two operators, i.e. and ∼. More formally:

Definition 4.1 Let p, q, r range over a countable set Prop of propositional
atoms and let LogBI = {∧,∨,→,¬, ,∼} be the set of bi-intuitionistic logical
connectives. This pair forms the the language LBI := (LogBI , P rop) of bi-
intuitionistic logic. The formulae FormBI of LBI are defined as follows:

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ¬ϕ | ϕ ϕ |∼ϕ

For convenience, we define > := p→ p and ⊥ := p p for some fixed atomic
formula p. The added operators are meant to be the duals of, respectively, →
and ¬. The formula ϕ ψ is usually read as “ϕ excludes ψ”. The formula ∼
ϕ := > ϕ, defined dually to ¬ϕ := ϕ→ ⊥, is usually called “weak negation”.
Rauszer’s traditional Hilbert calculus RBiInt is defined next [17]:

Definition 4.2 RBiInt consists of the axioms ABI and rules RBI below:
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RA1 (A→ B)→ ((B → C)→ (A→ C)) RA10 (A→ B)→ (¬B → ¬A)
RA2 A→ (A ∨B) RA11 A→ (B ∨ (A B))
RA3 B → (A ∨B) RA12 (A B)→∼(A→ B)
RA4 (A→ C)→ ((B → C)→ ((A ∨B)→ C))
RA5 (A ∧B)→ A RA14 ¬(A B)→ (A→ B)
RA6 (A ∧B)→ B RA15 (A→ ⊥)→ ¬A
RA7 (A→ B)→ ((A→ C)→ (A→ (B ∧ C))) RA16 ¬A→ (A→ ⊥)
RA8 (A→ (B → C))→ ((A ∧B)→ C) RA17 (> A)→∼A
RA9 ((A ∧B)→ C)→ (A→ (B → C)) RA18 ∼A→ (> A)

RA13 ((A B) C)→ (A (B ∨ C))

A A→ B

B
MP

A

¬ ∼A DN

Next, we show that the Double Negation rule DN can be interpreted in the
context of generalized Hilbert calculi in two main ways, giving different logics.

5 Bi-Intuitionistic Logic As a Consequence Relation

As in the modal case, the traditional Hilbert calculus hides a distinction in the
shape of rules. To be more precise, it overlooks the multiple interpretations of
DN that are clearly expressed in a generalized Hilbert calculus:

∅ ` A
X ` ¬∼A

DNw

X ` A
X ` ¬∼A

DNs

As we shall see, not only are these rules formally different, but they also have
significantly different strength, implying a difference in the consequence rela-
tions they define and hence a difference in their logics. To see the difference
between the two logics, erroneously identified in Rauszer’s work, that emerge
from the set of axioms ABI , we define the following generalized Hilbert calculi.

Definition 5.1 We define the generalized Hilbert calculi wBIC = (ABI ,Rw)
and sBIC = (ABI ,Rs), where Rw = {MP,DNw} and Rs = {MP,DNs}.
We abbreviate Γ `wBIC ϕ by Γ `w ϕ and let wBIL = {(Γ, ϕ) | Γ `w ϕ}
be the consequence relation characterized by wBIC. Similarly we abbreviate
Γ `sBIC ϕ by Γ `s ϕ, and define sBIL = {(Γ, ϕ) | Γ `s ϕ}.

As there is no guarantee that generalized Hilbert calculi define logics, to
assert that sBIL and wBIL are logics we must show they satisfy Definition
2.1. The single rule derivation of Γ ` ϕ via (El) shows that Identity is satisfied
both in sBIL and wBIL. The other properties need to be proved.

Lemma 5.2 The following holds for i ∈ {w, s}:
Monotonicity: if Γ ⊆ Γ′ and Γ `i ϕ then Γ′ `i ϕ.

Compositionality: if Γ `i ϕ and ∆ `i γ for all γ ∈ Γ, then ∆ `i ϕ
Structurality: if Γ `i ϕ then Γσ `i ϕσ.

Proof. See the Appendix. 2
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We are now in position to claim that sBIL and wBIL are both logics.
Furthermore, we can add that they are finitary logics:

Lemma 5.3 For i ∈ {s, w}, if Γ `i ϕ, then Γ′ `i ϕ for some finite Γ′ ⊆ Γ.

That sBIL and wBIL are (finitary) logics is all well and good, but we
require further work to show that they are different logics, as explained next.

6 Extensional Interactions

To prove our claim that sBIL and wBIL are two logics that were erroneously
conflated in the literature we first show they differ on an extensional level.

Claim 6.1 For p ∈ Prop, p `s ¬∼p and p 6`w ¬∼p.

While it is clear that p `s ¬∼p holds because DNs can be applied on p ` p,
we need a semantic argument, that we provide later, to prove that p 6`w ¬∼p.
By accepting this result for now, we can see that the two consequence relations
sBIL and wBIL are extensionally different. However the two consequence
relations are closely related. In fact, sBIL is an extension of wBIL:

Theorem 6.2 If Γ `w ϕ then Γ `s ϕ.

Moreover, they coincide on their sets of theorems (derivable from ∅):
Theorem 6.3 ∅ `s ϕ if and only if ∅ `w ϕ.

Traditionally, Theorem 6.3 is an argument against our distinction between
sBIL and wBIL as it identifies the two logics on their sets of theorems. How-
ever, as mentioned previously, they are different consequence relations. Given
Claim 6.1, sBIL and wBIL are thus different logics.

7 Deduction and Dual-Deduction Theorems

We proceed to show that sBIL and wBIL are distinct on a meta-level by
proving that both the deduction theorem and its dual hold for wBIL, while
none hold for sBIL. To express these statements we use notions from Sano and
Stell [25]. They can be interpreted as an extension of the notion of a logic as a
consequence relation of the form (Γ, ϕ) to the more general form (Γ,∆).

Definition 7.1 Let i ∈ {w, s} and
∨

∆ be the disjunction of all the members
of ∆. We define the following:

(i) `i [Γ | ∆] if Γ `i
∨

∆′ for some finite ∆′ ⊆ ∆;

(ii) 6`i [Γ | ∆] if it is not the case that `i [Γ | ∆];

(iii)
∨

∆ := ⊥ if ∆ = ∅;
(iv) [Γ | ∆] is complete if Γ ∪∆ = FormBI .

Pairs of the form [Γ | ∆] bring a symmetry, witnessed by the presence of
potentially infinite sets of formulae on both sides of the vertical bar, which is
not present in expressions such as Γ ` ϕ. Conceptually, this symmetry and
the presence of a non-orientated separation symbol | suggests a bidirectional
reading of a pair [Γ | ∆]. From left to right such a pair should be read as
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a deduction, while from right to left it should be read as a refutation. This
interpretation help us understand the duality between → and .

We first require a preliminary result central to the two logics.

Proposition 7.2 For i ∈ {w, s}:

`i [∅ | (ϕ ψ)→ χ] iff `i [∅ | ϕ→ (ψ ∨ χ)]

We have not given Rauszer’s [17] algebraic semantics for RBiInt, but Propo-
sition 7.2 is an object language analogue of the dual residuation property below:

a ≤ b ∨ c
a b ≤ c

The deduction theorem is the first theorem to separate the two logics.

Theorem 7.3 (Deduction Theorem) wBIL enjoys the deduction theorem:

`w [Γ, ϕ | ψ] iff `w [Γ | ϕ→ ψ]

Next, we give a counter-example for the deduction theorem for sBIL.

Proposition 7.4 We have that `s [p | ¬∼ p] but 6`s [∅ | p→ ¬∼ p].
Proof. We prove the first conjunct and postpone the proof of the second to
later. Obviously we have p `s p. So we can apply the rule DNs to obtain
p `s ¬∼ p, hence `s [p | ¬∼ p]. 2

We leave the following claim as pending:

Claim 7.5 We have that 6`s [∅ | p→ ¬∼ p].
This situation is very similar to the modal case: it is well-known that wK

satisfies the deduction theorem while sK does not. However, a variant of
this theorem does hold for sK: Γ, ϕ `s ψ iff there exists a n ∈ N such that
Γ `s (ϕ ∧ 2ϕ ∧ ... ∧ 2nϕ) → ψ [2, p.85]. A similar variant of the deduction
theorem holds for sBIL, but we first need some notation to express it.

Definition 7.6 We define:

(i) for n ∈ N, let (¬∼)0ϕ := ϕ and let (¬∼)(n+1)ϕ := ¬∼(¬∼)nϕ;

(ii) (¬∼)nΓ = {(¬∼)nγ | γ ∈ Γ};
(iii) (¬∼)ωΓ =

⋃
n∈N

(¬∼)nΓ.

The variant of the deduction theorem below uses the pattern ¬ ∼ as the
modal variant uses 2. But it suffices to replace ϕ by just (¬∼)nϕ, without the
conjunction of all (¬∼)iϕ for i ≤ n, as ¬∼ is a T modality satisfying ¬∼ϕ→ ϕ.
One reviewer noted that Reyes and Zolfaghari [24] show how to interpret this
combination as a kind of non-idempotent interior operation on subgraphs.

Theorem 7.7 (Double-Negated Deduction Theorem)

`s [Γ, ϕ | ψ] iff ∃n ∈ N s.t. `s [Γ | (¬∼)nϕ→ ψ]
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Theorem 7.8 (Dual Deduction Theorem) The following holds:

`w [ϕ | ψ,∆] iff `w [ϕ ψ | ∆].

Proof. Assume that `w [ϕ | ψ,∆]. By definition we get ϕ `w ψ ∨
∨

∆′ where
∆′ ⊆ ∆ is finite. Using Theorem 7.3 we get ∅ `w ϕ→ (ψ ∨∨∆′). We obtain
∅ `w (ϕ ψ)→ ∨

∆′ by Proposition 7.2. By Theorem 7.3 again, we obtain
ϕ ψ `w

∨
∆′. By definition we get `w [ϕ ψ | ∆]. Note that all the steps

used here are based on equivalences. 2

Before demonstrating that sBIL fails the dual deduction theorem, we re-
mark on the previous theorem. Pairs [Γ | ∆] express the duality between →
and on the syntactic level in wBIL by showing that plays the same role
as → on the left-hand side of |: it internalizes in the object language the re-
lation expressed by our pairs. Just as → internalizes the deduction relation
of expressions such as Γ ` ϕ, dually internalizes the refutation relation of
expressions such as ∆ a ϕ, read “∆ refutes ϕ” and formalized here as [ϕ | ∆].
This interpretation relies on the aforementioned reading of our pairs, from right
to left, to express refutations. Fortunately, as we shall show in a separate pa-
per, we can support this interpretation by the fact that wBIL can simulate
the propositional fragment of Rauszer’s refutation system [20, pp.62-63].

The following witnesses the failure of the dual deduction theorem for sBIL.

Proposition 7.9 `s [p q | ¬∼∼q] while 6`s [p | q,¬∼∼q].
Proof. First, let us prove that `s [p q | ¬∼∼q]. By definition, we
need to show that p q `s ¬ ∼∼ q. We have that ∅ `w q∨ ∼ q, hence
∅ `w p→ (q∨ ∼ q). By Proposition 7.2 we obtain ∅ `w (p q)→∼q. In
turn, by Theorem 7.7 we get p q `w ∼ q. Then, by Theorem 6.2 we get that
p q `s ∼ q. Finally, we can apply the rule DNs to obtain p q `s ¬∼∼q,
hence `s [p q | ¬∼∼q]. We leave the following claim as pending:

Claim 7.10 6`s [p | q,¬∼∼q].
2

While a variant of the deduction theorem exists for sBIL, the form or the
existence of a variant to the dual deduction theorem is still a mystery to us.
For the interested reader: while the deduction theorem fails for sBIL because
of the rule DNs, the dual deduction theorem fails for this logic because of the
rule MP . It appears that if a variant of the dual deduction theorem exists for
sBIL, then it must use a “patch” inspired by the structure of MP , as done in
the double-negated deduction theorem with DNs.

On top of the extensional difference between wBIL and sBIL, the de-
duction and dual deduction theorems expose their meta-difference. But both
differences rely on claims that are still pending. The next section builds on
Rauszer’s Kripke semantics to resolve these claims.

8 Weak is Local and Strong is Global

wBIL and sBIL, proof-theoretically characterized via the generalized Hilbert
calculi wBIC and sBIC, can be captured model-theoretically in a Kripke
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semantics using well-known notions of semantic consequence: a local and a
global one. This section is devoted to proving these claims.

First we need to define the Kripke semantics [23].

Definition 8.1 A BI-Kripke model M is a tuple (W,≤, I), where (W,≤) is a
poset and I : Prop→ P(W ) is an interpretation function obeying persistence:
for every v, w ∈W with w ≤ v and p ∈ Prop, if w ∈ I(p) then v ∈ I(p).

The forcing relation of intuitionistic logic is extended to and ∼:

Definition 8.2 Given a BI-Kripke modelM = (W,≤, I), we extend the usual
intuitionistic forcing relation between a point w ∈W and a formula as follows:

M, w  ϕ ψ iff there exists a v s.t. v ≤ w, M, v  ϕ and M, v 6 ψ
M, w ∼ϕ iff there exists a v s.t. v ≤ w, M, v 6 ϕ

Let Γ ⊆ FormBI . We write M, w  Γ if for every γ ∈ Γ we have M, w  γ.
If M, w  Γ we say that w is a Γ-point. We write M  Γ if for every point
w ∈W , M, w  Γ. If M  Γ we say that M is a Γ-model.

The main feature of the Kripke semantics for intuitionistic logic is arguably
persistence. This property, which we use later, is preserved here:

Lemma 8.3 (Persistence) Let M = (W,≤, I) be a BI-Kripke model and
w ∈W . For all v ∈W s.t. w ≤ v we have that if M, w  ϕ then M, v  ϕ.

We are now in position to define the two following notions of semantic
consequence in the above-defined Kripke semantics:

Definition 8.4 The local and global consequence relations are as below:

Γ |=l ∆ iff ∀M.∀w. (M, w  Γ ⇒ ∃δ ∈ ∆.M, w  δ)
Γ |=g ∆ iff ∀M. (M  Γ ⇒ ∀w ∈W. ∃δ ∈ ∆.M, w  δ).

While the two notions are not generally equivalent in modal logic, they are
equivalent in intuitionistic (not bi-intuitionistic) logic. It is easy to see that the
local implies the global in full generality. The converse holds for intuitionistic
logic for two reasons. First, persistence plays an important role: if a formula is
true at a point then it is true at all the successors (the upcone) of that point.
Second and more crucially, in an intuitionistic Kripke model, the upcone of a
point is bisimilar [2, p.54][13, p.8] in that point with the model itself.

Nonetheless, in the semantics just defined it is not the case that Γ |=g ∆
implies Γ |=l ∆. This can easily be shown by the fact that p |=g ¬ ∼ p
while p 6|=l ¬ ∼ p. This fact will help us finally establish the extensional
difference between wBIL and sBIL by proving that local semantic consequence
corresponds to wBIL and global semantic consequence corresponds to sBIL.

We use canonical models on complete pairs [Γ | ∆] from Sano and Stell [25]:

Definition 8.5 The canonical model Mc = (W c,≤c, Ic) is defined in the fol-
lowing way:

(i) W c = {[Γ | ∆] : [Γ | ∆] is complete and 6`w [Γ | ∆]};
(ii) [Γ1 | ∆1] ≤c [Γ2 | ∆2] iff Γ1 ⊆ Γ2;
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(iii) Ic(p) = {[Γ | ∆] ∈W c : p ∈ Γ}.
These pairs are built from unprovable pairs using a bi-intuitionistic version

of the Lindenbaum Lemma:

Lemma 8.6 (Lindenbaum Lemma) If 6`w [Γ | ∆] then there exist Γ′ ⊇ Γ
and ∆′ ⊇ ∆ such that [Γ′ | ∆′] is complete and 6`w [Γ′ | ∆′].

As usual in canonical model techniques, we prove the crucial Truth Lemma:

Lemma 8.7 (Truth Lemma) For every [Γ | ∆] ∈W c:

ψ ∈ Γ iff Mc, [Γ | ∆]  ψ.

We are now ready to prove the main result of this section:

Theorem 8.8 The following holds:

(1) `w [Γ | ∆] iff Γ |=l ∆
(2) `s [Γ | ∆] iff Γ |=g ∆.

9 A Semantic Look Back

We use Theorem 8.8, stating that the logics sBIL and wBIL are respectively
sound and complete with respect to the global and local consequence, to fill in
the gaps of Sections 6 and 7 by proving the claims left pending there.

First, we can show the extensional difference of the two logics by proving
Claim 6.1, which claims that sBIL 6⊆wBIL:

Proof. [of Claim 6.1] On the one hand we obviously have that `s [p | p] hence
`s [p | ¬∼p] by DNs. On the other hand we have that p 6|=l ¬∼p as shown by
the following model M0 where reflexive arrows are not depicted:

w p v

We clearly haveM0, v  p. We also haveM0, v 6 ¬∼p asM0, v ∼p because
M0, w 6 p and w ≤ v. By Theorem 8.8 we obtain 6`w [p | ¬∼p]. 2

Second, we resolve Claim 7.5 that sBIL fails the deduction theorem.

Proof. [of Claim 7.5] We need to prove that 6`s [∅ | p→ ¬∼p]. Consider the
model M0 above. We have that M0, v 6 p → ¬∼p, hence 6|=g p → ¬∼p. By
Theorem 8.8 we obtain 6`s [∅ | p→ ¬∼p]. Since applying DNs to p `s p gives
`s [p | ¬∼p], the deduction theorem does not hold for sBIL. 2

Lastly, we prove Claim 7.10 that sBIL fails the dual deduction theorem:

Proof. [of Claim 7.10] We need to prove that 6`s [p | q ∨ ¬∼∼ q]. Consider
the following model M1:

p, qw

p, q vpu
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First we have that M1  p. We also have M1, u 6 q by definition of the
valuation. But we also have M1, u 6 ¬∼∼ q. In fact M1, w ∼∼ q as v ≤ w
and M1, v 6∼ q: its only predecessor is itself, and it forces q. Consequently
we have p 6|=g q ∨ ¬∼∼ q, which by Theorem 8.8 gives 6`s [p | q ∨ ¬∼∼ q]. 2

10 Why Rauszer’s Proofs are Erroneous

The existence of sBIL and wBIL justifies our use of the plural bi-intuitionistic
logics. We now trace the effect of this bifurcation on Rauszer’s works.

As far as we know, neither the existence of wBIL and sBIL, nor the distinc-
tion between them has been highlighted in the literature. While it was certainly
not noted in Rauszer’s works, it has to be acknowledged that Hiroakira Ono
may have suspected something [23, p.7]. Our bifurcation is not important if we
only focus on one of the logics and use properties only belonging to it. However
if one confuses them by using properties of these logics that are not shared by
both of them, then troubles arrive. Unfortunately, such a confusion is made in
some of Rauszer’s works. As a consequence, various important theorems are
asserted with erroneous proofs. The most important of them is the theorem of
strong completeness with respect to the Kripke semantics [20]. More precisely
there are two proofs for this theorem. The first one [20, Lemma 2.3], is flawed
because it ignores restrictions on the use of a lemma proved by Gabbay [7], and
this is extraneous to the confusion between the logics sBIL and wBIL. The
second one [20, Theorem 3.5], is a standard completeness proof, involving the
construction of a canonical model. However, in this proof, some intermediate
lemmas are proved using features which are distinct for these logics. For ex-
ample the fact that `s [ϕ | ¬∼ϕ] holds is used in the proof of Lemma 3.1 [20],
where it is erroneously claimed that a prime filter A is such that if a ∈ A then
¬∼a ∈ A and hence ∼a 6∈ A. In addition, in the proof of point (3) of Lemma
3.3 [20] the deduction theorem is used implicitly as it relies on a proof provided
by Thomason [26] which uses it. Thus, while the proof of Lemma 3.1 [20] sug-
gests the logic used is sBIL, the proof of Lemma 3.3 indicates that it must be
wBIL. Thus the proof of completeness given there, which relies on these two
lemmas, is a proof for none of the logics discussed here.

Another strong completeness proof [18] suffers from the same confusion
because it relies on the aforementioned completeness proofs [20]. Interestingly,
some elements of this paper [18] were corrected [21], but the corrections do not
suffice to fix the issue. More precisely, one side of the deduction theorem is
changed from Γ ` ϕ→ ψ to Γ ` ¬∼ϕ→ ψ [21], but this version also fails for
sBIL and, in any case, the proofs [20] are not modified to handle the change.

In a nutshell, as the proofs of strong completeness for bi-intuitionistic logic
given in Rauszer’s PhD thesis [23] are taken from the articles mentioned above,
we are left with no actual trace in Rauszer’s papers of a correct proof of strong
completeness of bi-intuitionistic logic with respect to the Kripke semantics de-
fined. To the best of our knowledge such a proof has only been provided by
Sano and Stell [25], but for a different axiomatization. So, our proofs are the
first to ensure that Rauszer’s axiomatization is strongly complete for the ap-
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propriate Kripke semantics in a non-ambiguous way: sBIL (wBIL) is strongly
complete for global (local) semantic consequence in Kripke semantics.

Clearly, providing such a proof is necessary to set the record straight for
Rauszer’s axiomatization. Furthermore, when compared with the initial proofs,
our proofs are useful for avoiding false conclusions hinted at by the former. Most
importantly, two proofs of strong completeness [20] involve the construction of
a rooted canonical model where by “rooted” we understand the following

Definition 10.1 Let F = (W,≤) be a BI-Kripke frame. We say that F is
rooted if there is a w ∈ W such that for every v ∈ W we have w ≤∗ v (but
since ≤ is reflexive and transitive we can replace ≤∗ with ≤).

The use of rooted models immediately implies that bi-intuitionistic logic
is sound and complete with respect to the class of rooted BI-Kripke frames.
However, we show that this result fails for both sBIL and wBIL! Specifically,
∼p ∨ ¬∼p is valid on rooted frames but not valid on the full class of frames.

Lemma 10.2 Let F = (W,≤) be a rooted BI-Kripke frame. For any interpre-
tation function I, we have that (W,≤, I) ∼p ∨ ¬∼p.

Proof. Let r be the root of F and I an interpretation function,M = (W,≤, I)
and w ∈ W . As F is rooted we have that r ≤ w. If r ∈ I(p) then persistence
and rootedness giveM, v  p for every v ∈W , henceM, w  ¬∼p. If r 6∈ I(p)
then we get M, w ∼p. In each case we obtain M, w ∼p ∨ ¬∼p. 2

Thus the formula ∼p∨¬∼p is valid on the class of rooted BI-Kripke frames.
Now we show that there is a BI-Kripke model N such that N 6∼ p ∨ ¬∼ p.
Consider the following model where reflexive arrows are omitted:

w

p

v p u

We have that N , u 6∼ p as the only predecessor of u is itself and N , u  p.
Moreover we have that N , w 6 p, hence N , v ∼ p which in turn implies
N , u 6 ¬∼p. Consequently N , u 6∼p ∨ ¬∼p.

It can be argued that Crolard [3, p.168] proved that wBIL is not complete
for the class of rooted frames. But he does not make the distinction between
the two logics presented here, nor pinpoint the flaws in Rauszer’s proof.

Theorem 8.8 allows us to claim that 6`i [∅ | ∼p ∨ ¬∼p] for i ∈ {s, w} as
6|=j∼ p ∨ ¬ ∼ p for j ∈ {g, l}. From this, we conclude that neither sBIL nor
wBIL is complete, with their corresponding semantic consequence, for the class
of rooted frames: the formula ∼p ∨ ¬∼p is a counterexample to such a claim.

11 Conclusion

Generalized Hilbert calculi effectively provide the tools to clarify the status of
rules in axiomatic systems. The distinction between the two logics sBIL and
wBIL can easily be tracked to the obvious difference between the rules DNw
and DNs in the calculi defining them. Effectively, as in the modal case, different
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syntactic consequence relations stem from the traditional Hilbert calculus for bi-
intuitionistic logic, formalized as generalized Hilbert calculi. The logics wBIL
and sBIL are distinguishable on an extensional level in a similar way to wK and
sK. The similarity with modal logic goes even further as the famous deduction
theorem is not a property common to both sBIL and wBIL. As we have shown,
the deduction theorem can be modified to hold in sBIL, and the dual deduction
theorem holds in wBIL, but we have not yet found a modification of the dual
deduction theorem for sBIL. So, on top of allowing one to clearly detect which
logic satisfies the deduction theorem or its dual, generalized Hilbert calculi also
prevent the confusions that existed in both the modal [11] and bi-intuitionistic
case.

As we have shown, the logics wBIL and sBIL, respectively, have a local
and global semantic counterpart on the class of BI-Kripke frames. Although
quite common, this phenomenon finally clarifies the relation between the two
logics. It also helps rectify the status of some properties of sBIL and wBIL,
such as the fact that they are not strongly complete with respect to the class
of rooted frames.

Finally, the difference between the two logics allows to look at the proof the-
ory of bi-intuitionistic logic from a different angle. We conjecture that the vari-
ous calculi which have been designed to capture bi-intuitionistic logic [8,9,10,14]
are in fact sound and strongly complete for wBIL.

There are several directions for further work. First, the diversity of inter-
pretations of the MP rule should be investigated. While we made a case of the
multiplicity of interpretations (which we have not exhausted) of the rules DN
and Nec, we did not question the shape of the rule MP . We could modify one
of the generalized Hilbert calculi defined above to use a modified version of MP
where the premisses would be ∅ ` A and ∅ ` A→ B. This system would define
a logic, but a weird one where p, p→ q ` q would not be guaranteed to hold.
A second direction, which we are exploring, leads to the algebraic treatment of
wBIL and sBIL as consequence relations [6]. Third, the use of pairs [Γ | ∆]
suggests a general treatment of logics that would capture both derivability and
refutability calculi in one shot. Finding if such a general framework exists would
require further investigations.

Related works: It has to be noted that Sano and Stell’s axiomatization [25],
when considered in a generalized Hilbert calculus context, also suffers from
the same phenomenon as Rauszer’s axiomatization. Their rule Mon can be
interpreted in the same ways as DN : with a set of assumption in its premise,
giving Mon s; or without, giving Mon w. The generalized Hilbert calculus
involving the rule Mon w (Mon s) corresponds to wBIL (sBIL).

Appendix

Proof. [of Lemma 5.2] Monotonicity: Assume Γ `i ϕ. Then there is a
derivation π of Γ ` ϕ. We prove by induction on l(π) that Γ′ `i ϕ with Γ ⊆ Γ′.
If l(π) = 1 then either ϕ ∈ Γ or ϕ ∈ AI . If ϕ ∈ Γ then ϕ ∈ Γ′, hence Γ′ `i ϕ. If
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ϕ ∈ AI then Γ′ `i ϕ. If l(π) > 1 then we have to consider the last rule applied.
if it is MP then we simply apply the induction hypothesis on the premises and
apply the rule to obtain our result. In the case of DNi we have to distinguish
between the case where i = s and i = w. If i = s then we can simply use the
induction hypothesis on the premises and then apply the rule. If i = w then
we simply use the given premise to obtain Γ′ `w ϕ as desired.

Compositionality: Assume Γ `i ϕ and that ∆ `i γ for every γ ∈ Γ. Then we
have a derivation π of Γ ` ϕ. We show by induction on the length l(π) of π that
∆ `i ϕ. If l(π) = 1 then either ϕ ∈ Γ, or ϕ ∈ AI . If ϕ ∈ Γ , we have ∆ `i ϕ
by assumption. If ϕ ∈ AI , then ∆ `i ϕ. If l(π) > 1 then consider the last rule
applied. If it is MP then we can simply apply the induction hypothesis on the
premises and then apply MP to obtain the required conclusion. If it is DNi,
then we must distinguish i = s and i = w. If i = s, we apply the induction
hypothesis on the premise and then the rule. If i = w, we apply appropriately
the rule, i.e. from ∅ `w ϕ to ∆ `w ϕ, to obtain the desired result.

Structurality:Assume Γ `i ϕ. Then we have a derivation π of Γ ` ϕ. We
will show by induction on l(π) that Γσ `i ϕσ. If l(π) = 1 then either ϕ ∈ Γ
or ϕ ∈ AI . If ϕ ∈ Γ then ϕσ ∈ Γσ, hence Γσ ` ϕσ. If ϕ ∈ AI then ϕσ ∈ AI ,
hence Γσ `i ϕσ. If l(π) > 1 then consider the last rule applied. If it is MP
then we apply the induction hypothesis on the premises and then apply MP to
obtain the required conclusion. If it is DNi then for both values of i we apply
the induction hypothesis on the premise and then the rule. 2

Proof. [of Lemma 5.3] Assume Γ `i ϕ, giving a derivation π with root Γ ` ϕ.
We prove by induction on l(π) that there is a finite Γ′ ⊆ Γ such that Γ′ `i ϕ.
If l(π) = 1 then either ϕ ∈ Γ or ϕ ∈ AI . If ϕ ∈ Γ, then {ϕ} ⊆ Γ and ϕ `i ϕ.
If ϕ ∈ AI , then ∅ ⊆ Γ and ∅ `i ϕ. If l(π) > 1 then we consider the last
rule applied. If the last rule is MP , then apply the induction hypothesis on
the premises to obtain finite Γ′,Γ′′ ⊆ Γ such that Γ′ `i ψ and Γ′′ `i ψ → ϕ.
Theorem 5.2 delivers Γ′ ∪ Γ′′ `i ψ and Γ′ ∪ Γ′′ `i ψ → ϕ. Thus MP can be
applied to get Γ′ ∪ Γ′′ `i ϕ, where Γ′ ∪ Γ′′ ⊆ Γ is finite. If the last rule is
DNi, then i = s or i = w. If i = s, we apply the induction hypothesis on the
premise and then the rule. If i = w, we apply appropriately the rule to obtain
the desired result. 2

Proof. [of Proposition 7.2]

(⇒) Assume `i [∅ | (ϕ ψ)→ χ], i.e. ∅ `i (ϕ ψ)→ χ. From it we
can easily obtain ∅ `i ((ϕ ψ) ∨ ψ)→ (χ ∨ ψ). But as we have ∅ `i
ϕ→ ((ϕ ψ) ∨ ψ) we get ∅ `i ϕ→ (χ ∨ ψ), hence `i [∅ | ϕ→ (χ ∨ ψ)].

(⇐) Assume `i [∅ | ϕ→ (ψ ∨ χ)], i.e. ∅ `i ϕ→ (ψ ∨ χ). First we have,
as an instance of the axiom RA11, ∅ `i (ϕ ψ)→ (χ ∨ ((ϕ ψ) χ)).
But we have that ∅ `i ((ϕ ψ) χ)↔ (ϕ (ψ ∨ χ)), so we ob-
tain that ∅ `i (χ ∨ ((ϕ ψ) χ))→ (χ ∨ (ϕ (ψ ∨ χ))). Thus
∅ `i (ϕ ψ)→ (χ ∨ (ϕ (ψ ∨ χ))). However we have that ∅ `i
(ϕ (ψ ∨ χ))→∼(ϕ→ (ψ ∨ χ)). And as we have ∅ `i ϕ→ (ψ ∨ χ) by
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DNi we obtain ∅ `i ¬∼(ϕ→ (ψ ∨ χ)). Consequently we can obtain that
∅ `i (ϕ (ψ ∨ χ))→ ⊥, hence ∅ `i (χ ∨ (ϕ (ψ ∨ χ)))→ χ. This finally
implies ∅ `i (ϕ ψ)→ χ, hence `i [∅ | (ϕ ψ)→ χ].

2

Proof. [of Theorem 7.3]

(⇐) Assume `w [Γ | ϕ→ ψ], i.e. Γ `w ϕ→ ψ. Then by monotonicity we obtain
Γ, ϕ `w ϕ→ ψ. Moreover we have that Γ, ϕ `w ϕ as ϕ ∈ Γ ∪ {ϕ}. So by
MP we obtain Γ, ϕ `w ψ, hence `w [Γ, ϕ | ψ].

(⇒) Assume `w [Γ, ϕ | ψ], i.e. Γ, ϕ `w ψ giving a derivation π of Γ, ϕ ` ψ. We
show by induction on the length of π that Γ `w ϕ→ ψ. If l(π) = 1 then
either ψ ∈ Γ ∪ {ϕ} or ψ ∈ AI . If ϕ = ψ then we clearly have Γ `w ϕ→ ψ.
If ψ ∈ Γ then we can deduce Γ `w ϕ→ ψ from the fact that we have
∅ `w p→ (q → p). If ψ ∈ AI then with a similar reasoning Γ `w ϕ→ ψ.
If l(π) > 1 then consider the last rule applied. The case of the rule MP
is treated as follows. Use the induction hypothesis on the premises of the
rule and note that ∅ `w (p→ q)→ ((p→ (q → r))→ (p→ r)): using MP
several times one arrives at the establishment of Γ `w ϕ→ ψ. If the last
rule is DNw, we have a derivation of ∅ ` χ, so we can apply DNw to obtain
∅ `w ¬∼χ. Then we can use the fact that ∅ `w p→ (q → p) to obtain
∅ `w ϕ→ ¬∼χ. By monotonicity we obtain Γ `w ϕ→ ¬∼χ.

2

For the proof of Theorem 7.7 we need the following claim:

Claim .1 ∅ `s ¬(λ1 λ2)→ (∼λ2 →∼λ1)

Proof. We have ∅ `s λ1 → (λ2 ∨ (λ1 λ2)). The rule below is derivable in
both systems:

∅ ` ϕ→ ψ

∅ ` (ϕ χ)→ (ψ χ)
Mon

Indeed, given that ∅ `i ψ → (χ ∨ (ψ χ)) and ∅ `i ϕ→ ψ, we get ∅ `i
ϕ→ (χ ∨ (ψ χ)), hence ∅ `i (ϕ χ)→ (ψ χ) by Proposition 7.2. We
can apply Mon to obtain ∅ `s (> (λ2 ∨ (λ1 λ2)))→∼λ1. Next
we prove that ∅ `s (∼λ2 ∧ ¬(λ1 λ2))→∼(λ2 ∨ (λ1 λ2)) to obtain that
∅ `s (∼λ2 ∧ ¬(λ1 λ2))→∼λ1, and hence ∅ `s ¬(λ1 λ2)→ (∼λ2 →∼λ1).
First, ∅ `s > → ((λ2 ∨ (λ1 λ2)) ∨ (> (λ2 ∨ (λ1 λ2)))) is an instance
of an axiom. Then by associativity of disjunction we obtain ∅ `s
> → (λ2 ∨ ((λ1 λ2) ∨ (> (λ2 ∨ (λ1 λ2))))). By Proposition 7.2 we get
∅ `s ∼λ2 → ((λ1 λ2) ∨ (> (λ2 ∨ (λ1 λ2)))). Consequently we easily ob-
tain ∅ `s (∼λ2 ∧ ¬(λ1 λ2))→ (> (λ2 ∨ (λ1 λ2))), i.e.
∅ `s (∼λ2 ∧ ¬(λ1 λ2))→∼(λ2 ∨ (λ1 λ2)). 2

Proof. [of Theorem 7.7]

(⇒) Assume that `s [Γ, ϕ | ψ], i.e. that we have a derivation π of Γ, ϕ ` ψ.
We reason by induction on the length of π. If l(π) = 1 then two cases are
possible. If the rule applied is Ax then we get ∅ `s ψ, and as we have that
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∅ `s ψ → ((¬∼)nϕ→ ψ) for any n ∈ N we obtain by MP : ∅ `s (¬∼)nϕ→ ψ.
By Theorem 5.2 we get Γ `s (¬∼)nϕ→ ψ. If the rule applied is El then ei-
ther ψ = ϕ and then we get ∅ `s ϕ→ ϕ and hence Γ `s ϕ→ ϕ, where in the
antecedent of the implication ϕ = (¬∼)0ϕ. If l(π) ≥ 1 then two cases have to
be considered. If the last rule applied is MP then we have by induction hy-
pothesis Γ `s (¬∼)lϕ→ χ and Γ `s (¬∼)mϕ→ (χ→ ψ) for some χ, m, l ∈
N. As we have that ∅ `s (λ1 → λ2)→ ((λ1 → (λ2 → λ3))→ (λ1 → λ3)) and
∅ `s ¬∼λ→ λ we obtain that Γ `s ¬∼nϕ→ χ for n = max(m, l).

If the last rule applied is DNs then we get by induction hypothesis that
Γ `s (¬∼)nϕ→ χ. If we prove that ∅ `s ¬∼(λ1 → λ2)→ (¬∼λ1 → ¬∼λ2)
holds then we can reach our goal by applying DNs on Γ `s (¬∼)nϕ→ χ
to obtain Γ `s ¬∼((¬∼)nϕ→ χ) and finally Γ `s (¬∼)n+1ϕ→ ¬∼χ
by MP , hence `s [Γ | (¬∼)n+1ϕ→ ¬∼χ]. Let us thus prove
∅ `s ¬∼(λ1 → λ2)→ (¬∼λ1 → ¬∼λ2). First note that ∅ `s
(λ1 λ2)→∼(λ1 → λ2) as it is an instance of the axiom A12. By us-
ing A10 and MP we obtain ∅ `s ¬∼(λ1 → λ2)→ ¬(λ1 λ2). Thus,
using Claim .1, which can be found just above, we can obtain ∅ `s
¬∼(λ1 → λ2)→ (∼λ2 →∼λ1). We can instantiate A10 again to obtain
∅ `s (∼λ2 →∼λ1)→ (¬∼λ1 → ¬∼λ2), and use this fact with the previ-
ous result to finally get ∅ `s ¬∼(λ1 → λ2)→ (¬∼λ1 → ¬∼λ2).

(⇐) Straightforward use of the rules DNs and MP with Theorem 5.2.
2

Proof. [of Lemma 8.3] We reason by induction on ϕ and only show the cases
for the added operators:

- ϕ :=∼ ψ: M, w ∼ ψ then there is a u ≤ w such that M, u 6 ψ. By
transitivity we have u ≤ v, so there is a u ≤ v such that M, u 6 ψ. Thus
M, v ∼ψ.

- ϕ := χ ψ: M, w  χ ψ then there is a u ≤ w such that M, u  χ and
M, u 6 ψ. By transitivity we have u ≤ v, so there is a u ≤ v such that
M, u  χ and M, u 6 ψ. Thus M, v  χ ψ.

2

Proof. [of Lemma 8.6] We start by extending the set Γ to a prime theory Γ′

in L by successive steps. More precisely we create a chain of extensions Γ0 ⊆
Γ1 ⊆ Γ2..., where Γ0 = Γ and Γ′ =

⋃
k≥0

Γk. In fact, we take an enumeration

of all formulae of FormBI and we define Γn by induction on n ∈ N in the
following way:

- n = 0 : Γ0 = Γ;

- n ≥ 0 : let ψ1 ∨ ψ2 be the first disjunctive sentence of L that has not yet
been treated such that `w [Γn | ψ1 ∨ ψ2]. Define:

Γn+1 =

{
Γn ∪ {ψ1}, if 6`w [Γn, ψ1 | ∆]

Γn ∪ {ψ2}, otherwise
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We first show that 6`w [Γ′ | ∆]. If we show that 6`w [Γn | ∆] for every n ∈ N
then we are done. Let us show this statement by induction on n. The base
case holds by assumption as Γ0 = Γ. For the inductive step we have to show
that 6`w [Γn, ψi | ∆]. But this is obvious as it cannot both be the case that
`w [Γn, ψ1 | ∆] and `w [Γn, ψ2 | ∆], otherwise we would have `w [Γn | ∆] as
`w [Γn | ψ1 ∨ ψ2].

Second, we need to show some properties of Γ′:

(i) Consistency : Γ′ is consistent as 6`w [Γ′ | ∆].

(ii) Primeness: Let ψ1 ∨ ψ2 ∈ Γ′ and k the least number such that `w [Γk |
ψ1 ∨ ψ2]. At stage k this ψ1 ∨ ψ2 has not been treated and is treated
eventually at a stage j ≥ k. Then we get that ψ1 ∈ Γj+1 or ψ2 ∈ Γj+1,
hence ψ1 ∈ Γ′ or ψ2 ∈ Γ′.

(iii) Closure under deducibility : Let ψ be a formula such that `w [Γ′ | ψ]. Then
`w [Γ′ | ψ ∨ ψ] and as Γ′ is prime we get that ψ ∈ Γ′.

Third we define ∆′ = {ψ | 6`w [Γ′ | ψ]}. First note that ∆ ⊆ ∆′. Second
we obtain that FormBI \ Γ′ = ∆′ by definition of derivation and the closure
under deducibility of Γ′. So [Γ′ | ∆′] is complete. We obviously obtain that
this pair is unprovable: assume otherwise, then there is a finite ∆0 ⊆ ∆′ such
that `w [Γ′ | ∨∆0], but as Γ′ is closed under deducibility and prime we obtain
that there is ψ ∈ ∆′ such that ψ ∈ Γ′, which is a contradiction.

So [Γ′ | ∆′] is a complete pair with 6`w [Γ′ | ∆′] and Γ ⊆ Γ′ and ∆ ⊆ ∆′. 2

Proof. [of Lemma 8.7] By induction on ψ. We only consider the case for :

- ψ := ψ1 ψ2: (⇒) Assume ψ1 ψ2 ∈ Γ. We claim that 6`w [ψ1 | ψ2,∆].
Suppose it is not the case. Then by definition there is a finite ∆f ⊆ ∆ such
that ψ1 `w ψ2 ∨

∨
∆f , hence `w [ψ1 | ψ2 ∨

∨
∆f ]. By Theorem 7.3 we thus

obtain `w [∅ | ψ1 → (ψ2 ∨
∨

∆f )]. And then by Proposition 7.2 we obtain
that `w [∅ | (ψ1 ψ2)→ ∨

∆f ]. But as ψ1 ψ2 ∈ Γ and Γ is closed under
deducibility we get that

∨
∆f ∈ Γ, which leads to an obvious contradiction.

So 6`w [ψ1 | ψ2,∆]. Thus by Lemma 8.6 there are Γ′ ⊇ {ψ1} and ∆′ ⊇
∆ ∪ {ψ2} such that [Γ′ | ∆′] is complete and 6`w [Γ′ | ∆′]. Note that ψ1 ∈ Γ′

and ψ2 6∈ Γ′, hence Mc, [Γ′ | ∆′]  ψ1 and Mc, [Γ′ | ∆′] 6 ψ2 by induction
hypothesis. But we have that ∆ ⊆ ∆′, which implies by completeness that
Γ′ ⊆ Γ. So [Γ′ | ∆′] ≤c [Γ | ∆]. Consequently Mc, [Γ | ∆]  ψ1 ψ2. (⇐)
Assume Mc, [Γ | ∆]  ψ1 ψ2. Assume for reductio that ψ1 ψ2 6∈ Γ.
Then 6`w [Γ | ψ1 ψ2]. Note that every Γ′ ⊆ Γ is such that ψ1 ψ2 6∈ Γ′.
And as `w [∅ | ψ1 → (ψ2 ∨ (ψ1 ψ2))] we get for every Γ′ ⊆ Γ such that
[Γ′ | ∆′] ∈ W c for some ∆′, if ψ1 ∈ Γ′ then ψ2 ∈ Γ′ as Γ′ is prime. By
induction hypothesis we get that for every such Γ′, ifMc, [Γ′ | ∆′]  ψ1 then
Mc, [Γ′ | ∆′]  ψ2. This contradicts our assumption Mc, [Γ | ∆]  ψ1 ψ2.

2

Proof. [of Theorem 8.8] Soundness is straightforward so let us prove (1):

(⇐) Here we prove completeness. Assume 6`w [Γ | ∆]. Lemma 8.6 gives us a
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complete [Γ′ | ∆′] such that 6`w [Γ′ | ∆′], where Γ ⊆ Γ′ and ∆ ⊆ ∆′. Moreover
there is no δ ∈ ∆ such that δ ∈ Γ′, so by Lemma 8.7 we obtain that in the
canonical model of Definition 8.5 the following holds: Mc, [Γ′ | ∆′] 6 δ for
every δ ∈ ∆, while Mc, [Γ′ | ∆′]  Γ. Consequently, we have that Γ 6|=l ∆.

Then we can prove (2):

(⇐) Here we prove completeness. Assume 6`s [Γ | ∆]. We show that Γ 6|=g ∆.
Note that 6`s [(¬∼)ωΓ | ∆] from Theorem 7.7. Thus, we get 6`w [(¬∼)ωΓ | ∆]
by Theorem 6.2. By the argument used in the strong completeness of wBIL
we know that there is a pair [((¬∼)ωΓ)∗ | ∆′] in the canonical model of
Definition 8.5 such that (¬∼)ωΓ ⊆ ((¬∼)ωΓ)∗ and ∆ ⊆ ∆′. Lemma 8.7 tells
us that for all δ ∈ ∆ we haveMc, [((¬∼)ωΓ)∗ | ∆′] 6 δ andMc, [((¬∼)ωΓ)∗ |
∆′]  ¬∼ωΓ.

To obtain a proof of Γ 6|=g ∆ we need a Γ-model that has one point
that is not a δ-point for all δ ∈ ∆. To do so we restrict the canonical
model, on the point described above, to obtain a Γ-model. We defineMc

Γ =
(W c

Γ,≤cΓ, IcΓ), where W c
Γ = {[∆1 | ∆2] ∈ W c | there is a chain [((¬∼)ωΓ)∗ |

∆′]R1...Rn[∆1 | ∆2], where Rj ∈ {≤,≥} for j ∈ N}, and IcΓ and ≤cΓ are
restrictions of respectively Ic and ≤c to W c

Γ. The notion of bisimulation de-
veloped by de Groot and Pattinson [5], gives us that (Mc, [((¬∼)ωΓ)∗ | ∆′])
and (Mc

Γ, [((¬∼)ωΓ)∗ | ∆′]) are bisimilar, hence modally equivalent. Thus we
have that Mc

Γ, [((¬∼)ωΓ)∗ | ∆] 6 δ for every δ ∈ ∆, and Mc
Γ, [((¬∼)ωΓ)∗ |

∆]  (¬∼)ωΓ. It remains to prove that Mc
Γ is a Γ-model. Let [∆1 | ∆2] ∈

Mc
Γ. By definition there is a chain [((¬∼)ωΓ)∗ | ∆′]R1...Rn[∆1 | ∆2] such

that Rj ∈ {≤,≥} for every j ∈ {1, ..., n}. We now need the following Claim
.2 to conclude that Mc

Γ, [∆1 | ∆2]  (¬ ∼)ωΓ. In particular we obtain
Mc

Γ, [∆1 | ∆2]  Γ.

Claim .2 For every chain [((¬∼)ωΓ)∗ | ∆′]R1...Rn[Ψ1 | Ψ2] we have that
Mc

Γ, [Ψ1 | Ψ2]  (¬∼)ωΓ.

Proof. Let C = [((¬∼)ωΓ)∗ | ∆′]R1...Rn[Ψ1 | Ψ2] be a chain. We prove
that Mc

Γ, [Ψ1 | Ψ2]  (¬∼)ωΓ by induction on the length l of C:
· l = 0: then [Ψ1 | Ψ2] = [((¬∼)ωΓ)∗ | ∆′] and consequently
Mc

Γ, [((¬∼)ωΓ)∗ | ∆′]  (¬∼)ωΓ by Lemma 8.7;
· l = n + 1: if Rn+1 is ≤ then there is [Π1 | Π2] such that [Π1 | Π2] ≤

[Ψ1 | Ψ2]. By induction hypothesis we get Mc
Γ, [Π1 | Π2]  (¬∼)ωΓ and

consequently, by Lemma 8.3 Mc
Γ, [Ψ1 | Ψ2]  (¬∼)ωΓ. If Rn+1 is ≥ then

there is [Π1 | Π2] such that [Π1 | Π2] ≥ [Ψ1 | Ψ2]. By induction hypothesis
we get Mc

Γ, [Π1 | Π2]  (¬ ∼)ωΓ. Note that ¬ ∼ (¬ ∼)ωΓ = (¬ ∼)ωΓ, so
Mc

Γ, [Π1 | Π2]  ¬∼(¬∼)ωΓ. We easily obtain Mc
Γ, [Ψ1 | Ψ2]  (¬∼)ωΓ.

2

2
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Abstract

We define a new logic-induced notion of bisimulation (called ρ-bisimulation) for coal-
gebraic modal logics given by a logical connection, and investigate its properties. We
show that it is structural in the sense that it is defined only in terms of the coalge-
bra structure and the one-step modal semantics and, moreover, can be characterised
by a form of relation lifting. Furthermore we compare ρ-bisimulations to several
well-known equivalence notions, and we prove that the collection of bisimulations
between two models often forms a complete lattice. The main technical result is a
Hennessy-Milner type theorem which states that, under certain conditions, logical
equivalence implies ρ-bisimilarity. In particular, the latter does not rely on a duality
between functors T (the type of the coalgebras) and L (which gives the logic), nor on
properties of the logical connection ρ.

Keywords: Modal Logic, Coalgebraic Logic, Bisimulation.

1 Introduction

In this paper, we investigate when logical equivalence for a given modal lan-
guage can be captured by a structural semantic equivalence notion, understood
as a form of bisimulation. Our investigation is carried out in the setting of coal-
gebraic modal logic [21], where semantic structures are given by coalgebras for
a functor T : C→ C [27]. This allows for a uniform treatment of a wide variety
of modal logics [21,25,28]. Coalgebras come with general notions of behavioural
equivalence and bisimilarity, and a logic is said to be expressive if logical equiv-
alence implies behavioural equivalence, in which case we have a generalisation
of the classic Hennessy-Milner theorem [15].

For Set-coalgebras, i.e., when C = Set, it has been shown that a coalgebraic
modal logic is expressive if the language has sufficiently large conjunctions and
the set Λ of modalities is separating, meaning that they separate points in TX
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[24,26,28]. In the more abstract setting of coalgebraic modal logic, where a
logic is given by a functor and its semantics by a natural transformation ρ
[9,19], a sufficient condition for a logic being expressive is that the so-called
mate of ρ is monic [19, Thm. 4.2].

In this line of research, modal logics are often viewed as specification lan-
guages for coalgebras. Therefore behavioural equivalence is a given, and the
aim is to find expressive logics. However, sometimes the modal language is
of primary interest [5] and the relevant modalities need not be separating, see
e.g. [12]. This leads us to consider the following question:

Given a possibly non-expressive coalgebraic modal logic, can we
characterise logical equivalence by a notion of bisimulation?

Such investigations have been carried out earlier in [4] where a notion of Λ-
bisimulation was proposed for Set-coalgebras and coalgebraic modal logics with
a classical propositional base.

Here we generalise and extend the work of [4] beyond Set using the for-
mulation of coalgebraic modal logic via dual adjunctions [9,19,23]. Examples
include coalgebras over ordered and topological spaces and modal logics on dif-
ferent propositional bases. After recalling basic definitions of coalgebraic modal
logic in Section 2, we define the concept of a ρ-bisimulation in Section 3. For
Set-coalgebras, this is a relation B between coalgebras for which the so-called
B-coherent pairs [14,5] give rise to a congruence between complex algebras.

The definition of ρ-bisimulation is structural in the sense that it is defined
in terms of the coalgebra structure and the one-step modal semantics ρ. More-
over, it can often be characterised as a greatest fixpoint via relation lifting.
We also prove results concerning truth-preservation, composition and lattice
structure, and we show that ρ-bisimilarity, like T-bisimilarity for coalgebras.
For coalgebras on finite sets, this means that ρ-bisimilarity can be computed
by a partition refinement algorithm.

The main technical results are found in Section 4 and concern the dis-
tinguishing power of ρ-bisimulations. We first compare ρ-bisimulations with
other coalgebraic equivalence notions. Subsequently, we prove a Hennessy-
Milner style theorem (Thm. 4.4) in which we give conditions that guarantee
that logical equivalence is a ρ-bisimulation. We emphasise that the logic is not
assumed to be expressive and ρ-bisimilarity will generally differ from bisimilar-
ity for T-coalgebras. Finally, we define a notion of translation between logics
and show that if the language of ρ′ is a propositional extension of the language
of ρ, then ρ-bisimulations are also ρ′-bisimulations (Prop. 4.10).

By instantiating Prop. 4.10, we obtain that for labelled transition systems
the ρ-bisimilarity notions for Hennessy-Milner logic [15] and trace logic [19]
coincide and are equal to the standard notion of bisimilarity even without
assuming image-finiteness. These two logics have the same modalities, which
are separating, but trace logic has > as the only propositional connective.

Due to lack of space, some proofs are omitted here. They will be made
available in an extended version of this paper online.
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2 Coalgebraic modal logic

We review some background on coalgebraic logic, categorical algebra, and Stone
duality. For more see e.g. [27,21,2,3,17]. We write Set for the category of sets
and functions.

Coalgebraic modal logic generalises modal logic from Kripke frames to coal-
gebras for a functor T.

Coalgebras can be understood as generalised, state-based systems defined
parametrically in the system type T. Formally, we require T to be an endofunc-
tor on a category C. A T-coalgebra is then a pair (X, γ) such that γ : X → TX
is a morphism in C. The object X is the state space, and the arrow γ is the
coalgebra structure map. A T-coalgebra morphism from (X, γ) to (X ′, γ′) is a
C-morphism f : X → X ′ satisfying γ′ ◦ f = Tf ◦ γ. Together, T-coalgebras
and T-coalgebra morphisms form a category which we write as Coalg(T).

An algebra for a functor is the dual notion of a coalgebra. Given an end-
ofunctor L : A → A, an L-algebra is a pair (A,α) such that α : LA → A is
a morphism in A. An L-algebra morphism from (A,α) to (A′, α′) is an A-
morphism h : A → A′ such that h ◦ α = α′ ◦ Lh. We write Alg(L) for the
category of L-algebras and L-algebra morphisms.

Example 2.1 A Kripke frame (W,R ⊆ X×X) is a coalgebra for the covariant
powerset functor P : Set → Set which maps a set to its set of subsets, and a
function f : X → Y to the direct image map f [−] : PX → PY , by defining
γ : X → PX as γ(x) = R[x] = {y ∈ X | xRy}. Similarly, a Kripke model
(W,R, V ) where V is a valuation of a set P0 of atomic propositions is a coalgebra
for the Set-functor P(−)×P(P0) (which is constant in its second component)
by taking γ(x) = (R[x], V ′(x)) where V ′(x) = {p ∈ P0 | x ∈ V (p)}. It
can be verified that the ensuing notion of coalgebra morphism coincides with
the usual notion of bounded morphism for Kripke frames and Kripke models,
respectively.

Example 2.2 Labelled transition systems (LTSs) are coalgebras for the Set-
functor T = P(−)A where P is the covariant powerset functor and A is the
set of labels. A coalgebra γ : X → P(X)A specifies for each state x ∈ X and
label a ∈ A, the set γ(x)(a) of a-successors of x. In other words, an LTS is
an A-indexed multi-relational Kripke frame, and one verifies that coalgebra
morphisms are A-indexed bounded morphisms.

Logical connections To investigate logics for T-coalgebras in this generality,
we use the Stone duality approach to modal logic [13,1], but rather than a full
duality, here one requires only a dual adjunction P : C A : S (sometimes
called a logical connection) between a category C of state spaces and a cate-
gory A of algebras that encode a propositional base logic. We emphasise that
the functors P and S are contravariant. The classic example is then the in-
stance QBA : Set BA : Uf where QBA maps a set to its Boolean algebra of
predicates (i.e. subsets), and Uf maps a Boolean algebra to its set of ultrafilters.

We denote the units of a dual adjunction P : C A : S by ηC : IdC → SP
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and ηA : IdA → PS, and the bijection of Hom-sets C(C, SA) ∼= A(A,PC) in
both directions by (−)]. Recall that for f : C → SA, the adjoint transpose of
f is f ] = Pf ◦ ηAA , and for g : A→ PC, the adjoint is g] = Sg ◦ ηCC .

Coalgebraic Modal Logic Given a dual adjunction P : C A : S and an
endofunctor T on C, a modal logic for T-coalgebras is a pair (L, ρ) consisting of
an endofunctor L : A → A (defining modalities) and a natural transformation
ρ : LP→ PT, (defining the one-step modal semantics). This data gives rise to
a functor Coalg(T) → Alg(L) which sends a coalgebra (X, γ) to its complex
algebra (PX, γ∗), where γ∗ = Pγ ◦ ρX . Assuming that Alg(L) has an initial
algebra α : LΦ → Φ, which generalises the Lindenbaum-Tarski algebra, the
semantics of (equivalence classes of) formulas is obtained as the unique Alg(L)-
morphism J−Kγ : (Φ, α)→ (PX, γ∗). Viewing the semantics as an A-morphism
J−Kγ : Φ → PX, its adjoint thγ = J−K]γ : X → SΦ, is called the theory map,
since in the classic case it maps a state in X to the ultrafilter of L-formulas
it satisfies. By their definitions, the semantics and the theory map make the
following diagrams commute:

LΦ Φ X SΦ

LPX PTX PX TX TSΦ SLΦ

α

LJ·Kγ J·Kγ

thγ

γ Sα
ρX Pγ T thγ ρ[Φ

where ρ[ : TS → SL is the natural transformation, the so-called mate of ρ,
obtained (component-wise) as the adjoint of ρS ◦ LηA.

Example 2.3 Consider the self-dual adjunction Q : Set Set : Q given in
both directions by the contravariant powerset functorQ, which maps a set to its
powerset 2X , and a function f : X → Y to its inverse image map f−1 : 2Y →
2X . In this case, the adjoints are given by transposing. For f : X → 2Y ,
f ] : Y → 2X is defined by f ](y)(x) = f(x)(y).

Considering LTSs as P(−)A-coalgebras over Set (cf. Exm. 2.2), we obtain
trace logic for LTSs [19, Exm. 3.2] by taking Ltr : Set→ Set to be the functor
Ltr = 1 + A × (−) (where 1 = {∗}) which encodes a modal signature with
a constant modality > and a unary modality for each a ∈ A. Since A =
Set, trace logic has no other connectives. The initial Ltr-algebra consists of
finite sequences over A with the empty word as constant, and prefixing with
elements from A as the unary operations. That is, Ltr-formulas are of the form
〈a1〉 · · · 〈ak〉>, k ≥ 0.

We obtain the usual semantics of > and A-labelled diamonds by defining
the modal semantics ρtr : 1 + A × Q(−) → Q(P(−)A) as ρtrX(∗) = P(X)A

and ρtrX(a, U) = {t ∈ P(X)A | t(a) ∩ U 6= ∅}. Hence for an LTS (X, γ),
J〈a1〉 · · · 〈ak〉>Kγ is the subset of X consisting of states x that can execute the
trace a1 · · · ak.

Example 2.4 Consider again LTSs as P(−)A-coalgebras over Set
(cf. Exm. 2.2), but take now the classic adjunction QBA : Set BA : Uf.
Hennessy-Milner logic [15] (or equivalently, normal multi-modal logic) is
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here defined as classical propositional logic extended with join-preserving
diamonds. This is achieved by defining Lhm : BA → BA as follows. For a
Boolean algebra B, LhmB is the free Boolean algebra generated by the set
{〈a〉b | b ∈ B, a ∈ A} modulo the congruence generated by the usual diamond
equations: 〈a〉⊥ = ⊥ and 〈a〉(ϕ1 ∨ ϕ2) = 〈a〉ϕ1 ∨ 〈a〉ϕ2 for all a ∈ A. The
modal semantics ρhm : LhmQBA → QBA(P(−)A) is essentially the Boolean
extension of ρtr. In particular, ρhmX (〈a〉U) = {t ∈ P(X)A | t(a) ∩ U 6= ∅}.

The above description of Hennessy-Milner logic is a special case of a more
general approach described in the next example.

Example 2.5 If A in the dual adjunction is a variety of algebras, we can
define a logic (L, ρ) for T : C → C by predicate liftings and axioms as in [20,
Def. 4.2] and [23, Thms 4.7 and 8.8]. An n-ary predicate lifting is a natural
transformation λ : UPn → UPT, where PnX is the n-fold product of PX in A
and U : A → Set is the forgetful functor. Together with a suitable notion of
axioms, a collection Λ of such predicate liftings yields a functor L : A → A
sending A ∈ A to the free algebra generated by {λ(a1, . . . , an) | λ ∈ Λ, ai ∈ A}
modulo (instantiations of) the axioms. Define ρ : LP → PT on generators by
ρX(λ(a1, . . . , an)) = λX(a1, . . . , an) ∈ PTX. If ρ is well-defined then (L, ρ) is a
logic for Coalg(T). All logics in e.g. [4,7,21] are instances hereof.

Next, we interpret positive modal logic [11,10], whose coalgebraic semantics
over posets is given in [18, Example 2.4], in topological spaces:

Example 2.6 Consider the dual adjunction Ω : Top DL : pf, where Ω
takes open subsets of a topological space, viewed as a distributive lattice,
and pf takes prime filters of a distributive lattice topologised by the subbase
{ã | a ∈ A}, where ã = {p ∈ pfA | a ∈ p}. The Vietoris functor V : Top→ Top
takes X ∈ Top to its collection of compact subsets topologised by the subbase
consisting of �a = {c ∈ VX | c ⊆ a} and �a = {c ∈ VX | c ∩ a 6= ∅}, where
a ranges over the opens of X. For a continuous map f : X → X ′ the map
Vf takes direct images. The logic functor N : DL → DL is defined as in [18,
Exm. 2.4]. The natural transformation ρ : NΩ → ΩV given on generators by
2a 7→ �a and 3a 7→ �a then gives rise to semantics for positive modal logic.

We now recall linear weighted automata, see e.g. [8, Section 3.2].

Example 2.7 Let k be a field and Veck Veck the dual adjunction between
vector spaces over k given in both directions by taking dual space via the
contravariant functor (−)∨ = Hom(−,k) : Veck → Veck. Linear weighted
automata for a set A of labels are coalgebras for the endofunctor W = k×(−)A

on Veck, where (−)A is simply the collection of maps A→ (−) with a pointwise
vector space structure. We work with the language given by the grammar

ϕ ::= 0 | p | r · ϕ | ϕ+ ϕ | 〈a〉ϕ,

where a ∈ A, r ∈ k, and p is a single proposition letter (the termination predi-
cate). Note that, contrary to loc.cit., we also include connectives corresponding
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to the signature of vector spaces (because we will use vector spaces as algebraic
semantics). The interpretation of a formula ϕ in this (many-valued) setting is
a linear map JϕK : X → k. The connectives 0, + and r are interpreted via the
corresponding operations in vector spaces. For p, we use the nullary predicate
lifting λp ∈ U(W−)∨, where U : Veck → Set is the forgetful functor, given
by λpX : WX → k : (r, t) 7→ r. That is JpKγ = λpX ◦ γ : X → k. As for the
diamonds, we use λ〈a〉 : U(−)∨ → U(W−)∨ defined by

λ
〈a〉
X (m) : WX → k : (r, t) 7→ m(t(a)).

Concretely, this means that if JpKγ(y) = r ∈ k and there is an a-transition

x
a−→ y, then J〈a〉pK(x) = r. Together with the axioms 〈a〉(ϕ+ψ) = 〈a〉ϕ+〈a〉ψ

and r ·〈a〉ϕ = 〈a〉(r ·ϕ) this gives rise to an endofunctor L : Veck → Veck, and a
logic (L, ρ) for linear weighted automata. One can show that logical equivalence
coincides with language semantics if the state-space is finite-dimensional.

Relations as jointly mono spans We are interested in giving certain re-
lations a special status. In Set, a binary relation B ⊆ X × X corresponds
to an injective map B ↪→ X × X. This generalises to an arbitrary category

(possibly lacking products) via the following notion. A span X1 B X2
π1 π2

in a category C is called jointly mono if for all C-arrows h, h′ with codomain
B it satisfies: if π1 ◦ h = π1 ◦ h′ and π2 ◦ h = π2 ◦ h′ then h = h′. We some-
times write the above span as (B, π1, π2), leaving codomains implicit. If C
has products, then (B, π1, π2) is a jointly mono span if and only if the pairing
〈π1, π2〉 : B → X1 ×X2 is monic.

The collection of jointly mono spans between two objects X1, X2 ∈ C can
be ordered as follows: (B, π1, π2) ≤ (B′, π′1, π

′
2) if there exists a (necessarily

monic) map k : B → B′ such that πi = π′i ◦ k. If (B, π1, π2) ≤ (B′, π′1, π
′
2) and

(B′, π′1, π
′
2) ≤ (B, π1, π2), then the two spans must be isomorphic. We write

Rel(X1, X2) for the poset of jointly mono spans between X1 and X2 up to
isomorphism.

Image factorisations and regular epis We will also need a generalisation
of image factorisation. A category C is said to have (E,M)-factorisations for
some classes E and M of C-morphisms, if every morphism f ∈ C factorises as
f = m ◦ e with e ∈ E and m ∈ M. We say that C has an (E,M)-factorisation
system [2, Def. 14.1] if moreover both E and M are closed under composition,
and whenever g ◦ e = m ◦ f , with e ∈ E and m ∈ M, there exists a unique
diagonal fill-in d such that f = d ◦ e and g = m ◦ d.

An epi e is regular if it is a coequalizer. In a variety, the regular epis
are precisely the surjective morphisms. Set,Pos,Top,Vec,Stone all have a
(RegEpi,Mono)-factorisation system.

3 Logic-induced bisimulations

We are now ready to define our logic-induced notion of bisimulation. Through-
out this section, we assume we are given a dual adjunction P : C A : S, an
endofunctor T on C, and a logic (L, ρ) for T -coalgebras. Moreover, we assume
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that C has pullbacks and, in addition, that A has pullbacks or C has pushouts.
Both conditions hold in our examples. In particular, if A is variety of algebras
then pullbacks exist and are computed as in Set.

3.1 Definition and first examples

The basic ingredient for the definition of ρ-bisimulation is the notion of a dual

span: A jointly mono span X1 B X2
π1 π2 in C is mapped by P to a cospan

PX1 PB PX2
Pπ1 Pπ2 in A. Taking its pullback we obtain a jointly mono span

in A, which we denote by (B, π1, π2) and refer to as the dual span of (B, π1, π2).
In case C has pushouts, dual spans exist because dual adjoints send pushouts
to pullbacks. In the classic case where P = QBA : Set → BA maps a set to
its Boolean algebra of subsets, the dual span (B, π1, π2) consists of B-coherent
pairs (of subsets of X1 and X2), used in the definition of Λ-bisimulation [4],
neighbourhood bisimulation [14], and conditional bisimulation [5]. We proceed
to the definition of a ρ-bisimulation.

Definition 3.1 Let γ1 : X1 → TX1 and γ2 : X2 → TX2 be T-coalgebras. A

jointly mono span X1 B X2
π1 π2 is a ρ-bisimulation between γ1 and γ2 if

Pπ1 ◦ γ∗1 ◦ Lπ1 = Pπ2 ◦ γ∗2 ◦ Lπ2, (1)

Definition 3.1 is structural in the sense that it is defined in terms of the
coalgebra structure and the one-step modal semantics ρ (via the complex al-
gebras γ∗i ). In particular, it does not refer to the set of all formulas nor to
the initial L-algebra. Equation (1) provides a coherence condition that can be
checked in concrete settings. We provide examples below. First, we give a more
conceptual characterisation in terms of dual spans.

Proposition 3.2 A jointly mono span (B, π1, π2) is a ρ-bisimulation between
γ1 and γ2 iff its dual span (B, π1, π2) is a congruence between γ∗1 and γ∗2 .

Proof. (⇒) Equation (1) says that the
outer shell of the diagram on the right
commutes. The universal property of
the pullback B then yields a morphism
β : LB → B such that all squares in (2)
commute. (⇐) The existence of such a

LB

LPX1 LPX2

B

PX1 PX2

PB

Lπ1 Lπ2

β

γ∗1 γ∗2π1 π2

Pπ1 Pπ2

(2)

β implies commutativity of (the outer shell of) the diagram. 2

We instantiate the definition for some of the examples of Section 2.

Example 3.3 Consider the setting of Example 2.5 where A is a variety and
(L, ρ) is given by predicate liftings and axioms. If C is concrete, then (B, π1, π2)
is a ρ-bisimulation if for all (x1, x2) ∈ B, λ ∈ Λ and (a1, a2) ∈ B ⊆ PX1×PX2,
we have:

γ1(x1) ∈ λX1(a1) iff γ2(x2) ∈ λX2(a2).

The notion of a ρ-bisimulation thus generalises that of a Λ-bisimulation
from [4,7], where Λ denotes a collection of (open) predicate liftings. Exam-
ples 3.4 and 3.5 below are instances hereof.
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Example 3.4 In the setting of positive modal logic from Exm. 2.6, a ρ-
bisimulation between (X1, γ1) and (X2, γ2) is a subspace B ⊆ X1 × X2 with
projections πi : B → Xi satisfying for all (x1, x2) ∈ B and all B-coherent pairs
of opens (a1, a2) ∈ ΩX1 × ΩX2:

γ1(x1) ⊆ a1 iff γ2(x2) ⊆ a2 and γ1(x1) ∩ a1 6= ∅ iff γ2(x2) ∩ a2 6= ∅.
Example 3.5 In the setting of modal vector logic from Exm. 2.7, jointly mono
spans are linear subspaces, and the dual span of (B, π1, π2) consists of those
pairs of k-valued, linear predicates (h1, h2) ∈ X∨1 ×X∨2 such that (x1, x2) ∈ B
implies h1(x1) = h2(x2). Unravelling the definitions shows that a linear sub-
space (B, π1, π2) of X1×X2 is a ρ-bisimulation between (X1, γ1) and (X2, γ2),
if for all (x1, x2) ∈ B, we have JpKγ(x1) = JpKγ(x2), and:

if x1
a−→ y1 and x2

a−→ y2, then h1(y1) = h2(y2) for all (h1, h2) ∈ B.

We say that a span (B, π1, π2) between (X1, γ1) and (X2, γ2) is truth pre-
serving if thγ1

◦ π1 = thγ2
◦ π2. If C is concrete, this means that if (x1, x2) ∈ B

then x1 and x2 have the same theory, i.e., satisfy the same formulas. As desired,
ρ-bisimulations are truth-preserving:

Proposition 3.6 If X1 B X2
π1 π2 is a ρ-bisimulation between T-coalgebras

(X1, γ1) and (X2, γ2), then thγ1 ◦π1 = thγ2 ◦π2.

Proof. Let β : LB → B be given as in (2), and let hβ : Φ → B be
the unique morphism from the initial L-algebra. By construction of β,
πi : (B, β) → (PXi, γ

∗
i ) are L-algebra morphisms. By uniqueness of initial

morphisms, J−Kγi = πi ◦ hβ , and hence SJ−Kγi = Shβ ◦ Sπi, i = 1, 2.
Combining this with Sπ1 ◦ SPπ1 = Sπ2 ◦ SPπ2 (obtained by applying S to
the pullback square of (B, π1, π2)), it follows that SJ·Kγ1

◦ SPπ1 = SJ·Kγ2
◦

SPπ2. Recall that the theory map is the adjoint of the semantic map, i.e.,
thγi = SJ−Kγi ◦ ηCXi where ηC : IdC → SP is a unit of the logical connec-

tion P : C A : S. Together with naturality of ηC, it now follows that:

thγ1
◦ π1 = SJ·Kγ1

◦ ηCX1
◦ π1 = SJ·Kγ1

◦ SPπ1 ◦ ηCB
= SJ·Kγ2

◦ SPπ2 ◦ ηCB = SJ·Kγ2
◦ ηCX2

◦ π2 = thγ2
◦ π2 2

3.2 Lattice structure and composition of ρ-bisimulations

In the remainder of Section 3 we assume that C is finitely complete and well-
powered, hence Rel(X1, X2) is simply the poset of subobjects of X1 × X2.
Besides, assume that C has an (E,M)-factorisation system with M = Mono.

It is well known that bisimulations for Set-based coalgebras are closed under
composition if and only if the coalgebra functor preserves weak pullbacks [27].
We know from [4, Exm. 3.3] that Λ-bisimulations do not always compose,
even for weak pullback-preserving functors, so the same failure occurs for ρ-
bisimulations (cf. Exm. 3.3). However, in special cases we can compose.

The composition of two jointly mono spans (B, π1, π2) in Rel(X1, X2) and
(B′, π′2, π3) in Rel(X2, X3) is given as follows: The pullback (C, c1, c3) of π2 and
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π′2 yields projections πi ◦ ci : C → Xi, and we define B ◦B′ via the (E,Mono)-
factorisation of 〈π1 ◦ c1, π3 ◦ c3〉 : C → X1 ×X3 as C B ◦B′ X1 ×X3.

Call a ρ-bisimulation full if both projections are split epi, that is, they
have a section. For Set-based coalgebras this means that the projections are
surjective, i.e., each state in (X1, γ1) is ρ-bisimilar to some state in (X2, γ2),
and vice versa.

Lemma 3.7 Pullbacks preserve split epimorphisms.

Lemma 3.8 Let (f ′, v) be a pullback of (w, f). If w, f are regular epic and
v, f ′ are split epic then (w, f) is a pushout of (f ′, v).

Lemma 3.9 Let X1 S X2
ζ1 ζ2

and X1 B X2
π1 π2 be spans between T-

coalgebra (X1, γ1) and (X2, γ2) and suppose e : S → B is an epi such that
ζi = πi ◦ e. Then (S, ζ1, ζ2) satisfies (1) if and only if (B, π1, π2) does.

Now we can show that full bisimulations compose.

Proposition 3.10 Full bisimulations are closed under composition.

Proof. By Lemma 3.9 it suffices to show that (C, π1c1, π3c3) satisfies the
ρ-bisimulation condition. Since all the πi are split epic, so are c1 and c3
(cf. Lemma 3.7). According to Lemma 3.8 this implies that the square is
also a pushout. Therefore 4 below is a pullback, while 1 , 2 and 3 are
pullbacks by definition. It follows that the outer square is a pullback.

C

B1 B2

PX1 PX2 PX3

PB1 PB2

PC

c1 c3

1π1 π2

2

π′2 π3

3

Pπ1

Pπ2 Pπ′2

4 Pπ3

Pc1 Pc2

(3)

As a consequence (π1c1, π3c3) is jointly monic. Furthermore, using the fact
that B1 and B2 are ρ-bisimulations, a straightforward computation shows that
(C, π1c1, π3c3) is a ρ-bisimulation. 2

Another well-known result for bisimulations on Set-coalgebras is that they
form a complete lattice [27]. We now show that, provided C has all coproducts,
this also holds for ρ-bisimulations. Recall that the empty coproduct

∐ ∅ =: 0
is an initial object, i.e., for all C ∈ C there is a unique morphism !C : 0→ C.

Definition 3.11 The join of a family (Bi, πi,1, πi,2), i ∈ I, in Rel(X1, X2), is
the jointly mono span

⋃
i∈I Bi that arises from the factorisation

∐
iBi

⋃
iBi X1 ×X2

∐
i〈πi,1,πi,2〉

The bottom element (I, ι1, ι2) in Rel(X1, X2) is defined by the factorisation of

the initial morphism: 0 I X1 ×X2
〈ι1,ι2〉

.
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Indeed,
⋃
iBi is an upper bound in Rel(X1, X2). Suppose (Bi, πi,1, πi,2) ≤

(S, s1, s2) for all i, then there are ti : Bi → S such that πi,j = sj ◦ ti. From

⋃
iBi∐

iBi X1 ×X2

S

d
t

the coproduct we get t :
∐
i∈I Bi → S and

this makes the diagram on the right com-
mute. The factorisation system now gives
a diagonal d :

⋃
i∈I Bi → S witnessing that

S is bigger than
⋃
i∈I Bi in Rel(X1, X2).

Proposition 3.12 If C has an (E,Mono)-factorisation system, binary prod-
ucts and all coproducts, then the poset Rel(X1, X2) is a complete join-
semilattice with join

⋃
and bottom element (I, ι1, ι2).

Proof. Commutativity and associativity of the join follows from the fact
that coproducts are commutative and associative. For idempotency note
that for every (B, π1, π2) in Rel(X1, X2) we have an (E,Mono)-factorisation

B +B B X1 ×X2,
∇ where ∇ is the codiagonal, so B ∪B = B.

Next, we show that (I, ι1, ι2) is the bottom element in (Rel(X1, X2),∪).
That is, for all (B, π1, π2) in Rel(X1, X2), B ∪ I is isomorphic to B. By the

definition of a coproduct, B 0 +B I +B

i

∼= !I+idB
commutes, where i is

the inclusion that arises from the coproduct, and because E is closed under
composition, the map i : B → I + B is in E. By definition of the join, the
following commutes:

B I +B I ∪B X1 ×X2

〈π1,π2〉

[〈ι1,ι2〉,〈π1,π2〉]

Since factorisation systems are unique up to isomorphism, we get an isomor-
phism B ∼= B ∪ I. 2

We define ρ-bisimilarity as the join of all ρ-bisimulations in Rel(X1, X2).
The following proposition tells us that ρ-bisimilarity is itself a ρ-bisimulation.
Given two T-coalgebras (X1, γ1) and (X2, γ2), we denote by ρ-Bis(γ1, γ2) the
sub-poset of Rel(X1, X2) of ρ-bisimulations between (X1, γ1) and (X2, γ2).

Proposition 3.13 Under the assumptions of Proposition 3.12, ρ-Bis(γ1, γ2)
is closed under joins and bottom element in Rel(X1, X2). Consequently, ρ-
Bis(γ1, γ2) is a complete join semilattice, and hence also a complete lattice.

While ρ-Bis(γ1, γ2) is a complete sub-semilattice of Rel(X1, X2), it need
not inherit the meets. This resembles the situation for Kripke bisimulations,
which are generally not closed under intersections.

Example 3.14 The categories Set, Top and Veck from Examples 3.4, 3.3 and
3.5 are well-powered, complete and cocomplete, and as mentioned in Section 2
have a (RegEpi,Mono)-factorisation system. Hence ρ-bisimulations for positive
modal logic, modal vector logic and coalgebraic geometric logic form complete
lattices, and we recover the similar result for Λ-bisimulations in [4].



De Groot, Hansen and Kurz 299

3.3 Characterisation via relation lifting

Another property of bisimulations for Set-coalgebras is that they can be char-
acterised via relation lifting (see e.g. [29, Sec. 2.2]), and that bisimilarity on a
coalgebra (X, γ) is a greatest fixpoint of a monotone operator on the lattice of
relations P(X ×X). In this subsection and the following, we show that these
results generalise to ρ-bisimulations.

Given X1, X2 in C, we shall define a monotone map

Tρ : Rel(X1, X2)→ Rel(TX1,TX2)

which lifts (B, π1, π2) in Rel(X1, X2) to (TρB,Tρπ1,T
ρπ2) in Rel(TX1,TX2).

In order to do so, consider the composition, for i = 1, 2,

σi : TXi SPTXi SLPXi SLB
ηCTXi SρXi SLπi (4)

For a concrete example of σi, see Example 3.17 below.

Definition 3.15 Given (B, π1, π2) in Rel(X1, X2), we define Tρ(B, π1, π2) =

(TρB,Tρπ1,T
ρπ2) as the pullback of TX1 SLB TX2

σ1 σ2 .

Observe that (TρB,Tρπ1,T
ρπ2) is a jointly mono span because it is a pull-

back. Monotonicity of Tρ follows from unravelling the definitions. We can now
characterise ρ-bisimulations as in [16] using the relation lifting Tρ.

Theorem 3.16 A jointly mono span (B, π1, π2) between two T-coalgebras
(X1, γ1) and (X2, γ2) is a ρ-bisim-
ulation if and only if there exists a
morphism δ : B → TρB in C mak-
ing diagram (5) commute.

X1 B X2

TX1 TρB TX2

γ1

π1 π2

δ γ2

Tρπ1 Tρπ2

(5)

Proof. If δ exists, then B is a ρ-bisimulation. Suppose such a δ exists. In
order to show that B is a ρ-bisimulation, we need to show that the outer shell
of the left diagram below commutes. Recall that ηC and ηA are the units of
the dual adjunction P : C A : S.

LB LB PSLB

LPX1 PSLB LPX2 LPXi PSLPXi

PTX1 PTρB PTX2 PTXi PSPTXi

PX1 PB PX2 PTXi

Lπ1 Lπ2

ηA
LB

ηA
LB

Lπi PSLπi

PσiρX1

Pσ1 Pσ2

ρX2

ηALPXi

ρXi PSρXi

Pγ1

PTρπ1 PTρπ2

Pδ Pγ2

ηAPTXi

PηCTXi

Pπ1 Pπ2

(6)

Commutativity of the bottom two squares follows from applying P to the di-
agram in (5). The middle square commutes because of the definition of TρB.
The top two squares commute because they are the outer shell of the right
diagram in (6). In (6), the right square commutes by definition of σi (Eq. 4).
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The other two squares commute by naturality of ηA and the lower triangle is
a triangle identity of the dual adjunction. Therefore the outer shell commutes.

If B is a ρ-bisimulation, then we can find δ. Suppose (B, π1, π2) is a ρ-bisim-
ulation. If we can prove that σ1 ◦ γ1 ◦ π1 = σ2 ◦ γ2 ◦ π2 then we obtain δ as the

B

X1 X2

TρB

TX1 TX2

SLQ

π1 π2

δ

γ1 γ2Tρπ1 Tρπ2

σ1 σ2

(7)

mediating map induced by the pullback
which defines TρB, as shown in the di-
agram (7).

We claim that the following dia-
gram commutes. Since its outer shell is
the same as the outer shell of (7), this
proves the proposition. So consider:

X1 B X2

SPX1 SPB SPX2

TX1 SPTX1 SPTX2 TX2

SLPX1 SLPX2

SLQ

ηX1γ1

π1 π2

ηB ηX2 γ2

SPγ1

SPπ1 SPπ2

SPγ1

ηTX1

σ1

SρX1
SρX2

ηTX2

σ2

SLπ1 SLπ2

Commutativity of the middle part follows from the fact that B is a ρ-
bisimulation. The four top squares commute because η is a natural trans-
formation. The two remaining squares commute by definition of σi. 2

We work out the explicit description of Tρ in a special case:

Example 3.17 Suppose we work with the classic dual adjunction
QBA : Set BA : Uf, T is an endofunctor on Set, and the logic (L, ρ)
is given by predicate liftings and axioms (cf. Example 2.5). Then the type of
σi is TXi → UfLB and the ultrafilter σi(ti) is determined by the elements of
the form λ(a1, a2) it contains, where λ ∈ Λ and (a1, a2) ∈ B. Therefore the
action of Tρ on (B, π1, π2) is given by

TρB = {(t1, t2) ∈ TX1 × TX2 | ∀λ ∈ Λ and B-coherent (a1, a2)

we have t1 ∈ λX1
(a1)⇔ t2 ∈ λX2

(a2)}.

Informally, these are the pairs in TX1 × TX2 that cannot be distinguished by
lifted B-coherent predicates.

3.4 Characterisation as a (post)fixpoint

As for Set-coalgebras, given a relation lifting of T and T-coalgebras (X1, γ1),
(X2, γ2), we can define a map Tργ1,γ2

: Rel(X1, X2) → Rel(X1, X2) by, essen-
tially, taking inverse images under the γi. This is a relational version of a
predicate transformer on a coalgebra.
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Definition 3.18 Given T-coalgebras (X1, γ1)
and (X2, γ2), define Tργ1,γ2

(B, π1, π1) =
(Tργ1,γ2

B,Tργ1,γ2
π1,T

ρ
γ1,γ2

π2) ∈ Rel(X1, X2)
via the pullback on the right. This is well de-
fined because pullbacks are jointly mono spans.

Tργ1,γ2
B X2

TX2

X1 TX1 SLB

Tργ1,γ2
π1

Tργ1,γ2
π2

γ2

σ2

γ1 σ1

Lemma 3.19 The map Tργ1,γ2
: Rel(X1, X2)→ Rel(X1, X2) is monotone.

Proof. If (B, π1, π2) ≤ (B′, π′1, π
′
2) then there exists an m : B → B′ such that

πi = π′i ◦m. As a consequence the pullback B
′

is a cone for B and we have a

mediating map k : B
′ → B satisfying π′i = πi ◦ k. Unravelling the definitions

reveals that Tργ1,γ2
B with its projections is a cone for Tργ1,γ2

B′, hence there is
a (unique) map t : Tργ1,γ2

B → Tργ1,γ2
B′ such that Tργ1,γ2

πi = Tργ1,γ2
π′i ◦ t which

witnesses that Tργ1,γ2
(B, π1, π2) ≤ Tργ1,γ2

(B′, π′1, π
′
2). 2

As announced, ρ-bisimulations are precisely the post-fixpoints of Tργ1,γ2
.

Theorem 3.20 A relation X1 B X2
π1 π2 is a ρ-bisimulation between

(X1, γ1) and (X2, γ2) if and only if (B, π1, π2) ≤ Tργ1,γ2
(B, π1, π2).

Proof. If (B, π1, π2) is a ρ-bisimulation, then by Theorem 3.16 there is a map
β : B → TρB such that diagram (5) commutes. We then get a map β′ : B →
Tργ1,γ2

B from the pullback property of Tργ1,γ2
B. Conversely, given β′ : B →

Tργ1,γ2
B, we obtain β : B → TρB from the pullback property of TρB. 2

Monotonicity of Tργ1,γ2
and the Knaster-Tarski fixpoint theorem imply:

Corollary 3.21 Under the assumptions of Prop. 3.12, Tργ1,γ2
has a greatest

fixpoint, and this greatest fixpoint is ρ-bisimilarity.

Example 3.22 We return to the classic setting of Example 3.17. Let
(B, π1, π2) be a relation between T-coalgebras (X1, γ) and (X2, γ2). Then

Tργ1,γ2
B = {(x1, x2) ∈ X1 ×X2 | (γ1(x1), γ2(x2)) ∈ TρB}.

Informally, Tργ1,γ2
B consists of all pairs of worlds whose one-step behaviours

are indistiguishable by lifted B-coherent predicates.

4 Distinguishing power

In this section we compare the distinguishing power of ρ-bisimulations with that
of other semantic equivalence notions and logical equivalence. We make the
same assumptions here as at the start of Section 3. Given a cospan (X1, γ1)→
(Y, δ)← (X2, γ2) in Coalg(T), we call (Y, δ) a congruence (of T-coalgebras).

4.1 Comparison with known equivalence notions

We briefly recall three coalgebraic equivalence notions, in descending order of
distinguishing power. For more details, see e.g. [4, Def. 3.9].

Definition 4.1 A jointly mono span (B, π1, π2) between (X1, γ1) and (X2, γ2)
is a: (i) T-bisimulation if there is t : B → TB such that the πi become coalgebra
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morphisms; (ii) precocongruence if its pushout π̂1 : X1 → B̂ ← X2 : π̂1 can
be turned into a congruence between (X1, γ1) and (X2, γ2), more precisely,

if there is t : B̂ → TB̂ such that π̂1 and π̂2 become coalgebra morphisms;
(iii) behavioural equivalence if it is a pullback in C of some cospan (X1, γ1)→
(Y, δ)← (X2, γ2).

When T preserves weak pullbacks, all three notions coincide (when con-
sidering associated “bisimilarity” notions), but in general, they may differ. In
particular, expressive logics can generally only capture behavioural equivalence
[14]. The next proposition can be proved in the same way as [4, Prop. 3.10].

Proposition 4.2 (i) Every T-bisimulation is a ρ-bisimulation. (ii) Every pre-
cocongruence is a ρ-bisimulation.

The converse direction requires additional assumptions.

Proposition 4.3 If C has pushouts, P is faithful, and either (i) ρ is point-
wise epic or (ii) ρ[ is pointwise monic and T preserves monos, then every ρ-
bisimulation is a precocongruence. If, in addition, T preserves weak pullbacks,
then ρ-bisimilarity coincides with all three notions in Def. 4.1.

Proof. Suppose X1 B X2
π1 π2 is a ρ-bisimulation with pushout (B̂, π̂1, π̂2)

be the pushout. We need to find a coalgebra structure ζ : B̂ → TB̂ which turns
π̂1 and π̂2 into coalgebra morphisms. It suffices to show that Tπ̂1 ◦ γ1 ◦ π1 =
Tπ̂2 ◦ γ2 ◦ π2, because then the universal property of the pushout yields the
desired ζ. If P is faithful and ρ is pointwise epic, then it suffices to prove that
Pπ1◦Pγ1◦PTπ̂1◦ρB̂ = Pπ2◦Pγ2◦PTπ̂2◦ρB̂ . This follows from the left diagram
below, where the outer shell commutes because (B, π1, π2) is a ρ-bisimulation
and the top two squares commute by naturality of ρ.

LPB̂ SLPB̂

LPX1 LPX2 SLPX1 SLPX2

PTB̂ TB̂

PTX1 PTX2 TX1 TX2

PB̂ B̂

PX1 PX2 X1 X2

PB B

LPπ̂1 LPπ̂2

ρB̂

ρX1
ρX2

SLPπ̂1 SLPπ̂2

PTπ̂1 PTπ̂2

ρ]
B̂

Pγ1 Pγ2

Tπ̂1ρ]X1 Tπ̂2
ρ]X2

Pπ̂1 Pπ̂2

Pπ1 Pπ2

π̂1γ1 π̂2
γ2

π1 π2

Alternatively, suppose P is faithful (hence ηC : IdC → SP is pointwise
monic), ρ[ is pointwise monic and T preserves monos. Then the transpose

ρ]
B̂

: TB̂ → SLPB̂ of ρB̂ is monic, because ρ]
B̂

= SρB̂ ◦ ηCTB̂ = ρ[
PB̂
◦ TηC

B̂
, so it

suffices to show that ρ]
B̂
◦Tπ̂1 ◦γ1 ◦π1 = ρ]

B̂
◦Tπ̂2 ◦γ2 ◦π2. But this follows from

transposing the left diagram above, which yields the diagram to the right.
When T preserves weak pullbacks, T-bisimilarity coincides with behavioural

equivalence [27], and hence also with the largest precocongruence and ρ-
bisimilarity. 2
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We note that condition (ii) in Proposition 4.3 entails that (L, ρ) is expressive
[19, Thm. 4.2], i.e., that logical equivalence implies behavioural equivalence. In
our abstract setting, logical equivalence with respect to (L, ρ) is the kernel
pair (B, π, π′) of the theory map th : X → SΦ. Hence, (L, ρ) is expressive if
(B, π, π′) is below a behavioural equivalence in Rel(X,X).

4.2 Hennessy-Milner type theorem

We now prove a partial converse to Proposition 3.6 (truth-preservation). We
show that under certain conditions logical equivalence implies ρ-bisimilarity.

Theorem 4.4 Let C′ A′ be the dual equivalence induced by the dual ad-
junction C A. Suppose that

• C has (RegEpi,Mono)-factorisations for morphisms with domain ∈ C′;

• C′ is closed under regular epimorphic images;

• S is faithful and L preserves epis.

Then for all T-coalgebras (X, γ) with X ∈ C′, logical equivalence, i.e., the
kernel pair (B, π, π′) of th : X → SΦ, is a ρ-bisimulation.

Proof. In order to prove that (B, π, π′) is a ρ-bisimulation, we need to show

LB

LPX LΦ LPX

Φ

PX B PX

PB

Lπ Lπ′

γ∗

LJ·Kγ LJ·Kγ
α

Lh

γ∗
J·Kγ J·Kγ

h

Pπ

π π′

Pπ′

that the outer shell of the diagram on the
right commutes. From B being the kernel
pair of th we have that (Φ, J·Kγ , J·Kγ) is a cone
for the pullback B. Hence we get a morphism
h : Φ → B such that the triangles left and
right of h commute, and it is easy to see that
all the inner squares and triangles in the di-
agram on the right commute. Thus, in or-
der to show that the outer shell commutes,
it suffices to show that Lh is epic. By the
assumption that L preserves epis, it suffices to show that h : Φ → B is epic.
Let m ◦ e be the (RegEpi,Mono)-factorisation of th. Then the left diagram
in (8) commutes. Since m is monic the upper square is a pullback, and by [2,
Proposition 11.33] it is also a pushout. As a consequence, the lower square in
the right diagram of (8), obtained from dualising the left one, is a pullback.

B
X X

A

SΦ

π π′

e

th

e

th
m

Φ

PA
PX PX

PB

h
J·Kγ J·Kγ

Pe Pe

Pπ Pπ′

(8)

Here h denotes the adjoint transpose of m. Applying S to h gives the morphism
Sh : SPA→ SΦ which by assumption is isomorphic to m (because A ∼= SPA).
Since S is faithful and m is monic, h and therefore Lh are epic. 2

Example 4.5 In the classic case, Set BA restricts to the full duality
between finite sets and finite Boolean algebras. Set has (RegEpi,Mono)-
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factorisations [2, Exm. 14.2(2)]. In Set and BA, all epis are regular and
coincide with surjections [2,6], and finite sets are closed under surjective im-
ages. The ultrafilter functor S is faithful. If the logic functor L is given by
predicate liftings and relations, then by [23, Remark 4.10] it preserves regular
epis, and since all epis are regular, L preserves epis. Applying Theorem 4.4, we
recover [4, Theorem 4.5], and thereby all examples given there. In particular,
taking (L, ρ) to be Hennessy-Milner logic (Example 2.4), then we recover from
Theorem 4.4 that over finite labelled transition systems, logical equivalence
implies ρ-bisimilarity for Hennessy-Milner logic.

Remark 4.6 For positive modal logic from Examples 2.6 and 3.4, we have not
been able to show that the logic functor N : DL→ DL preserves epis.

Example 4.7 We return to modal vector logic from Examples 2.7 and 3.5. The
dual adjunction Veck Veck restricts to the well-known self-duality of finite-
dimensional vector spaces FinVeck. The category Veck has (RegEpi,Mono)-
factorisations [2, Ex. 14.2] and the regular epis in both Veck and FinVeck
are the surjections [2, Exm. 7.72]. Moreover, the surjective image of a finite-
dimensional vector space is again finite-dimensional, and the functor (−)∨ is
faithful. Finally, since L is generated by predicate liftings and axioms it pre-
serves surjections, so we can apply Theorem 4.4 to conclude that logical equiv-
alence and ρ-bisimilarity coincide on W-coalgebras state-spaces in FinVeck.

Example 4.8 An example where logical equivalence does not imply ρ-
bisimilarity is given by trace logic for labelled transitions systems (Exam-
ple 2.3). The conditions for Theorem 4.4 hold for trace logic, but the induced
dual equivalence is in this case trivial, i.e., C′ and A′ are the empty category,
hence Theorem 4.4 does not tell us anything.

4.3 Invariance under translations

In this section we assume that C has pushouts. The example of Hennessy-
Milner logic (Exm. 2.4) and trace logic (Exm. 2.3 and 4.8) is a situation where
one logic is a reduct of the other. This can be considered a special case of trans-
lating a logic into another. We will show under which conditions ρ-bisimilarity
is preserved under translations. To make this formal, we first generalise [22,
Def 4.1].

Definition 4.9 Assume we are given a “triangle situation” as in diagram
(9(a)) such that P = UP′, and we have modal semantics ρ′ : L′P′ → P′T and
ρ : LP → PT. A translation from (L′, ρ′) to (L, ρ) is a natural transformation
τ : LP→ UL′P′ such that ρ = Uρ′ ◦ τ , see diagram (9(b)).

A′ LP UL′P′ FLP L′P′

C

A PT UP′T FPT P′T

UaF

L′

ρ

τ

Uρ′

τ]

Fρ ρ′
P′

P

T

L
= εP′T

(a) (b) (c)

(9)
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In (c), ε is the counit of F a U (which is adjoint to the identity) because P =
UP′, and τ ] is the (F a U)-adjoint of τ . In the presence of such a translation,
every ρ′-bisimulation is also a ρ-bisimulation. We leave the straightforward
proof to the reader. A sufficient condition for the converse is that the transpose
τ ] of τ is epic, see diagram (9(c)). Note that due to the adjunction F a U,
diagram (b) commutes if and only if (c) does. Intuitively, τ ] : FLP → L′P′

being epic formalises that every modality in L′ is a propositional combination
of a modal formula of L.

Proposition 4.10 Suppose that τ ] is pointwise epic. Then every ρ-
bisimulation is a ρ′-bisimulation.

Proof. Commutativity of the outer shell of the following diagram will prove

that X1 B X2
π1 π2 is a ρ′-bisimulation:

L′P′B̂
L′P′X1 L′P′X2

FLPB̂
FLPX1 FLPX2

P′TX1 FPTX1 FPTX2 P′TX2
FPB̂

FPX1 FPX2
FPB

P′X1 P′X2
P′B

L′Uπ̂1 L′Uπ̂2

ρ′X1

1

2 ρ′X2

4

3
τ]
B̂

FLPπ̂1 FLPπ̂2

5

τ]X1

FρX1

τ]X2

FρX2

P′γ1

7

FPγ1

εP′TX1

FPγ2

εP′TX2

P′γ2

10

FPπ̂1 FPπ̂2

6

εP′X1
FPπ1 εP′X1

FPπ2

εP′B

P′π1

8

P′π2

9

Cells 1 and 4 commute by diagram (c) in (9), and cells 2 and 3 by naturality of
τ ]. Commutativity of 5 and 6 together follows from applying F to the diagram
witnessing the fact that X1 B X2 is a ρ-bisimulation. Commutativity
of the remaining cells follows from the naturality of the counit ε. 2

In the setting of Examples 2.4, 2.5 and 3.3, where A′ is a variety of algebras
and the logic (L, ρ) is given by predicate liftings and axioms, we can consider
the special case of (9) where (L, ρ) is the “modal reduct” of (L′, ρ′).

Example 4.11 Suppose A is a variety of algebras with free-forgetful ad-
junction F a U. Let (L, ρ) be a logic for T-coalgebras given by a collec-
tion Λ of predicate liftings and axioms (Example 2.5). Then we can de-
fine P0 = U ◦ P, which has dual adjoint S0 =
SF, where S is the dual adjoint of P. De-
fine the logic functor L0 : Set → Set by
L0X = {λ0(a1, . . . , an) | λ ∈ Λai ∈ X} and
L0f(λ0(a1, . . . , an)) = λ0(fa1, . . . , fan). Define

A

C

Set

UaF

LP

P0

T

L0

τ : L0P0 → ULP by τX(λ0(a1, . . . , an)) = λ(a1, . . . , an) ∈ ULPX. The logic
(L, ρ) gives rise to the logic (L0, ρ0), where ρ0 = Uρ ◦ τ : L0P0 → P0T. Then
τ is a translation. One can verify that, in this situation, τ ] is pointwise epic.
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Therefore a jointly mono span X1 B X2 in C is a ρ-bisimulation if and
only if it is a ρ0-bisimulation. Hence it suffices to look at the underlying sets
when verifying whether a jointly mono span is a ρ-bisimulation.

Hennessy-Milner logic and trace logic are a specific instance of Exam-
ple 4.11.

Example 4.12 Recall trace logic (Exm. 2.3) and Henessy-Milner logic
(Exm. 2.4) for LTSs. We gave a concrete definition of the Hennessy-Milner logic
functor Lhm in Example 2.4. It can be equivalently defined as follows in terms of
the free-forgetful adjunction F a U of BA over Set. The join-preservation of the
diamond modalities is encoded in Lhm by factoring the free-forgetful adjunction
F a U via the category JSL of join-semilattices as shown in diagram (10(d)).
The logic functor Lhm is then defined as Lhm = FLtrU = FBAFJSLL

trUJSLUBA.
Letting U = UJSLUBA and F = FBAFJSL, we have Q = UQBA, and in particular
Lhm = FLtrU. The semantics of Hennessy-Milner logic coincides with taking ρhm

to be the adjoint of ρtr, so trace logic is the modal reduct of Hennessy-Milner
logic.

Defining τ as in Exm. 4.11 implies that τ ] : FLtrQ → LhmQBA is the identity
(this follows from Lhm = FLtrU). Concretely, τ ] is identity, because formulas
of Hennessy-Milner logic are precisely the Boolean combinations of trace logic
formulas. Hence, in particular, τ ] is epic. It now follows from Proposition 4.10
that a ρtr-bisimulation is a ρhm-bisimulation (and the converse also holds).

BA Frm

Set JSL Top DL

Set Set

UBA

Lhm

FBA aUf U′

N′QBA

Q
T

UJSLFJSL a

Ω′

Ω

Ω0

V

U

N

LtrQ N0

(d) (e)

(10)

Example 4.13 We squeeze the topological semantics for positive modal logic
from Example 2.6 between two other logics with varying base logics, see di-
agram (10(e)). Here Frm is the category of frames and Ω′ : Top → Frm
is the functor that sends a topological space to its frame of opens. Let
N′ : Frm→ Frm be the functor given as in [17, Section III4.3] (known also as
the Vietoris locale) and define ρ′ : N′Ω′ → Ω′V on generators by 2a 7→ �a and
3a 7→ �a. The translation τ : NΩ→ U′N′Ω′ given by 2a 7→ 2a and 3a 7→ 3a
is such that τ ] is epic, thus satisfies the assumptions of Proposition 4.10.

The bottom triangle is an instance of Exm. 4.11. We conclude that a jointly
mono span between V-coalgebras (X1, γ1) and (X2, γ2) is a ρ-bisimulation if and
only if it is a ρ′-bisimulation if and only if it is a ρ0-bisimulation.

5 Conclusion

Our main question was whether we can characterise logical equivalence for (pos-
sibly non-expressive) coalgebraic logics by a notion of bisimulation. Towards
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this goal, we generalised the logic-induced bisimulations in [4] for coalgebraic
logics for Set-coalgebras to coalgebraic logics parameterised by a dual adjunc-
tion. We identified sufficient conditions for when logical equivalence coincides
with logic-induced bisimilarity (Thm. 4.4). These are conditions on the cate-
gories in the dual adjunction, and not on the natural transformation ρ defining
(the semantics of) the logic. In particular, we do not require the logic to be
expressive.

We found that the distinguishing power of ρ-bisimulations depends on the
modalities of the language but not on the propositional connectives. More
generally, we showed that certain translations between logics preserve ρ-
bisimilarity (Prop. 4.10). Furthermore, as in the expressivity result of [19],
ρ-bisimilarity agrees with behavioural equivalence if the mate of ρ is pointwise
monic (Prop. 4.3). However, Example 4.12 shows that this is not a necessary
condition which raises the question whether one can characterise, purely in
terms of ρ, when ρ-bisimilarity coincides with behavioural equivalence.

There are many other avenues for further research. When is a congruence
on complex algebras induced by a ρ-bisimulation? Can we drop in Theorem 4.4
the restriction to the subcategory if T is finitary? Can we take quotients with
respect to (the largest) ρ-bisimulation on a T-coalgebra?

Moreover, the definition of ρ-bisimulation has a natural generalisation to
the order-enriched setting. This gives rise to ρ-simulations. Can one prove an
ordered Hennessy-Milner theorem where “logical inequality” is recognised by ρ-
simulations? Since this question naturally falls into the realm of order-enriched
category theory, we will also seek a generalisation to the quantale-enriched
setting, accounting for metric versions of simulation.
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[3] Adámek, J., J. Rosický and E. M. Vitale, Algebraic theories: a categorical introduction
to general algebra (2010).

[4] Bakhtiari, Z. and H. H. Hansen, Bisimulation for weakly expressive coalgebraic modal
logics, in: 7th Conference on Algebra and Coalgebra in Computer Science, CALCO,
Leibniz International Proceedings in Informatics (LIPIcs), 2017.
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On the axiomatisation of common knowledge
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Abstract

Standard axiomatisations of the logic of common knowledge contain the greatest
fixed-point axiom schema. While such an inductive principle matches our intuitions
in the context of temporal logics, it is not immediately obvious in an epistemic con-
text. We propose an axiom schema that we believe to be more intuitive. It says
that if it is common knowledge that everybody knows whether ϕ then it is common
knowledge whether ϕ. Our schema is sound for KT-based common knowledge and
moreover complete for S5-based common knowledge. In contrast, it is unsound for
logics without the T-axiom. Our axiom schema directly leads to a simple and intuitive
axiomatisation of the ‘common knowledge whether’ operator.

Keywords: Common knowledge, axiomatisation, induction axiom, greatest
fixed-point axiom.

1 Introduction

The standard axiomatisations of the logic of common knowledge contain the
induction axiom schema, alias greatest fixed-point axiom

GFP C(ϕ→ Eϕ)→ (ϕ→ Cϕ),

where C stands for “it is common knowledge that” and E stands for “everybody
knows that” [15,13,9]. An alternative axiomatisation [10,6] has the induction
rule

RGFP from ϕ→ E(ψ ∧ ϕ), infer ϕ→ Cψ.

In the proof theory literature there exist sequent system counterparts of these
principles, e.g. in [1,11]. Similar axioms and rules were used to axiomatise
common belief [3,17].

Such inductive principles are common in temporal logics, where they mir-
ror induction on the natural numbers. There, the reading is obvious and the
intuitive meaning is clear. More generally, we can make sense of such principles

1 http://orcid.org/0000-0003-0833-2782, https://www.irit.fr/∼Andreas.Herzig



310 On the axiomatisation of common knowledge

when interpreted on well-founded orderings. However, at least to the present
authors the meaning of the induction axiom schema is less obvious when the
modal operator is that of common knowledge, and one might even wonder
whether it is a reasonable principle at all. To witness the difficulty to find an
intuitive reading to the above principles, consider the reading of RGFP that is
given in the introductory chapter of the Handbook of Epistemic Logic:

“If it is the case that ϕ is ‘self-evident’, in the sense that if it is true, then
everyone knows it, and, in addition, if ϕ is true, then everyone knows ψ, we
can show by induction that if ϕ is true, then so is Ek(ψ ∧ ϕ) for all k.” [22]

The explanations in the standard texts resort to concepts such as ‘ϕ indicates
to every agent that ψ is true’ [16], ‘ϕ is evident’ [18], ‘it is public that ϕ is
true’ [24], or ‘ϕ is a common basis implying shared belief in ψ’ [8]. With these
understandings RGFP can be read “if ϕ is public and indicates ψ to everybody
then truth of ϕ implies that ψ is common knowledge”. The formalisation of
these supplementary concepts however introduces further complications, see
e.g. [5] for a tentative to settle the logic of ‘indicates’.

Can the above inductive principles be replaced by principles with more
intuitive appeal? We here propose a new axiom schema:

GFP0 C(Eϕ ∨E¬ϕ)→ (Cϕ ∨C¬ϕ).

Unlike GFP and RGFP, it can be read straightforwardly: “if it is common knowl-
edge that everybody knows whether ϕ then it is common knowledge whether
ϕ”; or alternatively: “common knowledge that the status of ϕ is shared knowl-
edge implies that the status of ϕ is common knowledge”. In the present paper
we focus on KT- and S5-based common knowledge. We prove the following
results:

(i) GFP0 is a theorem if the logic of individual knowledge is at least KT;

(ii) GFP0 is equivalent to GFP if the logic of individual knowledge is S5;

(iii) GFP0 leads to a simple and intuitive axiomatisation of S5-based ‘common
knowledge whether’;

(iv) GFP0 is specific to knowledge and fails for belief: contrarily to the status of
the standard induction principles, its status differs depending on whether
the context is epistemic or doxastic.

Most papers in the literature start by introducing the Kripke semantics and
then discuss the axiomatisation of its validities. In contrast, the present paper
is semantic-free: all proofs are done syntactically via the axioms and inference
rules of the respective systems.

For the sake of simplicity we here only consider shared and common knowl-
edge of the set of all agents. Everything however straightforwardly generalises
to common knowledge of arbitrary sets of agents.

The paper is organised as follows. In the next two sections we give the
background: two axiom systems for individual knowledge and shared knowl-
edge, KT and S5 (Section 2), and the two standard axiom systems for common
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CPC axiomatics of classical propositional calculus
RN(Ki) from ϕ, infer Kiϕ
K(Ki) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
T(Ki) Kiϕ→ ϕ
∗5(Ki) ¬Kiϕ→ Ki¬Kiϕ
Def(E) Eϕ↔ ∧

i∈Agt Kiϕ

Table 1
Axiomatisation of KT (without ∗5(Ki)) and S5 (including ∗5(Ki)) individual

knowledge and shared knowledge. The axiom that is not part of the KT
axiomatics—i.e., axiom ∗5(Ki)—is starred.

knowledge (Section 3), which we syntactically prove to be equivalent. In Sec-
tion 4 we prove that the S5-based GFP0 axiomatics is equivalent to the standard
axiomatics. In Section 5 we axiomatise S5-based ‘common knowledge whether’.
In Section 6 we discuss how completeness for logics of knowledge that are weaker
than S5 could be obtained. In Section 7 we show that our new axiom is unin-
tuitive for logics of belief, understood as logics that do not have the T axiom
for individual belief. We conclude in Section 8.

2 Background: individual and shared knowledge

Let Prop be a countable set of propositional variables with typical elements
p, q, . . . Let Agt be a fixed, finite set of agents with typical elements i, j, . . . The
grammar of formulas is

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Eϕ | Cϕ,

where p ranges over Prop and i over Agt . The formula Kiϕ reads “i knows
that ϕ”; Eϕ reads “everybody knows that ϕ”, or “it is shared knowledge that
ϕ”; 2 finally, Cϕ reads “it is common knowledge that ϕ”.

A logic of common knowledge is based on a logic of the individual knowledge
operators Ki that is situated between S5 and KT, where the latter is the
weakest normal modal logic having the truth axiom Kiϕ → ϕ. In this paper
we only consider S5 and KT individual knowledge. Table 1 recalls the two
axiomatistions as well as the axiom Def(E) defining shared knowledge. In
order to distinguish the axioms and theorems of S5 from those of KT we adopt
the convention that formulas that are not theorems of logic KT are prefixed by
“∗”, such as ∗5(Ki) in Table 1.

The operator E is a normal modal operator: it obeys the modal schema K

and the rule of necessitation RN. Moreover it obeys:

T(E) Eϕ→ ϕ.

2 Many authors use the adjective ‘mutual’ instead of ‘shared’. We opted for the latter
because some philosophers such as Stephen Schiffer use the terms ‘mutual knowledge’ and
‘mutual belief’ [20] in order to refer to common knowledge and common belief (see e.g. [14]).
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It is straightforward to prove that the following holds for logics of individual
knowledge from KT on:

Proposition 2.1 The formula

Def2(Eif) (Eϕ ∨E¬ϕ)↔ ∧
i∈Agt(Kiϕ ∨Ki¬ϕ)

is a theorem of the KT axiomatics.

The name of the equivalence anticipates its use in the axiomatics of
‘knowing-whether’ in Section 5.

Despite the fact that the shared knowledge operator E neither obeys positive
nor negative introspection, it obeys the B axiom:

Proposition 2.2 The formula

∗B(E) ¬ϕ→ E¬Eϕ
is a theorem of the S5 axiomatics.

Proof. The proof is simple, but we give it here as we did not find it in the
literature:

(i) ϕ→ Ki¬Ki¬ϕ ∗B(Ki)

(ii) ¬Ki¬ϕ→ ¬E¬ϕ from Def(E)

(iii) Ki¬Ki¬ϕ→ Ki¬E¬ϕ from (ii), Ki normal

(iv) ϕ→ Ki¬E¬ϕ from (i), (iii)

(v) ϕ→ E¬E¬ϕ from (iv) with Def(E)
2

3 Background: two standard axiomatisations of
common knowledge

An overview of the different axiomatisations of logics of common knowledge can
be found in [17] where the relation between the underlying logic of individual
knowledge and the resulting logic of common knowledge is studied in depth.
The paper not only considers knowledge, but also belief. As already said above,
our new axiom is not appropriate for common belief. Moreover, only two logics
of knowledge are in focus in the present section: systems where the logic of Ki

is either KT or S5. (Logics of knowledge between these two are discussed in
Section 6.)

In the next two subsections we recall two standard axiomatisations of the
logic of common knowledge, one with the induction rule RGFP and one with
the induction axiom schema GFP. We then prove the equivalence of these two
axiomatisations.

3.1 With the induction axiom GFP

The two axiomatics with the induction axiom schema GFP are in Table 2 (left).
We distinguish the S5-based from the KT-based axiomatics by starring the
supplementary axioms, namely the negative introspection axioms ∗5(Ki) and
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∗5(C). Both axiomatics are due to [9]; others can be found in [15,13]. Such
axiomatisations are popular in Dynamic Epistemic Logics [21,23].

It is a standard result in normal modal logics that axiom 4 can be proved
from T and 5. In the case of common knowledge, 4(C) is already a theorem of
the KT-based logic thanks to the induction axiom schema:

Proposition 3.1 The formula

4(C) Cϕ→ CCϕ

is a theorem of the KT-based GFP axiomatics.

Proof.

(i) C(Cϕ→ ECϕ) from FP′ and RN(C)

(ii) C(Cϕ→ ECϕ)→ (Cϕ→ CCϕ) GFP

(iii) Cϕ→ CCϕ from (i) and (ii)
2

Proposition 3.2 Axiom ∗5(C) is redundant in the S5-based GFP axiomatics.

Proof.

(i) ¬Cϕ→ Ki¬KiCϕ ∗B(Ki)

(ii) Cϕ→ KiCϕ from FP′ and Def(E)

(iii) Ki¬KiCϕ→ Ki¬Cϕ from (ii), Ki normal

(iv) ¬Cϕ→ Ki¬Cϕ from (i), (iii)

(v) ¬Cϕ→ E¬Cϕ from (iv) by Def(E)

(vi) C(¬Cϕ→ E¬Cϕ) from (v) by RN(C)

(vii) C(¬Cϕ→ E¬Cϕ)→ (¬Cϕ→ C¬Cϕ) GFP

(viii) ¬Cϕ→ C¬Cϕ from (vi) and (vii)
2

3.2 With the induction rule RGFP

The two axiomatics with the induction rule RGFP are given in Table 2 (right).
They are due to [10,6]; the induction rule can actually be traced back to the
analysis of common knowledge in the philosophical literature [24]. Interestingly
and contrasting with the GFP axiomatics, the S5 axioms and rules for C are
implicit here:

Proposition 3.3 The formulas K(C), T(C), 4(C), and ∗5(C) are theorems
and the rule RN(C) is derivable in the S5-based RGFP axiomatics.

Proof. The proofs are simple, but we give them here for completeness. K(C)
can be proved by substituting ϕ by Cϕ∧C(ϕ→ ψ) in RGFP, using FP and that
E is a normal modal operator. T(C) can be proved from FP and T(E). 4(C)
can be proved by substituting both ϕ and ψ by Cϕ in RGFP, using FP and that
E is a normal modal operator. The rule RN(C) can be derived with RGFP if we
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GFP-based axiomatics RGFP-based axiomatics
KT the axiomatics of Table 1 KT the axiomatics of Table 1
RN(C) from ϕ, infer Cϕ
K(C) C(ϕ→ ψ)→ (Cϕ→ Cψ)
T(C) Cϕ→ ϕ
∗5(C) ¬Cϕ→ C¬Cϕ
FP′ Cϕ→ ECϕ FP Cϕ→ E(ϕ ∧Cϕ)
GFP C(ϕ→ Eϕ)→ (ϕ→ Cϕ) RGFP from ϕ→ E(ψ ∧ ϕ),

infer ϕ→ Cψ

Table 2
Two axiomatisations of KT-based and S5-based common knowledge: the GFP

axiomatics with an induction axiom of [9] (left) and the RGFP axiomatics with an
induction rule of [10,6] (right). The principles that are not part of the KT-based

axiomatics—i.e., the ∗5 axioms—are starred.

substitute > for ϕ and ϕ for ψ and use that E is a normal modal operator. It
is only the proof of ∗5(C) which is a bit longer:

(i) ϕ→ E¬E¬ϕ ∗B(E)

(ii) E¬E¬ϕ→ E¬C¬ϕ from FP, E normal

(iii) E¬C¬ϕ→ EE¬EC¬ϕ from ∗B(E), E normal

(iv) EE¬EC¬ϕ→ EE¬C¬ϕ from FP, E normal

(v) E¬C¬ϕ→ E(¬C¬ϕ ∧E¬C¬ϕ) from (iii), (iv), E normal

(vi) E¬C¬ϕ→ C¬C¬ϕ from (v) by RGFP

(vii) ϕ→ C¬C¬ϕ from (i), (ii), (vi)
2

3.3 Equivalence of the two axiomatics

The RGFP axiomatics and the GFP axiomatics are both complete for the same
semantics (which we do not give here). Therefore all axioms in one system must
be derivable in the other, and the inference rules of one system are admissible
in the other. We are however not aware of a direct equivalence proof in the
respective systems in the literature, so we give it below. 3 We prove the two
directions:

(i) in the RGFP axiomatics, K(C), T(C), ∗5(C), FP′, GFP are theorems and
RN(C) is derivable;

(ii) in the GFP axiomatics, FP′ is a theorem and RGFP is derivable.

We have already established in Section 3.2 that K(C), T(C), and ∗5(C) are

3 The paper by Bucheli et al. [4] establishes that RGFP is derivable from a variant of GFP,
C(ϕ → Eϕ) → (Eϕ → Cϕ) (which they have to choose instead of RGFP because they take
K as the logic of individual knowledge). However their proof is indirect, making use of an
intermediate system.
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the axiomatics of Table 1
RN(C) from ϕ, infer Cϕ
K(C) C(ϕ→ ψ)→ (Cϕ→ Cψ)
4(C) Cϕ→ CCϕ
FP0 Cϕ→ Eϕ
GFP0 C(Eϕ ∨E¬ϕ)→ (Cϕ ∨C¬ϕ)

Table 3
Alternative axiomatisation of S5 common knowledge: the GFP0 axiomatics.

theorems of the RGFP axiomatics. Second and quite obviously, as E is a normal
modal operator, we have that FP′ is provable from FP and that, the other way
round, FP is provable from FP′ and T(C). It remains to prove the equivalence
of the induction axiom and the induction rule.

Proposition 3.4 The induction axiom GFP is a theorem of the KT-based RGFP

axiomatics (and a fortiori of the S5-based RGFP axiomatics).

Proof.

(i) C(ϕ→ Eϕ)→ EC(ϕ→ Eϕ) from FP, E normal

(ii) (C(ϕ→ Eϕ) ∧ ϕ)→ Eϕ from T(C)

(iii) (C(ϕ→ Eϕ) ∧ ϕ)→ (Eϕ ∧EC(ϕ→ Eϕ)) from (i) and (ii)

(iv) (C(ϕ→ Eϕ) ∧ ϕ)→ E((ϕ ∧C(ϕ→ Eϕ)) ∧ ϕ) from (iii), E normal

(v) (C(ϕ→ Eϕ) ∧ ϕ)→ Cϕ from (iv) by RGFP

2

Proposition 3.5 The induction rule RGFP is derivable in the GFP axiomatics.

Proof.

(i) ϕ→ E(ψ ∧ ϕ) hypothesis

(ii) C(ψ ∧ ϕ→ E(ψ ∧ ϕ)) from (i) by RN(C)

(iii) C(ψ ∧ ϕ→ E(ψ ∧ ϕ))→ (ψ ∧ ϕ→ C(ψ ∧ ϕ)) GFP

(iv) ψ ∧ ϕ→ C(ψ ∧ ϕ) from (ii), (iii)

(v) ϕ→ ψ ∧ ϕ from (i) by T(E)

(vi) ϕ→ Cψ from (v), (iv), C normal
2

4 An alternative axiomatisation of S5 common
knowledge

Table 3 contains a new axiomatics of common knowledge. The main difference
w.r.t. the GFP axiomatics is that the induction axiom GFP is replaced by GFP0.
A further difference is that our axiomatics explicits 4(C), which is a theorem
of the GFP and RGFP axiomatics. Finally and thanks to 4(C), our version of the
fixed-point axiom FP0 is weaker than FP′ (and a fortiori weaker than FP). It
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is however strong enough to entail T(C): Cϕ → ϕ (together with Def(E) and
T(Ki)).

Observe that it follows from Proposition 2.1 and the fact that C is a normal
modal operator that the two axioms

GFP0 C(Eϕ ∨E¬ϕ)→ (Cϕ ∨C¬ϕ)
GFP1 C

∧
i∈Agt(Kiϕ ∨Ki¬ϕ)→ (Cϕ ∨C¬ϕ)

are equivalent. The second axiom says that if it is common knowledge that
each agent has an epistemic position w.r.t. ϕ then either ϕ or ¬ϕ are common
knowledge.

4.1 Soundness of the GFP0 axiomatics

We prove soundness w.r.t. the S5-based GFP axiomatics of Table 2. The result
holds both for the KT-based and the S5-based version.

The inference rules are the same: RN(C) and modus ponens. It remains to
show that our axioms of Table 3 are theorems of the S5-based GFP axiomatics.
The only ones that are missing there are 4(C), FP0, and GFP0. First, 4(C) is,
by Proposition 3.1, a theorem of the KT-based GFP axiomatics and a fortiori of
the S5-based GFP axiomatics. Second, FP0 can be proved from FP′ and T(C).
Third, here is a proof of GFP0 that relies on T(Ki), or rather, its consequence
T(E):

Proposition 4.1 GFP0 is a theorem of the KT-based GFP axiomatics (and a
fortiori of the S5-based GFP axiomatics).

Proof. We distinguish the two cases ϕ and ¬ϕ and prove that C(Eϕ ∨E¬ϕ)
implies both ϕ→ Cϕ and ¬ϕ→ C¬ϕ; from that GFP0 follows by propositional
logic reasoning.

(i) C(Eϕ ∨E¬ϕ)→ C(ϕ→ Eϕ) by T(E), RN(C), K(C)

(ii) C(ϕ→ Eϕ)→ (ϕ→ Cϕ) GFP

(iii) C(Eϕ ∨E¬ϕ)→ (ϕ→ Cϕ) from (i), (ii)

(iv) C(Eϕ ∨E¬ϕ)→ (¬ϕ→ C¬ϕ) from (iii) by uniform subst. of ϕ by ¬ϕ
(v) C(Eϕ ∨E¬ϕ)→ (Cϕ ∨C¬ϕ) from (iii), (iv)

2

Therefore all theorems of our new GFP0 axiomatics are also theorems of the
GFP axiomatics and, by Proposition 3.5, of the RGFP axiomatics.

4.2 Completeness of the GFP0 axiomatics for S5 knowledge

We prove completeness w.r.t. the S5-based GFP axiomatics. We have already
seen in Section 4.1 that the inference rules are the same; it remains to show
that the axioms of the S5-based GFP axiomatics of Table 2 that are not in our
GFP0 axiomatics are theorems of the latter. These axioms are ∗5(C), FP′, and
GFP. Proposition 3.2 tells us that ∗5(C) can be proved from the rest of the
S5-based GFP axiomatics and is therefore redundant: it could be dropped from
the GFP axiomatics. Axiom FP′ can be proved from our FP0, 4(C), K(C), and
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RN(C). It remains to show that GFP is a theorem of our new axiomatics. The
next lemma will be instrumental; its proof uses ∗B(E) (via Proposition 2.2) and
4(C).

Lemma 4.2 The schema C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) is provable from the
axiom schemas K(C), 4(C), RN(C), FP, Def(E), and the S5 axioms for Ki.

Proof. The proof is as follows:

(i) C(ϕ→ Eϕ)→ E(ϕ→ Eϕ) by FP, E normal

(ii) E(ϕ→ Eϕ)→ (E¬Eϕ→ E¬ϕ) E normal

(iii) ¬ϕ→ E¬Eϕ Proposition 2.2

(iv) C(ϕ→ Eϕ)→ (¬ϕ→ E¬ϕ) from (i), (ii), (iii)

(v) CC(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) from (iv) by RN(C) and K(C)

(vi) C(ϕ→ Eϕ)→ CC(ϕ→ Eϕ) 4(C)

(vii) C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) from (v), (vi)
2

Proposition 4.3 GFP is provable in the GFP0 axiomatics.

Proof. The proof is as follows:

(i) C(Eϕ ∨E¬ϕ)→ (Cϕ ∨C¬ϕ) GFP0

(ii)
(
C(ϕ→ Eϕ) ∧C(¬ϕ→ E¬ϕ)

)
→ C(Eϕ ∨E¬ϕ) by RN(C) and K(C)

(iii)
(
C(ϕ→ Eϕ) ∧C(¬ϕ→ E¬ϕ)

)
→ (Cϕ ∨C¬ϕ) from (i) and (ii)

(iv) C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) Lemma 4.2

(v) C(ϕ→ Eϕ)→ (Cϕ ∨C¬ϕ) from (iii), (iv)

(vi) C(ϕ→ Eϕ)→ (Cϕ ∨ ¬ϕ) from (v) by T(C)
2

5 Commonly knowing whether

In this section we show that our axiomatics of Table 3 leads to a simple axioma-
tisation of the S5-based ‘common knowledge whether’ operator. The axiomati-
sation of such an operator was left as an open problem in [7], where operators
of ‘individually knowing whether’ were axiomatised.

The first thing we do is to extend our language of “knowing-that” operators
Ki, E, and C by their “knowing-whether” counterparts. We read Kifiϕ as “i
knows whether ϕ”; Eifϕ as “it is shared knowledge whether ϕ”; and Cifϕ
as “it is common knowledge whether ϕ”. These three epistemic operators are
particular modal operators of contingency [19,12,7].

A straightforward possibility is to add to the axiomatics of Table 3 the
following axioms:

Def1(Kifi) Kifiϕ↔ (Kiϕ ∨Ki¬ϕ)
Def1(Eif) Eifϕ↔ (Eϕ ∨E¬ϕ)
Def1(Cif) Cifϕ↔ (Cϕ ∨C¬ϕ)
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CPC axiomatics of classical propositional calculus
Sym(Kifi) Kifiϕ↔ Kifi¬ϕ
RE(Kifi) from ϕ↔ ψ, infer Kifiϕ↔ Kifiψ
RN(Kifi) from ϕ, infer Kifiϕ
Conj(Kifi) (ϕ ∧ ψ)→

(
Kifi(ϕ ∧ ψ)↔ (Kifiϕ ∧Kifiψ)

)

∗451(Kifi) KifiKifiϕ
∗452(Kifi) Kifi(ϕ ∧Kifiϕ)
Def2(Eif) Eifϕ↔ ∧

i∈Agt Kifiϕ

Sym(Cif) Cifϕ↔ Cif¬ϕ
RE(Cif) from ϕ↔ ψ, infer Cifϕ↔ Cifψ
RN(Cif) from ϕ, infer Cϕ
Conj(Cif) (ϕ ∧ ψ)→

(
Cif(ϕ ∧ ψ)↔ (Cifϕ ∧Cifψ)

)

∗451(Cif) CifCifϕ
∗452(Cif) Cif(ϕ ∧Cifϕ)
GFP2 Cifϕ↔ (Eifϕ ∧CifEifϕ)
Def2(Ki) Kiϕ↔ (ϕ ∧Kifiϕ)
Def2(E) Eϕ↔ (ϕ ∧Eifϕ)
Def2(C) Cϕ↔ (ϕ ∧Cifϕ)

Table 4
Axiomatisation of S5 common knowledge whether: the GFP2 axiomatics.

However, we are going to take another road here, in view of axiomatising the
fragment without ‘knowing-that’ operators. Our axiomatics in Table 4 takes
the ‘knowing-whether’ operators as primitive and defines the ‘knowing-that’
operators. The first part is proper to Kifi and Eif . We might have taken over
as well the axiomatics of [7]; the principles Sym(Kifi), RE(Kifi), and RN(Kifi)
can also be found there, but we find the rest of our axioms a bit simpler than
theirs. Axiom 451(Kifi) can be found in [19]. The second part of our axiomatics
parallels the first part and moreover has a single greatest fixed-point axiom
relating Eif and Cif (that is perhaps better called a fixed-point axiom tout
court : its syntactical form is very close to that of a possible fixed-point axiom
for common belief CBϕ↔ (EBϕ ∧ EB CBϕ)). The third part contains the
definitions of the ‘knowing-that’ operators.

We are going to prove soundness and completeness of the axiomatics of Ta-
ble 4 w.r.t. the S5-based GFP0 axiomatics (more precisely: w.r.t. the extension
of the latter by Def1(Kifi), Def1(Eif), and Def1(Cif)).

Proposition 5.1 For the S5-based GFP2 axiomatics of Table 4, all inference
rules are derivable and all axioms are theorems in the S5-based GFP0 axiomatics.

Proof. See the appendix. 2

Proposition 5.2 For the S5-based GFP0 axiomatics of Table 3, all inference
rules are derivable and all axioms are theorems in the S5-based GFP2 axiomatics.
Moreover, the equivalences Def1(Ki), Def1(E), and Def1(C) are theorems in
the S5-based GFP2 axiomatics.
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Proof. See the appendix. 2

It follows from propositions 5.1 and 5.2 that the first two parts of Table 4
provide a sound and complete axiomatisation for the fragment of the language
with only ‘knowing-whether’ operators.

Proposition 5.3 If formula ϕ has no Ki, E, C operators then ϕ is a theorem
of the S5-based GFP2 axiomatics of Table 4 if and only if it is provable without
the axioms Def2(Ki), Def2(E), and Def2(C).

Proof. Suppose no Ki, E, C occur in ϕ and suppose ϕ is a theorem of the
S5-based GFP2 axiomatics. Whenever the proof of ϕ uses axiom Def2(Ki),
Def2(E), or Def2(C), we can eliminate that axiom by replacing the definiendum
by the definiens everywhere in the proof. 2

We end this section by a comment on alternative definitions of ‘knowing-
whether’ group attitudes. As noted in the conclusion of [7], there are more
options than those we have considered in this section. We have chosen to define
‘shared knowledge whether’ as Eifϕ ↔ (Eϕ ∨ E¬ϕ). However, instead of re-
quiring that everybody has the same epistemic position about ϕ one could only
require that everybody has some epistemic position about ϕ. This amounts
to defining ‘weak shared knowledge whether’ by Eifwϕ ↔ ∧

i∈Agt Kifiϕ. At
first glance this is a less demanding notion; however, Proposition 2.1 tells us
that Eif and Eifw are equivalent as soon as KT is our basic epistemic logic.
Similarly, seemingly weaker definitions of ‘common knowledge whether’ exist.
Instead of requiring that either ϕ or ¬ϕ is common knowledge, one could only
require (a) that it is common knowledge that there is shared knowledge whether
ϕ, or (b) that it is common knowledge that there is weak shared knowledge
whether ϕ. This amounts to replacing Cϕ∨C¬ϕ in the definition of ‘common
knowledge whether’ either by CEifϕ, or by CEifwϕ. Again, these two defi-
nitions appear to be weaker than ours, but this fails to be the case. This can
be seen from the theorem

GFP1 C
∧
i∈Agt(Kiϕ ∨Ki¬ϕ)→ (Cϕ ∨C¬ϕ)

of Section 4 (end of the second paragraph) and that can be reformulated as
CEifwϕ → Cifϕ. We note that both for shared and common knowledge
whether, the two options are no longer equivalent for weaker logics, i.e., for
logics of belief. We will come back to this in Section 7.

6 Discussion: epistemic logics between KT and S5

We have seen that our new axiom GFP0 is sound for logics of knowledge, un-
derstood as logics where the logic of individual knowledge is at least KT, and
that it is complete when the logic of individual knowledge is S5.

We conjecture that the KT-based GFP0 axiomatics is incomplete. We how-
ever do not have a formal proof for the time being. Such a proof would have to
delve into semantics: it typically consists in designing a non-standard seman-
tics for which the axiomatics with GFP0 is complete. We leave this aside for
the time being.
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Under the hypothesis that the KT-based GFP0 axiomatics is incomplete,
one may wonder which axiom is missing to obtain completeness. A tempting
avenue is to add the formula C(ϕ → Eϕ) → C(¬ϕ → E¬ϕ) of Lemma 4.2 as
an axiom schema to the axiomatics of Table 3. The proof of Proposition 4.3
then gives us completeness because it uses none of the S5 axioms but T(Ki).
However it can be shown that this amounts to adding ∗5(C): it can be shown
that the formula is equivalent to ∗5(C) in the presence of T(C).

Proposition 6.1 In the GFP-based axiomatics for KT, ∗5(C) and the formula
C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) are interderivable.

Proof. See the appendix. 2

Just as common knowledge is necessarily positively introspective even when
individual knowledge isn’t, it can still be argued that S5 common knowledge
can make sense even when individual knowledge is not S5: one can imagine,
e.g., that common knowledge is “written on a blackboard”, or otherwise easily
available to agents such that they are able to immediately verify what is and
is not commonly known. We leave further explorations to future work.

7 Discussion: GFP0 is not appropriate for belief

Up to now we have only discussed common knowledge; we now briefly discuss
common belief.

Let us write Bi ϕ for “i believes that ϕ”, EBϕ for “it is shared belief that
ϕ”, and CBϕ for “it is common belief that ϕ”, and let us suppose the logic of
the Bi operators is KD (or, alternatively, any logic without the T axiom).

It is intuitively clear that the belief-version of GFP1,

CB
∧

i∈Agt

(Bi ϕ ∨Bi ¬ϕ)→ (CBϕ ∨CB¬ϕ),

should not hold: if there is common belief—and even common knowledge—that
everybody has an opinion about ϕ then it by no means follows that there is
common belief about ϕ.

What about GFP0? The fact that GFP1 is unintuitive need not disqualify
GFP0. Indeed, while these two axioms are equivalent in epistemic contexts,
they fail to be so in doxastic contexts: in KD45,

∧
i∈Agt(Bi ϕ ∨ Bi ¬ϕ) does

not imply EBϕ ∨ EB¬ϕ, and does not do so a fortiori in KD; and therefore
the belief-counterpart of Proposition 2.1 does not hold.

As it turns out, GFP0 is not a reasonable principle of common belief either.
This can be highlighted by the following example. Suppose that the set of
agents under concern is Agt = {1, 2} and that there is a misunderstanding
between 1 and 2 about an inform act of a third agent. That third agent is not
relevant here, and we suppose that Agt = {1, 2}. Let us suppose that 1 believes
the third agent said p and therefore believes that p is in the common ground
(B1 CB p), while 2 believes that ¬p is in the common ground (B2 CB¬p). It
follows by 4(CB ) and by the (intuitively still valid) belief-counterpart of FP0
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that

B1 CBEB p ∧B2 CBEB¬p.

As both CB and EB are normal operators, it follows that

B1 CB (EB p ∨EB¬p) ∧B2 CB (EB p ∨EB¬p),

i.e., that EBCB (EB p ∨ EB¬p). The latter is equivalent to CB (EB p ∨
EB¬p) thanks to the belief-version of the fixed-point axiom, which is CBϕ↔
EBCBϕ.

From that the counter-intuitive consequence CB p∨CB¬p would follow by
the belief-counterpart of GFP0.

To sum up, contrarily to the status of the standard induction principles the
status of our new versions of the induction axiom differs between knowledge
and belief: they are specific to common knowledge and fail for common belef.

8 Conclusion

We have studied the axiomatisation of the logic of common knowledge, coming
up with an alternative GFP0 to the standard induction axiom principles that is
intuitively appealing as an axiom for common knowledge. While our proofs are
not very difficult, we believe that GFP0 will lead to presentations of epistemic
logic that are intuitively more appealing.

Our investigation may appear somewhat old-fashioned: all our proofs are
purely syntactical and we do not use any semantical tools, as was done in
‘the syntactic era (1918-1959)’ [2, Section 1.7] before Kripke semantics was in-
vented. We nevertheless believe that axiomatic systems provide an important
toolbox to understand intuitively what a logical system is able to express and
what not. To witness, consider the inference rule RGFP: according to the expla-
nations e.g. in [24], the rule says something about ϕ indicating to everybody
that ψ; however and as the equivalence with axiom GFP demonstrates, this is
not the case: axiom GFP of the equivalent GFP-based axiomatics has a single
schematic variable ϕ, which shows us that the concept of one proposition indi-
cating another proposition is not accounted for by the Kripke semantics. This
is in line with the analysis of [5] where it is argued that this concept cannot
be modelled in Kripke semantics and where the authors investigate a different
semantical framework.
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Appendix

A Proofs of Section 5

A.1 Proof of Proposition 5.1

Proposition 5.1 For the S5-based GFP2 axiomatics of Table 4, all inference
rules are derivable and all axioms are theorems in the S5-based GFP0 axiomatics.

We prove each principle of Table 4. We start by the last three definitions
so that we can use them in the rest of the proofs.

Def2(Ki) Kiϕ↔ (ϕ ∧Kifiϕ)

Proof.

(i) Kiϕ↔ (ϕ ∧ (Kiϕ ∨Ki¬ϕ)) from T(Ki)

(ii) Kiϕ↔ (ϕ ∧Kifiϕ) from (i) and Def1(Kifi)
2

Def2(E) Eϕ↔ (ϕ ∧Eifϕ)

Proof. Follow the lines of that of Def2(Ki): use Def1(Eif) instead of
Def1(Kifi) and use that T(E) is a theorem. 2

Def2(C) Cϕ↔ (ϕ ∧Cifϕ)

Proof. Follow the lines of that of Def2(Ki): use Def1(Cif) instead of
Def1(Kifi) and T(C) instead of T(Ki). 2

Sym(Kifi): Kifiϕ↔ Kifi¬ϕ

Proof.

(i) (Kiϕ ∨Ki¬ϕ)↔ (Ki¬ϕ ∨Ki¬¬ϕ) Ki normal

(ii) Kifiϕ↔ Kifi¬ϕ from (i) by Def1(Kifi)
2

RE(Kifi): from ϕ↔ ψ, infer Kifiϕ↔ Kifiψ

Proof.

(i) ϕ↔ ψ hypothesis

(ii) Kiϕ↔ Kiψ from (i), Ki normal

(iii) Ki¬ϕ↔ Ki¬ψ from (i), Ki normal

(iv) (Kiϕ ∨Ki¬ϕ)↔ (Kiψ ∨Ki¬ψ) from (ii), (iii)

(v) Kifiϕ↔ Kifiψ from (iv) by Def1(Kifi)
2
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RN(Kifi): from ϕ, infer Kifiϕ

Proof.

(i) ϕ hypothesis

(ii) Kiϕ from (i), Ki normal

(iii) Kiϕ ∨Ki¬ϕ from (ii)

(iv) Kifiϕ from (iii) by Def1(Kifi)
2

Conj(Kifi): (ϕ ∧ ψ)→
(
Kifi(ϕ ∧ ψ)↔ (Kifiϕ ∧Kifiψ)

)

Proof. We prove the two implications
(
ϕ ∧ ψ ∧ Kifi(ϕ ∧ ψ)

)
→ Kifiϕ and

(ϕ ∧ ψ ∧Kifiϕ ∧Kifiψ)→ Kifi(ϕ ∧ ψ), each time using that we have already
proved Def2(Ki) to be a theorem. For the former:

(i) Ki(ϕ ∧ ψ)→ (Kiϕ ∨Ki¬ϕ) Ki normal

(ii)
(
ϕ ∧ ψ ∧Kifi(ϕ ∧ ψ)

)
→ Kifiϕ from (i), theorem Def2(Ki)

For the latter:

(i) (Kiϕ ∧Kiψ)→ Ki(ϕ ∧ ψ) Ki normal

(ii) (ϕ∧Kifiϕ∧ψ ∧Kifiψ)→
(
ϕ∧ψ ∧Kifi(ϕ∧ψ)

)
from (i), thm. Def2(Ki)

(iii) (ϕ ∧ ψ ∧Kifiϕ ∧Kifiψ)→ Kifi(ϕ ∧ ψ) from (ii)
2

451(Kifi): KifiKifiϕ

Proof. Similar to the next proof of 452(Kifi). 2

452(Kifi): Kifi(ϕ ∧Kifiϕ)

Proof.

(i) Kiϕ ∨Ki¬ϕ ∨ (¬Kiϕ ∧ ¬Ki¬ϕ)

(ii) Kiϕ→ Ki(ϕ ∧Kifiϕ) from 4(Ki) and thm. Def2(Ki), Ki normal

(iii) Ki¬ϕ→ Ki¬(ϕ ∧Kifiϕ) from Ki normal

(iv) (¬Kiϕ ∧ ¬Ki¬ϕ)→ (Ki¬Kiϕ ∧Ki¬Ki¬ϕ) from thm. ∗5(Ki)

(v) (Ki¬Kiϕ ∧Ki¬Ki¬ϕ)→ Ki¬Kifiϕ from Def1(Kifi), Ki normal

(vi) (¬Kiϕ ∧ ¬Ki¬ϕ)→ Ki¬(ϕ ∧Kifiϕ) from (iv), (v), Ki normal

(vii) Ki(ϕ ∧Kifiϕ) ∨Ki¬(ϕ ∧Kifiϕ) from (i), (ii), (iii), (vi)

(viii) Kifi(ϕ ∧Kifiϕ) from (vii), Def1(Kifi)
2
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Def2(Eif): Eifϕ↔ ∧
i∈Agt Kifiϕ

Proof. This is Proposition 2.1. 2

Sym(Cif): Cifϕ↔ Cif¬ϕ

Proof. Follow the lines of that of Sym(Kifi). 2

RE(Cif): from ϕ↔ ψ, infer Cifϕ↔ Cifψ

Proof. Follow the lines of that of RE(Kifi). 2

RN(Cif) from ϕ, infer Cϕ

Proof. Follow the lines of that of RN(Kifi). 2

Conj(Cif) (ϕ ∧ ψ)→
(
Cif(ϕ ∧ ψ)↔ (Cifϕ ∧Cifψ)

)

Proof. Follow the lines of that of Conj(Kifi). 2

∗451(Cif) CifCifϕ

Proof. Follow the lines of that of 451(Kifi). 2

452(Cif) Cif(ϕ ∧Cifϕ)

Proof. Follow the lines of that of 452(Kifi). 2

GFP2 Cifϕ↔ (Eifϕ ∧CifEifϕ)

Proof. We prove the three implications Cifϕ→ Eifϕ, Cifϕ→ CifEifϕ, and
(Eifϕ ∧CifEifϕ)→ Cifϕ. For the first:

(i) (Cϕ ∨C¬ϕ)→ (Eϕ ∨E¬ϕ) from FP0

(ii) Cifϕ→ Eifϕ from (i), Def1(Eif), Def1(Cif)

For the second:

(i) Cϕ→ CEϕ from 4(C), FP0

(ii) Cϕ→ CEifϕ from (i), Def(Eif), normal C

(iii) C¬ϕ→ CEif¬ϕ from (ii) by uniform substitution

(iv) C¬ϕ→ CEifϕ from (iii) by Sym(Ki), Def(E)

(v) Cifϕ→ CEifϕ from (ii), (iv), Def1(Cif)

(vi) Cifϕ→ CifEifϕ from (v), Def1(Cif)

For the third:
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(i) C(Eϕ ∨E¬ϕ)→ (Cϕ ∨C¬ϕ) GFP0

(ii) CEifϕ→ Cifϕ from (i), Def1(Eif), Def1(Cif)

(iii) (Eifϕ ∧CifEifϕ)→ Cifϕ from (ii), thm. Def2(C)
2

A.2 Proof of Proposition 5.2

Proposition 5.2 For the S5-based GFP0 axiomatics of Table 3, all inference
rules are derivable and all axioms are theorems in the S5-based GFP2 axiomatics.
Moreover, the equivalences Def1(Kifi), Def1(Eif), and Def1(Cif) are theorems
in the S5-based GFP2 axiomatics.

We start by the last three definitions.

Def1(Kifi) Kifiϕ↔ (Kiϕ ∨Ki¬ϕ)

Proof.

(i) (Kiϕ ∨Ki¬ϕ)↔ ((ϕ ∧Kifiϕ) ∨ (¬ϕ ∧Kifi¬ϕ)) from Def2(Ki)

(ii) Kifi¬ϕ↔ Kifiϕ Sym(Kifi)

(iii) Kifiϕ↔ (Kiϕ ∨Ki¬ϕ) from (i), (ii)
2

Def1(Eif) Eifϕ↔ (Eϕ ∨E¬ϕ)

Proof. Follow the lines of that of Def1(Kifi). 2

Def1(Cif) Cifϕ↔ (Cϕ ∨C¬ϕ)

Proof. Follow the lines of that of Def1(Kifi). 2

RN(Ki) from ϕ, infer Kiϕ

Proof.

(i) ϕ hypothesis

(ii) Kifiϕ from (i) by RN(Kifi)

(iii) ϕ ∧Kiϕ from Def2(Ki)

(iv) Kiϕ from (iii)
2

K(Ki) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

Proof.
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(i) (ϕ ∧Kifiϕ ∧ (ϕ→ ψ) ∧Kifi(ϕ→ ψ))→ Kifi(ϕ ∧ (ϕ→ ψ))
blablabla from Conj(Kifi)

(ii) (ϕ ∧Kifiϕ ∧ (ϕ→ ψ) ∧Kifi(ϕ→ ψ))→ Kifi(ϕ ∧ ψ)
blablabla from (i) by RE(Kifi)

(iii) (ϕ ∧ ψ ∧Kifi(ϕ ∧ ψ))→ Kifiψ from Conj(Kifi)

(iv) (ϕ ∧Kifiϕ ∧ (ϕ→ ψ) ∧Kifi(ϕ→ ψ))→ (ψ ∧Kifiψ) from (ii), (iii)

(v) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ) from (iv) by Def2(Ki)
2

T(Ki) Kiϕ→ ϕ

Proof.

(i) (ϕ ∧Kifϕ)→ ϕ

(ii) Kiϕ→ ϕ from (i) by Def2(Ki)
2

∗5(Ki) ¬Kiϕ→ Ki¬Kiϕ

Proof.

(i) Kifi(ϕ ∧Kifiϕ) 452(Kifi)

(ii) KifiKiϕ from (i) by Def2(Ki)

(iii) Kifi¬Kiϕ from (ii) by Sym(Kifi)

(iv) ¬Kiϕ→ (¬Kiϕ ∧Kifi¬Kiϕ) from (iii)

(v) ¬Kiϕ→ Ki¬Kiϕ from (iv) by Def2(Ki)
2

Def(E) Eϕ↔ ∧
i∈Agt Kiϕ

Proof.

(i) (ϕ ∧Eifϕ)↔ (ϕ ∧∧i∈Agt Kifiϕ) from Def2(Eif)

(ii) (ϕ ∧Eifϕ)↔ ∧
i∈Agt(ϕ ∧Kifiϕ) from (i)

(iii) Eϕ↔ ∧
i∈Agt Kiϕ from (ii) by Def2(E), Def2(Ki)

2

RN(C) from ϕ, infer Cϕ

Proof. Follow the lines of that of RN(Ki). 2

K(C) C(ϕ→ ψ)→ (Cϕ→ Cψ)

Proof. Follow the lines of that of K(Ki). 2
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T(C) Cϕ→ ϕ

Proof. Follow the lines of that of T(Ki). 2

FP0 Cϕ→ Eϕ

Proof.

(i) (ϕ ∧Cifϕ)→ (ϕ ∧Eifϕ) from GFP2

(ii) Cϕ→ Eϕ from (i) by Def2(C), Def2(E)
2

GFP0 C(Eϕ ∨E¬ϕ)→ (Cϕ ∨C¬ϕ)

Proof.

(i) (Eifϕ ∧CifEifϕ)→ Cifϕ from GFP2

(ii)
(
(Eϕ ∨E¬ϕ) ∧Cif(Eϕ ∨E¬ϕ)

)
→ Cifϕ

blablabla from (i) by thm. Def1(Eif) and RE(Cif)

(iii) C(Eϕ ∨E¬ϕ)→ (Cϕ ∨C¬ϕ) from (ii) by Def2(C), thm. Def1(Cif)
2

B Proof of Proposition 6.1

Proposition 6.1 In the GFP-based axiomatics for KT, ∗5(C) and the formula
C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) are interderivable.

Proof. From the GFP-based axiomatics for KT and ∗5(C) (recall that 4(C)
is derivable from FP′, RN(C) and GFP):

(i) CC(ϕ→ Eϕ)→ C(ϕ→ Cϕ) from GFP, RN(C), K(C)

(ii) C(ϕ→ Eϕ)→ CC(ϕ→ Eϕ) 4(C)

(iii) C(ϕ→ Eϕ)→ CC(¬Cϕ→ ¬ϕ) from (i), (ii) and 4(C)

(iv) C(ϕ→ Eϕ)→ C(C¬Cϕ→ C¬ϕ) from (iii) and K(C)

(v) C(ϕ→ Eϕ)→ C(¬Cϕ→ C¬ϕ) from (iv) and ∗5(C)

(vi) C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) from (v), FP′ and T(C)

From the GFP-based axiomatics for KT and C(ϕ → Eϕ) → C(¬ϕ →
E¬ϕ):

(i) C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) hypothesis

(ii) C(Cϕ→ ECϕ) from FP′ and RN(C)

(iii) C(¬Cϕ→ E¬Cϕ) from (ii) and (i)

(iv) ¬Cϕ→ C¬Cϕ from (iii) and GFP

2
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Inquisitive Intuitionistic Logic
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Abstract

Inquisitive logic is a research program seeking to expand the purview of logic beyond
declarative sentences to include the logic of questions. To this end, inquisitive propo-
sitional logic extends classical propositional logic for declarative sentences with prin-
ciples governing a new binary connective of inquisitive disjunction, which allows the
formation of questions. Recently inquisitive logicians have considered what happens
if the logic of declarative sentences is assumed to be intuitionistic rather than classi-
cal. In short, what should inquisitive logic be on an intuitionistic base? In this paper,
we provide an answer to this question from the perspective of nuclear semantics, an
approach to classical and intuitionistic semantics pursued in our previous work. In
particular, we show how Beth semantics for intuitionistic logic naturally extends to
a semantics for inquisitive intuitionistic logic. In addition, we show how an explicit
view of inquisitive intuitionistic logic comes via a translation into propositional lax
logic, whose completeness we prove with respect to Beth semantics.

Keywords: inquisitive logic, intuitionistic logic, Kripke semantics, Beth semantics,
algebraic semantics, Heyting algebra, nucleus, lax logic

1 Introduction

Inquisitive logic is a research program seeking to expand the purview of
logic beyond declarative sentences to include the logic of questions (see, e.g.,
[7,12,9,8,10]). While classical logic is based on the idea that any state of the
world that makes true certain declarative sentences also makes true certain
other declarative sentences, inquisitive logic is based on the idea that any state
of information that answers certain questions (and incorporates the truth of
certain declarative sentences) also answers certain other questions (and incor-
porates the truth of certain other declarative sentences). Thus, one may study a
notion of consequence not only between declarative sentences but also between
questions, as well as combinations of declaratives and questions.

To formalize this new notion of consequence, the language of inquisitive
propositional logic extends that of classical propositional logic for declarative
sentences with a new binary connective of inquisitive disjunction,

>

, which
allows the formation of questions. The formula p

>

q represents the question of
whether p or q, in contrast to the formula p ∨ q, which represents the declara-
tive sentence p or q. To make this distinction with a formal semantics, classical
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inquisitive semantics evaluates a formula of the inquisitive language at an in-
formation state, understood as a set of classical propositional valuations—the
states of the world compatible with the information. An information state an-
swers the question p

>

q just in case every valuation in the information state
satisfies p or every valuation in the information state satisfies q; by contrast,
an information state supports the declarative p ∨ q just in case every valuation
in the information state satisfies p or satisfies q. 1 Thus, while every informa-
tion state supports the declarative p∨¬p, not every information state answers
the question p

> ¬p. This gives reasoning with inquisitive disjunction an intu-
itionistic flavor. Yet the logic of declarative sentences (formulas without

>

)
underlying inquisitive logic is classical.

Recently inquisitive logicians have considered what happens if the logic
of declarative sentences is assumed to be intuitionistic rather than classical
[24,25,11]. In short, what should inquisitive logic be on an intuitionistic base?
This is a natural question not only because of the general interest in intuitionis-
tic logic as a formalization of constructive reasoning with declarative sentences,
but also because of the affinity between information-state-based semantics and
intuitionistic semantics in the style of Beth [1], Grzegorczyk [17], and Kripke
[21]. In fact, the classical inquisitive semantics sketched above may be seen as
a special case of intuitionistic Kripke semantics, based on restricting to spe-
cial Kripke models: the underlying poset of the Kripke model must be the
set of all nonempty subsets of a set, ordered by reverse inclusion (a “topless
Boolean algebra”), and the valuation of each proposition letter in the Kripke
model must be a regular element of the Heyting algebra of upsets of the poset,
i.e., an upset U such that U = U∗∗, where ∗ is the pseudocomplement oper-
ation in the Heyting algebra of upsets, which is used in Kripke semantics to
interpret the intuitionistic negation connective ¬. Restricting the valuation of
proposition letters to regular elements, the usual Kripke clauses for ¬ and ∧,
plus the classical definition of ∨ in terms of ¬ and ∧, yields classical logic for
the declarative fragment of the inquisitive language; then interpreting

>

as
the standard Kripke disjunction—as the join (union) in the Heyting algebra of
upsets—is responsible for the intuitionistic flavor of

>

noted above.
Given this connection between classical inquisitive semantics and intuition-

istic Kripke semantics, how should one modify the semantics to obtain an
intuitionistic base logic of declaratives? Ciardelli et al. [11] do so by moving
up one level set-theoretically in Kripke models: their semantics evaluates a
formula at a subset of a Kripke model, called a team. As the points in an
intuitionistic Kripke model are traditionally thought of as information states,
a team may be thought of as a set of information states—and therefore as a
kind of higher-order information state.

In this paper, we pursue a different semantic approach to inquisitive logic on
an intuitionistic base. In our semantics, we evaluate formulas of the inquisitive

1 This is the semantics for proposition letters p and q. For the general recursive clause, see
any of the cited references on classical inquisitive logic.
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language at individual states in a poset, not at sets of states of a poset. We are
able to do so by switching from Kripke semantics on posets to Beth semantics
on posets. The difference between our approach and that of Ciardelli et al. [11]
can be traced to different perspectives on declarative disjunction in classical
inquisitive semantics. As noted above, in the original approach to inquisitive
logic (see, e.g., [8, Def. 2.1.2]), the declarative disjunction ∨ is defined in terms
of ¬ and ∧ using the usual classical definition: ϕ∨ψ := ¬(¬ϕ∧¬ψ). Since ¬ and
∧ are interpreted as the pseudocomplement and meet (intersection) operations
in the Heyting algebra of upsets of a Kripke model, the definition of ∨ in terms
of ¬ and ∧ is equivalent to interpreting ∨ as the regularization of the join:

V (ϕ ∨ ψ) = (V (ϕ) t V (ψ))∗∗.

Thus, we see classical inquisitive semantics as follows:

• the semantic values of formulas are elements of a Heyting algebra of upsets
of a special kind of poset (a topless Boolean algebra);

• the semantic values of proposition letters must be regular elements of the
Heyting algebra;

• ¬ and ∧ are interpreted as pseudocomplement and meet, respectively, in the
Heyting algebra;

• the inquisitive disjunction

>

is interpreted as the join in the Heyting algebra;

• the declarative disjunction ∨ is interpreted as the regularization of the join
in the Heyting algebra.

The regularization operation (·)∗∗ is an example of a nucleus on the Heyting
algebra of upsets of a poset (see Section 5 for a definition). The fixpoints
of this nucleus—the regular elements—form a Boolean algebra, in which the
join of two elements is the regularization of their join in the Heyting algebra.
This explains why standard inquisitive semantics, which interprets proposition
letters as regular elements and interprets declarative disjunction as the reg-
ularization of the join in the Heyting algebra of upsets, yields classical logic
for the declarative fragment of the inquisitive language. It also explains why
inquisitive logic is not closed under uniform substitution of complex formulas
for proposition letters, e.g., why ¬¬p→ p is valid while ¬¬(q

>

r)→ (q

>

r) is
not. This happens because while proposition letters are interpreted as regular
elements, the join operation in the Heyting algebra can take one out of the
algebra of regular elements. To summarize:

• the semantic values of declarative formulas live in the algebra of fixpoints of
(·)∗∗, while the semantic values of arbitrary formulas may live anywhere in
the ambient Heyting algebra.

From this perspective, also adopted in [5], there is a natural way of obtaining
semantics for inquisitive logic on an intuitionistic declarative base: we may
simply switch from the Boolean nucleus (·)∗∗ to a non-Boolean nucleus.

To do so, first note that interpreting declarative disjunction as the regular-
ization of the join in the Heyting algbera of upsets is equivalent to using the
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following semantic clause:

• a state x in a poset forces ϕ∨ ψ iff for every x′ ≥ x there is an x′′ ≥ x′ such
that x′′ forces ϕ or x′′ forces ψ.

In place of this classical interpretation of ∨, we give an intuitionistic interpre-
tation of ∨ as in Beth semantics:

• a state x in a poset forces ϕ∨ψ iff every maximal chain 2 through x contains
a state that forces ϕ or a state that forces ψ.

This amounts to interpreting declarative disjunction as the result of applying
what we call the Beth nucleus to the join in the Heyting algebra of upsets. The
Beth nucleus jb is defined for any upset U of a poset by

jbU = {x ∈ X | every maximal chain through x intersects U}.

Not only do we interpret declarative disjunction using jb instead of (·)∗∗, but
also we require proposition letters to be interpreted as fixpoints of jb instead of
(·)∗∗ (i.e., we require that x forces p iff every maximal chain through x contains
a state that forces p). Yet the interpretation of inquisitive disjunction

>

as
join in the Heyting algebra of upsets remains the same. This Beth semantics for
the inquisitive language is a special case of a more general algebraic semantics
for the inquisitive language based on Heyting algebras equipped with a nucleus,
called nuclear algebras. Thus, we are extending to the inquisitive setting the
nuclear semantics for intuitionistic logic studied in our previous work [4].

The starting point on our road to this nuclear approach to inquisitive se-
mantics was the observation that in the classical semantics for inquisitive logic,
the nucleus (·)∗∗ is used to constrain the valuation of proposition letters and to
interpret the declarative disjunction ∨ (just as in the possibility semantics of
[19,18]). By contrast, Ciardelli et al. [11] have a different starting point. They
begin by departing from the original definition of declarative disjunction in
classical inquisitive logic as ϕ∨ψ := ¬(¬ϕ∧¬ψ) and by giving a new semantic
clause for classical ∨ based on team semantics for dependence logic (see, e.g.,
[26,27]). In team semantics, disjunction is interpreted as follows:

• an information state T (set of classical valuations) supports ϕ ∨ ψ iff there
are T ′, T ′′ such that T = T ′ ∪ T ′′, T ′ supports ϕ, and T ′′ supports ψ.

Already in the classical setting, this semantics for ϕ ∨ ψ is not equivalent to
defining ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ). For example, with the original definition of
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), the principle

((ϕ ∨ ϕ) ∨ (ϕ ∨ ϕ))→ (ϕ ∨ ϕ)

is a theorem of inquisitive logic for any ϕ. Yet with ∨ treated as a primitive
connective and interpreted using the team semantics above, the principle above

2 In fact, we will use chains closed under upper bounds, following [4], but this subtlety does
not matter here.
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is not valid for all ϕ containing

>

(see Example 4.2). Ciardelli et al. [11] extend
the team semantics for ∨ to the intuitionistic setting by taking T to be a subset
of an intuitionistic Kripke model instead of merely a set of classical valuations.

We do not wish to argue that the nuclear approach to inquisitive logic
on an intuitionistic base is superior to the team-based approach. Both are
natural from different points of view. Starting from the perspective of team
semantics for dependence logic, Ciardelli et al. [11] show how to “intuitionize”
the semantics, by moving from teams as sets of classical valuations to teams as
subsets of a Kripke model. By contrast, starting from the perspective of Beth
semantics for intuitionistic logic, we show how to “inquisitivize” the semantics,
by adding the Kripke interpretation for

>
to Beth semantics. This is why we

call our resulting logic “inquisitive intuitionitic logic” in contrast to Ciardelli
et al.’s “intuitionistic inquisitive logic.”

Our main result is a completeness theorem for inquisitive intuitionistic logic
with respect to Beth semantics, which is our answer to the question “What
should inquisitive logic be on an intuitionistic base?” But even independently
of inquisitive logic, it is a natural question whether one can prove a complete-
ness theorem for the propositional language with two disjunctions ∨ and

>

,
with ∨ (and proposition letters) interpreted according to Beth semantics,

>

interpreted according to Kripke semantics, and ¬,→,∧ having their usual in-
terpretations, which are the same in both semantics.

We prove the completeness theorem using a detour through the intuitionistic
modal logic of nuclei [16], known as propositional lax logic [15]. Propositional
lax logic adds to the signature of intuitionistic propositional logic an operator
©, interpreted using the nucleus in a nuclear algebra. A key step in our proof
of completeness of inquisitive intuitionistic logic with respect to Beth semantics
is a proof of the completeness of propositional lax logic with respect to Beth
semantics, i.e., with © interpreted as the Beth nucleus jb on the Heyting
algebra of upsets of a poset. Thus, another contribution of the paper is to
provide a new semantics for propositional lax logic.

The paper is organized as follows. In Section 2, we recall the standard
language of inquisitive logic and present our new semantic proposal: Beth
semantics for inquisitive intuitionistic logic. In Section 3, we define for any
superintuitionistic logic L its inquisitive version Inq(L). In this paper, we con-
centrate on the case where L is the intuitionistic propositional calculus (IPC).
Our completeness theorem states that Inq(IPC) is sound and complete with
respect to the class of all Beth frames (posets) according to Beth semantics.
Before proving this result, in Section 4 we compare Inq(IPC) with the system
InqI of Ciardelli et al. [11]. We show that the two logics are incomparable in
strength. In Section 5, we develop the nuclear perspective on Beth semantics
sketched above, which we turn into explicit translations between the language
of inquisitive intuitionistic logic and the language of propositional lax logic in
Section 6. This lets us transform the problem of proving the completeness of
inquisitive intuitionistic logics with respect to Beth semantics into the problem
of proving the completeness of propositional lax logics with respect to Beth
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semantics. We work up to Beth completeness in three stages:

• in Section 6, we obtain completeness with respect to finite nuclear algebras
(proved in Appendix A);

• in Section 7, as an intermediate step, we transfer completeness with respect to
finite nuclear algebras to completeness with respect to certain finite relational
structures, which we call “S-frames,” from [3];

• in Section 8, we transfer completeness with respect to finite S-frames to Beth
completeness.

2 Beth Semantics for Inquisitive Logic

The inquisitive intuitionistic language L∨, > is defined as follows, where p be-
longs to a countably infinite set Prop of proposition letters:

ϕ ::= ⊥ | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ > ϕ).

As usual, we define ¬ϕ := ϕ→ ⊥. Let L∨ be the fragment without

>

, and let
L > be the fragment without ∨.

Toward introducing our semantics for L∨, > , we need the following notions.

Definition 2.1 Given a poset X, we define:

(i) Up(X) is the set of all upward closed subsets (upsets) of X, i.e., those
U ⊆ X such that if x ∈ U and x ≤ y, then y ∈ U ;

(ii) a chain in X is a C ⊆ X such that for all x, y ∈ C, x ≤ y or y ≤ x;

(iii) a path in X is a chain C in X that is closed under upper bounds, i.e., if
for all x ∈ C, x ≤ y, then y ∈ C. If x ∈ C, then C is a path through x.

Our proposal is to simply extend Beth semantics [1] for intuitionistic logic
(following the presentation in [4]) with

>

interpreted as in Kripke semantics.

Definition 2.2 For any poset X, x ∈ X, valuation v : Prop → Up(X), and
ϕ ∈ L∨, > , we define X,x v ϕ as follows:

(i) X,x 1v ⊥; X,x v p iff every path through x intersects v(p);

(ii) X,x v ϕ ∧ ψ iff X,x v ϕ and X,x v ψ;

(iii) X,x v ϕ ∨ ψ iff every path through x intersects {y ∈ X | X, y v ϕ} ∪
{y ∈ X | X, y v ψ};

(iv) X,x v ϕ→ ψ iff for every y ≥ x, if X, y v ϕ then X, y v ψ;

(v) X,x v ϕ

>

ψ iff X,x v ϕ or X,x v ψ.

A formula ϕ is valid on X according to inquisitive Beth semantics iff for any
valuation v : Prop → Up(X), we have X,x  ϕ for all x ∈ X (otherwise ϕ is
refuted); ϕ is valid over a class K of posets iff it is valid on every poset in K.

Example 2.3 Fig. 1 shows a poset (the “Beth comb”) with a valuation such
that according to Beth semantics, the root node forces p ∨ q (as every path
through the root contains a node that forces p or a node that forces q) but
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does not force p

>

q (as the root does not force p and does not force q) and
does not force p ∨ ¬p (as the path consisting of the nodes along the “spine” of
the comb does not contain a node that forces p or a node that forces ¬p).

p q

p q

p

. .
., q

, q

Fig. 1. Beth model for Example 2.3

3 Inquisitive Intuitionistic Logic

We now give a syntactic definition of a family of logical systems, the minimal
member of which we will prove complete with respect to Beth semantics.

Definition 3.1 An inquisitive intuitionistic logic is a set L of L∨, > formulas
that contains the following formulas and is closed under the following rules, for
all ϕ,ψ, χ ∈ L∨, > :

• all L∨, > -substitution instances of IPC axioms stated in L > ;

• (α ∨ α)→ α for α ∈ L∨;

• ϕ→ (ϕ ∨ ϕ); ((ϕ ∨ ϕ) ∨ (ϕ ∨ ϕ))→ (ϕ ∨ ϕ); ((ϕ

>

ψ) ∨ (ϕ

>

ψ))↔ (ϕ ∨ ψ);

• ((ϕ ∧ ψ) ∨ (ϕ ∧ ψ))↔ ((ϕ ∨ ϕ) ∧ (ψ ∨ ψ));

• rule of modus ponens: if ϕ ∈ L and ϕ→ ψ ∈ L, then ψ ∈ L;

• rule of replacement of equivalents: if ϕ ∈ L and ψ ↔ χ ∈ L, then ϕ′ ∈ L for
any ϕ′ obtained from ϕ by replacing one or more occurrences of ψ in ϕ by χ.

The following soundness result is easy to check.

Proposition 3.2 For any class K of posets, the set of L∨, > -formulas valid
over K according to inquisitive Beth semantics is an inquisitive intuitionistic
logic.

One can also consider inquisitive intuitionistic logics based on superintu-
itionistic logics strictly extending IPC.

Definition 3.3 A superintuitionistic logic (si-logic) for L > is a set L of L >

formulas that contains the following formulas and is closed under the following
rules:

(i) all axioms of IPC stated in L > ;

(ii) rule of modus ponens: if ϕ ∈ L and ϕ→ ψ ∈ L, then ψ ∈ L;
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(iii) rule of substitution: if ϕ ∈ L and ϕ′ is obtained from ϕ by uniformly
substituting formulas for proposition letters in ϕ, then ϕ′ ∈ L.

Definition 3.4 For any si-logic L for L > , let Inq(L) be the smallest inquisitive
intuitionistic logic containing all L∨, > -substitution instances of theorems of L.

In this paper, we concentrate on the smallest inquisitive intuitionistic logic,
Inq(IPC). Our main theorem is the following.

Theorem 3.5 Inq(IPC) is sound and complete according to Beth semantics.

4 Comparison of Inq(IPC) and InqI

Ciardelli et al. [11] syntactically define a system InqI of intuitionistic inquisitive
logic. Below we show that InqI and our Inq(IPC) are incomparable. We refer
the reader to [11] for the full definition of Inql and its team semantics, but we
will define as much as we need here to distinguish the two logics.

Example 4.1 The axiom

(p ∨ (q

>

r))→ ((p ∨ q) > (p ∨ r))

of InqI is not valid according to Beth semantics for inquisitive logic. For exam-
ple, in the poset with the valuation shown in Figure 2, where p is true only at
the top left node, q only at the top middle node, and r only at the top right
node, the root node satisfies p ∨ (q

>

r) but does not satisfy (p ∨ q) > (p ∨ r).
p q r

Fig. 2. Beth model for Example 4.1

Example 4.2 The following axiom schemas of Inq(IPC) have counterexamples
according to team semantics for InqI [11]:

(i) ((ϕ ∨ ϕ) ∨ (ϕ ∨ ϕ))→ (ϕ ∨ ϕ);

(ii) ((ϕ ∧ ψ) ∨ (ϕ ∧ ψ))↔ ((ϕ ∨ ϕ) ∧ (ψ ∨ ψ)).

Recall the clauses for ∨ and

>

according to team semantics:

• a team T supports ϕ ∨ ψ iff there are T ′, T ′′ such that T = T ′ ∪ T ′′, T ′
supports ϕ, and T ′′ supports ψ;

• a team T supports ϕ

>

ψ iff T supports ϕ or T supports ψ.

For (i), take ϕ := (p1

>

p2)

>

(p3

>

p4) and a classical team model (i.e.,
the Kripke relation R is identity) with W = {w1, w2, w3, w4} and V (pi) =
{wi}. Then the team {w1, w2, w3, w4} supports (ϕ ∨ ϕ) ∨ (ϕ ∨ ϕ), because
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{w1, w2, w3, w4} = {w1}∪{w2}∪{w3}∪{w4} and each {wi} supports ϕ. How-
ever, {w1, w2, w3, w4} does not support ϕ∨ϕ, because there is no way of writing
{w1, w2, w3, w4} as a union of two sets each of which support ϕ.

For (ii), take ϕ := p

>

q, ψ := r

>

s, and a classical team model with
W = {w1, w2, w3} such that V (p) = {w1, w2}, V (q) = {w3}, V (r) = {w1},
and V (s) = {w2, w3}. Then the team {w1, w2, w3} supports ϕ ∨ ϕ, because
{w1, w2, w3} = {w1, w2}∪{w3} and the teams {w1, w2} and {w3} each support
ϕ; and the team {w1, w2, w3} supports ψ ∨ ψ, because {w1, w2, w3} = {w1} ∪
{w2, w3} and the teams {w1} and {w2, w3} each support ψ. However, the team
{w1, w2, w3} does not support (ϕ ∧ ψ) ∨ (ϕ ∧ ψ), because there is no way of
writing {w1, w2, w3} as a union of two sets each of which supports ϕ ∧ ψ. For
the only teams that support ϕ ∧ ψ are the singleton teams.

5 The Nuclear Perspective

The Beth semantics for L∨, > in Section 2 can be regarded as a special case of
an algebraic semantics based on nuclei.

Definition 5.1 A nucleus on a Heyting algebra H is a unary function
j : H → H such that for all a, b ∈ H, a ≤ ja (increasing), jja ≤ ja (idem-
potent), and j(a ∧ b) = ja ∧ jb (multiplicative); and j is dense if j0 = 0.

We denote the meet, join, and implication operations of a Heyting algebra by
∧, ∨, and →, trusting that no confusion will arise.

Definition 5.2 A nuclear algebra is a pair (H, j) where H is a Heyting algebra
and j is a nucleus on H. The algebra is dense if j is dense.

The following useful lemma and key theorem are well known.

Lemma 5.3 For any nuclear algebra (H, j) and a, b ∈ H, we have j(a ∨ b) =
j(ja ∨ b) = j(a ∨ jb) = j(ja ∨ jb).

Theorem 5.4 For any nuclear algebra (H, j), the set Hj = {a ∈ L | ja = a} of
fixpoints of j is a Heyting algebra, called the algebra of fixpoints in (H, j), under
the following operations for a, b ∈ Hj: 0j = j0, a∧j b = a∧ b, a∨j b = j(a∨ b),
and a→j b = a→ b.

The key idea of the nuclear semantics for L∨, > is that the inquisitive dis-
junction

>

is interpreted as the join in the nuclear algebra, while the declara-
tive disjunction ∨ is interpreted by applying the nucleus to the join.

Definition 5.5 Given a nuclear algebra (H, j) and valuation v : Prop → Hj ,
we define v̂ : L∨, > → H by: v̂(⊥) = j0, v̂(ϕ ∧ ψ) = v̂(ϕ) ∧ v̂(ψ), v̂(ϕ ∨ ψ) =
j(v̂(ϕ) ∨ v̂(ψ)), v̂(ϕ→ ψ) = v̂(ϕ)→ v̂(ψ), and v̂(ϕ

>

ψ) = v̂(ϕ) ∨ v̂(ψ).
A formula ϕ is valid on (H, j) according to inquisitive nuclear semantics iff

for any v : Prop → Hj , we have v̂(ϕ) = 1 (otherwise ϕ is refuted); and ϕ is
valid over a class K of nuclear algebras iff it is valid on every algebra in K.

The following soundness result is easy to check.
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Proposition 5.6 For any class K of nuclear algebras, the set of L∨, > -
formulas valid over K according to inquisitive nuclear semantics is an inquisi-
tive intuitionistic logic.

Beth semantics can be seen as a special case of nuclear semantics using the
following intermediate structures from [4].

Definition 5.7 A nuclear frame is a triple (S,v, j) where (S,v) is a poset
and j is a nucleus on the Heyting algebra Up(S,v) of upsets of (S,v).

Example 5.8 The Beth nucleus jb on Up(S,v) is defined by

jbU = {x ∈ X | every path through x intersects U}.

6 Translation into Lax Logic

The nuclear perspective of the previous section can be made explicit, at the
level of the object language, by translating the inquisitive intuitionitic language
L∨, > into the language L© of propositional lax logic [15].

Definition 6.1 Let L© be the language defined as follows, where p ∈ Prop:

ϕ ::= ⊥ | p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | ©ϕ.

Let L©p be the language defined as follows, where p ∈ Prop:

ϕ ::=©⊥ | ©p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | ©ϕ.

We first consider the obvious nuclear-algebraic semantics for L©, where the
sole disjunction ∨ of L© is interpreted as the join in the Heyting algebra.

Definition 6.2 Given a nuclear algebra (H, j) and valuation v : Prop→ H, we
define v : L© → H by: v(⊥) = 0, v(ϕ∧ψ) = v(ϕ)∧v(ψ), v(ϕ∨ψ) = v(ϕ)∨v(ψ),
v(ϕ→ ψ) = v(ϕ)→ v(ψ), v(©ϕ) = jv(ϕ).

For simplicity, we will drop the overline on v when there is no risk of confusion.
A special case of this nuclear-algebraic semantics for L© is the following

lax Beth semantics for L©.

Definition 6.3 For any poset X, x ∈ X, valuation v : Prop → Up(X), and
ϕ ∈ L©, we define X,x v ϕ as follows:

(i) X,x 1v ⊥; X,x v p iff x ∈ v(p);

(ii) X,x v ϕ ∧ ψ iff X,x v ϕ and X,x v ψ;

(iii) X,x v ϕ ∨ ψ iff X,x v ϕ or X,x v ψ;

(iv) X,x v ϕ→ ψ iff for every y ≥ x, if X, y v ϕ then X, y v ψ;

(v) X,x v ©ϕ iff every path through x intersects {y ∈ X | X, y v ϕ}.
We now translate L∨, > into L©p as follows.

Definition 6.4 Let ` be the translation from L∨, > to L©p defined by: `(⊥) =
©⊥, `(p) =©p, `(ϕ∧ψ) = `(ϕ)∧ `(ψ), `(ϕ∨ψ) =©(`(ϕ)∨ `(ψ)), `(ϕ

>

ψ) =
`(ϕ) ∨ `(ψ), and `(ϕ→ ψ) = `(ϕ)→ `(ψ).



Holliday 339

It is easy to check that the translation is full and faithful in the following sense.

Lemma 6.5 Let X be a poset and ϕ ∈ L∨, > . Then X validates ϕ according
to inquisitive Beth semantics for L∨, > iff X validates `(ϕ) according to lax
Beth semantics for L©.

We can also define a translation in the other direction as follows.

Definition 6.6 Let ι be the translation from L© to L∨, > defined by: ι(⊥) =
⊥, ι(p) = p, ι(ϕ ∧ ψ) = ι(ϕ) ∧ ι(ψ), ι(ϕ ∨ ψ) = ι(ϕ)

>

ι(ψ), ι(ϕ → ψ) =
ι(ϕ)→ ι(ψ), and ι(©ϕ) = ι(ϕ) ∨ ι(ϕ).

For the fragment L©p of L©, it is easy to check the following.

Lemma 6.7 Let X be a poset and ϕ ∈ L©p. Then X validates ϕ according
to lax Beth semantics for L© iff X validates ι(ϕ) according to inquisitive Beth
semantics for L∨, > .

However, the lemma does not extend to all ϕ ∈ L©.

Example 6.8 The formula ©p → p is not valid according to lax Beth se-
mantics, but ι(©p → p) = (p ∨ p) → p is valid according to inquisitive Beth
semantics.

Next it is easy to check that composing the translations produces a formula
provably equivalent to the original input.

Lemma 6.9 For any ϕ ∈ L∨, > , the formula ϕ ↔ ι(`(ϕ)) is a theorem of
Inq(IPC).

Proof. By induction on ϕ. In the base case, ⊥ ↔ (⊥ ∨ ⊥) and p ↔ (p ∨ p)
are provable using the axioms of Inq(IPC). The ∧, →, and

>

cases use the
inductive hypothesis and replacement of equivalents. For the ∨ case, proving

(ϕ ∨ ψ)↔ ((ι(`(ϕ))

>

ι(`(ψ))) ∨ (ι(`(ϕ))

>

ι(`(ψ))))

uses the inductive hypothesis, replacement of equivalents, and an axiom. 2

Though in [15] ‘propositional lax logic’ (PLL) refers to a single system, we
can define a family of lax logics, of which PLL is the smallest.

Definition 6.10 A propositional lax logic is a set L of L© formulas that con-
tains the following formulas and is closed under the following rules for all
ϕ,ψ ∈ L©:

• all L©-substitution instances of IPC axioms stated in L∨;

• ϕ→©ϕ, ©©ϕ→©ϕ, and ©(ϕ ∧ ψ)↔ (©ϕ ∧©ψ);

• rules of modus ponens and replacement of equivalents.

A dense propositional lax logic is a propositional lax logic containing©⊥→ ⊥.

Again soundness is easy to check.

Proposition 6.11 For any class K of posets, the set of L©-formulas valid
over K according to lax Beth semantics is a dense propositional lax logic.
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Remark 6.12 To obtain Beth semantics for lax logics without the density
axiom, one needs to consider Beth semantics with “strange” or “exploded”
worlds that force ⊥ (see, e.g., [14]), but we leave this for future work.

Here we will consider the (dense) lax logic based on IPC, but the same idea
applies to any si-logic.

Definition 6.13 For any si-logic L, let Lax(L) and Laxd(L) be the smallest
propositional lax logic and the smallest dense propositional lax logic, respec-
tively, containing all L©-substitution instances of L axioms stated in L∨.

In the Appendix, we prove the following algebraic completeness results.

Theorem 6.14

(i) If Lax(IPC) 6` ϕ, then there is a finite nuclear algebra that refutes ϕ.

(ii) If Laxd(IPC) 6` ϕ, then there is a finite dense nuclear algebra that refutes ϕ.

7 S-Frame Completeness

We now transfer the completeness result of Theorem 6.14 to completeness with
respect to certain finite relational structures, which we call “S-frames,” from
[3]. Proofs of the two lemmas and proposition below can be extracted from [3].

Definition 7.1 An S-frame is a triple S = (X,v, S) where (X,v) is a poset
and S ⊆ X. S is cofinal if S is cofinal in (X,v), i.e., for all x ∈ X there is a
y ∈ S such that x v y.

S-frames can be constructed from nuclear algebras as follows.

Definition 7.2 Given a nuclear algebra A = (H, j), define A? := (X,v, S) as
follows: X is the set of all prime filters of H; v is the inclusion order on X;
and S = {F ∈ X | j−1[F ] = F}.
Lemma 7.3 For any nuclear algebra A:

(i) A? is an S-frame;

(ii) if A is dense, then A? is cofinal.

Conversely, we construct a nuclear algebra from an S-frame as follows.

Definition 7.4 Given an S-frame S = (X,v, S), define the algebra S? :=
(H, jS) as follows: H = Up(X); for U ∈ H, jSU = {x ∈ X | ↑x ∩ S ⊆ U}.
Lemma 7.5 For any S-frame S, S? is a nuclear algebra.

Proposition 7.6 If A is a nuclear algebra, then A embeds into (A?)
?. More-

over, if A is finite, then the embedding is an isomorphism.

Say that an S-frame S validates/refutes a formula ϕ ∈ L© just in case S?

validates/refutes ϕ according to Definition 5.5. Then we obtain the following
completeness result from Theorem 6.14, Lemma 7.3, and Proposition 7.6.

Corollary 7.7 If Laxd(IPC) 6` ϕ, then there is a finite cofinal S-frame that
refutes ϕ.
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8 Beth Completeness

In this section, we first prove the Beth completeness of our lax logics and then
the Beth completeness of our inquisitive intuitionistic logics.

8.1 Beth Completeness of Laxd(IPC)

Our strategy is to turn any finite cofinal S-frame refuting a non-theorem ϕ
of Laxd(IPC) into a poset refuting ϕ according to Beth semantics. For this
purpose, we use the following key construction.

Definition 8.1 Given an S-frame (X,v, S), define (X?,v?) by:

(i) X? := X × N:

(ii) 〈x, t〉 v? 〈x′, t′〉 iff one of the following holds:
(a) x v x′ and t = t′;
(b) x = x′, x ∈ S, and t < t′;
(c) x @ x′ and t < t′.

Lemma 8.2 The relation v? is a partial order.

There are two key properties of (X?,v?). First, if (X,v, S) is finite and
cofinal, then every path eventually reaches a pair whose first coordinate is in S.

Lemma 8.3 Let (X,v, S) be a finite cofinal S-frame. If C is a path in
(X?,v?) through 〈x, t〉, then there is an 〈x′, t′〉 such that 〈x, t〉 v? 〈x′, t′〉 ∈ C
and x′ ∈ S.

Proof. Let C be a path in (X?,v?) through 〈x, t〉. Thus, C? = {x′ ∈ X |
〈x′, t′〉 ∈ C} is a chain in (X,v), which is finite since (X,v) is finite. Hence
C? has a maximum, xmax. Suppose for contradiction that C? ∩ S = ∅, so
xmax 6∈ S. Since xmax ∈ C?, there is a tmax such that 〈xmax, tmax〉 ∈ C.
Then 〈xmax, tmax〉 is the maximum of C, for if 〈x′, t′〉 ∈ C and 〈xmax, tmax〉 v?
〈x′, t′〉, then since xmax is the maximum of C?, we have xmax = x′, in which
case xmax 6∈ S implies tmax = t′ by Definition 8.1. Since (X,v) is finite, C?
has an upper bound y that is maximal in (X,v), so y ∈ S by the cofinality of
the S-frame. As 〈xmax, tmax〉 v? 〈y, tmax〉 and 〈xmax, tmax〉 is the maximum
of C, 〈y, tmax〉 is an upper bound of C. Then since C is a path, 〈y, tmax〉 ∈ C,
which with y ∈ S implies C? ∩ S 6= ∅, a contradiction. 2

Second, we can always create a path in which the first coordinate of the
pairs remains forever stuck at some element of S, as follows.

Lemma 8.4 Let (X,v, S) be an S-frame, 〈x, t〉 ∈ X?, and x v x′ ∈ S. Then

C := {〈x, t〉} ∪ {〈x′, t′〉 | t′ > t}

is a path in (X?,v?) through 〈x, t〉.
Proof. Clearly C is a chain in (X?,v?). It is also easy to see that C has no
upper bound and hence is closed under upper bounds. Thus, C is a path. 2

Lemmas 8.3 and 8.4 are the key ingredients for the proposition to follow.
First, a nuclear p-morphism [4] between nuclear frames (S,v, j) and (S′,v′, j′)
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is a p-morphism f from (S,v) to (S′,v′) such that for U ∈ Up(S′,v′),
f−1[j′U ] = jf−1[U ]; this ensure that f−1 is a nucleus-preserving homo-
morphism from the nuclear algebra (Up(S′,v′), j′) to the nuclear algebra
(Up(S,v), j); and if f is onto, then f−1 is an embedding, which implies that
the fixpoint algebra Up(S′,v′)j′ embeds into the fixpoint algebra Up(S,v)j .

Proposition 8.5 Let (X,v, S) be a finite S-frame. The function f defined by
f(〈x, t〉) = x is a nuclear p-morphism from the nuclear frame (X?,v?, jb) onto
the nuclear frame (X,v, jS).

Proof. First, we check that f is a p-morphism. It is immediate from Definition
8.1 that if 〈x, t〉 v? 〈x′, t′〉, then x v x′ and hence f(〈x, t〉) v f(〈x′, t′〉). For
the back condition, if f(〈x, t〉) = x v y, then we have 〈x, t〉 v? 〈y, t〉 and
f(〈y, t〉) = y. Next we check that for all U ∈ Up(X,v),

jbf
−1[U ] = f−1[jSU ].

Suppose 〈x, t〉 6∈ jbf
−1[U ], so there is a path C through 〈x, t〉 such that

C∩f−1[U ] = ∅. By Lemma 8.3, there is an 〈x′, t′〉 such that 〈x, t〉 v? 〈x′, t′〉 ∈
C and x′ ∈ S. From 〈x′, t′〉 ∈ C and C∩f−1[U ] = ∅, we have 〈x′, t′〉 6∈ f−1[U ],
so f(〈x′, t′〉) = x′ 6∈ U . From 〈x, t〉 v? 〈x′, t′〉, we have x v x′. Since x v x′ ∈
S \ U , we have x 6∈ jSU , so f(〈x, t〉) 6∈ jSU and hence 〈x, t〉 6∈ f−1[jSU ].

Now suppose 〈x, t〉 6∈ f−1[jSU ], so f(〈x, t〉) = x 6∈ jSU . Thus, there is
an x′ such that x v x′ ∈ S \ U , which also implies x 6∈ U . By Lemma 8.4,
C := {〈x, t〉}∪{〈x′, t′〉 | t′ > t} is a path through 〈x, t〉, and it follows from our
choice of x′ that C does not intersect f−1[U ]. Hence 〈x, t〉 6∈ jbf−1[U ]. 2

We now obtain a completeness result for dense lax logic with respect to Beth
semantics that is of interest independently of its application to inquisitive logic.

Theorem 8.6 For any ϕ ∈ L©, if ϕ is valid on all posets according to lax
Beth semantics, then ϕ is a theorem of Laxd(IPC).

Proof. Suppose ϕ is not a theorem of Laxd(IPC). Then by Corollary 7.7, ϕ can
be refuted according to S-frame semantics on a finite cofinal S-frame (X,v, S).
Then it follows by Lemma 8.5 that ϕ can be refuted according to lax Beth
semantics on a poset. 2

8.2 Beth Completeness of Inq(IPC)

In this section, we transfer the completeness result in Theorem 8.6 to Beth
completeness for Inq(IPC). To do so, we use the translation ι of Definition 6.6.
Since Lemma 6.7 for ι only applied to the fragment L©p of L©, we will also
use the following preliminary translation.

Definition 8.7 Let ξ be the translation from L© to L©p defined by: ξ(⊥) =
©⊥; ξ(p) =©p; ξ(ϕ#ψ) = ξ(ϕ)#ξ(ψ) for # ∈ {∧,∨,→}; ξ(©ϕ) =©ξ(ϕ).

Definition 8.8 Let Laxd(L)©p be the logic for L©p whose axioms are all ax-
ioms of Laxd(L) that belong to L©p and whose rules are modus ponens and
replacement of equivalents.
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Lemma 8.9 For any ϕ ∈ L©p, if ϕ is a theorem of Laxd(L), then ϕ is a
theorem of Laxd(L)©p.

Proof. Suppose ϕ is a theorem of Laxd(L), so there exists a proof 〈ϕ1, . . . , ϕn〉
in Laxd(L) with ϕn = ϕ. Then 〈ξ(ϕ1), . . . , ξ(ϕn)〉 is a proof in Laxd(L)©p; for
if ϕi is an axiom of Laxd(L), then ξ(ϕi) is an axiom of Laxd(L)©p, and if ϕi
is obtained from ϕj and ϕk by modus ponens, then clearly ξ(ϕi) is obtained
from ξ(ϕj) and ξ(ϕk) by modus ponens. Let ©a1, . . . ,©ak be the atomic
formulas occurring in ϕ, so ai is either a proposition letter or ⊥. Then ξ(ϕn)
is obtained from ϕn by replacing each ©ai by ©©ai. Thus, by extending
〈ξ(ϕ1), . . . , ξ(ϕn)〉 with the axioms ©©ai ↔©ai to

〈ξ(ϕ1), . . . , ξ(ϕn),©©a1 ↔©a1, . . . ,©©ak ↔©ak〉

and then repeatedly applying replacement of equivalents starting with ξ(ϕn),
we finally obtain a proof in Laxd(L)©p of ϕn. 2

Lemma 8.10 For any ϕ ∈ L©p, if ϕ is a theorem of Laxd(L)©p, then ι(ϕ) is
a theorem of Inq(L).

Proof. It suffices to show that for any axiom ϕ of Laxd(L)©p, ι(ϕ) is a theorem
of Inq(L). The axioms of Laxd(L)©p are of two kinds: (i) all L©p-substitution
instances of L-axioms stated in L∨, and (ii) the axioms for ©. For (i), each
L©p-substitution instance ϕ of an L-axiom stated in L∨ translates to a formula
ι(ϕ) that is also an L∨, > -substitution instance of an L-axiom stated in L > , so
Inq(L) contains ι(ϕ). For (ii), in each case the ι-translation of an axiom for ©
is an axiom of Inq(L):

ι(ϕ→©ϕ) = ι(ϕ)→ ι(©ϕ)

= ι(ϕ)→ (ι(ϕ) ∨ ι(ϕ)), an axiom of Inq(L)

ι(©©ϕ→©ϕ) = ι(©©ϕ)→ ι(©ϕ)

= (ι(©ϕ) ∨ ι(©ϕ))→ (ι(ϕ) ∨ ι(ϕ))

= ((ι(ϕ) ∨ ι(ϕ)) ∨ (ι(ϕ) ∨ ι(ϕ)))→ (ι(ϕ) ∨ ι(ϕ)),

an axiom of Inq(L)

ι(©(ϕ ∧ ψ)↔ (©ϕ ∧©ψ)) = ι(©(ϕ ∧ ψ))→ ι(©ϕ ∧©ψ)

= (ι(ϕ ∧ ψ) ∨ ι(ϕ ∧ ψ))→ (ι(©ϕ) ∧ ι(©ψ))

= ((ι(ϕ) ∧ ι(ψ)) ∨ (ι(ϕ) ∧ ι(ψ)))→
((ι(ϕ) ∨ ι(ϕ)) ∧ (ι(ψ) ∨ ι(ψ))),

an axiom of Inq(L).

Finally, for the dense axiom: ι(©⊥→ ⊥) = (⊥∨⊥)→ ⊥, an axiom of Inq(L).2

We can now put everything together to prove our main result: completeness
of inquisitive intuitionistic logic with respect to Beth semantics.
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Theorem 8.11 Inq(IPC) is sound and complete with respect to all posets ac-
cording to Beth semantics.

Proof. Soundness is easy. For completeness, we have:

ϕ is valid in Beth semantics for L∨, >

⇒ `(ϕ) is valid in Beth semantics for L© by Lemma 6.5

⇒ `(ϕ) is a theorem of Laxd(IPC) by Theorem 8.6

⇒ `(ϕ) is a theorem of Laxd(IPC)©p by Lemma 8.9

⇒ ι(`(ϕ)) is a theorem of Inq(IPC) by Lemma 8.10

⇒ ϕ is a theorem of Inq(IPC) by Lemma 6.9.
2

9 Conclusion

We have shown the viability of an approach to inquisitive logic on an intuition-
istic base using Beth semantics rather than team semantics. As noted, there
are two other motivations for this work, independent of inquisitive logic:

• it is natural to consider adding a “Kripke disjunction”

>

to Beth semantics
and to axiomatize the resulting logic, as we have done with our Inq(IPC);

• this study unearthed the fact that an old semantics for intuitionistic logic,
Beth semantics, can provide a new semantics for (dense) lax logic.

A natural next step, given our general definition of the inquisitive version
Inq(L) of a superintuitionistic logic L, is to investigate the completeness of Inq(L)
for some well-motivated choices of L. One of the axiom schemas of classical
inquisitive logic [7] is the schema

(¬ϕ→ (ψ

>

χ))→ ((¬ϕ→ ψ)

>

(¬ϕ→ χ))

of the superintuitionistic Kreisel-Putnam logic (KP), which is valid on the spe-
cial Kripke models used for classical inquisitive logic (recall Section 1). Since
we have considered Beth semantics over arbitrary posets, we can refute the
KP axiom, but we could also consider restricting to posets satisfying the first-
order property corresponding to the KP axiom in Kripke semantics (see, e.g.,
[6, p. 55]). In fact, in their intuitionistic inquisitive logic, Ciardelli et al. [11]
include the schema

(α→ (ψ

>

χ))→ ((α→ ψ)

>

(α→ χ))

for α a formula without

>

, which is equivalent to having the Kreisel-Putnam
schema in classical inquisitive logic but not in the intuitionistic setting (see
endnote 4 of [11]). We leave the Beth completeness of inquisitive intuitionistic
logics with these additional schemas as an open problem.
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Appendix

A Proof of Theorem 6.14

In this appendix, we prove the algebraic completeness and finite model property
of the lax logics considered in this paper. We first recall the two strategies
that have been previously employed to the prove the finite model property for
superintuitionistic logics (cf. [2]). The one strategy uses the local finiteness
of bounded distributive lattices, while the other that we will build on uses the
local finiteness of implicative semilattices, as in the following standard lemmas.

Lemma A.1 Let A be a Heyting algebra, X a finite subset of A, and C the
bounded sublattice of A generated by X. Then:

(i) C is a finite Heyting algebra with implication →C given by a →C b =∨{x ∈ C | x ≤ a→ b};
(ii) for any a, b ∈ C, we have a→C b ≤ a→ b;

(iii) for any a, b ∈ C such that a→ b ∈ C, we have a→C b = a→ b.

First proof of FMP of IPC. The approach via Lemma A.1 was utilized
by McKinsey and Tarski [22] to prove that IPC has the finite model property.
If IPC 0 ϕ, then there is a Heyting algebra A, e.g., the Lindenbaum algebra of
IPC, and valuation vA on A refuting ϕ. Let X = {vA(ψ) | ψ ∈ Sub(ϕ)}, where
Sub(ϕ) is the set of subformulas of ϕ, and generate the finite C by X as in
Lemma A.1.i. Then vA restricts to a valuation vC on C, and for all ψ ∈ Sub(ϕ),
we have vA(ψ) = vC(ψ), where the key step of the inductive proof uses the fact
about →C in Lemma A.1.iii. Hence vA(ϕ) 6= 1 implies vC(ϕ) 6= 1.

Lemma A.2 Let A be a Heyting algebra, X a finite subset of A, and B the
{∧,→, 0}-subalgebra of A generated by X. Then:

(i) B is a finite Heyting algebra with join ∨B given by a ∨B b =∧{x ∈ B | a ∨ b ≤ x};
(ii) for any a, b ∈ B, we have a ∨ b ≤ a ∨B b;

(iii) for any a, b ∈ B such that a ∨ b ∈ B, we have a ∨B b = a ∨ b.
Second proof of FMP of IPC. The approach via Lemma A.2 is due to

Diego [13]. One can prove the finite model property of IPC by using the same
strategy as above but generating B instead of C from X. Again one proves
that for all ψ ∈ Sub(ϕ), we have vA(ψ) = vB(ψ), but now the key step of the
inductive proof uses the fact about ∨B in Lemma A.2.iii.
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To obtain the finite model property for our lax logics, we need to incorporate
nuclei into the above constructions. For this we require the following definition.

Definition A.3

(i) Given posets P and Q, r : P → Q, and ` : Q→ P , we say that (r, `) forms
an adjoint pair iff for all p ∈ P and q ∈ Q, `(q) ≤ p iff q ≤ r(p). Then r
is the right adjoint and ` is the left adjoint.

(ii) If P and Q are monoids, we say that ` is left exact if in addition ` preserves
finite meets.

(iii) A localization of a monoid M is a pair (L, `) where L is a submonoid of
M and ` : M → L is a left exact left adjoint to the inclusion L→M .

The following lemma is well known (see [3, p. 88] and references therein).

Lemma A.4 There is a one-to-one correspondence between nuclei on a
monoid M and its localizations: for any nucleus j on M , we have that (Mj , j)
is a localization of M ; and for any localization (L, `), we have that ` is a nucleus
on M such that M` = L.

If the monoid M is in addition a Brouwerian semilattice, then Mj is not
only a subalgebra of M but also satisfies the following stronger condition.

Definition A.5 [[23,20]] Let A be a Brouwerian semilattice. A subalgebra T
of A is total if for any a ∈ A and t ∈ T , we have that a→ t ∈ T .

The next two lemmas are known, but we include short proofs for the reader’s
convenience.

Lemma A.6 Let A be a Brouwerian semilattice and j a nucleus on A.

(i) Aj is a total subalgebra of A;

(ii) if B is a subalgebra of A, then Aj ∩B is a total subalgebra of B.

Proof. Part (i) follows from the fact that j(a → jb) = a → jb, and part (ii)
follows from part (i). 2

Lemma A.7 Let A be a Brouwerian semilattice and T a total subalgebra of A.
If the inclusion T → A has a left adjoint `, then (T, `) is a localization of A.

Proof. Since ` is left adjoint to the inclusion, we have `(a) ≤ b iff a ≤ b
for all a ∈ A and b ∈ T . From this it follows that ` is order preserving,
increasing, and idempotent. To see that it is left exact, let x, y ∈ A. Since
` is order preserving, we have `(x ∧ y) ≤ `(x) ∧ `(y). For the converse, since
` is increasing, we have x ∧ y ≤ `(x ∧ y), so x ≤ y → `(x ∧ y). Since T
is a total subalgebra, y → `(x ∧ y) ∈ T , so the adjunction property gives
`(x) ≤ y → `(x ∧ y). Therefore, `(x) ∧ y ≤ `(x ∧ y). From this it follows
that y ≤ `(x) → `(x ∧ y). Since T is a subalgebra, `(x) → `(x ∧ y) ∈ T , so
applying the adjunction property again yields `(y) ≤ `(x) → `(x ∧ y). Thus,
`(x) ∧ `(y) ≤ `(x ∧ y). Therefore, (T, `) is a localization of A. 2

We now extend Lemma A.2 to the setting of nuclear algebras.
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Lemma A.8 Let A be a nuclear algebra, X a finite subset of A, and B the
{∧,→, 0}-subalgebra of A generated by X. Then:

(i) B is a finite nuclear algebra with nucleus jB given by jB(a) =∧{x ∈ Aj ∩B | a ≤ x};
(ii) for any a ∈ B, we have j(a) ≤ jB(a);

(iii) for any a ∈ B such that j(a) ∈ B, we have jB(a) = j(a).

Proof. For part (i), it follows from Lemma A.2 that B is a finite Heyting
algebra. By Lemma A.6, Aj ∩B is a total {∧,→, 0}-subalgebra of B. Since
B is finite, Aj ∩B is finite, so the inclusion Aj ∩B → B has a left adjoint `
given by `(a) =

∧{b ∈ Aj ∩B | a ≤ b}. Hence by Lemmas A.7 and A.4, ` is
a nucleus on B. Thus, (B, `) is a finite nuclear algebra. In addition, for any
a ∈ B, we have j(a) ≤ `(a), and if j(a) ∈ B, then j(a) = `(a), which yields
parts (ii)-(iii). 2

We can now prove the FMP for Lax(IPC) and Laxd(IPC).

Theorem A.9

(i) If Lax(IPC) 6` ϕ, then there is a finite nuclear algebra that refutes ϕ.

(ii) If Laxd(IPC) 6` ϕ, then there is a finite dense nuclear algebra that refutes ϕ.

Proof. For part (i), suppose Lax(IPC) 0 ϕ. Then there is a valuation
v on the Lindenbaum algebra A of Lax(IPC) such that v(ϕ) 6= 1. Let
S = {v(ψ) | ψ is a subformula of ϕ}. Let B be the {∧,→, 0}-subalgebra of
A generated by S. By Lemma A.2, B is finite Heyting algebra such that

if a ∨ b ∈ S, then a ∨ b = a ∨B b. (A.1)

By Lemma A.8, (B, jB) is a finite nuclear algebra such that

if j(a) ∈ S, then j(a) = jB(a). (A.2)

Let v′ be any valuation on B such that for all proposition letters p ∈ S, we
have v′(p) = v(p). Then an easy induction using (A.1) and (A.2) shows that
for all ψ ∈ S, v(ψ) = v′(ψ), whence v(ϕ) 6= 1 in A implies v′(ϕ) 6= 1 in B.

For part (ii), observe that if j(0) = 0, then jB(0) = 0. The rest of the proof
is the same as for part (i). 2

References

[1] Beth, E. W., Semantic construction of intuitionistic logic, Mededelingen der Koninklijke
Nederlandse Akademie van Wetenschappen 19 (1956), pp. 357–388.

[2] Bezhanishvili, G. and N. Bezhanishvili, An algebraic approach to filtrations for
superintuitionistic logics, in: J. van Eijck, N. Iemhoff and J. Joosten, editors, Liber
Amicorum Albert Visser, College Publications, London, 2016 pp. 47–56.

[3] Bezhanishvili, G. and S. Ghilardi, An algebraic approach to subframe logics.
Intuitionistic case, Annals of Pure and Applied Logic 147 (2007), pp. 84–100.



348 Inquisitive Intuitionistic Logic

[4] Bezhanishvili, G. and W. H. Holliday, A semantic hierarchy for intuitionistic logic,
Indagationes Mathematicae 30 (2019), pp. 403–469.

[5] Bezhanishvili, N., G. Griletti and W. H. Holliday, Algebraic and topological semantics
for inquisitive logic via choice-free duality, in: Logic, Language, Information, and
Computation. WoLLIC 2019, LNCS 11541 (2019), pp. 35–52.

[6] Chagrov, A. and M. Zakharyaschev, “Modal logic,” Oxford Logic Guides 35, The
Clarendon Press, New York, 1997.

[7] Ciardelli, I., “Inquisitive Semantics and Intermediate Logics,” Master’s thesis, University
of Amsterdam (2009), ILLC Master of Logic Thesis Series MoL-2009-11.

[8] Ciardelli, I., “Questions in logic,” Ph.D. thesis, Institute for Logic, Language and
Computation, University of Amsterdam (2016).

[9] Ciardelli, I., J. Groenendijk and F. Roelofsen, Inquisitive semantics: A new notion of
meaning, Language and Linguistics Compass 7 (2013), pp. 459–476.

[10] Ciardelli, I., J. Groenendijk and F. Roelofsen, “Inquisitive Semantics,” Oxford University
Press, 2018.

[11] Ciardelli, I., R. Iemhoff and F. Yang, Questions and dependency in intuitionistic logic,
Notre Dame Journal of Formal Logic 61 (2020), pp. 75–115.

[12] Ciardelli, I. and F. Roelofsen, Inquisitive Logic, Journal of Philosophical Logic 40 (2011),
pp. 55–94.
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Abstract

The paper presents a sequent calculus HFM for first-order hybrid modal logic with
lambda operator, existence and definedness predicates. It is particularly useful for
dealing with non-rigid and non-designating terms and the apparatus of hybrid logics
provides a satisfactory structural proof theory of this logic. Its reduct is shown
to be equivalent to Fitting and Mendelsohn’s tableau system for first-order modal
logic by series of syntactical transformations. Additionally, some account of definite
descriptions is formulated in terms of extended calculus HFMD and the whole system
satisfies cut elimination theorem.

Keywords: first-order modal logic, hybrid modal logic, definite descriptions, sequent
calculus, cut elimination.

1 Introduction

First-Order Modal Logic (FOML) is a field far from commonly accepted so-
lutions. During the last two decades at least three important books due to
Fitting and Mendelsohn [10], Garson [11], and Goldblatt [13] provided a de-
tailed treatment of different solutions to philosophical and technical problems
connected with FOML. One can also find practically useful deductive systems
working even for very sophisticated systems. Prefixed tableaux in [10] and
natural deduction (ND) in [11] are good examples, yet, they do not provide
well-behaved formulations in the sense of structural proof theory. Recently,
the work of Corsi and Orlandelli [25], and Orlandelli [24], provide satisfactory
proof-theoretic approach in the framework of labelled sequent calculi (SC). This
raises the question if more standard version of SC may be used for that aim.
In [16] we provided a standard SC for Garson’s version of FOML. In this paper
we want to focus on the more demanding approach of Fitting and Mendelsohn
(FM) and provide for it a standard version of SC satisfying cut elimination.

1 The results reported in this paper are supported by the National Science Centre, Poland
(grant number: DEC-2017/25/B/HS1/01268).
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There are at least two important features which make FM one of the most
subtle and expressive logics, providing satisfactory solutions to several philo-
sophical problems involved in FOML. The first feature is connected with the
application of predicate abstracts; the second with paying attention to the dis-
tinction between existence and definedness. It leads to more flexible treatment
of scoping difficulties, of non-rigid and non-denoting terms. Both features are
expressible in semantics but the resulting logic is hardly representable in a
standard axiomatic way. Therefore, on the level of proof systems (tableaux in
this case), additional devices are introduced like double prefixing – of formulae
and of terms. This may be seen as the third original feature of their approach
although not of the logic but of its tableau presentation. Let us comment on
these three features and their significance for our proof-theoretic study.

Predicate abstracts built by means of the lambda operator were introduced
to studies on FOML by Thomason and Stalnaker [29] and then the technique
was developed by Fitting [9]. In the realm of modal logic this technique is
mainly used for taking control over scoping difficulties concerning modal oper-
ators but also complex terms like definite descriptions. From the standpoint of
proof theory it has additional advantages. In general, introduction of complex
terms leads to serious problems connected with unrestricted instantiation of
such terms for variables. A freedom of instantiation in quantifier rules usually
destroys the subformula property and cut elimination proof. The application
of predicate abstracts opens a way to avoid such problems by separation of a
direct predication restricted to variables and indirect predication via lambda
operators. In consequence, respective rules for quantifiers may be restricted to
variables as the only allowed instantiated terms without losing generality.

A distinction between existence and definedness (or denotation) usually goes
unnoticed although, as is firmly emphasized in [10] “these are really orthogonal
issues. Terms designate; objects exist.” It is worth noting that the separation
of these notions is also important in studies on constructive mathematics and
applications to computer science; see for example Beeson [1] and Fefermann
[8]. True, this difference may be easily lost if existence is defined as ∃x(x = t)
and definedness as t = t since in the context of negative free logic (NFL) both
formulae are provably equivalent. Hence, at least in NFL, this conceptual dif-
ference cannot be syntactically represented in a sensible way. However, in FM
the application of a richer apparatus enables a syntactical separation of these
notions. As a consequence, in the proposed language we can talk about existent
and non-existent objects, as well as denoting and non-denoting terms. Suitable
predicates are definable in FM; in the system proposed below we introduce
them as primitive notions which facilitates syntactic control.

The application of prefixes denoting possible worlds and encoding acces-
sibility relations between them is a well known technique due to Fitting and
applied usually to formulae for stating that they hold in respective worlds.
In FM prefixes are additionally linked to terms to signify their denotation in
worlds denoted by prefixes. In our approach we use this solution not as an
auxiliary technical device but as a part of our language. More specifically, we
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will use a variant of hybrid logic (HL) with twofold application of satisfaction-
operators; to formulae and to terms. In contrast to FM we restrict this kind of
“rigidification” only to terms which are not variables. Variables in FM are rigid
by definition and addition of prefixes is not necessary from this point of view.
However, in [10] this technique is applied to variables for enabling control over
actualist quantifiers without the need of explicit application of the existence
predicate. In our system, the existence predicate is primitive and there is no
need to overload variables with unnecessary decoration.

The application of HL to provide well-behaved proof-theoretic representa-
tion of FM is not accidental. HL is an interesting generalization of standard
modal logic with well established body of general results and extremely rich
syntactic resources. The basic language of HL is obtained by the addition of
the second sort of propositional atoms called nominals. Informally, they denote
propositions true in exactly one world of a model and may serve as names of
these worlds. Additionally one can introduce several specific operators; the
most important are satisfaction, or “at”-operators, indicating that a formula
is satisfied in the world denoted by some nominal. This permits for internal-
ization of the essential part of semantics in the language. What is nice with
HL is the fact that changes in the language do not affect seriously the rest of
the machinery applied in standard modal logic. In particular, modifications
in the relational semantics are minimal. The concept of a frame remains in-
tact, only on the level of models we have some changes. These relatively small
modifications of standard modal languages give us many advantages: more ex-
pressive language, better behavior in completeness theory, more natural and
simpler proof theory. In particular, one may define in HL such frame conditions
like irreflexivity, asymmetry, trichotomy and others not expressible in standard
modal languages. Proof theory of HL, developed in the framework of tableaux
or natural deduction offers even more general approach than application of
labels popular in proof theory for standard modal logic.

The aim of the paper is twofold: 1 Extension of HL to obtain fuller express-
ibility of phenomena so far dealt with only in standard FOML. 2 Providing
well-behaved structural proof theory for FM. The original FM is well defined
semantically and by means of tableaux which are useful in practice but not
fully satisfactory from the theoretical standpoint. Many significant features
are introduced as additional technical devices or left implicit (like clauses con-
cerning definedness of terms and existence of objects). What we gain is an SC
where all this stuff is introduced explicitly and treated in a uniform fashion by
means of well-behaved symmetric and analytic rules satisfying cut elimination.

We start with a brief account of the language and semantics of HL. In
section 3 a system HFM (for Hybrid FM) will be presented. Its adequacy is
shown indirectly in stages in section 4. First by translation of Fitting’s and
Mendelsohn’s tableau (FM-T) proofs into proofs in some auxiliary calculus
HFM1. Then by showing that every proof in HFM1 is simulated in another
system HFM2 and vice versa. Finally that HFM2 is equivalent to a reduct of
HFM. In section 5 we will extend HFM to cover definite descriptions.
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2 Preliminaries

In what follows we assume a standard predicate monomodal language with de-
numerable sets of predicate symbols PRED (symbolised with P ) and function
symbols FUN (symbolised with f), both of any arity n ≥ 0. Incidentally, for
representing 0-ary functions we will use c (for individual constant). Individual
variables are divided into disjoint sets of bound and free variables (respec-
tively V AR represented by x, y, z, . . . and PAR, for parameters, represented
by a, b, . . .). The set of logical constants comprises boolean and modal connec-
tives: ¬,∧,∨,→,2,♦, (actualist) quantifiers: ∃,∀ and identity predicate =.
To this basic assortment we add special constants from FM: unary predicates
of existence E, nonexistence E−, definedness D, binary term equality ≈, and
lambda operator λ for forming predicate abstracts. Categories of terms TERM
and formulae FOR are defined in a standard way with an additional clause for
the lambda operator:

• if ϕ ∈ FOR and t ∈ TERM , then (λxϕ)t ∈ FOR
Hybrid version of this language is obtained by addition of two components:

a denumerable set of propositional symbols called nominals NOM = {i, j, k, ...}
and a denumerable set of unary satisfaction operators (sat-operators) indexed
by nominals @i. Following Blackburn and Marx [3] (see also [4], [22], [21]) we
will use the latter in two functions; the new clauses are:

• if ϕ ∈ FOR and i ∈ NOM , then @iϕ ∈ FOR
• if t ∈ TERM and i ∈ NOM , then @it ∈ TERM

The first reads “ϕ is satisfied in a state i”. The second – “@it names a
designatum of t in a state i”. For the language of the basic system HFM we
restrict the second application of sat-operators to terms other than parameters.

Nominals are introduced for naming states (worlds) of a model domain so
in a sense they are terms. However syntactically they are treated as ordinary
sentences. In particular, they can be combined by means of boolean and modal
connectives. Informally they represent propositions “the name of the actual
state is i”. On the other hand, they are just names of states when they occur
as indices of sat-operators. It is important to note that both nominals and sat-
operators are genuine language elements not an extra metalinguistic machinery
as in several kinds of labelled systems.

The notion of a frame is defined as for standard FOML and a model is any
structure M = 〈W,R,D, d, I, Iw〉, whereW,R is a standard modal frame, D is
a nonempty domain, d :W −→ P(D) is a function which assigns a (nonempty)
set of (existent) objects to every world, I(i) ∈ W for every nominal i, and Iw
is a family of world’s relative functions of interpretation, defined as follows:
Iw(Pn) ⊆ Dn, for every n-argument predicate and world;
Iw(c) ∈ D, if defined;
Iw(fn) ∈ DDn

, if defined.
Note that in the last two cases different members ofD and different functions

may be selected as designates of c, f in different worlds, so terms (other than
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variables) are generally non-rigid. Moreover Iw is partial, i.e. for some w it
may be not defined. In case of individual names it means that in some worlds
(possibly all) they may be non-denoting. For function symbols it means that
corresponding functions are partial, i.e. defined on subsets of Dn.

An assignment v is defined in a standard way as v : V AR ∪ PAR −→ D,
hence parameters are rigid terms by definition. An x-variant v′ of v is like v with
possibly v′(x) 6= v(x); we will use a common notation vx0 for x-variant of v with
specified value of x. Interpretation Ivw(t) of a term t in w under an assignment
v is just v(t) for elements of V AR and PAR, Iw(t) for t ∈ FUN . Hence,
Ivw(c) = Iw(c), if it is defined; Ivw(fn(t1, ..., tn)) = Iw(fn)〈Ivw(t1), ..., Ivw(tn)〉,
if each Ivw(ti) is defined, and 〈Ivw(t1), ..., Ivw(tn)〉 is in the domain of Iw(fn).
In case t := @it

′ it is IvI(i)(t
′). Hence, attaching the sat-operator @i to term

t′ makes it a rigid term, namely an object designed by t′ in I(i) (if there is
such an object). That is why it does not make sense to apply sat-operators to
parameters; they are already rigid terms. On the other hand in case of complex
term fnt1, ..., tn it is not enough to add @i as a prefix to make it rigid; all
arguments must be rigid. In what follows we will use r to denote any rigid
term – a parameter or a term with sat-operators attached to all nonparametric
components. The clauses for the satisfaction relation are defined as follows:

M, v, w � Pn(r1, ..., rn) iff 〈Ivw(r1), ..., Ivw(rn)〉 ∈ Iw(Pn)
and Ivw(ri) ∈ D, i ≤ n

M, v, w � r1 = r2 iff Ivw(r1) = Ivw(r2) and Ivw(ri) ∈ D, i ≤ 2
M, v, w � t1 ≈ t2 iff Ivw(t1) = Ivw(t2) and Ivw(ti) ∈ D, i ≤ 2
M, v, w � Et iff Ivw(t) ∈ d(w)
M, v, w � Dt iff Ivw(t) ∈ D
M, v, w � ¬ϕ iff M, v, w 2 ϕ
M, v, w � ϕ→ ψ iff M, v, w 2 ϕ or M, v, w � ψ
M, v, w � 2ϕ iff M, v, w′ � ϕ for any w′ such that Rww′
M, v, w � ♦ϕ iff M, v, w′ � ϕ for some w′ such that Rww′
M, v, w � ∀xϕ iff M, vxo , w � ϕ for all o ∈ d(w)
M, v, w � ∃xϕ iff M, vxo , w � ϕ for some o ∈ d(w)
M, v, w � (λxϕ)t iff Ivw(t) ∈ D and M, vxo , w � ϕ for o = Ivw(t)
M, v, w � i iff w = I(i)
M, v, w � @iϕ iff M, v, w′ � ϕ, where w′ = I(i)

Note that first two clauses are restricted to rigid terms. Also the only
difference between = and ≈ is that the latter is defined for all terms. In the
original FM semantics [10] atomic formulae and equalities with = are restricted
only to variables and have a simpler form:

M, v, w � Pn(x1, ..., xn) iff 〈v(x1), ..., v(xn)〉 ∈ Iw(Pn)
M, v, w � x1 = x2 iff v(x1) = v(x2)

Rigid terms (other than variables) as arguments of predicates are admissible
only as a technical device in FM tableaux. Predicates E,E−, D,≈ are treated
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similarly as defined notions. In fact, we could dispense with ≈ in FM but it
will be necessary later for the treatment of definite descriptions in section 5.

Definitions of truth in a model, satisfiability, validity and entailment are
standard. We obtain different normal modal logics by restricting R suitably.

3 Sequent Calculus HFM

Various proof systems for different hybrid logics were constructed, including
tableaux (Blackburn [2], Blackburn and Marx [3], Zawidzki [30]) and natural
deduction (ND) (Braüner [6], Indrzejczak [14]). Most of them represent so
called sat-calculi where each formula is preceded by the sat-operator. Using
sat-calculi instead of calculi working with arbitrary formulae is justified by
the fact that ϕ holds in (any) HL iff @iϕ holds, provided i is not present in
ϕ. So a proof of @iϕ is equivalent to a proof of ϕ. One may find several
cut-free sat-SC for some HL in different languages independently proposed by
Blackburn [2], Braüner [6], Bolander and Braüner [5], Indrzejczak and Zawidzki
[19]. In all these cases SC are obtained by translation; either from tableaux or
from (normalizable) ND. Hence these systems are cut-free but with no direct
syntactical proof for cut elimination. A constructive cut elimination proof for
propositional sat-SC was provided by Indrzejczak [15]. In what follows we will
use an extended form of this calculus. It consists of the following rules which
we divide into several groups for easier reference. Sequents are composed from
finite multisets of sat-formulae of the form @iϕ.

1. Structural rules:

(AX) @iϕ⇒ @iϕ (C⇒)
@iϕ,@iϕ,Γ⇒ ∆

@iϕ,Γ⇒ ∆
(⇒C)

Γ⇒ ∆,@iϕ,@iϕ
Γ⇒ ∆,@iϕ

(W⇒) Γ⇒ ∆
@iϕ,Γ⇒ ∆

(⇒W ) Γ⇒ ∆
Γ⇒ ∆,@iϕ

(Cut)
Γ⇒ ∆,@iϕ @iϕ,Π⇒ Σ

Γ,Π⇒ ∆,Σ

2. Propositional (Boolean) rules:

(¬⇒)
Γ⇒ ∆,@iϕ

@i¬ϕ,Γ⇒ ∆
(⇒¬)

@iϕ,Γ⇒ ∆
Γ⇒ ∆,@i¬ϕ

(∧⇒)
@iϕ,@iψ,Γ⇒ ∆
@i(ϕ∧ψ),Γ⇒ ∆

(⇒∧)
Γ⇒ ∆,@iϕ Γ⇒ ∆,@iψ

Γ⇒ ∆,@i(ϕ∧ψ)

(⇒→)
@iϕ,Γ⇒ ∆,@iψ
Γ⇒ ∆,@i(ϕ→ψ)

(→⇒)
Γ⇒ ∆,@iϕ @iψ,Γ⇒ ∆

@i(ϕ→ψ),Γ⇒ ∆

3. Modal basic rules:

(⇒ 2)
@i♦j,Γ⇒ ∆,@jϕ

Γ⇒ ∆,@i2ϕ
(2⇒)

Γ⇒ ∆,@i♦j @jϕ,Γ⇒ ∆
@i2ϕ,Γ⇒ ∆

(♦⇒)
@i♦j, @jϕ,Γ⇒ ∆

@i♦ϕ,Γ⇒ ∆
(⇒♦)

Γ⇒ ∆,@i♦j Γ⇒ ∆,@jϕ
Γ⇒ ∆,@i♦ϕ

where ϕ /∈ NOM , j does not occur in the conclusion of (⇒ 2), (♦ ⇒).
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4. Nominal rules:

These rules are specific for HL and mainly connected with the fact that
nominals are formulae of the language, not external devices like prefixes and
labels in external proof systems.

(@⇒)
@iϕ,Γ⇒ ∆

@j@iϕ, Γ⇒ ∆
(⇒ @)

Γ⇒ ∆,@iϕ
Γ⇒ ∆, @j@iϕ

(Ref)
@ii,Γ⇒ ∆

Γ⇒ ∆

(Nom1)
@i♦k,Γ⇒ ∆

@ij,@j♦k,Γ⇒ ∆
(Nom2)

@iϕ,Γ⇒ ∆
@ij,@jϕ,Γ⇒ ∆

where ϕ is atomic or nominal in (Nom2).

5. Modal frame rules

Rules 1–4 provide an adequate HL formalization of K. In order to cover
stronger logics adequate with respect to suitably restricted classes of frames
one must add special rules for frame conditions. It may be done in a uniform
fashion for many logics by means of standard hybrid translation HT from first-
order language into basic hybrid language defined as follows:

HT (Rtt′) = @t♦t′ HT (Pt) = @tp
HT (t = t′) = @tt

′ HT (¬ϕ) = ¬HT (ϕ)
HT (ϕ ∨ ψ) = HT (ϕ) ∨HT (ψ) HT (∃uϕ) = ∃uHT (ϕ)

Braüner [6] states that for every basic geometric formula of the form:

∀x1, ..., xk(ϕ1 ∧ ... ∧ ϕn → ∃y1, ..., yl(ψ1 ∨ ... ∨ ψm)),

where k ≥ 1, l, n,m ≥ 0, each ϕi is an atom and each ψi is an atom or finite
conjunction of atoms there corresponds a frame rule (FR) of the form:

Γ⇒ ∆, ϕ′1 ... Γ⇒ ∆, ϕ′n Ψ1,Γ⇒ ∆ ... Ψm,Γ⇒ ∆
Γ⇒ ∆

where k ≥ 1, l, n,m ≥ 0, each ϕ′i = HT (ϕi), each Ψi is a set of HT -
translations of atoms that form conjunction ψi and no nominal that corresponds
to yi occurs in Γ1 − Γm,∆, ϕ

′
1 − ϕ′n.

6. Specific HFM rules:

(∀E ⇒)
Γ⇒ ∆,@iEb @iϕ[x/b],Γ⇒ ∆

@i∀xϕ,Γ⇒ ∆
(⇒ ∀E)

@iEa,Γ⇒ ∆,@iϕ[x/a]
Γ⇒ ∆,@i∀xϕ

(⇒ ∃E)
Γ⇒ ∆,@iEb Γ⇒ ∆,@iϕ[x/b]

Γ⇒ ∆,@i∃xϕ (∃E ⇒)
@iEa,@iϕ[x/a],Γ⇒ ∆

@i∃xϕ,Γ⇒ ∆

(E−)
@iEa,Γ⇒ ∆

Γ⇒ ∆ (D−)
@iDb,Γ⇒ ∆

Γ⇒ ∆ (≈ −)
@it ≈ t,Γ⇒ ∆
@iDt, Γ⇒ ∆
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(= +)
@iϕ[x/r1],Γ⇒ ∆

@jr1 = r2,@iϕ[x/r2],Γ⇒ ∆
with ϕ atomic formula.

(λ⇒)
@iDt,@iϕ[x/t@i ],Γ⇒ ∆

@i(λxϕ)t,Γ⇒ ∆
(⇒λ)

Γ⇒ ∆,@iDt Γ⇒ ∆,@iϕ[x/t@i ]
Γ⇒ ∆,@i(λxϕ)t

(⇒E)
Γ⇒ ∆,@iDt Γ⇒ ∆,@iEb Γ⇒ ∆,@it

@i = b
Γ⇒ ∆,@iEt

(E⇒)
@iDt,@iEa,@it

@i = a,Γ⇒ ∆
@iEt,Γ⇒ ∆

(E−⇒)
@iDt,Γ⇒ ∆,@iEb @iDt,Γ⇒ ∆,@it

@i = b
@iE

−t,Γ⇒ ∆

(⇒E−)
Γ⇒ ∆,@iDt @iEa,@it

@i = a,Γ⇒ ∆
Γ⇒ ∆,@iE

−t

(≈⇒)
@iDt1,@iDt2,@it

@i
1 = t@i

2 ,Γ⇒ ∆
@it1 ≈ t2,Γ⇒ ∆

(⇒≈)
Γ⇒ ∆,@iDt1 Γ⇒ ∆,@iDt2 Γ⇒ ∆,@it

@i
1 = t@i

2
Γ⇒ ∆,@it1 ≈ t2

A few conventions were applied in the schemata which will also be used in
later sections. a denotes a parameter which is fresh, i.e. occurs only in displayed
position and b is any parameter. t@i := t, if t is already rigid; otherwise for
t := c it is just @ic and for t := fnt1, ..., tn it is @if

nt@i
1 , ..., t@i

n . Moreover, all
rules for E and E− are restricted to t /∈ PAR. The notion of atomic formula
covers formulae of the form @iP (r1...rn) and includes also cases where P is
=, D,E,E−; however, in the last two cases with restriction that r ∈ PAR.

The definition of proof is standard, as well as the notions of principal,
side and parametric (context) formulae. Also the notion of the height of a
proof is standard (the number of nodes of the longest branch). It is impor-
tant to note that except (Cut) all rules satisfy the generalised subformula
property to the effect that in premisses we have only subformulae of the con-
clusion closed for addition of sat-operator and the following kind of formulae:
@i♦j,@ij,@iEt,@iDt,@it = t′. Moreover one can easily check that arguments
of the last three atoms are either (rigidified) terms occuring in the conclusion
or fresh parameters. This shows that from the proof-search perspective cut-free
HFM is sufficiently analytic. In fact (FM) has also a disadvantage of putting
every case in a form of cut-like rule with many premisses composed from for-
mulae of the form @i♦j,@ij. However, to concrete cases we can apply the
rule-generation theorem from [17] which allows us to provide equivalent rules
with lower branching factor and active formulae in the conclusion. Since frame
expressivity is not our subject here we skip a discussion of these matters.

For cut elimination the key point is that all rules are substitutive and reduc-
tive. These notions were introduced by Ciabattoni [7] and applied for general
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form of cut elimination proof in hypersequent calculi by Metcalfe, Olivetti and
Gabbay [23] but can be also applied in the present setting. The former property
is connected with the fact that multisets of formulae may be safely substituted
for a cut formula which is parametric. It allows for induction on the height of
a proof in cases when the cut formula is not principal in at least one premiss
of cut. Rules with side conditions concerning fresh parameters or nominals are
not fully substitutive but due to the substitution lemma (see Appendix) this
problem may be easily overcome. The latter property may be roughly defined
as follows: A pair of introduction rules (⇒ ?), (? ⇒) for a constant ? is re-
ductive if an application of cut on cut formulae introduced by these rules may
be replaced by the series of cuts made on less complex formulae. Reductivity
permits induction on cut-degree in the course of proving cut elimination. Of
course the complexity c of all terms and formulae must be suitably defined:

c(α) = 0 for α ∈ NOM ∪ PAR ∪ V AR; c(t@i) = 1;
c(@iϕ) = c(¬ϕ) = c(ϕ) + 1; c(Oxϕ) = c(ϕ) + 2, for O ∈ {∀,∃, λ};
c(ϕ ? ψ) = c(ϕ) + c(ψ) + 1, for ? being a binary connective;
c(P (r1, .., rn)) = max{c(r1), ..., c(rn)}+ 1 (this clause includes =);
c(Et) = c(E−t) = c(t) + 2; c(Dt) = c(t) + 1; c(t1 ≈ t2) = c(t1) + c(t2) + 1;

For technical reasons we must assume that existence formulae have higher
complexity than other atoms with the same arguments, and other rigid terms
higher than parameters. One can check by inspection that all rules for compund
formulae (including ≈) are reductive in pairs. As for (Nom1), (Nom2), (= +)
introducing nominal and ordinary equalities, they can be principal only in the
right premiss of cut; in the left premiss they are always parametric formulae.
The same remark applies to Dt which is principal in (≈ −) but can also be
principal in (= +). In case of Et and E−t two situations are possible. With
t ∈ PAR they may be principal also in the right premiss of cut due to (= +),
but in the left premiss only parametric. Otherwise in both premisses such
formulae are principal due to specific rules for E and E− which are reductive.

One may easily check that all rules in group 1-4 and 6 are validity-preserving
in K models which implies soundness of HFM. The addition of specific rules
generated by (FM) extends this to the class of all modal logics axiomatised by
geometric formulae. Completeness proof for essentially equivalent propositional
SC is provided by Bolander and Braüner [5] (see also [6]). Blackburn and ten
Cate [4] provided completeness proof for axiomatic version of HFOML. Fitting
and Mendelsohn [10] contain completeness proofs for tableaux formalization of
group 6. In what follows instead of proving semantic completeness of HFM we
apply a strategy similar to those utilized by Seligman [27] or Blackburn and
Marx [3]. We will show that suitably restricted part of HFM is equivalent to
FM tableau system by means of a series of purely syntactic transformations.

4 Auxiliary Systems and Transformations

Let us recall briefly FM tableaux (shortly FM-T) for the K-modality. For easier
transformations and comparison with SC we will present it in Hintikka-style
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form, i.e. with sets of (prefixed) formulae as nodes of proof-trees, instead of the
original Smullyan-style format defined on single formulae. Prefixes, denoting
states in models, are finite lists of integers; for every prefix σ its one-digit
extension σ.n denotes a state which is accessible from σ (i.e. a state it denotes).
Hence FM-T is a kind of external system with a special feature that prefixes
are attached not only as prefixes to formulae but also, as subscripts, to terms
(including parameters but not bound variables). tσ syntactically encodes Iw(t)
(where σ denotes w) and is always rigid. tσ is tσ if t is a name or a parameter,
or just t if it is already rigid (i.e. a term where all components have subscripts).
For complex terms, tσ denotes the result of addition of σ as a subscript to all
terms which are not subscripted so far. Rules for connectives are standard so
we state only those for 2,∀,= and the λ-operator:

(2)
σ:2ϕ,Γ

σ.n:ϕ, σ:2ϕ,Γ (¬2)
σ:¬2ϕ,Γ
σ.n:¬ϕ,Γ (λ)

σ:(λxϕ)t,Γ
σ:ϕ[x/tσ],Γ

(¬λ)
σ:¬(λxϕ)t,Γ
σ:¬ϕ[x/tσ],Γ

(∀) σ:∀xϕ,Γ
σ:ϕ[x/bσ], σ:∀xϕ,Γ (¬∀) σ:¬∀xϕ,Γ

σ:¬ϕ[x/aσ],Γ

(= 1) Γ
σ:r = r,Γ (= 2)

σ:r1 = r2, σ
′:ϕ[x/r1],Γ

σ:r1 = r2, σ
′:ϕ[x/r1], σ′:ϕ[x/r2],Γ

Side conditions: (2) σ.n occurs in Γ; (¬2) σ.n is fresh;
(∀) bσ is any parameter with σ (i.e. occuring in Γ, otherwise a new one);
(¬∀) aσ is fresh; (¬λ) tσ is defined; (= 2) ϕ any formula;
(= 1) σ occurs in Γ and r is defined (either a parameter or occurs in Γ);

We can get rid of prefixes and use instead the hybrid machinery of nominals
with sat-operators obtaining a system HFM-T. It is enough to define a bijective
mapping θ from prefixes to nominals in every FM-T proof. We systematically
replace all occurences of prefixes in every node with a suitable @i. Moreover,
if σ′ := σ.n, then we add @i♦j, where @i and @j correspond to σ and σ′

respectively. As a result, for modals the new rules are obtained of the form:

(2′) @i2ϕ,@i♦j,Γ
@jϕ,@i2ϕ,@i♦j,Γ (¬2′) @i¬2ϕ,Γ

@j¬ϕ,@i♦j,Γ with j fresh

This way every node Γ in FM-T proof is transformed into ∆, θΓ, where θΓ
is a hybrid translation of Γ and ∆ is the set of all @i♦j such that σ, σ.n occur
in Γ, θ(σ) = i and θ(σ.n) = j. Since θ can be converted, proofs in both systems
are isomorphic and we obtain:

Lemma 4.1 1 : ¬ϕ has a closed tableau in FM-T iff @i¬ϕ (for i not occurring
in ϕ) has a closed tableau in HFM-T

HFM-T differs from FM-T only in being an internal system. Since we want
to work with SC we make two additional, rather cosmetic, changes. Sets are
transformed into sequents by moving all negated formulae to succedents (with
simultaneous deletion of negations) and finally turning all rules upside-down.
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This way we obtain an auxiliary system HFM1 which is quite similar to
HFM but for the time being in the language without D,E,E−,≈. On the
other hand, in HFM1 also parameters are prefixed with @i; we call them n-
parameters. Moreover, we still need several side conditions, in particular we
say that @it is defined if t is a parameter or if it appears in the conclusion-
sequent. In contrast to HFM, axioms are of the form Γ⇒ ∆ with Γ ∩∆ 6= ∅,
and structural rules from group 1 are not required. Propositional part (group
2, 3) is like in HFM but with two slightly different modal rules:

(2⇒′) @i2ϕ,@jϕ,@i♦j,Γ⇒ ∆
@i2ϕ,@i♦j,Γ⇒ ∆

(⇒♦′) @i♦j,Γ⇒ ∆,@i♦ϕ,@jϕ
@i♦j,Γ⇒ ∆,@i♦ϕ

The remaining rules look like that:

(∀⇒)
@iϕ[x/@ib],@i∀xϕ,Γ⇒ ∆

@i∀xϕ,Γ⇒ ∆
(⇒∀) Γ⇒ ∆,@iϕ[x/@ia]

Γ⇒ ∆,@i∀xϕ

(∃ ⇒)
@iϕ[x/@ia],Γ⇒ ∆

@i∃xϕ,Γ⇒ ∆
(⇒∃) Γ⇒ ∆,@i∃xϕ,@iϕ[x/@ib]

Γ⇒ ∆,@i∃xϕ

(= −)
@ir = r,Γ⇒ ∆

Γ⇒ ∆ (= +′)
@iϕ[x/r1],@jr1 = r2,@iϕ[x/r2],Γ⇒ ∆

@jr1 = r2,@iϕ[x/r2],Γ⇒ ∆

(λ⇒′) @iϕ[x/t@i ],Γ⇒ ∆
@i(λxϕ)t,Γ⇒ ∆

(⇒λ′) Γ⇒ ∆,@iϕ[x/t@i ]
Γ⇒ ∆,@i(λxϕ)t

where: @ia is fresh, whereas @ib occurs in Γ,∆, otherwise it is also fresh;
r in (= −) and t@i in (⇒ λ′) are defined; ϕ in (= +′) is any formula.

Lemma 4.2 @i¬ϕ has closed tableau in HFM-T iff HFM1 ` ⇒ @iϕ

The above lemma holds trivially. HFM1 is a quite well-behaved system,
however the application of sat-operators to parameters seems to be excessive.
After all, parameters are rigid by definition and do not need special indication
for that. The problem is that in FM-T the addition of prefixes to parameters
plays an additional function; it indicates an existence in a state denoted by a
prefix. This of course was transmitted also to HFM1. However, this function
can be performed by using the existence predicate, as in the case of free logics.
The situation is the same with definedness. In HFM1, exactly as in FM-T,
this information is carried out by side conditions added to some rules. Again
it is possible to make it explicit by introduction of definedness predicate. In
fact, all this, and even more, is present in FM-T [10] in the form of definitions
introduced for more compact expression of interesting features of this system:

Dt := (λxx = x)t Et := (λx∃y(y = x))t
E−t := (λx¬∃y(y = x))t t1 ≈ t2 := (λx(λyx = y)t2)t1

From this list only the first two are necessary for obtaining the results
mentioned above on explicit representation of existence and definedness by
means of special formulae instead of side conditions. However, the nonexistence
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predicate E− (originally Ē) is important for showing the real difference between
existence and definedness which is expressed by the thesisDt↔ Et∨E−t. Term
equality ≈ is important for definition of suitable rules for definite descriptions
in section 5, so we introduce it as well. HFM1 can be enriched in a similar way
as FM-T, by introducing definitions for lacking constant predicates. However,
it is better to add them as eight additional axioms. For example, for D they
have the form:

@iDt,Γ⇒ ∆,@i(λxx = x)t and @i(λxx = x)t,Γ⇒ ∆,@iDt

Moreover, let us notice that we can add to HFM1 three admissible rules:
two rules of weakening and cut. Admissibility of weakening can be easilly
proven syntactically but with cut it is not so simple. However, cut is validity-
preserving and HFM1 is complete, hence admissibility of cut in HFM1 follows.
Now we can define another system HFM2 which is based on the same language
as HFM, i.e. with D,E,E−,≈ primitive and without sat-operators attached to
parameters. In the propositional basis it is exactly as HFM1, including modal
rules; (= +′) is also the same. The remaining rules are closer to HFM; in
particular (⇒ ∀E), (∃E ⇒), (λ⇒) are the same, the other ones are:

(∀E⇒′) @iϕ[x/b],@i∀xϕ,@iEb,Γ⇒ ∆
@i∀xϕ,@iEb,Γ⇒ ∆

(⇒λ′′) @iDt,Γ⇒ ∆,@iϕ[x/t@i ]
@iDt,Γ⇒ ∆,@i(λxϕ)t

(⇒∃E′) @iEb,Γ⇒ ∆,@i∃xϕ,@iϕ[x/b]
@iEb,Γ⇒ ∆,@i∃xϕ (≈ −′) @iDt,@it ≈ t,Γ⇒ ∆

@iDt, Γ⇒ ∆

Note that (= −) is replaced with (≈ −′). We add (E−), (D−) as in HFM;
these rules are necessary to make explicit what was implicit in HFM1. (E−)
is required since in FM semantics world-domains are nonempty. In HFM1 the
side condition for (∀ ⇒) and (⇒ ∃) permits introduction of a n-parameter even
if no previous application of (⇒ ∀) or (∃ ⇒) provided some. For the present
rules an existence formula must be already present in the antecedent, so in
case there is no such formula we apply (E−) first (in root first proof-search).
Note that if we drop this rule we obtain a variant for logics admitting empty
domains. (D−) explicitly shows that (all) parameters are defined. Definedness
formulae are also introduced to (⇒ λ′′) and (≈ −′), whereas such a formula
added in the premiss-sequent of (λ⇒) plays a similar role for names as in (D−)
for parameters. There is one small difference with the original conditions stated
by Fitting and Mendelsohn for rules demanding already defined terms. They
require that suitable rigid terms should be defined hence if we follow strictly
their formulation our definedness formulae in both rules for λ and (≈ −′)
should be of the form @iDt

@i instead of @iDt. However, one can easily check
that @iDt

@i and @iDt are semantically equivalent and for technical reasons
using @iDt in rules is simpler. Instead of definitional axioms we add to HFM2
suitable introduction rules for all additional predicates except D. Rules (E ⇒),
(E− ⇒) and (≈⇒) are the same as in HFM; the remaining ones are:
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(⇒E′) @iDt,Γ⇒ ∆,@iEb @iDt,Γ⇒ ∆,@it
@i = b

@iDt,Γ⇒ ∆,@iEt

(⇒E−)
@iDt,@iEa,@it

@i = a,Γ⇒ ∆
@iDt,Γ⇒ ∆,@iE

−t

(⇒≈′) @iDt1,@iDt2,Γ⇒ ∆,@it
@i
1 = t@i

2
@iDt1,@iDt2,Γ⇒ ∆,@it1 ≈ t2

As in HFM, in rules for E,E−, t /∈ PAR. For D no special rules are
needed. Despite several differences concerning rules, and using n-parameters
in HFM1 and parameters in HFM2, both systems are equivalent in the sense
of provability of the same sequents containing sentences (see Appendix).

Now we are ready to compare HFM2 with HFM. It is straightforward to
prove that all rules of HFM2, with the exception of (= +′), are derivable
in HFM; it is sufficient to apply rule-generation theorem from [17]. (= +′)
is derivable additionally by induction on the complexity of ϕ with (= +) in
the basis. We cannot in general prove the opposite since already the back-
ground propositional hybrid part of HFM contains elements not expressible in
FM, like nominal rules (group 4) or rules expressing frame conditions (group
5). This is basically a difference between the expressive powers of external
labelled system, as exemplified here by prefixed tableau calculus of Fitting and
Mendelsohn, and internal labelled system; the latter have much greater expres-
sive power. However, for the part of HFM restricted to rules from group 1-3
and 6, again rule-generation theorem suffices to demostrate their derivability
in HFM2. Therefore HFM2 and HFM (restricted to rules 1-3, 6) are equivalent
(see Appendix).

5 Definite Descriptions

We postponed a treatment of definite descriptions since it requires some addi-
tional changes. In particular, categories of formulae FOR and terms TERM
must be defined simultaneously, and similarly the notion of interpretation of
terms and satisfaction of formulae must be treated together. On the other hand,
all terms considered so far can be represented as definite descriptions hence we
can reduce the category of terms accordingly. We must add the iota-operator
ı, for forming definite descriptions out of formulae:

• if ϕ ∈ FOR, then ıxϕ ∈ TERM .

Semantically we characterise it by the following clause:

• Ivw(ıxϕ) = o iff M, vxo , w � ϕ and no other x-variant of v satisfies ϕ in w.

Hence definite descriptions are also non-rigid and may be undefined in some
(possibly all) worlds. Again addition of @i to definite description makes it a
rigid term; a name of its designatum in I(i), if it is defined there. Complexity
c(ıxϕ) = c(ϕ) + 1 but for c(@iıxϕ) = 1 which is fixed for all rigid terms.

Syntactically, Fitting and Mendelsohn’s approach is based on the form of
Hintikka Axiom, of which a “tentative version” takes the form:
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H : t ≈ ıxϕ↔ (λxϕ)t ∧ ∀y(ϕ[x/y]→ (λxx = y)t), where y is not in ϕ;

which corresponds directly to the semantic clause. Note however that uni-
versal quantifier in H is possibilistic, i.e. it ranges over all elements of the
(frame) domain. In FM tableaux its essential content is represented by means
of three rules of introduction of implications corresponding to both directions
of H. They are weaker in the sense that universal quantifier which introduces
unwanted existential commitments is eliminated, and the rule corresponding to
H←, i.e. to the right-left implication, introduces not valid but satisfiable for-
mula containing labelled parameter. Such rules cannot be directly transformed
into well-behaved SC rules so, instead of dealing with three FM rules, we in-
troduce three other ones below and directly show that: (1) Hintikka axiom H,
as restated in [10], is provable in HFM with these rules; (2) three additional
ı-rules are derivable in HFM in the presence of sequent ⇒ H as an additional
axiom. To realise this aim we must add to our language additional, possibilistic
quantifiers symbolised by Tarskian

∧
,
∨

. Semantically they are characterised:

• M, v, w �
∧
xϕ iff M, vxo , w � ϕ for all o ∈ D

• M, v, w �
∨
xϕ iff M, vxo , w � ϕ for some o ∈ D

Now the system HFMD is HFM with the following additional rules:

(
∧⇒)

Γ⇒ ∆,@iDt @iϕ[x/t@i ],Γ⇒ ∆
@i

∧
xϕ,Γ⇒ ∆

(⇒ ∧
)

Γ⇒ ∆,@iϕ[x/a]
Γ⇒ ∆,@i

∧
xϕ

(⇒ ∨
)

Γ⇒ ∆,@iDt Γ⇒ ∆,@iϕ[x/t@i ]
Γ⇒ ∆,@i

∨
xϕ

(
∨⇒)

@iϕ[x/a],Γ⇒ ∆
@i

∨
xϕ,Γ⇒ ∆

(ı⇒ 1)
@iDt,@iϕ[x/t@i ],Γ⇒ ∆

@it ≈ ıxϕ,Γ⇒ ∆

(ı⇒ 2)
Γ⇒ ∆,@iϕ[x/b] @iDt,@ib = t@i ,Γ⇒ ∆

@it ≈ ıxϕ,Γ⇒ ∆

(⇒ ı)
Γ⇒ ∆,@iDt Γ⇒ ∆,@iϕ[x/t@i ] @iϕ[x/a],Γ⇒ ∆,@ia = t@i

Γ⇒ ∆,@it ≈ ıxϕ

and with (≈⇒), (⇒≈) replaced with:

(≈ r1)
Γ⇒ ∆,@it1 ≈ t2 @it

@i
1 = t@i

2 ,Γ⇒ ∆
Γ⇒ ∆

(≈ r2)
Γ⇒ ∆,@it1 ≈ t2 @iDti,Γ⇒ ∆

Γ⇒ ∆

(r ≈)
Γ⇒ ∆,@it

@i
1 = t@i

2 @it1 ≈ t2,Γ⇒ ∆
@iDt1,@iDt2,Γ⇒ ∆

HFMD is adequate since we can prove that rules for ı are interderivable
with⇒ H, moreover, cut elimination also holds for it (see Appendix) although
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this requires some comment. First note that in (
∧ ⇒), (⇒ ∨

) we instantiate
variable x with any rigid term but since they have complexity 1, the new rules
are also reductive and the proof of cut elimination for HFM is not spoiled. We
cannot use restricted form of instantiation, like in case of (∀E ⇒), (⇒ ∃E),
since such system would be incomplete. Consider two formulae: Er ∧ ∀xϕ →
ϕ[x/r] and Dr ∧∧xϕ→ ϕ[x/r]. Both are valid and the former is provable in
HFM but the second would be unprovable if (

∧⇒) is restricted to parameters.
On the other hand in (⇒ ∧

), (
∨ ⇒) we do not need the additional formula

@iDa in the premiss since parameters are defined everywhere.
Note also that rules of HFMD are defined in such a way that the situa-

tion is excluded where some cut formula is principal in both premisses of cut
but obtained by means of different kind of rules which are not reductive. In
particular, term equality is introduced only by means of rules for ı and they
are reductive. It is the reason why in HFMD we have to replace rules for ≈
from HFM with apparently worse equivalents. Since principal formulae of rules
for definite descriptions are term equalities there would be a clash with HFM
rules. Consider a situation when both cut formulae are term equalities but one
is introduced by means of an ı-rule and the other by means of (≈⇒) or (⇒≈)
– an induction on cut-degree fails. However, such situation cannot happen in
HFMD where instead of (≈⇒) and (⇒≈) we have (≈ r1), (≈ r2), (r ≈) which
are safe in this respect. Clearly, the new rules are equivalent to (≈⇒), (⇒≈)
(by rule-generation theorem [17] mentioned in section 3) although worse from
the proof-search standpoint.

6 Conclusion

We have shown that HL is a sufficiently flexible framework for expressing FM
version of FOML. Moreover, in this setting we can formulate a well-behaved
SC admitting cut elimination. Although we did not provide a semantic com-
pleteness proof it can be carried out either by using a strategy from [4] which
is more standard and requires cut, or by means of Hintikka-style saturation
technique like in [3] which is possible due to proved cut elimination. Moreover,
HFM is formulated in the weak hybrid language as a basis; all additions were
taken from FOML of Fitting and Mendelsohn. We can still enrich the language
with specifically hybrid constants like nominal quantifiers or ↓-operator.

On the other hand, our treatment of definite descriptions by means of rules
using ≈ may be seen as not wholly satisfactory. We obtain a system where =
is better characterised than in Indrzejczak [16] but at the cost of some redun-
dancy – two kinds of equality are applied that differ only syntactically but not
semantically. The other option would be to characterize definite descriptions by
means of special rules for definedness formulae. This is the approach explored
by Orlandelli [24] in the framework of labelled SC. In his system definedness
predicate is not a part of a language but rather a technical device of the shape
D(t, x, w) meaning that t denotes x in w. In our approach this information is
divided between ≈ and D as unary predicate. The lack of space forbids more
extensive comparison of both approaches.
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We should add that the treatment of definite descriptions either in terms
of rules using some kind of equality or a predicate of definedness still does
not provide the characteristics which is separate, in the sense of not exposing
other constants in rules except ı-operator. It is worth to explore more general
perspective which is connected with using terms on a par with formulae in
sequents. This device, introduced by Jaśkowski [20] in his first formulation of
ND, was recently succesfully applied in many contexts, for example by Tex-
tor [28], Restall [26], Gazzari [12] and Indrzejczak [18]. In hybrid languages a
uniform application of sat-operators to formulae and terms seems to offer a par-
ticularly interesting and uniform perspective where items are just sat-phrases
be it either a formula or a term. We leave this problem for further study.

Appendix

Lemma .1 If HFM1 ` Γ ⇒ ∆, then HFM2 ` Γ ⇒ ∆, where Γ,∆ contain
only sentences.

Proof: Consider a HFM1-proof D. Let {p1, . . . pn} be the set of all distinct
n-parameters occuring in a proof and {p′1, . . . p′n} the corresponding set of dis-
tinct parameters. Going from the root to leaves define for every node Γ ⇒ ∆
a corresponding sequent Π,Γ′ ⇒ ∆′ where Γ′,∆′ are obtained from Γ,∆ by si-
multaneous substitution of every n-parameter pi with corresponding parameter
p′i. Moreover let Π = {@kEp

′
i : pi := @kp

′
i ∈ PAR(Γ∪∆)}∪{@iDt : @it is de-

fined in Γ∪∆}. This way we obtain an isomorphic tree D′ of sequents with the
same root in the language of HFM2. This tree is not necessarily a HFM2-proof
so we must systematically made some adjustments. All leaves of D which are
instances of Ax are trivially axioms of HFM2. However, for the cases of eight
definitional axioms we have to provide proofs of their corresponding sequents
in HFM2. For two axioms characterising D we have:

@iDt,Π,@i(@it = @it),Γ⇒ ∆,@i(@it = @it)
(⇒ λ′′)

@iDt,Π,@i(@it = @it),Γ,⇒ ∆,@i(λxx = x)t
(≈⇒)

@iDt,Π,@i(t ≈ t),Γ,⇒ ∆,@i(λxx = x)t
(≈ −′)

@iDt,Π,Γ⇒ ∆,@i(λxx = x)t

and

@iDt,Π,@i(@it = @it),Γ⇒ ∆,@iDt
(λ⇒)

Π,@i(λxx = x)t,Γ⇒ ∆,@iDt

For E with t /∈ PAR:

@iDt,Π,@iEa,@i(a = @it),Γ⇒ ∆,@i(a = @it)
(⇒ ∃E′)

@iDt,Π,@iEa,@i(a = @it),Γ⇒ ∆,@i∃y(y = @it)
(⇒ λ′′)

@iDt,Π,@iEa,@i(a = @it),Γ⇒ ∆,@i(λx∃yy = x)t
(E ⇒)

Π,@iEt,Γ⇒ ∆,@i(λx∃yy = x)t
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Σ,Π,Γ ⇒ ∆,@iEa Σ,Π,Γ ⇒ ∆,@i(a = @it)
(⇒ E′)

@iDt,@iEa,Π,@i(a = @it),Γ ⇒ ∆,@iEt
(∃E ⇒)

@iDt,Π,@i∃y(y = @it),Γ ⇒ ∆,@iEt
(λ⇒)

Π,@i(λx∃yy = x)t,Γ ⇒ ∆,@iEt

where Σ = {@iDt,@iEa,@i(a = @it)}. If t ∈ PAR both sequents are provable
without (E ⇒), (⇒ E′); it justifies our restriction on their application.

For all applications of propositional rules in D we do not need any changes
in D′. For (∀ ⇒) we have by definition of Π that @iEb ∈ Π and that @iϕ[x/b] ∈
Γ′, so in case @ib was already present in the conclusion of the application of
this rule in D we need no change in D′. In case @ib was fresh in this application
of (∀ ⇒) we must add @iEb to Π in the conclusion to secure the correctness of
(∀E ⇒) in HFM2 and apply next (E−) to remove @iEb. For (⇒ ∀) @ia occurs
only in @iϕ but in the corresponding sequent of D′ a occurs also in @iDa ∈ Π,
in @iEa ∈ Π and in @iϕ ∈ ∆′. Therefore first we delete @iDa by application
of (D−), then the application of (⇒ ∀E) on resulting sequent is correct and
yields the desired conclusion. Applications of (= +′), (λ ⇒′) and (⇒ λ′) in D
correspond to correct applications of HFM2-versions of respective rules in D′
by definition of Π. For (= −) we apply (≈ −′) and (≈⇒). 2

Before proving the converse let us first demonstrate a derivability of all
specific rules of HFM2 in HFM1. Clearly instead of parameters we will use
n-parameters here. Quantifier rules (∀E ⇒′) and (⇒ ∃E′) are just special
versions of HFM1 rules. Derivability of (⇒ ∀E) and (∃E ⇒) needs a demon-
stration:

D @i(λx∃yy = x)@ia⇒ @iE@ia
(Cut)

@i(@ia = @ia)⇒ @iE@ia @iE@ia,Γ⇒ ∆,@iϕ[x/@ia]
(Cut)

@i(@ia = @ia),Γ⇒ ∆,@iϕ[x/@ia]
(= −)

Γ⇒ ∆,@iϕ[x/@ia]
(⇒ ∀)

Γ⇒ ∆,@i∀xϕ
where D is:

@i(@ia = @ia)⇒ @i∃yy = @ia,@i(@ia = @ia)
(⇒ ∃)

@i(@ia = @ia)⇒ @i∃yy = @ia
(⇒ λ′)

@i(@ia = @ia)⇒ @i(λx∃yy = x)@ia

Similarly for (∃E ⇒). (⇒ λ′′) needs no justification; for (λ⇒) we have:

@i(t
@i = t@i )⇒ @i(t

@i = t@i )
(⇒ λ′)

@i(t
@i = t@i )⇒ @i(λxx = x)t @i(λxx = x)t⇒ @iDt

(Cut)
@i(t

@i = t@i )⇒ @iDt @iDt,@iϕ[x/t@i ],Γ⇒ ∆
(Cut)

@i(t
@i = t@i ),@iϕ[x/t@i ],Γ⇒ ∆

(= −)
@iϕ[x/t@i ],Γ⇒ ∆

(λ⇒′)
@i(λxϕ)t,Γ⇒ ∆

Derivability of (≈ −′):
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D
@i(λx(λyy = x)t)t⇒ @i(t ≈ t) @i(t ≈ t),@iDt,Γ⇒ ∆

(Cut)
@i(λx(λyy = x)t)t,@iDt,Γ⇒ ∆

(Cut)
@iDt,Γ⇒ ∆

where D is:

@iDt⇒ @i(λxx = x)t

@i(@it = @it)⇒ @i(@it = @it)
(⇒ λ′)

@i(@it = @it)⇒ @i(λyy = @it)t
(⇒ λ′)

@i(@it = @it)⇒ @i(λx(λyy = x)t)t
(λ⇒′)

@i(λxx = x)t⇒ @i(λx(λyy = x)t)t
(Cut)

@iDt⇒ @i(λx(λyy = x)t)t

Derivability of other rules goes similarly, hence we obtain:

Lemma .2 If HFM2 ` Γ⇒ ∆, then HFM1 ` Γ⇒ ∆

Proof by induction on the height of HFM2-proof. Clearly as a preliminary
step we must provide a reverse substitution in all nodes of HFM2-proof, i.e. in
Γ,∆ all different parameters must be substituted with different n-parameters
in such a way that for any @iEb or @iDb in Γ,∆, b is substituted with @ib.
Derivability of all specific rules of HFM2 in HFM1 suffices for the proof. 2

Lemma .3 Provability of H in HFMD

@iDt⇒ @iDt @iϕ[x/t@i ]⇒ @iϕ[x/t@i ]
(⇒ λ)

@iDt,@iϕ[x/t@i ]⇒ @i(λxϕ)t
(ı⇒ 1)

@it ≈ ıxϕ⇒ @i(λxϕ)t D
(⇒ ∧)

@it ≈ ıxϕ⇒ @i(λxϕ)t ∧∧ y(ϕ[x/y]→ (λxx = y)t)

where D is:

@iϕ[x/a]⇒ @iϕ[x/a]

@iDt⇒ @iDt @it
@i = a⇒ @it

@i = a
(⇒ λ)

@iDt,@it
@i = a⇒ @i(λxx = a)t

(ı⇒ 2)
@it ≈ ıxϕ,@iϕ[x/a]⇒ @i(λxx = a)t

(⇒→)
@it ≈ ıxϕ,⇒ @iϕ[x/a]→ (λxx = a)t

(⇒ ∧
)

@it ≈ ıxϕ⇒ @i

∧
y(ϕ[x/y]→ (λxx = y)t)

Next, the converse:

@iDt⇒ @iDt @iϕ[x/t@i ]⇒ @iϕ[x/t@i ] D
(⇒ ı)

@iDt,@iϕ[x/t@i ],@i

∧
y(ϕ[x/y]→ (λxx = y)t)⇒ @it ≈ ıxϕ

(λ⇒)
@i(λxϕ)t,@i

∧
y(ϕ[x/y]→ (λxx = y)t)⇒ @it ≈ ıxϕ

(∧ ⇒)
@i(λxϕ)t ∧∧ y(ϕ[x/y]→ (λxx = y)t)⇒ @it ≈ ıxϕ

where D is:

@iDa⇒ @iDa
(D−) ⇒ @iDa

@iϕ[x/a]⇒ @iϕ[x/a]

@iDt,@it
@i = a⇒ @it

@i = a
(λ⇒)

@i(λxx = a)t⇒ @it
@i = a

(→⇒)
@iϕ[x/a]→ (λxx = a)t,@iϕ[x/a]⇒ @it

@i = a
(
∧⇒)

@i

∧
y(ϕ[x/y]→ (λxx = y)t),@iϕ[x/a]⇒ @it

@i = a
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Lemma .4 Derivability of HFMD rules (the case of (ı⇒ 1), (ı⇒ 2))

⇒ H→
@it ≈ ıxϕ⇒ @it ≈ ıxϕ

@iDt,@iϕ[x/t@i ],Γ⇒ ∆
(λ⇒)

@i(λxϕ)t,Γ⇒ ∆
(W ⇒)

@i(λxϕ)t,@i
∧
y(ϕ[x/y]→ (λxx = y)t),Γ⇒ ∆

(∧ ⇒)
@i(λxϕ)t ∧∧

y(ϕ[x/y]→ (λxx = y)t),Γ⇒ ∆
(→⇒)

@it ≈ ıxϕ,@it ≈ ıxϕ→ (λxϕ)t ∧∧
y(ϕ[x/y]→ (λxx = y)t),Γ⇒ ∆

(Cut)
@it ≈ ıxϕ,Γ⇒ ∆

@iDb⇒ @iDb(D−) ⇒ @iDb

Γ⇒ ∆,@iϕ[x/b]

@iDt,@it
@i = b,Γ⇒ ∆

(λ⇒)
@i(λxx = b)t,Γ⇒ ∆

(→⇒)
@iϕ[x/b]→ (λxx = b)t,Γ⇒ ∆

(
∧⇒)

@i

∧
y(ϕ[x/y]→ (λxx = y)t),Γ⇒ ∆

(W ⇒)
@i(λxϕ)t,@i

∧
y(ϕ[x/y]→ (λxx = y)t),Γ⇒ ∆

(∧ ⇒)
@i(λxϕ)t ∧∧ y(ϕ[x/y]→ (λxx = y)t),Γ⇒ ∆

and obtain the conclusion of (ı⇒ 2) by cut with:

⇒ H→
@it ≈ ıxϕ⇒ @it ≈ ıxϕ @i(λxϕ)t ∧∧

y(ϕ[x/y]→ (λxx = y)t)⇒ ψ
(→⇒)

@it ≈ ıxϕ,@it ≈ ıxϕ→ (λxϕ)t ∧∧
y(ϕ[x/y]→ (λxx = y)t)⇒ ψ

(Cut)
@it ≈ ıxϕ⇒ @i(λxϕ)t ∧∧

y(ϕ[x/y]→ (λxx = y)t)

where ψ := @i(λxϕ)t ∧∧ y(ϕ[x/y]→ (λxx = y)t)
We prove derivability of (⇒ ı) in a similar way. 2

To prove cut elimination first note that for HFM and HFMD holds:

Lemma .5 (Height-preserving Substitution)
If `k Γ⇒ ∆, then `k (Γ⇒ ∆)[i/j];
If `k Γ⇒ ∆, then `k (Γ⇒ ∆)[a/r].

By lemma 5 every proof may be systematically transformed into regular
proof – every fresh parameter and nominal is fresh in the entire proof.

Let cut-degree of cut-formula @iϕ be its complexity, i.e. d@iϕ = c(@iϕ)
and proof-degree (dD) be the maximal cut-degree in D.

Technically the proof of cut elimination theorem is an extension of the proof
for propositional HL in Indrzejczak [15] (see also [23], [16]) and is based on:

Lemma .6 (Right reduction) Let D1 ` Γ ⇒ ∆,@iϕ and D2 ` @iϕ
n,Π ⇒

Σ and dD1, dD2 < d@iϕ, and @iϕ principal in Γ ⇒ ∆,@iϕ, then we can
construct a proof D such that D ` Γn,Π⇒ ∆n,Σ and dD < d@iϕ.

Lemma .7 (Left reduction) Let D1 ` Γ ⇒ ∆,@iϕ
n and D2 ` @iϕ,Π ⇒ Σ

and dD1, dD2 < d@iϕ, then we can construct a proof D such that D ` Γ,Πn ⇒
∆,Σn and dD < d@iϕ.

They hold for SC with substitutive and reductive rules. Lemma 6 makes a
reduction on the right, and lemma 7 on the left premiss of cut by induction on
the height of respective proofs. The latter in the case of principal cut-formula
applies lemma 6. Eventually, lemma 7 yields, by induction on proof-degree:

Theorem .8 Every proof may be transformed into cut-free proof. 2
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Abstract

We give a sufficient condition for Kripke completeness of modal logics that have the
transitive closure modality. More precisely, we show that if a modal logic admits what
we call definable filtration, then its enrichment with the transitive closure modality
(and the corresponding axioms) is Kripke complete; in addition, the resulting logic
has the finite model property and admits definable filtration, too. This argument can
be iterated, and as an application we obtain the finite model property for PDL-like
expansions of multimodal logics that admit definable filtration.

Keywords: Filtration, decidability, finite model property, transitive closure, PDL.

Introduction

This paper makes a contribution to the study of modal logics enriched by the
transitive closure modality.

Modal logics that, in addition to the modal operator � for a binary rela-
tion R, also contain the operator � for the transitive closure of R, are quite
common [8]. For instance, such are the propositional dynamic logic (PDL) [7]
or von Wright’s logic Log(N, succ, <) (see [18]). Other examples include logics
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with the operator of common knowledge and ‘everyone knows that’ in epistemic
logics [6] such as the logic Team for collective beliefs and actions [5].

So far, completeness and decidability results for such logics have had be-
spoke proofs, though many of them are based on Segerberg’s [16] and Kozen
and Parikh’s arguments for PDL [13]. In this paper we present a toolkit for
obtaining results on completeness, finite model property, and decidability ap-
plicable to a wide range of modal logics with transitive closure.

In Section 2, we recall a (rather general) notion of filtration and come up
with a hierarchy of ‘admits filtration’ notions (including those studied in our
earlier work [12]). Section 3 contains our main result (announced in [20]): if the
class of models of a logic L admits definable filtration (see Definition 2.5), then
the axioms of L together with Segerberg’s axioms for the transitive closure
modality yield a complete axiomatization of the bimodal logic of the class of
frames for L augmented by the transitive closure of the accessibility relation.
Moreover, the resulting logic has the finite model property (and is decidable, if
L was finitely axiomatizable). Section 4 presents examples of logics that satisfy
our sufficient condition; we also show how this condition can be ‘iterated’ for
obtaining completeness for ‘PDLizations’ of a family of logics.

1 Preliminaries

We assume the reader to be familiar with syntax and semantics of multi-modal
logic [1,3], so we only briefly recall some notions and fix notation. Let Σ be a
(usually finite) alphabet (of indices for modalities). The set Fm(Σ) of modal
formulas (over Σ) is defined from propositional letters Var = {p0, p1, . . .} using
Boolean connectives and the modalities[e], for e ∈ Σ, according to the syntax:

ϕ ::= ⊥ | pi | ϕ→ ψ | [e]ϕ.
We use standard abbreviations (e.g., >,∧); in particular, 〈e〉ϕ := ¬[e]¬ϕ. For
a set of formulas Γ, by Sub(Γ) we denote the set of all subformulas of formulas
from Γ. We say that Γ is Sub-closed if Sub(Γ) ⊆ Γ.

A (Σ-)frame is a pair F = (W, (Re)e∈Σ), where W 6= ∅ and Re ⊆W×W
for e ∈ Σ. A model based on F is a pair M = (F, V ), where V (p) ⊆W , for all
p ∈ Var. The truth relation M,x |= ϕ is defined in the usual way, e.g.

M,x |=[e]ϕ � for all y ∈W , if xRe y then M,y |= ϕ.

We write M |= ϕ if M,x |= ϕ for all x in M . A formula ϕ is valid on F ,
notation F |= ϕ, if M |= ϕ for all M based on F . For a class of frames F , an
F-model is a model based on a frame from F .

A (normal modal) logic (over Σ) is a set of formulas L that contains all
classical tautologies, the axioms [e](p→ q) → ([e]p → [e]q), for each e ∈ Σ,
and is closed under the rules of modus ponens, substitution, and necessitation
(from ϕ, infer[e]ϕ, for each e ∈ Σ). An L-frame is a frame F such that F |= L.
The logic of a class of frames F is the set of all formulas that are valid in F .
A logic L is (Kripke) complete if it is the logic of some class of frames. A logic
L has the finite model property (FMP) if it is the logic of some class of finite
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frames; or equivalently (see, e.g., [1, Th. 3.28]) if, for every formula ϕ /∈ L,
there is a finite model M such that M |= L and M 6|= ϕ. For a logic L, put

Fr(L) = {F | F is a frame and F |= L},
Mod(L) = {M |M is a model and M |= L}.

Clearly, every Fr(L)-model belongs to Mod(L). The converse does not hold
in general; e.g., the canonical model of a non-canonical logic L is not a Fr(L)-
model. But the converse holds in the following special case. A model M is
called differentiated if any two points in M can be distinguished by a formula.

Lemma 1.1 (See e.g. [10, Ex. 4.9]) Let M = (F, V ) be a finite differentiated
model. If all substitution instances of a formula ϕ are true in M , then F |= ϕ.

In particular, if M |= L, where L is a logic, then F |= L.

Harrop’s theorem. A finitely axiomatizable logic with the FMP is decidable.

2 Filtration

The notion of a filtration we introduce below slightly generalizes the standard
one (cf. [1, Def. 2.36], [3, Sect. 5.3]) in the following aspect: given a finite set
of formulas Γ, we define a filtration as a model obtained by factoring a given
model through an equivalence relation that we allow to be finer than the one
induced by Γ. This modification seems to first appear in [21]; see also [22,23].

Let M = (W, (Re)e∈Σ, V ) be a model and Γ a finite Sub-closed set of Σ-
formulas. An equivalence relation ∼ on W is of finite index if the quotient set
W/∼ is finite. The equivalence relation induced by Γ is defined as follows:

x ∼Γ y � ∀ϕ ∈ Γ
(
M,x |= ϕ ⇔ M,y |= ϕ

)
.

Clearly, ∼Γ is of finite index. We say that an equivalence relation ∼ respects Γ
if ∼ ⊆ ∼Γ; in other words, if for every class [x]∼ ⊆W and every formula ϕ ∈ Γ,
ϕ is either true in all points of [x]∼ or false in all points of [x]∼.

Definition 2.1 (Filtration) By a filtration of a model M that respects a set

of formulas Γ (or a Γ-filtration of M) we mean any model M̂ = (Ŵ , (R̂e)e∈Σ, V̂ )
that satisfies the following conditions:

• Ŵ = W/∼, for some equivalence relation of finite index ∼ on W ;

• the equivalence relation ∼ respects Γ, i.e., x ∼ y implies x ∼Γ y;

• the valuation V̂ is defined on the variables p ∈ Γ canonically: x̂ |= p⇔ x |= p,
for all points x ∈W , where x̂ := [x]∼ denotes the ∼-class of a point x;

• Rmin
∼,e ⊆ R̂e ⊆ Rmax

Γ,e , for each e ∈ Σ. Here Rmin
∼,e is the e-th minimal filtered

relation on Ŵ , and Rmax
Γ,e is the e-th maximal filtered relation on Ŵ induced

by the set of formulas Γ; they are defined in the usual way:

x̂ Rmin
∼,e ŷ � ∃x′ ∼ x ∃y′ ∼ y : x′Re y′,

x̂ Rmax
Γ,e ŷ � for every formula [e]ϕ ∈ Γ

(
M,x |=[e]ϕ ⇒ M,y |= ϕ

)
.

If ∼=∼Φ for a finite set of formulas Φ, then we call M̂ a definable Γ-filtration
of M (through Φ); we can assume, without loss of generality, that Φ ⊇ Γ.
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Note that the relations Rmin
∼,e and Rmax

Γ,e are well-defined and Rmin
∼,e ⊆ Rmax

Γ,e .

The condition Rmin
∼,e ⊆ R̂e can be rewritten as ∀x, y ∈W (xRe y ⇒ x̂ R̂e ŷ).

A filtration is always a finite model. The following is the key lemma about
filtration (cf. [1, Th. 2.39], [3, Th. 5.23]).

Lemma 2.2 (Filtration lemma) Suppose that Γ is a finite Sub-closed set of
formulas and M̂ is a Γ-filtration of a model M . Then, for all points x ∈W
and all formulas ϕ ∈ Γ, we have: M,x |= ϕ ⇔ M̂, x̂ |= ϕ.

2.1 Admissibility of filtration

Definition 2.3 (ADF for classes of frames) We say that a class of frames
F admits (definable) filtration if, for any finite Sub-closed set of formulas Γ and
an F-model M , there exists an F-model that is a (definable) Γ-filtration of M .

It is well-known that filtration (of the class of all frames) is a method of
proving the FMP for complete modal logics; let us state this explicitly.

Lemma 2.4 (AF for frames implies FMP) If the class of its frames Fr(L)
admits filtration and the logic L is Kripke complete, then L has the FMP.

Proof. If ϕ /∈ L, then, by completeness of L, there is a frame F |= L with
F 6|= ϕ. Taking Γ = Sub(ϕ) and Γ-filtrating the model based on F that falsifies
the formula ϕ, we obtain a finite frame F ′ |= L with F ′ 6|= ϕ. 2

Definition 2.5 (ADF for classes of models) We say that a class of models
M admits (definable) filtration if, for any finite Sub-closed set of formulas Γ
and any M ∈M, there is a model inM that is a (definable) Γ-filtration of M .

The next lemma shows that filtration of the class of all models Mod(L) is
a method of obtaining Kripke (frame!) completeness (and FMP, of course).

Lemma 2.6 (AF for models implies FMP) If the class of models Mod(L)
of a logic L admits filtration, then L has the FMP and hence is Kripke complete.

Proof. Any normal logic L is model-complete, i.e., ϕ ∈ L iff Mod(L) |= ϕ;
moreover, L is complete w.r.t. a single, canonical model ML. Therefore, if
ϕ /∈ L, then there is a model M ∈ Mod(L) such that M 6|= ϕ. Let Γ = Sub(ϕ).
Take a Γ-filtration M̂ of M such that M̂ |= L; here M̂ is a finite model. By
taking the filtration of M̂ through the set of all formulas Fm, we obtain a finite
differentiated model M̂ ′ = (F̂ ′, V̂ ′) modally equivalent to M̂ . So M̂ ′ |= L and
M̂ ′ 6|= ϕ. By Lemma 1.1, F̂ ′ |= L. Thus, every non-theorem of L is falsified in
some finite L-frame. So, L is Kripke (frame) complete and even has the FMP.2

So far, we are not aware of any example of a logic whose class of frames (or
models) admits filtration, but not definable filtration.

We have two variants of the notion “a logic L admits (definable) filtration”:

(I) the class of frames Fr(L) admits (definable) filtration (Definition 2.3);
(II) the class of models Mod(L) admits (definable) filtration (Definition 2.5).

In both variants, we filtrate a model M = (F, V ) into a model M̂ = (F̂ , V̂ ).
The precondition (F |= L) in (I) is stronger than that (M |= L) in (II). The
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postcondition (F̂ |= L) in (I) is stronger than (M̂ |= L) in (II), too. However,
we can always make sure that the finite model M̂ is differentiated. Then M̂ |= L
iff F̂ |= L. Thus, (II) is stronger than (I). Let us state this explicitly.

Lemma 2.7 (ADF for models implies ADF for frames)
For any logic L, if Mod(L) admits (definable) filtration, then so does Fr(L).

Proof. Take any finite Sub-closed set of formulas Γ and a model M = (F, V )
with F |= L. Then M ∈ Mod(L). By assumption, the model M has a (defin-
able) Γ-filtration M̂ = (F̂ , V̂ ) with M̂ |= L. The model M̂ is finite and, without
loss of generality, differentiated, by Lemma A.2 (in Appendix). Then F̂ |= L,
by Lemma 1.1. Thus, Fr(L) admits (definable) filtration. 2

The converse implication in the above lemma does not hold in general.
Consider the logic Ver of the irreflexive singleton frame; it is axiomatized
by �⊥. One can easily see that the class of its frames F admits definable
filtration. But there are continuum many other logics L with the same class
of frames F (cf. [2], [3, Ex. 10.57]), so that the class frames Fr(L) admits
definable filtration, too. However, each of these logics is Kripke incomplete
and, by Lemma 2.6, the class of models Mod(L) does not admit filtration.

Next we prove that, for the canonical logics, the converse implication holds,
and so the notions (I) and (II) coincide, if we consider definable filtration. To
simplify notation, we work with the unimodal case. Recall that one can build
the canonical frame FT = (WT , RT ) and canonical model MT = (FT , VT ) not
only for a (consistent) normal logic, but more generally for a normal theory T
(which contains all theorems of K and is closed under monus ponens and neces-
sitation). Any point x ∈WT is a consistent (never A,¬A ∈ x) complete (always
A ∈ x or ¬A ∈ x) theory (i.e., closed under modus ponens) containing T .

A logic L is called canonical if FL |= L. The following is a well-known fact.

Lemma 2.8 (Canonical generated submodel) If T ⊆ T ′ are consistent
normal theories, then MT ′ is a generated submodel of MT . Similarly for frames.

Proof. Assume x ∈ WT ′ , y ∈ WT , and xRT y. To prove that y ∈WT ′ , i.e.,
T ′ ⊆ y, take any formula A ∈ T ′. By normality �A ∈ T ′. Since T ′ ⊆ x, we
have �A ∈ x. By definition of RT , we obtain A ∈ y. 2

A typical example of a normal theory is the theory of a model T = Th(M).
For a model M = (W,R, V ), consider the canonical model MT of its theory
and the canonical mapping t from M to MT defined, for a ∈W , by

t(a) = Th(M,a) ∈WT .

It is monotonic (aR b ⇒ t(a)RT t(b)), but in general it is neither surjective,
nor a p-morphism. The following lemma (proved in Appendix, see Lemma A.3)
shows what happens to the canonical mapping if we filtrate both M and MT

through a finite set of formulas Φ.

Lemma 2.9 Under the above conditions, any finite set of formulas Φ induces
a bijection between the quotient sets W/∼Φ and WT /∼Φ defined, for a ∈W, by

f([a]∼Φ
) := [t(a)]∼Φ

.
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Theorem 2.10 (ADF for frames implies ADF for models) If L is a ca-
nonical logic, then Mod(L) admits definable filtration iff so does Fr(L).

Proof. (⇒) By Lemma 2.7. (⇐) Idea: in order to filtrate a model M |= L,
we filtrate the canonical model MT of its theory T = Th(M) and then use the
bijection from Lemma 2.9 to transfer the filtration back to M .

Take a finite Sub-closed set of formulas Γ and a model M = (W,R, V ) with
M |= L. Its theory T = Th(M) contains L, hence FT is a generated subframe
of FL, by Lemma 2.8. Since L is canonical, we have FL |= L and so FT |= L.
Thus, MT is a Fr(L)-model and, by assumption, we can filtrate it.

Therefore, the model MT has a Γ-filtration M̂T = (ŴT , R̂T , V̂T ) (through

some finite set of formulas Φ ⊇ Γ) with F̂T |= L. By Lemma 2.9, there is a

bijection f between the finite sets Ŵ = (W/∼Φ) and ŴT = (WT /∼Φ). Now we

build a model M̂ = (Ŵ , R̂, V̂ ) isomorphic to M̂T , by putting, for all a, b ∈W :

â R̂ b̂ iff f(â) R̂T f (̂b); â |= p iff f(â) |= p, for all variables p ∈ Γ.

Since the frames F̂ and F̂T are isomorphic and F̂T |= L, we have F̂ |= L. It
remains to prove that M̂ is a Γ-filtration (through Φ) of M . Below, we denote
x = t(a) = Th(M,a) and y = t(b) = Th(M, b), so that f(â) = x̂ and f (̂b) = ŷ.

(var) Let us check that M̂, â |= p iff M,a |= p, for all p ∈ Γ. We have:

M̂, â |= p ⇔ M̂T , x̂ |= p ⇔ MT , x |= p ⇔ p ∈ x ⇔ M,a |= p.

(min) Let us check that Rmin
∼Φ
⊆ R̂, i.e., ∀a, b ∈W (aR b ⇒ â R̂ b̂).

We use the monotonicity of t(·) and the condition (min) for R̂T :

aR b =⇒ t(a)RT t(b) ⇔ xRT y =⇒ x̂ R̂T ŷ ⇔ â R̂ b̂.

(max) Let us check that R̂ ⊆ Rmax
Γ . Assume â R̂ b̂. Then x̂ R̂T ŷ.

By the condition (max) for R̂T , we have x̂ ((RT )max
Γ ) ŷ.

We need to show that â Rmax
Γ b̂. For any formula �A ∈ Γ, we have:

M,a |= �A ⇔ �A ∈ x ⇔ MT , x |= �A ⇒ MT , y |= A ⇔ A ∈ y ⇔ M, b |= A.

This completes the proof of the theorem. 2

3 Logics with the transitive closure modality

In this section, L ⊆ Fm(�) is a normal unimodal logic. Let L� ⊆ Fm(�,�) be
the minimal normal logic that extends L with the following axioms describing
the interaction between the modality � and the transitive closure modality �:

(A1) �p→ �p, (A2) �p→ ��p, (A3) �(p→ �p)→ (�p→ �p).
Segerberg [16] (see also [17,19]) and later Kozen and Parikh [13] proved that

the logic K� (and even PDL) is complete and has the FMP; in other words, it
is the logic of finite frames of the form (W,R,R+); hence it is decidable (more
exactly, ExpTime-complete); see also [4] for a constructive variant of complete-
ness theorem. The logic K� is known to be not canonical (see Lemma A.5 in
Appendix). Thus, even for simple logics we cannot use canonical models as a
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method of obtaining completeness.
To the best of our knowledge, up to now, there were no general results on

the completeness and decidability for the �-companions of logics other than K.
Here we obtain one such result. We give a condition on L sufficient for the
completeness of L�. The condition is strong enough and guarantees not only
the completeness, but the FMP of L�; this limits the scope of our approach.

For simplicity, in this section we assume that L is unimodal. The results
transfer easily to multi-modal logics. Given a unimodal frame F = (W,R),
we denote F⊕ = (W,R,R+). Given a class of unimodal frames F , we denote
F⊕ = {F⊕ | F ∈ F}. Similarly for a model M⊕ and a class of models M⊕.

Lemma 3.1 (W,R, S) |= {(A1), (A2), (A3)} iff R+ = S.

Proof. This is a known fact. Lemma A.4 (in Appendix) gives more details.2

Lemma 3.2 (a) Mod(L)⊕ ⊆ Mod(L�). (b) Fr(L)⊕ = Fr(L�).

Proof. Any frame of the form (W,R,R+) validates (A1), (A2), and (A3). 2

Lemma 3.3 (Conservativity) For any consistent normal logic L, the logic
L� is a conservative extension of L: if A ∈ Fm(�) and L� ` A, then L ` A.

Proof. If L 0 A, then ML 6|= A and M⊕L 6|= A. But M⊕L |= L�. So L� 0 A. 2

3.1 Completeness for logics with the transitive closure modality

In the proof of the main result, we will need to modify a valuation definably.
By ϕσ we denote the application of a substitution σ : Var→ Fm to a formula ϕ.

Definition 3.4 By a (modally) definable variant of a model M = (F, V ) we
mean a model of the form Mσ = (F, V σ), for some substitution σ, where the
valuation V σ is defined by V σ(p) = V (pσ), for every variable p.

In other words, Mσ, x |= p iff M,x |= pσ. By induction one can easily prove:

Lemma 3.5 Mσ, x |= ϕ iff M,x |= ϕσ, for all formulas ϕ.

Since a logic is closed under substitutions, we obtain the following fact.

Lemma 3.6 If L is a logic and M |= L, then Mσ |= L, for any substitution σ.

Recall that the formulas (A1) and (A2) are canonical, so they are valid on
the canonical frame of L�, for any L. For (A3), this is not the case even for the
case L = K: in the canonical frame FK� = (W,R, S), only a strict inclusion
R+ ( S holds (see lemma A.5 in Appendix).

However, in order to obtain the completeness of L�, we do not necessarily
need the converse inclusion S ⊆ R+ in the canonical frame of L�. Instead, we
do a walk around: given any model M = (W,R, S, V ) of L� (e.g., its canonical

model), we remove S, filtrate (W,R, V ) into a finite model (Ŵ , R̂, V̂ ), and then

augment it with (R̂)+. It only remains to prove that the resulting finite bi-
modal model is a definable filtration of the original bi-modal model M ; i.e., that
(R̂)+ is between the minimal and the maximal filtered relations. For maximal,
the inclusion follows from the axioms (A1) and (A2) only (see (7) in the proof
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of Theorem 3.8 below); on the contrary, for the minimal, the required inclusion
(see (5) in that proof) holds due to the following remarkable property of (A3).

Let us write M |= A∗ if we have M |= Aσ for all substitutions σ.

Lemma 3.7 (Induction axiom and minimal filtration)
Let M = (W,R, S, V ) |= (A3)

∗
and let Φ ⊆ Fm be finite. Then Smin

∼Φ
⊆ (Rmin

∼Φ
)+.

Proof. Denote r := Rmin
∼Φ

and s := Smin
∼Φ

. To prove s ⊆ r+, assume x̂ s ŷ. By
definition of the minimal filtered relation Smin

∼Φ
, we can assume, without loss of

generality, that xS y. Consider Y := r+(x̂) ⊆ Ŵ . We need to show that ŷ ∈ Y .
Since Φ is finite, every ∼Φ-equivalence class ẑ ⊆W is a definable (by some

formula) subset of W . Since Y is a finite collection of such subsets, their union⋃
Y ⊆W is also a definable subset of W . So, there is a formula ϕ such that,

for all z ∈W , we have: M, z |= ϕ iff z ∈ ⋃Y iff ẑ ∈ Y .
Firstly, M |= ϕ→ �ϕ. Indeed, if M,a |= ϕ, aR b, then â ∈ Y , â r b̂. But Y

is closed under r, hence b̂ ∈ Y and M, b |= ϕ. Therefore, M |= �(ϕ→ �ϕ).
Secondly, M,x |= �ϕ. Indeed, if xR z then x̂ r ẑ, so ẑ ∈ Y and M, z |= ϕ.
Now we use that M |= �(ϕ → �ϕ) → (�ϕ → �ϕ). Thus, M,x |= �ϕ.

Recall that xS y. Then M,y |= ϕ, hence ŷ ∈ Y . 2

In Appendix (Lemma A.6) we strengthen the above lemma.
Now we come to the main technical tool of our paper.

Theorem 3.8 (Transfer of ADF to logics with transitive closure)
If the class Mod(L) admits definable filtration, then so does the class Mod(L�).

Proof. Idea: 4 in order to filtrate a model M = (W,R, S, V ) |= L� for Γ ⊆
Fm(�,�), we build a special set of unimodal formulas ∆ and ∆-filtrate the

reduct N = (W,R, V ) |= L of M into a finite model N̂ = (Ŵ , R̂, V̂ ) |= L.

Then we show that N̂+ = (Ŵ , R̂, (R̂)+, V̂ ) |= L� is a Γ-filtration of M . More
precisely, we first take a modified valuation V σ and actually filtrate Nσ, not N .

Formally: take a model M = (W,R, S, V ) such that M |= L� and a finite
Sub-closed set of formulas Γ ⊆ Fm(�,�). For each formula ϕ ∈ Γ, fix a fresh
(not occurring in Γ) variable qϕ. Consider a substitution σ : Var → Fm(�,�)
defined by σ(qϕ) = ϕ for all ϕ ∈ Γ and σ(p) = p for all other variables p. In
the definable variant Mσ = (W,R, S, V σ) of M we have: Mσ |= qϕ ↔ ϕ for all
ϕ ∈ Γ (since ϕσ = ϕ), hence Mσ |= �qϕ ↔ �ϕ and even Mσ |= A↔ Aσ, for
any formula A ∈ Fm(�). We also have Mσ |= L� by Lemma 3.6.

Now consider the reduct Nσ = (W,R, V σ) of Mσ. Clearly, Nσ |= L. How-
ever, we cannot Γ-filtrate this model, since Γ is a set of bimodal formulas.

4 The proof of the main theorem differs from the proof of the corresponding Theorem 2.6
from our paper [12] in the following two aspects. First, in [12] we filtrate a model of the
form M = (W,R,R+, V ) such that (W,R,R+) |= L�, i.e., (W,R) |= L; while here we will
filtrate a model of the form M = (W,R, S, V ) such that M |= L�. As a consequence, in the
old proof, we had to show that (R+)min

∼ ⊆ (Rmin
∼ )+, which is quite simple, while here we need

to show that Ŝ ⊆ (R̂)+, for this we need Lemma 3.7. Secondly, we transform a filtration of
(W,R, V ) through a set of formulas Φ ⊆ Fm(�) into a filtration of (W,R, S, V ) through some
set of formulas Φ′ ⊆ Fm(�,�), so we need to build Φ′ from Φ.
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Consider the following finite Sub-closed set of �-formulas:

∆ := { qϕ, �qϕ | ϕ ∈ Γ } ⊂ Fm(�).

Mod(L) admits definable filtration, so there is a ∆-filtration N̂σ = (Ŵ , R̂, V̂ σ)

of Nσ through some finite set Φ ⊆ Fm(�) with ∆ ⊆ Φ such that N̂σ |= L. Let

us change V̂ σ on the variables p ∈ Γ by putting: 5 N̂σ, x̂ |= p � N̂σ, x̂ |= qp.
Remark. Since we will have several models on the same set of points, we

need a more subtle notation. In particular, we have Ŵ = W/∼NσΦ , this notation
shows explicitly in which models we consider the ∼Φ-equivalence of points.

Now put M̂ := N̂σ⊕ = (Ŵ , R̂, (R̂)+, V̂ σ). It remains to prove the following.

Claim. The model M̂ is a Γ-filtration (through Φσ) of M .

(1) We show that Ŵ = W/∼MΦσ . For any x ∈W and A ∈ Fm(�), we have:

Nσ, x |= A ⇔ Mσ, x |= A ⇔ M,x |= Aσ.

Therefore, for all x, y ∈W , we have: (x ∼NσΦ y) iff (x ∼MΦσ y).
This allows us to introduce a simpler notation ∼ for ∼NσΦ and ∼MΦσ .

Since N̂σ is a ∆-filtration of Nσ, we have: Rmin
∼ ⊆ R̂ ⊆ Rmax

∼,∆. (∗)
(2) The relation ∼ respects Γ. Indeed, Φ ⊇ ∆ ⊇ {qϕ | ϕ ∈ Γ}, hence Φσ ⊇ Γ.

(3) We show that M,x |= p ⇔ M̂, x̂ |= p, for p ∈ Γ. Note that M̂ |= qp ↔ p.

M,x |= p ⇔ Mσ, x |= qp ⇔ Nσ, x |= qp
m

M̂, x̂ |= p ⇔ M̂, x̂ |= qp ⇔ N̂σ, x̂ |= qp

(4) Rmin
∼ ⊆ R̂. This holds by (∗).

(5) Smin
∼ ⊆ Ŝ, where Ŝ := (R̂)+. Using (4) and Lemma 3.7, we obtain:

Smin
∼ ⊆ (Rmin

∼ )+ ⊆ (R̂)+ = Ŝ.

(6) R̂ ⊆ Rmax
∼,Γ. Due to (∗), it suffices to prove that Rmax

∼,∆ ⊆ Rmax
∼,Γ.

Assume that x̂ (Rmax
∼,∆) ŷ. To show that x̂ (Rmax

∼,Γ) ŷ, take any �ϕ ∈ Γ. Then:

M,x |= �ϕ (a)⇐⇒ Mσ, x |= �qϕ
(b)⇐⇒ Nσ, x |= �qϕ

⇓ (c)

M,y |= ϕ
(a)⇐⇒ Mσ, y |= qϕ

(b)⇐⇒ Nσ, y |= qϕ

We used: (a) Lemma 3.5; (b) qϕ,�qϕ ∈ Fm(�); (c) �qϕ ∈ ∆ and x̂ (Rmax
∼,∆) ŷ.

(7) Ŝ ⊆ Smax
∼,Γ. Due to (∗), it suffices to prove that (Rmax

∼,∆)+ ⊆ Smax
∼,Γ.

Let us denote r := Rmax
∼,∆ and s := Smax

∼,Γ. In order to prove that r+ ⊆ s, it
suffices to prove two inclusions: r ⊆ s and r ◦ s ⊆ s.
(7a) Proof of (r ⊆ s). We will use the axiom (A1): �p→ �p.

Assume x̂ (Rmax
∼,∆) ŷ. To prove that x̂ (Smax

∼,Γ) ŷ, take any �ϕ ∈ Γ. Then:

5 We could simply assume that V̂ σ was undefined for the variables p ∈ Var(Γ) before we

defined it here explicitly. This allows us to use the same notation V̂ σ for the amended

valuation. Note that this amendment does not change the truth of formulas from ∆ in N̂σ .
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M,x |= �ϕ (d)
=⇒ M,x |= �ϕ (a)⇐⇒ Mσ, x |= �qϕ

(b)⇐⇒ Nσ, x |= �qϕ
⇓ (c)

M,y |= ϕ
(a)⇐⇒ Mσ, y |= qϕ

(b)⇐⇒ Nσ, y |= qϕ

(d) holds since M |= �ϕ→ �ϕ. The explanations of (a, b, c) are the same.

(7b) Proof of (r ◦ s ⊆ s). We will use the axiom (A2): �p→ ��p.
Assume x̂ (Rmax

∼,∆) ŷ (Smax
∼,Γ) ẑ. To prove x̂ (Smax

∼,Γ) ẑ, take any �ϕ ∈ Γ. Then:

M,x |= �ϕ (e)
=⇒ M,x |= ��ϕ (a)⇐⇒ Mσ, x |= �q�ϕ

(b)⇐⇒ Nσ, x |= �q�ϕ
⇓ (c)

M, z |= ϕ
(g)⇐= M,y |= �ϕ (a)⇐⇒ Mσ, y |= q�ϕ

(b)⇐⇒ Nσ, y |= q�ϕ

We used: (e) M |= �ϕ→ ��ϕ; (a) Lemma 3.5; (b) �q�ϕ ∈ Fm(�);
(c) �q�ϕ ∈ ∆ and x̂ (Rmax

∼,∆) ŷ; (g) �ϕ ∈ Γ and ŷ (Smax
∼,Γ) ẑ.

This completes the proof of theorem. 2

Note that in (7a) and (7b) we proved inclusions that involve maximal rela-
tions, and these inclusions resemble the axioms (A1) and (A2). This is not a
coincidence. In Lemma 4.3 of our paper [12], we already made this observation
for any right-linear grammar axiom and both (A1) and (A2) are right-linear.

Let us summarize the main result on logics with transitive closure. We give
two versions. The former theorem uses a rather unusual property (filtration
of models). However, its advantage is that one can ‘iterate’ the application of
this theorem (as we do in Section 4), since its premise and conclusion have the
same form: “the class of models of a logic admits definable filtration”. The
latter theorem uses filtration of frames, but additionally requires canonicity.

Theorem 3.9 (Main result, version 1) Assume that the class of models
Mod(L) of a logic L admits definable filtration. Then:

(1) the class of models Mod(L�) admits definable filtration;
(2) hence the logic L� has the finite model property;
(3) hence the logic L� is Kripke complete.

Proof. Assume Mod(L) admits definable filtration. Then so does Mod(L�),
by Theorem 3.8. By Lemma 2.6, L� has the FMP and is Kripke complete. 2

Theorem 3.10 (Main result, version 2) Assume that a logic L is canoni-
cal and the class of its frames Fr(L) admits definable filtration. Then:

(1) the class Mod(L�) admits definable filtration;
(2) hence the logic L� has the finite model property;
(3) hence the logic L� is Kripke complete.

Proof. If L is canonical and the class Fr(L) admits definable filtration, then
so does the class Mod(L), by Theorem 2.10. Now apply Theorem 3.9. 2

4 PDLization of logics that admit filtration

Now we apply Theorem 3.9 to show that if Mod(L) admits definable filtration,
then the following PDL-like expansions of L have the finite model property.
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Definition 4.1 For an alphabet Σ, let Σ] = Σ∪{(e◦f), (e∪f), e+ | e, f ∈ Σ},
assuming that the added symbols are not in Σ. Put Σ(0) = Σ, Σ(n+1) = (Σ(n))].

For a frame F = (W, (Re)e∈Σ), put F ] = (W, (Re)e∈Σ]), where for e, c ∈ Σ,

Re◦c = Re ◦Rc, Re∪c = Re ∪Rc, Re+ = (Re)
+.

Put F (0) = F , F (n+1) = (F (n))].
For a model M = (F, V ), we put M ] = (F ], V ) and M (n) = (F (n), V ).
For a logic L over Σ, let L] be the smallest (normal) logic over Σ] that

contains L and the following PDL-like axioms, for all e, c ∈ Σ:

[e ∪ c]p↔[e]p ∧[c]p,
[e ◦ c]p↔[e][c]p,
[e+]p→[e]p, [e+]p→[e][e+]p, [e+](p→[e]p)→ ([e]p→[e+]p).

We put L(0) = L, L(n+1) = (L(n))].

The following is a simple analogue of Lemma 3.2.

Lemma 4.2 (a) M |= L implies M ] |= L]. (b) F |= L iff F ] |= L].

By an easy induction on n, we obtain

Proposition 4.3 For a frame F and n < ω, F |= L iff F (n) |= L(n).

Proposition 4.4 For a logic L and n < ω, L(n) is conservative over L.

Proof. As in Lemma 3.3, using ML
(n) instead of M⊕L and Lemma 4.2(a). 2

Lemma 4.5 Let L be a logic over Σ, e, c ∈ Σ. Let L1 and L2 be the logics
over Σ ∪ {g}, where g /∈ Σ, such that

L1 extends L with the axiom [g]p↔[e]p ∧[c]p,
L2 extends L with the axiom [g]p↔[e][c]p.

If Mod(L) admits definable filtration, then so do Mod(L1) and Mod(L2).

Proof. Straightforward. Details can be reconstructed from the proof of
Lemma 2.3 in [12], which is the analog of our lemma for the classes of frames.2

Theorem 4.6 Let L be a logic over a finite alphabet Σ. If the class of its
models Mod(L) admits definable filtration, then, for every n < ω, we have:

(i) Mod(L(n)) admits definable filtration.

(ii) L(n) has the finite model property; a fortiori, L(n) is Kripke complete.

(iii) If L is finitely axiomatizable, then L(n) is decidable.

(iv) If the class of finite frames of L is decidable, then L(n) is co-recursively
enumerable.

Proof. (i) By Theorem 3.8 and Lemma 4.5, if Mod(L) admits definable filtra-
tion, then so does Mod(L]). So, (i) follows by induction on n.

(ii) By Lemma 2.6.
(iii) Note that if L is finitely axiomatizable, then so is L(n). The claim then

follows from Harrop’s Theorem (see Section 1).
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(iv) If the class of finite frames of L is decidable, then the class of finite
frames of L(n) is decidable, too. In this case L(n) is co-recursively enumerable,
since L(n) is the logic of its finite frames. 2

Theorem 4.6 can be generalized for the case when we additionally extend
the alphabet with converse modalities. This generalization can be obtained by
modifying the proof of Theorem 2.6 in [12].

4.1 Fusions that admit filtration

Here we consider a special kind of definable filtration, called strict filtration.

Definition 4.7 If, in terms of Definition 2.1, ∼=∼Γ, then we call the filtration
M̂ strict. The corresponding notions “a class of frames (or models) admits strict
filtration” are introduced in the obvious way.

Strict filtration is the most standard variant of filtration; it is well-known
that the classes of frames of the logics K,T,K4,S4,S5 admit strict filtration
(for the logics K and T, even the minimal strict filtration works; for K4, S4,
S5, strict filtration is obtained by taking the transitive closure of the minimal
filtered relation [15]).

Let us recall the notion of the fusion of logics. Let L1, . . . , Lk be logics over
finite alphabets Σ1, . . . ,Σk. Without loss of generality we assume that these
alphabets are disjoint. The fusion L1 ∗ . . . ∗ Lk of these logics is the smallest
normal logic over the alphabet Σ = Σ1 ∪ . . . ∪ Σk that contains L1 ∪ . . . ∪ Lk.

It is well-known that the fusion operation preserves Kripke completeness,
the finite model property, and decidability [14]. We observe that it also pre-
serves the property “a logic admits strict filtration”.

Theorem 4.8 (Fusion and strict filtration) If classes of frames Fr(Li),
1 ≤ i ≤ k, admit strict filtration, then Fr (L1 ∗ . . . ∗ Lk) admits strict filtration.

Proof. The idea is the same as in the proof of Theorem 3.8. To simplify
notation, we consider the case of unimodal logics. Let L = L1 ∗ . . . ∗ Lk, M =
(F, V ) be a model on an L-frame F = (W,R1, . . . , Rk), Γ ⊆ Fm(�1, . . . ,�k)
be finite and Sub-closed. For ϕ ∈ Γ, we take fresh variables qϕ, and consider a
model M ′ = (F, V ′) such that

M,x |= ϕ iff M ′, x |= ϕ iff M ′, x |= qϕ

for all x in M . For 1 ≤ i ≤ k, we put:

Γi = {qϕ | ϕ ∈ Γ} ∪ {�qϕ | �iϕ ∈ Γ}.
Note that Γi ⊆ Fm(�). Let ∼i be the equivalence induced by Γi in the model
Mi = (W,Ri, V

′), and ∼Γ the equivalence induced by Γ in M . Observe that

Mi, x |= �qϕ iff M,x |= �iϕ for all ϕ ∈ Γ. (∗)
Therefore, one can see that∼i = ∼Γ for all i. Put Ŵ = W/∼Γ. For each i, there

exists a filtration M̂ i = (Ŵ , R̂i, V̂ i) of Mi through Γi such that (Ŵ , R̂i) |= Li.
The valuations V̂ i coincide on the variables qϕ. W.l.o.g., they also coincide on
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other variables (since they do not occur in Γi), and that M̂ i, x̂ |= p iff M,x |= p
for each variable p ∈ Γ. The resulting valuation on Ŵ is denoted by V̂ .

Consider the model M̂ = (Ŵ , R̂1, . . . , R̂k, V̂ ). Note that its frame validates

the fusion L. We claim that M̂ is a filtration of M through Γ. Clearly, R̂i
contains the i-th minimal filtered relation. To check that R̂i is contained in the
i-th maximal filtered relation, assume that x̂R̂iŷ, M,x |= �iϕ, and �iϕ ∈ Γ.

Then Mi, x |= �qϕ, by (*). Since M̂i is a filtration of Mi through Γi and
�qϕ ∈ Γi, we have M̂ i, ŷ |= qϕ. By Filtration lemma, Mi, y |= qϕ. Hence,
M ′, y |= qϕ and we conclude that M,y |= ϕ, as required. 2

Theorem 4.9 Let L1, . . . , Lk be canonical logics and their classes of frames
Fr(Li), 1 ≤ i ≤ k, admit strict filtration. Then, for every n < ω, the logic
(L1 ∗ . . . ∗ Lk)(n) has the finite model property.

Proof. The fusion L = L1 ∗ . . . ∗ Lk is canonical. By Theorem 4.8, the class
Fr(L) admits strict filtration. Hence Mod(L) admits definable filtration, by
Theorem 2.10. Finally, (L)(n) has the FMP, by Theorem 4.6. 2

4.2 A class of formulas that admit strict filtration

We present a collection of modal formulas that admit strict (and so definable)
filtration. The obvious candidates are modal formulas whose first-order equiv-
alents belong to a certain FO fragment we call MFP. 6 We define it inductively
as the minimal set of FO formulas satisfying the following conditions:

• if x and y are variables, R is a binary relation symbol, then R(x, y) ∈ MFP
and x = y ∈ MFP;

• if A and B are in MFP, then (A ∧B) and (A ∨B) are in MFP;
• if A ∈ MFP, and v is a variable, then ∀v A and ∃v A are in MFP;
• if x and y are variables, R is a binary relation symbol, and A ∈ MFP, then
∀x∀y(R(x, y)→ A) and ∀x∀y(x = y → A) are in MFP.

This definition is the restriction of the fragment POS + ∀G from [9] to the
first-order language with only binary predicates. Examples of MFP-sentences
are reflexivity ∀xR(x, x), symmetry ∀x∀y(R(x, y) → R(y, x)), and density
∀x∀y(R(x, y)→ ∃z (R(x, z) ∧R(z, y))), but not transitivity.

FO counterparts of minimal filtrations are strong onto homomorphisms.

Definition 4.10 Given two frames F = (W,R) and F ′ = (W ′, R′), a map
h : W →W ′ is a strong onto homomorphism if h is onto and we have:

• for all x, y ∈W , if xR y, then h(x)R′ h(y) (monotonicity);
• for all x′, y′ ∈ W ′, if x′R′ y′, then there exist x, y ∈ W such that h(x) = x′,
h(y) = y′, and xR y (weak lifting).

Note that a strong homomorphism h from F onto F ′ induces an equivalence
∼ on W defined by x ∼ y iff h(x) = h(y), and then F ′ is isomorphic to the
minimal filtrated frame Fmin

∼ = (W/∼, Rmin
∼ ). Conversely, if M̂ is a minimal

filtration of M , then the map x 7→ x̂ is a strong homomorphism from F onto F̂ .

6 The abbreviation stems from “preserved under minimal f iltration”.
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Any MFP-formula is preserved under strong onto homomorphisms [9,
Prop. 5.2]. Moreover, any FO formula with binary relations that is preserved
under strong onto homomorphisms is equivalent to some MFP-formula [11].

Definition 4.11 A modal formula ϕ is called a modal MFP-formula if it has
a FO equivalent (on frames) in MFP.

Typical examples of modal MFP-formulas are expressions of the form p ∧
3q → ψ, where ψ is a positive modal formula. Note that these examples are
Sahlqvist formulas, and hence canonical.

Theorem 4.12 For any set Φ of modal MFP-formulas over a finite alphabet Σ,
the class of frames Fr(KΣ + Φ) admits strict filtration.

Proof. Denote F = Fr(KΣ + Φ). Let M = (F, V ) be an F-model and Γ a
finite Sub-closed set of formulas. Take the minimal filtration M̂ = (F̂ , V̂ ) of
M through Γ; note that this filtration is strict. Then the map x 7→ x̂ is a
strong homomorphism from F onto F̂ . Since the set Φ∗ of the MFP first-order
equivalents of Φ is true in F , it is also true in F̂ . Hence M̂ is an F-model. 2

From Theorem 4.9, we obtain:

Corollary 4.13 Let each L1, . . . , Lk be any of the logics K,T,K4,S4,S5, or
a logic axiomatized by canonical modal MFP-formulas. Then, for any n < ω,
the logic (L1 ∗ . . . ∗ Lk)(n) has the finite model property.

5 Conclusions and further research

We proved that if L is a canonical logic, and the class of its frames Fr(L) admits
definable filtration, then the logic L� is Kripke complete and, moreover, has the
FMP (and is decidable, if L was finitely axiomatizable). The first problem we
pose is whether we can weaken the pre-conditions and obtain the completeness
of L� without obtaining the FMP.

Problem 1. If a logic L is canonical, then is the logic L� Kripke complete?

Next, can we weaken the ‘canonicity’ to the ‘completeness’ in Theorem 3.10?

Problem 2. If a logic L is complete and the class of its frames Fr(L) admits
definable filtration, then does the same hold for the logic L�?

The following questions are of more technical character.

Question 1. Is it the case that whenever the class of models (or frames) of a
logic L admits filtration, it also admits definable filtration?

Question 2. Let us replace the axiom (A2) �p→ ��p with (A2′) �p→ ��p
in the logic K�. Do we obtain the same logic, i.e., does this logic derive (A2)?
Note that the frames for it are the same as for K�, see Lemma A.4(6).

Question 3. Is the logic K.2� Kripke complete? (We conjecture: yes.)
Recall that the logic K.2 extends K with the formula 3�p → �3p. It is

canonical and hence complete with respect to the class of frames (W,R) that
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satisfy the first-order convergence (or Church–Rosser) condition:

∀x, y, z (xR y ∧ xR z ⇒ ∃w (y Rw ∧ z Rw)).

Our main result is not applicable to this logic, since the class of its frames
Fr(K.2) does not admit filtration, as we established in [12, Theorem 5.4].

If R is convergent, then so is R+ (easy exercise). Is modal logic able to

establish this? That is, can we derive the formula }�p→ �}p in K.2�? We
succeeded in deriving it (see Lemma A.7 in Appendix).

Question 3. In Lemma A.6, the bimodal formula �(p → �p) → (�p → �p)
is shown to have the following property crucial for our main result: if all its
substitution instances are true in some model M = (F, V ), then this formula
is valid on the frame of every definable minimal filtration: if M |= A∗ then
Fmin
∼Φ |= A, for any finite set of formulas Φ. Are there any other examples of

such formulas? How is this property related to the admissibility of filtration,
completeness, decidability of a logic axiomatized by such formulas?

Appendix

A.1 On modally differentiated filtration

Any Γ-filtration M̂ of a model M through the same set Γ, i.e., through ∼Γ, is
always differentiated: indeed, if [x]∼Γ

6= [y]∼Γ
, then the points x and y in M

differ by some formula ϕ ∈ Γ; by Filtration Lemma 2.2, the truth of all formulas
from Γ is preserved, so the points x̂ and ŷ differ by the same formula ϕ.

On the contrary, a Γ-filtration M̂ of M through some set Φ ⊇ Γ is not
necessarily differentiated: in the above argument, x and y will differ by some
ϕ ∈ Φ, and the Filtration Lemma transfers the truth of formulas from Γ only.

Lemma A.2 below resolves this obstacle: by possibly changing the set Φ, a
filtration can be made differentiated. We will need the following simple fact.

Proposition A.1 Let M be a model and ∼ an equivalence relation on W of
finite index. Then ∼ is of the form ∼Φ, for some finite set of formulas Φ, iff
each equivalence class [x]∼ is defined in M by some formula.

Proof. If Φ is finite, then every class [x]∼Φ
⊆W is defined by the formula

∧({ϕ | ϕ ∈ Φ and M,x |= ϕ} ∪ {¬ϕ | ϕ ∈ Φ and M,x |= ¬ϕ}
)
.

Conversely, if ∼ partitions W into finitely many classes and each class is defined
by a formula ϕi, 1 ≤ i ≤ n, then clearly ∼ = ∼Φ for Φ = {ϕ1, . . . , ϕn}. 2

Lemma A.2 Assume that Mod(L) admits (definable) filtration. Then for ev-
ery finite Sub-closed set of formulas Γ and every model M ∈ Mod(L), there
exists a (definable) Γ-filtration M̂ ∈M of M that is a differentiated model.

Proof. Idea: first, build a Γ-filtration M1 of M , then an Fm-filtration M2 of
M1; finally, build a differentiated Γ-filtration M̂ of M that is isomorphic to M2.

Formally, let M = (W,R, V ), M |= L, and let Γ be as stated above.
(1) Since Mod(L) admits filtration, there is a Γ-filtration M1 = (W1, R1, V1)

of M with M1 |= L. So, W1 = W/∼ for some equivalence relation ≈ of finite
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index, ∼ respects Γ, Rmin
≈ ⊆ R1 ⊆ Rmax

≈,Γ, V1 is defined canonically on Var(Γ).
(2) Let M2 = (W2, R2, V2) be a filtration of M1 through the set of all

formulas. 7 So, W2 = W1/≡, where ≡ is the modal equivalence relation; V2 is
canonical on all variables. By the Filtration lemma 2.2, M1 ≡M2, so M2 |= L.

(3) Now we build a model M̂ = (Ŵ , R̂, V̂ ) isomorphic to M2 as follows. Put
Ŵ := W/∼, where, for all x, y ∈W , we define an equivalence relation ∼ by

x ∼ y
def⇐⇒ (M1, [x]≈) ≡ (M1, [y]≈) ⇐⇒ [[x]≈]≡ = [[y]≈]≡.

Claim 1. The function h([x]∼) = [[x]≈]≡ is a bijection between Ŵ and W2.

Proof. Easy. This does not rely on the fact that ≈ and ≡ are of finite index.
From now on, we denote x̂ = [x]∼.

Claim 2. The equivalence relation ∼ on W respects Γ: if x ∼ y, then x ∼Γ y.

Proof. If x, y ∈W and x ∼ y then, by the Filtration lemma 2.2, we have:

(M,x) ∼Γ (M1, [x]≈) ∼Fm (M1, [y]≈) ∼Γ (M,y).

Using the bijection h, we transfer R2 and V2 to M̂ in the obvious way:

x̂ R̂ ŷ
def⇐⇒ h(x̂)R2 h(ŷ); x̂ |= q

def⇐⇒ M2, h(x̂) |= q, for all q ∈ Var.

Since the models M̂ and M2 are isomorphic, we have M̂ |= L.

Claim 3. V̂ is canonical on each p ∈ Var(Γ): M,x |= p ⇔ M̂, x̂ |= p.

Proof. Indeed: (M,x) ∼Γ (M1, [x]≈) ∼Fm (M2, [[x]≈]≡) ∼Var (M̂, x̂).

Claim 4. The inclusions Rmin
∼ ⊆ R̂ ⊆ Rmax

∼,Γ hold.

Proof. (min) Clearly, xR y ⇒ [x]≈R1 [y]≈ ⇒ [[x]≈]≡R2 [[y]≈]≡ ⇔ x̂ R̂ ŷ.
(max) If x̂ R̂ ŷ, then [[x]≈]≡R2 [[y]≈]≡. But R2 ⊆ (R1)max

≡,Fm. So, for �A ∈ Γ,
M,x |= �A ⇔ M1, [x]≈ |= �A ⇒ M1, [y]≈ |= A ⇔ M,y |= A.

Claim 5. If M1 is a definable filtration of M , then M̂ is definable too.

Proof. Assume M1 is a filtration of M through a finite Φ. By Proposition A.1,
each ∼Φ-class is defined by some formula ϕi. Each ∼-class is the union of
some ∼Φ-classes (namely, those that are modally equivalent as points in M1).
Hence, each ∼-class is defined by the disjunction of some formulas ϕi. By
Proposition A.1, ∼ = ∼Ψ, for some set of formulas Ψ, thus M̂ is definable. 2

A.2 On filtration of the canonical model of a theory of a model

Lemma A.3 (Filtration and canonical mapping) Let M = (W,R, V ) be
a model, MT = (WT , RT , VT ) the canonical model of its theory T = Th(M),
and t : M →MT the canonical mapping: t(a) = Th(M,a) ∈WT , for a ∈W .

Then, for any finite set of formulas Φ, we have a bijection between the
(finite) quotient sets W/∼Φ and WT /∼Φ defined, for a ∈W , by

f([a]∼Φ
) := [t(a)]∼Φ

.

Proof. We denote â := [a]∼Φ
. Note that x̂ = ŷ iff x ∩ Φ = y ∩ Φ, for all

7 In fact, if a filtration through the set of all formulas is finite, then it is unique, i.e., the
minimal and the maximal relations coincide. But here we do not need this fact.
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x, y ∈WT . Hence, by definition of f , for all a ∈W and x ∈WT , we have

f(â) = x̂ ⇐⇒ t(a) ∩ Φ = x ∩ Φ.

First, let us show that f is well-defined and injective: for all a, b ∈W :

â = b̂ ⇔ a ∼Φ b ⇔ Th(M,a) ∩ Φ = Th(M, b) ∩ Φ ⇔ [t(a)]∼Φ
= [t(b)]∼Φ

.

To prove that f is surjective, take any x̂ ∈ (WT /∼Φ). Denote A :=
∧

(x ∩
Φ′), where Φ′ = Φ ∪ {¬B | B ∈ Φ}. Clearly, A ∈ x. Now M 6|= ¬A, for
otherwise ¬A ∈ Th(M) = T ⊆ x and x is inconsistent.

Thus, A is satisfiable in M , so M,a |= A for some a ∈W . We claim that
f(â) = x̂, i.e., for all B ∈ Φ, we have M,a |= B iff B ∈ x. If B ∈ x, then B ∈
(x ∩ Φ′), so M,a |= B. If B /∈ x, then ¬B ∈ (x ∩ Φ′), so M,a |= ¬B. 2

A.3 On the semantics of Segerberg’s axioms

For convenience, let us recall the axioms for the transitive closure modality:

(A1) �p→ �p, (A2) �p→ ��p, (A3) �(p→ �p)→ (�p→ �p).
We will also consider the following modified axiom: (A2′) �p→ ��p.
Lemma A.4 Let F = (W,R, S) be a bi-modal frame.
(1) F |= (A1) ⇐⇒ S ⊇ R.
(2) F |= (A2) ⇐⇒ S ⊇ R ◦ S.
(3) F |= (A1) ∧ (A2) =⇒ S ⊇ R+; the converse does not hold in general.
(4) F |= (A3) =⇒ S ⊆ R+; the converse does not hold in general.
(5) F |= (A1) ∧ (A2) ∧ (A3) ⇐⇒ S = R+.
(6) F |= (A1) ∧ (A2′) ∧ (A3) ⇐⇒ S = R+.

Proof. The facts (1) and (2) are well-known. They imply S ⊇ Rn, for all
n ≥ 1, and thus (3) follows. Also (3) and (4) imply (5,⇒). So it remains to
prove (4), (5,⇐), and (6) and provide counterexamples to (3,⇐) and (4,⇐).

(4,⇒) Assume F |= (A3) and xSy; we need to prove that xR+y. Denote P =
R+(x) ⊆W ; we need to show that y ∈ P . Consider a model M = (F, V ) with
the valuation V (p) = P . Clearly, M,x |= �p, since R(x) ⊆ R+(x) = P . Next,
M |= p→ �p, since P ⊇ R(P ). Hence M,x |= �(p→ �p). But M,x |= (A3).
Hence M,x |= �p. Since xSy, we obtain M,y |= p and so y ∈ V (p) = P .

(5,⇐) Suppose S = R+. Clearly, S ⊇ R and S ⊇ R◦S, hence F |= (A1)∧(A2),
by (1) and (2). To prove that F |= (A3), take any model M = (F, V ) and
x ∈W . Assume that x |= �(p→ �p) and x |= �p. We need to show that
x |= �p, i.e., y |= p for all y ∈ S(x). Recall that S = R+ =

⋃
n≥1R

n. There-
fore, it remains to show, for every n ≥ 1, that y |= p for all y ∈ Rn(x). We do
this by induction. Induction base (n = 1) holds since x |= �p. Induction step:
assume xRn+1y, hence xRntR y for some t. By induction hypothesis, t |= p.
Since S ⊇ R+, we have S ⊇ Rn. Thus xS t. Recall that x |= �(p→ �p). Then
t |= p→ �p, whence t |= �p and y |= p.

(6) Clearly, F |= (A2′) iff S ⊇ S ◦ R. So, F |= (A1) ∧ (A2′) implies S ⊇ R+,
and F |= (A3) implies S ⊆ R+. Thus (6,⇒) is proved. The implication (6,⇐)
is easy, since S = R+ implies S ⊇ S ◦R, and so F |= (A1) ∧ (A2′) ∧ (A3).
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Here is a counterexample M = (W,R, S, V ) to (4,⇐): W = {a, b, c}, aRbRc
(R is not transitive), aSc, V (p) = {1}. Clearly, S ⊃ R+. But M,a 6|= (A3).

To refute (3,⇐), we show that S ⊇ R+ does not imply S ⊇ R ◦ S. Take
W = {a, b}, aRb, aSb, bSa. Then R+ = R ⊆ S. But a(R◦S)a and ¬(aSa). 2

A.4 On induction axiom and minimal filtrated frame

Lemma A.5 The formula (A3) �(p→ �p)→ (�p→ �p) is not canonical.

Proof. Denote L = K(�,�) ⊕ (A3) and its canonical frame FL = (W,R, S).
By Lemma A.4(4), to prove that F 6|= (A3), it suffices to show that S 6⊆ R+.

The set Γ = {¬�p} ∪ {�np | n ≥ 1} is L-consistent, because every finite
set of the form {¬�p,�p, . . . ,�np} is L-satisfiable (in a chain of length n+ 1).
Hence Γ ⊆ x, for some maximal L-consistent set x ∈W . Since ¬�p ∈ x, we
have ML, x 6|= �p (later, we omit ML). Hence, for some y ∈W , we have xS y
and y |= p. However, ¬(xR+ y); indeed, otherwise xRn y, for some n ≥ 1, and
since �np ∈ x, we obtain x |= �np and y |= p, a contradiction. 2

We could prove the same using variable-free formulas only: put p := 3>.

Let us strengthen Lemma 3.7 (recall that G |= (A3) implies S ⊆ R+). De-
note the minimal filtered (through Φ) frame by Gmin

∼Φ
= (W/∼Φ, R

min
∼Φ
, Smin
∼Φ

).

Lemma A.6 (Induction axiom and minimal filtrated frame)
Let M = (W,R, S, V ) |= (A3)

∗
and let Φ ⊆ Fm be finite. Then Gmin

∼Φ
|= (A3).

Proof. The minimal filtration model M̂ := Mmin
∼Φ

= (Gmin
∼Φ
, V̂ ) is a Φ-filtration

of M through Φ, hence it is a finite differentiated model (see Section A.1).
Due to Lemma 1.1, in order to prove our lemma, it suffices to show that

M |= (A3)
∗

implies M̂ := Mmin
∼Φ
|= (A3)

∗
.

Assume M̂ 6|= (A3)[p := B], for some formula B. Then there is x̂ ∈ Ŵ such
that (a) x̂ |= �(B → �B), (b) x̂ |= �B, (c) x̂ 6|= �B. Hence there is ŷ ∈ Ŵ
such that x̂ Ŝ ŷ and (d) ŷ 6|= B. Since x̂ Smin

∼Φ
ŷ, without loss of generality, xS y.

Consider Y := V̂ (B) = {ẑ ∈ Ŵ | M̂, ẑ |= B}. As in Lemma 3.7, Y is a finite
collection of definable subsets of W , hence their union

⋃
Y is also a definable

subset of W . So, there is a formula ϕ such that, for all z ∈W , we have:

M, z |= ϕ ⇔ z ∈ ⋃Y ⇔ ẑ ∈ Y = V̂ (B) ⇔ M̂, ẑ |= B.

Now we show that M,x 6|= (A3)[p := ϕ], in contradiction with M |= (A3)
∗
.

(a’) M,x |= �(ϕ→ �ϕ). Indeed, take any a, b ∈ W such that xS aR b and
a |= ϕ. Then x̂ Ŝ â R̂ b̂ and â |= B. Hence b̂ |= B by (a), and so b |= ϕ.

(b’) M,x |= �ϕ. Indeed, if xR z, then x̂ R̂ ẑ; hence ẑ |= B by (b), so z |= ϕ.

(d’) M,x 6|= �ϕ. Indeed, xS y and M,y 6|= ϕ, because ŷ 6|= B by (d). 2

A.5 On the logic of convergent frames

For convenience, we repeat the axioms for the transitive closure modality:

(A1) �p→ �p, (A2) �p→ ��p, (A3) �(p→ �p)→ (�p→ �p).
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Note that in any logic L�, the following inference rule is derivable:

ϕ→ �ϕ
ϕ→ �ϕ (R�)

Indeed, here is a derivation:
1) ϕ→ �ϕ. 2) �(ϕ→ �ϕ). 3) �ϕ→ �ϕ by (A3). 4) ϕ→ �ϕ from 1 and 3.

Furthermore, in any logic L�, the following formula is derivable:

�p ∧ ��p → �p (A�)

since one of its premises, ��p, is stronger then the premise �(p→ �p) in (A3).

Recall that the logic K.2 extends K with the axiom 3�p→ �3p.
Lemma A.7 (Convergence for transitive closure) K.2�` }�p→ �}p.

Proof. The proof is in two stages.

(1) We derive 3�p −→ �3p, using 3�ϕ→ �3ϕ for ϕ = p and ϕ = �p:

3�p (A1)−→ 3�p .2−→ �3p. (a)

3�p (A2)−→ 3��p .2−→ �3�p. Hence:

3�p (R�)−→ �3�p (a)−→ ��3p. (b)

3�p (A�)−→ �3p, obtained from (a) and (b).

(1’) We obtain }�p −→ �}p by duality from (1).

(2) Derive }�p −→ �}p using (1’) similarly (replace 3 with } above). 2

Note that the two stages of the derivation in the above lemma correspond
to two inductions needed to prove that R+ is convergent, assuming that R is
convergent. First, by induction on m, one proves:

(xRm y and xR z) ⇒ ∃t: (y R t and z Rm t).

Secondly, by induction on n one proves:

(xRm y and xRn z) ⇒ ∃t: (y Rn t and z Rm t).

Now, if xR+ y and xR+ z, then xRm y and xRn z, for some m,n. Then there
is t such that y Rn t and z Rm t. Hence y R+ t and z R+ t. So, R+ is convergent.

This additionally justifies the name ‘induction axiom’ for the axiom (A3).
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Universal Logic, Birkhäuser, 2014 pp. 157–189.

[9] Gheerbrant, A., L. Libkin and C. Sirangelo, Näıve evaluation of queries over incomplete
databases, ACM Transactions Database Systems 39 (2014), pp. 31:1–31:42.

[10] Goldblatt, R., “Logics of Time and Computation,” Number 7 in CSLI Lecture Notes,
Center for the Study of Language and Information, 1992, 2nd edition.

[11] Kikot, S., First-order formulas that are preserved under minimal filtration, in:
Proceedings of 39th International Workshop of IITP RAS “Information Technologies
and Systems 2015”, 2015, pp. 635–639, (in Russian).

[12] Kikot, S., I. Shapirovsky and E. Zolin, Filtration safe operations on frames, in: R. Goré,
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A. Kurucz, editors, Advances in Modal Logic, 10 (2014), pp. 498–512.



Bisimulational Categoricity
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Abstract

We introduce and study the notion of bisimulational categoricity – the property of
having a unique model up to bisimulation. We show that: (1) a complete modal theory
(i.e. a maximal consistent set of formulae) t has a unique model up to bisimulation
iff it has an image-finite model.
We further prove two analogous characterisations: (2) a complete theory t in tran-
sitive modal logic (EF-logic) has a unique model up to transitive bisimulation (EF-
bisimulation) iff it has a finite model; and (3) a complete theory t in two-way modal
logic has a unique model up to two-way bisimulation iff it has a model where every
point has finite in- and out-degree.

Keywords: modal logic, model theory, categoricity, bisimulation.

1 Introduction

One of the central notions of classical model theory is that of categoricity
– a theory is called categorical if it has a unique model up to isomorphism.
In the context of modal logic, bisimilarity seems more appropriate than the
isomorphism. One may therefore ask about bisimulational categoricity, i.e. the
property of having a unique model up to bisimulation. 2

It turns out that the notion of bisimulational categoricity for theories ex-
pressed in modal logic is indeed well-behaved and can be characterised in terms
of image-finiteness. 3 We show that a complete theory in modal logic has a
unique model up to bisimulation iff it has an image-finite model. While the
right-to-left implication is (an easy folklore strengthening of) the well-known

1 j.kolodziejski@mimuw.edu.pl
2 Somewhat similar idea of finding modal analogues of classical results can be found in
Chapter 6 of [12], where the author investigates the number of non-bisimilar models of a
given modal fixpoint formula – analogically to the result of [9], where the number of non-
isomorphic models of an MSO formula is considered. Nevertheless, both the result and the
involved tools of the mentioned dissertation are rather far from the content of this paper.
3 Note that, due to the obvious limitations given by the Skolem-Löwenheim Theorem, the
classical notion of categoricity of first-order theories is only interesting when models of fixed
cardinality are considered. However, unlike with isomorphism, structures of different sizes
may still be bisimilar – and so there is no need to relativise bisimulational categoricity.
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Hennessy-Milner Theorem [6], the left-to-right one requires adaptation of some
classical model-theoretic tools and a simple topological argument. As such, our
characterization can be thought of both as a completion of the Hennessy-Milner
Theorem and as a modal version of the Ryll-Nardzewski Theorem (proven in-
dependently by Ryll-Nardzewski [10] Svenonius [11] and Engeler [3]).

Apart from standard modal logic, we provide analogous characterisations
for two other interesting logics: transitive modal logic (sometimes known as
the EF-logic in the context of computer science) and two-way modal logic (i.e.
modal logic with both forward and backward modalities). We show that: (i)
a complete theory in two-way modal logic has a unique model up to two-way
bisimulation iff it has a model where every point has finite in- and out-degree
and (ii) a complete theory in the transitive modal logic has a model unique up
to transitive bisimulation (also called EF -bisimulation) iff it has a finite model.

In the proof we adapt standard model-theoretic tools to the modal frame-
work and introduce new concepts of induced modal logics and induced bisimu-
lations, which allow us to uniformly describe a wide range of modal-like logics
and their corresponding bisimulations. We also discuss a simple example show-
ing limitations of our method: modal logic enriched with the universal modality
fails to have analogous characterisation.

The paper is organised as follows. After this introduction, in Section 2
we recall the basic notions and facts of modal logic and state our first main
result, Theorem 2.8. Then, in Section 3 we formally introduce the notion of an
inducing assignment, establish some simple related facts and prepare model-
theoretic tools for the proof. Finally, in Section 4 we state the other two main
theorems – Theorem 4.1 and Theorem 4.2 – and give proofs for all three of
them. We conclude with a discussion of limitations of our method.

2 Modal Logic and Bisimulations

We assume the reader to be familiar with basic notions of modal logic ([1]
is a good reference). However, for the sake of completeness and to fix notation,
we recall the most basic definitions and facts.

Fix a finite set Σ of atomic propositions.

Definition 2.1 A (Kripke) model M for a signature R = {R1, R2, ..., Rl} of
binary relational symbols consists of: a universe M ; an interpretation RMk ⊆
M×M for every relation Rk ∈ R; and a valuation valM : Σ→ P(M). A pointed
model is a model with distinguished point – called its root. We will usually
abuse terminology and call both non-pointed and pointed models just models
whenever it does not lead to confusion. Moreover, following the notational
traditions of modal logic we will skip parentheses and denote pointed models
by M, p instead of (M, p).

The class of all models over signature R will be denoted Krip(R). We will
typically identify a model with its universe and write p ∈ M instead of p ∈
M . Moreover, for the sake of simplicity we write Rk and val, skipping the
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superscripts whenever the model M is clear from the context.

Recall the standard syntax and semantics of (poly)modal logic ML(R) over
signature R.

Definition 2.2 The set of formulae of modal logic ΦR for binary signature R
is given by the following grammar:

ϕ 7→ ϕ ∨ ϕ | ¬ϕ | 3kϕ | a

for a ∈ Σ and k such that Rk ∈ R. We use the standard syntactic sugar:
2kϕ = ¬3k¬ϕ and ϕ∧ψ = ¬(¬ϕ∨¬ψ). The modal depth of a formula is the
maximal nesting of (possibly different) “3k” operators. In case there is only
one operator in R, we skip the subscript and write “3” instead of “31”.

Definition 2.3 Given a model M ∈ Krip(R), the semantics map
J KM : ΦR → P(M) is defined inductively as follows:

JaKM = valM(a);

Jϕ ∨ ψKM = JϕKM ∪ JψKM;

J¬ϕKM = M − JϕKM;

J3kϕKM = {p ∈M | ∃q∈JϕKMpRMk q}.
Definition 2.4 A bisimulation between two (not necessarily distinct) models
M,M′ ∈ Krip(R) is a relation Z ⊆ M ×M ′ that satisfies, for every a ∈ Σ,
Rk ∈ R and pZp′:

• (base condition) p ∈ val(a) ⇐⇒ p′ ∈ val(a);

• (forth condition) if pRkq then there exists q′ s.t. p′Rkq′ and qZq′;

• (back condition) if p′Rkq′ then there exists q s.t. pRkq and qZq′.

Pointed modelsM, p andM′, p′ are said to be bisimilar if there exists a bisim-
ulation Z between them s.t. pZp′ (notation M, p - M′, p′). A functional
bisimulation is a function whose graph is a bisimulation. We will also use
the standard characterization of bisimilarity in terms of a bisimulation game
between players ∃ve and ∀dam.

It is widely known that modal logic is invariant under bisimulation, i.e.
bisimilar points are always logically indistinguishable. The converse may re-
quire an additional assumption of image-finiteness.

Definition 2.5 A model M ∈ Krip(R) is image-finite if every point p ∈ M
has only finitely many Rk-children for every Rk ∈ R.

The classical result of Hennessy and Milner [6] states that, in image-finite
models, points that are logically indistinguishable have to be bisimilar. The
following example shows that without the assumption of image-finiteness this
does not have to be the case.
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Example 2.6 The Hedgehogs: H, rootH and H′, rootH′ 4 :

· · ·

H

· · ·

· ·
·

H′
same as H, excep

t that there

is an extra
infinite

path

The two models are not bisimilar, as one of them is well-founded but the
other is not. However, it is easy to show that they cannot be distinguished by
ML formulae. 5

As it turns out, the above example is an illustration of a general phe-
nomenon, which is that among infinitely many behaviours one can always find
a limit one that: (i) can be either included or removed from the model but
(ii) our local logical means are too weak to tell the difference. This will be
the key intuition underlying our characterisation of bisimulational categoricity
(i.e. the property of having a unique model up to bisimulation). Roughly, the
characterization says that the requirement of image-finiteness – treated up to
bisimulation – is not only sufficient but also necessary.

In order to formulate the theorem, we first formally introduce the notion of
a type – i.e. a maximal consistent set of formulae – analogous to types in first-
order model theory (here by type we always mean a complete one). For the sake
of simplicity, let us confine ourselves to the case when the signature consists
of a single relation “→” (the symbol should not be confused with implication:
“⇒”).

Definition 2.7 Given a point p ∈ M ∈ Krip({→}), its modal type – denoted
tpM(p) – is the set {ϕ ∈ Φ{→} | p ∈ JϕKM} of all modal formulae it satisfies.
The set of all modal types will be denoted T.

We are now ready to formulate our first main theorem.

Theorem 2.8 For every type t ∈ T, the following are equivalent:

(1) t has a unique model up to -;

(2) every model of t is bisimilar to an image-finite model;

(3) t has a model which is image-finite.

4 Here the valuation is not important – for the sake of this example assume Σ = ∅.
5 In fact, even the full first-order logic cannot distinguish the models, as can be shown using
Ehrenfeucht-Fräıssé games.
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We will moreover show two analogous characterisations involving two other
logics and their corresponding equivalence relations. In order to neatly extract
the common part of the structure of the logics we investigate, and because
it is interesting in its own right, we formally introduce the notion of induced
relations.

3 Induced Relations

Various modal-like logics and bisimilarity-like congruences can be obtained
by considering some relation induced by the original accessibility relation.

Definition 3.1 Given two binary signatures S,R (source and result), an in-
ducing assignment is an assignment

ind : Krip(S)→ Krip(R)

such that everyM∈ Krip(S) has the same universe and valuation as its image
ind(M).

3.1 Induced Logic and Bisimulations

Every inducing assignment gives rise to the induced logic.

Definition 3.2 Given an inducing assignment ind : Krip(S) → Krip(R), we
define the induced modal logic MLind interpreted over Krip(S). Formulae
Φind = ΦR are standard modal formulae over signature R. The semantics
map J KMind : Φind → P(M) is defined with respect to the induced model – on
every M∈ Krip(S) we put:

JϕKMind = JϕKind(M)

We say that model M, p satisfies formula ϕ (notation: M, p |= ϕ) if
ϕ ∈ JϕKMind. Models M, p and N , q are equivalent (denoted M, p ≡MLind

N , q)
if they satisfy the same MLind formulae.

Similarly to the induced logic, we also define an induced bisimulation, where
we ignore the original relations and only take the induced ones into account.

Definition 3.3 Given an assignment ind : Krip(S) → Krip(R), a relation
Z ⊆ M × N between models M,N ∈ Krip(S) is an ind-bisimulation if it is
a bisimulation between ind(M) and ind(N ). Induced bisimilarity is defined
accordingly and denoted -ind.

The standard characterization of bisimilarity in terms of a two-player game
carries over to the induced setting. Moreover, it follows immediately from
invariance of modal logic under bisimulation that for any ind, MLind is invariant
under -ind:

Proposition 3.4 For any pair of models M,N ∈ Krip(S), if M, p -ind N , q
then M, p ≡MLind

N , q.
As it was mentioned, several interesting logics and bisimilarity relations fit

well into our induced framework. Let us show a few examples.
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Example 3.5 A trivial example is the identity assignment Id. Logic induced
by Id : Krip(R) → Krip(R) is the same as the original one, i.e. MLId = ML(R).
Likewise, -Id equals -.

Example 3.6 Let ind� : Krip({→})→ Krip({→,←}) be the assignment that
keeps the relation “→” unchanged and additionally introduces its inverse (i.e.
a fresh relation “←” s.t. p ← q iff p → q for any two points p and q in the
model). Then, MLind� is the modal logic with forward and backward (or future
and past) modalities and -ind� is a two-way bisimilarity – where a two-way
bisimulation is a relation that is a bisimulation w.r.t. both the accessibility
relation and its converse.

Example 3.7 Consider the assignment ind+ : Krip({→})→ Krip({→+}) that
maps a relation to its transitive closure. That way we obtain the transitive
modal logic MLind+ and transitive bisimilarity -ind+ – also known as EF-logic
and EF-bisimilarity in the context of computer science (see e.g. [2]).

Example 3.8 Let ind∀ : Krip({→})→ Krip({→, 〈∃〉}) be the assignment that
keeps “→” and adds a new relation “〈∃〉” which is the full relation on the
model’s universe. This gives raise to logic MLind∀ being the modal logic with
universal modalities and to -ind∀ being global bisimilarity.

It is worth to emphasize that the term “logic” as we use it denotes a set of
formulae together with an appropriate satisfaction relation between formulae
and models. In particular, it is something different from what is known as
normal modal logic which is just a sets of formulae. For example, the set of all
tautologies of the transitive modal logic MLind+ is precisely the normal modal
logic K4.

The next example shows that one has to be careful, as in general ind could
encode an oracle for arbitrary class of models:

Example 3.9 Let C be an arbitrary class of pointed models over signature S.
The assignment indC : Krip(S) → Krip(S ∪ {RC}) takes a model M ∈ Krip(S),
keeps all the relations from S unchanged and sets pRCq iff p = q andM, p ∈ C
– i.e. indC adds a self-loop labelled by “C” to precisely these points p for which
M, p ∈ C. Then, the formula 3C> is true in M, p iff M, p ∈ C.
3.2 Model Theory – The Space of Types

The notion of modal type can be adapted to the induced setting in a natural
way.

Definition 3.10 Given a logic MLind, we define an MLind-type of a point p ∈
M ∈ Krip(S) – denoted tpM(p) – to be the set {ϕ ∈ MLind | M, p |= ϕ}. The
set of all MLind-types will be denoted Tind.

Along the same lines as in the classical model theory for first-order logic,
our types can be equipped with a topology turning it into a Hausdorff space.

Definition 3.11 For any ϕ ∈ MLind, we take the set 〈ϕ〉 = {t ∈ Tind | ϕ ∈ t}
of all types containing it. Then, the set {〈ϕ〉 | ϕ ∈ MLind} is a basis of clopen
sets generating a topology on Tind.
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Alternatively, one could obtain the same topology by first picking any enu-
meration of MLind formulae and then defining a metric d(t, t′) = 1

n for n being
the number of the first formula on which t and t′ differ (and 0 if t = t′). The
underlying intuition is that types which are similar – i.e. hard to distinguish –
should be close to each other.

Proposition 3.12 Analogously to the first-order case, we have that:

• the space Tind is always Hausdorff;

• the logic MLind is compact (i.e. if any finite fragment of a set of formulae
t is satisfiable, then so is the entire t) ⇐⇒ the space Tind is compact;

• given T ⊆ Tind, t ∈ Tind is isolated in T ⇐⇒ there exists a single MLind
formula ϕ ∈ t s.t. ϕ /∈ t′ for every other t′ ∈ T .

Proof. Observe that by identifying a type with its characteristic function, we
can view the space Tind as a subspace of 2Φind . Since the later is Hausdorff, so
is Tind. Moreover, a subspace of a compact Hausdorff space is compact iff it is
closed – and it is easy to check that closedness of Tind is the same as logical
compactness of MLind. The last item follows from the observation that in any
topological space, a point is isolated iff it is isolated by a basic open set. 2

An important notion that can be generalised to the induced setting is that
of modal saturation (also called m-saturation). Our topology on types allows
us to capture it in an elegant way.

Definition 3.13 We say that a point p in a model M ∈ Krip(S) is MLind-
saturated if for every Rk ∈ R, the set of types of its Rk-children {tpM(q)| pRkq}
is closed. We call M MLind-saturated if all its points are MLind-saturated.

In more concrete terms (the way modal saturation is usually defined):
MLind-saturation means that if any finite fragment of t is realised in some Rk-
child of p, then there exists a p’s Rk-child realising the entire t. The following is
an immediate consequence of an analogous fact for the standard case of ML(R)
and -:

Theorem 3.14 Given any two MLind-saturated models M,M′ ∈ Krip(S):

M, p ≡MLind
M′, p′ implies M, p -indM′, p′

for any p ∈M, p′ ∈M′.
Note that it is immediate that MLind-saturation generalises the notion of

image-finiteness (w.r.t. the induced relations), as in a Hausdorff space finite
sets are always closed.

4 The Main Theorem: Bisimulational Categoricity

After collecting all the necessary notions and tools, we are now ready to
state and prove three theorems being the main contribution of this paper (in-
cluding the already mentioned Theorem 2.8).
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Theorem 2.8 For every type t ∈ T, the following are equivalent:

(1) t has a unique model up to -;

(2) every model of t is bisimilar to an image-finite model;

(3) t has a model which is image-finite.

Theorem 4.1 For every type t ∈ Tind� , the following are equivalent:

(1) t has a unique model up to -ind� ;

(2) every model of t is ind�-bisimilar to a model where every point has finite
in- and out-degree;

(3) t has a model where every point has finite in- and out-degree.

Theorem 4.2 For every type t ∈ Tind+ , the following are equivalent:

(1) t has a unique model up to -ind+ ;

(2) every model of t is ind+-bisimilar to a finite model;

(3) t has a finite model.

Note that in light of Proposition 4.9, the last theorem implies that when it
comes to defining models up to transitive bisimulation, the expressive power of
the transitive modal logic does not increase when we move from single formulae
to entire theories.

Let us now prove the theorems. Most of the proof is the same in all three
cases of Theorems 2.8, 4.1 and 4.2.

4.1 (2)⇒ (3)

In all the three cases, the implication (2) ⇒ (3) is immediate, as by
definition every type has a model.

4.2 (3)⇒ (1)

Let us now prove a generalisation of the Hennessy-Milner Theorem [6] for
MLind. It strengthens the standard formulation of Hennessy-Milner-like results
in that we only require one of the models to be image-finite (which, in the
context of usual modal logic ML, is a well-known folklore strengthening of the
original Hennessy-Milner Theorem). It does not require any assumptions on
ind and the proof is essentially the same as in the standard case.

Theorem 4.3 (à la Hennessy-Milner) Assume M ∈ Krip(S) and the in-
duced model ind(M) is image-finite. Then, for every M′ ∈ Krip(S) and every
p ∈M, p′ ∈M′:

M, p ≡MLind
M′, p′ implies M, p -indM′, p′.

Proof. It suffices to show that the relation ≡ML⊆M×M ′ of modal equivalence
is itself an ind-bisimulation. The base condition is immediate.

For the back and the forth conditions, let us take q ≡MLind
q′, and any

Rk ∈ R. By our assumption, q can only have a finite number of Rk-children (in
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ind(M)). In particular, they have only a finite number of distinct modal types
t1, ..., tn – and since Tind is a Hausdorff space, we can find pairwise mutually
exclusive formulae ϕ1, ..., ϕn s.t. ϕi ∈ ti but ϕi /∈ tj for i 6= j. Both q – and by
equivalence also q′ – satisfy:

2k(
∨

i∈{1,...,n}
ϕi);

∧

i∈{1,...,n}
3kϕi; 2k(ϕi ⇒ ψ) for any ψ ∈ ti

It follows that the types of Rk-children of q′ are exactly t1, ..., tn. But this
implies both the forth and the back conditions, as it means that for every Rk-
child of q (or q′, respectively) there exists an equivalent Rk-child of q′ (resp.
q). 2
4.3 (1)⇒ (2)

The last (and hardest to prove) implication is from (1) to (2). Before we
proceed, let us recall an elementary topological fact. Since any infinite compact
space has to contain a non-isolated point and closed subspaces of a compact
space are always compact, it follows that:

Lemma 4.4 If Y is a closed infinite subset of a compact topological space X,
then it contains a point y ∈ Y that is not isolated in Y .

As in the classical model theory, we would like to use some good properties
based on compactness of the considered logic. However, as shown by Example
3.9, an inducing assignment can encode arbitrary properties and thus in general
the logic MLind does not have to be compact. Fortunately, we may overcome this
difficulty thanks to additional good properties of the considered assignments.

Lemma 4.5 Assume that the image of ind is axiomatized by a set of sentences
A expressed in first-order logic, i.e.:

ind[Krip(S)] = {M ∈ Krip(R) | M satisfies A}.
Then:

• the logic MLind is compact;

• every t ∈ Tind has an MLind-saturated model M, r |= t.

Proof. For the first item, take any set of formulae t ⊆ MLind and translate
it to equivalent set tFO of formulae in first-order logic over the signature R ∪
{a(x) | a ∈ Σ}. Observe that t is satisfiable w.r.t. the induced semantics iff
A ∪ tFO is satisfiable in Krip(R) in the standard sense. Hence, compactness of
MLind follows from compactness of the first-order logic.

The second item can be proven in a similar way, using the model-theoretic
method of elementary saturated extensions. The proof is just a straightforward
modification of the standard one (e.g. in [1]) and as such is skipped. 6 2
6 In fact, if one defines induced first-order logic FOind analogously to the induced modal logic
– by interpreting it via ind – the assumption of first-order axiomatizability of ind[Krip(S)]
allows for a generalisation of van Benthem’s theorem saying that MLind is precisely the -ind-
invariant fragment of FOind.
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Note that all the assignments Id, ind�, ind+ and ind∀ satisfy the assump-
tions of the above lemma.

Before we proceed, let us adapt two basic constructions related to the no-
tion of a bisimulation to our context – generated submodels and bisimulation
quotients (also called bisimulation contractions):

Proposition 4.6 (generated submodels) Let ind be either Id, ind� or
ind+. Given a model M ∈ Krip(S) and a point p ∈ M, the model generated by
p, denoted 〈p〉M, is just the submodel of M consisting of points reachable from
p by a finite path in ind(M) (including p itself). Then, M, q -ind 〈p〉M, q for
any q ∈ 〈p〉M.

Proposition 4.7 (quotients) Let ind be either Id, ind� or ind+. For an ind-
bisimulation Z ⊆M×M being an equivalence relation, there is a model struc-
ture on the set of all equivalence classes of Z s.t. the projection map p

πZ7−→ [p]/Z
is a functional ind-bisimulation. We call that model a quotient of M by Z –
and denote it M/Z . 7

Proof. Both constructions are the same as in the standard case – except for
quotients by transitive bisimulations.

Given a model M and a transitive bisimulation Z being an equivalence
relation on M , we can first take the modelM+ = (M,→M+

, valM) with→M+

being the transitive closure of →M.
Observe that ind+(M) = ind+(M+) and hence: (*) the identity map

Id : M →M can be seen as a functional transitive bisimulation Id :M→M+.
Moreover, transitivity of →M+

implies that: (**) on M+, transitive bisimula-
tions are the same as standard bisimulations.

Since (transitive) bisimulations are closed under compositions, (*) implies
that Z is a transitive bisimulation not only on M, but also on M+ – and so
by (**) it is also a standard bisimulation on M+. This allows us to quotient
(in the standard sense) M+ by Z obtaining (M+)/Z . Since the natural pro-
jection πZ :M+ → (M+)/Z is a functional bisimulation and bisimulations are
always instances of transitive bisimulations, the graph of the function πZ – and
therefore by (*) also πZ ◦ Id :M→ (M+)/Z – is a transitive bisimulation. 2

We are now ready for the proof.

Case 1: ind = Id
Let us take a model M, r that is not bisimilar to any image-finite model –
we will construct another model that is equivalent, but non-bisimilar to it. We
may combine: (i) Lemma 4.5 to obtain an equivalent model which is ML({→})-
saturated, (ii) Proposition 4.7 to take its quotient by - where (by Proposition
3.14) no two points satisfy the same formulae and finally (iii) apply Proposition
4.6 to take a submodel accessible from the root. If such model is not bisimilar

7 Note that in the case of ind+ such quotient does not have to be unique. Nevertheless, it is
unique up to -ind.
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toM, r, we are done – so the remaining case is whenM, r has all the properties
listed above.

Since by our assumption M, r is not image-finite, there must exist a point
p reachable from r by a finite path and having infinitely many children. The
set T = {tpM(q) | p → q} is an infinite closed subset of a compact space and
so by Lemma 4.4 it contains a non-isolated limit type tlim realised in some p’s
child plim.

Now, in order to construct another model for t we simply remove the arrow
leading from p to plim:

N = (M,→M −{(p, plim)}, valM)

We prove by induction on n that any point q ∈ M satisfies exactly the same
formulae of modal depth n in bothM and N (and thus in particular N , r |= t).
The base case is obvious. For the induction step, the only interesting case is
for p, as prima facie it could satisfy less sentences of the form 3ϕ. However,
since tlim is not isolated in T , for any ϕ ∈ tlim there must be t′ ∈ T s.t. ϕ ∈ t′.
By definition of T this means that there is a sibling s of plim s.t. M, s |= t′ –
and so in particular M, s |= ϕ. But modal depth of ϕ is smaller than that of
3ϕ – so we know by induction hypothesis thatN , s |= ϕ, and henceN , p |= 3ϕ.

On the other hand, we will show that M, r 6- N , r, as ∀dam has the
following winning strategy in the bisimulation game: (i) First follow the
path to the point p in M. If after that ∃ve responds with a point q ∈ N
other than p, we know that M, p 6≡ML N , q (as no two different points
are equivalent in N ) and so M, p 6- N , q – which means that ∀dam can
now win the game. (ii) If ∃ve responded with the same point p ∈ N ,
∀dam moves to plim in M. Now ∃ve has to respond with some point
q ∈ N – but by definition of N we know that she cannot choose plim, and so
againM, plim 6≡ML N , q, meaning that ∀dam can win the game from that point.

Case 2: ind = ind�
In this case, we need a slight modification of the previous construction due to
the fact that we deal with two-way modalities and removing an arrow q → q′

changes both sets: q’s successors and q′’s predecessors.

As in the previous case, we take an MLind�-saturated model of t ∈ Tind�
where any two different points have different types and any point is accessi-
ble by a finite path (possibly using forward and backward moves) from the
root – s.t. some point p ∈ M has infinitely many successors (the case with
infinitely many predecessors is entirely symmetric). We take the limit tlim of
T = {tpM(q) | p→ q} realised by some plim.

We define N as follows. First take the disjoint union N ′ =M1 +M2 +M3,
where eachMi is a copy ofM. We will denote the element ofMi corresponding
to q ∈M by qi. Let us also pick any child s ∈M of p different than plim. Then,
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our model N is just N ′ without the arrow p2 → plim
2 and with two additional

arrows p2 → s1 and p3 → plim
2 :

N = (N ′,→N ′ −{(p2, p
lim
2 )} ∪ {(p2, s1), (p3, p

lim
2 )}, valN ′

)

A picture of M, r and N , r1:

p

plim

s

p1

plim
1

s1

p2

plim
2

s2

p3

plim
3

s3

The rest of the proof is analogous to the previous case. We first prove
by induction on n that for every q ∈ M, M, q and N , qi satisfy the same
MLind� -formulae of modal depth n. This boils down to checking several
straightforward cases (the one in which we use the fact that tlim was not
isolated is that with p2’s successors).

The winning strategy for ∀dam witnessing M, r 6-ind� N , r1 is as follows:
(i) First follow the path from r1 to p2 ∈ N . 8 . In order not to loose, ∃ve has
to respond in M with the only point that is equivalent to p2, namely p. (ii)
Then, ∀dam moves to plim in M and ∃ve has to respond in N with a point
non-equivalent with it – thus loosing the game.

Case 3: ind = ind+

This is the most involved case. The key difficulty is that it does not suffice
to simply remove arrows from the model to remove them from its transitive
closure. Consider the following example.

8 Note that since in this context accessibility means two-way accessibility, after removing
the arrow p2 → plim2 , p2 does not have to be accessible from r2. Indeed, it could actually
happen that M, r -ind� N , r2. However, we know that s1 is accessible from r1 and from
there we can move backwards to p2.
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Example 4.8 In the model below, the rightmost black point has a copy of ω
(with the reverse order as the accessibility relation) as its children.

· · · · ·
·

a
co

py
of

(ω
,>

)

One can check that the type tlim of the rightmost black point is not iso-
lated among the types of its black siblings. However, it is isolated from the
perspective of the crossed point – which in turn is isolated from the perspective
of the root. Basing on that observation, it is not hard to show that any model
MLind+ -equivalent to the one above must realise tlim in a descendant (not nec-
essarily a child) of its root. In particular, this demonstrates that not every
isolated type can be omitted. Nevertheless, we will show that in the presence
of a non-isolated type it is always possible to find some (possibly different)
type that can be omitted.

Let us start with recalling the following well-known fact:

Proposition 4.9 If M, r is a finite model, then it is definable in MLind+ up
to -ind+ , i.e. there is an MLind+-formula s.t. every its model is ind+-bisimilar
to M, r. In particular, finite models only realize types isolated in Tind+ .

Proof. Since M = q1, ..., qn is finite, it realises only finitely many types
t1, ..., tn (w.l.o.g. all distinct, as otherwise we may quotient the model). Since
Tind+ is a Hausdorff space, there are mutually exclusive sentences ϕi ∈ ti for
every i. First, define ψi to be the formula that describes which atomic propo-
sitions belong to ti and which other types it sees:

∧
{a ∈ Σ | a ∈ ti} ∧

2(
∨
{ϕj | qi →+ qj}) ∧

∧
{3ϕj | qi →+ qj}

Then, we put:

θi = ψi ∧2(
∧

j∈{1,...,n}
{ϕj ⇒ ψj})
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It is straightforward that θi ∈ ti. On the other hand, if N , q |= θi, then
already N , q -ind+ M, qi. Indeed, w.l.o.g. we may assume that such N is
reachable from q and then it is easy to check that: (i) the types of all the
points of N are precisely {t1, ..., tn}, (ii) the map f : N → M sending a point
with type ti to qi is a functional bisimulation. It then follows that each type ti
is isolated by its basic neighbourhood 〈θi〉. 2

As in both previous cases, let us take a modelM, r that is infinite, MLind+ -
saturated, reachable and no two points realise different types – but the model
is not bisimilar to a finite one. It follows that the root has infinitely many
descendants. We will need the following fact:

Lemma 4.10 There exists a point p∞ ∈ M s.t. p∞ →+ p∞ and its type t∞
is a non-isolated element of {tpM(q) | p∞ →+ q}.
Proof. We will inductively construct a sequence of (not necessarily distinct)
points, indexed by countable ordinals (pα)α<ω1

⊆ M with the property
that for any α < β: (i) pα →+ pβ and (ii) tpM(pβ) is not isolated in
{tpM(q) | pα →+ q}.

For the induction base, we simply take the root p0 = r.
For α+ 1, we know by induction assumption that tpM(pα) is not isolated,

so by Lemma 4.9 we know that the model generated by pα has to be infinite
(except for the case α = 0 where we just know that r has infinitely many
descendants). Now we look at the infinite set Tα = {tpM(q)| pα →+ q}
and pick some its limit – a non-isolated type tα+1 ∈ Tind+ which, by MLind+ -
saturation, is realised in some descendant pα+1 of pα.

For a limit ordinal α, we fix a subsequence (αi)i∈ω ⊆ α of shape ω which
is cofinal with α (which exists as α is countable). Take any limit tα of the set
Tα = {tpM(pαi) | i ∈ ω}. Since tα is not isolated and Tind+ is Hausdorff, every
ϕ ∈ tα must belong to infinitely many types from Tα. It follows that there are
arbitrary big i s.t. ϕ ∈ tαi

, so every pαj
– and hence by cofinality also every pβ

– has a descendant satisfying ϕ. Hence, by MLind+ -saturation, each pβ has a
descendant realising tα – and by our assumptions onM this point pα is unique.

Now we claim that pα = pβ for some α 6= β. Indeed, observe that if p→+ q,
then q cannot satisfy more formulae of the form 3ϕ than p. Since there are
only countably many formulae, for sufficiently large α all tpM(pα) may only
differ on formulae equivalent to boolean combinations of Σ. But P(Σ) is finite,
so pα = pβ for some α < β and thus we put p∞ = pα. It then follows from
(i) that p∞ →+ p∞. Finally, (ii) implies that the type t∞ is not isolated in
{tpM(q) | p∞ →+ q}, as desired. 2

Now, we can define a new model by removing all the arrows leading to p∞:

N = (M,→ −{(q, p∞) | q ∈M}, valM).

Observe that t∞ is not isolated in {tpM(q) | p →+ q} for any ancestor p
of p∞. This allows us, as in the two previous cases, to prove by induction on
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modal depth that M, q ≡MLind+
N , q for every q ∈ M. On the other hand, p∞

is reachable from the root inM but not in N – which gives a winning strategy
for ∀dam in the bisimulation game. Q.E.D.

4.4 Limitations

We end with two examples illustrating limitations of our method. First of
all, let us emphasize that our proofs rely on compactness of the logic under
consideration – and it is not hard to come up with an example of a non-
compact logic which fails to have analogous characterisation. For instance,
consider the mix of ML and MLind+ – i.e. the logic having both the standard
and the transitive modalities. Such logic is not compact and can describe the
infinitely branching Hedgehog (Example 2.6) up to bisimulation – by extending
its ML-type with an additional sentence: 2(2⊥ ∨3+2⊥) (i.e. “every child of
the root either has no children or has a descendant with no children”).

Since non-compact logics seem out of our reach, a natural question is if
compactness is sufficient for analogous characterisation. Unfortunately, this is
not the case. The second example shows that even the stronger assumption
of first-order axiomatizability of ind[Krip(S)] (which implies compactness of
MLind by Lemma 4.5) is not sufficient to generalise our characterization to
MLind. Recall the universal modality induced by ind∀ (Example 3.8). The
class ind∀[Krip({→})] is definable by a single first-order sentence: ∀x,yx〈∃〉y.
However, consider the following model M∈ Krip({→}):
Example 4.11 M = ω + 1 = {0, 1, ..., ω}; p→M q iff p = q + 1 or p = q = ω.
As in Example 2.6 (The Hedgehogs), we assume Σ = ∅.

ω 0 1 2 3 · · ·

Observe that M, p 6≡MLind∀
M, q for all p 6= q – and so every point has

infinitely many pairwise non-equivalent 〈∃〉-children. However, it is not hard
to show that any model equivalent to M, ω must be ind∀-bisimilar to it. The
thing is that although the topological part of our reasoning still works and we
may find a limit of the types realised in M (in fact, in this situation there is
precisely one such limit type – the type of ω) – it is not possible to omit that
limit type.

Acknowledgement

I would like to thank Mateusz  Le lyk and Bartosz Wcis lo who supervised my
master thesis on (the standard modal logic version of) bisimulational categoric-
ity for their support and many valuable remarks. I am also grateful to Miko laj
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Reduction of Modal Logic and Realization in
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Abstract

In this paper, we first offer basic results regarding modal logic: (1) a wide range
of modal systems can be syntactically reduced to the modal logic K in terms of
theoremhood and (2) we can restrict the forms of modal axioms without changing
their deductive power in that range of modal logics. Then, based on these results, we
offer a new, simple, uniform, and modular proof-theoretical proof of the realization
of a wide range of modal logics with possible combinations of modal axioms T,D, 4, 5
(including S5) in Justification Logic. We do not use a generalization of sequent
calculus, such as hypersequent and nested sequent calculi. We simply utilize the
standard cut-free sequent calculus for K and then show, in the realized proof in
Justification Logic (corresponding to K), how to recover the realizations of the modal
axioms by rewriting terms in the proof.

Keywords: Modal Logic, Justification Logic, Proof Theory, Realization Theorem.

1 Introduction

One of the most common interpretations of modal logic is the epistemic logical
interpretation: reading a modal formula 2A as “A is known.” However, the
machinery of epistemic logic does not refer to how the knowledge A is attained.
Justification Logic offers a tool to refer to a reason or justification for a propo-
sition; a modal formula is of the form s : A with a term s, which is read as “s is
a reason or justification for A.” Moreover, Justification Logic is equipped with
operators on terms: +, ·, ! and ?. The first two are binary and express the con-
catenation and an application of modus ponens, respectively; the latter two are
unary and express positive and negative introspections, respectively. Then, for
example, the logical omniscience problem could be avoided, in a sense; it could
be viewed as a problem of term complexity. As we deduce a more complicated
formula, we have a more complicated term with the formula at the same time.
Cf. [6]. We refer to [3], [4], and [25] for a general introduction to the family of
systems called Justification Logic.

1 proof(underscore)hkushida@yahoo.co.jp
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One of the fundamental results concerning Justification Logic is the real-
ization theorem, which acts as a bridge to the modal logics. There have been
many studies on the realization theorem for major modal logics. The realiza-
tion theorem for the modal logic S4 was provided in Artemov [1], [2] with the
Logic of Proofs, LP, which is the first system of Justification Logic. It makes
the following claim: for some realization, that is, some assignment of terms to
modality 2, a formula is provable in S4 if and only if the realization of the
formula is provable in LP. This result intended to give an arithmetical meaning
to S4; a realized modal formula s : A reads “s is a proof of A.”

The original proof of the realization theorem in [1], [2] was a proof-
theoretical one, using a standard cut-free sequent calculus of S4. Fitting [12]
proposed a possible-world semantics for LP and proved the realization theo-
rem using this semantics. The semantics has been studied well and extended
for various systems of Justification Logic. It is called Fitting semantics to-
day. Another semantical proof was offered for realization for LP in Fitting [15].
Substructural variants of LP were introduced, and the realization theorems
were proved for some modal substructural logics by a proof-theoretic method
in Kurokawa and Kushida [19].

Systems with the negative introspection operator were proposed by several
authors pursuing epistemological interpretation of LP. Those systems corre-
spond to the modal logic S5. Such a system was first introduced in Artemov
et al. [5] and Kazakov [18], and the realization theorem for S5 was proved by
a proof-theoretic method.

The negative introspection operator “?” that has been the subject of recent
studies is characterized by the formula ¬s : A →?s : ¬s : A. It was proposed
independently by Pacuit [27] and Rubtsova [28], [29]. The realization theorem
was proved for S5 via Fitting semantics in [28], [29].

Fitting [14] offered an elegant proof-theoretical proof of the realization for
S5 with the operator “?”. Kurokawa and Kushida [20] offered an S5 variant of
Linear Logic and proved the realization theorem for it with the corresponding
substructural justification logic using a proof-theoretical method.

Nested sequent calculus is an apparatus used to execute an inference rule
inside formulas. Although it is not clear if it is a natural expression of logical
reasoning, it has been a useful tool to handle some logical systems that are
not well-behaved proof-theoretically, such as S5. Motohashi [26] showed that
the Intuitionistic Logic can be faithfully embedded in the classical predicate
logic via a composition of Gödel’s embedding and the standard translation
(converting modality to quantifier). This result of [26] is one of the precursors
of the method of nested sequent calculus, although it would be difficult to
specify the first to have invented any similar kind of apparatus. In [21], the
method was applied to a wide range of major modal logics between K and S5
(including the two) in a uniform way; it was shown that those modal logics can
be faithfully embedded in the classical predicate logic by Motohashi’s method.
Later, we applied the method to the realization problem in light of Justification
Logic in [22]; it was shown that the modal logic GL can be realized in a variant
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of LP with free variables using Motohashi’s method.
While the realization of subsystems of S4 was proved in Brezhnev [8] proof-

theoretically, a proof for modal logics including S5 was offered in a uniform way
in Brünnler, Goetschi, and Kuznets [10]; Goetschi and Kuznets [17]; and Borg
and Kuznets [7]. They utilized nested sequent systems to prove the realization
for a wide range of modal logics between K and S5 (including the two). In
particular, the proof in [7] was modular as well as uniform.

In this paper, we offer a new, simple, uniform, and modular proof of the
realization of major modal logics extended by additional axioms: what we
call D,T, 4, 5. These systems are modal logic correspondents to Justification
Logic with the above-mentioned operators: ·,+, !, ?. 2 Our proof is a proof-
theoretical one, but we do not use a generalization of sequent calculus, such
as nested or hypersequent calculus; rather, we will simply use the standard
cut-free sequent calculus for the modal logic K. We will present a reduction
theorem of all of those extended modal logics over K. This result is concerned
with the research problem treated in Fitting [11] and will be of independent
interest apart from Justification Logic and the realization problem. Moreover,
we will point out that the form of axioms D,T, 4, 5 can be restricted to a kind
of normal form without changing their deductive power. This is a basic fact of
the nature of modal logic, which seems not to have been published so far. We
present the second reduction theorem using this normal form.

Then, we will make a realization for K to a basic system of Justification
Logic called J. Then, to obtain realization for the other logics, we will show
how to convert some realized formulas to the form of the axioms of Justification
Logic by rewriting terms in the proof of a realized formula in J. It will be seen
that a circular argument can be avoided in the rewriting algorithm, thanks to
the second reduction theorem.

This paper is organized as follows. In §2, we define the modal logics treated
in this study. Then, we offer two reduction theorems. It is also pointed out that
the well-known modal axioms can be restricted to a sort of normal form. In
§3, we define the systems of Justification Logic corresponding to those modal
logics and prove the internalization theorem for a basic system of Justification
Logic. In §4, we present our proof-theoretic proof of the realization theorem
for all the systems defined in a uniform and modular way.

2 Modal Logics and Reduction Theorem

Let us begin with a review of axiomatic systems of the modal logic K and its
normal extensions which we are going to handle in this paper. We adopt the
propositional connectives: →,¬. The other ones are defined in terms of the two,
which will be also used below. The unary modal operator 2 is added. The other

2 We do not handle the modal axiom called “B”. We restrict our attention to terms with
these operators in Justification Logic, while a new operator is needed to realize systems
including “B”, as was shown in [17], [7]. However, it is possible to apply our method to
prove the realization for those systems including “B”. We will touch on this point later in a
footnote.
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operator 3 can be defined in terms of 2, which is not considered in this paper.
We use the symbols ⊥ for the propositional constant and P,Q, . . . , P1, P2, . . .
for propositional variables. The formulas are constructed from atomic formulas
in the usual way.

The modal logic K is an axiomatic system for the propositional logic aug-
mented with the axiom 2(A → B) → (2A → 2B) and the inference rule
A/2A (Necessitation). We consider axioms called D,T, 4 and 5.

D ¬2⊥
T 2A→ A
4 2A→ 22A
5 ¬2A→ 2¬2A

Then we obtain from K the system KS1 · · · Sn extended with S1 · · ·Sn from
the schemas D,T, 4, 5. As usual, we follow the custom to call the systems KD,
KT, KT4, KT5 as D, T, S4, S5, respectively. (KT45 is equivalent to KT5.) By
the notation KS1 · · · Sn, we can cover ten systems: D, T, K4, K5, K45, KD4,
KD5, KD45, S4, S5. Let L denote any system from these systems.

Now, we show that L can be syntactically reduced to the modal logic K with
respect to theoremhood. For L, a finite set of modal formulas α and a natural
number n, we define the special formula X(α, n, L) as follows.

L X(α, n, L)

D
∧

0≤i≤n2
i¬2⊥

T
∧

2B∈α
∧

0≤i≤n2
i(2B → B)

K4
∧

2B∈α
∧

0≤i≤n2
i(2B → 22B)

K5
∧

2B∈α
∧

0≤i≤n2
i(¬2B → 2¬2B)

K45 X(α, n,K4) ∧X(α, n,K5)
KD4 X(α, n,D) ∧X(α, n,K4)
KD5 X(α, n,D) ∧X(α, n,K5)
KD45 X(α, n,KD4) ∧X(α, n,K5)
S4 X(α, n,T) ∧X(α, n,K4)
S5 X(α, n,T) ∧X(α, n,K5)

Here “2n” denotes “

n−many︷ ︸︸ ︷
2 · · ·2”.

Lemma 2.1 Let α, β be any finite set of modal formulas and n,m be any
natural numbers. Then we have the following.

(1) `K X(α ∪ β,max(n,m), L)→ X(α, n, L) ∧X(β,m, L);
(2) `K X(α, n+ 1, L)→ 2X(α, n, L).

Proof. For (1). Suppose n ≥ m. For any formula C, we have the following
derivation by propositional calculus.
∧

2B∈α∪β
∧

0≤i≤n2
iC → ∧

2B∈α
∧

0≤i≤n2
iC ∧∧2B∈β

∧
0≤i≤n2

iC

→ ∧
2B∈α

∧
0≤i≤n2

iC ∧∧2B∈β
∧

0≤i≤m2iC
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Thus, we have proven the cases when L is D, T, K4 or K5. By using these
results, we can prove the other cases; we handle the case L is KD5. (Other
cases are similar.) We have the following derivation by propositional calculus.

X(α ∪ β, n,KD5) = X(α ∪ β, n,D) ∧X(α ∪ β, n,K5)
→ X(α, n,D) ∧X(β,m,D) ∧X(α, n,K5) ∧X(β,m,K5)
→ X(α, n,KD5) ∧X(β,m,KD5)

Thus, (1) holds for this case.
For (2). When L is D, T, K4 or K5. For any formula C, we have the following

derivation in K.∧
2B∈α

∧
0≤i≤n+1 2

iC → ∧
2B∈α

∧
1≤i≤n+1 2

iC

→ 2
∧

2B∈α
∧

0≤i≤n2
iC

Thus, (2) holds for these cases.
The other cases can be established by using these results; again, we take

the case L = KD5 only, as the remaining cases are similarly proved. We have
the following derivation in K.

X(α, n+ 1,KD5) = X(α, n+ 1,D) ∧X(α, n+ 1,K5)
→ 2X(α, n,D) ∧2X(α, n,K5)
→ 2[X(α, n,D) ∧X(α, n,K5)]
= 2X(α, n,KD5)

Thus, this case has been proven for (2). 2

We call ‘2A’ in the above definition of D,T, 4, 5 the core of them. E.g.,
2(2P ∧ ¬P ) is the core of an axiom T: 2(2P ∧ ¬P ) → (2P ∧ ¬P ). For a
given proof in L, we define AS (axiom specification) to be the set {2A : 2A is
the core of an axiom D,T, 4 or 5 used in the proof}.
Lemma 2.2 For any formula A of modal logic,

if `L A with some AS, then `K X(AS, n, L)→ A, for some n.

Proof. We proceed by induction on the length of a proof of A in L with AS.
When the proof is an axiom of K, X(AS, n, L) = ∅. When the proof is an
axiom of D, T, 4 or 5, `K X(AS, 0, L)→ A.
• For modus ponens, suppose that A is derived from B → A and B. By the

induction hypothesis, for someAS1,AS2, n and m, we have `K X(AS1, n, L)→
(B → A) and `K X(AS2,m, L) → B. Then, we obtain `K X(AS1, n, L) ∧
X(AS2,m, L)→ A. By (1) of Lemma 2.1, `K X(AS1 ∪AS2,max(n,m), L)→
A.
• For necessitation, suppose that A = 2B is derived from B. By the

induction hypothesis, for some AS and n, we have `K X(AS, n, L) → B. By
necessitation and normality of ‘2’, we obtain `K 2X(AS, n, L)→ 2B. By (2)
of Lemma 2.1, `K X(AS, n+ 1, L)→ 2B. 2

Theorem 2.3 (the first Reduction Theorem) For any formula A of modal
logic, the following two are equivalent.
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(1) `L A with AS;
(2) `K X(AS, n, L)→ A, for some n. 3

Proof. It is easily seen that, for any α and any n, X(α, n, L) is provable in
L. Then, (2) obviously implies (1). The converse direction immediately follows
from Lemma 2.2. 2

We take an example to sketch a reduction of proof in KD5 to that in K in
Appendix I.

2.1 Restriction of Modal Axioms

Here, we show that modal logics under consideration have the same deductive
power if we restrict the form of the axioms in a certain way. We define a normal
form of formulas of modal logic as follows.

Definition 2.4 The normal form of formulas is defined as follows.
1. P1 ∧ · · · ∧ Pn → Q1 ∨ · · · ∨Qp is in normal form.
2. When B1, . . . , Bm, C1, . . . , Cq are in normal form, so is the following:

P1 ∧ · · · ∧ Pn ∧2B1 ∧ · · · ∧2Bm → Q1 ∨ · · · ∨Qp ∨2C1 ∨ · · · ∨2Cq
3. If B is equivalent (in propositional logic) to a formula in normal form,

B is also in normal form.

Theorem 2.5 (Normal Form Theorem) For any formula A of modal logic, A
is equivalent in K to a conjunction of formulas in normal form.

Proof. We define the degree of A, d(A), as follows. d(P ) = 0; d(A → B) =
d(A) + d(B); d(¬A) = d(A); d(2A) = d(A) + 1. We proceed by induction on
d(A). At first, by propositional logic, A can be transformed into a conjunction
of the forms:

(\) P1 ∧ · · · ∧ Pn ∧2B1 ∧ · · · ∧2Bm → Q1 ∨ · · · ∨Qp ∨2C1 ∨ · · · ∨2Cq.

Here, by this propositional transformation, the formulas (each Bi and each
Cj) inside the outmost occurrences of 2 are untouched.

Now, in the base case, A is a conjunction of the form P1 ∧ · · · ∧ Pn →
Q1 ∨ · · · ∨ Qp and is in normal form. In the induction step, let D denote
any Bi or any Cj . By the induction hypothesis, D can be equivalently in K
transformed into the form E1 ∧ · · · ∧ Er with each Ei in normal form. Hence,
`K 2D ↔ 2(E1∧· · ·∧Er)↔ 2E1∧· · ·∧2Er. So, we may assume that each Bi
in (\) is already in normal form. As to Cj in (\), assume that C1 = E1∧· · ·∧Er
where each Ei is in normal form. Then, (\) is equivalent to the following.
∧

1≤i≤r[P1∧· · ·∧Pn∧2B1∧· · ·∧2Bm → Q1∨· · ·∨Qp∨2Ei∨2C2∨· · ·∨2Cq]
After all, A is equivalent in K to a conjunction of the forms of (\) where

each Bi and each Cj are in normal form. 2

3 We could restrict the set of modal formulas AS so that the elements come from subformulas
of A rather than axioms of a proof in L of A. This direction of research is found in [11].
Here, we cannot make such a restriction because our axiomatic systems do not enjoy the
subformula property. Anyway, our concern here lies in the realization of modal logics and
constructing AS this way is enough for our purpose.
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We show that the restriction of the core of modal axioms to normal form
does not change the deductive power of systems.

Theorem 2.6 If `L A, then `L A with AS consisting of formulas in normal
form.

Proof. It suffices to show that a general form of axiom of T, 4 and 5, respec-
tively, is derivable in K from a restricted form of T, 4 and 5 with the core
in normal form, respectively. By the Normal Form Theorem, a formula B is
equivalent to E1 ∧ · · · ∧ Er with each Ei in normal form. Note that Ei is in
normal form if and only if 2Ei is in normal form.

On T axiom: we have `K 2B → B = 2(E1 ∧ · · · ∧ Er) → (E1 ∧ · · · ∧
Er). ↔ (2E1 ∧ · · · ∧ 2Er) → (E1 ∧ · · · ∧ Er). Also, we have `K [(2E1 →
E1) ∧ · · · ∧ (2Er → Er)] → .(2E1 ∧ · · · ∧ 2Er) → (E1 ∧ · · · ∧ Er). Therefore,
`K [(2E1 → E1) ∧ · · · ∧ (2Er → Er)]→ .2B → B.

On 4 axiom, it is similar to the case of T axiom.
On 5 axiom, we have `K ¬2B → 2¬2B = ¬2(E1∧ · · ·∧Er)→ 2¬2(E1∧

· · ·∧Er).↔ (¬2E1∨· · ·∨¬2Er)→ 2(¬2E1∨· · ·∨¬2Er). On the other hand,
`K [(¬2E1 → 2¬2E1)∧ · · · ∧ (¬2Er → 2¬2Er)]→ .(¬2E1 ∨ · · · ∨ ¬2Er)→
(2¬2E1∨· · ·∨2¬2Er). As 2F∨2G implies 2(F∨G) in K for any F and G, we
obtain `K [(¬2E1 → 2¬2E1)∧· · ·∧(¬2Er → 2¬2Er)]→ .¬2B → 2¬2B.2

Now, we can sharpen the Reduction Theorem.

Theorem 2.7 (the second Reduction Theorem) For any formula A of modal
logic, the following two are equivalent.

(1) `L A;
(2) `K X(α, n, L)→ A, for some α and n such that α consists of formulas

in normal form.

Proof. Derived by Theorems 2.3 and 2.6. 2

Each of Theorems 2.3, 2.5, 2.6, 2.7 is a simple but general observation and
would belong to basics of modal logic, although it seems not commonly known.
Theorem 2.7 will be useful to give a uniform proof of realization theorem in the
following sections and could be thought of to reveal a hidden nature of modal
logics together with the realization. 4

3 Justification Logics and Internalization

Next, we review the corresponding systems of Justification Logic. The formulas
of Justification Logic are defined in the same way as modal logic except that

4 As we remarked in the Introduction, we do not handle the axiom “B” of the form
¬A → 2¬2A. Anyway, the whole argument in this section holds for “B” and the sys-
tems with it, and the realization for systems with “B” can be proved by our method
in the following sections. However, unfortunately, the modal logics GL and GLS do
not satisfy Theorems 2.6 or 2.7, while they do Theorem 2.3 where we have the defi-
nitions: X(α, n,GL) =

∧
2B∈α

∧
0≤i≤n 2i(2(2B → B) → 2B) and X(α, n,GLS) =

X(α, n,GL) ∧∧
2B∈α(2B → B). See [23] for a recent development of the study of GLS.
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2A is replaced with s : A, where s is a justification term, or simply, term and
defined inductively as follows.

1. Constants c, d, e, . . . , c1, c2, . . . are justification terms.
2. Variables x, y, z, . . . , x1, x2, . . . are justification terms.
3. If s and t are justification terms, then so are s · t, s+ t, !s, and ?s.

For t = (t1, . . . , tn), by ·(t) we mean any concatenation of all terms of
(t1, . . . , tn) via the operator · in arbitrary order. The term +(t) is similarly
defined with + in place of ·. The basic system J is defined by the following
axioms and inference rules.

Axioms:
A1. Axioms of classical propositional logic
A2. s : (A→ B)→ .t : A→ (s · t) : B
A3. s : A→ (s+ t) : A; t : A→ (s+ t) : A

Rules of Inference:
R1. Modus Ponens: A,A→ B/B
R2. Iterated Axiom Necessitation: A/c1 : c2 : · · · : cn : A,
where each ci (1 ≤ i ≤ n) is a constant and A is an axiom.

The constant specification, CS, in a proof is defined to be the set of formulas
introduced by R2 in the proof. We introduce the axioms named Dj , T j , 4j , 5j

as follows.

Dj ¬s : ⊥
T j s : A→ A
4j s : A→!s : s : A
5j ¬s : A→?s : ¬s : A

For modal logic L= KS1 · · · Sn, the system JL is provided by J augmented
with the axioms: Sj1, . . . , S

j
n.

Let us prove the internalization theorem for J, which is a fundamental prop-
erty of Justification Logics. Below, for any term s and formula A, by at(s) and
at(A) we mean a set of atomic terms (that is, constants and variables) appear-
ing in s and A, respectively.

Theorem 3.1 (Internalization for J) For any formula A of J,
`J A implies `J ·(c) : A, for some term of the form ·(c) such that at(·(c)) ∩
at(A) = ∅.
Proof. We proceed by induction on the length of a proof of A in J. When
the proof is an axiom itself, we can take any fresh constant c so that c : A is
provable in J by R2. In the induction step, for the case of R1, by the induction
hypothesis, we have terms ·(c) and ·(d) such that the following hold.

`J ·(c) : A `J ·(d) : (A→ B)
at(·(c)) ∩ at(A) = ∅ at(·(d)) ∩ at(A→ B) = ∅
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If at(·(c)) ∩ at(B) 6= ∅, we can substitute fresh constants for some of c to
make it empty. (This is possible because any constants of c are introduced in
R2 and we can choose any constants in applying R2.) By using A2 and R1, we
have `J (·(c) · ·(d)) : B and at(·(c) · ·(d)) ∩ at(B) = ∅.

For the case of R2, when we have cn : cn−1 : · · · : c1 : A from an axiom A,
we can also have cn+1 : cn : cn−1 : · · · : c1 : A from A by R2. Here, cn+1 is a
fresh constant and the desired term. 2

We note that Theorem 3.1 is a refinement of the standard form of the Inter-
nalization Theorem, which just claims that provability of A implies provability
of s : A for some term s.

The following corollary follows straightforwardly; we put the proof to Ap-
pendix II due to the lack of space.

Corollary 3.2 For any formulas B1, B2, . . . , Bn, A and any terms t1, t2, . . . , tn
of J,
`J B1 ∧B2 ∧ · · · ∧Bn.→ A implies `J t1 : B1 ∧ t2 : B2 ∧ · · · ∧ tn : Bn.→ [·(c) ·
t1 ·t2 · · · · ·tn] : A, for some justification term ·(c) such that at(·(c))∩at(A) = ∅.
5

4 Realization of modal logics

A realization of a formula of modal logic is a replacement of each occurrence of
2 in the formula with a justification term. Such a realization is denoted by r
(possibly with integer subscripts) and the result of realization r for a formula
A is denoted by Ar. Our aim is to prove the following realization theorem for
L.

Theorem 4.1 For any formula A of modal logic,
`L A iff, for some r, `JL Ar.
We are going to prove Theorem 4.1 by reducing it to the following Theorem

4.2 (the realization of K).

Theorem 4.2 For any formula A of modal logic,
`K A iff, for some r, `J Ar.
Theorem 4.2 was first proved in Brezhnev [8] by utilizing sequent calculus

method initiated by Artemov [2]. We modify the method slightly and naturally;
the operator + will be used when two positive occurrences of 2 merge in a proof
in K.

We make use of the standard sequent calculus for K. A sequent is of the
form Γ =⇒ ∆. 6 The sequent calculus for K, which we also call K, is defined
to be the extension of the sequent calculus for classical propositional logic LK
with the following rule. (See, for example, [30] for the full description of LK.)

5 Here, we follow the notation of “association to the left” in restoring brackets of the form
s1 · s2 · · · · · sm. That is, s1 · s2 · · · · · sm is read as (· · · ((s1 · s2) · s3) · · · · · sm). On the other
hand, ·(c) is read according to our previous definition of this notation; it can be any term
consisting of constants c and the operator ·.
6 As usual, by greek capital letters, we mean finite sequences of formulas.
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Γ =⇒ A
2Γ =⇒ 2A

2

We assume the well-known facts: (i) this sequent calculus is equivalent to
the axiomatic system K with respect to theoremhood and (ii) it enjoys the
cut-elimination theorem.

For a sequent S = Γ =⇒ ∆, its formula image, fi(S), is defined to be∧
Γ→ ∨

∆.

Proof of Theorem 4.2. The ‘if’ part is proved by using what is called the
forgetful projection, say f : for any formula B of modal logic and any realization
r, (Br)f = B. It is easily shown that (Ar)f = A is provable in K by induction
on the length of a proof of Ar in J.

Now we handle the other part. Let us recall the ‘normality’ of realization
introduced in [2]. A normal realization of a formula is one that assigns a variable
to each negative occurrence of 2. A realization of a sequent S = Γ =⇒ ∆ is
defined by: Sr = (fi(S))r. Sr can be also expressed by Γr =⇒ ∆r. r for S is
normal if Sr is normal.

Let P be a cut-free proof of S in K. In P , we restrict the initial sequent
A =⇒ A to the case when A is an atomic formula. For an application of
inference rule, an occurrence of 2 in a upper sequent has the (obviously) related
occurrence of 2 in the lower sequent. Thus, all occurrences of 2 form a ‘forest’
in P , where occurrences of 2 are nodes and in-between inference rules are
edges. Each occurrence of 2 in the end-sequent is the ‘root’ of a ‘tree’. All of
the occurrences of 2 belonging to a specific ‘tree’ have the same polarity. We
call a tree which has positive occurrences of 2 a positive tree and one which
has negative occurrences of 2 a negative tree in P .

We present the Realization Algorithm which assigns a term to each occur-
rence of 2 in P so that each realized sequent is provable in J.

Realization Algorithm
(Step 1) Assign distinct variables to each negative tree in P , and replace

all the nodes 2 in a tree with the assigned variable.
(Step 2) Fix a positive tree in P . We proceed from top to bottom.
2.1. Assign a distinct variable for each leaf of the tree which is introduced

by the rule ‘2’. Also, assign a uniform variable to all leaves of the tree which
are introduced otherwise.

2.2. Keep on assigning the same term in each branch until another branch
meets with it or the root is reached.

2.2.1. When two branches of the tree merge by ‘c’ (contraction) or logical
rules, connect the two obtained terms by the operator + and assign the new
term to the next node. We take an example of the case when ‘c’ is involved.

B(2C), B(2C),Γ =⇒ ∆

B(2C),Γ =⇒ ∆
c

Here, 2C occurs negatively in B and positively in the whole sequent. Sup-
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pose that one indicated occurrence of 2 of 2C is replaced with +(x) and the
other is replaced with +(y). Then, replace the related occurrence of 2 in the
lower sequent with [+(x)] + [+(y)].

(Step 3) Update r by replacing variables x used in (Step 2) for the leaves
of positive trees introduced by 2 rule as follows.

B1, . . . , Bn =⇒ C

2B1, . . . ,2Bn =⇒ 2C
2

Suppose that (2B1, . . . ,2Bn =⇒ 2C)r has become y1 : Br1 ∧ · · · ∧ yn :
Brn → x : Cr in (Step 1, 2). By Corollary 3.2, there is some ·(d) such that
if Br1 ∧ · · · ∧ Brn. → Cr is provable in J then so is y1 : Br1 ∧ · · · ∧ yn : Brn →
(·(d) · y1 · · · · · yn) : Cr. Update r so that ·(d) · y1 · · · · · yn is substituted for x.

(The end of the Realization Algorithm)

It is easily seen that this algorithm halts eventually. Also, it surely works
correctly. We put the argument for the correctness in Appendix III.

In this way, we can obtain a normal realization of a formula provable in K
such that the resulting formula is provable in J. This completes the proof of
Theorem 4.2. 2

We note the following point on the normal realization we have constructed
from a cut-free proof in K in the proof of Theorem 4.2.

Note. We can take fresh constants for ·(d) in (Step 3) for each application
of rule 2, because those constants are introduced from the rule R2 and we can
choose any constant in applying R2. Thus, each leaf in a positive tree is realized
to a term which does not share variables or constants with other leaves, and
they can merge with the operator + in ‘c’ or logical inferences, while in the
original algorithm in [2], all the nodes in a positive tree have the same term.

Proof of Theorem 4.1. For the ‘if’ part, it is similarly proved to Theorem
4.2. For the ‘only if’ part. Suppose that A is provable in L. In light of the
second Reduction Theorem (Theorem 2.7), there is a cut-free proof P in K of
X1, . . . , Xp =⇒ A. Here, X(α, n, L) = X1 ∧ · · · ∧Xp for some n and some set
α composed of formulas in normal forms; each Xi is X(α, n,D), X(α, n,T),
X(α, n,K4) or X(α, n,K5).

Fix any Xa. We impose the following condition.

(\\) There is no application of c : l (contraction on the left hand side) in P
on any subformula of Xa.

We can transform P so that (\\) is satisfied; any such application of c : l
can be permuted with the following inference so that Xa may be duplicated in
the end-sequent. We show this. Proceed from top to bottom. We distinguish
cases by the inference below such an application of c : l, among which we pick
up two cases: →: r and 2. When it is →: r, we can move the application of
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c : l to the right by permuting them, as follows.

A,A,Γ⇒ ∆, B

A,Γ⇒ ∆, B
c : l �

Γ⇒ ∆, A→ B
→: r

A,A,Γ⇒ ∆, B

A,Γ⇒ ∆, A→ B
→: r

A,Γ⇒ ∆, A→ B,B
w

Γ⇒ ∆, A→ B,A→ B
→: r

Γ⇒ ∆, A→ B
c : r

When it is the rule 2, we can exchange it with the application of c : l, as
follows.

A,A,Γ⇒ B

A,Γ⇒ B
c : l

2A,2Γ⇒ 2B
2 �

A,A,Γ⇒ B

2A,2A,2Γ⇒ 2B
2

2A,2Γ⇒ 2B
c : l

After all, we may suppose that (\\) holds. Now we apply the Realization
Algorithm to the proof P to obtain a proof, say P ∗, in J of Xr

1 , . . . , X
r
p =⇒ Ar

with some normal realization r. Fix any Xa. Xa has one of the forms:

2i(2B → B);
2i(2B → 22B);
2i(¬2B → 2¬2B).

Here, B is in normal form and can be ⊥. Each form has two occurrences
of a formula B such that the corresponding occurrences of 2 have the opposite
polarities inside B. Thus, the normal realization of them can be different: Br1

and Br2. The realization of Xa is one of the forms:

x1 : · · ·xi : (u : Br2 → Br1);
x1 : · · ·xi : (u : Br2 → y1 : y2 : Br1);
x1 : · · ·xi : (¬y1 : Br1 → y2 : ¬u : Br2).

Our first task is to reconcile Br1 and Br2 by rewriting terms in P ∗ and so
updating the realization. If B contains no 2, there is nothing to do here. Also,
propositional variables are unimportant for the task. Thus, we may suppose
that B is of the form:

2C1 ∧ · · · ∧2Cn → 2D1 ∨ · · · ∨2Dm

Here, each Ci and Dj are in normal form. Suppose that Br1 and Br2 are
of the following forms.

Br1 = s1 : Cr1 ∧ · · · ∧ sn : Crn → z1 : Dr
1 ∨ · · · ∨ zm : Dr

m

Br2 = w1 : Cr1 ∧ · · · ∧ wn : Crn → t1 : Dr
1 ∨ · · · ∨ tm : Dr

m

By induction on deg(B), we show that the realization can be so updated
that (i) Br1 and Br2 are identical, and (ii) the realization of other parts of
X(α, n, L) → A than Xa can change in such a way that only positive occur-
rences of a variable are replaced with a term.

As a result, the realization will be no longer normal. By the induction
hypothesis, we assume that the realizations of each Ci and Dj in Br1 and Br2

are identical. We apply the following algorithm.
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Rewriting Algorithm
(Step 1) For all 1 ≤ i ≤ n, replace wi in P ∗ with si. For all 1 ≤ j ≤ m, let

t+j be a term obtained from tj by this replacement.

(Step 2) For all 1 ≤ j ≤ m, replace zj in P ∗ with t+j .
(The end of Rewriting Algorithm)

Clearly, this algorithm halts eventually, as occurrences to be replaced are
finite in each step and the number of those occurrences is reduced after each
replacement. Also, the algorithm works correctly; we put the detailed argument
in Appendix IV. Here, we note that (Step 1) and (Step 2) essentially reconcile
the antecedent of Br1 and Br2 and the succedent of Br1 and Br2, respectively,
and (Step 2) does not change that antecedent anymore (as no si contains any
zj), thanks to the second Reduction Theorem and the property (\\). This is
why we could avoid a circular argument in reconciling Br1 and Br2. 7

Also, note that (Step 1, 2) both take the form: for negative occurrences
of variables, replace all (negative and positive) occurrences of them with some
term. So, even if some preceding application of this Rewriting Algorithm to
another conjunct altered some variables which occur only positively in the con-
junct Xr

a under consideration it does not lose the applicability of the Rewriting
Algorithm to Xr

a .
We have updated the realization r, which is not normal now, so that

X(α, n, L)r → Ar is provable in J where each conjunct Xr
a of X(α, n, L)r is

of the following form.

x1 : · · ·xi : (u : Br → Br);
x1 : · · ·xi : (u : Br → y1 : y2 : Br);
x1 : · · ·xi : (¬y1 : Br → y2 : ¬u : Br).

Our remaining task is to make these forms provable in JL. First, for each
conjunct Xa, there are outermost realized modalities, x1, . . . , xi. Take fresh
constants c1, . . . , ci. For each 1 ≤ a ≤ i, replace xa in P ∗ with ca. Then, we
distinguish cases according to L. X(α, n, L)−X(α, n, L0) is a formula obtained
from X(α, n, L) by removing X(α, n, L0). For systems L0 and L1, we write L0 ⊆
L1 to mean the latter extends the former.

(Case 1) When D ⊆ L, ¬u : ⊥ is an axiom in JL. By R2, c1 : · · · ci : (¬u : ⊥)
is provable in JL. Therefore, `JL X(α, n, L)r −X(α, n,D)r.→ Ar.

(Case 2) When T ⊆ L, u : Br → Br is an axiom in JL, and, by R2,
`JL c1 : · · · ci : (u : Br → Br). Therefore, `JL X(α, n, L)r −X(α, n,T)r.→ Ar.

(Case 3) When K4 ⊆ L, first replace y1 and y2 in P ∗ with u and !u, respec-
tively. Then, u : Br →!u : u : Br is an axiom in JL and, by R2, c1 : · · · ci : (u :
Br →!u : u : Br) is provable in JL. Hence, `JL X(α, n, L)r−X(α, n,K4)r.→ Ar.

(Case 4) When K5 ⊆ L, first replace y1 and y2 in P ∗ with u and ?u, respec-
tively. Then, ¬u : Br →?u : ¬u : Br is an axiom in JL. By applying R2, `JL c1 :

7 The second Reduction Theorem and the property (\\) are actually based on the same idea:
we can rule out positive occurrences of ∧ in modal axioms without changing deductive power.
(They are negative in the whole sequent.)
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· · · ci : (¬u : Br →?u : ¬u : Br). Hence, `JL X(α, n, L)r −X(α, n,K5)r.→ Ar.

The obtained figure is surely a proof in J, because all replacement we exe-
cuted is so that variables are converted to terms. Each conjunct of X(α, n, L)r

is now of the following form.

c1 : · · · ci : (u : Br → Br);
c1 : · · · ci : (u : Br →!u : u : Br);
c1 : · · · ci : (¬u : Br →?u : ¬u : Br).

In this way, we can eliminate every conjunct of E(α, n, L)r in JL and we
obtain the result of provability of Ar in JL. This finishes the proof of Theorem
4.1. 2

The realization which we finally constructed is not normal. However, it
is obtained from the normal realization we obtained through the Realization
Algorithm by assigning terms to variables. Thus, positive occurrences of terms
are still composed of negative occurrences of terms. In this sense, the final
realization would keep a flavor of normality.

5 Conclusion Remark

In this paper, we offered the reduction theorems of modal logics to the system
K, and we proved a basic fact that modal axioms can be restricted to a sort
of normal form without changing their deductive power. Then, based on these
results, we presented a uniform and modular proof of the realization of major
modal logics in Justification Logics using a proof-theoretical method.

As further research problems, it would be intriguing to clarify a semantical
meaning of the reduction theorems and normal form theorem (in terms of both
possible-world and algebraic semantics.) Also it would be interesting to invest-
gate the extension of the theorems to second-order modal logics. Moreover, it
would be intriguing to ask how far our method can be generalized, as recently
it turned out in Fitting [16] that there exist infinitely many modal logics that
have counterparts in Justification Logic. 8

Appendix

I. Example of reduction of proof.
Here we sketch an example of reduction (as in Theorem 2.3) of proof in

KD5 to that in K. Let us consider the formula 2(¬P ∨ ¬2Q) → 22¬2(P ∧
Q) provable in KD5. We permit (i) putting hypotheses in a proof, where of
course we cannot apply Necessitation to a formula depending on hypotheses and
(ii) applying an inference rule introducing ‘→’ discharging some hypotheses,
a conjunction of which occur as the antecedent of the introduced ‘→’. This
relaxation is justifiable in the standard axiomatic system for propositional logic
and, therefore, our system K. Here is a sketch of its proof in KD5.

8 The question concerning algebraic model was suggested to me by an anonymous referee.



Kushida 419

1. 2(¬P ∨ ¬2Q) Hypothesis
...

n1. ¬2Q→ 2¬2Q Axiom 5...
n2. 2(¬P ∨2¬2Q)

...
n3. ¬2¬2Q→ 2¬2¬2Q Axiom 5

...
n4. 2(2¬P ∨2¬2Q)

...
n5. ¬2⊥ Axiom D...
n6. 2(¬2P ∨2¬2Q)...
n7. ¬2P → 2¬2P Axiom 5...
n8. 2(2¬2P ∨2¬2Q)...
n9. 22¬2(P ∧Q)

n10. 2(¬P ∨ ¬2Q)→ 22¬2(P ∧Q) 1

Then, we can convert this proof to the following proof in K.

1. [2(¬P ∨ ¬2Q)] Hypothesis
...

n1. 2(¬2Q→ 2¬2Q) Hypothesis
...

n2. 2(¬P ∨2¬2Q)
...

n3. 2(¬2¬2Q→ 2¬2¬2Q) Hypothesis
...

n4. 2(2¬P ∨2¬2Q)
...

n5. 2¬2⊥ Hypothesis...
n6. 2(¬2P ∨2¬2Q)...
n7. 2(¬2P → 2¬2P ) Hypothesis...
n8. 2(2¬2P ∨2¬2Q)...
n9. 22¬2(P ∧Q)

n10. 2(¬P ∨ ¬2Q)→ 22¬2(P ∧Q) 1

n11. X(α, 1,KD5)− → .2(¬P ∨ ¬2Q)→ 22¬2(P ∧Q) n1, n3, n5, n7...
n12. X(α, 1,KD5)→ .2(¬P ∨ ¬2Q)→ 22¬2(P ∧Q)

Here, X(α, 1,KD5)− is a conjunction of the formulas n1, n3, n5, n7 and
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α = {2Q,2¬2Q,2⊥,2P}. Note that X(α, 1,KD5) = X(α, 0,KD5) ∧
X(α, 1,KD5)−.

II. Proof of Corollary 3.2.
Suppose `J B1 ∧ B2 ∧ · · · ∧ Bn. → A. Then, `J B1 → (B2 → · · · (Bn →

A) · · · ). By Theorem 3.1, for some ·(c), `J ·(c) : [B1 → (B2 → · · · (Bn →
A) · · · )] such that at(·(c)) ∩ at(A) = ∅. We work in J and by induction on n.
Suppose that we obtain:

t1 : B1 → .t2 : B2 → . · · · ti : Bi →
(·(c) · t1 · t2 · · · · · ti) : [Bi+1 → (· · · (Bn → A) · · · )].

The following is an axiom from A2.

(·(c) · t1 · t2 · · · · · ti) : [Bi+1 → (· · · (Bn → A) · · · )]→ .
ti+1 : Bi+1 → (·(c) · t1 · t2 · · · · · ti · ti+1) : [Bi+2 → (· · · (Bn → A) · · · )]

Then, by propositional calculus with the last two formulas, we obtain:

t1 : B1 → .t2 : B2 → . · · · ti : Bi → .ti+1 : Bi+1 →
(·(c) · t1 · t2 · · · · · ti · ti+1) : [Bi+2 → (· · · (Bn → A) · · · )].

Thus, we have:

t1 : B1 → .t2 : B2 → . · · · tn : Bn → (·(c) · t1 · t2 · · · · · tn) : A.

and, by propositional calculus,

t1 : B1 ∧ t2 : B2 ∧ · · · ∧ tn : Bn.→ (·(c) · t1 · t2 · · · · · tn) : A.

Here, the desired property on terms is preserved.

III. Argument for the correctness of the Realization Algorithm.
We verify the correctness of the algorithm: every realized sequent obtained

in there is provable in J. We proceed from top to bottom in P . For an initial
sequent S of the form A =⇒ A or ⊥,Γ ⇒ ∆, Sr is an axiom of J. It is easily
checked that for every application of a rule, if the realizations of the upper
sequents are provable in J then so is that of the lower sequent, except the case
when two branches of a positive tree merge via ‘c’ or logical inferences. These
cases are similarly treated. We handle the case of ∧ : r here.

B(2C),Γ =⇒ ∆, D B(2C),Γ =⇒ ∆, E

B(2C),Γ =⇒ ∆, D ∧ E ∧ : r

Here, 2C occurs negatively in B and positively in the whole sequent. Sup-
pose that the upper sequent is realized as follows.

Br(s : Cr),Γr =⇒ ∆r, Dr Br(t : Cr),Γr =⇒ ∆r, Er
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It is easily seen that we can replace the related occurrences of s (the in-
dicated term of s : Cr), corresponding to some branches of the positive tree
in P , with s + t, keeping all the inferences in J; and we can do the same for
the related occurrences of t (the indicated term of t : Cr), corresponding to
other branches of the positive tree in P . Then we obtain a proof of the realized
sequent

Br((s+ t) : Cr),Γr =⇒ ∆r, Dr Br((s+ t) : Cr),Γr =⇒ ∆r, Er

Thus, we can know the realization of the lower sequent of ∧ : r is provable
by propositional inferences (corresponding to ∧ : r) in J.

IV. Argument for correctness of the Rewriting Algorithm.
We consider only the case of the conjunct Xa = 2i(2B(2) → B(1)). The

other cases can be treated similarly. Let B(1) and B(2) be occurrences of B
which have become Br1 and Br2 by the realization, respectively. In the proof
P in K, there can be some applications of →: l to introduce 2B(2) → B(1).

P1 P2

.. . .. . .. . ......

.. . .. . .. . ......

Γ =⇒ ∆,2B(2) B(1),Γ =⇒ ∆

2B(2) → B(1),Γ =⇒ ∆
→: l

...

2i(2B(2) → B(1)), X
−(α, n, L) =⇒ A

In the subproof P1, there can be applications of →: r introducing B(2).

...

2C1 ∧ · · · ∧2Cn,Σ =⇒ Θ,2D1 ∨ · · · ∨2Dm

Σ =⇒ Θ,2C1 ∧ · · · ∧2Cn → 2D1 ∨ · · · ∨2Dm
→: r

.. . .. . .. . ......

Γ =⇒ ∆,2B(2)

By the Realization Algorithm, the principal formula of such an application
of →: r becomes of the form:

w1 : Cr1 ∧ · · · ∧ wn : Crn → t′1 : Dr
1 ∨ · · · ∨ t′m : Dr

m

Here, each t′i is a subterm of the corresponding ti in Br2; they become identical
when more + are added.

Fix any wi (1 ≤ i ≤ n). We show wi does not appear in any Crj or Dr
k.
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There can be several occurrences of 2Ci the 2 of which belongs to the same
negative tree and is realized to wi. Since they must be contracted eventually
in P , it cannot appear in any Cj or Dk.

Also, there can be occurrences of 2E which is the right principal formula
of applications of 2 : r having a left principal formula 2Ci and is realized to
wi. 2E may be some 2Dk. Two formulas (Cj and 2E) (j = i or j 6= i) and
(Dk and 2E) are never contracted in cut-free P . This is because to contract
such two, Cj of 2Cj or Dk of 2Dk must have 2E as a subformula and 2E
should have one more 2 outside itself. However, since the rule 2 increases the
number of 2 by one for each auxiliary formula, 2Cj or 2Dk would have also
one more 2 outside. Thus, such two formulas are never contracted. 9

Hence, firstly, the realization inside each Ci and Dk does not use any vari-
able wi (1 ≤ i ≤ n), and (Step 1) does not change the realization of any Ci or
Dk. 10

Next, the root of the negative tree which is associated with wi appears inside
Xa and is obviously the only negative occurrence of wi in the end-sequent, while
the roots of the positive trees associated with terms containing wi can appear
inside or outside Xa = 2i(2B(2) → B(1)) in the end-sequent. So, secondly, for
other part of X(α, n, L) → A than Xa, (Step 1) can replace only the positive
occurrences of variables of wi(1 ≤ i ≤ n).

Thus, the execution of (Step 1) guarantees that the antecedents of Br1 and
Br2 become identical and satisfies the desired property (ii).

Concerning (Step 2), we turn to look at P2. In the subproof P2, there can
be applications of →: l introducing B(1).

...

Σ =⇒ Θ,2C1 ∧ · · · ∧2Cn 2D1 ∨ · · · ∨2Dm,Σ =⇒ Θ

2C1 ∧ · · · ∧2Cn → 2D1 ∨ · · · ∨2Dm,Σ =⇒ Θ
→: l

.. . .. . .. . ......

B(1),Γ =⇒ ∆

By the Realization Algorithm, the principal formula of such an application
of →: l becomes of the form:

s′1 : Cr1 ∧ · · · ∧ s′n : Crn → z1 : Dr
1 ∨ · · · ∨ zm : Dr

m

9 This is formally proved by induction on the number of applications of rules between each
2 rule which introduce some 2Cj and the end-sequent.
10 In other words, we do not have a self-referential realization on any 2Ci and 2Dk. Generally,
this kind of self-reference phenomenon can be avoided in realization of the modal logic K and
D, which was shown in Kuznets [24]. Here, we proved the possibility to avoid self-referentiality
for a specific form of formulas in a cut-free proof in K.
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Here, each s′i is a subterm of the corresponding one in Br1; they become iden-
tical when more + are added.

Fix any zi (1 ≤ i ≤ m). There can be applications of 2-rule which have
2Di as a left principal formula. Let 2E be the right principal formula of any
such application of 2-rule. By a similar argument to P1, 2E cannot merge
with any Cj or Dk. So, the realization does not use any zi there, and (Step 2)
does not change any Crj or Dr

k.
Moreover, in the subproof above the left upper sequent of the application

of →: l, there is no such application of 2-rule. Because: if there is, 2Di

appears in the lower sequent of it, it must be contracted below the →: l with
the occurrence of 2Di in the right upper sequent of the→: l, but it contradicts
(\\). Therefore, 2E never merges with any 2Ci. (So, what cannot merge with
2E is not only Ci but 2Ci.) Hence, no term of sj (1 ≤ j ≤ n) contains any zi,
and (Step 2) does not change any sj . This guarantees that (Step 2) does not
change the outcome of (Step 1), and we obtain non circularity of the Rewriting
Algorithm. 11

Finally, by a similar argument to P1, for other part of X(α, n, L) → A
than Xa, (Step 2) can replace only the positive occurrences of variables of
zi(1 ≤ i ≤ n).

Thus, the execution of (Step 2) guarantees that the succedents of Br1 and
Br2 become identical, the antecedents remain untouched, and satisfies the de-
sired property (ii). Note that after each step of the rewriting process, the
obtained figure is surely a proof in J.
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The ‘Long Rule’ in the Lambek Calculus with
Iteration: Undecidability without Meets and

Joins

Stepan Kuznetsov 1
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8 Gubkina St., Moscow 119991, Russia

Abstract

We consider the Lambek calculus extended with positive iteration as a unary con-
nective. The choice of positive iteration, not Kleene star, is dictated by Lambek’s
antecedent non-emptiness restriction. Usually iteration is axiomatized either by an
inductive schema or by an ω-rule. We consider an intermediate system with a rule
which we call the ‘long rule,’ which reduces iteration of A to explicit treatment of
powers of A up to the k-th one, and reusing iteration in the form Ak · A+. In the
presence of additive disjunction (union), the ‘long rule’ is easily derivable. For the
‘pure’ Lambek calculus without additives this is not the case. For the system with
the ‘long rule’ we prove undecidability. We also investigate connections of this system
with the standard inductive-style one.

Keywords: Lambek calculus, iteration, undecidability

1 Introduction

Iteration, or Kleene star, is one of the most basic and at the same time one
of the most intriguing algebraic operations appearing in theoretical computer
science. Following the line of work by Pratt [23] and Kozen [12], we con-
sider substructural (algebraic) non-commutative logics with two implications
(divisions) and iteration as a modality (cf. [24, § 9.5]). The idea of division
operations we consider throughout this paper goes back to Krull [14]. From
the logical point of view divisions were introduced in the Lambek calculus [19].
The Lambek calculus is a non-commutative intuitionistic variant of Girard’s
linear logic [7], in the multiplicative-only language (see Abrusci [1]). Thus, the
system we are going to consider is the Lambek calculus (or non-commutative
intuitonistic multiplicative-only linear logic) extended with iteration.
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Action logic, denoted by ACT and introduced by Pratt and Kozen, in-
cludes, besides divisions and iteration, also lattice operations: join and meet.
Thus, action logic can be viewed as an extension of the multiplicative-additive
(‘full’) Lambek calculus. Following the standard definition of Kleene star as a
fixed point, Pratt axiomatizes it using an induction axiom (‘pure induction’).
In contrast, later works of Buszkowski and Palka [3,21,5] feature a stronger
system called infinitary action logic, ACTω, with an ω-rule for Kleene star.
Buszkowski and Palka show that ACTω is Π0

1-complete. Thus, it is undecid-
able and strictly stronger than action logic with induction axioms/rules of any
kind. (As noticed by the author in [16], there exist variations of induction
rules which yield systems which are strictly between ACT and ACTω.) The
question of decidability for ACT, posed by Kozen in 1994, was recently solved,
by the author of this paper, negatively [18]. This undecidability result applies
to the whole range of systems between ACT and ACTω. Moreover, its mod-
ification [17] gives Σ0

1-completeness for any logic in this range, provided it is
recursively enumerable.

This paper continues the line of [18] and [17]. We now focus on the extension
of the Lambek calculus with iteration, but without join and meet. Another
distinctive feature of the system considered here is the so-called Lambek’s non-
emptiness restiction. Algebraically it means that we allow models without the
unit. Lambek’s restriction was originally motivated by linguistic applications
of the Lambek calculus (see [20, § 2.5]). Here it will help to simplify some of
the technicalities in the proofs. We conjecture that our results will also be valid
without Lambek’s restriction. However, we do not yet claim this, since some
technicalities depend on the non-emptiness restriction.

In the presence of Lambek’s restriction, we cannot introduce Kleene star
itself: one of the axioms for Kleene star, 1 ` A∗, includes the unit (empty
antecedent). Instead, we introduce positive iteration, A+. Interestingly, in his
pioneering work [10], Kleene himself also avoided using the unit (‘empty event’)
and introduced a binary iteration operation A∗B, which means A∗ ·B (“several
times A, then B”). In Kleene’s notation, A+ is A ∗A.

2 Preliminaries

Let us formally introduce the Lambek calculus with positive iteration, denoted
by L+. Formulae of L+ are built from variables using three binary connectives:
· (product), \ (left division), / (right division), and one unary connective: +

(positive iteration). We formulate L+ as a sequent calculus, though cut is,
unfortunately, not going to be eliminable. Sequents of L+ are expressions of
the form A1, . . . , An ` B, where A1, . . . , An, B are formulae, n ≥ 1 (empty
antecedents are disallowed). Formulae are denoted by capital Latin letters;
capital Greek letters stand for sequences of formulae, possibly empty.

The core of L+ is the Lambek calculus L, with the following axioms and
rules of inference:

A ` A
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Π ` A Γ, B,∆ ` C
Γ,Π, A \B,∆ ` C

A,Π ` B
Π ` A \B , where Π is non-empty

Π ` A Γ, B,∆ ` C
Γ, B /A,Π,∆ ` C

Π, A ` B
Π ` B /A , where Π is non-empty

Γ, A,B,∆ ` C
Γ, A ·B,∆ ` C

Π ` A ∆ ` B
Π,∆ ` A ·B

Π ` A Γ, A,∆ ` C
Γ,Π,∆ ` C (cut)

Axioms and rules for iteration reflect the idea that, algebraically, a+ should
be the least (that is, the strongest) b such that a ` b and a · b ` b:

A ` A+ A,A+ ` A+

A ` B A,B ` B
A+ ` B

As one can see, iteration here is axiomatized in a non-sequential style; thus,
cut is not eliminable in L+. Unfortunately, no cut-free sequential version for
the inductive axiomatization of iteration is known, in the presence of divisions.
Unsuccessful attempts were taken by Jipsen [9] and Pentus [22]. For the logic
of Kleene algebras, without division (but with join), a cut-free circular hyper-
sequential system was constructed by Das and Pous [6]. This became possible,
because for Kleene algebras the inductively axiomatized logic is complete, that
is, admits the ω-rule. For systems with division operations, this is not the case
due to complexity reasons (a recursively enumerable set of sequents could not
coincide with a Π0

1-hard one).
As shown by Pratt [23], in the presence of division operations left iteration

is also right. This means that the following axiom and rule are derivable in L+:

A+, A ` A+

A ` B B,A ` B
A+ ` B

A stronger version of L+ is obtained by introducing the ω-rule for iteration:

Γ, A,∆ ` B Γ, A,A,∆ ` B Γ, A,A,A,∆ ` B . . .

Γ, A+,∆ ` B

Axioms for iteration can also be reformulated in a sequential style:

Γ1 ` A . . . Γn ` A
Γ1, . . . ,Γn ` A+

(n ≥ 1)

and in this infinitary system, denoted by L+
ω, cut is eliminable. This is essen-

tially due to Palka [21], with necessary modifications connected with Lambek’s
restriction.

Adding join (∨) and meet (∧) with the following rules:

Γ, A1,∆ ` C Γ, A2,∆ ` C
Γ, A1 ∨A2,∆ ` C

Π ` Ai
Π ` A1 ∨A2

(i = 1, 2)
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Γ, Ai,∆ ` C
Γ, A1 ∧A2,∆ ` C

(i = 1, 2)
Π ` A1 Π ` A2

Π ` A1 ∧A2

to L+ and L+
ω yields ACT+ and ACT+

ω respectively. These are positive vari-
ants of ordinary and infinitary action logic. Complexity results for ACT+ and
ACT+

ω can be proved by slight modifications of the proofs for systems with-
out Lambek’s restriction and with Kleene star instead of positive iteration.
Thus, due to Buszkowski [3] and Palka [21] ACT+

ω is Π0
1-complete; ACT+ is

undecidable [18] (more precisely, Σ0
1-complete [17]).

In the infinitary case, Buszkowski’s Π0
1-hardness result can be strengthened:

L+
ω, the system without join and meet, is already Π0

1-hard [15]. In this paper,
we investigate the possibility of performing a similar strengthening of the un-
decidability result for ACT+ [18] to L+. Namely, we prove undecidability not
for L+ itself, but for a system very closely related to L+.

An important component of the undecidability proof for ACT+ is the so-
called ‘long rule’ [18], formulated as follows:

A ` B A,A ` B . . . Ak ` B Ak, A+ ` B
A+ ` B

Actually, this is a series of rules parametrized by k. In the presence of ∨,
this rule can be easily derived, for any k, using cut with A+ ` A ∨ A2 ∨ . . . ∨
Ak ∨ (Ak ·A). This can be also performed without ∨, but with ∧ and division
operations [17]. Notice that the ‘long rule’ itself includes neither ∨, nor ∧, but
its derivation in ACT+ requires one of these connectives.

By L+
` we denote L+ with the ‘long rule’ added as a rule of inference. More

precisely, we include instances of the ‘long rule’ for each k.
The rest of this paper is organized as follows. In Section 3, we prove un-

decidability of L+
` . In Section 4, we show that, unlike ACT+ and L+

ω, in L+

the ‘long rule’ is not derivable. The question whether a weaker property, ad-
missibility of the ‘long rule’ in L+, holds is left open. Section 5 includes some
concluding remarks and speculations.

We conclude this section by showing that the ‘long rule’ is derivable in L+
ω

and presenting a contextified (sequent-style) version of the ‘long rule.’

Lemma 2.1 The ‘long rule’ is derivable in L+
ω.

Proof. In L+
ω, one can easily derive An ` A+ for any n ≥ 1 (just use the right

rule for iteration with Γ1 = . . . = Γn = A).
Now, given the premises of the ‘long rule,’ let us establish Am ` B for any

m ≥ 1. Indeed, if m ≤ k, this sequent is explicitly given. If m > k, then we
use cut:

Am−k ` A+ Ak, A+ ` B
Am ` B (cut)

Now A+ ` B is derived by the ω-rule. 2
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Lemma 2.2 The following ‘sequential version’ of the ‘long rule’ is derivable
in L+

` :

Γ, A,∆ ` B Γ, A,A,∆ ` B . . . Γ, Ak,∆ ` B Γ, Ak, A+,∆ ` B
Γ, A+,∆ ` B

Proof. If Γ = G1, . . . , Gs, let •Γ = G1 · . . . · Gs; similarly for •∆. Now
Γ, A+,∆ ` B is derived by cut from A+ ` •Γ \B / •∆ and Γ, •Γ \B / •∆,∆ `
B. The latter is derivable in L; the derivation for the former is by the ‘long
rule’:

Γ, A,∆ ` B
A ` •Γ \B / •∆ . . .

Γ, Ak,∆ ` B
Ak ` •Γ \B / •∆

Γ, Ak, A+,∆ ` B
Ak, A+ ` •Γ \B / •∆

A+ ` •Γ \B / •∆

2

3 Undecidability of L+
`

Theorem 3.1 The derivability problem in L+
` is undecidable.

The proof of Theorem 3.1 combines ideas of the undecidability proof for
ACT from [18] and the Π0

1-hardness proof for L+
ω from [15].

First we encode several kinds of Turing machine behaviour via totality-like
properties of context-free grammars. Then we follow the idea of Buszkowski [3]
and embed these grammars into the Lambek environment. However, instead of
the standard embedding (which goes back to Gaifman [2]) we use Safiullin’s [25]
construction of Lambek grammars with unique type assignment.

We consider only deterministic Turing machines, and suppose that each
Turing machine has a designated cycling state qc in which it gets stuck. (Rules
for qc are as follows: 〈qc, a〉 → 〈qc, a,N〉 for any letter a of the inner alphabet; N
stands for “no move.”) The cycling state can be added to any Turing machine,
even if it is not necessary: in this case it can be just made unreachable.

Following the standard way (see [13, Lect. 35]), we encode a configuration
of our Turing machine as b1 . . . bi−1qbibi+1 . . . bn, if the machine is in state q,
observing the i-th letter of the word b1 . . . bn in its memory. Protocols are
sequences of configurations separated by a special character #, also beginning
and ending with #. 2 Let Σ be the alphabet for protocols (including the inner
alphabet, the set of states, and #). A protocol is correct, if each configuration,
starting from the second one, is the successor of the previous configuration. A
protocol is a halting one, if the last configuration has no successor (the machine
cannot proceed one more step forward).

Given a Turing machine M and an input word x, one can effectively con-
struct (see [13, Lect. 35], for example) a context-free grammar GM,x which

2 In some other presentations of this construction in textbooks, the code of every second
configuration is inverted. For our purposes, this is irrelevant.
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generates all words over Σ, except the correct halting protocol of M on x (if
it exists). This construction gives a reduction of the non-halting problem for
Turing machines to the totality problem for context-free grammars, and thus
establishes Π0

1-hardness of the latter.
We suppose that GM,x is in Greibach normal form [8] and extend it by extra

rules for capturing the easy case of non-halting—getting stuck in qc:

S ⇒ #CU

U ⇒ aU for any a ∈ Σ

U ⇒ a for any a ∈ Σ

C ⇒ aC for any a ∈ Σ

C ⇒ qcU

C ⇒ qc

In these rules, non-terminal U generates all non-empty words and C generates
all words including qc. Thus, the rule S ⇒ #CU captures the idea that any
word including qc could not be a correct halting protocol.

We also suppose that GM,x has a subgrammar starting with a non-terminal
E which generates all words which are incorrect protocols and cannot be fixed
by extending to the right. Due to greibachization, the leading # gets removed.
For example, such a “bad” protocol could include a configuration which is
followed by another configuration which is not its successor. For more details,
see [18,17]. We express the idea that such a “bad” protocol cannot be fixed,
by adding the following rules:

S ⇒ #EU, S ⇒ aU for a 6= #.

(The second rule states that a good protocol should always start with #.)
We denote the extended grammar by G′M,x.
Next, in order to use reasoning in the style of [15], we restrict ourselves to

a two-letter alphabet {e, f}. Let Σ = {a1, a2, . . . , aN} and define a homomor-
phism h : Σ+ → {e, f}+ on letters as follows:

h(ai) = ef i = e f . . . f︸ ︷︷ ︸
i times

.

(Then h is uniquely propagated to words as a homomorphism.)
By h(G′M,x) we denote the image of G′M,x under homomorphism h. In order

to maintain it in Greibach normal form, for each old rule of the form A⇒ aiBC
we introduce a series of rules

A⇒ eX1, X1 ⇒ fX2, . . . , Xi−1 ⇒ fXi, Xi ⇒ fBC,

where X1, . . . , Xi are new non-terminal symbols (different for each rule of the
original grammar). Translations for rules of the forms A⇒ aiB and A⇒ ai is
similar.
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Next, let us construct the grammar G̃M,x. We extend h(G′M,x) with rules
generating words with subwords of the form efm, where m > N = |Σ| (these
words are not in the image of h):

S ⇒ eF≥NW F ⇒ fF

S ⇒ eF≥N F ⇒ f

S ⇒ eFS′ F≥N ⇒ fF≥N−1
S′ ⇒ eFS′ F≥N−1 ⇒ fF≥N−2
S′ ⇒ eF≥NW . . .

S′ ⇒ eF≥N F≥3 ⇒ fF≥2
W ⇒ eFW F≥2 ⇒ fF

W ⇒ eF

Here S′, W , F , and F≥m (m = 2, . . . , N) are new non-terminal symbols.
Finally, we replace U with W in the ‘old’ part of the grammar. This will

not alter the language, since any word derived from W is either also derived
from U , or includes a subword of the form efm with m > N , which is of course
not an h-image of a correct protocol.

This finishes the construction of G̃M,x. From this construction, one can
easily see the following property:

Lemma 3.2 The grammar G̃M,x generates all words of the language generated
by the regular expression (ef+)+ if and only if M does not halt on x. If M does

halt on x, then G̃M,x generates all words of this language, except h(π), where
π is the halting protocol of M on x.

The next step uses Safiullin’s construction of Lambek grammar with unique
type assignment. This result was published by Safiullin as a short note [25]
without detailed proofs. A complete exposition is presented in the Appendix
of [15]. We shall need Safiullin’s result for grammars over a two-letter alphabet
in the following form.

Theorem 3.3 (Safiullin) Let G̃ be a context-free grammar over alphabet
{e, f} in Greibach normal form. Then there exist formulae E, F , and HA

for each non-terminal A, such that the following holds:

(i) a non-empty word w is generated by G̃ if and only if the sequent Γw ` HS

is derivable in L, where Γw is a sequence of formulae obtained from w
by replacing e with E and f with F (e.g., for w = effee we have Γw =
E,F, F,E,E);

(ii) for each rule of G̃ we have the following sequents derivable in L:
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Rule Sequent
A⇒ eBC E,HB , HC ` HA

A⇒ fBC F,HB , HC ` HA

A⇒ eB E,HB ` HA

A⇒ fB F,HB ` HA

A⇒ e E ` HA

A⇒ f F ` HA

In this theorem, the first statement is essentially the result on transforming
a context-free grammar into a Lambek grammar with unique type assignment
(E is the type for e, F for f , and HS is the goal type). The second statement is
actually a technical lemma (induction step) for proving the “only if” direction
in the first statement. However, we shall need the second statement explicitly.
Further details of Safiullin’s construction are irrelevant for us, we use it as a
black box.

Using induction and statement (ii), one can easily prove a strengthening of
the “only if” part of statement (i). Namely,

(iii) if a word α in the alphabet of both terminal and non-terminal symbols
is derivable in G from a non-terminal A (notation: A ⇒∗ α), then the
sequent Γα ` HA is derivable in L.

Here Γα is obtained from α by replacing e with E, f with F , and each non-
terminal B by the corresponding HB .

Consider the sequent

(E · F+)+ ` HS ,

where E, F and HS are obtained from G̃M,x by the construction from The-
orem 3.3. Now we proceed as in [18], proving one direction for L+

ω and non-
halting of M on x and the other direction for L+

` and M getting stuck in qc
while running on x.

Lemma 3.4 The sequent (E · F+)+ ` HS is derivable in L+
ω if and only if M

does not halt on x.

Proof. The ω-rule is invertible, by cut with A, . . . , A→ A+. Thus, (E ·F+)+ `
HS is derivable in L+

ω if and only if so is Γw ` HS for any word w from the
language of the regular expression (ef+)+. This sequent does not include the
iteration modality, so its derivability in L+

ω is equivalent to its derivability in
L. By Theorem 3.3, derivability of all these sequents is equivalent to the fact
that GM,x generates all words satisfying the regular expression (ef+)+. By
Lemma 3.2, this is equivalent to non-halting of M on x. 2

Lemma 3.5 If M gets stuck in qc when running on x, then (E · F+)+ ` HS

is derivable in L+
` .

Proof. Here the ‘long rule’ finally comes into play. Let n be the length (in
symbols, not in steps) of the protocol of M running on x until it reaches qc.
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Using the ‘long rule,’ we derive (E · F+)+ ` HS from the following sequents:

(E,F+)k ` HS k ≤ n
(E,F+)n, (E · F+)+ ` HS

The first series of sequents, (E,F+)k ` HS , is also derived by exhaustive
application of the ‘long rule,’ in its form with sequential contexts (Lemma 2.2),
up to N = |Σ|. The sequents we now have to derive are of the form Π1, . . . ,Πk `
HS , where k ≤ n and each Πi is either E,F s, where s ≤ N , or E,FN , F+.

If all Πi’s are of the form E,F s, then Π1, . . . ,Πk ` HS does not include +

and is derivable in L by applying Lemma 3.4 and inverting the ω-rule.
The more interesting case is when our sequent includes E,FN , F+. Let Πi0

be the first Πi of this form. First we notice that F+ ` HF is derivable in L+
` :

F ` HF F,HF ` HF

F+ ` HF

Here the premises are derivable by Theorem 3.3(ii), due to the rules F ⇒ f
and F ⇒ fF . Thus, by cut, we can replace E,FN , F+ by E,FN , HF .

Moreover, since F≥N ⇒∗ fNF , we can apply cut with FN , HF ` HF≥N

and replace Πi0 with E,HF≥N
. For i 6= i0 we similarly replace Πi with E,HF ,

using either F ⇒∗ fNF or F ⇒∗ fk. Thus, the whole sequent is now of the
form

E,HF , . . . , E,HF , E,HF≥N
, E,HF , . . . , E,HF ` HS ,

which is derivable due to the following derivation in G̃M,x:

S ⇒ eFS′ ⇒∗ eF . . . eFS′ ⇒ eF . . . eFeF≥NW ⇒∗ eF . . . eFeF≥NeF . . . eF

for i0 6= 1, k and similarly (but using different rules of G̃M,x) for i0 = 1 and
i0 = k.

Finally, the second sequent, (E,F+)n, (E·F+)+ ` HS , is derived in a similar
fashion. We applying the ‘long rule’ with N exhaustively to the instances of
F+ in (E,F+)n and consider two cases for premises. If at least one of the
instances of E,F+ becomes E,FN , F+, then we again reduce to

E,HF , . . . , E,HF , E,HF≥N
, E,HF , . . . , E,HF , (E · F+)+ ` HS

Next, we notice derivability of (E · F+)+ ` HW :

F+ ` HF E,HF ` HW

E,F+ ` HW

(cut)

E · F+ ` HW

F+ ` HF E,HF , HW ` HW

E,F+, HW ` HW

(cut)

E · F+, HW ` HW

(E · F+)+ ` HW

The premises are derivable by Theorem 3.3(ii) due to W ⇒ eF and W ⇒ eFW ;
F+ ` HF was established above.
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Thus, we reduce to

E,HF , . . . , E,HF , E,HF≥N
, E,HF , . . . , E,HF , HW ` HS ,

which is derivable by statement (iii) below Theorem 3.3 due to

S ⇒∗ eF . . . eFeF≥NeF . . . eFW.

The second, more interesting case is when each instance of F+ becomes F si

for some i:
E,F s1 , . . . , E, F sn , (E · F+)+ ` HS .

Recalling (E · F+)+ ` HW (see above), we reduce to

E,F s1 , . . . , E, F sn , HW ` HS .

Next, this sequent can be rewritten in the form

Γh(w), HW ` HS ,

where w = as1 . . . asn . Since n is the number of letters in the protocol sufficient
for M on x to reach the cycling state qc, the word w either includes qc, or is
an incorrect (“bad”) protocol, or does not start with #.

In the first case, we have w = #w′ and C ⇒∗ w′ in G′M,x. Thus, we get

C ⇒∗ h(w′) in G̃M,x, and by statement (iii) derive

Γh(w′) ` HC .

Gathering things together and cutting, we get

Γh(#), HC , HW ` HS ,

which is derivable via statement (iii) and S ⇒∗ h(#)CW .
The case where w is a “bad” protocol is similar, using S ⇒∗ h(#)EW .

Finally, if w starts with as1 6= # we have

Γh(as1 ),Γh(w′), HW ` HS ,

which is derivable by cut from Γh(w′), HW ` HW and Γh(as1 ), HW ` HS . These
are derivable by statement (iii), using W ⇒∗ h(w′)W and S ⇒∗ as1W .

This finishes the proof of our key lemma. 2

Now we proceed exactly as in [18]. Let

H = {〈M, x〉 |M halts on x}
H = {〈M, x〉 |M does not halt on x}
C = {〈M, x〉 |M gets stuck in qc while running on x}
K = {〈M, x〉 | (E · F+)+ ` HS , where E, F , and HS come from G̃M,x,

is derivable in L+
` }
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By Lemma 3.4 K ⊆ H (recall that L+
` is a subsystem of L+

ω by Lemma 2.1);
by Lemma 3.2 C ⊆ K. Since C and H are recursively inseparable, K is unde-
cidable, thus so is the derivability problem for L+

` . Theorem 3.1 proved.
Following the reasoning with effective inseparability of C and H, presented

in [17], we can show Σ1-completeness of L+
` and, moreover, any recursively

enumerable logic in the range between L+
` and L+

ω. This is performed exactly
as for action logic with meet and join.

4 Non-derivability of the ‘long rule’ in L+

As one can see from the previous section, the ‘long rule’ is a crucial component
of the undecidability proof. If we could derive this rule in L+, as it can be done
for ACT [18], we would get undecidability for L+.

Unfortunately, as we show in this section, this is not the case: the ‘long
rule’ is not derivable in L+.

Before proceeding further, let us notice a subtle difference between deriv-
ability and a weaker notion of admissibility of a new rule in a calculus. A rule
is called derivable, if there exists a derivation of the conclusion of this rule with
its premises as hypotheses. This derivation is allowed to use cut. On the other
hand, a rule (rule scheme) is admissible, if, for any substitution of concrete
formulae for meta-variables A, B, C, . . . , derivability of its premises implies
derivability of its conclusion.

Clearly, any derivable rule is admissible. The converse implication, however,
does not hold. For example, the rule A`A·A

B`C is admissible, but not derivable in
L+. The reason is that A ` A · A cannot be derivable for any A. This can be
proved by interpretation on language models, see [4]. Indeed, consider cofinite
languages over an alphabet. Product (pairwise concatenation) and divisions
(defined according to the rules of the Lambek calculus) of cofinite languages
yield again cofinite languages. Thus, if we interpret all variables as cofinite
languages, then the interpretation of A will be also cofinite, thus, non-empty.
But then the shortest word of A does not belong to A · A (the empty word
is not allowed due to Lambek’s non-emptiness condition). Thus, the rule in
question is admissible ex falso. On the other hand, it is clearly non-derivable,
since B ` C is absolutely foreign to A ` A ·A. Unfortunately, the author is not
aware of more interesting examples of admissible non-derivable rules—that is,
in which there exist derivable instances of the premises.

We claim only non-derivability of the ‘long rule.’ Its admissibility in L+ is
left as an open question.

Theorem 4.1 The special case of the ‘long rule’ for k = 1, 3

A ` B A,A+ ` B
A+ ` B

is not derivable in L+.

3 We could call it ‘short rule.’
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Proof. We prove non-derivability of this rule by presenting an algebraic
counter-model. The appropriate class of algebraic models for L+ is formed
by residuated semigroups with iteration (RSGI), defined as follows.

An RSGI is a partially ordered algebraic structure (S,�, ·, \, /,+), such
that:

(i) � is a partial order on S;

(ii) (S, ·) is a semigroup;

(iii) \ and / are residuals of · w.r.t. �:

x \ y = max
�
{z | x · z � y}, y / x = max

�
{z | z · x � y};

(iv) for each x ∈ S, x+ = min
�
{y | x � y and x · y � y}.

An interpretation function v is just a mapping of variables to elements of
S; then it is propagated to formulae. A sequent A1, . . . , An ` B is true under
v, if v(A1) · . . . · v(An) � v(B).

Clearly, the following strong form of soundness holds for L+ w.r.t. RSGI: if
a sequent is derivable from a set of hypotheses, and under a given v all these hy-
potheses are true, then so is the goal sequent. (The proof of soundness involves
using monotonicity of · w.r.t. �, which is due to Lambek [19]. Completeness
also holds, by a Lindenbaum – Tarski argument, but we shall not need it.)

We shall present an RSGI and its two elements a, b ∈ S, such that a � b,
a · a+ � b, but a+ 6� b. This will do the job, since if the rule in question were
derivable, then, in particular, one could derive p+ ` q from p ` q and p, p+ ` q
(p and q are variables). This conflicts soundness, by taking v(p) = a, v(q) = b.

Let us start with a standard example of RSGI, which reflects Lambek’s
original linguistic motivations,—the algebra of formal languages. For us, it
is sufficient to consider languages without the empty word over a one-letter
alphabet Σ = {s}. Such languages are in one-to-one correspondence with sets
of non-zero natural numbers (the word s . . . s︸ ︷︷ ︸

n

is represented by n). We denote

the set of all such sets by P(N+). The elements ∅ and N+ of P(N+) (the empty
and the total language) will play special rôles in our construction. The set of
all other languages is P0(N+) = P(N+)− {∅,N+}.

Our RSGI will be P(N+) extended by two extra elements:

S = P(N+) ∪ {ξ, η} = P0(N+) ∪ {∅,N+, ξ, η}.

The partial order � on S is defined as follows:

• on P(N+), the partial order is the subset relation;

• for any x ∈ P0(N+) ∪ {∅}, we have x ≺ ξ; ξ and N+ are incomparable;

• η is the maximal element: for any x ∈ P(N+) ∪ {ξ}, we have x ≺ η.

The product operation on S is commutative and defined as follows:
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• for x, y ∈ P(N+), product is defined as pairwise addition:

x · y = {n+m | n ∈ x,m ∈ y};
• ∅ · ξ = ∅ · η = ∅;

• ξ · x = η for any x 6= ∅;

• η · x = η for any x 6= ∅.

Associativity of product, (x · y) · z = x · (y · z), is proved as follows. The
interesting case is when at least one of x, y, z is ξ or η: otherwise we refer to
associativity of formal language multiplication. If one of x, y, z is ξ or η and
another one is ∅, then (x·y)·z = x·(y ·z) = ∅; otherwise (x·y)·z = x·(y ·z) = η.

Now let us define residuals, that is, prove existence of the corresponding
maxima. Since our semigroup is commutative, we shall always have x \ y =
y / x, so it is sufficient to prove existence of x \ y.

• For x, y ∈ P(N+), if x 6= ∅, we have

x \ y = {n ∈ N+ | (∀m ∈ x)n+m ∈ y},

as in the algebra of formal languages. Indeed, inside P0(N+) this is the
maximal z such that x · z � y. As for ξ and η, we have (since x 6= ∅)
x · ξ = x · η = η 6� y.

• For any y we have ∅ \ y = η. Indeed, ∅ · z � y holds for any z (since
∅ · z = ∅), so we just take the maximum of the whole S.

• For any x, we have x \ η = η. Indeed, x · z � η holds for any z (since η is the
maximum).

• For any x ∈ P0(N+), we have x \ ξ = N+. Indeed, x · N+ belongs to P0(N+)
and therefore is below ξ in the sense of �. On the other hand, the only
two elements, which are not below N+, are ξ and η. For them we have
x · ξ = x · η = η 6� ξ.

• We also have N+ \ ξ = N+. This happens because of the lack of the empty
word (zero in N+): N+ · N+ = {n | n ≥ 2} � ξ. For ξ and η we have, again,
N+ · ξ = N+ · η = η 6� ξ.

• For any y 6= η, we have η \ y = ∅, since η ·∅ = ∅ ≺ y and η · z = η 6� y for
any z 6= ∅. (As shown above, η \ η = η.)

• Similarly, ξ \ η = η (shown above), and for any y 6= η we have ξ \ y = ∅ (in
particular, ξ \ ξ = ∅). Indeed, ξ ·∅ = ∅ ≺ y and ξ ·z = η 6� y for any z 6= ∅.

Finally, let us define iteration, that is, prove that for any x there exists
x+ = min�{y | x � y and x · y � y}.
• For x ∈ P(N+), its iteration x+ is defined traditionally: x+ = {n1+ . . .+nk |
k ≥ 1, ni ∈ x}. If x+ 6= N+, then it is indeed the necessary minimum: it is
the minimum in N+, and two other candidates, ξ and η, are above x+. The
case of x+ = N+ is a bit more interesting. Again, η � x+, so it is not a
rival; but ξ is incomparable with x+ = N+. Fortunately, ξ fails to satisfy the
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second condition on y to be considered as a candidate for x+. If x 6= ∅, then
x · ξ = η 6� ξ (if x = ∅, then x+ = ∅ 6= N+).

• ξ+ = η. Indeed, ξ+ should be ξ or η, and ξ does not suffice, since ξ ·ξ = η 6� ξ.
For η, everything is all right: ξ � η and ξ · η = η � η.

• η+ = η. Indeed, η � η and η · η = η � η. Smaller y’s are out of the game,
since η 6� y.

Having defined our specific RSGI S, now let a = {1} and b = ξ. We have:
a � b; a+ = N+, so a · a+ = {n | n ≥ 2} � b; but a+ 6� b (N+ and ξ are
incomparable). This finishes our proof. 2

An important observation on our RSGI S is that its partial order does
not form a lattice structure. Namely, N+ and ξ have no meet: any element
of P0(N+) is below both, and among them there is no maximal one. Dually,
a = {1} and a · a+ = {n | n ≥ 2} have no join: ξ and N+ are above both and
are incomparable. This is by design: once we have a lattice, or at least we have
a join of a and a · a+, we can apply the derivation of the ‘long rule’ in ACT+.

We also notice that in S iteration a+ is defined as a fixed point, not as a
supremum (that is, S is not *-continuous). Indeed, for a = {1} its iteration
a+ = N+ is the smallest y such that a � y and a · y � y. However, a+ is
not sup�{an | n ≥ 1}. Indeed, there are two incomparable upper bounds for
an = {n}, namely, N+ and ξ. The latter is a ‘fake’ iteration, since it is not a
fixpoint: a · ξ = η 6� ξ. The non-*-continuity of S is also for a good reason:
otherwise, S would model L+

ω, and in this system the ‘long rule’ is derivable
(Lemma 2.1).

5 Concluding Remarks

We have proved undecidability (and Σ1-completeness) of the Lambek calculus
with an inductively axiomatized positive iteration modality, extended with the
so-called ‘long rule’ of the form

A ` B A,A ` B Ak ` B Ak, A+ ` B
A+ ` B

This result refines the undecidability result for action logic [18], since now we
obtain undecidability for a system without additive connectives, meet and join
(∧ and ∨).

Another distinctive feature of this paper is the Lambek’s non-emptiness
restriction imposed on the calculus. We conjecture that the same results hold
without this restriction. However, this is left as an open question for further
research, since some technicalities, namely, Safiullin’s Theorem 3.3 and the
counter-model construction in Theorem 4.1, in their current state, depend on
Lambek’s restriction.

In action logic with meet and join, the ‘long rule’ is derivable; for the
multiplicative-only system L+ studied in this paper, this is not the case (The-
orem 4.1). The question of whether the ‘long rule’ is admissible in L+ is still
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open. If the answer happens to be positive, we shall immediately get undecid-
ability of L+ (since in this case L+ and L+

` derive the same set of sequents). If
the answer is negative, then L+

` is strictly stronger than L+, and complexity of
the latter remains a separate open problem.

Moreover, non-derivability and potential non-admissibility of the ‘long rule’
brings some light upon the old question on constructing a cut-free calculus for
action logic with inductive axiomatizations for iteration. As noticed in the
Preliminaries, for systems with inductive-style rules for iteration no cut-free
sequential calculi are known. The issues with the ‘long rule’ discussed in this
paper are actually conservativity issues. Since the ‘long rule’ is not derivable
in L+, this calculus is not a strongly conservative fragment of ACT+. Namely,
consider three sequents p ` q, p, p+ ` q, and p+ ` q (premises and conclusion
of the ‘long rule’). These sequents are formulated in the language of L+, without
∨ and ∧. Actually, they use only one connective, +. However, one can derive
the third one from the first and the second ones only in ACT+ (via a detour
through ∨), not in L+. If the ‘long rule’ happens to be non-admissible, ordinary
conservativity would also fail. In this case, in particular, it would be an open
question which sequents without ∨ and ∧ are derivable in ACT+—are these
sequents exactly theorems of L+

` , or do they form a larger set?
However, if ACT+ were axiomatized by a sequent calculus (even with a

non-standard notion of proof, like a circular one), it would enjoy conservativity.
Thus, in view of the issues with the ‘long rule,’ it looks reasonable to extend our
approaches for axiomatizing ACT+ and search for hypersequential formalisms
where ∨ or ∧ is incorporated into the meta-syntax (cf. Kozak’s system for
distributive full Lambek calculus [11]). Notice that the sequents appearing in
the ‘long rule’ do not include division operations (only product and iteration).
Thus, the same conservativity issues could potentially appear in the logics of
Kleene algebras and lattices without residuals.

These considerations are quite coherent with the complete cut-free circular
proof system for Kleene algebras presented by Das and Pous [6]. Their calculus
is hypersequential, introducing join (∨) on the meta-syntactic level to the right-
hand sides of sequents. The counter-example for cut-free cyclic provability in
a system with traditional sequents given by Das and Pous is A · A∗ ` A∗ · A,
which is quite close to our ‘short rule’ in Theorem 4.1.
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Abstract

A many-valued modal logic with connectives interpreted in the ordered additive group
of real numbers is introduced as a modal counterpart of the one-variable fragment of
a (monadic) first-order real-valued logic. It is shown that the logic is decidable and
admits an interpretation of the one-variable fragment of first-order  Lukasiewicz logic.
Completeness of an axiom system for the modal-multiplicative fragment is established
via a Herbrand theorem for its first-order counterpart. A functional representation
theorem is then proved for a class of monadic lattice-ordered abelian groups and used
to establish completeness of an axiom system for the full logic.

Keywords: Modal Logic, Ordered Groups,  Lukasiewicz Logic, Monadic Fragments.

1 Introduction

Many-valued modal logics with connectives interpreted in the ordered additive
group of real numbers have been studied in a wide range of different settings.
For example, modal logics based on the semantics of  Lukasiewicz logic with
truth values in the real unit interval have been considered as the basis for
fuzzy description logics (see, e.g., [2, 21, 29]), logics for reasoning about belief
and probabilities (see, e.g., [16–18,20]), a  Lukasiewicz mu-calculus [25], and as
a fragment of continuous logic [4]. Such logics have also been studied from a
purely algebraic perspective (see, e.g., [9,11,14,23]) and appear in the guise of
lattice-ordered groups (`-groups, for short) with a (co-)nucleus in the study of
semantics for substructural logics (see, e.g., [19,26]). The appeal of these logics
is clear: they make use of familiar arithmetical operations on the real numbers
and well-studied computational methods (e.g., linear programming), and they
relate to groups, arguably the most fundamental structures of classical algebra.

In [15], a minimal real-valued modal logic K(A) was defined as an extension
of Abelian logic, the logic of abelian `-groups, introduced independently in [24]
as a relevant logic and [8] as a comparative logic. Among the advantages of
focussing on modal extensions of Abelian logic are that the language is rich
enough to interpret other logics (e.g., modal extensions of  Lukasiewicz logic),

1 This research was supported by Swiss National Science Foundation grant 200021 184693.
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(B) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(C) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
( I ) ϕ→ ϕ
(A) ((ϕ→ ψ)→ ψ)→ ϕ

(+1) ϕ→ (ψ → (ϕ+ ψ))
(+2) (ϕ→ (ψ → χ))→ ((ϕ+ ψ)→ χ)
(0 1) 0
(0 2) ϕ→ (0→ ϕ)
(∧1) (ϕ ∧ ψ)→ ϕ
(∧2) (ϕ ∧ ψ)→ ψ
(∧3) ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ))
(∨1) ϕ→ (ϕ ∨ ψ)
(∨2) ψ → (ϕ ∨ ψ)
(∨3) ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)

ϕ ϕ→ ψ

ψ
(mp)

ϕ ψ

ϕ ∧ ψ (adj)

Fig. 1. An Axiom System for Abelian Logic

the semantics are based directly on structures studied intensively in algebra
and computer science, and there exists a natural separation between the group
(multiplicative) and lattice (additive) fragments of the logics. Indeed, in [15],
a sequent calculus, an axiom system, and a complexity result were obtained
for the modal-multiplicative fragment of K(A) as first steps towards addressing
the corresponding (much more challenging) problems for the full logic.

In this paper, we introduce a real-valued modal logic S5(A) as the modal
counterpart of the one-variable fragment of (monadic) first-order Abelian logic.
It is easily proved that S5(A) is decidable and admits an interpretation of the
one-variable fragment of first-order  Lukasiewicz logic axiomatized in [28]. The
main contribution of the paper lies rather with the two distinct methods used
to establish completeness results. First, we make use of a Herbrand theorem for
the first-order counterpart of S5(A) and basic facts from linear programming
to give a syntactic completeness proof for an axiomatization of the modal-
multiplicative fragment. For an axiomatization of the full logic, we give an
algebraic completeness proof using monadic abelian `-groups, which, similarly
to monadic Heyting algebras (see [5, 7]) and MV-algebras (see [9, 11,14]), may
be viewed as abelian `-groups with certain “relatively complete” subalgebras.
We adapt a method used in [9] to prove a functional representation theorem for
monadic MV-algebras to obtain a similar theorem for monadic abelian `-groups,
and then establish completeness with respect to the real-valued semantics via
a partial embedding lemma for linearly ordered abelian groups.
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2 A Real-Valued Monadic Logic

In this section, we introduce a many-valued modal logic defined over the ordered
abelian group R = 〈R,min,max,+,−, 0〉 and prove a Herbrand theorem for the
corresponding one-variable fragment of a (monadic) first-order Abelian logic.

Let LA be a propositional language with binary connectives +, →, ∧, and
∨, and a constant 0, where ¬ϕ := ϕ → 0, ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ),
0ϕ := 0, and (n+ 1)ϕ := ϕ+ (nϕ) (n ∈ N). Let us also denote by Fm(L) the
set of formulas for any propositional language L over a countably infinite set of
variables {pi | i ∈ N}. An axiomatization of Abelian logic — a single-constant
version of multiplicative additive intuitionistic linear logic extended with the
axiom schema (A) — is presented in Fig. 1 that is complete with respect to
both the logical matrix 〈R,R≥0〉 and the variety of abelian `-groups (defined
in Section 5).

Now let L2
A be LA extended with a unary connective 2, where 3ϕ := ¬2¬ϕ.

An S5(A)-model is an ordered pair M = 〈W,V 〉 consisting of a non-empty set
W and a function V : {pi | i ∈ N} × W → R such that for each i ∈ N the
function Vi : W → R; w 7→ V (pi, w) is bounded 2 ; V is then extended to the
function V : Fm(L2

A)×W → R as follows:

V (0, w) = 0 V (ϕ ∧ ψ,w) = min(V (ϕ,w), V (ψ,w))

V (ϕ+ ψ,w) = V (ϕ,w) + V (ψ,w) V (ϕ ∨ ψ,w) = max(V (ϕ,w), V (ψ,w))

V (ϕ→ ψ,w) = V (ψ,w)− V (ϕ,w) V (2ϕ,w) =
∧
{V (ϕ, u) | u ∈W}.

By calculation, also

V (¬ϕ,w) = −V (ϕ,w) and V (3ϕ,w) =
∨
{V (ϕ, u) | u ∈W}.

A formula ϕ ∈ Fm(L2
A) is said to be valid in M if V (ϕ,w) ≥ 0 for all w ∈ W .

If ϕ is valid in all S5(A)-models, it is called S5(A)-valid, written |=S5(A) ϕ.
The logic S5(A) corresponds (as expected) to the one-variable fragment

of a (monadic) first-order logic. Consider a first-order language with unary
predicate symbols P0, P1, . . . and constants c0, c1, . . .. We denote by Fm the
set of first-order formulas for this language defined using the propositional
connectives of LA and the universal quantifier ∀ over a countably infinite set
of object variables, defining (∃x)α := ¬(∀x)¬α. For convenience, we also often
write c̄ or x̄ to denote an n-tuple of constants or variables, and, given c̄ =
c1, . . . , cn and d̄ = d1, . . . , dm, let d̄ ⊆ c̄ stand for {d1, . . . , dm} ⊆ {c1, . . . , cn}.

A ∀A-interpretation I = 〈DI , vI〉 consists of a non-empty set DI and a
function vI that maps terms (constants and variables) to elements of DI , and
each Pi (i ∈ N) to a bounded function from DI to R. The function vI is
then extended to Fm by defining vI(Pi(t)) = vI(Pi)(vI(t)) for each i ∈ N and
term t, and then inductively, where vI [x 7→ a] denotes the map that sends x to

2 A function f : A→ R is bounded if there exists r ∈ R such that |f(a)| ≤ r for all a ∈ A.
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a and coincides elsewhere with vI ,

vI(0) = 0 vI(α ∧ β) = min(vI(α), vI(β))

vI(α+ β) = vI(α) + vI(β) vI(α ∨ β) = max(vI(α), vI(β))

vI(α→ β) = vI(β)− vI(α)) vI((∀x)α) =
∧
{vI [x 7→ a](α) | a ∈ D}.

We say that I satisfies α ∈ Fm if vI(α) ≥ 0 and that α is ∀A-valid, written
|=∀A α, if it is satisfied by all ∀A-interpretations.

Now let Fm1 denote the set of formulas in Fm that contain at most one
object variable x and no constants. For each ϕ ∈ Fm(L2

A), let αϕ ∈ Fm1 be
the result of replacing occurrences of 2 by (∀x) and occurrences of pi (i ∈ N)
by Pi(x), and, conversely, for any α ∈ Fm1, let ϕα ∈ Fm(L2

A) be the result
of replacing occurrences of (∀x) by 2 and occurrences of Pi(x) (i ∈ N) by pi.
Equivalences between S5(A)-validity and ∀A-validity then follow directly from
the preceding definitions.

Proposition 2.1 For any ϕ ∈ Fm(L2
A) and α ∈ Fm1,

|=S5(A) ϕ ⇐⇒ |=∀A αϕ and |=∀A α ⇐⇒ |=S5(A) ϕα.

It is not hard to check that ∀A-validity is preserved by all quantifier-shifts; that
is, for any α, β ∈ Fm, variable x that does not occur in β, and ? ∈ {+,∧,∨},

|=∀A (∀x)(α ? β)↔ ((∀x)α ? β) |=∀A (∃x)(α ? β)↔ ((∃x)α ? β)

|=∀A (∀x)(α→ β)↔ ((∃x)α→ β) |=∀A (∃x)(α→ β)↔ ((∀x)α→ β)

|=∀A (∀x)(β → α)↔ (β → (∀x)α) |=∀A (∃x)(β → α)↔ (β → (∃x)α).

Hence for any α ∈ Fm, there exists a prenex β ∈ Fm such that |=∀A α ↔ β.
Moreover, the following Herbrand theorem holds for existential sentences. 3

Theorem 2.2 For any quantifier-free formula α ∈ Fm with free variables in
x̄ = x1, . . . , xm and constants in c̄ = c1, . . . , cn,

|=∀A (∃x̄)α ⇐⇒ |=∀A
∨
{α(d̄) | d̄ ⊆ c̄}.

Proof. The right-to-left direction follows using the easily-verified fact that
|=∀A β(c) → (∃y)β(y) for any β ∈ Fm and constant c. For the converse, we
suppose contrapositively that 6|=∀A

∨{α(d̄) | d̄ ⊆ c̄}. Then there exists a ∀A-
interpretation 〈DI , vI〉 such that vI(α(d̄)) < 0 for all d̄ ⊆ c̄. Consider now
the ∀A-interpretation 〈D′I , v′I〉 such that D′I = {vI(c1), . . . , vI(cn)} and v′I
coincides on c1, . . . , cn with vI and maps each Pi (i ∈ N) to the restriction of
vI(Pi) to D′I . Then v′I((∃x̄)α) =

∨{vI(α(d̄)) | d̄ ⊆ c̄} < 0. So 6|=∀A (∃x̄)α. 2

3 Note that if the logic ∀A is extended to allow non-constant function symbols and predicate
symbols of arbitrary arity, it will admit Skolemization. However, the logic will then, as in
the case of first-order  Lukasiewicz logic (see [3, 12] for details), admit only an “approximate
Herbrand theorem”.
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For any α ∈ Fm1, replacing any free variable x in α with a new constant, then
iteratively replacing each positive occurrence of a subformula (∀x)α′(x) with
α′(c) for a new constant c, and finally shifting quantifiers, yields an existential
sentence β ∈ Fm such that |=∀A α ⇐⇒ |=∀A β. Theorem 2.2 now tells us
that α is ∀A-valid if and only if a certain quantifier-free sentence is ∀A-valid.
But validity of quantifier-free sentences can be checked in the ordered additive
group R and is decidable [30], so we obtain the following result.

Corollary 2.3 S5(A)-validity is decidable.

3 The One-Variable Fragment of  Lukasiewicz Logic

In this section, we prove that the one-variable fragment of first-order
 Lukasiewicz logic axiomatized as a many-valued modal logic by Rutledge in [28]
(see also [9, 11,14,22]) may be viewed as a fragment of the logic S5(A).

Let L2
Ł be a propositional language with a binary connective ⊃ and unary

connectives∼ and 2. An S5(Ł)-model is an ordered pair M = 〈W,V 〉 consisting
of a non-empty set W and a function V : {pi | i ∈ N} ×W → [0, 1] that is
extended to a function V : Fm(L2

Ł )×W → [0, 1] by

V (∼ϕ,w) = 1− V (ϕ,w)

V (ϕ ⊃ ψ, x) = min(1, 1− V (ϕ,w) + V (ψ,w))

V (2ϕ,w) =
∧
{V (ϕ, u) | u ∈W}.

An L2
Ł -formula ϕ is said to be valid in M if V (ϕ,w) = 1 for all w ∈ W , and

called S5(Ł)-valid, written |=S5(Ł) ϕ, if it is valid in all S5(Ł)-models. As in
the case of S5(A) considered in Section 2, it is straightforward to prove that
S5(Ł)-validity corresponds to validity in the one-variable fragment of first-order
 Lukasiewicz logic (see [28] for details).

Let us fix ⊥ := 2p0 ∧ ¬2p0, noting that this constant is interpreted as the
same nonpositive real number in all worlds of an S5(A)-model. We define the
following map from the set Fm0(L2

Ł ) of L2
Ł -formulas defined over {pi | i ∈ N+}

to Fm(L2
A):

p∗i = (pi ∧ 0) ∨ ⊥ (∼ϕ)∗ = ϕ∗ → ⊥
(ϕ ⊃ ψ)∗ = (ϕ∗ → ψ∗) ∧ 0 (2ϕ)∗ = 2ϕ∗.

We show that ∗ preserves validity between S5(Ł) and S5(A) by identifying the
value of ϕ ∈ Fm0(L2

Ł ) in [0, 1] with the value of ϕ∗ ∈ Fm(L2
A) in [⊥, 0].

Theorem 3.1 Let ϕ ∈ Fm0(L2
Ł ). Then |=S5(Ł) ϕ if and only if |=S5(A) ϕ

∗.

Proof. Suppose first that ϕ is not valid in an S5(Ł)-model M = 〈W,V 〉. Then
V (ϕ, x0) < 1 for some x0 ∈ W . We consider the S5(A)-model M′ = 〈W,V ′〉
where V ′(p0, x) = −1 and V ′(pi, x) = V (pi, x) − 1 (i ∈ N+) for all x ∈ W ,
noting that V ′(⊥, x) = V ′(2p0 ∧ ¬2p0, x) = −1 for all x ∈ W . It suffices
to prove that V ′(ψ∗, x) = V (ψ, x) − 1 for all x ∈ W and ψ ∈ Fm0(L2

Ł ),
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since then V ′(ϕ∗, x0) = V (ϕ, x0) − 1 < 0 and 6|=S5(A) ϕ
∗. We proceed by

induction on the size (number of symbols) of ψ. For the base case, we have
V ′(p∗i , x) = V ′((pi ∧ 0) ∨ ⊥) = V (pi, x)− 1 for each i ∈ N+. For the inductive
step we obtain, using the induction hypothesis,

V ′((ψ1 ⊃ ψ2)∗, x) = V ′((ψ∗1 → ψ∗2) ∧ 0, x)

= min(V ′(ψ∗2 , x)− V ′(ψ∗1 , x), 0)

= min((V (ψ2, x)− 1)− (V (ψ1, x)− 1), 0)

= min(V (ψ2, x)− V (ψ1, x), 0)

= min(1− V (ψ1, x) + V (ψ2, x), 1)− 1

= V (ψ1 ⊃ ψ2, x)− 1,

and, the case where ψ is ∼ψ1 being very similar, for the modal case,

V ′((2ψ1)∗, x) = V ′(2ψ∗1 , x)

=
∧
{V ′(ψ∗1 , y) | y ∈W}

=
∧
{V (ψ1, y)− 1 | y ∈W}

=
∧
{V (ψ1, y) | y ∈W} − 1

= V (2ψ1, x)− 1.

Suppose now conversely that ϕ∗ is not valid in an S5(A)-model M = 〈W,V 〉.
That is, V (ϕ∗, x0) < 0 for some x0 ∈ W . Observe first that if V (2p0, x0) = 0,
then, by a simple induction on the size of ψ ∈ Fm0(L2

Ł ), we obtain V (ψ∗, x) = 0
for all ψ ∈ Fm0(L2

Ł ) and x ∈ W , a contradiction. Hence V (2p0, x0) 6= 0.
Moreover, by scaling (dividing V (pi, y) by |V (2p0, x0)| for each i ∈ N+ and
x ∈ W ), we may assume that V (⊥, x) = −1 for all x ∈ W . We consider the
S5(Ł)-model M′ = 〈W,V ′〉 where V ′(pi, x) = max(min(V (pi, x) + 1, 1), 0) for
each x ∈W and i ∈ N+. It then suffices to prove that V ′(ψ, x) = V (ψ∗, x) + 1
for all ψ ∈ Fm0(L2

Ł ) and x ∈W by an easy induction on the size of ψ. 2

The above proof can be extended to obtain an interpretation of the full first-
order  Lukasiewicz logic into a first-order Abelian logic. In particular, monadic
first-order  Lukasiewicz logic can be viewed as a fragment of the monadic logic
∀A defined in Section 2. Since the former has been shown by Bou in unpublished
work to be undecidable, this is also the case for the latter.

4 The Modal-Multiplicative Fragment

In this section, we use the Herbrand theorem obtained in Section 2 to establish
the completeness of an axiom system for the modal-multiplicative fragment of
S5(A). 4 Let us consider first the axiom system Am defined over the language

4 Note that we follow here standard terminology from the linear and substructural logic
literature in referring to the multiplicative fragment of Abelian logic, even though the group
multiplication for the real numbers is in fact addition.
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(K) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
(T) 2ϕ→ ϕ
(5) 3ϕ→ 23ϕ
(M) 2(ϕ+ ϕ)→ (2ϕ+ 2ϕ)

ϕ
2ϕ (nec)

Fig. 2. Modal Axiom and Rule Schema

Lm with connectives +, →, and 0 by removing the axiom and rule schema for
∧ and ∨ from those presented in Fig. 1 and adding

nϕ
ϕ (conn) (n ≥ 2).

It is not hard to show (see, e.g., [8, 24]) that Am is complete with respect
to the multiplicative fragment of Abelian logic defined by the logical matrix
〈〈R,+,−, 0〉,R≥0〉.

Now let L2
m be the language extending Lm with 2 and let S5(Am) be the

axiom system defined over L2
m by extending Am with the modal axiom and rule

schema presented in Fig. 2. Soundness for this system is proved as usual by
checking that the axioms are S5(A)-valid and the rules preserve S5(A)-validity.

Lemma 4.1 Let ϕ ∈ Fm(L2
m). If `S5(Am) ϕ, then |=S5(A) ϕ.

To prove completeness, we will make use of the fact that occurrences of 2

can be shifted inwards and hence that every formula is provably equivalent in
S5(Am) to a formula of modal depth at most one. For ϕ,ψ ∈ Fm(L2

m), let us
write `S5(Am) ϕ ≡ ψ to denote that `S5(Am) ϕ→ ψ and `S5(Am) ψ → ϕ.

Lemma 4.2 For any ϕ,ψ ∈ Fm(L2
m),

(i) `S5(Am) 2(ϕ+ 2ψ) ≡ 2ϕ+ 2ψ

(ii) `S5(Am) 2(ϕ+ ¬2ψ) ≡ 2ϕ+ ¬2ψ
(iii) `S5(Am) 22ϕ ≡ 2ϕ

(iv) `S5(Am) 2¬2ϕ ≡ ¬2ϕ
(v) `S5(Am) 2nϕ ≡ n2ϕ for all n ∈ N.

Proof. Derivations for (i)-(iv) are obtained, similarly to other “S5” logics,
using the modal axiom schema (K), (T), and (5), and are omitted here. For
(v), we note first that n2ϕ → 2nϕ is derivable in S5(Am) for n ∈ N using
(nec) and (K) together with the axioms of Am. For the converse, observe that
2(2k)ϕ→ (2k)2ϕ is derivable in S5(Am) for k ∈ N using repeated applications
of (M), (mp), and the Am-derivable formula ψ1 → (ψ2 → (ψ1 +ψ2)). But then
also for any n ≥ 1, we can choose k ∈ N such that 2k ≥ n and observe that
(2nϕ+ (2k − n)2ϕ)→ 2(2k)ϕ and hence (2nϕ+ (2k − n)2ϕ)→ (2k)2ϕ are
derivable in S5(Am). Since (((2k−n)2ϕ)→ ((2k−n)2ϕ))→ 0 is derivable in
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S5(Am), also 2nϕ→ n2ϕ is derivable in S5(Am) as required. Finally, for the
case n = 0 just note that 20→ 0 is an instance of (T). 2

Let us write
∑n
i=1 ϕi to denote ϕ1 + . . .+ϕn for any ϕ1, . . . , ϕn ∈ Fm(L2

A). An
easy induction on modal depth using Lemma 4.2 (i)-(iv) yields the following
normal form property for modal-multiplicative formulas. 5

Lemma 4.3 For any modal-multiplicative formula ϕ ∈ Fm(L2
m), there exist

multiplicative formulas ϕ0, ϕ1, . . . , ϕn, ψ1, . . . , ψm ∈ Fm(Lm) such that

`S5(Am) ϕ ≡ ϕ0 +
n∑

i=1

2ϕi +
m∑

j=1

¬2ψj .

Let Fmm denote the set of first-order formulas in Fm not containing ∧ or ∨.
The following lemma is a consequence of a well-known duality principle for
linear programming stating that either one or another linear system has a
solution, but not both (see, e.g., [13]): more precisely, for any M ∈ Zm×n,
either yTM < 0 for some y ∈ Rm or Mx = 0 for some x ∈ Nn\{0}.
Lemma 4.4 For any quantifier-free and variable-free α1, . . . , αn ∈ Fmm,

|=∀A α1 ∨ . . . ∨ αn ⇐⇒ |=∀A
n∑

i=1

λiαi for some λ1, . . . , λn ∈ N not all 0.

Proof. Let β1, . . . , βm denote the m ground atoms Pi(cj) that occur in
α1, . . . , αn. We may assume without loss of generality that αj =

∑m
i=1mijβj

for each j ∈ {1, . . . , n}, where M = (mij) ∈ Zm×n. Then |=∀A α1 ∨ . . . ∨ αn if
and only if there does not exist any y ∈ Rm such that yTM < 0. Hence, by the
duality principle mentioned above, |=∀A α1∨ . . .∨αn if and only if Mx = 0 for
some x ∈ Nn\{0}, which is equivalent to the statement that |=∀A

∑n
i=1 λiαi

for some λ1, . . . , λn ∈ N not all zero. 2

We now have the tools required to prove our completeness theorem for S5(Am).

Theorem 4.5 Let ϕ ∈ Fm(L2
m). Then `S5(Am) ϕ if and only if |=S5(A) ϕ.

Proof. The left-to-right-direction is Lemma 4.1. For the converse, suppose
that ϕ is S5(A)-valid. By Lemma 4.3, there exist ϕ0, ϕ1, . . . , ϕn, ψ1, . . . , ψm ∈
Fm(Lm) such that `S5(Am) ϕ ≡ ψ, where

ψ = ϕ0 +
n∑

i=1

2ϕi +
m∑

j=1

¬2ψj .

By Lemma 4.1, also ψ is S5(A)-valid and it suffices to prove that `S5(Am) ψ.
Consider now the ∀A-valid (by Proposition 2.1) first-order formula

αψ = αϕ0
(x) +

n∑

i=1

(∀x)αϕi
(x) +

m∑

j=1

¬(∀x)αψj
(x).

5 It is not possible to obtain a similar normal form property for all ϕ ∈ Fm(L2A) simply by
shifting boxes; e.g., 2(p ∨ (q + 2r)) is not equivalent to any formula of modal depth ≤ 1.



Metcalfe and Tuyt 449

Using generalization, renaming of variables, and quantifier shifts,

|=∀A (∀y0)(∀y1) . . . (∀yn)(∃x1) . . . (∃xm)
( n∑

i=0

αϕi(yi) +

m∑

j=1

¬αψj (xj)
)
.

Hence also for constants c̄ = c0, c1, . . . , cn,

|=∀A (∃x1) . . . (∃xm)
( n∑

i=0

αϕi(ci) +

m∑

j=1

¬αψj (xj)
)
.

An application of Theorem 2.2 then yields, writing d̄ for d1, . . . , dm,

|=∀A
∨{ n∑

i=0

αϕi(ci) +

m∑

j=1

¬αψj (dj) | d̄ ⊆ c̄
}
.

But then by Lemma 4.4, there exist λd̄ ∈ N for each d̄ ⊆ c̄ not all 0 satisfying

|=∀A
∑

d̄⊆c̄
λd̄
( n∑

i=0

αϕi(ci) +

m∑

j=1

¬αψj (dj)
)
.

Hence also, letting µ =
∑
d̄⊆c̄ λd̄,

|=∀A
n∑

i=0

µαϕi(ci) +
∑

d̄⊆c̄
λd̄

m∑

j=1

¬αψj (dj).

Now let us rewrite the second part of this ∀A-valid formula to obtain

|=∀A
n∑

i=0

µαϕi
(ci) +

n∑

i=0

m∑

j=1

λij¬αψj
(ci),

for some λij (0 ≤ i ≤ n, 1 ≤ j ≤ m) such that
∑n
i=0

∑m
j=1λij =

∑
d̄⊆c̄ λd̄ = µ.

Then for each i ∈ {0, 1, . . . , n}, we must have

|=∀A µαϕi(ci) +

m∑

j=1

λij¬αψj (ci).

So also, by Proposition 2.1,

|=S5(A) µϕi +

m∑

j=1

λij¬ψj .

By the completeness of Am with respect to 〈〈R,+,−, 0〉,R≥0〉, it follows that
for each i ∈ {0, 1, . . . , n},

`S5(Am) µϕi +
m∑

j=1

λij¬ψj .
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But then for each i ∈ {1, . . . , n}, using (nec), (K), (T), and Lemma 4.2,

`S5(Am) µ2ϕi +

m∑

j=1

λij¬2ψj and also `S5(Am) µϕ0 +
m∑

j=1

λ0j¬2ψj ,

and using (mp) and the Am-axiom (+1),

`S5(Am) µϕ0 +

n∑

i=1

µ2ϕi + µ

m∑

j=1

¬2ψj .

Finally, an application of (conµ) yields `S5(Am) ψ as required. 2

In principle, this proof strategy can also be used to prove completeness for
an axiom system for the full logic S5(A). New variables can be introduced to
obtain a depth-one formula as in Lemma 4.3, and Theorem 2.2 can then be
applied to the resulting existential sentence to obtain an S5(A)-valid disjunction
of quantifier-free sentences. However, the presence of ∧ and ∨ requires repeated
applications of Lemma 4.4 and currently we are able only to prove completeness
using this method for a system with a family of combinatorially defined axioms.

Let us remark finally that, as in the classical setting, the monadic logic
∀A restricted to Fmm coincides (up to equivalence of sentences) with its one-
variable fragment. Let α ∈ Fmm be any sentence. Repeated applications of
the quantifier-shift |=∀A (∀x)(α1 + α2) ↔ ((∀x)α1 + α2), where x is not free
in α2 yield a sentence β ∈ Fmm such that |=∀A α ↔ β and no subformula
(∀x)β′ of β contains a free variable different to x. Hence we can rename all
the bound variables in β to obtain a one-variable sentence χ ∈ Fmm such that
|=∀A α↔ χ. Since S5(A) is decidable (Corollary 2.3), first-order multiplicative
Abelian logic provides a first interesting example (as far as we know) of a
first-order infinite-valued logic that has a decidable monadic fragment.

5 Monadic Abelian `-Groups

In this section, we introduce abelian `-groups supplemented with a monadic
operator as an algebraic semantics for S5(A). Following similar results for
monadic Heyting algebras [5] and monadic MV-algebras [14], we describe
a correspondence between these algebras and lattice-ordered abelian groups
equipped with certain “relatively complete” subalgebras. We then use this
correspondence to give a characterization of the “ideals” of these algebras.

An abelian `-group is an algebraic structure G = 〈G,∧,∨,+,−, 0〉 such that
〈G,∧,∨〉 is a lattice, 〈G,+,−, 0〉 is an abelian group, and + is compatible with
the lattice order, i.e., a ≤ b implies a+ c ≤ b+ c for all a, b, c ∈ G. We call G
an abelian o-group if the lattice order ≤ is linear. A non-empty subset H ⊆ G
that is closed under the operations of G forms an `-subgroup H of G, where
H is called an `-ideal of G if it is also convex, i.e., if a, b ∈ H, c ∈ G, and
a ≤ c ≤ b, then c ∈ H. For any `-ideal H of G, the set of right cosets of H in
G forms an abelian `-group G/H with lattice order H+a ≤ H+b :⇔ a ≤ b+c
for some c ∈ H. We refer to [1] for further details.
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Example 5.1 The ordered additive group R encountered in Section 2 is an
abelian o-group. Also important for our purposes are abelian `-groups obtained
as sets of functions from a set W to an abelian `-group G with operations
defined pointwise, denoted by GW . In particular, we will consider the case
where G is an abelian o-group and the bounded functions from W to G form
an `-subgroup B(W,G) of GW .

A monadic abelian `-group is an ordered pair 〈G,2〉 consisting of an abelian
`-group G and a unary operator 2 on G, with defined operator 3a := −2−a,
that satisfies for all a, b ∈ G,

(M1) 2(a+ b) ≤ 2a+ 3b (M4) 2(a ∧ b) = 2a ∧2b
(M2) 2a ≤ a (M5) 3(a ∧3b) = 3a ∧3b
(M3) 3a = 23a (M6) 2(a+ a) = 2a+ 2a.

A non-empty subset H ⊆ G forms a monadic `-subgroup 〈H,2〉 of 〈G,2〉 if H
is an `-subgroup of G that is closed under 2.

Let M`G denote the variety of monadic abelian `-groups. We call 〈G,2〉 ∈
M`G functional if G is an `-subgroup of B(W,H) for a set W and abelian
o-group H, and for all f ∈ G, x ∈W ,

2f(x) =
∧
{f(y) | y ∈W}.

If 2f(x) = min{f(y) | y ∈W} for all f ∈ G, x ∈W , we call 〈G,2〉 witnessed,
and in the case where H is R, we call 〈G,2〉 standard.

Observe now that for any 〈G,2〉 ∈ M`G, the set 2G := {2a | a ∈ G} =
{3a | a ∈ G} forms an `-subgroup 2G of G satisfying for all a ∈ G,

2a =
∨
{b ∈ 2G | b ≤ a}.

More generally, an `-subgroup G0 of an abelian `-group G is relatively complete
if
∨{b ∈ 2G | b ≤ a} exists for all a ∈ G, or, equivalently, the inclusion map of

G0 in G has a right adjoint 20 : G→ G0, i.e., for all a ∈ G0 and b ∈ G,

a ≤ 20b ⇐⇒ a ≤ b.

In this case, we obtain an algebraic structure 〈G,20〉 that satisfies conditions
(M1)-(M4) in the definition of a monadic abelian `-group. To ensure, however,
that (M5) and (M6) are satisfied, we require also that for all a, b ∈ G,

20(a+ a) = 20a+ 20a and 30(a ∧30b) = 30a ∧30b,

in which case 〈G,20〉 ∈ M`G with 20G = G0, and we call G0 m-relatively
complete. Hence we obtain the following result.

Proposition 5.2 There exists a one-to-one correspondence between monadic
abelian `-groups 〈G,2〉 and ordered pairs 〈G,G0〉 of abelian `-groups such that
G0 is an m-relatively complete `-subgroup of G.
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Example 5.3 The universe of any non-trivial relatively complete `-subgroup
of an abelian `-group B(W,R) for some set W is a set of constant functions
{f : W → {r} | r ∈ H}, where H will be R if the `-subgroup is m-relatively
complete, and a one-generated `-subgroup of R otherwise.

Given a monadic abelian `-group 〈G,2〉, we say that K is a monadic `-ideal
of 〈G,2〉 if K is an `-ideal of G and a ∈ K implies 2a ∈ K. It is straightforward
to check that in this case, 〈G,2〉/K := 〈G/K,2K〉 with 2K(K+a) := K+2a
is a monadic abelian `-group.

Proposition 5.4 The monadic `-ideals of a monadic abelian `-group 〈G,2〉
and the `-ideals of 2G are in a one-to-one correspondence implemented by the
maps J 7→ J ∩2G and K 7→ K23 := {a ∈ G | 2a ∈ K and 3a ∈ K}.
Proof. First consider any `-ideal K of 2G. We show that K23 is a monadic
`-ideal of G. For closure under −, observe that if a ∈ K23 (i.e., 2a,3a ∈ K),
since K is an `-ideal, −2a = 3−a ∈ K and −3a = 2−a ∈ K, so −a ∈ K23.
For closure under +, observe that if a, b ∈ K23 (i.e., 2a,2b,3a,3b ∈ K),
using property (M1) of monadic abelian `-groups,

K 3 2a+ 2b ≤ 2(a+ b) ≤ 3a+ 2b ∈ K
K 3 2a+ 3b ≤ 3(a+ b) ≤ 3a+ 3b ∈ K,

so by convexity 2(a + b),3(a + b) ∈ K and hence a + b ∈ K23. Moreover,
using properties (M4) and (M2),

K 3 2a ∧2b = 2(a ∧ b) ≤ 3(a ∧ b) ≤ 3a ∧3b ∈ K,

so by convexity again, a ∧ b ∈ K23. Closure under 2 is clear and convexity is
a consequence of the monotonicity of 2 and 3. So K23 is a monadic `-ideal
and, since a = 2a = 3a for any a ∈ K, also K = K23 ∩2G.

Now consider any monadic `-ideal J of 〈G,2〉. Since 2G is an `-subgroup of
G, it follows easily that J ∩2G is the universe of an `-ideal of 2G. Moreover,
2J ⊆ J ∩ 2G, so J ⊆ (J ∩ 2G)23. Conversely, if a ∈ (J ∩ 2G)23, then
2a,3a ∈ J and, since 2a ≤ a ≤ 3a, by convexity, a ∈ J . So J = (J ∩2G)23

and we have shown that the maps implement a one-to-one correspondence. 2

6 A Completeness Theorem

In this section, we prove the completeness with respect to S5(A)-validity of an
axiom system S5(A) consisting of the axiom and rule schema for Abelian logic
in Fig. 1, the modal axiom and rule schema in Fig. 2, and the axiom schema

(∧2) (2ϕ ∧2ψ)→ 2(ϕ ∧ ψ) (∧3) (3ϕ ∧3ψ)→ 3(ϕ ∧3ψ).

First, a standard Lindenbaum-Tarski argument can be used to prove that
S5(A) is complete with respect to the variety M`G of monadic abelian `-groups.

Lemma 6.1 Let ϕ ∈ Fm(L2
A). Then `S5(A) ϕ if and only if M`G |= 0 ≤ ϕ.
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The remainder of this section is dedicated to proving the completeness of S5(A)
with respect to first the functional members and then the standard members of
M`G. As a first step towards these results, we show that it suffices to consider
monadic abelian `-groups 〈G,2〉 such that 2G is linearly ordered, which, for
convenience, we call chain-monadic abelian `-groups.

Recall (see e.g. [6]) that a monadic abelian `-group 〈G,2〉 is a subdirect
product of a family of monadic abelian `-groups (〈Hj ,2j〉)j∈J if it is a monadic
`-subgroup of the direct product

∏
j∈J〈Hj ,2j〉 such that each projection map

πj :
∏
k∈J〈Hk,2k〉 → 〈Hj ,2j〉; (ak)k∈J 7→ aj is surjective. Crucially, if an

equation fails in 〈G,2〉, then it fails in some 〈Hj ,2j〉. Let us also recall that
an `-ideal K of an abelian `-group G is called prime if G/K is linearly ordered.

Lemma 6.2 Each monadic abelian `-group is isomorphic to a subdirect product
of chain-monadic abelian `-groups.

Proof. Let 〈G,2〉 be a monadic abelian `-group and let S be the set of all
prime `-ideals P of 2G. Then 2G/P is linearly ordered for each P ∈ S
and

⋂{P | P ∈ S} = {0} (see, e.g., [1, Proposition 1.2.9]). By Proposi-
tion 5.4, each P ∈ S corresponds to a monadic `-ideal P23 of 〈G,2〉 such
that 2G/P23 is linearly ordered. Moreover, since 2a = 3a = 0 implies
a = 0 for all a ∈ G, it follows that

⋂{P23 | P ∈ S} = {0} and the map
σ : 〈G,2〉 →∏

P∈S〈G,2〉/P23; a 7→ (P23 + a)P∈S is an embedding between
monadic abelian `-groups. Hence, 〈G,2〉 is isomorphic to a subdirect product
of the family of chain-monadic abelian `-groups (〈G,2〉/P23)P∈S . 2

Following a method used in [9] to characterize subdirectly irreducible
monadic MV-algebras, we now show that each chain-monadic abelian `-group
〈G,2〉 admits a functional representation.

Lemma 6.3 Let 〈G,2〉 be a chain-monadic abelian `-group and a ∈ G. Then
there exists a prime `-ideal P of G such that P+a = P+2a and P∩2G = {0}.
Proof. Let 〈G,2〉 be a chain-monadic abelian `-group and a ∈ G. We apply
Zorn’s Lemma to the set K of all `-ideals K of G such that K ∩2G = {0} and
a − 2a ∈ K, ordered by inclusion. First, we check that K is non-empty. We
show that the `-ideal K(a − 2a) of G generated by the element a − 2a is in
K. By, e.g., [1, Proposition 1.2.3], recalling that |x| := x ∨ −x for any x ∈ G,

K(a−2a) = {b ∈ G | |b| ≤ n|a−2a| for some n ∈ N}.

Let b ∈ K(a−2a) ∩2G. Then for some n ∈ N,

|b| = 2|b| ≤ 2(2n|a−2a|) since |b| ∈ 2G, b ∈ K(a−2a)

= 2n2|a−2a| using (M6)

= 2n2(a−2a) using (M2)

= 2n(2a−2a) using (M1), (M2), and (M3)

= 0.
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So b = 0 and K 6= ∅. Moreover, it is easy to see that K is closed under taking
unions of chains, so Zorn’s Lemma yields a maximal element P ∈ K.

Suppose for a contradiction that P is not prime. Then there exist b, c ∈ G
with b ∧ c = 0 but b, c 6∈ P (see, e.g., [1, Theorem 1.2.10]). By the maximality
of P, there exist r ∈ (P (b) ∩ 2G)\{0} and s ∈ (P (c) ∩ 2G)\{0}, where P(b)
and P(c) are the `-ideals generated by P ∪{b} and P ∪{c}, respectively. Since
2G is linearly ordered, we can assume without loss of generality that |r| ≤ |s|.
Convexity then implies that also r ∈ P (c) ∩ 2G. Hence r ∈ P (b) ∩ P (c) =
P (b ∧ c) = P (0) = P . But P ∩ 2G = {0}, so r = 0, a contradiction. That is,
P is prime. Finally, note that since a−2a ∈ P , also P + a = P + 2a. 2

Lemma 6.4 Let 〈G,2〉 be a chain-monadic abelian `-group and a ∈ G\{0}.
Then there exists a prime `-ideal P of G such that a 6∈ P and P ∩2G = {0}.
Proof. Let 〈G,2〉 be a chain-monadic abelian `-group and a ∈ G\{0}. We
apply Zorn’s Lemma to the set K of all proper `-ideals K of G such that for
all r ∈ 2G\{0}, |a| ∧ |r| 6∈ K, ordered by inclusion. To show that {0} ∈ K, it
suffices to show that for a ∈ G, r ∈ 2G, a ∧ r = 0 implies that a = 0 or r = 0.
If a ∧ r = 0, then also 2(a ∧ r) = 2a ∧ r = 0 and 3(a ∧ r) = 3a ∧ r = 0 using
conditions (M4) and (M5), respectively. Since 2G is linearly ordered, either
r = 0 or 2a = 3a = 0, i.e. r = 0 or a = 0. Moreover,

⋃ C ∈ K for any chain
C ⊆ K, therefore K contains a maximal element P.

We show next that P is prime. Consider b, c ∈ G such that b ∧ c = 0 and
suppose for a contradiction that b, c 6∈ P . By the maximality of P, neither P(b)
nor P(c) belongs to K and so there exist p, q ∈ 2G\{0} such that |a|∧|p| ∈ P (b)
and |a| ∧ |q| ∈ P (c). Since 2G is linearly ordered, we can assume without loss
of generality that |p| ≤ |q|. Then 0 ≤ |a| ∧ |p| ≤ |a| ∧ |q|, so by convexity,
|a| ∧ |p| ∈ P (b) ∩ P (c) = P (b ∧ c) = P , contradicting P ∈ K.

Lastly note that P satisfies the required properties. For, if a ∈ P , then
|a| ∈ P and so by convexity, |a| ∧ |r| ∈ P for all r ∈ 2G, contradicting P ∈ K.
It follows similarly that P ∩2G = {0}. 2

Theorem 6.5 Any chain-monadic abelian `-group 〈G,2〉 is isomorphic to a
witnessed functional monadic abelian `-group.

Proof. Let 〈G,2〉 be a chain-monadic abelian `-group, and let {Pi}i∈I be the
family of all prime `-ideals P of G such that P ∩ 2G = {0}. It follows from
Lemma 6.4 that

⋂{Pi | i ∈ I} = {0} and hence that σ : G→∏
i∈I G/Pi; a 7→

(a+Pi)i∈I is an embedding between abelian `-groups. Moreover, for each i ∈ I,
since Pi ∩2G = {0}, the map πi ◦ σ|2G is an `-embedding, where πi is the ith
projection map.

We make use of a generalized amalgamation property for abelian o-groups:
that is, for any abelian o-group H0, family of abelian o-groups {Hj}j∈J , and
family of `-embeddings {γj : H0 → Hj}j∈J , there exists an abelian o-group
H (called the amalgam) and family of `-embeddings {σj : Hj → H}j∈J such
that σj1 ◦ γj1 = σj2 ◦ γj2 for all j1, j2 ∈ J . This property was established by
Pierce [27] for families of size 2 and extended to the generalized version in [9].
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For the abelian o-group 2G, family of abelian o-groups {G/Pi}i∈I and
family of `-embeddings {πi ◦ σ|2G : 2G → G/Pi}i∈I , we therefore obtain an
amalgam H with `-embeddings γi : G/Pi → H for each i ∈ I. Defining γ :=∏
i∈I γi :

∏
i∈I G/Pi → HI yields an `-embedding ρ := γ◦σ : G→ HI . Observe

now that for all r ∈ 2G and i, j ∈ I,

ρ(r)(i) = γi(σ(r)(i)) = γi(πi(σ(r))) = γj(πj(σ(r))) = γj(σ(r)(j)) = ρ(r)(j).

That is, ρ(r) is a constant function. Moreover, for each a ∈ G, there exists, by
Lemma 6.3, an i ∈ I such that Pi + a = Pi +2a and hence ρ(2a)(i) = ρ(a)(i).
So for any a ∈ G and i ∈ I, we obtain ρ(2a)(i) = min{ρ(a)(j) | j ∈ I}. 2

To prove the promised completeness result for S5(A), we make use of the
following folklore result from the theory of abelian `-groups.

Lemma 6.6 (cf. [10]) Let G be an abelian o-group. For each finite subset S
of G, there exists a function h : S → R satisfying for all a, b, c ∈ S,

(i) a ≤ b if and only if h(a) ≤ h(b);

(ii) if 0 ∈ S, then h(0) = 0;

(iii) a+ b = c if and only if h(a) + h(b) = h(c);

(iv) b = −a if and only if h(b) = −h(a).

Theorem 6.7 Let ϕ ∈ Fm(L2
A). Then `S5(A) ϕ if and only if |=S5(A) ϕ.

Proof. For the left-to-right direction, it is easily checked that the axioms are
S5(A)-valid and the rules preserve S5(A)-validity. For the converse, suppose
that 6`S5(A) ϕ. By Lemmas 6.1 and 6.2, there exist a chain-monadic abelian
`-group 〈G,2〉 and a valuation e : Fm(L2

A) → 〈G,2〉 such that 0 6≤ e(ϕ). By
Theorem 6.5, we may assume that G is a witnessed `-subgroup of B(W,H) for
some non-empty set W and abelian o-group H. Hence there exists x0 ∈ W
such that e(ϕ)(x0) < 0. Let Σ be the set of subformulas of ϕ. For each 2ψ ∈ Σ,
we choose x2ψ ∈W such that

e(2ψ)(x2ψ) = e(ψ)(x2ψ).

Let W ′ := {x2ψ ∈W | 2ψ ∈ Σ} ∪ {x0} and define

S := {e(ψ)(x) | x ∈W ′, ψ ∈ Σ} ∪ {−e(ψ)(x) | x ∈W ′, ψ ∈ Σ} ∪ {0}.

Since both W ′ and Σ are finite, so is S. Using Lemma 6.6, we obtain a function
h : S → R satisfying the properties (i)-(iv). We consider the standard monadic
abelian `-group 〈B(W ′,R),2〉 and any valuation e′ : Fm(L2

A)→ 〈B(W ′,R),2〉
such that for each p ∈ Σ ∩Var and x ∈W ′,

e′(p)(x) := h(e(p)(x)).

A simple induction on formulas shows that e′(ψ)(x) = h(e(ψ)(x)) for all ψ ∈ Σ
and x ∈W ′, and in particular,

e′(ϕ)(x0) = h(e(ϕ)(x0)) < h(0) = 0.
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Finally, consider the S5(A)-model 〈W ′, V 〉 where V (p, x) := e′(p)(x) for each
x ∈W ′ and observe that V (ϕ, x0) = e′(ϕ)(x0) < 0. Hence 6|=S5(A) ϕ. 2
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Abstract

In “Empirical Negation”, Michael De takes up the challenge of extending intuitionism
from mathematical discourse to empirical discourse, and to this end, he introduced an
expansion of intuitionistic propositional logic obtained by adding a unary connective
called empirical negation. The intuitive reading of empirical negation of A is: it is not
the case that there is sufficient evidence at present that A. From a model-theoretic
perspective, cashed out in terms of pointed Kripke models for intuitionistic logic,
empirical negation of A is forced at a point iff A is not forced at the base point.
Then, a simple calculation reveals that double empirical negation of A is forced at a
point iff A is forced at the base point. In other words, double empirical negation can
be seen as an actuality operator explored by John N. Crossley, Lloyd Humberstone,
Martin Davies and more. Based on these, we introduce an expansion of intuitionistic
propositional logic obtained by adding actuality. Our main results include sound and
strongly complete axiomatization as well as comparisons to closely related systems
such as Global Intuitionistic Logic of Satoko Titani as well as LGP of Matthias Baaz.

Keywords: Actuality, Empirical Negation, Global Intuitionistic Logic, Intuitionistic
Modal Logic, Completeness, Sequent Calculus.

1 Introduction

In the literature, there are various expansions of intuitionistic logic, based on
a number of different motivations. One of the motivations that seems to be
popular is to extend intuitionism from mathematical discourse to empirical dis-
course. To this end, the role played by proof within the mathematical discourse
will be played by warrant/evidence/verification/etc. within the empirical dis-
course.

1 We are grateful to the referees for their helpful comments. Email: satoruniki@jaist.ac.jp
2 This research was supported by a Sofja Kovalevskaja Award of the Alexander von
Humboldt-Foundation, funded by the German Ministry for Education and Research. Email:
Hitoshi.Omori@rub.de
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The main background of this paper, namely “Empirical Negation” by
Michael De, is a contribution within the above motivation, following the dis-
cussions led by Michael Dummett and Neil Tennant. 3 De’s focus in [16] was
on negation, and expanded the language of intuitionistic propositional logic by
adding empirical negation. The intuitive reading of empirical negation of A
is that “it is not the case that there is sufficient evidence at present that A”.
Model theoretically, this is formulated with the help of pointed Kripke models
for intuitionistic logic. More specifically, empirical negation of A is forced at a
point iff A is not forced at the base point. Following De’s paper, a Hilbert-style
axiomatization was given for the expansion of intuitionistic logic in [17], and in
[18], a comparison of empirical negation and classical negation was carried out
over subintuitionistic logic, introduced and explored by Greg Restall in [38].

Now, a simple calculation reveals that double empirical negation of A is
forced at a point iff A is forced at the base point. In other words, double
empirical negation can be seen as an actuality operator explored by John N.
Crossley, Lloyd Humberstone, Martin Davies and more. This then gives rise to
a natural question of exploring an expansion of intuitionistic logic enriched by
actuality operator. 4 The aim of this paper is twofold, and the first aim is to
address this question. Although the notion of actuality has been discussed in
classical settings (see our brief overview below), no attempts are known, to the
best of authors’ knowledge, to discuss the notion of actuality based on intu-
itionistic logic. 5 However, it is of significant interest how we can incorporate
the notion along the philosophical foundation of Dummett-Tennant-De. The
second aim is to draw some connections to closely related systems. This enables
us to uncover links with other logical concepts, such as empirical negation and
globality. For this purpose, we shall adopt a language that includes absurdity
and therefore negation. Nonetheless we shall also observe how the notion of
actuality is independent of that of negation, which is an advantage over an
approach that defines actuality in terms of empirical negation. Before moving
further, let us briefly review some of the developments in the literature related
to our aim.

Actuality The notion of actuality has been studied in modal logic for a long
time, and various conceptualizations have been introduced. Even at an early
period, Crossley, Humberstone and Davies [14,15] already introduced two dif-
ferent actuality operators, A and F (read fixedly). Each model M has a
distinguished world w∗, and Aϕ is true at w iff ϕ is true at w∗. On the other
hand, Fϕ is true at w iff for every model M′, ϕ is true at M′’s distinguished
world w′. These two operators represent different intuitions about whether ‘the
actual world’ is necessarily so or not.

3 Another interesting direction following Dummett is to discuss not only verification, but
also falsification. This path is explored by Andreas Kapsner in great detail in [33].
4 HO would like to thank Patrick Blackburn for pointing this out and encouraging him to
pursue this direction at AiML 2016 in person.
5 Note that there is a recent work on the notion of actuality based on relevant logics by
Shawn Standefer in [42].
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Another example for flexible actuality is that of Dominic Gregory [29],
whose semantics includes a mapping @, which maps a world w to its actual
world @(w) in the same model, with a couple of conditions on @. This in
particular allows there being more than one actual worlds in a model. 6

Baaz’ LGP and Titatni’s GI Recall that Gödel-Dummett logic, introduced
in [24] by Dummett, is an extension of intuitionistic logic with the linearity
axiom:

(A→ B) ∨ (B → A). (Lin)

Semantically, this logic is characterised by linear Kripke frames, which enables
us to see it as a fuzzy logic in intuitionistic setting.

Then, in [2], Matthias Baaz expanded Gödel-Dummett logic by an addi-
tional operator, 4, which he called a projection modality, also later known as
Baaz’ Delta. The resulting logic is named LGP. Semantically, a formula of the
form 4A attains either the value 1 or 0, and it attains the value 1 iff A has
the value 1. 7 In other words, 4A is true iff A is valid in the model. Baaz in
the same paper also mentions an operator equivalent to empirical negation in
the setting of Gödel-Dummett logic (cf. [2, p.33]).

A logic closely related to LGP of Baaz is Satoko Titani’s global intuition-
istic logic GI, introduced in [46]. This logic, formulated as a sequent calculus,
is defined by adding to intuitionistic logic an operator 2 of globalization. From
a semantic perspective, in terms of algebraic semantics, 2 has the same inter-
pretation as 4. There is also a fuzzy extension of GI called fuzzy intuitionistic
logic with globalization GIF proposed by Gaisi Takeuti and Satoko Titani in
[45], whose propositional fragment is equivalent to LGP (cf. [13, Remark 3]).

Note here that global intuitionistic logic can be regarded as an instance of
intuitionistic modal logics which are equipped with at least two accessibility
relations, intuitionistic ≤ and modal R. This is studied since 1948 by Frederic
B. Fitch in [25], followed by Arthur N. Prior’s [37] and R. A. Bull’s papers
[11,12], and later major developments include [7,8,21,36,39,40,41,48]. Some
close connections of global intuitionistic logic to intuitionistic modal logics are
studied by Hiroshi Aoyama in [1].

Based on these, this paper is structured as follows. We first introduce intu-
itionistic logic with actuality operator, called IPC@, both in terms of semantics
and proof system, in §2. Then, in §3, we establish the soundness and strong
completeness of IPC@. This is followed by a comparison of IPC@ with related
systems in §4 and §5. More specifically, IPC@ is compared with intuitionistic
logic with empirical negation as well as logic of actuality of Crossley and Hum-
berstone in §4. We then turn to compare IPC@ with LGP of Baaz and GI
of Titani in §5. The paper concludes with a brief summary of our main results
and some directions for future research in §6.

6 For more discussions on actuality, see, for instance, [26,32,43].
7 This condition is closely related to the framework of simple monadic Heyting algebra which
is explored in detail in [6] by Guram Bezhanishvili. We would like to thank one of the referees
for directing our attention to this paper.
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2 Semantics and Proof system

After setting up the language, we first present the semantics, and then turn to
the proof system.

Definition 2.1 The language L@
⊥ consists of a finite set {@,⊥,∧,∨,→} of

propositional connectives and a countable set Prop of propositional variables
which we denote by p, q, etc. Furthermore, we denote by Form the set of
formulas defined as usual in L@

⊥. We denote a formula of L@
⊥ by A, B, C, etc.

and a set of formulas of L@
⊥ by Γ, ∆, Σ, etc.

2.1 Semantics

Definition 2.2 A model for the language L@
⊥ is a quadruple 〈W, g,≤, V 〉,

where W is a non-empty set (of states); g ∈ W (the base state); ≤ is a par-
tial order on W with g being the least element; and V : W × Prop → {0, 1}
an assignment of truth values to state-variable pairs with the condition that
V (w1, p) = 1 and w1 ≤ w2 only if V (w2, p) = 1 for all p ∈ Prop and all
w1, w2 ∈ W . Valuations V are then extended to interpretations I to state-
formula pairs by the following conditions:

• I(w, p) = V (w, p);
• I(w,⊥) = 0;
• I(w,@A) = 1 iff I(g,A) = 1;
• I(w,A ∧B) = 1 iff I(w,A) = 1 and I(w,B) = 1;
• I(w,A ∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1;
• I(w,A→ B) = 1 iff for all x ∈W : if w ≤ x and I(x,A) = 1 then I(x,B) = 1.

Semantic consequence is now defined in terms of truth preservation at g:
Γ |= A iff for all models 〈W, g,≤, I〉, I(g,A) = 1 if I(g,B) = 1 for all B ∈ Γ.

2.2 Proof System

Definition 2.3 The system IPC@ consists of the following axiom schemata
and rules of inference:

⊥→A (Ax0)

A→(B→A) (Ax1)

(A→(B→C))→((A→B)→(A→C)) (Ax2)

(A ∧B)→A (Ax3)

(A ∧B)→B (Ax4)

(C→A)→((C→B)→(C→(A ∧B))) (Ax5)

A→(A ∨B) (Ax6)

B→(A ∨B) (Ax7)

(A→C)→((B→C)→((A ∨B)→C)) (Ax8)

@(A→B)→(@A→@B) (Ax9)

@A→A (Ax10)

@A→@@A (Ax11)

@A ∨ (@A→B) (Ax12)

@(A∨B)→(@A∨@B) (Ax13)

A

@A
(RN)

A A→B
B

(MP)

Finally, we write Γ ` A if there is a sequence of formulas B1, . . . , Bn, A, n ≥ 0,
such that every formula in the sequence B1, . . . , Bn, A either (i) belongs to Γ;
(ii) is an axiom of IPC@; (iii) is obtained by (MP) or (RN) from formulas
preceding it in sequence.
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Remark 2.4 We will refer to the subsystem of IPC@ which consists of axiom
schemata (Ax1)–(Ax8) and a rule of inference (MP) as IPC+.

Note that the deduction theorem does not hold with respect to→ in IPC@.
However, we do have a deduction theorem in a slightly different form, and our
goal now is to prove this. For this purpose, we begin with some preparations.

Fact 2.5 The following formulas are provable in IPC+ and thus in IPC@.

A→ A (1)

(A ∨B)→ (B ∨A) (2)

(A→ (B → C))→ (B → (A→ C)) (3)

(A ∨B)→ ((B → C)→ (A ∨ C)) (4)

(A→ (B → C))→ ((A ∧B)→ C) (5)

Now, we can prove one direction of the deduction theorem.

Proposition 2.6 For all Γ ∪ {A,B} ⊆ Form, if Γ, A ` B then Γ ` @A→ B.

Proof. By the induction on the length n of the proof of Γ, A ` B. If n = 1,
then we have the following three cases.

• If B is one of the axioms of IPC@, then we have ` B. Therefore, by (Ax1),
we obtain ` @A→ B which implies the desired result.

• If B ∈ Γ, we have Γ ` B, and thus we obtain the desired result by (Ax1).
• If B = A, then by (Ax10), we have @A→ B which implies the desired result.

For n > 1, then there are two additional cases to be considered.

• If B is obtained by applying (MP), then we will have Γ, A ` C and Γ, A `
C → B lengths of the proof of which are less than n. Thus, by induction
hypothesis, we have Γ ` @A → C and Γ ` @A → (C → B), and by (Ax2)
and (MP), we obtain Γ ` @A→ B as desired.

• If B is obtained by applying (RN), then B = @C and we will have Γ, A ` C
length of the proof of which is less than n. Thus, by induction hypothesis,
we have Γ ` @A→C. By (Ax9) and (RN), we have Γ ` @@A→@C. Another
application of (Ax9) gives us Γ ` @A→ @C, i.e. Γ ` @A→ B as desired.

This completes the proof. 2

Proposition 2.7 For all Γ ∪ {A,B} ⊆ Form, if Γ ` @A→ B then Γ, A ` B.

Proof. By the assumption Γ ` @A → B. Moreover, we have Γ, A ` @A by
(RN). Thus, we obtain the desired result by (MP). 2

By combining Propositions 2.6 and 2.7, we obtain the following theorem.

Theorem 2.8 For all Γ ∪ {A,B} ⊆ Form, Γ, A ` B iff Γ ` @A→ B.

Let us mention a corollary of the deduction theorem which shall prove vital
for the completeness theorem.

Corollary 2.9 If A ` C and B ` C, then A ∨B ` C.

Proof. If A ` C and B ` C, then by deduction theorem ` @A → C and `
@B → C. Thus ` (@A∨@B)→ C; now use (Ax13) to deduce ` @(A∨B)→ C.
By deduction theorem again, we conclude A ∨B ` C. 2
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3 Soundness and Completeness

We now turn to prove the soundness and the strong completeness. The proofs
are in large part analogous to those of [17,18] which build on [38].

3.1 Soundness

Theorem 3.1 For Γ ∪ {A} ⊆ Form, if Γ ` A then Γ |= A.

Proof. By induction on the length of the proof. 2

3.2 Key notions for completeness

In below we introduce some concepts used in the argument for completeness.

(i) Σ `π A iff Σ ∪Π ` A.
(ii) Σ is a Π-theory iff:

(a) if A,B ∈ Σ then A ∧B ∈ Σ.
(b) if `π A→ B then (if A ∈ Σ then B ∈ Σ).

(iii) Σ is prime iff (if A ∨B ∈ Σ then A ∈ Σ or B ∈ Σ).
(iv) Σ `π ∆ iff for some D1, . . . , Dn ∈ ∆, Σ `π D1, . . . , Dn.
(v) `π Σ→ ∆ iff for some C1, . . . , Cn ∈ Σ and D1, . . . , Dm ∈ ∆:

`π C1 ∧ · · · ∧ Cn → D1 ∨ · · · ∨Dm.

(vi) Σ is Π-deductively closed iff (if Σ `π A then A ∈ Σ).
(vii) 〈Σ,∆〉 is a Π-partition iff:

(a) Σ ∪∆ = Form
(b) 0π Σ→ ∆

(viii) Σ is non-trivial iff A /∈ Σ for some formula A.

Lemma 3.2 If Γ is a non-empty Π-theory, then Π ⊆ Γ.

Proof. Take A ∈ Π. Then, we have Π ` A. Now since Γ is non-empty, take
any C ∈ Γ. Then, by (Ax1), we obtain Π ` C → A, i.e. `π C → A. Thus,
combining this together with C ∈ Γ and the assumption that Γ is Π-theory, we
conclude that A ∈ Γ. 2

3.3 Extension lemmas

We now introduce a number of lemmas concerning extensions of sets with
various properties. For the proofs, cf. [17, §2] which are based on [38].

Lemma 3.3 If 〈Σ,∆〉 is a Π-partition then Σ is a prime Π-theory.

Lemma 3.4 If 0π Σ → ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that
〈Σ′,∆′〉 is a Π-partition.

Corollary 3.5 Let Σ be a non-empty Π-theory, ∆ be closed under disjunction,
and Σ ∩∆ = ∅. Then there is Σ′ ⊇ Σ such that Σ′ ∩∆ = ∅ and Σ′ is a prime
Π-theory.

Lemma 3.6 If Σ 0 ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that 〈Σ′,∆′〉 is
a partition, and Σ′ is deductively closed.



Niki, Omori 465

We shall mention that the proof of this lemma relies on Corollary 2.9, and
consequently on (Ax13). Hence the same argument cannot be directly imitated
by a logic lacking this axiom, such as GIPC in §5.

Corollary 3.7 If Σ 0 A then there are Π ⊇ Σ such that A /∈ Π, Π is a prime
Π-theory and is Π-deductively closed.

3.4 Counter-example lemma

Lemma 3.8 If ∆ is a Π-theory and A → B /∈ ∆, then there is a prime Π-
theory Γ, such that A ∈ Γ and B /∈ Γ.

Proof. Let Σ = {C : A → C ∈ ∆}. We check that Σ is a Π-theory. First, if
C1, C2 ∈ Σ then A→ C1, A→ C2 ∈ ∆. Since ` (A→ C1 ∧ A→ C2)→ (A→
(C1 ∧C2)) and ∆ a Π-theory, we have A→ (C1 ∧C2) ∈ ∆. Thus C1 ∧C2 ∈ Σ.
Now suppose that `π C → D and C ∈ Σ. Then `π (A→ C)→ (A→ D) and
A→ C ∈ ∆; so A→ D ∈ ∆ and hence D ∈ Σ.

Clearly A∈Σ and B∨ · · · ∨B/∈Σ. Based on this, let ∆′ be the closure of {B}
under disjunction. Then Σ∩∆′=∅, and the result follows from Corollary 3.5.2

Note that, since Σ is non-trivial, the obtained Γ is non-trivial as well.

3.5 Completeness

We are now ready to prove the completeness.

Theorem 3.9 For all Γ ∪ {A} ⊆ Form, if Γ |= A then Γ ` A.

Proof. We prove the contrapositive. Suppose that Γ 0 A. Then, by Corollary
3.7, there is a Π ⊇ Γ such that Π is a prime Π-theory, Π-deductively closed
and A /∈ Π. Define the interpretation A = 〈X,Π,≤, I〉, where X = {∆ :
∆ is a non-trivial prime Π-theory}, ∆ ≤ Σ iff ∆ ⊆ Σ and I is defined thus.
For every state Σ and propositional parameter p:

I(Σ, p) = 1 iff p ∈ Σ

We show by induction on B that I(Σ, B) = 1 iff B ∈ Σ. We concentrate on
the cases where B has the form @C and C → D.

When B ≡ @C, if I(Σ,@C) = 1 then by definition I(Π, C) = 1. By IH
this is equivalent to C ∈ Π. Then C ∈ Σ as Π ⊆ Σ and also `π @C by (RN).
Hence `π C → @C by (Ax1). Now as Σ is a Π-theory, C ∈ Σ implies @C ∈ Σ.
For the other direction, it suffices to show @C ∈ Σ implies C ∈ Π. First note
@C ∨ @C → D ∈ Π for all D because Π is Π-deductively closed. Then as
Π is a prime theory, for each D either @C ∈ Π or @C → D ∈ Π. That is,
either @C ∈ Π or for all D, @C → D ∈ Π. But if the latter, because Σ is a
Π-theory, that Π ⊆ Σ and ` (@C ∧ (@C → D)) → D imply D ∈ Σ for all D.
This contradicts the non-triviality of Σ, so it must be that @C ∈ Π. But then
C ∈ Π by (Ax10) and Π being a Π-theory.

WhenB ≡ C → D, by IH I(Σ, C → D) = 1 iff for all ∆ s.t. Σ ⊆ ∆, if C ∈ ∆
then D ∈ ∆. Hence it suffices to show that this latter condition is equivalent
to C → D ∈ Σ. For the forward direction, we argue by contraposition; so
assume C → D /∈ Σ. Then by Lemma 3.8 we can find find a non-trivial prime
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Π-theory Σ′ such that C ∈ Σ′ but D /∈ Σ′. For the backward direction, assume
C → D ∈ Σ and C ∈ ∆ for any ∆ s.t. Σ ⊆ ∆. Then C → D ∈ ∆ as well, and
so D ∈ ∆ since ∆ is a Π-theory.

It now suffices to observe that B ∈ Π for all B ∈ Γ and A /∈ Π, which in
view of the above means Γ 6|= A. This completes the proof. 2

4 Comparison (I)

In this section, we give some comparisons of IPC@ with IPC∼, as given in
[16,17], and S5A of Crossley and Humberstone, as given in [14].

4.1 Empirical negation and actuality

IPC∼ employs the language L∼ = {∼,∧,∨,→}, and is axiomatized as follows.

Definition 4.1 The system IPC∼ consists of (Ax1)-(Ax8), (MP) and the
following axiom schemata and a rule of inference:

A ∨ ∼A (N1)

∼A→ (∼∼A→ B) (N2)

A ∨B
∼A→ B

(RP)

We shall denote the deducibility in IPC∼ by `∼. The deduction theorem
holds in the form Γ, A `∼ B iff Γ `∼ ∼∼A → B (cf. [17, Theorem 2.1]). The
corresponding semantics for IPC∼ is almost identical to that of IPC@, except
for the valuation of formulas of the form ∼A , which is given by:

I(w,∼A) = 1 iff I(g,A) = 0.

Remark 4.2 Note that Kosta Došen, in papers [20,22,23], considered negative
modalities in models with two relations between worlds, like the models for
intuitionistic modal logics, and one of them has the following condition:

w  ∼A iff for some w′ ∈W,wRw′ and w′ 1 A.

Although the modal relation R is absorbed by the intuitionistic relation ≤,
empirical negation can be seen as having this type of valuation. Interestingly,
Došen considered this sort of absorption is a necessary condition for a negative
modality to be deemed a ‘negation’ (cf. [23, p.85]). For a recent discussion
on negation understood as negative modality, see [4,5,19]. See also [31] for an
up-to-date survey on negation, as well as negative modalities, in general.

Remark 4.3 There are two more things to note with this valuation. First,
intuitionistic ⊥ and consequently the intuitionistic negation ¬ is definable in
IPC∼ by setting ⊥ := ∼(A → A). Second, since I(w,∼∼A)=1 iff I(g,A)=1,
we see @ is also definable in IPC∼ by @A := ∼∼A.

A natural question then would be whether we can go the opposite direction,
namely, is ∼ definable in IPC@? It turns out that this also holds. Since we have
⊥ in L@

⊥, we readily see: I(w,¬@A)=1 iff I(g,A)=0. The situation changes
once we drop ⊥ from the language. Let IPC@+ be defined in the language
L@ = {@,∧,∨,→} with (Ax1)-(Ax13), (RN) and (MP). The completeness for
IPC@+ with respect to Kripke models with the base state is readily obtainable
by an analogous means to that of IPC@.
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Proposition 4.4 ∼ is not definable in IPC@+.

Proof. If ∼ is definable in IPC@+, then as we have seen ⊥ is also definable as
∼(A→A). Let F be such a formula. Now choose a model such that V (w, p)=1
for all p and w∈W . Then by induction on formula we can establish I(w,A)=1
for all A and w∈W . So in particular, I(w,F )=1 for all w∈W , a contradiction.2

Therefore IPC@+ may be seen as an intuitionistic system with actuality
operator that is independent of negation. This system consequently has an
advantage over IPC@ and IPC∼ when a non-standard notion of negation is
espoused. Moreover it offers a suitable starting point for combining intuitionism
in empirical discourse and the school of intuitionism which eschews negation
altogether, as a result of scepticism towards unrealised concepts (cf. [30]).

4.2 Classical actuality and constructive actuality

We now turn to compare IPC@ to S5A of Crossley and Humberstone. To this
end, we first review the basics of S5A, with a slightly difference in the notation
to replace A, for actuality, by @. Then the system is described by the language
L@
m = {@,2,⊥,∧,∨,→}.

Definition 4.5 [Crossley & Humberstone] An S5A-model for the language
L@
m is a triple 〈W, g, V 〉, where W is a non-empty set (of states); g ∈ W (the

base state); and V : W × Prop → {0, 1} an assignment of truth values to
state-variable pairs. Valuations V are then extended to interpretations I to
state-formula pairs by the following conditions:

• I(w, p) = V (w, p);
• I(w,⊥) = 0;
• I(w,2A) = 1 iff for all w ∈W , I(w,A) = 1;
• I(w,@A) = 1 iff I(g,A) = 1;
• I(w,A ∧B) = 1 iff I(w,A) = 1 and I(w,B) = 1;
• I(w,A ∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1;
• I(w,A→ B) = 1 iff I(w,A) 6= 1 or I(w,B) = 1.

Then, S5A-validity is defined in terms of truth at all w ∈ W : |=S5A A iff
for all S5A-models 〈W, g, I〉, I(w,A) = 1 for all w ∈W .

Definition 4.6 [Crossley and Humberstone] The axiomatic proof system for
S5A consists of the following axioms in addition to any axiomatization of S5:

@(@A→ A) (A1)

@(A→ B)→ (@A→ @B) (A2)

@A↔ ¬@¬A (A3)

2A→ @A (A4)
@A→ 2@A (A5)

We refer to the derivability in S5A as `S5A.

Based on these, Crossley and Humberstone established the following result.

Theorem 4.7 (Crossley and Humberstone) For all A ∈ Form@
m, |=S5A A

iff `S5A A.

The above axiomatization seen in view of IPC@ is problematic since the
right-to-left direction of (A3) is not valid/derivable. However, a slightly differ-
ent axiomatization will allow us to compare S5A and IPC@ more easily.
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Proposition 4.8 Let `S5A′ be the derivability in a system obtained from the
axiomatic proof system for S5A by replacing (A3) by the following two axioms:

@A→ ¬@¬A (A3.1) @(A ∨B)→ (@A ∨@B) (A3.2)

Then, for all A ∈ Form@
m, `S5A′ A iff `S5A A.

Proof. For the left-to-right direction, it suffices to check that (A3.2) is deriv-
able in S5A. In view of (A3), (A3.2) is derivable iff `S5A (@¬A ∧ @¬B) →
@(¬A ∧ ¬B). But this is obvious since @ is an extension of K-modality.

For the other way around, it suffices to prove `S5A′ @A ∨ @¬A. Since we
have classical tautologies, we have `S5A′ A ∨ ¬A, and by the rule of necessi-
tation, we have `S5A′ 2(A ∨ ¬A). This implies `S5A′ @(A ∨ ¬A) in view of
(A4), and finally we make use of (A3.2) to obtain the desired result. 2

Remark 4.9 Note first that even though we do not have the necessity operator
in IPC@, the actuality operator also enjoys the following condition:

I(w,@A) = 1 iff for all w ∈W, I(w,A) = 1

This is because the base point is the root. Thus, if we regard 2 as @ in the
above axiomatization of S5A, then we can see that all the axiom schemata and
rules of inference related to 2 and @ in S5A are derivable in IPC@.

Therefore, there is a sense in which IPC@ is a generalization of S5A. But
there is also a sense in which this generalization is not simple. More specifically,
we obtain the following result.

Proposition 4.10 IPC@ plus Peirce’s law collapses into Triv based on CL.

Proof. In view of (Ax10), it suffices to prove A→@A in the extension. Note
first that A∨(A→B) is still derivable from an instance of Peirce’s law, namely
(((A ∨ (A→B))→A)→(A∨(A→B)))→(A∨(A→B)). Then as before we obtain
@A∨@(A→B), which entails (@A→@B)→@(A→B). Take B ≡ @A and we
have (@A→@@A)→@(A→@A). By (Ax11) and (Ax10), we obtain A→ @A.2

Remark 4.11 The above proof does not rely on the existence of ⊥ in the
language, and thus also applies to IPC@+.

5 Comparison (II)

In this section, we offer further comparisons of IPC@ with LGP of Baaz, as
given in [2], and GIPC of Titani, as given in [46].

5.1 Baaz Delta and actuality

As we mentioned in the introduction, Baaz’ logic LGP is Gödel-Dummet logic
equipped with a projection modality 4. Let us first look at the precise formu-
lation in [2]. (For the sake of simplicity, we shall hereafter use L@

⊥ to describe
the system, so @ will be used instead of 4.)

Definition 5.1 [Baaz] Let V ⊆ [0, 1] be a set of truth values containing 0 and
1. A valuation V based on V assigns a truth value in V to each propositional
variable. V is extended to all propositions by the clauses:
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• V(⊥) = 0

• V(A∧B) = min(V(A),V(B))

• V(A∨B) = max(V(A),V(B))

• V(A→B) =

{
V(B) if V(A) > V(B)

1 if V(A) ≤ V(B)

• V(@A) =

{
1 if V(A) = 1

0 if V(A) 6= 1

Then GP(V ) := {A : V(A) = 1 for every V based on V }.
Definition 5.2 LGP is axiomatized by adding the following axiom to IPC@.

(A→ B) ∨ (B → A) (Lin)

Let V be infinite. Baaz showed the following weak completeness for LGP.

Theorem 5.3 (Baaz) For all A ∈ Form, LGP ` A iff A ∈ GP(V ).

As is well-known (e.g. [27, Theorem 19, Chapter 4]), Kripke-semantically
(Lin) corresponds to lineally ordered Kripke frames. Thus as an improvement,
we obtain a strong completeness proof for LGP, in view of Theorem 3.9. More
specifically, let us denote `l and |=l for the derivability in LGP and semantic
consequence with respect to the class of linearly ordered models, respectively.

Proposition 5.4 For all Γ ∪ {A} ⊆ Form, Γ `l A iff Γ |=l A.

Proof. For soundness, we have to check that (Lin) holds in any linearly ordered
model. Given a linearly ordered model 〈W, g,≤, I〉 and formulas A and B, let
us denote V (A) = {w : I(w,A) = 1} and V (B) = {w : I(w,B) = 1}. Then we
have V (A) ⊆ V (B) or V (B) ⊆ V (A). Hence I(g,A→ B ∨B → A) = 1.

For completeness, we have to check that the counter-model construction of
Theorem 3.9 creates a linearly ordered model. Suppose otherwise. Then there
are states Σ1 and Σ2 such that neither Σ1 ⊆ Σ2 nor Σ2 ⊆ Σ1. Then we can
find a formula A1 in Σ1 not in Σ2, and A2 in Σ2 not in Σ1. Now as the base
state Π is a prime Π-theory, A1 → A2 ∨A2 → A1 ∈ Π, and so A1 → A2 ∈ Π or
A2 → A1 ∈ Π. Without loss of generality, assume the former. Then because Σ1

is a Π-theory, A1 ∧ (A1 → A2) ∈ Σ1; thus A2 ∈ Σ1, a contradiction. Therefore
the counter-model has to be linearly ordered. This completes the proof. 2

Remark 5.5 The above result clarifies that IPC@ is a generalization of LGP
to include non-linearly ordered models. To give a further comparison, for LGP
it is observed in [2] that ¬¬A is a dual projection operator of @A, attaining 1 if
A 6= 0 and 0 otherwise. In the setting of IPC@, this true-if-not-false type of op-
erator is perhaps better captured by ¬@¬A (i.e. ∼¬A). I(w,¬@¬A)=1 iff for
some u∈W, I(u,A)=1; so while ¬¬A→¬@¬A holds in general, ¬@¬A→¬¬A
does not. One may readily check that this latter implication is equivalent to
the weak excluded middle ¬A∨¬¬A as an axiom; in particular ¬@¬A and ¬¬A
becomes equivalent in LGP, because (Lin) implies the weak excluded middle.

5.2 A reformulation of global intuitionistic logic

Next we shall consider propositional global intuitionistic logic (to be called
GIPC). Let us first look at the formulation of the logic in sequent calculus as
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given in [46,1]. The system will be described in the language L@
⊥. Originally,

however, 2 was used in place of @, and ¬ was taken as primitive, rather than
⊥. We shall call the calculus LGJ and the derivability by `gGI .
Definition 5.6 [Titani & Aoyama] The rule of the calculus LGJ are as follows.

A⇒ A [Ax] ⊥ ⇒ [L⊥]

Γ⇒ ∆ [LW]
A,Γ⇒ ∆

Γ⇒ ∆ [RW]
Γ⇒ ∆, A

A,A,Γ⇒ ∆
[LC]

A,Γ⇒ ∆

Γ⇒ ∆, A,A
[RC]

Γ⇒ ∆, A

Γ, A,B,Π⇒ ∆
[LE]

Γ, B,A,Π⇒ ∆

Γ⇒ ∆, A,B,Λ
[RE]

Γ⇒ ∆, B,A,Λ

Γ⇒ ∆, A A,Π⇒ Λ
[Cut]

Γ,Π⇒ ∆,Λ

Ai,Γ⇒ ∆
[L∧]

A1 ∧A2,Γ⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
[R∧]

Γ⇒ ∆, A ∧B
A,Γ⇒ ∆ B,Γ⇒ ∆

[L∨]
A ∨B,Γ⇒ ∆

Γ⇒ ∆, Ai
[R∨]

Γ⇒ ∆, A1 ∨A2

Γ⇒ ∆, A B,Π⇒ Λ
[L→]

A→ B,Γ,Π⇒ ∆,Λ

A,Γ⇒ ∆̄, B
[R→]

Γ⇒ ∆̄, A→ B

A,Γ⇒ ∆
[L@]

@A,Γ⇒ ∆

Γ̄⇒ ∆̄, A
[R@]

Γ̄⇒ ∆̄,@A

In the above, i ∈ {1, 2} and Γ̄ and ∆̄ are finite sequences of @-closed formulas,
which are formulas built from ⊥ and formulas of the form @A, by the con-
nectives ∧,∨,→. For example, @@A,@A ∧ @(⊥ → C),¬@(¬A ∨ B) are all
@-closed formulas. We shall denote @-closed formulas by Ā, B̄ and so on.

We wish to compare GIPC with IPC@. For this purpose it is preferable to
have at hand a Hilbert-style axiomatization. This we claim to be the following.

Definition 5.7 The system GIPC consists of (Ax0)-(Ax12), (MP),(RN) and
the following axiom scheme:

(@A→ @B)→ @(@A→ B) (Ax14)

The derivability in GIPC will be denoted by `GI .
Remark 5.8 Note that the deduction theorem, in the form of Theorem 2.8,
holds for GIPC as well, by the same argument.

We now show a lemma before proving that LGJ and GIPC are equivalent.

Lemma 5.9 Let Ā be @-closed. Then, (i) `GI Ā∨Ā→B, and (ii) `GI Ā→@Ā.
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Proof. For (i), we argue by induction on the complexity of A.

• If Ā ≡ ⊥, then `GI ⊥ ∨⊥ → B.
• If Ā ≡ @A, then @A ∨@A→ B is an instance of (Ax12).
• If Ā ≡ C̄∧D̄, then by IH `GI C̄∨C̄→B and `GI D̄∨D̄→B. So `GI (C̄ ∧
D̄) ∨ (C̄ ∧ D̄)→ B.

• If Ā ≡ C̄ ∨ D̄, similarly `GI (C̄ ∨ D̄) ∨ (C̄ ∨ D̄)→ B.
• If Ā ≡ C̄ → D̄, by IH `GI C̄ ∨ C̄ → D̄ and `GI D̄ ∨ D̄ → B. So `GI (C̄ →
D̄) ∨ (C̄ → D̄)→ B.

For (ii), we similarly argue by induction on A.

• If Ā ≡ ⊥, then ⊥ → @⊥ is an instance of (Ax0).
• If Ā ≡ @A, then @A→ @@A is an instance of (Ax11).
• If Ā ≡ B̄ ∧ C̄, then by IH `GI B̄ → @B̄ and `GI C̄ → @C̄. Thus `GI
B̄ ∧ C̄ → @B̄ ∧@C̄. Now it is easy to check via the deduction theorem that
`GI @B̄ ∧@C̄ → @(B̄ ∧ C̄). Hence `GI B̄ ∧ C̄ → @(B̄ ∧ C̄).

• If Ā ≡ B̄∨C̄, then using the same IH as above, we see `GI B̄∨C̄ → @B̄∨@C̄.
Again it is an easy consequence of the deduction theorem that `GI @B̄ →
@(B̄ ∨ C̄) and `GI @C̄ → @(B̄ ∨ C̄). Hence `GI B̄ ∨ C̄ → @(B̄ ∨ C̄).

• If Ā ≡ B̄ → C̄, then using (Ax10) and the IH that `GI C̄ → @C̄ we infer
`GI (B̄ → C̄) → (@B̄ → @C̄). Thus by (Ax14) `GI (B̄ → C̄) → @(@B̄ →
C̄). Also by the IH that `GI B̄ → @B̄ we have `GI (@B̄ → C̄)→ (B̄ → C̄).
So by (RN) and (Ax9), `GI @(@B̄ → C̄) → @(B̄ → C̄). Combining the
above two observations, we conclude `GI (B̄ → C̄)→ @(B̄ → C̄).

This completes the proof. 2

Proposition 5.10 The following equivalence hold between LGP and GIPC.
(i) For all A ∈ Form, if `GI A then `gGI ⇒ A.
(ii) For all Γ,∆ ⊆ Form, if `gGI Γ⇒ ∆ then `GI

∧
Γ→ ∨

∆.

Proof. For (i), given the correspondence in intuitionistic logic, it suffices to
consider axioms involving @ and (RN). Here we show cases for (Ax12) and
(Ax14), which are stated but not shown in [1, Proposition 2.1]; other cases are
immediate.

Ax12

@A⇒ @A [RW]
@A⇒ @A,B

[R→]⇒ @A,@A→ B
[R∨],[RC]⇒ @A ∨@A→ B

Ax14

@A⇒ @A
B ⇒ B [L@]

@B ⇒ B [L→]
@A→ @B,@A⇒ B

[R→]
@A→ @B ⇒ @A→ B [R@]

@A→ @B ⇒ @(@A→ B)
[R→]⇒ (@A→ @B)→ @(@A→ B)

For (ii), we treat here the cases for [R→], [L@] and [R@].

• For [R→], by IH `GI (
∧

Γ∧A)→ (
∨

∆̄∨B). So `GI
∧

Γ→ (A→ (
∨

∆̄∨B)).
Now by Lemma 5.9 (i), `GI

∨
∆̄∨∨ ∆̄→ B. Thus `GI

∧
Γ→ (

∨
∆̄∨A→

B).
• For [L@], by IH `GI (A∧∧Γ)→ ∨

∆. Then `GI A→ (
∧

Γ→ ∨
∆). So by
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(Ax10) `GI @A→ (
∧

Γ→ ∨
∆). Hence `GI (@A ∧∧Γ)→ ∨

∆.
• For [R@], by IH `GI

∧
Γ̄→ (

∨
∆̄∨A). Then `GI (

∧
Γ̄∧(

∨
∆̄→ @A))→ A.

Thus by (RN) and (Ax9), `GI @(
∧

Γ̄ ∧ (
∨

∆̄→ @A))→ @A. Here we note
@(
∧

Γ̄∧(
∨

∆̄→ @A)) is @-closed. So by Lemma 5.9 (ii), `GI (
∧

Γ̄∧(
∨

∆̄→
@A))→ @A. Also by Lemma 5.9 (i), `GI

∨
∆̄∨∨ ∆̄→ @A. From these we

deduce `GI
∧

Γ̄→ (
∨

∆̄ ∨@A).

This completes the proof. 2

5.3 Globalization and actuality

We are now ready to compare IPC@ and GIPC. We first observe that the
former logic contains the latter.

Proposition 5.11 IPC@⊇ GIPC.

Proof. It suffices to observe that (Ax14) is derivable in IPC@. Applying (RN)
and (Ax13) to (Ax12), we obtain ` @A ∨ @(@A → B). Then on one hand,
since ` @A → ((@A → @B) → @B) and ` @B → @(@A → B) (the latter
by (Ax1), (RN) and (Ax9)), we have ` @A→ ((@A→ @B)→ @(@A→ B)).
On the other hand, it is immediate that ` @(@A → B) → ((@A → @B) →
@(@A→ B)). Therefore ` (@A→ @B)→ @(@A→ B). 2

Remark 5.12 Baaz, in [2], states sequent rules for 4 of LGP. It turns out
that the same rules can be used to formulate a calculus for IPC@. It is obtained
from LGJ by relaxing [R@] to

Γ̄⇒ ∆, A
[R@]

Γ̄⇒ ∆,@A

By Proposition 5.11, we can use Lemma 5.9 for IPC@ as well. Then we can
argue analogously to Proposition 5.10; the treatments of cases for the new [R@]
and (Ax13) are straightforward.

To show that the inclusion of the above proposition is strict, we shall turn to
a closely related logic called TCCω. This is a subsystem of IPC∼ introduced
by A. B. Gordienko in [28] as an extension of Richard Sylvan’s logic CCω (cf.
[44]). Its axiomatization is that of IPC∼, except (RP) is replaced with

A→ B

∼B → ∼A . (RC)

The deducibility in TCCω will be denoted `t. It is easy to check that formulas
and rules derivable in IPC∼ listed in [17, Lemma 2.6, Lemma 2.8] are also
derivable in TCCω. In particular, the following formulas and rule are derivable.

(∼A→ A)→ A (t1)

∼(A→ A)→ B (t2)

∼∼A→ A (t3)

A

∼∼A (t4)

Moreover, the same form of the deduction theorem as IPC∼ holds in TCCω.
Quite similarly to the situation with IPC@ and IPC∼, we have the follow-

ing translations between GIPC and TCCω.
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Definition 5.13 Let ()∼ and ()@ be translations between L@
⊥ and L∼ such

that:

p∼ = p p@ = p

(A ◦B)∼ = A∼ ◦B∼ (A ◦B)@ = A@ ◦B@

(@A)∼ = ∼∼A∼ (∼A)@ = ¬@A@

⊥∼ = ∼(p0 → p0)

where p0 is a fixed propositional variable, and ◦ ∈ {∧,∨ →}.
Lemma 5.14 For all A ∈ Form, `GI A ↔ (A∼)@ and for all A ∈ Form∼,
`t A↔ (A@)∼.

Proof. By induction on A. Here we look at the cases A ≡ @B and A ≡ ∼B.
For the former, we need to show `GI @B ↔ ¬@¬@(B∼)@. By IH `GI

B ↔ (B∼)@, so its suffices to show `GI @B ↔ ¬@¬@B. We first note ¬@B is
@-closed, thus `GI ¬@¬@B ↔ ¬¬@B. Also `GI ¬¬@B ↔ @B from (Ax12).
Therefore we conclude `GI @B ↔ ¬@¬@B as desired.

For the latter, we need `t ∼B ↔ (∼∼(B@)∼ → ∼(p0 → p0)). Again by IH
`t B ↔ (B@)∼. Then the equivalence follows by (N2), (t1) and (t2). 2

Proposition 5.15 We have that (i) for all A ∈ Form, `GI A iff `t A∼, and
(ii) for all A ∈ Form∼, `t A iff `GI A@.

Proof. By Lemma 5.14, it suffices to show the left-to-right direction.
For (i), we need to check the translations of (Ax9)-(Ax12), (Ax14) and

(RN) hold in TCCω.

• (Ax9) is translated as ∼∼(A∼ → B∼)→ (∼∼A∼ → ∼∼B∼), the derivabil-
ity of which is immediate from the deduction theorem and (RC).

• (Ax10) is translated as ∼∼A∼ → A∼, which is an instance of (t3).
• (Ax11) is translated as ∼∼A∼ → ∼∼∼∼A∼. This follows from (N2) and

(t1), which imply ∼∼∼A∼ → ∼A∼; then use (RC).
• (Ax12) becomes ∼∼A∼ ∨ ∼∼A∼ → B∼, a consequence of (N1) and (N2).
• For (Ax14), we need to show `t (∼∼A∼ → ∼∼B∼) → ∼∼(∼∼A∼ → B∼).

First `t ∼A∼∨∼∼A∼ from (N1) and ∼∼∼A∼ → ∼A∼ as seen above. So `t
(∼∼A∼ → ∼∼B∼)→ (∼A∼∨∼∼B∼). We shall show `t (∼A∼∨∼∼B∼)→
∼∼(∼∼A∼ → B∼). On one hand, `t ∼A∼ → ∼∼(∼∼A∼ → B∼) from (N2),
(t3) and (RC). On the other hand, `t ∼∼B∼ → ∼∼(∼∼A∼ → B∼) from
(Ax1) and (RC). Thus `t (∼A∼∨∼∼B∼)→∼∼(∼∼A∼→B∼) as required.

• Finally, (RN) is replicable by (t4).

For (ii), we need to check (N1),(N2) and (RC).

• (N1) is translated into A@ ∨ ¬@A@, which is an instance of (Ax12).
• (N2) is translated into ¬@A@ → (¬@¬@A@ → B@). As we observed in

Lemma 5.14, ¬@¬@A@ is equivalent to ¬¬@A@; so it follows from (Ax0).
• For (RC), we need to derive ¬@B → ¬@A from A → B. This is possible

with (RN),(Ax9) and by contraposition.

This completes the proof. 2
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The translation allows us to use the Kripke semantics for TCCω.

Definition 5.16 [Gordienko] A TCCω-model for L∼ is a triple 〈W,≤, V 〉 with
each component as in IPC@. V is extended to interpretation I analogously,
except for the interpretation of ∼A, which is given by:

I(w,∼A) = 1 iff I(w′, A) = 0 for some w′ ∈W .

We shall use |=t for the semantic consequence, defined as follows: |=t A iff for
all TCCω-models 〈W,≤, V 〉, I(w,A) = 1 for all w ∈W .

Remark 5.17 Note in particular that a model of TCCω does not necessarily
have a base state. If it does, then the interpretation coincides with that of
IPC@.

We are now ready to separate the two systems.

Theorem 5.18 (Gordienko) For all A ∈ Form∼, `t A iff |=t A.

Corollary 5.19 IPC@) GIPC.

Proof. First, observe that we have the following valuation for ∼∼A.

I(w,∼∼A) = 1 iff I(w′, A) = 1 for all w′.

Now, if GIPC proves (Ax13), then by Proposition 5.15∼∼(p∨q)→ ∼∼p∨∼∼q
is provable in TCCω. On the other hand, if we consider a model where W =
{w,w′}, ≤ ={(w,w), (w′, w′)}, V (p)={w} and V (q)={w′}, then I(w,∼∼(p ∨
q)) = 1, but I(w,∼∼p) = I(w,∼∼q) = 0. Hence this is a countermodel
for ∼∼(p ∨ q)→∼∼p ∨ ∼∼q. So by the previous theorem, 0t ∼∼(p ∨ q) →
∼∼p ∨ ∼∼q. A contradiction. Therefore GIPC does not prove (Ax13). 2

Remark 5.20 Note that given a model of TCCω, we can define a model for
L@
⊥ with the interpretation I such that

I(w,@A) = 1 iff I(w′, A) = 1 for all w′.

Then, it is not difficult to see that each such model corresponds to the origi-
nal model similarly to Lemma 5.14 and Proposition 5.15. Therefore, it is an
immediate consequence of Theorem 5.18 that this gives a sound and weakly
complete Kripke semantics for GIPC. (This semantics can be also obtained
from Ono’s semantics via Gordienko’s technique; see below.)

We offer a few more words about GIPC. In [36], Hiroakira Ono extensively
discussed intutitionistic modal systems which are defined by axioms that classi-
cally define S5 when added to S4. Aoyama [1] compared some of these systems
with GIPC, 8 but he did not compare with the strongest of Ono’s systems,
L4. It is defined by (Ax0)-(Ax11), @A ∨@¬@A, (MP) and (RP). The Kripke
semantics for L4 in [36] is characterised by modal relation R that is an equiva-
lence relation; this corresponds to the original semantics of TCCω, from which
Gordienko derived [28, Lemma 4.4] the semantics of Definition 5.16. This ob-
servation and Proposition 5.15 suggest a close relationship between GIPC and
L4. In fact, the two systems turn out to coincide.

8 Some of the comparisons offered in [1] are also observed by Hidenori Kurokawa in [34].



Niki, Omori 475

Proposition 5.21 GIPC = L4

Proof. On one hand, ¬@A is @-closed, so by Lemma 5.9 (ii) ¬@A→ @¬@A
is derivable in GIPC. Thus with (Ax12), @A ∨@¬@A is derivable in GIPC.
Consequently GIPC contains L4. On the other hand, @A ∨ @¬@A implies
(Ax12) with (Ax0) and (Ax10). Moreover, (@A → @B) → @(@A → @B) is
known to be derivable in L4 (cf. [36, Figure 2.1]), and it is a consequence of
(Ax10), (RN) and (Ax9) that @(@A→ @B)→ @(@A→ B) holds, so (Ax14)
is also derivable in L4. Thus L4 contains GIPC as well. 2

5.4 Sequent calculi for TCCω and IPC∼

Finally, we shall use the results obtained so far to formulate sequent calculi
for TCCω and IPC∼. We begin with introducing an analogue of @-closed for
formulas in L∼.

Definition 5.22 We define the class of ∼-closed formulas by the next clauses.
(i) ⊥, ∼A are ∼-closed.
(ii) If B̄ and C̄ are ∼-closed, then B̄ ◦ C̄ is ∼-closed, where ◦ ∈ {∧,∨,→}.

It is straightforward to check that if Ā is ∼-closed, then Ā@ is @-closed.

Lemma 5.23 For all A ∈ Form∼, `t Ā→ ∼∼Ā.

Proof. By the above observation and Lemma 5.9 (ii), we have `GI Ā@ →
@Ā@. Thus by Proposition 5.15 (i) and Lemma 5.14, `t Ā→ ∼∼Ā. 2

The sequent rules for∼ corresponding to TCCω is obtained by the following

Γ̄⇒ ∆̄, A
[L∼]

∼A, Γ̄⇒ ∆̄

A,Γ⇒ ∆
[R∼]

Γ⇒ ∆,∼A

where Γ̄, ∆̄ are ∼-closed. The sequent calculus LT for TCCω is obtained
by adding the above rules to the positive and non-modal fragment of LGJ
(derivability denoted by `gT ).

Theorem 5.24 For all Γ,∆ ⊆ Form∼, `gT Γ⇒ ∆ iff `t
∧

Γ→ ∨
∆.

Proof. For the right-to-left direction, we need to check the cases for (N1),(N2)
and (RC). Each case is straightforward. For the right-to-left direction, we must
check the cases for [L∼] and [R∼]. The latter case is simple; for the former case,
`t Γ̄ → (

∨
∆̄ ∨ A) by IH. Then by (MP) and Lemma 5.23, Γ̄ `t ∼∼

∨
∆̄ ∨ A.

So by (N2), (RC) and (t3), we obtain Γ̄ `t ∼A →
∨

∆̄. Hence by deduction
theorem and Lemma 5.23 again, we conclude `t (Γ̄ ∧ ∼A)→ ∨

∆̄. 2

A sequent calculus for IPC∼ has not been considered before. We can now
obtain one by removing the condition that ∆̄ is ∼-closed in [L∼]. The corre-
spondence with the Hilbert-style system is straightforwardly demonstrable.

6 Concluding remarks

In this article, we introduced IPC@, an expansion of IPC, obtained by adding
actuality operator, and compared with systems including LGP of Baaz, GIPC
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of Titani and IPC∼ of De, obtained by adding projection operator, global-
ization operator and empirical negation respectively. What emerged is the
following hierarchy of systems in L@

⊥, each corresponding to a system in L∼.

GIPC = L4

IPC@

LGP

TCCω

IPC∼

IPC∼ + (Lin)

⇐⇒

⇐⇒

⇐⇒(In L@
⊥) (In L∼)

With respect to these systems, we make some additional observations and
mention a few future directions.

Hybrid logic Since there are clear connections between hybrid logics and
logics with actuality operator, and in particular there are some results on hybrid
logics based on intuitionistic logic (cf. [9,10]), a comparison of IPC@ to these
systems will be of great interest.

Kripke semantics vs. Beth semantics We observed that @ in IPC@

and ∼ in IPC∼ are inter-definable (in the presence of ⊥ in the language), and
similarly for GIPC and TCCω. As we have noted, a crucial difference between
the semantics of IPC∼ and TCCω (hence the interpretation of @) is that
models in the former always has a base state, while the latter in general does
not. As a result, Kripke-semantically, even though both @ can be understood
as a globalization operator (i.e. true iff true everywhere), only the former can
be interpreted as an actuality operator. Yet one may wonder whether one could
view @ in GIPC as a sort of actuality operator.

Beth semantics offers a possibility for this alternative interpretation. It is
a semantics similar to Kripke semantics, but crucially different in that (i) all
models have a base state, and (ii) the valuation of disjunction does not require
one of the disjuncts to hold in the same world. 9 If we define the clause for ∼
as in the Kripke semantics of IPC∼, we obtain Beth semantics with empirical
negation (cf. Appendix). One of the present authors have shown elsewhere in
[35] that (RP) is not valid, but TCCω is sound and complete with respect to
this semantics. This means that @ in GIPC can be understood as actuality
operator with respect to Beth semantics. Thus there are two types of actuality
operator/empirical negation in intuitionistic logic, Kripke-type and Beth-type.

With this kind of perspective, we can connect results related to GIPC
with empirical negation. For instance, Titani’s global intutionistic set theory
can be seen as a mathematical theory with Beth-type empirical negation, by
reading ¬2 as ∼. This could then encourage the investigation of intuitionistic
set theory with Kripke-type empirical negation, as a possible future direction.

Quantifiers Global intuitionistic logic was originally formulated in a first-
order language. Moreover, quantification for LGP has been investigated in

9 For more information, cf. [47, Chapter 13].
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[2,3]. From this perspective, it seems to be a natural direction to consider
first-order systems for IPC@. This can be particularly interesting because like
disjunction, existential quantifier has differing interpretations in Kripke and
Beth models. Therefore we might be able to find an interesting interaction
between quantifiers and modal operators. Moreover, for the purpose of com-
paring IPC@ to S5A of Crossley and Humberstone, we also need quantifiers,
and this will be yet another motivation for adding quantifiers.

Hypersequent calculi The sequent calculus for global intuitionistic logic GI
defined by Titani and Aoyama is not cut-eliminatable, as observed by Agata
Ciabattoni in [13, p.437]. She instead formulated a cut-free hypersequent cal-
culus for GI and for GIF. We may then expect a similar approach to be quite
beneficial in pursuing cut-free sequent calculi for the systems we have consid-
ered, namely IPC@, IPC∼ and TCCω.

Appendix

Beth semantics for TCCω We shall employ the following notations for se-
quences and related notions.

• α, β, . . .: infinite sequences of the form 〈α1, α2, . . .〉 of natural numbers.
• 〈〉: the empty sequence.
• b, b′, . . .: finite sequences of the form 〈b1, . . . , bn〉 of natural numbers.
• b ∗ b′: b concatenated with b′.
• lh(b): the length of b.
• b � b′: b ∗ b′′ = b′ for some b′′.
• b ≺ b′: b � b′ and b 6= b′.
• ᾱn: α’s initial segment up to the nth element.
• α ∈ b: b is α’s initial segment.

We define a tree to be a set T of finite sequences of natural number such
that 〈〉 ∈ T , b ∈ T ∨ b /∈ T and b ∈ T ∧ b′ ≺ b → b′ ∈ T . We call each finite
sequence in T as a node and 〈〉 as the root. A successor of a node b is a node
of the form b ∗ 〈x〉. By leaves of T , we mean the nodes of T which do not have
a successor, i.e. nodes b such that ¬∃x(b ∗ 〈x〉) ∈ T . A spread then is a tree
whose nodes always have a successor, i.e. ∀b ∈ T∃x(b ∗ 〈x〉 ∈ T ).

A Beth model then is a triple (W,�, V ), where (W,�) defines a spread and
V : W × Prop → {0, 1} an assignment of truth values to state-variable pairs
with the condition that:

V (b, p) = 1 iff for all α ∈ b there is m such that (V (ᾱm, p) = 1). [covering]

An interpretation I for Beth model is defined by the following clauses.

• I(b, p) = V (b, p);
• I(b, A∧B)=1 iff I(b, A)=1 and I(b, B)=1;
• I(b, A∨B)=1 iff for all α∈b there is n such that I(ᾱn,A)=1 or I(ᾱn,B)=1;
• I(b, A→B) = 1 iff for all b∈W : if b � b′ and I(b′, A)=1 then I(b′, B)=1;
• I(b,∼A) = 1 iff I(〈〉, A) = 0.

The semantic consequence is then defined as in Kripke semantics.
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Abstract

In “Yet another “choice of primitives” warning: Normal modal logics”, Lloyd Hum-
berstone discussed a failed axiomatization for the normal modal logic K with 3 as
the only primitive modal operator. More specifically, Humberstone observed that a
simple translation of the standard axiomatization for K, where all occurrences of the
necessity operator 2 are replaced by ¬3¬, will not be a complete axiomatization,
since 3p → 3¬¬p is not derivable. As a result, the emerging proof system resists
the standard Kripke semantics. However, to the best of the authors’ knowledge, no
semantics for the failed axiomatization of K is known in the literature. The aim of this
article is to offer the first sound and complete semantics for the failed axiomatization
of K by making use of a semantical framework suggested by John Kearns. In short,
Kearns’ semantics is a combination of non-deterministic semantics together with an
additional hierarchy of valuations. We will also discuss a small question left open by
Humberstone in the same paper. In view of the results presented in this article, we
hope to establish part of the versatility of Kearns’ semantics.

Keywords: Non-deterministic Semantics, Primitive Connectives, Normal Modal
Logics.

1 Introduction

Both in classical and nonclassical logics, there is a freedom in choosing the set
of primitive connectives. For example, in classical logic, one may take negation
and the conditional as primitive connectives, or take all, negation, conjunction,
disjunction and conditional as primitive. Or even one single connective known
as Sheffer’s stroke.

1 The work reported in this paper was initially supported by JSPS KAKENHI Grant Number
JP18K12183, and later by a Sofja Kovalevskaja Award of the Alexander von Humboldt-
Foundation, funded by the German Ministry for Education and Research. Some part of the
results were presented at Oberseminar Logik und Sprachtheorie in Tübingen in May 2019.
We would also like to thank the three referees for their careful reading and helpful comments,
suggestions and corrections that improved the paper. Email: Hitoshi.Omori@rub.de
2 Some of the observations of this article were presented at Trends in Logic XVIII in Milan
in September 2018, at the Kolloquium Philosophie & Linguistik in Göttingen in November
2018, at the Philosophisches Kolloquium in Leipzig in December 2018. DS would like to thank
the audience for their helpful comments and encouragements. Email: Daniel.Skurt@rub.de
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We also know, however, that sometimes some additional care is required. 3

For example, if we take negation and disjunction as primitive connectives, then
the following set of axioms and the rule of inference, due to Hilbert and Ack-
ermann, are complete with respect to the usual two-valued semantics, where
A→B abbreviates ¬A ∨B.

(A ∨A)→A
A→(A ∨B)

(A ∨B)→(B ∨A)

(A→B)→((C ∨A)→(C ∨B))

From A and A→B, infer B

Now, consider negation and conjunction as primitive connectives, and if we
simply translate the above set of axioms and the rule of inference with the
usual definitions A∨B =def. ¬(¬A∧¬B) and A→B =def. ¬(A∧¬B), then we
obtain the following:

¬((¬(¬A ∧ ¬A)) ∧ ¬A) ¬(A ∧ ¬¬(¬A ∧ ¬B)

¬(¬(¬A ∧ ¬B) ∧ ¬¬(¬B ∧ ¬A))

¬((¬(A ∧ ¬B)) ∧ ¬¬(¬(¬C ∧ ¬A) ∧ ¬¬(¬C ∧ ¬B)))

From A and ¬(A ∧ ¬B), infer B

However, as observed by Henryk Hiż in [8], the latter system is not a complete
axiomatization since we may observe that ¬(¬p ∧ p) is not derivable.

As for modal logics, it was shown by David Makinson in [14] that “the
decision whether to treat the zero-ary falsum operator as primitive or as defined,
affects the general structure of the lattice of all modal logics.” Moreover, in [9],
Lloyd Humberstone observed, among other things, that a simple translation of
the axiomatization for the modal logic K with the necessity (or “box”) as the
primitive connective, obtained by replacing the occurrences of “box” by “not
diamond not” will not be a complete axiomatization, since we may observe
that 3p→ 3¬¬p is not derivable. 4

Note, however, that a sound and complete semantics for the failed axioma-
tization of K, which we refer to as Kf , is not yet available in the literature, at
least to the best of the authors’ knowledge. 5

Based on these, the aim of this article is to fill in this gap and as a byproduct
show the versatility of John Kearns’ semantics, devised in [12]. 6 More specif-
ically, we will first introduce a sixteen-valued non-deterministic semantics (cf.
[1] for a survey) with an additional hierarchy on the set of all valuations for

3 For an interesting discussion related to this point, but from a wider perspective, see [7]
and references therein.
4 This is also reported by Richmond Thomason in a recent note [21] without any reference
to Humberstone’s observation. We will not discuss Thomason’s note since the eight-valued
matrix he introduces seems to be not fully articulated. Note that, as pointed out by Hum-
berstone, there is a four-valued matrix that will establish one of Thomason’s results (see
Remark 2.6 below).
5 This is not to say that there are no sound and complete Kripke semantics for the modal
logic K with a primitive possibility operator, see for example [2]. In brief, this axiomatization
makes use of one more axiom than just the K-axiom. We will return to this point later.
6 Kearns’ semantics was later applied to a larger family of normal modal logics in [16].
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Kf following Kearns. Then we will prove that Kf is sound and complete with
respect to our Kearns’ style semantics, now involving sixteen values, instead of
four values. 7 Once these are established, we will extend Kf with additional ax-
ioms in order to give a sound and complete semantics for a system we call S5f .
With this semantics we will deal with a problem left open by Humberstone,
namely showing the independence of 3¬¬p→ 3p from the failed axiomatiza-
tion.

2 Semantics and proof system

Our language L consists of the set {¬,3,→} of propositional connectives and
a countable set Prop of propositional parameters. Furthermore, we denote by
Form the set of formulas defined as usual in L. We denote formulas of L by A,
B, C, etc. and sets of formulas of L by Γ, ∆, Σ, etc.

2.1 Proof system

We first introduce the target system of this article, namely the system Kf . We
also define a subsystem that will be sound and complete with respect to the
non-deterministic semantics without the hierarchy.

Definition 2.1 First, the system Kf consists of the following axiom schemata
and rules of inference: 8

A→ (B → A) (Ax1)

(¬B→¬A)→(A→B) (Ax3)

A A→ B

B
(MP)

(A→(B→C))→((A→B)→(A→C)) (Ax2)

¬3¬(A→B)→(¬3¬A→¬3¬B) (LK)

A

¬3¬A (RN)

We write `Kf
A for, there is a proof for A in Kf if there is a sequence of formulas

B1, . . . , Bn, A (n ≥ 0), such that every formula in the sequence either (i) is an
axiom of Kf ; or (ii) is obtained by (MP) or (RN) from formulas preceding it
in the sequence. Moreover, we define Γ `Kf

A iff for a finite subset Γ′ of Γ,
`Kf

C1 → (C2 → (· · · (Cn → A) · · · )) where Ci ∈ Γ′(1 ≤ i ≤ n).
Second, we define a subsystem of Kf , referred to as kf , which is obtained by

eliminating (RN) and adding the following schemata: 9

3¬¬(A→B)→(¬3¬A→3¬¬B) (Akf1)

¬3¬¬(A→B)→¬3¬¬B (Akf3)

3¬¬¬A→3¬A (Akf5)

¬3¬¬(A→B)→¬3¬A (Akf2)

3¬(A→B)→3¬B (Akf4)

3¬A→3¬¬¬A (Akf6)

We define Γ `kf A (A can be derived from Γ) iff there is a sequence of formulas
B1, . . . , Bn, A (n ≥ 0), such that every formula in the sequence either (i) is an

7 Sixteen values may remind us of the system SIXTEEN3 of Yaroslav Shramko and Heinrich
Wansing (cf. [18,19]). However, we could not establish any relation between their semantics
and our semantics.
8 Where (Ax1), (Ax2), (Ax3) and (MP) are a well-known axiomatization of classical proposi-
tional logic (cf. [20]) and, (LK) and (RN) are the K-axiom and rule of necessitation expressed
in terms of ¬ and 3.
9 We would like to thank one of the anonymous reviewers for pointing out the missing axioms.
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element of Γ (ii) is an axiom of kf ; or (iii) is obtained by (MP) from formulas
preceding it in the sequence.

Remark 2.2 It is rather easy to see that kf is a subsystem of Kf . Indeed, note
first that in Kf , we have the following rules in view of (LK), (MP) and (RN):

A→B
¬3¬A→¬3¬B ,

A→(B→C)

¬3¬A→(¬3¬B→¬3¬C)
.

Then, in order to see that (Akf1) is derivable in Kf , apply the second rule
to A→(¬B→¬(A→B)). For the rest, apply the first rule to ¬(A→B)→A,
¬(A→B)→¬B, B→(A→B), A→¬¬A and ¬¬A→A, respectively.

2.2 A detour: counter-model of Humberstone

Here, we will review the counter-model used by Humberstone, in [9], to establish
that 3A→ 3¬¬A is not derivable in Kf .

Definition 2.3 [Humberstone] A model for L is a triple 〈W,N, V 〉 in which
W is a set with ∅ 6= N ⊆W and V is a function assigning to each propositional
variable a subset of W . Given a model M = 〈W,N, V 〉 we define truth of a
formula A at a point u ∈W (M �u A) as follows:

• M �u p iff u ∈ V (p), if p ∈ Prop;
• M �u B → C iff M 6`u B or M �u C;
• M �u ¬B iff u ∈ N and M 6`u B;
• M �u 3B iff for some v ∈W :M �v B.

A formula A is true in the model M = 〈W,N, V 〉, (notation: M � A), just
in case for all u ∈ N , we have M �u A, and valid (notation: �H A, where H
stands for Humberstone) if it is true in every model.

Fact 2.4 (Theorem 2.1 in [9]) For all A ∈ Form, if `Kf
A then �H A.

Fact 2.5 (Corollary 2.2 in [9]) 6�H 3p→ 3¬¬p. 10

Proof. Consider a two-element model M0 = 〈W0, N0, V0〉, with W0 = {u, v}
and u 6= v, N0 = {u} and V0(p) = {v}. Now, we have M0 �u 3p, but
M0 6`u 3¬¬p. The latter follows since there is no element in W0, such that
¬¬p is true. Indeed, for u, we have u ∈ N but M0 6`u p, and for v, we have
M0 6`v ¬p, but v /∈ N . Therefore, M0 6`u 3p→ 3¬¬p. as desired. 2

Remark 2.6 Note that the above model M0 can be seen as a four-valued
matrix with its four elements being 1 = {u, v}, 2 = {u}, 3 = {v} and 4 = ∅,
and designated values 1 and 2. Truth tables for the connectives are as follows.

A ¬A 3A
1 4 1
2 4 1
3 2 1
4 2 4

A→B 1 2 3 4
1 1 2 3 4
2 1 1 3 3
3 1 2 1 2
4 1 1 1 1

10 Thus, Kf does not enjoy the replacement property, also known as self-extensionality. So,
if this property is crucial for modal logics (cf. [15]), then Kf is not a modal logic.
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Then, if we assign the value 3 to p, then 3p → 3¬¬p receives the value 4, as
desired. Note, however, that 3¬¬p → 3p will be verified in this model (note
that the above matrix can be found in [9, Figure 1]).

2.3 Semantics

We now turn to present the semantics for Kf . To this end, we first introduce
the basic Nmatrix which requires sixteen truth values.

Definition 2.7 A Kf-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1,T2,T3,T4, t1, t2, t3, t4, f1, f2, f3, f4,F1,F2,F3,F4},
(b) T = {T1,T2,T3,T4, t1, t2, t3, t4},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T
T2 f4 T
T3 F4 F
T4 f4 F

A ¬̃A 3̃A
t1 F1 T
t2 f1 T
t3 F1 F
t4 f1 F

A ¬̃A 3̃A
f1 t4 T
f2 T4 T
f3 t4 F
f4 T4 F

A ¬̃A 3̃A
F1 t1 T
F2 T1 T
F3 t1 F
F4 T1 F

A→̃B T13 T24 t13 t24 f13 f24 F13 F24

T13, T24 T13 T24 t13 t24 f13 f24 F13 F24

t13, t24 T13 T13 T13, t13 T13, t13 f13 f13 f13,F13 f13,F13

f13, f24 T13 T24 t13 t24 T13 T24 t13 t24

F13,F24 T13 T13 T13, t13 T13, t13 T13 T13 T13, t13 T13, t13

where
• T13 = {T1,T3}, T24 = {T2,T4}, t13 = {t1, t3}, t24 = {t2, t4},
• F13 = {F1,F3}, F24 = {F2,F4}, f13 = {f1, f3}, f24 = {f2, f4},
• F = {f1, f2, f3, f4,F1,F2,F3,F4}.

A kf-valuation in a Kf -Nmatrix M is a function v : Form→ V that satisfies the
following condition for every n-ary connective ∗ of L and A1, . . . , An ∈ Form:
v(∗(A1, . . . , An)) ∈ ∗̃(v(A1), . . . , v(An)). 11

Remark 2.8 Note that the above truth table for →̃ is making use of an un-
usual abbreviation. The full version is available in the Appendix.

Remark 2.9 This truth-table for implication can be seen as a generalization
of the truth-table for implication of the system K, presented in [16, Definition
43]. The similarities will become explicit in the definition of the canonical
model (cf. Definition 3.8 below).

Definition 2.10 A is a kf-consequence of Γ (Γ |=kf A) iff for all kf -valuation
v, if v(B) ∈ T for all B ∈ Γ then v(A) ∈ T . In particular, A is a kf-tautology
iff v(A) ∈ T for all kf -valuations v.

11 Note that the definition of kf -valuations is in the terminology of [16] called legal valuation,
which in turn is also called dynamic valuation in [1].
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Remark 2.11 Note that with Yuri V. Ivlev another logician considered non-
deterministic semantics for a language with modality (cf. [10,11]). He is, how-
ever, not dealing with normal modal logics but only fragments without the rule
of necessitation. Our system kf can therefore also be understood as a system
of modality in the sense of Ivlev. 12

Definition 2.12 Let v be a function v : Form→ V. Then,

• v is a 0th-level Kf-valuation if v is a kf -valuation.
• v is a m + 1st-level Kf-valuation iff v is an mth-level Kf -valuation and for

every sentence A, v(A)∈{T1,T2,T3,T4} holds if v′(A)∈T for every mth-
level Kf -valuation v′.

Based on these, we define v to be a Kf-valuation iff v is an mth-level Kf -
valuation for every m ≥ 0.

Definition 2.13 A is a Kf-tautology (|=Kf
A) iff v(A) ∈ {T1,T2,T3,T4} for

every Kf -valuation v.

Remark 2.14 The definition of Kf -valuations involves some complicated con-
struction. Hence, for the sake of simplicity, we will only focus on tautologies,
but not consequence relations with possibly non-empty premises for Kf , and
similarly for its extensions.

3 Soundness and completeness

We first prove the soundness, and then turn to the completeness result for both
kf and Kf . The proofs are variants of those in [16].

3.1 Soundness

The soundness for the kf consequence relation is rather straightforward.

Proposition 3.1 For all Γ ∪ {A} ⊆ Form, if Γ `kf A then Γ |=kf A.

Proof. It suffices to check that all axioms are kf -tautologies, and that the rule
of inference (MP) preserves the designated values. The details are spelled out
in the Appendix. 2

For the soundness of Kf , we need the following lemma.

Lemma 3.2 Assume that `Kf
A and that the length of the proof for A is m.

Then, for every mth-level Kf-valuation v, v(A) ∈ T .

Proof. By induction on the length m of the proof for `Kf
A. For the base, case

in which m = 1, A is one of the axioms. Since axioms are kf -tautologies, as
shown above, v(A) ∈ T for every 1st-level Kf -valuation. (Note that by defini-
tion, if a sentence is designated for every mth-level Kf -valuation, then it is also
designated for every m+1st-level Kf -valuation.) For the induction step, assume
that the result holds for proofs of the length m, and let B1, . . . , Bm, Bm+1(= A)
be the proof for A. Then, there are the following three cases:

12 For continuations of Ivlev’s approach, see for example [3,4,5]. For a little problem with
Ivlev’s original paper, see [16, §3.3].
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• If A is an axiom, then A is designated for every kf -valuation, and thus for
every m+ 1st-level Kf -valuation as well.

• If A is obtained by applying (MP) to Bi and Bj(= Bi → A), then by
induction hypothesis, Bi and Bj are designated for every max{i, j}th-level
Kf -valuation, and thus for every mth-level Kf -valuation. By the truth table
for →, we obtain that A is also designated for every mth-level Kf -valuation.
Therefore, A is designated for every m+ 1st-level Kf -valuation as well.

• If A is obtained by applying (RN) to Bi, then by induction hypothesis, Bi
is designated for every ith-level Kf -valuation. So, for every i + 1st-level Kf -
valuation, ¬3¬Bi, i.e. A is designated. Thus, A is designated for every
m+ 1st-level Kf -valuation.

This completes the proof. 2

Once we have the lemma, soundness for Kf follows immediately.

Proposition 3.3 For all A ∈ Form, if `Kf
A then |=Kf

A.

Proof. Let the length of the proof for A be m. Then, by the above
lemma, A is designated for every mth-level Kf -valuation. Therefore, v(A) ∈
{T1,T2,T3,T4} for every m + 1st-level Kf -valuation v. Since Kf -valuations
are also m + 1st-level Kf -valuations, we obtain that A takes one of the values
T1,T2,T3,T4 for every Kf -valuation, as desired. 2

3.2 Completeness

We now turn to prove the completeness. First, we list some provable formulas,
without proofs, that will be used in the following proofs.

Proposition 3.4 The following formulas are provable in kf :

¬3¬A→(3¬B→3¬(A→B)) (1)

A→(¬B→¬(A→B)) (2)

(A→B)→((¬A→B)→B) (3)

A→(¬A→B) (4)

Second, we introduce some standard notions that will be used in the proofs.
In what follows, we let L be kf or Kf , or their extensions we consider in later
sections.

Definition 3.5 For Γ ⊆ Form, Γ is an L-consistent set iff Γ 6` A or Γ 6` ¬A for
all A ∈ Form. Γ is L-inconsistent otherwise.

Definition 3.6 For Γ ⊆ Form, Γ is maximal L-consistent set iff Γ is L-
consistent and any set of formulas properly containing Γ is L-inconsistent. If Γ
is maximal L-consistent set, then we say that Γ is a L-mcs.

We then obtain the following well-known lemma. As the proof is standard,
we will leave it to the reader.

Lemma 3.7 For any Σ ∪ {A} ⊆ Form, suppose that Σ 6`L A. Then, there is a
Π ⊇ Σ such that Π is a L-mcs.

We next define the canonical valuation. This will also give us an intuitive
reading of the sixteen values.
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Definition 3.8 For any Σ ⊆ Form, we define a function vΣ : Form → V as
follows.

vΣ(B) :=





T1 if Σ ` ¬3¬B and Σ ` B and Σ ` 3B and Σ ` 3¬¬B
T2 if Σ ` ¬3¬B and Σ ` B and Σ ` 3B and Σ 6` 3¬¬B
T3 if Σ ` ¬3¬B and Σ ` B and Σ 6` 3B and Σ ` 3¬¬B
T4 if Σ ` ¬3¬B and Σ ` B and Σ 6` 3B and Σ 6` 3¬¬B
t1 if Σ 6` ¬3¬B and Σ ` B and Σ ` 3B and Σ ` 3¬¬B
t2 if Σ 6` ¬3¬B and Σ ` B and Σ ` 3B and Σ 6` 3¬¬B
t3 if Σ 6` ¬3¬B and Σ ` B and Σ 6` 3B and Σ ` 3¬¬B
t4 if Σ 6` ¬3¬B and Σ ` B and Σ 6` 3B and Σ 6` 3¬¬B
f1 if Σ ` ¬3¬B and Σ 6` B and Σ ` 3B and Σ ` 3¬¬B
f2 if Σ ` ¬3¬B and Σ 6` B and Σ ` 3B and Σ 6` 3¬¬B
f3 if Σ ` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ ` 3¬¬B
f4 if Σ ` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ 6` 3¬¬B
F1 if Σ 6` ¬3¬B and Σ 6` B and Σ ` 3B and Σ ` 3¬¬B
F2 if Σ 6` ¬3¬B and Σ 6` B and Σ ` 3B and Σ 6` 3¬¬B
F3 if Σ 6` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ ` 3¬¬B
F4 if Σ 6` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ 6` 3¬¬B

Remark 3.9 Compared to the definition of the canonical valuation for K in
[16, Lemma 52], the number of truth values has doubled, since we are treating
3B and 3¬¬B separately.

Lemma 3.10 If Σ is a kf-mcs, then vΣ is a well-defined kf-valuation.

Proof. The details are spelled out in the Appendix. 2

Remark 3.11 By a careful examination, we also obtain that if Σ is a Kf -mcs,
then vΣ is a well-defined kf -valuation.

Based on these, we are now ready to prove the completeness of kf .

Theorem 3.12 For all Γ ∪ {A} ⊆ Form, if Γ |=kf A then Γ `kf A.

Proof. Suppose that Γ 6`kf A. Then by Lemma 3.7, we can construct a kf -mcs
Σ0 such that Γ ⊆ Σ0. In view of Lemma 3.10, we can define a kf -valuation
vΣ0 such that vΣ0(B) ∈ T for every B ∈ Γ and vΣ0(A) 6∈ T . Thus we have
Γ 6|=kf A, as desired. 2

For the completeness of Kf , we need one more lemma.

Lemma 3.13 Let Γ be a Kf-mcs. If vΓ is a kf-valuation, then vΓ is also an
mth-level Kf-valuation for every m ≥ 1, and thus a Kf-valuation.

Proof. By induction on m. For the base case, we prove that vΓ is 1st-level
Kf -valuation. Let A be a sentence that is designated for every kf -valuation.
Assume, for reductio, that 6`Kf

A. Then, in view of Remark 2.2, 6`kf A. Now,
by Lemma 3.7, there is a kf -mcs Σ such that Σ 6`kf A. Now let vΣ be the
kf -valuation generated by Σ. By the definition of vΣ, we have that Σ 6`kf A,
i.e. v(A) 6∈ T . But this contradicts our assumption that A is designated for
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every kf -valuation. Therefore, we have proved that `Kf
A. Then by (RN),

we obtain `Kf
¬3¬A. And by the definition of vΓ, we obtain that vΓ(A) ∈

{T1,T2,T3,T4}, as desired.
For the induction step, assume that vΓ is an mth-level Kf -valuation, and let

A be a sentence that is designated for every mth-level Kf -valuation. Assume,
for contradiction, that 6`Kf

A. Again, in view of Remark 2.2, we obtain 6`kf A.
Now by Lemma 3.7, there is a kf -mcs ∆ such that ∆ 6`kf A. Now let v∆ be
the kf -valuation generated by ∆. By induction hypothesis, we have that v∆

is an mth-level Kf -valuation. Moreover, by the definition of v∆, we have that
∆ 6`kf A, i.e. v∆(A) 6∈ T . But this contradicts our assumption that A is
designated for every mth-level Kf -valuation. Therefore, we have proved that
`Kf

A. Then by (RN), we obtain `Kf
¬3¬A. And by the definition of vΓ, we

obtain that vΓ(A) ∈ {T1,T2,T3,T4}, as desired. 2

We are now ready to prove completeness for Kf .

Theorem 3.14 For all A ∈ Form, if |=Kf
A then `Kf

A.

Proof. Suppose that 6`Kf
A. Then by Lemma 3.7, we have an Kf -mcs Σ0 such

that Σ0 6`Kf
A. In view of Remark 3.11, we can define a kf -valuation vΣ0

, and
by Lemma 3.13, this vΣ0 is also a Kf -valuation. Since we have vΣ0(A)6∈T , it is
also the case that vΣ0(A)/∈{T1,T2,T3,T4} (since vΣ0(A)∈{T1,T2,T3,T4}
implies that vΣ0

(A)∈T ). Thus we obtain 6|=Kf
A. 2

4 On extensions of failed K

We now have a semantics for Kf , and with this semantics at hand, we can turn
to discuss an open problem left by Humberstone in [9]. Let us first explain the
problem, and then outline our approach to the problem.

In [9, p.401], Humberstone pointed out that he was not successful in finding
an argument, possibly a variation of the above counter-model we reviewed
in Definition 2.3, establishing the unprovability of 3¬¬p → 3p. Hence this
problem was left open (see also [9, p.402]).

Note here that we can easily check that the Humberstone’s four-valued
semantics verifies both A→3A and 3A→¬3¬3A, namely axioms for S5. This
implies that the unprovability of 3¬¬p→ 3p is not due to the weakness of Kf .
In other words, the warning of choice of primitives carries over to extensions
of Kf , as well.

Based on this observation, we will mainly focus on extensions of Kf obtained
by adding axioms for S5, and analyse the open problem of Humberstone in some
detail. More specifically, we not only establish the unprovability of 3¬¬p →
3p, but also offer sound and complete semantics for extensions obtained by
adding one or both of 3A→ 3¬¬A and 3¬¬A→ 3A. In order to show how
the number of truth values will be reduced, we will also introduce an extension
of Kf obtained by adding an axiom for T.

4.1 From failed K to failed T

First, the extensions of Kf and kf are obtained as follows.
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Definition 4.1 The systems Tf and tf are obtained by adding A→3A to Kf

and kf , respectively. The consequence relations are defined as in Definition 2.1.

For the semantics, we introduce the following Nmatrix obtained by elimi-
nating truth-values of the Kf -Nmatrix.

Definition 4.2 A Tf-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F2,F3,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T
t1 F1 T
F1 t1 T
F2 T1 T
F3 t1 F
F4 T1 F

A→̃B T1 t1 F1 F2 F3 F4

T1 T1 t1 F13 F24 F13 F24

t1 T1 T F13 F13 F13 F13

F1 T1 T T T T T
F2 T1 T T T T T
F3 T1 T T T T T
F4 T1 T T T T T

where F13 = {F1,F3}, F24 = {F2,F4} and F = {F1,F2,F3,F4}.
Remark 4.3 The definitions of tf -valuations, mth-level valuations and conse-
quence relations are exactly as in Definitions 2.7, 2.10, 2.12 and 2.13, with the
difference that only the value T1 is preserved in the hierarchy, respectively.

Proposition 4.4 (Soundness) For all Γ ∪ {A} ⊆ Form, (i) if Γ `tf A then
Γ |=tf A, and (ii) if `Tf

A then |=Tf
A.

Proof. The proof is similar to the proof for Proposition 3.3. 2

For the completeness, we need the following definition and lemma as before.

Definition 4.5 For any Σ ⊆ Form, we define a function vΣ : Form → V as
follows.

vΣ(B) :=





T1 if Σ ` ¬3¬B and Σ ` B and Σ ` 3B and Σ ` 3¬¬B
t1 if Σ 6` ¬3¬B and Σ ` B and Σ ` 3B and Σ ` 3¬¬B
F1 if Σ 6` ¬3¬B and Σ 6` B and Σ ` 3B and Σ ` 3¬¬B
F2 if Σ 6` ¬3¬B and Σ 6` B and Σ ` 3B and Σ 6` 3¬¬B
F3 if Σ 6` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ ` 3¬¬B
F4 if Σ 6` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ 6` 3¬¬B

Lemma 4.6 If Σ is a tf-mcs, then, vΣ is a well-defined tf-valuation.

Proof. The details of the proof are exactly as in Lemma 3.10, except that we
eliminate the values T2, T3, T4, t2, t3, t4, f1, f2, f3 and f4. 2

Now we can prove the completeness.

Theorem 4.7 (Completeness) For all Γ ∪ {A} ⊆ Form, (i) if Γ |=tf A then
Γ `tf A, and (ii) if |=Tf

A then `Tf
A.
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Proof. Similar to the proofs of Theorems 3.12 and 3.14, by making use of
Lemma 4.6 instead of Lemma 3.10. We leave the details to the reader. 2

4.2 From failed T to failed S5

We now turn to the failed S5 which will serve as the basic system in analyzing
Humberstone’s open problem. For the proof system, we add three more axioms.

Definition 4.8 The systems S5f and s5f are obtained by adding 33A→3A,
3¬¬3A→3A and 3A→¬3¬3A to Tf and tf , respectively. The consequence
relations `S5f and `s5f are defined as in Definition 2.1.

For the semantics, the number of truth values will remain the same, but we
eliminate non-determinacy for the truth-tables of 3.

Definition 4.9 An S5f-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F2,F3,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F2 T1 T1

F3 t1 F4

F4 T1 F4

A→̃B T1 t1 F1 F2 F3 F4

T1 T1 t1 F13 F24 F13 F24

t1 T1 T F13 F13 F13 F13

F1 T1 T T T T T
F2 T1 T T T T T
F3 T1 T T T T T
F4 T1 T T T T T

where F13 = {F1,F3} and F24 = {F2,F4}.
Remark 4.10 The definitions of s5f valuations, mth-level valuations and con-
sequence relations are exactly as in the Definitions 2.7, 2.10, 2.12 and 2.13.

There is, however, a significant property of S5f which distinguishes it from
the other systems introduced in this article so far. Indeed, we do not need a
whole hierarchy of mth-level valuations, but only two levels are sufficient. We
leave the details to the interested reader and refer to [16, §4.4] in which this
was observed for S4 and S5.

Proposition 4.11 (Soundness) For all Γ∪ {A} ⊆ Form, (i) if Γ `s5f A then
Γ |=s5f A, and (ii) if `S5f A then |=S5f A.

Proof. We only note that the additional axioms are valid in the S5f -Nmatrix
in which all non-determinacies for 3 are eliminated. The rest is exactly as in
Proposition 4.4. 2

Theorem 4.12 (Completeness) For all Γ ∪ {A} ⊆ Form, (i) if Γ |=s5f A
then Γ `s5f A, and (ii) if |=S5f A then `S5f A.

Proof. We only note that the additional axioms allow us to conclude that if Σ
is a s5f -mcs, then vΣ is a well-defined s5f -valuation. The proof is by induction,
and we only check the case when B is of the form 3C.
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• If vΣ(C) = T1, then by IH, we obtain that Σ ` ¬3¬C and Σ ` C and Σ `
3C and Σ ` 3¬¬C. Then, by the third conjunct and 3A→¬3¬3A, we
have Σ ` ¬3¬3C, and this also implies Σ ` 3C, Σ ` 33C and Σ `
3¬¬3C. Then, by the definition of vΣ, this means vΣ(3C) = T1, as desired.
Other cases with vΣ(C)=t1, vΣ(C)=F1 and vΣ(C)=F2 are the same.

• If vΣ(C) = F3, then by IH, we obtain that Σ 6` ¬3¬C and Σ 6` C and Σ 6`
3C and Σ ` 3¬¬C. Then, by the third conjunct together with 33A→3A
and 3¬¬3A→3A, we have Σ 6` 33C and Σ ` 3¬¬3C, and we also have
Σ 6` ¬3¬3C and Σ 6` 3C. Then, by the definition of vΣ, this means
vΣ(3C) = F4, as desired. The other case with vΣ(C)=F4 is the same.

The rest of the proof is exactly as in Theorem 4.7. 2

4.3 On the open problem of Humberstone

We are now in the position to shift our interest to the problem left open
by Humberstone in [9]. The counter-model given by Humberstone, and de-
scribed in §2.2, invalidates one direction of the equivalence 3A↔3¬¬A, namely
3A→3¬¬A, while validating the other. We will now show that the above se-
mantics for S5f in the style of Kearns, with one more adjustment, helps us to
establish the unprovability of both 3p→3¬¬p and 3¬¬p→3p.

The adjustment we need to make is, to close the non-determinacies to ob-
tain a six-valued (deterministic) matrix that will do the job for our present
purposes. One may have expected that the above semantics will directly give
us the counter-model. Unfortunately, this is not the case, at least at the mo-
ment, due to the problem of analyticity in Kearns’ semantics (cf. [16, Remark
42]). 13 Still, the definition of the canonical valuation strongly suggests that we
should be able to give a counter-model, and by following Schiller Joe Scroggs
who explored the many-valued extensions of S5 in [17], we may aim at a deter-
ministic extension of our semantics for S5f .

Definition 4.13 A dS5f-matrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F2,F3,F4},
(b) T = {T1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to V as follows:

A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F2 T1 T1

F3 t1 F4

F4 T1 F4

A→̃B T1 t1 F1 F2 F3 F4

T1 T1 t1 F1 F4 F1 F4

t1 T1 T1 F1 F1 F1 F1

F1 T1 t1 T1 t1 T1 t1
F2 T1 T1 T1 T1 T1 T1

F3 T1 t1 T1 t1 T1 t1
F4 T1 T1 T1 T1 T1 T1

13 It is not yet proven that in Kearns’ semantics a partial valuation that falsifies a formula
can be extended to a full valuation that necessarily falsifies the formula, as well. See also [1]
for a discussion on analyticity related to non-deterministic semantics in general.
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We refer to the semantic consequence relation defined in terms of preservation
of the designated value with the above matrix as |=dS5.

Then, it is tedious but routine to check the following.

Lemma 4.14 For all A ∈ Form, if `S5f A then |=dS5 A.

We are now ready to answer Humberstone’s open problem.

Theorem 4.15 6`S5f 3p→3¬¬p and 6`S5f 3¬¬p→3p.

Proof. In view of the above lemma, it suffices to check that 6|=dS5 3p→3¬¬p
and 6|=dS5 3¬¬p→3p. For the first item, assign F2 to A of the dS5f -matrix.
Then, 3p receives the value T1 and 3¬¬p receives the value F4. Therefore,
3p→3¬¬p receives the non-designated value F4, as desired. For the second
item, assign F3 to p of the dS5f -matrix. Then, 3¬¬p receives the value T1 and
3p receives the value F4. Therefore, 3¬¬p→3p receives the non-designated
value F4, as desired. 2

Remark 4.16 In view of the definition of the canonical valuation, this result is
of course something expected. The emphasis here should be that some technical
devices are available to make the canonical valuation work as designed, thanks
to the semantic framework introduced by Kearns. This is, in turn, giving us
some new insight on the problem left open by Humberstone.

Let us now continue by introducing further extensions of S5f and s5f ob-
tained by adding one of the two formulas 3A→3¬¬A and 3¬¬A→3A.

Definition 4.17 Let S5fc and s5fc be the systems obtained by adding
3A→3¬¬A to S5f and s5f , respectively. Moreover, let S5fa and s5fa be the
systems obtained by adding 3¬¬A→3A to S5f and s5f , respectively. 14

For the semantics, we need to eliminate one value each that was used to
invalidate the additional axiom.

Definition 4.18 The Nmatrices for S5fc and S5fa are obtained from the Nma-
trix for S5f , by eliminating the values F2 and F3, respectively. More specifi-
cally, an S5fc-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F3,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F3 t1 F4

F4 T1 F4

A→̃B T1 t1 F1 F3 F4

T1 T1 t1 F13 F13 F4

t1 T1 T F13 F13 F13

F1 T1 T T T T
F3 T1 T T T T
F4 T1 T T T T

14 Note that additional subscripts c and a are for consequent and antecedent respectively,
indicating the position of the double negation in the additional axiom.
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where F13 = {F1,F3}.
Moreover, an S5fa-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F2,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F2 T1 T1

F4 T1 F4

A→̃B T1 t1 F1 F2 F4

T1 T1 t1 F1 F24 F24

t1 T1 T F1 F1 F1

F1 T1 T T T T
F2 T1 T T T T
F4 T1 T T T T

where F24 = {F2,F4}.
We can then establish soundness and completeness for the four new systems

introduced in this subsection. Indeed, all definitions, propositions and theorems
are exactly as in §4.1 and §4.2. More specifically, all proofs can be obtained
by slightly modifying the proofs of the mentioned subsections, by removing the
values F2 and F3, respectively. We safely leave the details for the interested
reader.

Remark 4.19 Note that we can strengthen Theorem 4.15 as follows: 6`S5fa
3p→3¬¬p and 6`S5fc 3¬¬p→3p. This is precisely because we can make use
of the submatrices of the six-valued dS5f -matrix introduced in Definition 4.13.

4.4 From failed S5 to full S5

As noted by Humberstone in [9, p.401], we obtain the standard normal modal
logic K if we extend Kf by adding 3A↔3¬¬A since this gives us the equivalence
¬¬3¬¬A↔3A which corresponds to the ¬2¬A↔3A used in [2, p.34]. Since
this observation also carries over to extensions of K, it is rather natural to
introduce the common extension of S5fa and S5fc obtained by adding the missing
direction.

Definition 4.20 The systems S53 and s53 are obtained by adding the axiom
scheme 3A↔3¬¬A to S5f and s5f , respectively.

For the semantics, seen from the S5f -Nmatrix, we need to eliminate both
values that were used to invalidate the additional axioms. Equivalently, we
obtain the same Nmatrix from the S5fa-Nmatrix and the S5fc-Nmatrix by elim-
inating the values that we used to invalidate the missing direction.

Definition 4.21 An S53-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):
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A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F4 T1 F4

A→̃B T1 t1 F1 F4

T1 T1 t1 F1 F4

t1 T1 T1, t1 F1 F1

F1 T1 T1, t1 T1, t1 T1, t1
F4 T1 T1, t1 T1, t1 T1, t1

The rest of the details towards soundness and completeness results will be
as before. Indeed, all definitions, propositions and theorems are exactly as in
§4.1 and §4.2, and all proofs can be obtained by slightly modifying the proofs
of the mentioned subsections, by removing both of the values F2 and F3.

Remark 4.22 A closer look at the definitions reveals that the Nmatrix of S53
and its definition of the canonical valuation are very similar to the ones for S5
given in [16]. In fact, the definitions of the canonical valuations are equivalent
since in view of the additional axiom, the distinction between 3B and 3¬¬B
is redundant. For the Nmatrix, however, this is slightly different since the one
in [16], taken from [12], has the following truth-table for →̃.

A→̃B T1 t1 F1 F4

T1 T1 t1 F1 F4

t1 T1 T1, t1 F1 F1

F1 T1 T1, t1 T1, t1 t1
F4 T1 T1 T1 T1

Indeed, there are some additional non-determiniacies in our S53-Nmatrix:

• F1→̃F4 will be t1 by having ¬3¬(A→ B)→ (3A→ 3B) as derivable;
• F4→̃x for all x∈V will be always T1 by having 3¬(A→B)→3A as derivable.

However, at the level of S53-valuations, where some valuations will be ruled
out, the formulas above will be validated, and thus the two semantics, the
one for S53 given above, and the one for S5, introduced in [12] are indeed
equivalent.

5 Concluding remarks

Let us now briefly summarize our main results of this paper, and then discuss
a few items for future directions.

Main results Building on the observation of Humberstone about the choice
of primitives in [9], we aimed at offering a sound and complete semantics for
the failed axiomatization of the modal logic Kf , a variant of the modal logic K
with the possibility operator as the only primitive modal operator, but without
¬¬3¬¬A↔3A, the key axiom to obtain an axiomatization based on 3. The
resulting semantics is based on a sixteen-valued non-deterministic semantics
which can be seen as a variant of the semantics devised by Kearns in [12].

We also discussed an open problem left by Humberstone in [9], showing
the independence of not only 3A → 3¬¬A but also 3¬¬A → 3A from S5f
(failed axiomatization of S5), therefore also from Kf . To this end, we devised a
semantics for S5f based on a six-valued non-deterministic semantics, and used
a deterministic extension to establish the unprovability of both 3p → 3¬¬p
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and 3¬¬p→ 3p in one single matrix.
The extensions of Kf we discussed in this article can be ordered, from left

to right by deductive strength, in the following way:

S5fc

S5f S53

S5fa

TfKf

Note that Humberstone also specifically asked for a counter-model for 3¬¬A→
3A that is closer to his own counter-model we revisited in Definition 2.3.
There is a question of how to precisify the notion of closeness to Humberstone’s
counter-model, but there is one possible answer due to Xuefeng Wen presented
in [23, p.71], independently of Humberstone’s question. 15 More specifically,
Wen’s model modifies the standard model M = 〈W,R, V 〉 for the modal logic
K by changing the usual truth condition for 3 as follows.

M, x  3A iff A=¬B and for some y ∈W,xRy and M, y 6 B.
Then, we may easily observe that 3¬¬p→ 3p fails in a model with W = {w},
R = {(w,w)} and V (p) = {w}. Note, however, that 3A → 3¬¬A is valid in
the model suggested by Wen. We therefore leave the task to explore the exact
relations between Humberstone’s counter-model, Wen’s counter-model and our
model, for interested readers.

Future directions (I): a systematic study on extensions of failed K
Since our motivation came from Humberstone’s interesting observations re-
ported in [9], we only focused on extensions of Kf that were crucial and helpful
for our observations. However, this does not exclude a more systematic study
of extensions of Kf . We will here offer a sketch of some of the facts that seem
to suggest that the landscape of the extensions of Kf may look quite different
from the extensions of K.

First, it is well known that in considering extensions of K, there are two
equivalent formulations for many cases. For example, additions of 2A → A
and A → 3A will both give rise to the modal logic T. This will no longer be
the case for extensions of Kf . Indeed, as we observed in §4.1, the extension of
Kf by A → 3A was characterized by a semantics obtained by eliminating ten
values from the semantics for Kf . However, if we extend Kf by ¬3¬A → A,
then we can only eliminate eight values.

Something similar happens to D-like systems when we add ¬3¬A → 3A
and ¬3¬A→ 3¬¬A to Kf . More specifically, the former requires elimination of
six values whereas the latter only requires to eliminate four values. Moreover,
there will be a deviation from the usual picture in the sense that Kf plus
¬3¬A → A, a T-like system, and Kf plus ¬3¬A → 3A, D-like system, are
incomparable. Indeed, we may establish that ¬3¬A → 3A is unprovable in
the first system and ¬3¬A→ A is unprovable in the second system in a similar

15 Our sincere thanks go to one of the anonymous referees for pointing this out.
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manner as we did in Theorem 4.15. We can then again order the extensions of
Kf , up to Tf , from left to right by deductive strength, in the following way:

Kf + ¬3¬A→A

Kf + ¬3¬A→3¬¬A Tf

Kf + ¬3¬A→3A

Kf

Therefore, it can be safely said, the class of extensions for Kf looks quite
different than usually for normal modal logics.

Future directions (II): Failed axiomatizations of tense logics One of
the examples from life for failed axiomatizations, as Humberstone put it in [9],
is that of tense logics. In particular, he discussed the system Kt, given by S. K.
Thomason in [22], introduced as a bimodal logic with two primitive possibility
operators. It was shown by Humberstone that the axiomatization for Kt fails to
be complete with respect to Kripke semantics, by a similar argument building
on a variation of his own counter-model.

In light of the results of this article, we believe that it is possible to construct
sound and complete Kearns’ semantics for Kt or even its extensions. We have
not spelled out the details, but probably an Nmatrix with 128 truth-values
suffices to prove the desired result for Kt, and for certain extensions of Kt,
the number of truth-values should be reduced significantly. The key idea for
constructing such semantics, lies in the canonical model construction, where we
would need to add conditions for the interaction of the two modal operators.

Future directions (III): Some critical reflections on Kearns’ semantics
Finally, we left out an important question raised by readers of earlier versions
of this article, the question whether this semantics is of any philosophical value.
At the moment we are far away from claiming any philosophical significance ,
unless we follow Kearns’ discussion (cf. [13]). In the end, we fully agree with
B. J. Copeland in [6, p. 400], when he writes:

“Philosophically significant semantical arguments can be yielded only by
philosophically significant semantics, not by merely formal model theory.”

Thus, it remains as a (huge) challenge to explore if we can turn Kearns’ se-
mantics into a philosophically significant semantics.

Appendix

In this appendix, we spell out the details left open in the text and give the full
truth-table of the Kf conditional from Definition 2.7.

Details of Proposition 3.1 We will only prove the case for (LK),
since the proofs for the other modal axioms as well as the classical
axioms and (MP) are similar. Now, suppose that for a kf -valuation
v(¬3¬(A→B)→(¬3¬A→¬3¬B)) /∈ T . Then, this implies (1) v(¬3¬(A →
B)) ∈ T , (2) v(¬3¬A) ∈ T and (3) v(¬3¬B) /∈ T . Now, we can see that
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three conditions imply the following, respectively:

(1) then v(3¬(A→ B)) /∈ T
then v(¬(A→ B)) ∈ {T3, t3,T4, t4,F3, f3,F4, f4}
then v(A→ B) ∈ {T1,T2,T3,T4, f1, f2, f3, f4}

(2) then v(3¬A) /∈ T
then v(¬A) ∈ {T3, t3,T4, t4,F3, f3,F4, f4}
then v(A) ∈ {T1,T2,T3,T4, f1, f2, f3, f4}

(3) then v(3¬B) ∈ T
then v(¬B) ∈ {T1, t1,T2, t2,F1, f1,F2, f2}
then v(B) ∈ {t1, t2, t3, t4,F1,F2,F3,F4}

By looking at the truth tables, this is not possible.

Proof of Lemma 3.10 Note first that vΣ is well-defined. The desired result
can be proved by induction on the number n of connectives.
(Base): For atomic formulas, this is obvious in view of the definition of vΣ.
(Induction step): We split the cases based on the connectives.
Case 1. If B = ¬C, then we have sixteen cases of which we will prove four.

• If vΣ(C) ∈ {T2,T4}, then by IH, we obtain that Σ ` ¬3¬C and Σ `
C and Σ 6` 3¬¬C. From this, we immediately get Σ ` ¬3¬¬C and Σ 6`
¬C and Σ 6` 3¬C and Σ 6` 3¬¬¬C. Then, by the definition of vΣ, this
means vΣ(¬C) = f4, as desired.

• If vΣ(C) ∈ {f1, f3}, then by IH, we obtain that Σ ` ¬3¬C and Σ 6`
C and Σ ` 3¬¬C. From this, we immediately get Σ 6` ¬3¬¬C and Σ `
¬C and Σ 6` 3¬C and Σ 6` 3¬¬¬C. Then, by the definition of vΣ, this
means vΣ(¬C) = t4, as desired.

The other cases are similar and left to the reader.

Case 2. If B = 3C, then we can deal with sixteen cases by splitting into the
following two cases.

• If vΣ(C) ∈ {Ti, ti, fi,Fi} with i ∈ {1, 2}, then by IH, we obtain that Σ ` 3C.
By the definition of vΣ, we obtain vΣ(3C) ∈ T , as desired.

• If vΣ(C)∈{Ti, ti, fi,Fi} with i∈{3, 4}, then by IH, we obtain that Σ 6` 3C.
By the definition of vΣ, we obtain vΣ(3C) 6∈ T , i.e. vΣ(3C) ∈ F , as desired.

Case 3. If B = C → D, then we have 256 different cases, which can be reduced
to eighteen of which will prove four.

• If vΣ(D) ∈ {T1,T3}, then by IH, we obtain that Σ ` ¬3¬D and Σ `
D and Σ ` 3¬¬D. From the first conjunct and (Akf4) we get Σ ` ¬3¬(C →
D). The second conjunct and (Ax1) gives us Σ ` C → D and by the third
conjunct together with (Akf3) we have Σ ` 3¬¬(C → D). Then, by the
definition of vΣ, this means vΣ(C → D) ∈ {T1,T3}, as desired.

• If vΣ(C) ∈ {F1,F2,F3,F4} and vΣ(D) ∈ {t1, t2, t3, t4,F1,F2,F3,F4},
then by IH, we obtain that Σ 6` ¬3¬C and Σ 6` C and Σ 6` ¬3¬D. From the
second conjunct together with (Ax1) and (Ax3) we infer Σ ` C → D. And
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the first conjunct together with (Akf2) gives us Σ ` 3¬¬(C → D). Then, by
the definition of vΣ, this means vΣ(C → D) ∈ {T1,T3, t1, t3}, as desired.

• If vΣ(C) ∈ {t1, t2, t3, t4} and vΣ(D) ∈ {f1, f2, f3, f4}, then by IH, we obtain
that Σ 6` ¬3¬C and Σ ` C and Σ ` ¬3¬D and Σ 6` D. The third conjunct
together with (Akf4) gives us Σ ` ¬3¬(C → D), while the first conjunct
together with (Akf2) gives us Σ ` 3¬¬(C → D). We also obtain Σ 6` C → D
from the second and fourth conjunct together with (2) from Proposition 3.4.
Then, by the definition of vΣ, this means vΣ(C → D) ∈ {f1, f3}, as desired.

• If vΣ(C) ∈ {T1,T2,T3,T4} and vΣ(D) ∈ {f2, f4}, then by IH, we obtain
that Σ ` ¬3¬C and Σ ` C and Σ ` ¬3¬D and Σ 6` D and Σ 6` 3¬¬D.
The third conjunct together (Akf4) gives us Σ ` ¬3¬(C → D). From the
second and forth conjunct together with (2) from Proposition 3.4 we obtain
Σ 6` (C → D). And (Akf1), together with the first and the last conjuncts,
gives us Σ 6` 3¬¬(C → D). Then, by the definition of vΣ, this means
vΣ(C → D) ∈ {f2, f4}, as desired.
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Truth-table for the conditional in Definition 2.7
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Abstract

In [38], one of the present authors introduced a system of connexive logic, called C,
as a simple variant of Nelson’s Logic N4, obtained by making a small change in the
falsification clause for the conditional. This was an important step marked in the field
of connexive logic since C can be seen as the first system of connexive logic with an
intuitively plausible semantics. The aim of this article is to consider an extension of
C obtained by adding the law of excluded middle with respect to the strong negation.
The extension of C is motivated by three questions. The first question comes from a
system CN devised by John Cantwell. The second question concerns how many more
connexive theses, beside the basic theses of Aristotle and Boethius, can be captured
within the framework suggested in the above paper. The third question addresses
the relation between constructivity and the law of excluded middle. We will show
that the quantified version of our extension of C satisfies the Existence Property and
its dual, but fails to satisfy the Disjunction Property and its dual when the law of
excluded middle is restricted to atomic formulas. We will also mention some open
problems related to the new system introduced in this article.

Keywords: Connexive logic, Constructive logic, Law of excluded middle, Nelson
logic, Many-valued logic, FDE, Disjunction Property, Existence Property.

1 Introduction

Connexive logics are traditionally characterized as systems validating the theses
of Aristotle and Boethius, namely the following theses (cf. [20,39] for surveys):

Aristotle ∼(∼A→ A), ∼(A→ ∼A);
Boethius (A→ B)→ ∼(A→ ∼B), (A→ ∼B)→ ∼(A→ B).
Moreover, we require that (A→ B)→ (B → A) fails to be a theorem.

As one can easily observe, these characteristic theses are not valid in
classical logic. In other words, connexive logics belong to a larger family of
nonclassical logics known as contra-classical logics (cf. [15]). Thus it remained

1 This research was supported by a Sofja Kovalevskaja Award of the Alexander von
Humboldt-Foundation, funded by the German Ministry for Education and Research. We
would like to thank the referees for their helpful comments. Email: Hitoshi.Omori@rub.de
2 Email: Heinrich.Wansing@rub.de
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as a non-trivial task to find an intuitive system of connexive logic. An impor-
tant progress was marked when one of the present authors, in [38], suggested
to capture connexive theses through a different falsity condition for the condi-
tional by building on the elegant framework of the four-valued logic known as
FDE, or Belnap-Dunn logic. 3 More specifically, a system of connexive logic
called C was introduced as a variant of Nelson’s logic N4 (cf. [37,23,16] and
references therein) by making a small change to the falsity condition for the
conditional (cf. Remark 2.2). 4 As Graham Priest notes in [31, p. 178], the
system C is most likely to be “one of the simplest and most natural.”

The aim of this article is to consider an extension of C obtained by adding
the law of excluded middle (LEM hereafter) with respect to the strong negation.
The extension of C is motivated by the following three questions.

Question 1: Can we improve Cantwell’s CN? In [6], John Cantwell
addresses the question of how to negate indicative conditionals, and defends
the following three-valued truth table, suggested by Nuel D. Belnap in [5]:

A ∼A
t f− −
f t

A→B t − f

t t − f− t − f
f − − −

A notable feature here is that the third value is meant to be a gappy value,
and that when a conditional has a false antecedent it lacks a truth value. As a
byproduct, two formulas ∼(A→ B) and A→ ∼B receive exactly the same value
for every assignment, and thus these two formulas are equivalent. 5

Cantwell then defined the consequence relation by designating both t and−, which can be seen as preserving non-false values. As a consequence of this,
Cantwell’s logic CN includes both Aristotle’s and Boethius’ theses, and thus
is connexive, though connexivity is not mentioned at all.

However, CN also has the feature of the pure →-fragment of the resulting
logic being classical. This implies that formulas such as (A→B)∨(B→C) hold
for arbitrary A, B and C. We are fully aware that there are attempts aiming at
making sense of the material conditional as an indicative conditional (cf. [32]
and references therein). But, it also seems to be a natural question if we can
replace the classical conditional by a better conditional, such as a constructive
conditional. And this is precisely the first question that motivates us to explore
the extension of C by LEM.

Question 2: How many desiderata, listed by Estrada-González and
Ramı́rez-Cámara, can be met by connexive logics à la C? In [12],
Luis Estrada-González and Elisángela Ramı́rez-Cámara offer a list of desider-
ata for connexive logics which contains more than two characteristic theses of

3 For an overview of systems related to FDE, cf. [29].
4 Tweaking the falsity condition for other connectives seems to be interesting from the
perspective of contra-classical logics (cf. [30]).
5 See [10,11] for a recent discussion on CN. See also [9,28] for negated indicative conditionals
being equivalent to formulas involving a modality.
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connexive logics. In particular, the list contains the following formulas:

Aristotle’s second thesis ∼((A→ B) ∧ (∼A→ B));
Abelard’s thesis ∼((A→ B) ∧ (A→ ∼B)). 6
Note that on the one hand, in [40], it has been argued that the above theses
should not be considered as defining principles of connexive logic because they
are motivated by the idea of negation as cancellation, which is said to be un-
suitable as a basis for any validity claims. On the other hand, however, the
above formulas are included, for example, in probabilistic approaches to con-
ditionals, and thus interests into these formulas go beyond technical curiosity.
They rather seem to capture certain intuitions on conditionals.

Regardless of one’s opinion on the above two theses, it is mentioned al-
ready in [40,41] that the system C fails to include Aristotle’s second thesis and
Abelard’s thesis. But, this does not mean that variants of C will fail both or
at least one of the above theses. And this is precisely the second question that
motivates us to explore the extension of C by LEM.

Question 3: What is the relation between constructivity and LEM?
As per Jeremy Avigad [1, p. 10], “the words “constructive” and “intuitionistic”
are used today almost interchangeably.” Yves Lafont [14, p. 149] explains
that “[i]ntuitionistic logic is called constructive because of the correspondence
between proofs and algorithms,” so that intuitionistic implication is essential
for regarding intuitonistic logic as constructive. According to Paul Gilmore [13,
p. xiv ], the Disjunction Property and the Existence Property together are “the
hallmark property of an intuitionistic/constructive logic.” This conception of
constructivity (or constructiveness) has been challenged by David Nelson, who
in addition to keeping the intuitionistic conditional and desiring the disjunction
and existence properties suggested to require also the Constructible Falsity
Property (if ∼(A ∧B) is provable, then ∼A or ∼B is provable) and the dual of
the Existence Property, cf. Section 6.

Our third question does not make any sense if we assume intuitionistic logic
as the logic in question since the addition of LEM will collapse the logic into
classical logic, which is admittedly non-constructive. The situation is similar
in the case of Nelson’s constructive logics with strong negation. Indeed, for the
case with his N3, the addition of LEM with respect to the strong negation will
again collapse the logic into classical logic. Moreover, for the case with N4, the
addition of LEM with respect to the strong negation will not collapse the logic
into classical logic, but instead the resulting logic will be the three-valued logic,
for example known as CLuNs (cf. [4]), obtained by expanding the well-known
three-valued paraconsistent logic LP, by the following truth table:

A→B t b f
t t b f
b t b f
f t t t

6 This thesis is also known as Strawson’s thesis.
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In particular, the ∼-free fragment of CLuNs is classical, and thus the addition
of LEM indeed destroys the constructive features, including the intuitionistic
conditional, the Disjunction Property, and the Existence Property.

Note, however, that the proof of the collapse of N4 into CLuNs heavily
relies on the falsity condition for the conditional, and thus motivates our third
question to explore the effect of adding LEM to C, which has a falsity condition
different from that of N4. As we will show, the addition of LEM to a logic with
a constructive implication need not collapse into classical logic. Moreover, the
addition of LEM for atomic formulas need not prevent the Existence Property
and its dual form holding.

Based on these considerations, the paper is structured as follows. We first
revisit connexive logic C in §2. This is followed by §3 in which we introduce
the extension of C by LEM. We then discuss the first two questions in §4.
After these discussions at the level of propositional logic, we introduce, in §5,
the extension of QC, quantified C, obtained by adding LEM. We then discuss
the proof theory for QC and its extension in §6, and conclude the paper by a
summary and remarks on future directions in §7.

2 Revisiting C

The language L consists of a finite set {∼,∧,∨,→} of propositional connectives
and a countable set Prop of propositional variables which we denote by p, q,
etc. Furthermore, we denote the set of formulas defined as usual in L by Form,
a formula of L by A, B, C, etc. and a set of formulas of L by Γ, ∆, Σ, etc.

2.1 Semantics

The following semantics, introduced in [38], is obtained by making a simple
change to the standard semantics for Nelson’s logic N4.

Definition 2.1 A C-model for the language L is a triple ⟨W,≤, V ⟩, where W
is a non-empty set (of states); ≤ is a partial order on W ; and V ∶W ×PropÐ→{∅,{0},{1},{0,1}} is an assignment of truth values to state-variable pairs with
the condition that i ∈ V (w1, p) and w1 ≤ w2 only if i ∈ V (w2, p) for all p ∈ Prop,
all w1,w2 ∈W and i ∈ {0,1}. Valuations V are then extended to interpretations
I of state-formula pairs by the following conditions:

● I(w,p) = V (w,p),● 1 ∈ I(w,∼A) iff 0 ∈ I(w,A),● 0 ∈ I(w,∼A) iff 1 ∈ I(w,A),● 1 ∈ I(w,A ∧B) iff 1 ∈ I(w,A) and 1 ∈ I(w,B),● 0 ∈ I(w,A ∧B) iff 0 ∈ I(w,A) or 0 ∈ I(w,B),● 1 ∈ I(w,A ∨B) iff 1 ∈ I(w,A) or 1 ∈ I(w,B),● 0 ∈ I(w,A ∨B) iff 0 ∈ I(w,A) and 0 ∈ I(w,B),● 1 ∈ I(w,A→B) iff for all w1 ∈W : if w ≤ w1 and 1 ∈ I(w1,A) then 1 ∈ I(w1,B),● 0 ∈ I(w,A→B) iff for all w1 ∈W : if w ≤ w1 and 1 ∈ I(w1,A) then 0 ∈ I(w1,B).
Finally, the semantic consequence is now defined as follows: Γ ⊧C A iff for all
C-models ⟨W,≤, I⟩, and for all w ∈W : 1 ∈ I(w,A) if 1 ∈ I(w,B) for all B ∈ Γ.
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Remark 2.2 Note that Nelson’s logic N4 is obtained by replacing the falsity
condition for implication by the following condition:

0 ∈ I(w,A→B) iff 1 ∈ I(w,A) and 0 ∈ I(w,B).
2.2 Proof System

We now turn to the proof system.

Definition 2.3 The axiomatic proof system C consists of the following axiom
schemata and a rule of inference, where A↔ B abbreviates (A→B) ∧ (B→A):

A→(B→A) (Ax1)(A→(B→C))→((A→B)→(A→C)) (Ax2)(A ∧B)→A (Ax3)(A ∧B)→B (Ax4)(C→A)→((C→B)→(C→(A∧B))) (Ax5)

A→(A ∨B) (Ax6)

B→(A ∨B) (Ax7)(A→C)→((B→C)→((A∨B)→C)) (Ax8)

∼∼A↔ A (Ax9)∼(A∧B)↔ (∼A∨∼B) (Ax10)∼(A∨B)↔ (∼A∧∼B) (Ax11)∼(A→B)↔ (A→∼B) (Ax12)

A A→B
B

(MP)

Finally, we write Γ ⊢C A if there is a sequence of formulas B1, . . . ,Bn,A, n ≥ 0,
such that every formula in the sequence B1, . . . ,Bn,A either (i) belongs to Γ;
(ii) is an axiom of C; or (iii) is obtained by (MP) from formulas preceding it
in sequence.

Remark 2.4 Note that if we replace (Ax12) by ‘∼(A→B) ↔ (A∧∼B)’, then
we obtain an axiomatization of Nelson’s logic N4.

We also note that the deduction theorem is provable.

Proposition 2.5 For any Γ ∪ {A,B} ⊆ Form, Γ,A ⊢C B iff Γ ⊢C A→B.

Proof. It can be proved in the usual manner in the presence of axioms (Ax1)
and (Ax2), given that (MP) is the sole rule of inference. ◻
2.3 Basic results and an observation

As expected, we have a soundness and completeness result, established in [38].

Theorem 2.6 ([38]) For any Γ ∪ {A} ⊆ Form, Γ ⊢C A iff Γ ⊧C A.

A highly unusual feature of C is non-trivial but inconsistent.

Proposition 2.7 For any A ∈ Form, ⊢C (A∧∼A)→A and ⊢C ∼((A∧∼A)→A).
Proof. The first item is (Ax3). For the second item, it will suffice to establish⊢ (A∧∼A)→∼A in view of (Ax12) and (MP), but this is just an instance of
(Ax4). ◻

Note that the proof of inconsistency relies on very weak assumptions.
Indeed, even with an extremely weak relevant implication (cf. [26, p. 477]) and
the very weak conditional considered in [41], the above inconsistency result will
hold. This may motivate to address the question if the axiom (Ax12), or the
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falsity condition for implication from C, will always give rise to inconsistency
of the system. The short answer is: No.

Theorem 2.8 There is a consistent system with the axiom (Ax12).

Proof. Take the propositional language only with ∼ and → (without ∧), and
consider an axiomatic proof system with (Ax9), (Ax12), (MP), and any axioms
for → that only have an even number of occurrences of variables.

Then, we can see that this proof system is consistent. Indeed, we can take
the two valued matrix for classical logic, and interpret ∼ and → as classical
negation and classical biconditional, respectively. This clearly shows that the
proof system is indeed consistent. ◻

In the rest of this paper, we will take the propositional language L that
contains both conjunction and disjunction, and thus the inconsistency will be
part of the features enjoyed by the system.

3 An extension of C

We now turn to the main extension of C. For the semantics, we simply close
the gap.

Definition 3.1 A C3-model for the language L is a triple ⟨W,≤, V ⟩, where
W is a non-empty set (of states); ≤ is a partial order on W ; and V ∶ W ×
Prop Ð→ {{0},{1},{0,1}} is an assignment of truth values to state-variable
pairs with the condition that i ∈ V (w1, p) and w1 ≤ w2 only if i ∈ V (w2, p) for
all p ∈ Prop, all w1,w2 ∈ W and i ∈ {0,1}. Valuations V are then extended to
interpretations I of state-formula pairs by the same conditions as with C. The
semantic consequence ⊧C3 is defined in a similar manner.

Remark 3.2 Note that the persistence condition carries over to all formulas.

For the proof system, we add the law of excluded middle with respect to
the strong negation.

Definition 3.3 The axiomatic proof system for C3 is obtained by adding A∨∼A, namely LEM, to the axiomatic proof system for C. We then define ⊢C3

in a similar manner.

As usual, the soundness part is rather straightforward.

Proposition 3.4 (Soundness) For Γ∪{A} ⊆ Form, if Γ ⊢C3 A then Γ ⊧C3 A.

Proof. We only note that the elimination of the gappy value in the semantics
guarantees that LEM is valid in all C3-models. ◻

For the completeness proof, we first introduce some standard notions.

Definition 3.5 Σ ⊆ Form is deductively closed iff if Σ ⊢ A then A∈Σ. The set
Σ is prime iff A∨B∈Σ implies A∈Σ or B∈Σ. Moreover, Σ is prime deductively
closed (pdc) if it is both. Finally, Σ is non-trivial if A /∈ Σ for some A.

The following two lemmas are well-known, and thus the proofs are omitted.

Lemma 3.6 If Σ /⊢ A, there is a non-trivial pdc ∆ such that Σ ⊆ ∆ and ∆ /⊢ A.
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Lemma 3.7 If Σ is pdc and A→B /∈ Σ, there is a non-trivial pdc Θ such that
Σ ⊆ Θ, A ∈ Θ and B /∈ Θ.

Now, we are ready to prove the completeness.

Theorem 3.8 (Completeness) For Γ∪{A}⊆Form, if Γ ⊧C3 A then Γ ⊢C3 A.

Proof. Suppose that Γ /⊢C3 A. Then by Lemma 3.6, there is a Π ⊇ Γ such
that Π is a pdc and A /∈ Π. Define the model A = ⟨X,≤, I⟩, where X = {∆ ∶
∆ is a non-trivial pdc}, ∆ ≤ Σ iff ∆ ⊆ Σ and I is defined thus. For every state
Σ and propositional variable p:

1 ∈ I(Σ, p) iff p ∈ Σ and 0 ∈ I(Σ, p) iff ∼p ∈ Σ

Note that A is indeed a C3-model since 1 ∈ I(Σ, p) or 0 ∈ I(Σ, p) holds for all
Σ and p in view of LEM.

We now show that the above definition holds for arbitrary formula, B:

1 ∈ I(Σ,B) iff B ∈ Σ and 0 ∈ I(Σ,B) iff ∼B ∈ Σ

This can be proved by a simultaneous induction on the complexity of B with
respect to the positive and the negative clause. 7 It then follows that A is a
counter-model for the inference, and hence that Γ /⊧C3 A. ◻
4 Questions 1 and 2 in view of C3

We now turn to address first two questions, raised in our introduction, in light
of the new system C3.

4.1 An answer to Question 1: C3 is a generalization of CN

In brief, our first question concerned the system CN defended and explored
by Cantwell in [6]. More specifically, we asked if we can replace the classical
material conditional by a constructive conditional.

Note first that from a semantic perspective, it is easy to see that C3 expands
positive intuitionistic propositional logic conservatively. Moreover, we have the
following result that justifies to claim that C3 is a generalization of CN.

Proposition 4.1 The extension of C3 by Peirce’s law is sound and complete
with respect to the semantics induced by the following matrix with t and b as
designated values. In other words, the extension is the system CN of Cantwell.

A ∼A
t f
b b
f t

A ∧B t b f

t t b f
b b b f
f f f f

A ∨B t b f

t t t t
b t b b
f t b f

A→B t b f

t t b f
b t b f
f b b b

Proof. For soundness, just note that every one-element model validates
Peirce’s law. For completeness, note first that the presence of Peirce’s law
makes the partial order on the canonical model trivial. More specifically, for
two non-trivial pdcs Σ and ∆, we obtain that Σ ⊆ ∆ only if ∆ ⊆ Σ. Indeed,

7 The proof is the same as the one for [25, Theorem 2] with an obvious change to be made
for the negative clause for the conditional.
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suppose for reductio that Σ ⊆ ∆ and that for some A0, A0 ∈ ∆ but A0 /∈ Σ.
Then, in view of Peirce’s law, we also have A∨(A→ B) as a derivable formula,
and thus we have A0 ∨ (A0 → B) ∈ Σ for arbitrary B. In view of A0 /∈ Σ and
that Σ is prime, we obtain (A0 → B) ∈ Σ. This together with Σ ⊆ ∆ implies(A0 → B) ∈ ∆, and with A0 ∈ ∆, we obtain B ∈ ∆. But since B is arbitrary, ∆
will be trivial and this contradicts the assumption that ∆ is non-trivial.

We can then consider the submodel of the canonical model with X = {Π}
where Π ⊇ Γ such that Π is pdc and A /∈ Π, obtained in view of Lemma 3.6.
This completes the proof. ◻
Remark 4.2 Note that Grigory Olkhovikov, in [24], also introduced and dis-
cusses the above three-valued truth table for the conditional. Olkhovikov also
motivates the truth table by considering conditionals in natural language, but
with a different reading of the third value.

Remark 4.3 Compare the above result with C in which the addition of
Peirce’s law results in a four-valued logic, called MC (for material connex-
ive logic) in [39], induced by the matrix obtained by adding the following truth
table for implication in addition to the truth tables of FDE:

A→B t b n f

t t b n f
b t b n f
n b b b b
f b b b b

An expansion of MC by the Boolean complement is explored in [27].

Remark 4.4 In view of the above result, there will be intermediate logics
between C3 and CN, as well as C and MC. Then, recalling that intermediate
extensions of N3 and N4 (as well as N4�) are explored by Marcus Kracht
in [18] and Sergei Odintsov in [23] respectively, describing the intermediate
extensions of C3 and C is an interesting open problem.

4.2 An answer to Question 2: C3 gives us all if we are careful

We now turn to the second question of how much connexivity can be captured
through the present approach via a slightly different falsity condition. Our con-
siderations build on a list provided by Estrada-González and Ramı́rez-Cámara
in [12] which includes the following four theses that are contra-classical:

Aristotle ∼(∼A→ A), ∼(A→ ∼A);
Boethius (A→ B)→ ∼(A→ ∼B), (A→ ∼B)→ ∼(A→ B);
Aristotle 2nd ∼((A→ B) ∧ (∼A→ B));
Abelard ∼((A→ B) ∧ (A→ ∼B)).
Then, we first observe that systems C and C3 are not able to capture all of
the above four theses.

Proposition 4.5 Both Aristotle’s and Boethius’ theses are derivable in C and
C3. However, (i) C fails to include Aristotle’s second thesis and Abelard’s
thesis (this was mentioned already in [40,41]); (ii) C3 includes Abelard’s thesis
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but not Aristotle’s second thesis.

Proof. The first half, namely that C and C3 include Aristotle’s and Boethius’
theses as derivable formulas is well-known and immediate in view of (Ax12).
For the second half, we can make use of the truth tables.

● For the failures in C, it is enough to establish that the concerned theses are
not valid in MC. Now, take the four-valued truth tables for MC. Then, if
we assign values b and t to A and B respectively, Aristotle’s second thesis
receives the value f . Moreover, if we assign values t and n to A and B
respectively, Abelard’s second thesis receives the value n.

● For the cases of C3, we first observe that Aristotle’s second thesis is not valid
in CN. To this end, if we assign values b and t to A and B respectively, we
obtain the desired result. For the derivability of Abelard’s thesis, it is enough
to establish that (A→B)∨(A→∼B) is derivable in C3, and this follows by
LEM and (Ax1).

This completes the proof. ◻
The above results show that the move to C3 from C will allow us to capture

one more thesis, namely Abelard’s thesis. However, Aristotle’s second thesis
is not captured, but this is not the end of the story. This is because we may
consider another very natural conditional, ⇒, in C and C3 defined as follows:

A⇒ B ∶= (A→ B) ∧ (∼B → ∼A).
One of the obvious differences is that the contraposition rule holds for the
“strong implication” ⇒, which was not the case with →. More importantly, we
have the following result.

Theorem 4.6 All four theses listed above, formulated in terms of ⇒, are
derivable in C3. However, only Aristotle’s and Boethius’ theses, formulated
in terms of ⇒, are derivable in C.

Proof. We first check that Aristotle’s and Boethius’ theses, formulated in
terms of ⇒, are derivable in C, and thus also in C3. To this end, note that
the following equivalences are derivable in view of the definition of ⇒:

● (A⇒ ∼B)↔ ((A→ ∼B) ∧ (B → ∼A));● ∼(A⇒ B)↔ ((A→ ∼B) ∨ (∼B → A));● ∼(A⇒ ∼B)↔ ((A→ B) ∨ (B → A)).
Then, it is obvious that Aristotle’s theses are derivable by the last equivalence.
For Boethius’ theses, we need to check that the following holds in C:

● (A⇒ B)→ ∼(A⇒ ∼B);● (A⇒ ∼B)→ ∼(A⇒ B).
But these are obvious in view of the above equivalences, and thus we obtain
Boethius’ theses in C and also in C3.

We now turn to check that Abelard’s thesis, formulated in terms of ⇒, is
derivable in C3. For this purpose, simply note that the thesis is equivalent
to ((A→∼B)∨(∼B→A))∨((A→B)∨(B→A)). Then, by looking at the first and
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the third disjuncts, we can see that the above formula is derivable since (A →
B) ∨ (A→ ∼B) is derivable in C3, as we observed in the previous proposition.

Similarly, for the case of Aristotle’s second thesis, it suffices to derive ((A→∼B) ∨ (∼B → A)) ∨ ((∼A → ∼B) ∨ (∼B → ∼A)). This time, by looking at the
second and the fourth disjuncts, we can see that the above formula is derivable
for the same reason.

Finally, in order to see that Aristotle’s second thesis and Abelard’s thesis
are not derivable in C, it suffices to see that the above two formulas have a
counter-model ⟨W,≤, V ⟩ defined as follows:

● W ∶= {w0,w1,w2}, ≤∶= {⟨w0,w0⟩, ⟨w0,w1⟩, ⟨w0,w2⟩, ⟨w1,w1⟩, ⟨w2,w2⟩},● V (w0, p)=V (w0, q)=V (w1, p)=V (w2, q)={} and V (w1, q)=V (w2, p)={1,0}.
This completes the proof. ◻
Remark 4.7 Note that all four theses, formulated in terms of ⇒, hold in
CN and MC. This is due to the fact that ∼(A ⇒ B) is equivalent to (A →∼B)∨(∼B → A), an instance of the linearity axiom. Thus, for arbitrary formulas
A and B, we have ∼(A⇒ B) as valid since → in both CN and MC is classical.
This is in sharp contrast with C3 since we have /⊧C3 ∼(A ⇒ B). Indeed, we
can consider a counter-model ⟨W,≤, V ⟩ defined as follows:

● W ∶= {w0,w1,w2}, ≤∶= {⟨w0,w0⟩, ⟨w0,w1⟩, ⟨w0,w2⟩, ⟨w1,w1⟩, ⟨w2,w2⟩},● V (w0, p)=V (w1, p)={0}, V (w0, q)=V (w2, q)={1}, V (w1, q)=V (w2, p)={1,0}.
We summarize our observations from this subsection in a table as follows:

C C3 MC CN→ ⇒ → ⇒ → ⇒ → ⇒
Aristotle’s theses ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Boethius’ theses ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Aristotle’s second theses × × × ✓ × ✓ × ✓
Abelard’s theses × × ✓ ✓ ✓ ✓ ✓ ✓

Negated strong conditional × × × × × ✓ × ✓
In short, the contraposible strong implication ⇒ of C3 seems to be a very
interesting conditional, satisfying all four contra-classical theses, without
having the problematic-looking formula, i.e. ∼(A⇒ B), as a valid formula.

4.3 Beyond Question 2: Totally connexive logics

The four theses we focused on in the previous subsection are part of a bigger
list provided by Estrada-González and Ramı́rez-Cámara. Indeed, they also
considered the following desiderata on top of the four theses.

Positive Paradox of Implication /⊧ A→ (B → A);
Negative Paradox of Implication /⊧ A→ (¬A→ B);
Paradox of Necessity /⊧ A → (B → C) where A is a contingent truth and
B → C is a logical truth;

Simplification ⊧ (A ∧B)→ A, ⊧ (A ∧B)→ B;
Idempotence ⊧ (A ∧A)→ A, ⊧ A→ (A ∧A);
Kapsner-strong (i) A → ∼A is unsatisfiable and (ii) A → B and A → ∼B are
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not simultaneously satisfiable.

Estrada-González and Ramı́rez-Cámara then introduced the notion of totally
connexive logics as logics that satisfy all the desiderata, including the four the-
ses. Moreover, they left as an open problem whether there are totally connexive
logics, and if so then which is the minimal one (cf. [12, p. 348]).

In view of our observations in the previous section, there are three
candidates for totally connexive logics, namely C3, MC and CN, by looking
at the contraposible conditional ⇒. 8 Since both C3 and MC are subsystems
of CN, and since the above desiderata involve some invalidities, let us focus on
CN. Then, we obtain the following truth table for ⇒ in CN:

A⇒B t b f

t b f f
b b b f
f b b b

This truth table is not new, but was already introduced and discussed by Chris
Mortensen in [21] in a logic, later called M3V in [20]. Recall that M3V is
an expansion of LP obtained by adding the above conditional. Before adding
further remarks, we observe that CN and M3V are equivalent systems.

Proposition 4.8 CN and M3V are equivalent.

Proof. All connectives in M3V are definable in CN in view of the above
discussion. For the other half, we need to show that the non-contraposible
conditional of CN is definable in M3V. This can be checked by observing that((A⇒ B) ∨B) ∧ ∼(A⇒ (∼(A⇒ B) ∧ (B ∧ ∼B))) defines → of CN. ◻

In fact, M3V is examined by Estrada-González and Ramı́rez-Cámara, and
is shown to satisfy all the desiderata except Kapsner-strong. Building on this
observation, we conclude that all three candidates enjoy the same status since
Simplification and Idempotence are easy to check for the contraposible condi-
tional of both C and C3.

For the Kapsner-strong condition, we wish to add a remark. We are fully
aware of Andreas Kapsner’s original motivation, argued in [17], as well as his
intended way of spelling out the details in a rather classical manner. 9 However,
if we are in the vicinity of FDE, then there are always at least two ways to
formalize classical notions since truth and non-falsity (or, falsity and non-truth)
are not necessarily equivalent. 10 In particular, the notion of satisfiability,
which plays the crucial role in the Kapsner-strong condition, can be formalized
as follows in M3V:

8 Actually, CN is one of the systems examined by Estrada-González and Ramı́rez-Cámara,
but with respect to the non-contraposible conditional →.
9 Recall that the original proposal of Kapsner in [17] was to call for strong connexivity,
and that notion encompasses not only the theses of Aristotle and Boethius, but also the
unsatisfiability clauses which we refer to as Kapsner-strong conditions following [12].
10For example, think of discussions on p− and q−consequence relations that have revived
recently through a series of papers by Pablo Cobreros, Paul Egré, Dave Ripley, and Robert
van Rooij (e.g. [7,8]).



514 An Extension of Connexive Logic C

● A is positively satisfiable iff for some M3V-valuation V , 1 ∈ I(A).
● A is negatively satisfiable iff for some M3V-valuation V , 0 /∈ I(A).
Then, as observed by Estrada-González and Ramı́rez-Cámara, M3V is not
Kapsner-strong, if satisfiability is understood as positive satisfiability. However,
it is Kapsner-strong, if satisfiability is understood as negative satisfiability since
0 ∈ I(A⇒ B) for all M3V-valuations V and for all A and B.

For C3, we may formulate two kinds of satisfiability as follows.

● A is positively satisfiable iff for some C3-model M = ⟨W,≤, V ⟩, 1 ∈ I(w,A)
for some w ∈W .

● A is negatively satisfiable iff for some C3-model M = ⟨W,≤, V ⟩, 0 /∈ I(w,A)
for some w ∈W .

Then, C3 is Kapsner-strong if satisfiability is understood as negative satisfi-
ability. Indeed, for all C-models M = ⟨W,≤, V ⟩ and for all w ∈ W , we have
0 ∈ I(w,A⇒ ∼A) and 0 ∈ I(w, (A⇒ B) ∧ (A⇒ ∼B)).

Based on these observations, we conclude that there are totally connexive
logics, and examples include C3, MC and CN by looking at the contraposible
conditional. Note also that C3 enjoys the additional feature of being totally
connexive without all negated conditionals being valid (cf. Remark 4.7).

Remark 4.9 The key idea in this section has been to consider the contra-
posible conditional in C and its extensions. Then, in view of results reported
by Matthew Spinks and Robert Veroff, such as those in [33] and references
therein, establishing clear and neat connections between Nelson logics and rel-
evant logics, it is a natural and interesting question to explore the connections
between extensions of C and relevant logics as well.

Moreover, a deeper understanding of these connections may also give us
some new insights into the problem of finding sound and complete semantics
for systems introduced by Everett Nelson. More specifically, Nelson, in his PhD
thesis, introduced an axiomatic system of connexive logic, called NL by Edwin
Mares and Francesco Paoli in [19]. Then, the open problem, noted in [39], is
to find a sound and complete semantics for NL. Since one of the subsystems,
called NL− in [19], is close to the relevant logic DK, we may seek for a suitable
semantics via the contraposible conditional of one of the systems related to C3.

Before moving further, here is a table indicating the relations between ex-
tensions of C we discussed so far, with a comparison to extensions of N4.

MC
+LEMÐÐÐ→ CN(=M3V) HBe

+LEMÐÐÐ→ CLuNs(=RM3)

+PL ÐÐ→ +PL ÐÐ→ +PL ÐÐ→ +LEMÐÐÐ→
C

+LEMÐÐÐ→ C3 N4

Note here that PL stands for Peirce’s law. Moreover, HBe is an expansion
of FDE explored by Arnon Avron in [3], and the equivalence of CLuNs and
RM3 is shown in [2, (a) of 2.10 Theorem] (Avron refers to CLuNs as RM⊃

3).
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5 An extension of QC

We will now consider the expansion of C and C3 to their quantified versions
QC and QC3 in a language without function symbols and equality.

We extend the propositional language L to a first-order language by adding
denumerably many individual variables, x, y, z, . . ., constants a, b, c, . . ., and
predicate symbols of finite arity. Terms (i.e, individual variables or constants)
are denoted by t, t1, t2, . . ., atomic formulas by P,Q, . . ., and arbitrary formulas
by A, B, etc.

5.1 Axiomatic proof systems

Definition 5.1 ([38, §4]) The schematic axioms and rules of QC are those of
C together with:∼∃xA↔ ∀x∼A; ∼∀xA↔ ∃x∼A
A(t)→ ∃xA(x) (t is free for x in A); ∀xA(x)→ A(t) (t is free for x in A)
A→ B(x)
A→ ∀xB(x) (x not free in A); A(x)→ B∃xA(x)→ B

(x not free in B)
Definition 5.2 The axiom schemata and rules of QC3 and QC3at are those
of QC together with LEM, resp. (LEMat): P ∨ ∼P , for atomic formulas P .

Deducibility in QC, QC3, and QC3at and the consequence relations ⊢QC,⊢Q3C, and ⊢Q3Cat are defined in the usual way. In [38, Prop. 11] the axiomatic
system QC is shown to be complete with respect to a suitable Kripke semantics
by means of a faithful embedding into positive first-order intuitionistic logic.

Remark 5.3 Note that the embedding-based method is not available to us
here since it is not clear into which system we can embed QC3. Thus, we leave
this as an open problem.

Since the proof-theoretic aspect was not explored so far even for QC, we
here focus on sequent calculi for QC, QC3, and QC3at.

5.2 Sequent calculi

In this section, we define cut-free sequent calculi for QC, QC3, and QC3at.
The presentation is based on [22, §5.4] by Sara Negri and Jan von Plato, where
the sequent calculus G3i for intuitionistic predicate logic (without equality)
is extended by a rule, Gem-at, that captures LEMat. Whereas the addition
of Gem-at to the sequent calculus G3ip for intuitionistic propositional logic
results in a sequent system for classical propositional logic, the addition of Gem-
at to G3i results in a proof system for an extension of classical propositional
logic by the intuitionistic universal and particular quantifiers. Negri and von
Plato [22, p. 121] remark that the proof of admissibility of excluded middle
for arbitrary formulas for G3ip + Gem-at cannot be extended to quantified
formulas. We shall therefore add an excluded middle rule for arbitrary formulas,
Gem, to a sequent calculus G3C for QC. For the addition of Gem-at to G3C
we prove the Existence Property and a Dual Existence Property.

We first present the sequent calculus G3C for QC. Uppercase Greek letters
now stand for finite, possibly empty multisets of formulas, A,Γ stands for
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{A}⋓Γ, and ∆,Γ stands for ∆⋓Γ, where ⋓ is multiset union. Sequents are of
the form Γ⇒ A (⇒ is used in this way, hereafter, not for strong implication).

Definition 5.4 The rules of the calculus G3C are the following:
Logical axioms:

P,Γ⇒ P ∼P,Γ⇒ ∼P , for atomic formulas P
Logical rules:

A,B,Γ⇒ C(A ∧B),Γ⇒ C
L∧ Γ⇒ A Γ⇒ B

Γ⇒ (A ∧B) R∧
A,Γ⇒ C B,Γ⇒ C(A ∨B),Γ⇒ C

L∨ Γ⇒ A
Γ⇒ (A ∨B) R∨1

Γ⇒ B
Γ⇒ (A ∨B) R∨2

(A→ B),Γ⇒ A B,Γ⇒ C(A→ B),Γ⇒ C
L→ A,Γ⇒ B

Γ⇒ (A→ B) R →
A(t/x),∀xA,Γ⇒ B∀xA,Γ⇒ B

L∀ Γ⇒ A(y/x)
Γ⇒ ∀xA R∀ A(y/x),Γ⇒ B∃xA,Γ⇒ B

L∃
Γ⇒ A(t/x)
Γ⇒ ∃xA R∃ A,Γ⇒ C∼∼AΓ⇒ C

L∼∼ Γ⇒ A
Γ⇒ ∼∼A R∼∼

∼A,∼B,Γ⇒ C∼(A ∨B),Γ⇒ C
L∼∨ Γ⇒ ∼A Γ⇒ ∼B

Γ⇒ ∼(A ∨B) R∼∨
∼A,Γ⇒ C ∼B,Γ⇒ C∼(A ∧B),Γ⇒ C

L∼∧ Γ⇒ ∼A
Γ⇒ ∼(A ∧B) R∼∧1

Γ⇒ ∼B
Γ⇒ ∼(A ∧B) R∼∧2

∼(A→ B),Γ⇒ A ∼B,Γ⇒ C∼(A→ B),Γ⇒ C
L∼→ A,Γ⇒ ∼B

Γ⇒ ∼(A→ B) R∼→
∼A(y/x),Γ⇒ B∼∀xA,Γ⇒ B

L∼∀ Γ⇒ ∼A(t/x)
Γ⇒ ∼∀xA R∼∀

∼A(t/x),∼∃xA,Γ⇒ B∼∃xA,Γ⇒ B
L∼∃ Γ⇒ ∼A(y/x)

Γ⇒ ∼∃xA R∼∃
where (i) in R∀ and in R∼∃, y must not occur free in Γ,∀xA, resp. in Γ,∼∃xA and

(ii) in L∃ and in L∼∀, y must not occur free in ∃xA,Γ,B, resp. in ∼∀xA,Γ,B.

Definition 5.5 The rules of the calculus G3C3, respectively G3C3at, are
those of G3C plus:

B,Γ⇒ A ∼B,Γ⇒ A

Γ⇒ A
Gem resp.

P,Γ⇒ A ∼P,Γ⇒ A

Γ⇒ A
Gem-at

for atomic formulas P .

6 Some basic proof-theoretic results

As in [22, Lemmas 4.1 and 4.1.2], one can prove a formal version of the principle
of renaming bound variables and a lemma showing that derivability of sequents
is preserved with the same derivation height if a term t is substituted for a free
variable x in a sequent Γ ⇒ A, provided that t is free for x in formulas from
Γ⇒ A. Also, one can easily show that for any formula A, sequents of the form
A,Γ⇒ A are provable in G3C (and hence in G3C3at and G3C3). Moreover,
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the versions of the sequent rules L→, L∼→, L∀, and L∼∃ without repetitions
of principal formulas are admissible in the calculi where they are present.

The proof of height-preserving admissibility of weakening and contraction

Γ⇒ B
Γ,A⇒ B

Wk
Γ,A⇒ B

Γ,A,A⇒ B
Ctr

in [22] can be adapted to G3C, G3C3at, and G3C3. In particular, one has
to show that the rules L∼∨, L∼∧, L∼∀ are height-preserving invertible and that
the rule L∼→ is height-preserving invertible for its second (right) premise.

Theorem 6.1 The Cut rule
Γ⇒ A A,∆⇒ B

Γ,∆⇒ B
Cut

is an admissible rule of G3C, G3C3at, and G3C3.

Proof. The proof follows the standard pattern presented in [22]. In particular,
if one of the premises of Cut is derived by an LEM rule, Cut with the same cut-
formula is permuted upwards to applications of Cut with a smaller cut-height.
The derivation

Γ⇒ A

B,A,∆⇒ C ∼B,A,∆⇒ C

A,∆⇒ C
Gem

Γ,∆⇒ C
Cut

for example, is replaced by

Γ⇒ A B,A,∆⇒ C

B,Γ,∆⇒ C
Cut

Γ⇒ A ∼B,A,∆⇒ C∼B,Γ,∆⇒ C
Cut

Γ,∆⇒ C
Gem

This completes the proof (sketch). ◻
To every finite set of formulas Γ, there corresponds a unique multiset (with

no multiplicity of elements). If Γ is such a set, let ⋀Γ be a conjunction of all
formulas from the corresponding multiset. Conversely, to every finite multiset
Γ, there corresponds a unique set, which we will also denote by Γ.

Theorem 6.2 (Equivalence of proof systems) Let Γ be a finite set of
formulas and let ⋀∅ = (P → P ), for some fixed atomic formula P . Then
Γ ⊢QC3 A iff ⇒ ⋀Γ→ A is derivable in G3C3.

Proof. Left-to-right: It is enough to show that ⇒ A is derivable in G3C3 for
every theorem A of QC3 and that the inference rules preserve derivability. We
present two cases. For (LEM), we have⋮

A⇒ A
A⇒ (A ∨ ∼A)

⋮∼A⇒ ∼A∼A⇒ (A ∨ ∼A)⇒ (A ∨ ∼A)
where the vertical dots indicate routine derivations. For the ∀-rule of QC3 we
have
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⇒ A→ B(x) ⋮
A, (A→ B(x))⇒ B(x)
A⇒ B(x)
A⇒ ∀xB(x) R∀

for x not free in A.
Right-to-left: By induction on the height of derivations in G3C3 because⇒ ⋀Γ → A is derivable in G3C3 iff Γ ⇒ A is. For axioms P,∆ ⇒ P and∼P,∆⇒ ∼P we have P ∈ ∆⋓ {P}, respectively ∼P ∈ ∆⋓ {∼P}. For the induc-
tion steps we consider the sequent rules. In the case of Gem, by the induction
hypothesis we have B,Γ ⊢QC3 A and ∼B,Γ ⊢QC3 A. By (LEM) and reasoning
in positive intuitionistic propositional logic, as we can do in QC3, we obtain
Γ ⊢QC3 A. We present two more cases involving negation. Consider the rule
L∼∀. By the induction hypothesis, we have ∼A(y/x),Γ ⊢QC3 B, where y does
not occur free in ∃xA,Γ,B. We easily obtain ∼A(y/x) ⊢QC3 ⋀Γ→ B. By the ∃-
rule of QC3, respecting its side-condition, we obtain ∃x∼A(x) ⊢QC3 ⋀Γ→ B.
By axiom ∼∀xA(x) ↔ ∃x∼A(x), we get ∼∀A(x) ⊢QC3 ⋀Γ → B and then∼∀A(x),Γ ⊢QC3 B. Consider the rule L∼→. Since the version of the rule
without repetition of the principal formula is admissible, we may assume
by the induction hypothesis that Γ ⊢QC3 A, and ∼B,Γ ⊢QC3 C. Since
A, (A → ∼B) ⊢QC3 ∼B, we successively obtain (A → ∼B),Γ ⊢QC3 ∼B and(A → ∼B),Γ ⊢QC3 C. By (Ax12), we then get ∼(A → ∼B),Γ ⊢QC3 C. This
completes the proof. ◻
Proposition 6.3 The Disjunction Property and the Constructible Falsity
Property fail for G3C3at.

Proof. Both ⇒ (P ∨ ∼P ) and ⇒ ∼(P ∧ ∼P ) are derivable in G3C3at for
atomic formulas P . However, for no atomic formula P , both ⇒ P and ⇒ ∼P
are derivable with the aid of Gem-at. ◻
Theorem 6.4 The excluded middle rule Gem is admissible in G3C3at for
arbitrary quantifier-free formulas.

Proof. As in [22, Theorem 5.4.6], the proof is by induction on the length of
a formula D. The rules shown to be admissible may be used, Inv indicates
invertible rules, and Ind indicates applications of the induction hypothesis.
For atomic formulas we have Gem-at.
D is a disjunction (A ∨ B). Apply the induction hypothesis to the following
two derivations: (A ∨B),Γ⇒ C

B,Γ⇒ C
Inv

(A ∨B),Γ⇒ C

A,Γ⇒ C
Inv

A,∼B,Γ⇒ C
Wk

⋮(∼A ∧ ∼B)⇒ ∼(A ∨B) ∼(A ∨B),Γ⇒ C(∼A ∧ ∼B),Γ⇒ C
Cut

∼A,∼B,Γ⇒ C
Inv

∼B,Γ⇒ C
Ind
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D is a conjunction (A ∧B). Apply the induction hypothesis to the following
two derivations:

(A ∧B),Γ⇒ C

A,B,Γ⇒ C
Inv

⋮(∼A ∨ ∼B)⇒ ∼(A ∧B) ∼(A ∧B),Γ⇒ C(∼A ∨ ∼B)⇒ C
Cut

∼A,Γ⇒ C
Inv

∼A,B,Γ⇒ C
Wk

B,Γ⇒ C

⋮(∼A ∨ ∼B)⇒ ∼(A ∧B) ∼(A ∧B),Γ⇒ C(∼A ∨ ∼B),Γ⇒ C
Cut

∼B,Γ⇒ C

D is an implication (A→ B): Apply the induction hypothesis to the following
two derivations (A→ B),Γ⇒ C

B,Γ⇒ C
Inv

⋮
A,∼B ⇒ ∼(A→ B) ∼(A→ B),Γ⇒ C

A,∼B,Γ⇒ C
Cut

⋮(A→ ∼B)⇒ ∼(A→ B) ∼(A→ B),Γ⇒ C(A→ ∼B),Γ⇒ C
Cut

∼B,Γ⇒ C
Inv

∼A,∼B,Γ⇒ C
Wk

∼B,Γ⇒ C
Ind

D is of the form ∼(A ♯B), ♯ ∈ {∨,∧,→}: Similar to the previous cases because(A ♯B),Γ⇒ C is derivable from ∼∼(A ♯B),Γ⇒ C.
D is a double negation ∼∼A:

⋮
A⇒ A
A⇒ ∼∼A ∼∼A,Γ⇒ B

A,Γ⇒ B
Cut

⋮∼A⇒ ∼A∼A⇒ ∼∼∼A ∼∼∼A,Γ⇒ A∼A,Γ⇒ B
Cut

Γ⇒ B
Ind

This completes the proof. ◻
Theorem 6.5 (Existence Properties) If ⇒ ∃xA is derivable in G3C3at,
then so is ⇒ A(t/x) for some term t. If ⇒ ∼∀xA is derivable in G3C3at,
then so is ⇒ ∼A(t/x) for some term t.

Proof. We consider the first claim; the proof of the second claim is analogous.
Suppose⇒ ∃xA is derivable in G3C3at. Then the last step in the derivation is
either an application of R∃, and we are done, or it is an application of Gem-at :

P ⇒ ∃xA ∼P ⇒ ∃xA⇒ ∃xA
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The same kind of case distinction applies to the derivations of P ⇒ ∃A and∼P ⇒ ∃A. Since every derivation is a finite tree, the derivation of ⇒ ∃xA has
the shape ⋮ ⋮

∆1 ⇒ A(t1/x)
∆1 ⇒ ∃xA R∃ . . .

∆n ⇒ A(tn/x)
∆n ⇒ ∃xA R∃

⋱ ⋰
P ⇒ ∃xA ∼P ⇒ ∃xA⇒ ∃xA

for some n ∈ N with 2 ≤ n, where every ∆i (1 ≤ i ≤ n) is a multiset of atomic
formulas or negated atomic formulas that disappear in the derivation of ⇒ ∃A
by applications of Gem-at only. Suppose now for reductio that for every term
t, the sequent ⇒ A(t/x) is not derivable in G3C3at. Then for any term t,(P ∨∼P )⇒ A(t/x) is not derivable because ⇒ (P ∨∼P ) is derivable and Cut is
admissible. Hence either P ⇒ A(t/x) or ∼P ⇒ A(t/x) is not derivable because
otherwise (P ∨∼P )⇒ A(t/x) is derivable by applying L∨. Assume without loss
of generality that P ⇒ A(t/x) is not derivable. Then P, (Q ∨ ∼Q) ⇒ A(t/x)
is not derivable for any atomic formula Q because ⇒ (Q ∨ ∼Q) is derivable
and Cut is admissible. Therefore either P,Q ⇒ A(t/x) or P,∼Q ⇒ A(t/x) is
not derivable. Iterating this reasoning, we may conclude that for some i with
1 ≤ i ≤ n, ∆i ⇒ A(ti/x) is not derivable, contrary to the assumption that we
are considering a derivation of ⇒ ∃xA. ◻
Remark 6.6 It is known from work by Nobu-Yuki Suzuki [35] that the Dis-
junction Property and the Existence Property can come apart in intermediate
predicate logics, in particular, that in general the Existence Property does not
imply the Disjunction Property. The logic QC3at is an example of a naturally
arising and independently motivated logic for which the Disjunction Property
fails, whereas the Existence Property holds.

Remark 6.7 The proof of Theorem 6.5 uses classical logic in the meta-
language. In [36, p. 206 f.], Dirk van Dalen presents a constructive proof
of the Existence Property for intuitionistic predicate logic (without identity).
One may wonder whether a constructive proof of Theorem 6.5 is possible.

7 Concluding remarks

In this article, we introduced an extension of the connexive logic C from [38],
with the following three questions as our motivations.

Q1 Can we improve John Cantwell’s CN?
Q2 How much of the desiderata, listed by Estrada-González and Ramı́rez-

Cámara, can be met by the approach to connexivity à la C?
Q3 What is the relation between constructivity and LEM?

Our answers to these questions, in view of the new extension C3, are as follows.

A1 Cantwell’s classical conditional can be replaced by a constructive one.
A2 C3 is a totally connexive logic with respect to the strong implication.
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A3 LEM does not necessarily exclude properties that are usually regarded as
indicating constructivity.

These answers give rise to additional questions such as:

Q1’ Can we take other conditionals than the constructive conditional?
Q2’ Which system is minimal among the family of totally connexive logics?
Q3’ Are there any interesting variants of the Disjunction Property and the

Existence Property, discussed in [34], that hold in QC3 or related systems?

These questions, together with the open problems noted in Remarks 4.4, 4.9,
5.3 and 6.7 seem to show that there is a lot of room for further investigations.
We hope some readers will be motivated to join the authors to continue with
the development of connexive logics.

References

[1] Avigad, J., Classical and constructive logic, Available at https://www.andrew.cmu.edu/
user/avigad/Teaching/classical.pdf(2000/09/19).

[2] Avron, A., On an implication connective of RM, Notre Dame Journal of Formal Logic
27 (1986), pp. 201–209.

[3] Avron, A., Natural 3-valued logics–characterization and proof theory, Journal of
Symbolic Logic 56 (1991), pp. 276–294.

[4] Batens, D. and K. De Clercq, A rich paraconsistent extension of full positive logic,
Logique et Analyse 185-188 (2004), pp. 227–257.

[5] Belnap, N. D., Conditional assertion and restricted quantification, Noûs 4 (1970), pp. 1–
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We study algorithmic properties of first-order predicate monomodal logics of the
frames 〈N, <〉 and 〈N,6〉 in languages with restrictions on the number of individual
variables as well as the number and arity of predicate letters. The languages we
consider have no constants, function symbols, or the equality symbol. We show
that satisfiability for the logic of 〈N, <〉 is Σ1

1-hard in languages with two individual
variables and two monadic predicate letters. We also show that satisfiability for the
logic of 〈N,6〉 is Σ1
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1-hard, and therefore not
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the number of individual variables, as well as the number and arity of predicate
letters.

Interest in the algorithmic properties of non-classical, mostly modal and
superintuitionistic (intermediate), predicate logics in restricted languages is a
natural outgrowth of the extensive research into the Classical Decision Prob-
lem [5]. The study of the Classical Decision Problem aims, in light of undecid-
ability [10] of the classical first-order predicate logic QCl, to identify maximal
decidable and minimal undecidable fragments of QCl, i.e., the decidable frag-
ments that become undecidable when slightly extended and the undecidable
fragments that become decidable when slightly restricted. A similar effort has
more recently been made to better understand the borderline between the de-
cidable and the undecidable in predicate modal and superintuitionistic logics,
mostly by looking at the fragments obtained by limiting the number of indi-
vidual variables, as well as the number and arity of predicate letters, allowed
in the construction of formulas [28], [31], [33], [34], [13], [3], [15], [47], [27],
[41], [36].

In the present paper, we attempt to identify the minimal computationally
hard fragments of the predicate monomodal logics of the frames 〈N, <〉 and
〈N,6〉, i.e., the natural numbers with a natural, respectively, strict and partial
order. Interest in these logics is motivated by at least three considerations.

First, these logics are algorithmically quite hard: even thought the ex-
act complexity seems to be unknown, they are, as follows from Lemmas 3.1
and 4.1 below, Π1

1-hard. Most research into the algorithmic properties of non-
classical predicate logics, as can be seen from the references above, has dealt
with (un)decidability. While it is natural that (un)decidability is the main
concern in the study of the Classical Decision Problem, it is to be expected
that predicate modal logics are computationally harder than QCl; therefore,
research into their algorithmic properties should involve identifying minimal, in
the above sense, fragments that are hard in certain classes of the arithmetical,
or the analytical, hierarchy. The only study to date, as far as we know, of algo-
rithmic properties of the fragments of not recursively enumerable monomodal
predicate logics has been the investigation [36] of the fragments of not recur-
sively enumerable [43], [39, Lemma 3.3] monomodal predicate logics of finite
Kripke frames (as discussed in [42], both the logics of finite frames and the log-
ics considered here fall into the category of “awkward” predicate modal logics
based on essentially second-order Kripke semantics).

Similar questions have, however, been studied in the context of richer pred-
icate languages containing multiple modal operator—most recently by I. Hod-
kinson, F. Wolter, and M. Zakharyaschev [24], [47] (see also [14, Chapter 11];
for earlier work, see [2], [45], [46], [1], and [32]). The methods used in this paper
are partially inspired by [47, Theorem 2.3], where a Σ1

1-hard tiling problem is
encoded using a predicate language with two modal operators, one correspond-
ing to an atomic accessibility relation and the other to the reflexive transitive
closure of that relation. A similar result [24, Theorem 2] has been obtained for
the temporal predicate logic of 〈N,6〉, i.e., a predicate logic with two modal
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operators, one for the “immediate successor” relation on N, the other for its
reflexive transitive closure, the partial order 6 (of course, both of these can
be expressed with a single binary temporal opertator “until”). The novelty
of the present work lies, first, in obtaining a similar encoding for languages
with a single unary modal operator and, second, similarly to [41] and [36], in
further reductions to languages with only two monadic predicate letters—the
encodings used in [24, Theorem 2] and [47, Theorem 2.3] require an unlimited
supply of monadic predicate letters.

Second, the logics considered here are determined by linear frames, i.e.,
frames with a restriction on the branching factor in the sense that we cannot
freely append to a world of a frame another frame without breaking the struc-
ture of the original frame. Modelling, in languages of such logics, of predicate
letters with a limited number thereof presents certain difficulties: the methods
used in [41] and [36]—which can be traced back to, and inherit the limitations
of, the propositional-level techniques used in [20], [7], [38], [37] and [40]—are
inapplicable in this setting. On the other hand, the methods used in [4] do
not seem to be readily applicable to logics of transitive frames, such as 〈N, <〉
and 〈N,6〉. In this respect, the method used here should be of relevance in
the study of the algorithmic properties of monomodal logics of various kinds
of structures—such as reflexive and irreflexive trees with a limited branching
factor—where similar restrictions apply.

Third, the structure 〈N, <〉 has long been considered to be a natural model
of the flow of time (see, e.g., [19], [17]), and so interest in the algorithmic
properties of the predicate modal logics of this structure is partially motivated
by applications of first-order temporal logics [9], [8], [17], [24], [25], [23], [14,
Chapter 11], [29], [11], [21]. Clearly, the negative results, like those presented
here, obtained for languages whose expressive power is weaker than those of
predicate temporal logic are directly relevant to that area.

The paper is structured as follows. In Section 2, we introduce the necessary
preliminaries on predicate modal logic. In Section 3, we present our results
on the logic of 〈N, <〉. In Section 4, we present similar results on the logic of
〈N,6〉. We conclude by discussing problems for future research in Section 5.

2 Preliminaries

In this section, we recall the standard definitions related to predicate modal
logic, our aim being mainly to fix the terminology and notation used throughout
the paper; the reader wishing more background on predicate modal logic may
consult [26], [12], [18], [6], and [16].

An unrestricted first-order predicate modal language—as considered in this
paper—contains countably many individual variables; countably many pred-
icate letters of every arity, including zero (0-ary predicate letters are propo-
sitional variables); the propositional constant ⊥ (falsity), the binary propo-
sitional connective →, the unary modal connective 2, and the quantifier ∀.
Formulas, as well as the symbols ¬, ∨, ∧,↔, ∃, and 3, are defined in the usual
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way. We also use the following abbreviations, where n ∈ N:

20ϕ = ϕ, 2n+1ϕ = 22nϕ, 3nϕ = ¬2n¬ϕ,
2+ϕ = ϕ ∧2ϕ, 3+ϕ = ϕ ∨3ϕ.

When parentheses are omitted, ¬, 2, ∀, and ∃ are assumed to bind tighter
than ∧ and ∨, which are assumed to bind tighter than → and ↔. We usually
write atomic formulas, or atoms, in prefix notation; for some predicate letters,
however, we use infix.

A normal predicate modal logic is a set of predicate modal formulas contain-
ing the validities of the classical predicate logic QCl, as well as the formulas of
the form 2(ϕ → ψ) → (2ϕ → 2ψ), and closed under predicate substitution,
modus ponens, generalisation, and necessitation. 3

We use the Kripke semantics to interpret predicate modal formulas.
A Kripke frame is a tuple F = 〈W,R〉, where W is a non-empty set of

worlds and R is a binary accessibility relation on W . If wRv, we say that v is
accessible from w or that w sees v. We say that v is accessible from w in k
steps, for k > 1, if wRkv, where Rk is the k-fold composition of R with itself.

A predicate Kripke frame with expanding domains is a tuple
FD = 〈W,R,D〉, where 〈W,R〉 is a Kripke frame and D is a function
from W into the set of non-empty subsets of some set, the domain of FD;
the function D is required to satisfy the condition that wRw′ implies
D(w) ⊆ D(w′). We call the set D(w) the domain of w. We often write Dw

for D(w). We also consider predicate frames satisfying the stronger condition
that wRw′ implies D(w) = D(w′); we call such frames predicate frames with
(locally) constant domains. Whenever we say predicate frame simpliciter, we
mean predicate frame with expanding domains.

A Kripke model is a tuple M = 〈W,R,D, I〉, where 〈W,R,D〉 is a predicate
Kripke frame and I, called the interpretation of predicate letters with respect to
worlds in W , is a function assigning to a world w ∈W and an n-ary predicate
letter P an n-ary relation I(w,P ) onD(w), i.e., I(w,P ) ⊆ Dn(w); in particular,
if P is 0-ary, I(w,P ) ⊆ D0(w) = {〈〉}. We often write P I,w for I(w,P ). We
say that a model 〈W,R,D, I〉 is based on the frame 〈W,R〉 and is based on the
predicate frame 〈W,R,D〉.

An assignment in a model is a function g associating with every individual
variable x an element g(x) of the domain of the underlying predicate frame.

We write g′
x
= g to mean that assignment g′ differs from assignment g in at

most the value of x.
The truth of a formula ϕ at a world w of a model M under an assignment

g is defined inductively:

• M, w |=g P (x1, . . . , xn) if 〈g(x1), . . . , g(xn)〉 ∈ P I,w, where P is an n-ary
predicate letter;

3 The reader wishing a reminder of the definition of these closure conditions may consult [16,
Definition 2.6.1]; for a detailed discussion of predicate substitution, see, e.g., [16, §2.3, §2.5].
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• M, w 6|=g⊥;

• M, w |=g ϕ1 → ϕ2 if M, w |=g ϕ1 implies M, w |=g ϕ2;

• M, w |=g 2ϕ1 if wRw′ implies M, w′ |=g ϕ1;

• M, w |=g ∀xϕ1 if M, w |=g′ ϕ1, for every g′ such that g′
x
=g and g′(x)∈Dw.

Notice that, given a Kripke model M = 〈W,R,D, I〉 and w ∈W , the tuple
Mw = 〈Dw, Iw〉, where Iw(P ) = I(w,P ), is a classical predicate model.

Let M = 〈W,R,D, I〉 be a model, w ∈ W , and a1, . . . , an ∈ Dw; let
also ϕ(x1, . . . , xn) be a formula whose free variables are among x1, . . . , xn.
We write M, w |= ϕ(a1, . . . , an) to mean M, w |=g ϕ(x1, . . . , xn), where
g(x1) = a1, . . . , g(xn) = an. This notation is unambiguous since the languages
we consider lack constants.

We say that a formula ϕ is true at a world w of a model M (in symbols,
M, w |= ϕ) if M, w |=g ϕ, for every g assigning to the free variables of ϕ
elements of Dw. We say that ϕ is true in a model M (in symbols, M |= ϕ)
if M, w |= ϕ, for every world w of M. We say that ϕ is valid on a predicate
frame FD (in symbols, FD |= ϕ) if ϕ is true in every model based on FD. We
say that ϕ is valid on a frame F (in symbols, F |= ϕ) if ϕ is valid on every
predicate frame 〈F, D〉. These notions, and the corresponding notation, can be
extended to sets of formulas, in a natural way.

We write w |= ϕ, rather than M, w |= ϕ, when M is clear from the context.
It is well known that the set of formulas valid on a class of frames is a

normal predicate modal logic; this fact is sometimes referred to as soundness
of Kripke semantics.

In this paper, we are mostly interested in the logics of frames 〈N, <〉 and
〈N,6〉; these logics are denoted, respectively, L(N, <) and L(N,6).

Observe that L(N, <) 6⊆ L(N,6) since (N, <) |= Z and (N,6) 6|= Z, where
Z = 2(2p → p) → (32p → 2p). Also observe that L(N,6) 6⊆ L(N, <) since
(N,6) |= 2p→ p and (N, <) 6|= 2p→ p.

3 The first-order logic of 〈N, <〉
In this section, we prove that satisfiability for the logic L(〈N, <〉) is Σ1

1-hard—
hence, L(〈N, <〉) is Π1

1-hard, and therefore not recursively enumerable—in lan-
guages with two individual variables and two monadic predicate letters.

We do so by encoding the following recurrent tiling problem for N × N,
known to be Σ1

1-complete [22].
We are given a set of tiles, a tile t being a 1 × 1 square, with a fixed

orientation, whose edges are “colored” with left(t), right(t), up(t), and down(t).
A tile type is fully determined by the edge colors. Every tile belongs to one
of the finitely many types T = {t0, . . . , tn}, there being an unlimited supply
of tiles of each type. A tiling in an arrangement of tiles such that the edge
colors of the adjacent tiles match, both horizontally and vertically. We are
to determine whether there exists a tiling of an N ×N grid, with tiles of the
given types, such that a tile of type t0 occurs infinitely often in the leftmost
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column. More precisely, we are to determine whether there exists a function
f : N×N→ T such that, for every n,m ∈ N,

(T1) right(f(n,m)) = left(f(n+ 1,m));

(T2) up(f(n,m)) = down(f(n,m+ 1));

(T3) the set {n ∈ N : f(0, n) = t0} is infinite.

The idea of the encoding we use is based on [14, Theorem 11.1] (see also [44],
[30], [47], and [27]). To make the underlying idea clearer, we initially encode the
recurrent tiling problem with predicate modal formulas of two individual vari-
ables, without regard for the number of predicate letters used; such a concern
would complicate the formulas and, possibly, obfuscate their meaning. Sub-
sequently, we eliminate all but two monadic predicate letters in the formulas
obtained in the initial encoding.

Let / be a binary—while M and Pt, for every t ∈ T , monadic—predicate
letters. Let (for brevity, we write l, r, u, and d rather than left, right, up, and
down)

A1 = ∀x∃y (x / y);

A2 = ∀x∀y [(x / y → 2(x / y)) ∧ (¬(x / y)→ 2¬(x / y))];

A3 = ∃xM(x);

A4 = ∀x∀y (x / y → 2+(M(x)↔ 3M(y) ∧ ¬32M(y)));

A5 = 2+∀x [
∨
t∈T

Pt(x) ∧ ∧
t′ 6=t

(Pt(x)→ ¬Pt′(x))];

A6 = ∀x∀y ∧
t∈T

[2+(x / y ∧ Pt(x)→ ∨
r(t)=l(t′)

Pt′(y))];

A7 = ∀x∀y ∧
t∈T

[2+(M(x) ∧ Pt(y)→ 2(∃y (x / y ∧M(y))→ ∨
u(t)=d(t′)

Pt′(y)))];

A8 = ∀x (M(x)→ 23Pt0(x)),

Let A be a conjunction of formulas A1 through A8. Notice that A contains
only two individual variables.

One may think of the relation represented by x / y as an “immediate suc-
cessor” relation associated with a strict partial order. Then, A2 says that this
“order” is preserved throughout the frame. One may think of an element a of
the domain Dw of the world w such that w |= M(a) as “marking” the world
w; so, we occasionally say that a is the mark of w. Then, formulas A3 and
A4 can be understood as saying that every world in a model is “marked” with,
as we shall see, a unique element of its domain and that the order of marks
of successive worlds agrees with the relation /. This, as we shall see, gives us
an N ×N grid whose rows correspond to the worlds of the frame 〈N, <〉 and
whose columns correspond to the (common) elements of the domains of the
worlds. Building on this, formulas A5 through A8 describe a sought tiling of
thus obtained grid. This is made precise in the following
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...

0

1

2

3

M(0)

M(1)

M(2)

M(3)

Pf(0,0)(0) Pf(1,0)(1) Pf(2,0)(2) Pf(3,0)(3) . . .

Pf(0,1)(0) Pf(1,1)(1) Pf(2,1)(2) Pf(3,1)(3) . . .

Pf(0,2)(0) Pf(1,2)(1) Pf(2,2)(2) Pf(3,2)(3) . . .

Pf(0,3)(0) Pf(1,3)(1) Pf(2,3)(2) Pf(3,3)(3) . . .

...
...

...
...

0 � 1 � 2 � 3 . . .

Fig. 1. Model M0

Lemma 3.1 There exists a recurrent tiling of N × N if, and only if,
〈N, <〉 6|= ¬A.

Proof. (“if”) Suppose that M,m |= A, for some model M = 〈N, <,D, I〉 and
some m ∈ N; we may assume without loss of generality that m = 0.

Since 0 |= A3, there exists a0 ∈ D0 such that 0 |= M(a0).
Since 0 |= A1, there exists an infinite sequence a0, a1, a2, . . . of elements of

D0 such that a0 /
I,0 a1 /

I,0 a2 /
I,0 . . . .

Since 0 |= A2, clearly, a0 /
I,n a1 /

I,n a2 /
I,n . . . , for every n ∈ N.

Since 0 |= A4, clearly, n |= M(an), for every n ∈ N.
We next show that a0, a1, a2, . . . are pairwise distinct.
Suppose otherwise, i.e., let ai = ai+k, for some i, k ∈ N. Then, as

we have seen, i |= M(ai) and i + k |= M(ai+k). Since ai = ai+k, we
obtain i + k |= M(ai) and hence, by A4, i + k + 1 |= M(ai+1). Thus,
i 6|= M(ai)↔ 3M(ai+1) ∧ ¬32M(ai+1), a contradiction.

Therefore, w |= M(ak) if, and only if, w = k.
Since 0 |= A5, for every m,n ∈ N, there exists a unique t ∈ T such that

m |= Pt(an). We can, therefore, define a function f : N×N→ T by

f(n,m) = t, where t is such that m |= Pt(an).

Since 0 |= A6 ∧A7 ∧A8, the function f satisfies (T1) through (T3). Observe
that the subformula ∃y (x / y ∧M(y)) of A7 ensures that a vertically matching
tile t′ is placed right on top of the current tile t.

Therefore, f is a recurrent tiling of N×N with T .
(“only if”) Suppose that f is a function satisfying (T1) through (T3). We

define a model M0, based on 〈N, <〉, satisfying A.
To define M0, let Dn = N, for every n ∈ N, and let I be an interpretation

function such that, for every n ∈ N,

• n |= k / l � l = k + 1;

• n |= M(k) � k = n;

• n |= Pt(k) � f(k, n) = t.
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Finally, let M0 = 〈N, <,D, I〉 (see Figure 1).
It is straightforward to check that M0, 0 |= A. 2

Thus, in the proof of the “if” part of Lemma 3.1, we obtained a grid for the
tiling by treating the worlds of the model M as rows and elements a0, a1, a2, . . .
of the domain D0 of world 0 as columns.

We now make, in the following remarks, a few observations about those
properties of the model M0 defined in the proof of the “only if” part of
Lemma 3.1 that we will rely on later on.

Remark 3.2 The model M0 defined in the “only if” part of the proof of
Lemma 3.1 is based on a predicate frame with a constant domain; even though
this domain is N, we denote it by D when we wish to emphasize that we are
talking about the domain, rather than the set of worlds, of M0.

Remark 3.3 In the model M0 defined in “only if” part of the proof
Lemma 3.1, the valuation of the binary predicate letter / is the same at every
world.

Remark 3.4 In the model M0 defined in “only if” part of the proof of
Lemma 3.1, each world is marked with a unique element of the common domain,
i.e., for every w ∈ N, there exists a unique a ∈ D such that w |= M(a).

We next eliminate, in a satisfiability-preserving way, all but two monadic
predicate letters of the formula A, without increasing the number of individual
variables in the resultant formula; we, thus, obtain a reduction of the N ×N
recurrent tiling problem to satisfiability in L(〈N, <〉) in languages with two
individual variables and two monadic predicate letters.

The elimination of predicate letters is carried out in two steps: first, we
model the binary letter / with two monadic ones, obtaining formula A′; then,
we model all the monadic letters of A′ except M with a single monadic letter,
thus obtaining a formula with only two monadic predicate letters and two
individual variables.

From now on, we assume, for ease of notation, that A contains monadic
predicate letters P0, . . . , Pn—rather than Pt, for t ∈ {t0, . . . , tn}—to refer to
the tile types.

First, following ideas of Kripke’s [28], we eliminate, in a satisfiability-
preserving way, the binary predicate letter / of A, without increasing the num-
ber of individual variables in the resultant formula.

Recall that Kripke’s construction [28] transforms a model M satisfying a
formula containing a binary predicate letter, and no modal operators, at a
world w in such a way that a sufficiently large number of worlds is added to M.
More precisely, for every pair 〈a, b〉 of elements of the domain of w, a fresh world
is introduced to M. This construction cannot be applied in a straightforward
way in our setting, for two reasons.

Since we are restricted to the frame 〈N, <〉, we may not introduce fresh
worlds to a model satisfying A; we, rather, have to use the worlds of 〈N, <〉 to
simulate /. Moreover, since / occurs within the scope of the modal operator 2
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in A, we need to simulate the valuation of / at every world of the model, not
just at the world satisfying A.

We resolve these difficulties by using the fact that A is satisfied in the model
M0 defined in the “only if” part of the proof of Lemma 3.1 and drawing on
the special properties of M0—that, as noted in Remark 3.2, it is based on a
predicate frame with a constant domain and that, as noted in Remark 3.3, the
valuation of / is the same at every world of M0.

Let Pn+1 and Pn+2 be monadic predicate letters distinct from M,P0, . . . , Pn
and from each other, and let

µ = ∃xM(x).

Lastly, let A′ be the result of substituting 3(µ ∧ Pn+1(x) ∧ Pn+2(y)) for x / y
in A.

Lemma 3.5 There exists a recurrent tiling of N × N if, and only if,
〈N, <〉 6|= ¬A′.
Proof. (“if”) This part is argued almost exactly as in the proof of Lemma 3.1,
the only difference being that 3(µ ∧ Pn+1(x) ∧ Pn+2(y)) plays the role of the
atom x / y.

(“only if”) Suppose f is a function satisfying conditions (T1) through (T3).
Let M0 be the model defined in “if” part of the proof of Lemma 3.1. As we
have seen there, M0, 0 |= A. We use M0 to define a model M′0 satisfying A′.

Let h : N→ N×N be a fixed enumeration of the pairs of natural numbers,
thought of as elements of the domain D (i.e., we seek an enumeration of D×D).
Let α be the infinite sequence of natural numbers

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, . . .

and let αk be the kth element of α.
To define M′0, we use the predicate frame 〈N, <,D〉 underlying the model

M0, together with the interpretation function I ′ defined as follows: for
w, a, b, c ∈ N,

M′0, w |= Pn+1(c) � c = a and M0, 0 |= a / b and h(αw) = 〈a, b〉;
M′0, w |= Pn+2(c) � c = b and M0, 0 |= a / b and h(αw) = 〈a, b〉;

and
M′0, w |= S(c) � M0, w |= S(c), for S ∈ {P0, . . . , Pn,M}.

Finally, let M′0 = 〈N, <,D, I ′〉.
We prove that M′0, 0 |= A′.
Since M0, 0 |= A, if suffices to show that M0, w |=g x / y if, and only if,

M′0, w |=g 3(µ ∧ Pn+1(x) ∧ Pn+2(y)), for every w ∈ N and every g.
Assume M0, w |=g x / y. By definition of M0 (see also Remark 3.3),

M0, 0 |=g x / y. Let v ∈ N be such that w < v and h(αv) = 〈g(x), g(y)〉;
it is evident from the definition of α that such a v exists. By definition,



532 Algorithmic properties of first-order modal logics of the natural number line

M′0, v |=g Pn+1(x) ∧ Pn+2(y). Since w < v and since, as can be easily checked,
M′0, w |= µ, we obtain M′0, w |=g 3(µ ∧ Pn+1(x) ∧ Pn+2(y)).

Conversely, assume M′0, w |=g 3(µ ∧ Pn+1(x) ∧ Pn+2(y)), and hence
M′0, v |=g Pn+1(x) ∧ Pn+2(y), for some v such that w < v. By defini-
tion, M0, 0 |=g x / y. Thus, by definition of M0 (see also Remark 3.3),
M0, w |=g x / y. 2

We lastly model, in a satisfiability-preserving way, the occurrences of pred-
icate letters P0, . . . , Pn+2 in A′ with a single monadic letter P , without in-
creasing the number of individual variables in the resultant formula. We, thus,
obtain a reduction of the recurrent tiling problem using formulas with only two
individual variables and only two monadic predicate letters, M and P .

Let P be a monadic predicate letter distinct from P0, . . . , Pn+2,M , and let,
for k ∈ {0, . . . , n+ 2},

βk(x) = µ ∧ ∃y [3n+4M(y) ∧ ¬3n+5M(y)∧
3(3k+1M(y) ∧ ¬3k+2M(y) ∧ P (x))];

βk(y) = µ ∧ ∃x [3n+4M(x) ∧ ¬3n+5M(x)∧
3(3k+1M(x) ∧ ¬3k+2M(x) ∧ P (y))].

Let ·∗ be the function replacing Pk(x) with βk(x) and Pk(y) with βk(y), for
k ∈ {0, . . . , n+ 2}.

Let A∗i , where 1 6 i 6 8 and i 6= 4, be the result of applying the function
·∗ to the formula A′i and let

A#
4 = ∀x∀y (3(βn+1(x) ∧ βn+2(y)) →

2(M(x)↔ 3n+4M(y) ∧ ¬3n+5M(y))).

Finally, let
A∗ = A∗1 ∧A∗2 ∧A∗3 ∧A#

4 ∧A∗5 ∧A∗6 ∧A∗7 ∧A∗8.
To define a model satisfying A∗, provided a recurrent tiling of N×N exists,

we take the model M′0 defined in the “only if” part of the proof of Lemma 3.5
and, intuitively, stretch it out to include “additional” worlds whose sole purpose
is to simulate the valuation of the predicate letters P0, . . . , Pn+2 at worlds of
M′0: n+3 worlds are “inserted” between m and m+1 to simulate the valuation
of letters P0, . . . , Pn+2 at m. The valuation of Pk, where k ∈ {0, . . . , n+ 2}, at
m is simulated by the valuation of P at a “newly inserted” intermediate world
k steps away from m+ 1 (see Figure 2, where βf(a,b)(x) stands for βk(x) such
that f(a, b) = tk). This is made precise in the following

Lemma 3.6 There exists a recurrent tiling of N × N if, and only if,
〈N, <〉 6|= ¬A∗.
Proof. (“if”) This part is argued as before, the only difference being that
βk(x) and βk(y) are used instead of the atoms Pk(x) and Pk(y).

(“only if”) Suppose f is a function satisfying (T1) through (T3). Let M′0 be
the model defined in the “only if” part of the proof of Lemma 3.5. As we have
seen there, M′0, 0 |= A′. We use M′0 to define a model M∗0 satisfying A∗.
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...

...

...

w0

ws

ws+1

v0s

v1s

vns

vn+1
s

vn+2
s

M(0)

M(s)

M(s+ 1)

βf(0,0)(0) βf(1,0)(1) βf(2,0)(2) βf(3,0)(3) . . .

βf(0,s)(0) βf(1,s)(1) βf(2,s)(2) βf(3,s)(3) . . .

βf(0,s+1)(0) βf(1,s+1)(1) βf(2,s+1)(2) βf(3,s+1)(3) . . .

P (k), for every k such that f(s, k) = t0

P (k), for every k such that f(s, k) = t1

P (k), for every k such that f(s, k) = tn

P (k)

P (k + 1)



 for k such that h(αs) = 〈k, k + 1〉

Fig. 2. Model M∗
0

Think of the worlds of M∗0 as being labeled, in the ascending order,

w0, v
n+2
0 , . . . , v00 , w1, v

n+2
1 , . . . , v01 , w2, v

n+2
2 , . . . , v02 , w3, . . .

(i.e., w0 = 0, vn+2
0 = 1, etc.). Let, as before, Dw = D = N, for every

w ∈ N. Define the interpretation function I∗ on the predicate frame 〈N, <,D〉
underlying M′0 by

M∗0, x |= M(a) � x = wm and M′0,m |= M(a), for some m ∈ N;

M∗0, x |= P (a) � x = vkm and M′0,m |= Pk(a), for some m ∈ N
and k ∈ {0, . . . , n+ 2}.

We prove that M∗0, w0 |= A∗.
First, we show that, for every s ∈ N, k ∈ {0, . . . , n+ 2}, and g,

(1) M′0, s |=g Pk(x) ⇐⇒ M∗0, ws |=g βk(x);

(2) M′0, s |=g Pk(y) ⇐⇒ M∗0, ws |=g βk(y).

Assume M′0, s |=g Pk(x). As we have seen in the proof of Lemma 3.1 (see
also Remark 3.4), for every world w in M0, there exists a unique a ∈ D such
that M0, w |= M(a).

Then, M′0, s |= M(a), for some unique a ∈ D; hence, by definition,
M∗0, ws |= M(a). Therefore, M∗0, ws |= µ.
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Similarly, M′0, s+ 1 |= M(b), for some unique b ∈ D, and so, by definition,
M∗0, ws+1 |= M(b). Observe that, due to uniqueness of b for s+ 1, if t 6= s+ 1,
then M∗0, wt 6|= M(b).

By definition, in M∗0,

• ws+1 is accessible from ws in n+ 4 steps;

• ws+1 is not accessible from ws in n+ 5 steps;

• ws < vks ;

• ws+1 is accessible from vks in k + 1 steps;

• ws+1 is not accessible from vks in k + 2 steps;

• M∗0, v
k
s |=g P (x).

Therefore, M∗0, ws |=g βk(x).
Conversely, assume M∗0, ws |=g βk(x). Then, it is immediate from the

definition of M∗0 that M′0, s |=g Pk(x).
This proves (1). The argument for (2) is analogous.
From (1) and (2) we immediately obtain M∗0, w0 |= A∗i , where 1 6 i 6 8

and i 6= 4. It is, moreover, straightforward to check, given (1) and (2), that

M∗0, w0 |= A#
4 . Therefore, M∗0, w0 |= A∗. 2

We, thus, obtain (the reader wishing a reminder of the basic concepts of
computability theory may consult [35])

Theorem 3.7 Satisfiability for L(〈N, <〉) is Σ1
1-hard in languages with two

individual variables and two monadic predicate letters.

Proof. Immediate from Lemma 3.6. 2

Thus, L(〈N, <〉) is not recursively enumerable in such languages:

Theorem 3.8 The logic L(〈N, <〉) is Π1
1-hard in languages with two individual

variables and two monadic predicate letters.

Proof. Immediate from Theorem 3.7. 2

4 The first-order logic of 〈N,6〉
We now modify the argument of the preceding section to prove Σ1

1-hardness of
satisfiability for the predicate monomodal logic of 〈N,6〉 in languages with two
individual variables, two monadic, and a single 0-ary predicate letter. It follows
that the logic of 〈N,6〉 is Π1

1-hard, and therefore not recursively enumerable,
in such languages. In comparison with languages considered in the previous
section, we need an additional 0-ary predicate letter to deal with reflexivity.

As before, let / be a binary—while M and Pt, for every t ∈ T , monadic—
predicate letters, and let p be a 0-ary predicate letter (i.e., a propositional
variable). Given a formula ϕ in such a language, define

33ϕ = 3(¬p ∧3(p ∧ ϕ));

330ϕ = ϕ, 33k+1ϕ = 3333kϕ.
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Let
Ar4 = ∀x∀y (x / y → 2(M(x)↔ p ∧33M(y) ∧ ¬332M(y)),

Ar8 = ∀x (M(x)→ 233Pt0(x)),

and let Ar = A1 ∧A2 ∧A3 ∧Ar4 ∧A5 ∧A6 ∧A7 ∧Ar8.
The operator 33 forces a transition to a different world when valuating a

formula 33ϕ, just as 3 does in the absence of reflexivity.

Lemma 4.1 There exists a recurrent tiling of N × N if, and only if,
〈N,6〉 6|= ¬Ar.
Proof. (“if”) Suppose M,m |= Ar, for some model M = 〈N,6, D, I〉 and
some m ∈ N; we may assume without a loss of generality that m = 0.

Since 0 |= A3, there exists a0 ∈ D0 such that 0 |= M(a0).
Since 0 |= A1, there exists an infinite sequence a0, a1, a2, . . . of elements of

D0 such that a0 /
I,0 a1 /

I,0 a2 /
I,0 . . . .

Since 0 |= A2, clearly, a0 /
I,n a1 /

I,n a2 /
I,n . . . , for every n ∈ N.

Since 0 |= Ar4, the following holds: w |= M(ak) if, and only if, w |= p
and there exist w′, w′′ ∈ N such that w 6 w′ 6 w′′ and w′ 6|= p and
w′′ |= p ∧ M(ak+1). Observe that the valuation of p guarantees that
w < w′ < w′′. Also observe that, if w′′ 6 v 6 v′ and v 6|= p and v′ |= p,
then v′ 6|= M(ak+1). Thus, a mark of the world changes once we have passed
through a world refuting p.

For every k ∈ N, let wk be, for definiteness’ sake, the least world (number)
such that wk |= M(ak). Observe that, since 0 |= A5, for every m,n ∈ N there
exists a unique t ∈ T such that wm |= Pt(an). Therefore, we can define a
function f : N×N→ T by

f(n,m) = t, where t is such that wm |= Pt(an).

Since 0 |= A6 ∧ A7 ∧ Ar8, conditions (T1) through (T3) are satisfied for f .
Therefore, f is a recurrent tiling of N×N with T .

(“only if”) Suppose f is a function satisfying (T1) through (T3). We define
a model M0, based on 〈N,6〉, satisfying Ar.

To define M0, let Dn = N, for every n ∈ N, and let I be an interpretation
function such that, for every n ∈ N,

• n |= k / l � l = k + 1;

• n |= p � n = 2m, for some m;

• n |= M(k) � n = 2k;

• n |= Pt(k) � n = 2m and f(k,m) = t.

Finally, let M0 = 〈N, <,D, I〉.
It is straightforward to check that M0, 0 |= Ar. 2

Remark 4.2 Observe that Remarks 3.3 and 3.4 apply to those worlds of the
model M0 defined in the “only if” part of the proof of the Lemma 4.1 where
p is true. Also observe that M0 is based on a predicate frame with a constant
domain.
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We next eliminate, in a satisfiability-preserving way, all but two monadic
predicate letters of the formula Ar, without increasing the number of individual
variables in the resultant formula. As in the preceding section, this is done in
two steps. We assume, for convenience, that Ar contains monadic predicate
letters P0, . . . , Pn, rather than Pt, for t ∈ {t0, . . . , tn}, to refer to the tile types.

Let Pn+1 and Pn+2 be monadic predicate letters distinct form M,P0, . . . , Pn
and from each other. Let formula µ be defined as before. Lastly, let (Ar)′ be
the result of substituting 33(µ ∧ Pn+1(x) ∧ Pn+2(y)) for x / y in Ar.

Lemma 4.3 There exists a recurrent tiling of N × N if, and only if,
〈N,6〉 6|= ¬(Ar)′.

Proof. Similar to the proof of Lemma 3.5. In the proof of the “only if” part, we
only simulate the valuation of / at the worlds where p is true—or, equivalently,
the worlds w such that w |= M(a), for some a. Therefore, instead of the
enumeration h, we use an enumeration of such worlds only. Once this change
is made, we proceed as in the proof of Lemma 3.5. 2

We, lastly, eliminate all but two monadic predicate letters of (Ar)′. Let
P be a monadic predicate letter distinct from P0, . . . , Pn+2,M , and let, for
k ∈ {0, . . . , n+ 2},

γk(x) = µ ∧ ∃y [33n+4M(y) ∧ ¬33n+5M(y)∧
33(33k+1M(y) ∧ ¬33k+2M(y) ∧ P (x))];

γk(y) = µ ∧ ∃x [33n+4M(x) ∧ ¬33n+5M(x)∧
33(33k+1M(x) ∧ ¬33k+2M(x) ∧ P (y))],

Let ·∗ be the function replacing Pk(x) with γk(x) and Pk(y) with γk(y), for
k ∈ {0, . . . , n+ 2}, in (Ar)′.

Let (Ari )
∗, where 1 6 i 6 8 and i 6= 4, be the result of applying the function

·∗ to (Ari )
′ and let

(Ar4)# = ∀x∀y (33(γn+1(x) ∧ γn+2(y)) →
2(M(x)↔ 33n+4M(y) ∧ ¬33n+5M(y))).

Finally, let

(Ar)∗ = (Ar1)∗ ∧ (Ar2)∗ ∧ (Ar3)∗ ∧ (Ar4)# ∧ (Ar5)∗ ∧ (Ar6)∗ ∧ (Ar7)∗ ∧ (Ar8)∗.

Lemma 4.4 There exists a recurrent tiling of N × N if, and only if,
〈N,6〉 6|= ¬(Ar)∗.

Proof. Similar to the proof of Lemma 3.6.
We take the model obtained in the “only if” part of the proof of Lemma 4.3

and, essentially, apply to it the construction used in the proof of Lemma 3.6,
the only difference being that we make letter p true at the worlds that we
“added” in Lemma 3.6 and “insert” an extra world refuting p in-between every
pair of such worlds that are adjacent. 2

We, thus, obtain
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Theorem 4.5 Satisfiability for L(〈N,6〉) is Σ1
1-hard in languages with two

individual variables, two monadic predicate letters, and a single 0-ary predicate
letter.

Proof. Immediate from Lemma 4.4. 2

Thus, L(〈N,6〉) is not recursively enumerable in such languages:

Theorem 4.6 The logic L(〈N,6〉) is Π1
1-hard in languages with two individual

variables, two monadic predicate letters, and a single 0-ary predicate letter.

Proof. Immediate from Theorem 4.5. 2

5 Discussion

Observe that the results of Section 4 can be easily extended to predicate
monomodal logics of frames 〈N, R〉 where R is a binary relation between <
and 6: given any such logic L, we reduce the recurrent tiling problem to satis-
fiability for L by applying to the formulas defined in Section 4 the translation
replacing occurrences of the modal operator 2 with those of 2+.

Also observe that we have never relied on the domains of the predicate
frames we have been dealing with to be not equal; therefore, all of our results
apply to the logics of predicate frames with constant domains.

Lastly, observe that our results apply to the first-order temporal logic of
〈N,6〉, which is essentially the first-order linear time temporal logic QLTL.

The results presented here raise the following questions.
The first is whether the results presented here can be strengthened to lan-

guages with one fewer predicate letter. Both in [41] and in [36] we have been
able to prove undecidability and Σ0

1-hardness results for languages with a single
monadic predicate letter. We conjecture that the logic of 〈N, <〉 is Π1

1-hard in
languages with two individual variables and a single monadic predicate letter.
If the conjecture is correct, an analogous result for 〈N,6〉, at worst with an
additional 0-ary predicate letter, should follow.

The second is whether analogous results can be obtained for the superin-
tuitionistic logic of the frame 〈N,6〉. Given that the accessibility relation in
〈N,6〉 is reflexive and transitive, the only, by not means trivial, hurdle to clear
is obtaining a model with a hereditary valuation. Whether this can be done is
unclear to us, given the difficulty of modelling the changing values of the tile
types on a linear frame with a hereditary valuation.
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Abstract

The purpose of this paper is to investigate a possible characterization of frame defin-
ability of intuitionistic inquisitive logic by Ciardelli et al. (2020) in terms of frame
constructions such as generated subframes and bounded morphic images. Sano and
Virtema (2015, 2019) provided a Goldblatt-Thomason-style characterization for (ex-
tended) modal dependence logic with the help of a normal form result for the logic.
A key ingredient of establishing the characterization was to show that the ordinary
modal logic expanded with positive occurrences of the universal modality and ex-
tended modal dependence logic have the same definability over Kripke models. This
paper first reviews Goldblatt-Thomason-style characterization for intuitionistic logic
from Rodenburg (1986)’s work on intuitionistic correspondence theory. Then we
employ a similar strategy to Sano and Virtema (2015, 2019) and provide a Goldblatt-
Thomason-style characterization for intuitionistic inquisitive logic.

Keywords: Intuitionistic Logic, Frame Definability, Universal Modality,
Goldblatt-Thomason Theorem, Inquisitive Semantics, Inquisitive Logic

1 Introduction

Goldblatt-Thomason Theorem [11] for modal logic enables us to characterize
elementary frame class definability in terms of frame construction. To be more
specific, it states that an elementary (or first-order definable) frame class F
is definable by a set of modal formulas iff F is closed under taking bounded
morphic images, generated subframes, disjoint unions and F reflects ultrafilter
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thank Giuseppe Greco, Fan Yang, Vı́t Punčochář, Wesley Holliday, and Ivano Ciardelli for
discussions at the workshop. I also wish to thank Jonni Virtema for our discussion at Sapporo
in the spring of 2020. The work of this paper was partially supported by JSPS KAKENHI
Grant-in-Aid for Scientific Research (C) Grant Number 19K12113, JSPS KAKENHI Grant-
in-Aid for Scientific Research (B) Grant Number 17H02258, and JSPS Core-to-Core Program
(A. Advanced Research Networks).



542 Goldblatt-Thomason-style Characterization for Intuitionistic Inquisitive Logic

extensions (i.e., the complement of F is closed under taking ultrafilter exten-
sions). Since then, Goldblatt-Thomason-style (GT-style, for short) characteri-
zation has been provided for a rich variety of logics: modal logic with the uni-
versal modality [9], hybrid logics [22], graded modal logic [17], modal logic over
topological semantics [23], coalgebraic modal logic [12], intuitionistic logic [16],
modal dependence logic [19], etc. Let us comment on intuitionistic logic. If
we replace the reflection of ultrafilter extensions with the reflection of prime
filter extensions in frame constructions for Goldblatt-Thomason Theorem for
modal logic, we can obtain Rodenburg [16]’s characterization of intuitionistic
elementary frame definability.

Inquisitive logic [3,2] (or inquisitive semantics [4]) is a recent theoretical
framework for studying both declarative and interrogative sentences in one
setting. It often assumes classical logic as a background logic. Then, on the
top of classical logic, we add the inquisitive disjunction

>

, which allows us
to formalize a question “Does Taro play tennis?” as ?p := p

> ¬p, where p
denotes the declarative sentence “Taro plays tennis”. Semantically, a formula
is evaluated not by a single state but by a set of states (which is called a
team). This semantic feature is also a core of (propositional) dependence logic
(cf. [26]), where we can study the notion of functional dependence dep(q; p), “q
truth-functionally determines p”. In this sense, the semantics for dependence
logic is called team semantics. Moreover, the recent interaction between the
two communities reveal, e.g., that functional dependency dep(q; p) can be un-
derstood as an implication from the question ?q to the question ?p (see [2] for
more detail).

Recently, the ideas of inquisitive logic and dependence logic are general-
ized also to non-classical logics, i.e., modal logic [24,8,7], (dynamic) epistemic
logic [6], intuitionistic logic [13,14,5], substructural logic [15], etc. For modal
dependence logic (modal logic extended with atoms for functional dependency),
[19] provided a Goldblatt-Thomason-style characterization. A key ingredient
for the characterization is that (extended) modal dependence logic (with team
semantics) and modal logic expanded with the positive occurrences of the uni-
versal modality (with Kripke semantics) have the same definability for frame
classes.

While modal dependence logic still assumes classical logic, intuitionistic
inquisitive logic [5]’s background logic is intuitionistic. We add the inquisi-
tive disjunction to the syntax of intuitionistic logic, and “lift” the ordinary
state-based Kripke semantics for intuitionistic logic to the semantics based on
teams (sets of states). Then, we can study questions and dependency also in
the intuitionistic setting. As for frame definability, [5] raises the following
research question (“[24]” and “[25]” in the citation correspond to [20] and [18]
respectively):

[...] it would also be interesting to look at the issue of frame definability
in InqI. [...] Clearly, if a standard formula defines a certain frame class
in IPL, then this formula still defines the same class in InqI. At the same
time, however, some frame classes which cannot be characterized in IPL can
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now be characterized with the help of inquisitive formulas: for instance, ?p
characterizes the class of singleton frames. Recent work on frame definability
in the context of modal dependence logic (see, e.g., Sano and Virtema [24],
[25]) might provide a handle on this question. [5, p.110]

This paper tackles this question and provide a GT-style characterization for
intuitionistic inquisitive logic. For this purpose, we follow a similar strategy
to [19]. That is, we first study intuitionistic logic with the universal modality A,
which was, as far as the author knows, less studied in the literature (e.g., [21]
studies the axiomatization of bi-intuitionistic tense logic expanded with the
universal modality). Then, we provide GT-style characterizations for a special
fragment of intuitionistic logic with the universal modality, which in turn gives
us our intended GT-style characterization for intuitionistic inquisitive logic. An
important insight is: we can mimic the behavior of inquisitive disjunction ϕ

>

ψ
by A-prefixed disjunction Aϕ ∨ Aψ where ϕ and ψ are intuitionistic formulas.

Our proof of Goldblatt-Thomason-type characterization is based on van
Benthem’s model-theoretic argument [25], though the original proof by Roden-
burg [16] is based on the representation theorem of Heyting algebras. When we
try to transfer the idea of Golcblatt-Thomason Theorems for modal dependence
logic [19] to our current study, there is a tricky point on the negation. While
we need to handle the intuitionistic negation for frame definability, we also
need to deal with the classical negation when we use the standard translation
to apply the first-order model theory. The results of this paper show that this
tricky distinction can be overcome in applying van Benthem’s model-theoretic
argument [25].

We proceed as follows. Section 2 introduces Kripke semantics for the syntax
of intuitionistic logic (the set of formulas is denoted by Form) and four frame
constructions, and then reviews Rodenburg’s Goldblatt-Thomason Theorem
for intuitionistic logic. Section 3 adds the universal modality A to the syntax
of intuitionistic logic (the resulting set of formulas is denoted by Form(A)) and
introduce the syntactic notion of disjunctive A-clauses, i.e., a formula of the
form

∨
i∈I Aϕi, where I is finite and ϕis does not contain any occurrences of

A, i.e., an intuitionistic formula. We use
∨

AForm to denote the set of all
disjunctive A-clauses. Section 4 provides two Goldblatt-Thomason-type char-
acterizations of elementary frame definability in terms of Form(A) and

∨
AForm

(Theorems 4.2 and 4.3, respectively). Section 5 introduces the inquisitive dis-
junction

>

to Form (where the resulting set of formulas is denoted by Form(

>

))
and team semantics for it, and then establishes that Form(

>

) and
∨

AForm
have the same frame definability. This equi-definability result enables us to
provide Goldblatt-Thomason-type Theorem for intuitionistic inquisitive logic
(Theorem 5.12). Section 6 explains several directions of further research.
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2 Goldblatt-Thomason Theorem for Intuitionistic Logic

2.1 Syntax and Kripke Semantics for Intuitionistic Logic

Let Prop be a set of propositional variables (we mostly assume that Prop is
countably infinite). The set Form of all formulas for intuitionistic logic is defined
inductively as follows:

Form 3 ϕ ::= p | ⊥ |ϕ ∧ ϕ |ϕ ∨ ϕ |ϕ→ ϕ (p ∈ Prop).

The negation is defined as ¬ϕ := ϕ→ ⊥.
We move on to Kripke semantics. We say that F = (W,R) is a Kripke

frame (or simply frame) if W is a non-empty set of states and R ⊆ W ×W is
reflexive and transitive, i.e., (W,R) is a preorder or a quasi-order. We say that
M = (W,R, V ) is a Kripke model (or simply model) if (W,R) is a frame and
V : Prop→ P(W ) is a valuation function (or simply valuation) such that every
V (p) is persistent (or V (p) is an upset) in the following sense: if w ∈ V (p) and
wRv then v ∈ V (p), for all states w, v ∈W . For a frame F and a model M we
use |F| and |M| to mean the underlying domain.

Definition 2.1 Given a model M = (W,R, V ), a state w ∈ W and a formula
ϕ, the satisfaction relation M, w  ϕ is defined inductively as follows:

M, w  p iff w ∈ V (p),
M, w 6 ⊥,
M, w  ϕ ∧ ψ iff M, w  ϕ and M, w  ψ,
M, w  ϕ ∨ ψ iff M, w  ϕ or M, w  ψ,
M, w  ϕ→ ψ iff ∀ v ((wRv and M, v  ϕ) imply M, v  ψ).

The truth set JϕKM is defined as {w ∈W |M, w  ϕ }. For a set ∆ of formulas,
we write M, w  ∆ to mean M, w  ϕ for all ϕ ∈ ∆.

For the negation, we have the following satisfaction clause:

M, w  ¬ϕ iff ∀ v (wRv implies M, v 1 ϕ).

Definition 2.2 Let F = (W,R) be a frame and X ⊆W . We define the upward
closure ↑X of X as the set { v ∈W | ∃w ∈ X (wRv) }. We usually write ↑w
instead of ↑ {w } for w ∈ W . Given upsets X, Y ⊆ W , we define X ⇒ Y :=
{w ∈W | ↑w ∩X ⊆ Y }.

For a model M, it is noted that Jϕ→ ψKM = JϕKM ⇒ JψKM. Given a frame
(W,R), it is remarked that X is an upset iff ↑X = X.

By induction on a formula, we can show that the persistency can be ex-
tended from propositional variables to formulas.

Proposition 2.3 The set JϕKM is an upset for all formulas ϕ.

Definition 2.4 A formula ϕ is valid in a model M (notation: M  ϕ) if
M, w  ϕ for all states w ∈ W , or equivalently, JϕKM = W . A set Γ of
formulas is valid in a frame F = (W,R) (notation: F  Γ) if, for every valuation
V , (F, V )  ϕ holds for all formulas ϕ ∈ Γ. When Γ is a singleton {ϕ }, we
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simply write F  ϕ to mean F  {ϕ }. A set Γ of formulas defines a class F of
frames if the following equivalence holds: F  Γ iff F ∈ F, for all frames F.

The following table demonstrates frame definability taken from [16].

Formula Property of R

p ∨ ¬p ∀w, v (wRv implies vRw)
(p→ q) ∨ (q → p) ∀w, v, u ((wRv and wRu) imply (vRu or uRv))

¬p ∨ ¬¬p ∀w, v, u ((wRv and wRu) imply ∃z(vRz and uRz))

Definition 2.5 Let L1
f be the first-order frame language (with equality) which

has a binary predicate x 6 y (corresponding to a relation R of a Kripke frame
(W,R)). Let L1

m be the first-order model language which expands L1
f with a

set { p(x) | p ∈ Prop } of unary predicates corresponding to Prop. Given any
first-order variable x, we define the standard translation STx from Form to the
set of first-order formulas in L1

m as follows:

STx(p) := p(x),
STx(⊥) := ⊥,

STx(ϕ ∧ ψ) := STx(ϕ) ∧ STx(ψ),
STx(ϕ ∨ ψ) := STx(ϕ) ∨ STx(ψ),

STx(ϕ→ ψ) := ∀ y (x 6 y ∧ STy(ϕ)→ STy(ψ)),

where y is a fresh variable.

We note that M and F are regarded as first-order structures of L1
m and

L1
f , respectively. In what follows, we keep the symbol “|=” for the satisfaction

relation for L1
m or L1

f , while we keep “” for Kripke semantics. By induction
on ϕ, we get the following (see [16, p.7]).

Proposition 2.6 Let M = (W,R, V ) be a model. For every formula ϕ ∈ Form
and w ∈W , M, w  ϕ iff M |= STx(ϕ)[w].

2.2 Frame Constructions and Rodenburg’s Characterization of
Intuitionistic Frame Definability

This subsection first introduces four frame constructions: bounded morphic im-
ages, generated subframes, disjoint unions, and prime filter extensions. Then,
we review Rodenburg [16]’s Goldblatt-Thomason Theorem for intuitionistic
logic in terms of the four frame constructions.

Definition 2.7 Let F = (W,R) and F′ = (W ′, R′). A mapping f : W → W ′

is a bounded morphism from F to F′ if f satisfies the following:

(Forth) For every w, v ∈W , wRv implies f(w)R′f(v).

(Back) For every w ∈ W and b ∈ W ′, f(w)R′b implies that f(v) = b and wRv for
some v ∈W .

We say that F′ is a bounded morphic images of F (notation: F � F′) if there
exists a surjective bounded morphism from F onto F′. Given any models M
= (W,R, V ) and M′ = (W ′, R′, V ′), a mapping f : W → W ′ is a bounded
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morphism from M to M′ if f is a bounded morphism from (W,R) to (W ′, R′)
and it also satisfies the following:

(Atom) V (p) = f−1[V ′(p)] for all propositional variables p.

Definition 2.8 We say that F′ = (W ′, R′) is a generated subframe of F =
(W,R) (notation: F′ � F) if the following conditions hold: (i) W ′ ⊆ W is
an upset with respect to R, and (ii) R′ = R ∩ (W ′ × W ′). A model M′ =
(W ′, R′, V ′) is a generated submodel of a model M = (W,R, V ) if (W ′, R′) is
a generated subframe of (W,R) and V ′(p) = V (p) ∩W ′ for all propositional
variables p. Given a subset X of the domain of a frame F (or a model M),
FX (or MX) is the smallest generated subframe (or submodel) whose domain
contains X. When X is a singleton {w }, we simply write Fw and Mw to mean
F{w } and M{w }, respectively.

By induction on ϕ, we can easily prove the following (cf. [16, p.5]).

Proposition 2.9 Let M′ = (W,R, V ) be a generated submodel of M. For
every formula ϕ ∈ Form and w ∈W ′, M′, w  ϕ iff M, w  ϕ.

Definition 2.10 Given a family (Fi)i∈I of frames where Fi = (Wi, Ri), the
disjoint union

⊎
i∈I Fi = (W,R) of (Fi)i∈I is defined as:

(i) W :=
⋃
i∈I(Wi × { i }) and

(ii) (w, i)R(v, j) iff i = j and wRiv.

For a family (Mi)i∈I of models where Mi = (Wi, Ri, Vi), the disjoint union⊎
i∈I Mi = (W,R, V ) of (Mi)i∈I is defined as follows: (W,R) is the disjoint

union of (Wi, Ri)i∈I and (w, i) ∈ V (p) iff w ∈ Vi(p) for all p ∈ Prop.

The following proposition has been already established in [16, Section 2.4].

Proposition 2.11 (i) If F� G, then F  ϕ implies G  ϕ for all ϕ ∈ Form.

(ii) If F′� F, then F  ϕ implies F′  ϕ for all ϕ ∈ Form.

(iii) Given a family (Fi)i∈I of frames, if Fi  ϕ for all i ∈ I, then
⊎
i∈I Fi  ϕ,

for all ϕ ∈ Form.

Now, we move to our final frame construction of prime filter extensions.

Definition 2.12 Let F = (W,R) be a frame (or preorder) and define

℘↑(W ) := {X ⊆W | X is an upset } .

We say that F ⊆ ℘↑(W ) is a filter on W if X ∩ Y ∈ F iff X ∈ F and Y ∈ F ,
for every X, Y ∈ ℘↑(W ). A filter F is prime if the following two conditions
hold: (i) ∅ /∈ F and F 6= ∅, i.e., F is proper; (ii) X ∪ Y ∈ F implies X ∈ F or
Y ∈ F , for every X, Y ∈ ℘↑(W ).

For a filter F , X ∈ F and X ⊆ Y imply Y ∈ F for all X, Y ∈ ℘↑(W ), i.e.,
F is upward closed (with respect to ⊆).

Definition 2.13 The prime filter extension pe F = (Pf(W ), Rpe) of a frame
F = (W,R) is defined as follows: (i) Pf(W ) is the set of all the prime filters
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on W ; (ii) F1R
peF2 iff F1⊆F2. We say that peM = (Pf(W ), Rpe, V pe) is the

prime filter extension of a model M = (W,R, V ) if (Pf(W ), Rpe) is the prime
filter extension of (W,R), and F ∈ V pe(p) iff V (p) ∈ F , for every propositional
variable p.

It is noted that V pe(p) is clearly an upset with respect to Rpe.

Proposition 2.14 (Rodenburg [16]) (i) Let M = (W,R, V ) be a model.
Then, for any prime filter F on W , peM,F  ϕ iff JϕKM ∈ F .

(ii) Given any frame F, if pe F  ϕ then F  ϕ, for every ϕ ∈ Form.

Item (ii) of Proposition 2.14 is from [16, Proposition 14.18.3], but there is no
explicit proof of item (i) there, and so, we provide an outline of the argument
for item (i).

Proof. (i) By induction on ϕ. We only deal with the case where ϕ is of the form
ψ → θ. First, we prove the right-to-left direction. Assume that Jψ → θKM ∈ F .
Fix any prime filter F ′ ∈ Pf(W ) such that F ⊆ F ′ and peM,F ′  ψ. Our
goal is to show: peM,F ′  θ. It follows from peM,F ′  ψ and induction
hypothesis that JψKM ∈ F ′. Thus, we have that Jψ → θKM ∩ JψKM ∈ F ′ hence
JθKM ∈ F ′ since Jψ → θKM ∩ JψKM ⊆ JθKM. We can conclude peM,F ′  θ
by induction hypothesis. Second, we prove the left-to-right direction by the
contrapositive implication and so assume that Jψ → θKM /∈ F . Then, we can
find a prime filter F ′ such that F ⊆ F ′, JψKM ∈ F ′, and JθKM /∈ F ′. By
induction hypothesis, this implies that peM,F ′ 1 ψ → θ, as desired.
(ii) Fix any frame F = (W,R) and formula ϕ. We prove the contrapositive
implication and so assume that F 6 ϕ, i.e., there exists a valuation V and
a state w ∈ W such that (F, V ), w 6 ϕ. Put M := (F, V ). Let Fw :={
X ∈ ℘↑(W ) |w ∈ X

}
. It is easy to see that Fw is a prime filter. Since

w /∈ JϕKM, we get JϕKM /∈ Fw. It follows from item (i) that peM,Fw 6 ϕ, i.e.,
pe F 6 ϕ. 2

Definition 2.15 Let F be a frame class. We say that F is closed under taking
bounded morphic images if F ∈ F and F� G imply G ∈ F, for all frames F and
G. The class F is closed under taking generated subframes if F ∈ F and G� F
imply G ∈ F, for all frames F and G. The class F is closed under taking disjoint
unions if, whenever Fi ∈ F for all i ∈ I,

⊎
i∈I Fi ∈ F holds, for all families

(Fi)i∈I of frames. A class F of frames reflects prime filter extensions if pe F ∈ F
implies F ∈ F, for all frames F. We say that a class F of frames is elementary
(or first-order definable) if there exists a set Σ of sentences in L1

f such that Σ
defines F in the sense of first-order model theory.

Theorem 2.16 (Rodenburg [16]) An elementary frame class F is definable
by a set of intuitionistic formulas (i.e., a subset of Form) iff F is closed under
taking bounded morphic images, generated subframes, and disjoint unions and
F reflects prime filter extensions.

It is noted that the left-to-right direction is shown by Propositions 2.11
and 2.14 where we do not need to use the assumption that F is elementary.
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Rodenburg proved the right-to-left direction via the representation theorem of
Heyting algebras (see a proof given for [16, Theorem 15.3]). We can also prove
Theorem 2.16 by van Benthem’s model-theoretic argument [25] (the reader can
get an idea of it from our proof of Theorems 4.2 and 4.3).

Proposition 2.17 The following frame properties are undefinable in the syn-
tax of intuitionistic logic.

(i) Antisymmetry of R, i.e., ∀x, y (xRy and yRx imply x = y).

(ii) ∃x, y (xRy and x 6= y).

(iii) R is a total relation, i.e., ∀x, y (xRy).

(iv) ∀x, y (xRy or yRx).

(v) ∀x, y ∃ z (xRz and yRz).

(vi) ∃ y ∀x (xRy), i.e., the existence of the maximum element.

(vii) ∃ y ∀x (yRx), i.e., the existence of the minimum element.

Proof. For (i), let us consider F = (N,6) with the ordinary partial order 6
and G = ({ 0, 1 } , { 0, 1 } × { 0, 1 }). Then the mapping sending even and odd
numbers to 0 and 1 respectively is a surjective bounded morphism. While
F is anti-symmetric, G is not. Then, Proposition 2.11 (i) implies the desired
undefinability. The property (ii) is clearly not closed under generated subframes
and we get the undefinability by Proposition 2.11 (ii). The remaining properties
from (iii) to (vii) are not closed under disjoint unions. For example, the single
point reflexive frame satisfies all the properties from (iii) to (vii) but two copies
of it do not satisfy them. Then, Proposition 2.11 (iii) gives us the desired
undefinability. 2

3 Intuitionistic Logic with the Universal Modality

The set Form(A) of all formulas of the intuitionistic logic with the universal
modality A is defined inductively as follows:

Form(A) 3 ϕ ::= p | ⊥ |ϕ ∧ ϕ |ϕ ∨ ϕ |ϕ→ ϕ |Aϕ, (p ∈ Prop).

The set
∨
AForm of disjunctive A-clauses is defined as follows.

∨
AForm 3 ρ ::= ⊥ | Aϕ | ρ ∨ ρ (ϕ ∈ Form).

where it is noted that ϕ ∈ Form is a formula of the intuitionistic logic and so it
does not contain any occurrence of A. For example, A p ∨ A¬p is a disjunctive
A-clause. It is clear that

∨
AForm ⊆ Form(A).

Given a model M = (W,R, V ), a state w ∈W and a formula ϕ ∈ Form(A),
the satisfaction relation M, w  ϕ is defined in the same way as in Definition
2.1 except

M, w  Aϕ iff ∀ v ∈W (M, v  ϕ).

It is easy to see that JAϕKM = W or JAϕKM = ∅ for all models M = (W,R, V ).
Since W and ∅ are upsets, we can easily obtain the following.
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Proposition 3.1 Given a model M = (W,R, V ) and a formula ϕ ∈ Form(A),
JϕKM is an upset.

The reader may wonder if the existential dual E of A is defined as Eϕ :=
¬A¬ϕ. This is the case as shown in the following (we need to use reflexivity
of R).

Proposition 3.2 Given a model M = (W,R, V ) and a state w ∈ W and a
formula ϕ ∈ Form(A), M, w  ¬A¬ϕ iff M, v  ϕ for some v ∈W .

Proof. M, w  ¬A¬ϕ iff ∀ v (wRv implies M, v 1 A¬ϕ) iff ∀ v (wRv implies
∃u (M, u 1 ¬ϕ)) iff ∀ v (wRv implies ∃u∃x (uRx and M, x  ϕ)) iff ∃u∃x
(uRx and M, x  ϕ). The last statement implies M, x  ϕ for some x ∈ W .
Moreover, the converse direction of this is trivial by reflexivity of R. 2

Therefore, we can define Eϕ := ¬A¬ϕ and obtain the following satisfaction
clause:

M, w  Eϕ iff M, v  ϕ for some v ∈W .

Similarly to Form, we define the notions of validity, definability, etc. also
for Form(A) hence also for

∨
AForm. Some undefinable frame properties in the

syntax of intuitionistic logic of Proposition 2.17 become definable with the help
of A as follows.

Proposition 3.3 (i) A p ∨ A¬p defines ∀x, y (xRy).

(ii) A(p→ q) ∨ A(q → p) defines ∀x, y (xRy or yRx).

(iii) A¬p ∨ A¬¬p defines ∀x, y ∃ z (xRz and yRz).

Proof.

(i) Fix any frame F = (W,R). Suppose the frame property ∀x, y (xRy). To
show the validity of A p ∨ A¬p, fix any valuation V and any state w ∈W
such that M, w 1 A¬p where M = (F, V ). It follows that we can find
states v, u ∈W such that vRu and M, u  p. To show M, w  A p, fix any
a ∈W . Our goal is to show that M, a  p. By the supposed property, we
get uRa. By M, u  p, we can conclude M, a  p.

Conversely, suppose that F  A p ∨ A¬p. Fix any x, y ∈ W . We show
xRy. Define a valuation V such that V (p) = ↑x, which is an upset. By
the supposition, we get 1) V (p) = W or 2) J¬pK(F,V ) = W . But the case
2) is impossible by reflexivity of R and V (p) = ↑x. So, we get case 1),
which implies y ∈ ↑x hence xRy.

(ii) Fix any frame F = (W,R). Suppose the property ∀x, y (xRy or yRx). To
show F  A(p→ q)∨A(q → p), fix any valuation V and any state w ∈W .
Put M = (F, V ) and assume that M, w 1 A(p→ q). This implies that we
can find states v and u such that vRu, M, u  p and M, u 1 q. We prove
that M, w  A(q → p). So, fix any a and b such that aRb and M, b  q.
Our goal is to show M, b  p. By M, b  q and M, u 1 q, bRu fails.
By the supposed frame property, we get uRb. By M, u  p, we conclude
M, b  p.
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Conversely, suppose that F  A(p → q) ∨ A(q → p). Fix any x, y ∈ W .
We show that xRy or yRx. Define a valuation V such that V (p) = ↑x
and V (q) = ↑ y. By the supposition, we can derive ↑x ∩ V (p) ⊆ V (q) or
↑ y ∩ V (q) ⊆ V (p), which implies xRy or yRx, as required.

(iii) Fix any frame F = (W,R). Suppose that ∀x, y ∃ z (xRz and yRz) and
fix any valuation V and state w ∈ W such that M, w 1 A¬p, where M
= (F, V ). It follows that we can find states v and u such that vRu and
M, u  p. We show M, w  A¬¬p. So, fix any x. We show M, x  ¬¬p.
Moreover, fix any y such that xRy. Our goal now is M, y 1 ¬p. By
applying the supposed frame property for states u and y, we can find a
state z such that uRz and yRz. It follows from M, u  p that M, z  p.
Together with yRz, we can conclude that M, y 1 ¬p.

Conversely, suppose that F  A¬p ∨ A¬¬p. We show that
∀x, y ∃ z (xRz and yRz). Fix any x, y ∈ W . Define a valuation V such
that V (p) := ↑x. Put M = (F, V ). We show that M, x 1 A¬p, i.e., there
exists v such that M, v  ¬p. This holds since xRx and x ∈ V (p) = ↑x.
Buy the supposition, we get M, x  A¬¬p. Thus, M, y  ¬¬p holds. It
follows that M, y 1 ¬p by yRy. Therefore, we can find a state z such that
yRz and z ∈ V (p), i.e., xRz, as desired.

2

We remark that
∨
AForm-definable frame class is not closed under taking

disjoint unions because A p ∨ A¬p defines ∀x, y (xRy) (it is remarked that,
when we assume antisymmetry, the same formula defines #W = 1, i.e., the
cardinality of the domain is 1). Therefore, Form(A)-definable frame class is
also not closed under taking disjoint unions.

Proposition 3.4 (i) Let f be a surjective bounded morphism from M =
(W,R, V ) to M′ = (W ′, R′, V ′). Then, for every formula ϕ ∈ Form(A)
and w ∈W , M, w  ϕ iff M′, f(w)  ϕ.

(ii) Given any model M = (W,R, V ), the following equivalence holds: for every
formula ϕ ∈ Form(A), peM,F  ϕ iff JϕKM ∈ F .

Proof. We only show the case where ϕ is of the form Aψ for both items.
(i) Since the right-to-left direction is easy, we focus on the converse di-

rection. Suppose that M, w  Aψ. To show M′, f(w)  Aψ, fix any state
v′ ∈W ′. Since f is surjective, there exists v ∈W such that f(v) = v′. By our
supposition, M, v  ψ hence M′, f(v)  ψ, which is our goal.
(ii) Recall that JAψKM = W or ∅. First, we prove the right-to-left direction
and so assume that JAψKM ∈ F . Since ∅ /∈ F , JAψKM = W . It also follows
that JψKM = W ∈ F ′ for all prime filters F ′. By induction hypothesis, we
get peM,F  Aψ, as required. Second, we prove the left-to-right direction.
Suppose that JAψKM /∈ F . Then JAψKM 6= W and so JAψKM = ∅. It follows
that M, w 1 ψ for some w ∈ W . So, W 6⊆ JψKM. Then we can find a prime
filter F ′ such that W ∈ F ′ but JψKM /∈ F ′. By induction hypothesis, we obtain
peM,F ′ 1 ψ hence peM,F 1 Aψ, as desired. 2
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Proposition 3.5 (i) If F� G and F  ϕ then G  ϕ for all ϕ ∈ Form(A).

(ii) If pe F  ϕ, then F  ϕ for all ϕ ∈ Form(A).

(iii) If G� F, then F  ρ implies G  ρ for all disjunctive A-clauses.

Proof. Items (i) and (ii) follow from Proposition 3.4 (i) and (ii), respectively.
Let us prove item (iii). Let ρ =

∨
i∈I Aϕi where ϕi ∈ Form, i.e., an intuitionistic

formula. Assume that G is a generated subframe of F. Suppose also that
F 

∨
i∈I Aϕi. Our goal is to show G 

∨
i∈I Aϕi. Fix any valuation V and

w ∈ |G|. We show (G, V ), w 
∨
i∈I Aϕi, i.e., we show that there exists i ∈ I

such that JϕiK(G,V ) = |G|. Because V is also a valuation on |F|, we get from the
supposition that JϕiK(F,V ) = |F| for some i ∈ I. Fix such i ∈ I. Let us prove
that |G| ⊆ JϕiK(G,V ). Fix any v ∈ |G|. Since (F, V ), v  ϕi iff (G, V ), v  ϕi
by Proposition 2.9, we conclude from JϕiK(F,V ) = |F| that v ∈ JϕiK(G,V ). 2

Proposition 3.6 Let F = (W,R) be a frame and ρ a disjunctive A-clause. If
FX  ρ for all finite X ⊆ W then F  ρ, where recall that FZ is the generated
subframe of F by Z.

Proof. Let ρ =
∨
i∈I Aϕi where ϕi ∈ Form. We prove the contrapositive

implication and so assume that (F, V ), w 1
∨
i∈I Aϕi for some valuation V

and state w ∈ |F|. Our goal is to show: there exists some finite X ⊆ |F|
such that FX 1

∨
i∈I Aϕi. By assumption, for every choice i ∈ I, there exists

vi ∈ |F| such that (F, V ), vi 1 ϕi. Put X := { vi | i ∈ I } and consider the
finitely generated subframe FX of F by the finite generator X. Let V � |FX |
be a valuation V restricted to the domain |FX |. For each i ∈ I, we have
(FX , V � |FX |), vi 1 ϕi by (F, V ), w 1

∨
i∈I Aϕi (by Proposition 2.9). This

allows us to conclude FX 1
∨
i∈I Aϕi. 2

Definition 3.7 We say that a class F of frames reflects finitely generated sub-
frames if, for every frame F = (W,R), whenever FX ∈ F for all finite X ⊆ W ,
it holds that F ∈ F.

Proposition 3.8 (i) Each of antisymmetry and ∃ y ∀x (xRy) is not definable
by any subset of Form(A).

(ii) Each of ∃x, y (xRy and x 6= y) and ∃ y ∀x (yRx) is not definable by any
set of disjunctive A-clauses.

Proof. For (i), it suffices to show that ∃ y ∀x (xRy) is not definable by any sub-
set of Form(A) since we can use the same argument as in the proof of Proposition
2.17 for antisymmetry with the help of Proposition 3.5 (i). Consider (N,6),
where 6 is the ordinary partial ordering. Since ℘↑(N) = {∅ } ∪ { ↑n |n ∈ N },
all the prime filters consist of { ↑n |n ∈ N } and Fn :=

{
X ∈ ℘↑(N) |n ∈ X

}

= { ↑ 0, ↑ 1, . . . , ↑n } (n ∈ N). Then, it is easy to see that (Pf(N),6pe) satisfies
∃ y ∀x (xRy) ({ ↑n |n ∈ N } is a maximum element) but (N,6) does not. Thus,
Proposition 3.5 (ii) implies the intended undefinability.

For (ii), we only prove that ∃ y ∀x (yRx) is undefinable by any subset of∨
AForm, since the other property ∃x, y (xRy and x 6= y) is undefinable by

the same argument given in the proof of Proposition 2.17 with the help of
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Proposition 3.5 (iii). Consider the set of all integers (Z,6) with the ordinary
partial ordering 6. Then, all finitely generated subframes of (Z,6) satisfy
∃ y ∀x (yRx) but the original frame does not. Then Proposition 3.6 implies the
undefinability in

∨
AForm. 2

4 Characterizing Elementary Frame Definability by
Intuitionistic Logic with the Universal Modality

We employ van Benthem [25]’s purely model-theoretic argument for character-
izing elementary frame definability of both Form(A) and

∨
AForm.

Definition 4.1 Let Γ be a set of formulas, M a model and F a frame class. We
say that Γ is satisfiable in M if there exists a state w in M such that M, w  Γ
and that Γ is finitely satisfiable in M if every finite subset of Γ is satisfiable in
M. The set Γ is satisfiable in F if there exists a frame F ∈ F and a valuation
V on F such that Γ is satisfiable in (F, V ), and Γ is finitely satisfiable in F if
every finite subset of Γ is satisfiable in F.

In what follows in this section, we use some notions from first-order model
theory such as (finite) satisfiability, compactness, elementary extension and
ω-saturation, and so, the reader is unfamiliar with those is referred to [1].

4.1 Goldblatt-Thomason Theorem for Form(A)

Theorem 4.2 For any elementary frame class F, the following are equivalent:

(i) F is definable by a subset of Form(A),

(ii) F is closed under taking bounded morphic images and it reflects prime
filter extensions.

If we replace “prime fitter extensions” with “ultrafilter extensions”, we can
obtain Gargov and Goranko [9]’s Goldblatt-Thomason-type characterization
for modal logic with the universal modality. So, Theorem 4.2 can be regarded
as the intuitionistic version of their result.

Proof. The direction from (i) to (ii) is due to Proposition 3.5. So, we focus on
the direction from (ii) to (i) and so let us assume (ii). We show that F is defined
by Log(F) := {ϕ ∈ Form(A) |F  ϕ }. That is, we show that, for every frame F
= (W,R), F ∈ F iff F  Log(F). Let us fix any frame F = (W,R). When F ∈ F,
it is easy to see that F  Log(F). Conversely, we suppose that F  Log(F). The
rest of this proof is devoted to establishing F ∈ F. Let us expand our syntax
with a (possibly uncountably infinite) set

{
pA |A ∈ ℘↑(W )

}
. Remark that we

can still keep the supposition F  Log(F) even if we regard Log(F) as a set of
formulas in the expanded language. Moreover, let us define ∆F as the set of
all the following formulas:

A(pA∩B ↔ (pA∧pB)), A(pA∪B ↔ (pA∨pB)), A(pA⇒B ↔ (pA → pB)), A(p∅ ↔ ⊥),

where A, B ∈ ℘↑(W ) and recall that A ⇒ B := {w ∈W | ↑w ∩A ⊆ B }. An
underlying idea of ∆F is to provide a complete enough description of the frame
F in terms of the propositional variables

{
pA |A ∈ ℘↑(W )

}
.
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We are going to show that ∆F is finitely satisfiable in F. So, let us fix any
finite ∆′ ⊆ ∆F and suppose for contradiction that

∧
∆′ is unsatisfiable in F, i.e.,

for all frames G ∈ F, valuations U and states v in G, we have (G, U), v 1
∧

∆′.
This implies F  ¬∧∆′ (note that ¬ here is the intuitionistic negation). By
our assumption of F  Log(F), we get F  ¬∧∆′. This means that

∧
∆′ is

unsatisfiable in F. But ∆′ is clearly satisfiable in F, a contradiction. Therefore,
∆F is finitely satisfiable in F.

Since F is elementary, we can deduce from finite satisfiability of ∆F that ∆F

is satisfiable in F by compactness. Thus, there exists a frame G ∈ F, a valuation
U on G, and a state v in G such that (G, U), v  ∆F. Since all the elements
of ∆F are A-prefixed, we get (G, U)  ∆F. For an ω-saturated elementary
extension (G∗, U∗) of (G, U) such that G∗ ∈ F (since F is elementary), we also
have (G∗, U∗)  ∆F. Now we define a mapping f : |G∗| → |pe F| by: f(s) :=
{X | (G∗, U∗), s  pX }. For this mapping f , the following claim holds.

Claim 1 f is a surjective bounded morphism from G∗ to pe F.

This claim implies pe F ∈ F because G∗ ∈ F and G∗ � pe F. Moreover, since F
reflects prime filter extensions, we obtain F ∈ F, as desired.

So, let us provide a proof of the claim below (a basic idea of the proof is
from [16, p.132, Lemma 15.2]) to finish the proof of this theorem.

(Proof of Claim) We show that f : |G∗| → |pe F| is a surjective bounded
morphism. Let S be the binary relation of G∗.

(Well-defined) We show that f(s) is a prime filter. First, we check that ∅ /∈ f(s) and
f(s) 6= ∅. We have ∅ /∈ f(s) because p∅ ↔ ⊥ is valid on (G∗, U∗) and ⊥
is unsatisfiable in (G∗, U∗). As for f(s) 6= ∅, it suffices to note that we can
derive from (G∗, U∗)  ∆F that (G∗, U∗), s  pW hence W ∈ f(s). The
other conditions for prime filter are also established by (G∗, U∗)  ∆F.

(Forth) Suppose that sSs′. We prove that f(s)Rpef(s′), i.e., f(s) ⊆ f(s′). Fix
any X ∈ f(s). Then we have (G∗, U∗), s  pX . We want to show that
(G∗, U∗), s′  pX . Since the persistency is the first-order condition, the
set U∗(pX) is an upset with respect to S. Therefore, we can conclude
(G∗, U∗), s′  pX .

(Back) Fix any s ∈ |G∗| and F ∈ |pe F| such that f(s)RpeF , i.e., f(s) ⊆ F . We
establish that there exists s′ ∈ |G∗| such that sSs′ and f(s′) = F . We need
to use ω-saturation here. Let us put a type

Γ(x) := { pX(x) |X ∈ F } ∪ {¬pX(x) |X /∈ F } ∪ { s 6 x }

of first-order formulas, where s denotes the corresponding constant sym-
bol to s, “¬” of ¬pX(x) is the classical negation since we are consider-
ing the first-order language L1

m. Now we show that Γ(x) is finitely sat-
isfiable in (G∗, U∗) in the sense of the first-order model theory. Fix any
Γ′(x) := { pX1(x), . . . , pXn(x),¬pY1(x), . . . ,¬pYn(x), s 6 x } where Xi ∈ F
and Yj /∈ F , and suppose for contradiction that Γ′(x) is not satisfiable in
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(G∗, U∗). It follows that, for every s′ ∈ |G∗|,

(G∗, U∗) |= (s 6 x ∧
∧

16i6n
pXi

(x))→
∨

16j6m
pYj

(x))[s′].

Hence we get:

(G∗, U∗) |= ∀x ((s 6 x ∧
∧

16i6n
pXi

(x))→
∨

16j6m
pYj

(x)).

By shifting our semantics, this implies from Proposition 2.6 that

(G∗, U∗), s 
∧

16i6n
pXi
→

∨

16j6m
pYj

where “→” is intuitionistic. It also follows from (G∗, U∗)  ∆F that

(G∗, U∗), s  p⋂
16i6nXi

→ p⋃
16j6m Yj

.

Hence (G∗, U∗), s  pX⇒Y , where X :=
⋂

16i6nXi and Y :=
⋃

16j6m Yj .
Thus, X ⇒ Y ∈ f(s). Since X ∈ f(s), we get Y =

⋃
16j6m Yj ∈ f(s), which

implies Yj ∈ f(s) ⊆ F for some 1 6 j 6 m. This is a contradiction with
Yj /∈ F for all indices j.

Therefore, we have shown that Γ(x) is finitely satisfiable in (G∗, U∗) in
the sense of the first-order model theory. This implies that Γ(x) is satisfiable
in (G∗, U∗) by ω-saturation. Thus, fix a solution s′ of Γ(x) at (G∗, U∗). It
is easy to see that sSs′. We can also establish f(s′) = F as follows. By
(G∗, U∗) |= Γ(x)[s′], it follows that (G∗, U∗) |= pX(x)[s′] implies X ∈ F and
that (G∗, U∗) 6|= pX(x)[s′] implies X /∈ F . Therefore, f(s′) = F .

(Onto) Fix any prime filter F ∈ |pe F|. Let us put a type

Γ(x) := { pX(x) |X ∈ F } ∪ {¬pX(x) |X /∈ F }

of first-order formulas. Similarly to our argument for (Back), we can prove
that Γ(x) is satisfiable in (G∗, U∗) hence f(s′) = F for some s′ ∈ |G∗|.

This finishes establishing that f is a surjective bounded morphism. a
Therefore, we conclude that Log(F) defines F. 2

4.2 Goldblatt-Thomason Theorem for
∨
AForm

Theorem 4.3 For any elementary frame class F, the following are equivalent:

(i) F is definable by a set of disjunctive A-clauses, i.e., a subset of
∨

AForm.

(ii) F is closed under taking bounded morphic images and generated subframes
and F reflects finitely generated subframes and prime filter extensions.

If we replace “prime filter extensions” with “ultrafilter extension”, we
can obtain [20,19]’s Goldblatt-Thomason-style characterization for (extended)
modal dependence logic. Therefore, Theorem 4.3 is an intuitionistic variant of
the GT-style characterization in [20,19].
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Proof. The direction from (i) to (ii) is established by Propositions 3.5 and
3.6 by

∨
AForm ⊆ Form(A). So, we prove the converse direction. Assume (ii).

Let us define Log∨A(F) := { ρ ∈ ∨AForm |F  ρ }. We show that Log∨A(F)
defines F. Let us fix any frame F = (W,R). We need to establish the following
equivalence: F ∈ F iff F  Log∨A(F). The left-to-right direction is easy to
show, and so, we focus on showing the right-to-left direction. Suppose that
F  Log∨A(F). Our goal is to show F ∈ F. The rest of the proof is devoted
to showing it. Since F reflects finitely generated subframes, we can assume
without loss of generality that F is finitely generated, i.e., generated by a finite
set U ⊆W .

We expand our syntax with a set
{
pA |A ∈ ℘↑(W )

}
(which is possibly

uncountably infinite). Similarly to the proof of Theorem 4.2, we can still keep
F  Log∨A(F) even if we regard Log∨A(F) as a set of formulas in the expanded
language. We define ∆ as the set of all the following formulas:

pA∩B ↔ (pA ∧ pB), pA∪B ↔ (pA ∨ pB), pA⇒B ↔ (pA → pB), p∅ ↔ ⊥,

where A, B ∈ ℘↑(W ). Moreover, we put ∆F,u := { p↑u ∧ ϕ |ϕ ∈ ∆ } for each
u ∈ U . Since F is finitely generated by U , (∆F,u)u∈U encodes a complete enough
description of F in terms of the propositional variables

{
pA |A ∈ ℘↑(W )

}
.

In what follows, we need to employ a different strategy from our proof of
Theorem 4.2. Let us introduce a finite set {xu |u ∈ U } of mutually disjoint
variables and STxu be the standard translation from Form to all the formulas
in the first-order correspondence model language L1

m.
We are going to show

⋃
u∈U STxu

[∆F,u] is finitely satisfiable in F, where
STxu

[Φ] is the direct image of Φ under the standard translation STxu
, i.e.,

{ STxu(ϕ) |ϕ ∈ Φ }. Let Γ ⊆ ⋃u∈U STxu [∆F,u] be a finite set. Then we may
write Γ =

⋃
16k6n STuk

[Γuk
] for some u1, . . . , un ∈ U and some finite Γuk

⊆
∆F,uk

(1 6 k 6 n). Assume for contradiction that Γ is not satisfiable in F, i.e.,

∀G ∈ F ∀V ∀−→a ∈ |F|n ∃ 1 6 k 6 n
(

(G, V ) |= ¬STxuk

(∧
Γuk

)
[−→a ]
)
.

where −→a := (a1, . . . , an). This is also equivalent to:

∀G ∈ F ∀V ∀−→a ∈ |F|n ∃ 1 6 k 6 n
(

(G, V ) |= ¬STxuk

(∧
Γuk

)
[ak]
)
.

where we rewrite the assignment for variables. By first-order reasoning (in
particular, we use the validity of ∀x∀ y (P (x) ∨Q(y)) → ∀xP (x) ∨ ∀ y P (y)),
we get:

∀G ∈ F ∀V
(

(G, V ) |=
∨

16k6n
∀xuk

¬STxuk

(∧
Γuk

))
.

where “¬” above is the classical negation. By changing our semantics to Kripke
semantics, this also implies F 

∨
16k6n A¬

∧
Γuk

by Proposition 2.6, where
¬ is the intuitionistic negation. It is noted that ¬∧Γuk

∈ Form, i.e., an intu-
itionistic formula and so

∨
16k6n A¬

∧
Γuk

is a disjunctive A-clause. Therefore,



556 Goldblatt-Thomason-style Characterization for Intuitionistic Inquisitive Logic

∨
16k6n A¬

∧
Γuk
∈ Log∨A(F). Since we have assumed F  Log∨A(F), we ob-

tain F 
∨

16k6n A¬
∧

Γuk
. This implies that Γ is not satisfiable in F in the

sense of first-order model theory. But Γ is clearly satisfiable in F, which im-
plies a desired contradiction. We have shown that

⋃
u∈U STxu

[∆F,u] is finitely
satisfiable in F.

Since F is elementary,
⋃
u∈U STxu [∆F,u] is satisfiable in F by compactness.

We can find a frame G ∈ F, a valuation U on |G| and a finite sequence −→w =
(wu)u∈U such that (G, U) |= ⋃u∈U STxu

[∆F,u][−→w ]. By changing our semantics
“(|=)” to Kripke semantics (“”), it follows that (G, U), wu  ∆F,u by Propo-
sition 2.6. Let us put Z := {wu |u ∈ U }. Let (G∗Z , V

∗
Z ) be an ω-saturated

elementary extension of the Z-generated submodel (GZ , VZ) of (G, V ). Be-
cause F is elementary and closed under taking generated subframes, we have
GZ ∈ F hence G∗Z ∈ F. It is also noted that (G∗Z , V

∗
Z ), w∗u  ∆F,u where w∗u is

the corresponding element in G∗Z to wu in |GZ |. Since (GZ , VZ) |= ∀xSTx(θ)
for all θ ∈ ∆, we also get (G∗Z , V

∗
Z ) |= ∀xSTx(θ) for all θ ∈ ∆, which implies

(G∗Z , V
∗
Z )  ∆.

Now we claim that G∗Z � pe F. By this claim and the closure and re-
flection properties of F, we can conclude from G∗Z ∈ F that F ∈ F, as re-
quired. So, let us justify the claim. Define f : |G∗Z | → |pe F| by: f(s) :=
{X ⊆W | (G∗Z , V ∗Z ), s  pX }. We prove that f is a surjective bounded mor-
phism. But the proof is almost the same as in the proof of Theorem 4.2, since
(G∗Z , V

∗
Z )  ∆. This finishes establishing the goal of F ∈ F. Therefore, we

conclude that Log∨A(F) defines F. 2

5 Characterizing Elementary Frame Definability by
Intuitionistic Inquisitive Logic

5.1 Team Semantics for Intuitionistic Logic

Definition 5.1 Let M = (W,R, V ) be a model. We say that t ⊆W is a team.
Given a model M, a team t ⊆ W and a formula ϕ ∈ Form, the satisfaction
relation M, t  ϕ is defined inductively as follows:

M, t  p iff t ⊆ V (p)
M, t  ⊥ iff t = ∅
M, t  ϕ ∧ ψ iff M, t  ϕ and M, t  ψ
M, t  ϕ ∨ ψ iff ∃t1, t2(t = t1 ∪ t2 and M, t1  ϕ and M, t2  ψ)
M, t  ϕ→ ψ iff ∀s ⊆ R[t] (M, s  ϕ implies M, s  ψ),

where R[t] := { v ∈W |wRv for some w ∈ t }.
For the negation, we can provide the following satisfaction clause:

M, t  ¬ϕ iff ∀s ⊆ R[t] (s 6= ∅ implies M, s 1 ϕ).

By induction on ϕ, we can prove the following (see [5, Proposition 3.11]).

Proposition 5.2 Let M be a model. For all formulas ϕ ∈ Form and states w,
M, {w }  ϕ iff M, w  ϕ.
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The following is from [5, Proposition 3.10].

Proposition 5.3 (Flatness) Let M be a model. For all formulas ϕ ∈ Form
and teams t ⊆ |M|, M, t  ϕ iff M, {w }  ϕ for all w ∈ t.
5.2 Intuitionistic Inquisitive Logic

We expand the syntax of intuitionistic logic with inquisitive disjunction

>

.

Definition 5.4 The set Form(

>

) of all formulas for intuitionistic logic is de-
fined inductively as:

Form(

>

) 3 ϕ ::= p | ⊥ |ϕ ∧ ϕ |ϕ ∨ ϕ |ϕ→ ϕ |ϕ > ϕ (p ∈ Prop).

Given any model M = (W,R, V ), the satisfaction relation in team semantics
for the inquisitive disjunction is defined similarly to Definition 5.1 except:

M, t  ϕ > ψ iff M, t  ϕ or M, t  ψ
We note that flatness fails for Form(

>

), but we can still keep the persistency
(see [5, Proposition 2.9]).

Proposition 5.5 (Persistency) If M, t  ϕ and s ⊆ R[t] then M, s  ϕ, for
all ϕ ∈ Form(

>

).

Proposition 5.6 Given any model M = (W,R, V ) and a formula ϕ ∈
Form(

>

), M, t  ϕ for all teams t ⊆W iff M,W  ϕ.

Proof. Since R[W ] = W (recall that R is reflexive and transitive), the state-
ment follows from Proposition 5.5. 2

Definition 5.7 We say that ϕ ∈ Form(

>

) is valid in a model M = (W,R, V )
(notation: M T ϕ, where the subscript “T” is used for emphasizing “Team
semantics”) if M,W  ϕ. A set Γ ⊆ Form(

>

) is valid in a frame M = (W,R, V )
(notation: F T Γ) if (F, V ) T ϕ for all formulas ϕ ∈ Γ and valuations V .

Based on this notion of validity in a frame, we define the notion of frame
definability as before. The following proposition is an immediate consequence
from [5, Theorem 4.9].

Proposition 5.8 For every ϕ ∈ Form(

>

), there are finitely many intuitionistic
formulas (ψi)i∈I ⊆ Form such that ϕ and

>

i∈Iψi are equivalent, i.e., M, t  ϕ
iff M, t  > i∈Iψi for every model M and team t ⊆ |M|.
5.3 Goldblatt-Thomason Theorem for Intuitionistic Inquisitive

Logic

Proposition 5.9 For any finite family (ψi)i∈I ⊆ Form (i.e., I is finite) and
model M = (W,R, V ), M 

∨
i∈I Aψi iff M T

>

i∈Iψi

Proof. The equivalence is verified as follows: M 
∨
i∈I Aψi iff

there exists i ∈ I such that JψiKM = W
iff there exists i ∈ I such that M, w  ψi for all w ∈W
iff there exists i ∈ I such that M,W  ψi (by Propositions 5.3 and 5.5)

and the last line is equivalent to M,W  > i∈Iψi hence M T

>

i∈Iψi. 2
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Proposition 5.10 For any class F of frames, the following are equivalent:

(i) F is definable by a set of disjunctive A-clauses.

(ii) F is definable by a set of formulas of intuitionistic inquisitive logic.

Proof. We can establish the direction from (i) to (ii) by Proposition 5.9. The
direction from (ii) to (i) follows from Propositions 5.8 and 5.9. 2

By Propositions 5.10 and 3.3, we obtain the following frame definability
results in the syntax of inquisitive intuitionistic logic.

Proposition 5.11 (i) p

> ¬p defines ∀x, y (xRy).

(ii) (p→ q)

>

(q → p) defines ∀x, y (xRy or yRx).

(iii) ¬p > ¬¬p defines ∀x, y ∃ z (xRz and yRz).

By Proposition 5.10, we can also transfer the undefinability results from
Proposition 3.8. For example, all the frame properties listed in Proposition 3.8
are also undefinable in the syntax of intuitionistic inquisitive logic.

Then, we can finally give GT-style characterization to intuitionistic inquis-
itive logic as follows.

Theorem 5.12 An elementary frame class F is definable by a set of formulas
of intuitionistic inquisitive logic iff F is closed under taking bounded morphic
images, generated subframes and it reflects finitely generated subframes and
prime filter extensions.

Proof. By Proposition 5.10 and Theorem 4.3. 2

6 Further Direction

There are several directions of further research. The first direction is that we
may characterize relative frame definability of intuitionistic inquisitive logic
within finite frames, as [19] did for modal dependence logic. For intuitionistic
formulas, Rodenburg [16] provided a finitary version of Goldblatt-Thomason
Theorem. The second direction is on model definability of both intuitionistic
logic with the universal modality and intuitionistic inquisitive logic. Gold-
blatt [10] studied the characterization of intuitionistic definability of modal
class. We may extend his result to this context.

As the final direction, we may define the notion of “normal form” of a
formula of Form(A) in the spirit of [9]. Let us define Form(A+) as the set of
all formulas ϕ in Form(A) such that all occurrences of A in ϕ are positive. For
a formula in Form(A+), can we find an equivalent disjunctive A-clause via the
normal form? A similar result held for modal logic with the universal modality
as in [19]. This is ongoing work with Jonni Virtema.
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Abstract

We study a many-valued generalization of Propositional Dynamic Logic where formu-
las in states and accessibility relations between states of a Kripke model are evaluated
in a finite FL-algebra. One natural interpretation of this framework is related to rea-
soning about costs of performing structured actions. We prove that PDL over any
finite FL-algebra is decidable. We also establish a general completeness result for a
class of PDLs based on commutative integral FL-algebras with canonical constants.

Keywords: FL-algebras, Many-valued modal logic, Propositional Dynamic Logic,
Residuated lattices, Substructural logics, Weighted structures.

1 Introduction

Propositional dynamic logic, PDL, is a well-known modal logic formalizing rea-
soning about structured actions, e.g. computer programs or actions performed
by physical agents, and their correctness properties [10,17]. PDL is subject to
two limiting design features. First, being based on classical propositional logic,
it formalizes actions that modify values of Boolean variables. A more general
setting, one where variables take values from an arbitrary set (integers, charac-
ters, trees etc.), is offered by variants of first-order Dynamic Logic, DL [16,17];
these variants, however, are mostly undecidable. Second, PDL can express the
fact that one action is guaranteed to attain a certain goal while another action
is not, but it is not able to express that one action is a more efficient way of
attaining the goal than another action. In other words, accessibility between
states mediated by actions is modelled as a crisp rather than a graded relation;
the former approach is a convenient idealization, but the latter one is more
realistic and often also practically required.
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for discussions on their earlier work on many-valued dynamic logic and the audience of the
Seminar of Applied Mathematical Logic at the Institute of Computer Science CAS. The
valuable comments of the anonymous reviewers are gratefully acknowledged.
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Both of these limitations of “classical” PDL are avoided in a many-valued
setting. In such a setting, values of formulas in states of a Kripke model are
taken from an algebra that is typically distinct from the two-element Boolean
algebra used in classical PDL. In a many-valued setting, accessibility between
states can also be evaluated in such an algebra, naturally leading to a represen-
tation of “costs” or other “weights” associated with performing actions under
specific circumstances.

Research into many-valued modal logics dates back to the 1960s, see the
pioneering [25] and the later [23]. Fitting [11,12] was the first to study modal
logics where both formulas in states and accessibility relations between states in
the Kripke model take values from a non-Boolean algebra. Fitting considers fi-
nite Heyting algebras; generalizations studied for example in [4,7,6,15,28] focus
on various kinds of finite or infinite residuated lattices [13]. Residuated lattices
are algebraic structures related to substructural logics, with many important
special cases such as Boolean and Heyting algebras, relation algebras, lattice-
ordered groups, powersets of monoids, various algebras on the [0, 1]-interval
and so on.

Investigations of PDL based on residuated lattices are relatively scarce.
The work in [5,18,19] focuses on expressivity of PDL with many-valued ac-
cessibility, but technical results such as decidability or completeness are not
provided. Teheux [27] establishes decidability and completeness of PDLs based
on finite  Lukasiewicz chains and the present author [24] establishes decidabil-
ity and completeness of PDL extending the paraconsistent modal logic of [22];
both papers, however, deal with crisp acessibility relations. As an attempt to
sytematize the work in many-valued PDL, Madeira et al. [20,21] put forward
a general method of producing many-valued versions of PDL, based on the
matrix representation of Kleene algebras; their method, however, applies only
if models are defined to be finite.

In this paper we add to this literature by studying PDLs based on finite
Full Lambek algebras, that is, residuated lattices with a distinguished, though
arbitrary, 0 element. We assume that both evaluations of formulas in states and
accessibility between states are many-valued. Our main technical results are
general completeness and decidability proofs for logics in the family. To the best
of our knowledge, our results are the first decidability and completeness results
concerning non-crisp many-valued PDL. To be more specific, we work with
versions of test-free PDL based on finite Full Lambek algebras with canonical
constants; we prove that any PDL based on a finite FL-algebra with canonical
constants is decidable; we also establish a completeness result for PDLs based
on finite commutative integral FL-algebras with canonical constants.

The paper is structured as follows. Section 2 introduces the general frame-
work of PDL based on finite FL-algebras. We note that, for technical reasons
discussed in §6, our version of PDL uses the transitive closure operator, or
Kleene plus, as primitive instead of the more standard reflexive transitive clo-
sure operator, the Kleene star. An informal interpretation of the framework is
discussed in §3. Section 4 establishes our decidability result using a generaliza-
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tion of the smallest filtration technique. Section 5 establishes the completeness
result for PDLs based on finite integral commutative FL-algebras with canon-
ical constants. Our work there builds on the results of [4], but the canonical
model construction used in our proof is novel to this paper (it is a suitable
generalization of the greatest filtration construction, though the model itself is
infinite).

2 Preliminaries

In this section we briefly recall two-valued PDL (§2.1), and we define FL-
algebras and many-valued models for the language of PDL based on them
(§2.2). We point out some basic facts that we will use later on.

2.1 Two-valued PDL

We begin by recalling some well-known facts about two-valued test-free PDL;
see [17]. Fix Ac = {ai | i ∈ ω}, a countable set of atomic action expressions.
The set of standard action expressions, STA, is the closure of Ac under applying
binary operators ; (“composition”), ∪ (“choice”) and unary ∗ (“Kleene star”).
That is, STA are regular expressions over Ac without the empty expression.
For example, (a0; a1)∗ ∪ a0 is in STA. Let Pr = {pi | i ∈ ω} be a countable
set of propositional variables. Take 2, the two-element Boolean algebra on the
set {0, 1} with meet u, join t and complement −; the binary operation ⇒ is
defined as usual: a ⇒ b := −a t b. Formulas of the standard language for 2,
Fm(LSTA

2 ), are defined by

ϕ := p | c̄ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | [α]ϕ

where p ∈ Pr, c ∈ 2 and α ∈ STA. For example, p0 → [a0; (a1)∗](p1 → 0̄) is a
formula of LSTA

2 .
A 2-valued frame for STA is F = (S, {Rα}α∈STA) where S is a non-empty

set and, for each α ∈ STA, Rα is a function from S × S to 2. We denote
R(α) := {(s, t) | Rα(s, t) = 1}; and the functions in {Rα}α∈STA are required to
satisfy the following: (i) R(α ∪ β) = R(α) ∪R(β); (ii) R(α;β) = R(α) ◦R(β),
the composition of R(α) and R(β); (iii) R(α∗) = R(α)∗, the reflexive transitive
closure of R(α).

Let F = (S, {Rα}α∈STA) be a 2-valued frame. A 2-valued model based on F
is M = (S, {Rα}α∈STA, V ) where V : Fm(LSTA

2 )× S → 2 such that

• V (c̄, s) = c;

• V (ϕ ∧ ψ, s) = V (ϕ, s) u V (ψ, s), V (ϕ ∨ ψ, s) = V (ϕ, s) t V (ψ, s), and
V (ϕ→ ψ, s) = V (ϕ, s)⇒ V (ψ, s);

• V ([α]ϕ, s) = ⊔t∈S
(
Rα(s, t)⇒ V (ϕ, t)

)
.

Note that V ([α]ϕ, s) = ⊔Rα(s,t)=1V (ϕ, t). A formula ϕ is valid in M iff

V (ϕ, s) = 1 for all s; validity in frames and classes of frames is defined as
expected.

This is the standard presentation of test-free PDL, phrased in a way that
invites generalizations obtained by replacing 2 by another algebra. We will
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study some such generalizations in this paper but, as we discuss in more detail
below, the story is somewhat more complicated. For reasons discussed in §6,
our generalizations will use a different primitive iteration operator instead of
the Kleene star. The operator we will use, however, is conveniently related to
the Kleene star.

The set of action expressions over Ac, ACT , is the closure of Ac under
composition, choice and the unary operator + (“Kleene plus”). Formulas of
the language L2 are defined as expected (we omit reference to ACT ), with α ∈
ACT ; for example, p0 → [a0; (a1)+](p1 → 0̄) is a formula of L2. The definition
of 2-valued frames for ACT is the same as the definition of 2-valued frames for
STA, with an obvious exception, namely, the requirement that R(α+) be the
transitive closure of R(α), i.e. R(α+) =

⋃
n>0R

n(α), where R1(α) = R(α) and
Rn+1(α) = Rn(α) ◦ R(α). Compare this with the reflexive transitive closure
R(α)∗ =

⋃
n≥0R

n(α), where R0(α) = {(s, s) | s ∈ S}. Models based on frames
for ACT are defined as before.

Proposition 2.1 Let For each α ∈ ACT and ϕ ∈ Fm(L2),

V (ϕ ∧ [α+]ϕ, s) = 1 iff ∀t((s, t) ∈ R(α)∗ =⇒ V (ϕ, t) = 1) .

Proposition 2.1 implies that ϕ ∧ [α+]ϕ “simulates” [α∗]ϕ in L2. This pro-
vides a justification for our using languages based on ACT rather than on STA
in what follows. However, we admit that this choice is related to the technical
issues discussed in §6.

2.2 FL-algebras and finitely-valued PDL

In this section we generalize two-valued PDL by replacing the two-element
Boolean algebra 2 by a more general structure, namely, a finite FL-algebra.
FL-algebras provide semantics for a wide class of substructural logics [13].

Definition 2.2 An FL-algebra (“full Lambek algebra”, [13]) is a set X with
binary operations u,t, \, ·, / and two distinguished elements 1, 0 such that

• (X,u,t) is a lattice (let a v b iff a t b = b);

• (X, ·, 1) is a monoid;

• (\, ·, /) are residuated over (X,v), i.e.

a · b v c iff b v a\c iff a v c/b ;

• 0 is an arbitrary element of X.

Residuated lattices are 0-free reducts of FL-algebras. Each finite FL-algebra X
contains a least element ⊥X (for all a ∈ X, ⊥X v a) and a greatest element
>X (for all a ∈ X, a v >X).

We usually write ab instead of a · b and a⇒ b instead of b/a. Two varieties
of FL-algebras will be important in this paper:

• commutative FL-algebras satisfy ab = ba for all a, b ∈ X;
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• integral FL-algebras satisfy a v 1 for all a ∈ X.

Note that in commutative FL-algebras a\b = b/a.

Example 2.3 The two-element Boolean algebra 2 is a commutative integral
FL-algebra, where · is u and \ (identical to /) is ⇒.

Example 2.4 Let N > 0 and define N = (N,max,min,+N ,→N ) where

a+N b = min(a+ b,N − 1) and a→N b = max(b− a, 0) .

N is a finite commutative integral FL-algebra, with 0 as the monoid identity
with respect to +N and the greatest element under the ≥-ordering induced by
takingmin as join. We note that N is isomorphic to theN -element  Lukasiewicz
lattice  LN over { k

N−1 | k ∈ N}.
Example 2.5 As an example of a non-commutative, non-integral infinite FL-
algebra, take the power set of the free monoid over some set Σ, i.e. the set
of languages over Σ, with intersection as meet, union as join, L · L′ := {xx′ |
x ∈ L & x′ ∈ L′}, {ε} as the monoid identity (ε is the empty word) and
L\L′ := {x ∈ Σ | L · {x} ⊆ L′}, L′/L := {x ∈ Σ | {x} · L ⊆ L′}.

The following lemma summarizes some of the properties of FL-algebras
we will rely on in this paper (we will often say that something holds “by the
properties FL-algebras” in our proofs).

Lemma 2.6 Let X be an arbitrary FL-algebra. Then (i) a v b iff 1 v a⇒ b;
(ii) If a v b and c v d, then b ⇒ c v a ⇒ d, b\c v a\d and ac v bd;
(iii) (atb)c = actab and c(atb) = catcb; (iv) a⇒ (buc) = (a⇒ b)u(a⇒ c);
(v) a t b ⇒ c = (a ⇒ c) u (b ⇒ c); (vi) a ⇒ (b ⇒ c) = ab ⇒ c;
(vii) (a⇒ b)(b⇒ c) v a⇒ c; (viii) (1⇒ a) = a

If S is a non-empty set, then Π(S) is the set of all finite sequences of
elements of S; that is, π ∈ Π(S) iff π is a function from some n ∈ ω, called the
length of π, to S. The unique sequence of length 0 is ∅. If π is a sequence of
length n and s ∈ S, then π_s is the unique sequence of length n+ 1 such that
(π_s)(k) = π(k) for all k < n and (π_s)(n) = s. Note that each sequence π
of length n > 0 can be expressed as (. . . (∅_π(0))_ . . .)_π(n− 1).

Definition 2.7 Let X be a finite FL-algebra and S a non-empty set. A binary
X-valued relation on S is any function from S × S to X. Let R,Q be binary
X-valued relations on a set S; then

• the union of R and Q is the function R ∪ Q defined by (R ∪ Q)(s, t) :=
R(s, t) tQ(s, t);

• the composition of R and Q is the function R◦Q defined by (R◦Q)(s, t) =⊔
x∈S

(
R(s, x) ·Q(x, t)

)
;

• the transitive closure of R is the function R+ defined by R+(s, t) =⊔
π∈Π(S)Rsπt where Rsπt is defined as follows:

· Rs∅t = R(s, t) and
· Rs(π_u)t = Rsπu ·R(u, t).
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We say that Q extends R, notation R v Q, iff R(s, t) v Q(s, t) for all s, t ∈ S;
R is the smallest relation in a set {Ri}i∈I if R = Ri for some i ∈ I and each
Ri extends R. R is transitive if R(s, t) ·R(t, u) v R(s, u) for all s, t, u ∈ S; and
R is reflexive if 1 v R(s, s) for all s ∈ S.

Note that we need to assume that all the required joins exist in X; hence
the restriction to finite FL-algebras (however, a restriction to complete X is
sufficient, as is the assumption that R,Q are “X-safe” [14, ch. 5]).

Proposition 2.8 Let X be a finite FL-algebra and R a binary X-valued rela-
tion on a set S. Then R+ is the smallest transitive relation extending R. For
any R, define R∗ as follows:

R∗(s, t) =

{
1 if s = t

R+(s, t) otherwise.

Then R∗ is the smallest reflexive transitive relation extending R.

Proof. It is clear that R+ is a transitive relation extending R. Now assume
that so is Q. The conclusion that R+ v Q follows from two facts that are
easily established by induction on the length of π: (a) For all s, t ∈ S and
π ∈ Π(S), Rsπt v Qsπt (the assumption that R v Q is used here); (b) For
all s, t ∈ S and π ∈ Π(S), Qsπt v Q(s, t) (the assumption that Q is transitive
is used). Since X is finite, the two claims imply that, for any given s and t,⊔
π Rsπt v

⊔
π Qsπt v Q(s, t).

It is clear that R∗ is a reflexive transitive relation extending R. If so is
Q, then we reason for any given s and t by cases as follows. If s = t, then
R∗(s, t) v Q(s, t) is equivalent to 1 v Q(s, s), which holds by reflexivity of
Q. If s 6= t, then R∗(s, t) v Q(s, t) is equivalent to R+(s, t) v Q(s, t), which
follows from the assumption that Q is a transitive relation extending R. Hence,
R∗(s, t) v Q(s, t) for any s and t. 2

Lemma 2.9 Let X be a finite FL-algebra and S a set; the X-valued identity
relation on S is defined as follows:

IdX(s, t) :=

{
1 if s = t

⊥X otherwise.

If X is integral, then R∗ = IdX ∪R+ for any binary X-valued relation on S.

Proof. We omit the proof; we just note that if s = t, thenR∗(s, t) = IdX(s, t)t
R+(s, t) is equivalent to R+(s, t) v 1, which is guaranteed to hold only if X is
integral. 2

Definition 2.10 Let X be a finite FL-algebra. An X-valued frame for ACT
is a pair F = (S, {Rα}α∈ACT ) where S is a non-empty set and, for all α ∈
ACT , Rα is an X-valued binary relation on S such that (i) Rα∪β = Rα ∪Rβ ;
(ii) Rα;β = Rα ◦Rβ ; and (iii) Rα+ = R+

α .
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X-valued frames will also be referred to as X-frames or simply frames if X is
clear from the context or immaterial. We will sometimes write Rαst instead of
Rα(s, t).

Definition 2.11 Formulas of the language LX are defined as follows:

ϕ := p | c̄ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ\ϕ | ϕ · ϕ | ϕ/ϕ | [α]ϕ ,

where p ∈ Pr, c ∈ X and α ∈ ACT . We use ⊥,> instead of ⊥X and >X ,
respectively. We often write ϕψ instead of ϕ · ψ, ϕ → ψ instead of ψ/ϕ, m
instead of am, and αβ instead of α;β. We define ϕ↔ ψ := (ϕ→ ψ)∧(ψ → ϕ),
¬ϕ := ϕ→ ⊥ and 〈α〉ϕ := ¬[α]¬ϕ.

Note that we use the same symbol ⊗ ∈ {\, ·, /} for the implication and
fusion connectives of the language and for the residuated operations on FL-
algebras. We will denote the operations on a given X as ⊗X in contexts where
it is convenient for the reader to distinguish the connectives of the language
from the operations on the algebra. (However, ⇒ denotes the operation /X

and → denotes the connective / throughout.)

Definition 2.12 A model based on an X-frame (S, {Rα}α∈ACT ) is M =
(S, {Rα}α∈ACT , V ), where V is a function from Fm(LX)× S to X such that

• V (c̄, s) = c;

• V (ϕ ∧ ψ, s) = V (ϕ, s) u V (ψ, s) and V (ϕ ∨ ψ, s) = V (ϕ, s) t V (ψ, s);

• V (ϕ⊗ ψ, s) = V (ϕ, s)⊗X V (ψ, s) for ⊗ ∈ {\, ·, /};
• V ([α]ϕ, s) = ⊔t∈S

(
Rαst⇒ V (ϕ, t)

)
.

A formula ϕ is valid in M iff 1 v V (ϕ, s) for all s in M. Validity in frames
and classes of frames is defined as expected. The theory of a frame is the set
of formulas valid in the frame; the theory of a class of frames is the set of
formulas valid in each frame in the class. Th(X) is the theory of the class of
all X-frames.

The following addendum to Proposition 2.1 suggests that integral FL-
algebras are particularly suitable for us.

Proposition 2.13 Take an arbitrary X-frame for a finite integral X. Then
V (ϕ ∧ [α+]ϕ, s) = ⊔t∈S(R∗αst⇒ V (ϕ, t)).

Proof. The v-inequality is straightforward and the w-inequality follows from
Lemma 2.9. 2

It is clear that two-valued PDL is a special case of the present framework
for X = 2.

Lemma 2.14 The following are valid in each X-frame:
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(a) [α](ϕ ∧ ψ)↔ ([α]ϕ ∧ [α]ψ)

(b) [α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)

(c) [αβ]ϕ↔ [α][β]ϕ

(d) [α+]ϕ↔ [α](ϕ ∧ [α+]ϕ)

Proof. To prove that ϕ↔ ψ is valid if suffices to show that V (ϕ, s) = V (ψ, s)
for all s in all models. (a) The proof relies on the fact that a ⇒ (b u c) =
(a ⇒ b) u (a ⇒ c) in all FL-algebras. (b) The proof relies on the fact that
(a t b) ⇒ c = (a ⇒ c) u (b ⇒ c) in all FL-algebras. (c) The proof relies
on the fact that a ⇒ (b ⇒ c) = ab ⇒ c in all FL-algebras. (Note that
composition of relations needs to be defined using monoid multiplication ·, not
lattice meet.) (d) The proof relies on the fact that Rαst v Rα+st, it also uses
simple composition of paths. 2

We will discuss an informal interpretation of a special case of the many-
valued framework in the next section. Speaking generally, however, we may
adapt the slogan characterizing modal logic as providing languages for talking
about relational structures [3, p. viii] and say that many-valued modal logics
provide simple yet expressive languages for talking about many-valued relational
structures. Examples of many-valued relational structures include weighted
structures such as weighted graphs etc. Choosing an FL-algebra as the algebra
of weights brings the framework closer to substructural logics that include
well-known formalisms for reasoning about resources (variants of linear logic)
or graded properties and relations (fuzzy logics). Many-valued PDL adds to
this the capacity to articulate reasoning about structured many-valued relations
using the PDL relational operations of choice, composition and iteration. An
intriguing connection here is the relation of finitely-valued PDL to weighted
automata over finite semirings [9], but a more thorough investigation of this
connection is left for another occasion.

3 Motivation

This section discusses the informal interpretation of finitely-valued PDL. We
give two general interpretations of the framework first and then we zoom in to
PDLs over a specific class of FL-algebras. Our overview is cursory; the present
paper is focused more on basic technical results than on informal interpreta-
tions and applications. A more thorough exploration of the latter is left for
another occasion. We only note here that we consider many-valued PDL to be
sufficiently mathematically interesting to be studied independently of informal
interpretations and applications.

We have mentioned before the slogan that modal logics provide simple yet
expressive languages for talking about relational structures [3, p. viii]; by the
same token, many-valued modal logics can be seen as providing means of talking
about “weighted” relational structures. Two-valued PDL has been applied to
at least two kinds of relational structures which have very natural weighted
generalizations. We discuss these in turn.

First, take the interpretation of modal logic that relates it to description
logics [2]. Simply put, formulas of a modal language can be seen as express-
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ing “concepts”, i.e. properties of objects, and indices of modal operators as
expressing various “roles”, i.e. relations between objects. On this reading,
“states” in a Kripke model represent arbitrary objects and “accessibility re-
lations” between them represent relations between these objects. Structured
modal indices that come with PDL (i.e. “action expressions” as we call them)
can be seen as expressing structured relations between objects; union, composi-
tion and transitive closure have been found particularly suitable for expressing
various important concepts and roles [1]. Many-valued description logics (see
[26] for instance) are a generalization of description logics designed for man-
agement of uncertain and imprecise information. These logics can express the
fact that an object is subsumed under a given concept (e.g. “tall” if the reader
will forgive the platitudinous example) only to some degree or that only im-
precise information about a relation holding between two objects is available.
Finitely-valued PDL as presented here can be seen as a family of many-valued
description logics with transitive closure of roles.

Second, the original motivation of PDL was reasoning about the behaviour
of computer programs [10]. From a more general perspective, PDL can be seen
as a logic formalising reasoning about types of structured actions, represented
by “action expressions”. On this reading, a Kripke frame consists of states and
transitions between states labelled by types of action; for instance Rαst means
that action of type α can be used to get from state s to state t. States can be
thought of as physical locations, states of a complex system such as a database
or states of a computer during the run of a program; but states can also be
thought of as “states of the world” that can be modified by actions of intelligent
agents. PDL can be used to formalize reasoning about properties of actions that
modify these kinds of states. One important example is correctness, related to
the question if a specific kind of action is guaranteed to lead to a specific
outcome when performed under specific circumstances. (This more general
perspective makes PDL relevant to automated planning, for example.) Many-
valued Kripke models can be seen as transition systems where transitions carry
weights; these can be costs or resources needed to perform a transition using
the given action type. Běhounek [5] suggested a many-valued version of PDL
for reasoning about costs of program runs that is close to our framework, but
he did not establish completeness or decidability results.

Let us now discuss a special case of the finitely-valued PDL framework
giving rise to a natural class of weighted relational structures; we show
that formulas of the PDL language are able to express interesting features
of these structures. Let N be the FL-algebra of Example 2.4, that is,
N = (N,max,min,+N ,→N ) where

a+N b = min(a+ b,N − 1) and a→N b = max(b− a, 0) ,

where N ∈ ω is non-empty. The set N is seen as a weight scale with 0 rep-
resenting zero weight (“for free”) and N − 1 representing the maximal weight
(considered “infeasible”). The operation +N , namely, sum bounded by the
maximal weight, represents weight addition. N is given a (distributive) lattice
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structure by including max as meet and min as join; the associated lattice
order v is defined as usual, a v b iff min(a, b) = b. Hence, a v b (i.e. b ≤ a)
means that weight b is at most as big as weight a. The choice of max as meet
and min as join—not the other way around—may seem unintuitive at first,
but it yields the result that a v 0 for all a ∈ N . It is important to note in this
respect that 0 is the identity element with respect to +N . (Hence, choosing the
natural ordering on N as our lattice ordering would mean that each element
of the lattice would be above the monoid identity, which is problematic given
our definition of validity.) It is clear that a +N b = b +N a. The residual →N

of +N is truncated subtraction or monus; the crucial feature of →N is that
a →N b = 0 iff a v b (iff b v a). We note that N is isomorphic to the N -
element  Lukasiewicz lattice  LN over { k

N−1 | k ∈ N}, but we prefer N to  LN
as a representation of an N -element weight scale.

N -frames are weighted relational structures that can be informally inter-
preted in a number of ways. On the “description reading”, for instance, states
s ∈ S are objects and Rα represent structured weighted relations between these
objects. On the “transition cost reading”, states can be seen as physical lo-
cations or states of a system and Rαst ∈ N is the cost of accessing state t
from s by performing action α (hence, frames are weighted labelled transition
systems). If Rαst = N − 1, then we say that t is not in relation α with s,
or that t cannot be accessed from s by performing α; if Rαst = 0, then t is
“clearly” in relation α with s, or t can be accessed from s by α for free. Let
us now discuss some properties of weighted relational structures that can be
expressed by PDL formulas.

Since N is (N − 1)-involutive, i.e. (a ⇒ (N − 1)) ⇒ (N − 1) = a for all
a ∈N , we have

V (〈α〉0̄, s) =
⊔

t∈S

(
Rαst+N 0

)
= min

{
Rαst | t ∈ S

}
.

In other words, V (〈α〉0̄, s) is the minimal guaranteed cost of performing α at s
(on the transition cost reading) or the maximal degree to which s is α-related
to any object (on the description reading). Let us write simply α instead of
〈α〉0̄ if the context clears up any possible confusion. Note that a ⇒ b is the
difference between b and a if a < b and 0 otherwise. The following features
of weighted relation structures can be expressed (we use the transition cost
reading and the reader is invited to translate to the description reading):

• the minimal cost of performing α is at most m (this is true in state s if
V (m̄→ α, s) = 0); the “at least” direction is expressed dually;

• performing α is at least as costly as performing β (this is true in state s
if V (α→ β, s) = 0); the “at most” direction is expressed dually;

• the difference between the minimal guaranteed cost of β and α is at most
m (this is true in state s if V (m̄→ (α→ β), s) = 0).

On the transition cost reading, atomic formulas in Pr can be seen as rep-
resenting various items that can be obtained at states for a given cost, with
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V (p, s) representing the cost of item p at s (e.g. time needed to charge the bat-
tery at the charger location). Observe that V (〈α〉p, s) =

⊔
t∈S(Rαst+NV (p, t))

is the minimal cost of getting from s to a state t by performing α and obtaining
p at t; we may also say that this is the minimal guaranteed cost of obtaining
p by α. On the description reading, atomic formulas can be seen as express-
ing graded, imprecise or vague properties of objects; thus the value of 〈α〉p
at s is the “grade of truth” of the statement that s is α-related to an object
with property p. The interesting case obtains where both the relation and the
property are graded or vague; think of “Alice was in contact with a person dis-
playing symptoms of COVID-19”. We write ϕα instead of 〈α〉ϕ. The following
features of weighted relation structures can be expressed (we use the transi-
tion cost reading and the reader is again invited to translate to the description
reading):

• the minimal cost of obtaining p by α is at most m (this is true in state s
if V (m̄→ pα, s) = 0); the “at least” direction is expressed dually;

• obtaining p by α is at least as costly as obtaining q by β (this is true in
state s if V (pα → qβ , s) = 0); the “at most” direction is expressed dually;

• the difference between the minimal guaranteed cost of obtaining q by β
and obtaining p by α is at most m (this is true in state s if V (m̄→ (pα →
qβ), s) = 0).

This cursory overview shows that the PDL language provides means to ex-
pressing a variety of features of weighted relational structures and so finitely-
valued PDL can be used to formalize reasoning about these features. A more
thorough exploration of expressivitiy and applications is left for another occa-
sion.

4 Finite model property and decidability

In this section we prove that Th(X) is decidable for all finite X. We prove
this by showing that each such Th(X) has the bounded finite model property.
The result is established using a many-valued generalization of the smallest
filtration construction; see [8], where the construction is applied to some many-
valued modal logics with 2 and 3. 2 Even though the decidability result is not
surprising, we consider it to be a “sanity check” for the many-valued dynamic
framework. We note that presence of canonical constants is not necessary for
the decidability result (in contrast to the completeness result of §5).

Definition 4.1 The closure of a set of formulas Ψ is the smallest Φ ⊇ Ψ such
that

• Φ is closed under subformulas (that is, if ϕ ∈ Φ and ψ is a subformula of
ϕ, then ψ ∈ Φ);

• [α ∪ β]ϕ ∈ Φ implies [α]ϕ ∈ Φ and [β]ϕ ∈ Φ;

2 We are grateful to an anonymous reviewer for pointing the reference out.



572 Finitely-valued Propositional Dynamic Logic

• [αβ]ϕ ∈ Φ implies [α][β]ϕ ∈ Φ;

• [α+]ϕ ∈ Φ implies [α][α+]ϕ ∈ Φ and [α]ϕ ∈ Φ.

Φ is closed iff Φ is the closure of Φ.

Definition 4.2 For each set of formulas Φ and each model M, we define the
binary two-valued equivalence relation ≈Φ on states of M by

s ≈Φ t ⇐⇒ (∀ϕ ∈ Φ)
(
V (ϕ, s) = V (ϕ, t)

)
.

The equivalence class of s under ≈Φ will be denoted as [s]Φ or just as [s] if Φ
is clear from the context.

Definition 4.3 Take an X-valued model M and a finite closed set Φ. The
filtration of M through Φ is the X-valued model MΦ = (SΦ, RΦ, V Φ) such that

• SΦ = {[s] | s ∈ S};
• RΦ

am([s], [t]) =
⊔{

Ram(u, v) | s ≈Φ u & t ≈Φ v
}

; RΦ
α for α /∈ Ac is

defined as in models;

• V Φ(p, [s]) = V (p, s) for p ∈ Φ; V Φ(p, [s]) = 0X for p /∈ Φ; V Φ(ϕ, [s]) for
ϕ /∈ Pr is defined as in models.

It is clear that if Φ is the closure of a finite set Ψ, then Φ is finite. If Φ
is finite, then so is MΦ; in fact, |SΦ| ≤ |X||Φ|. We usually omit reference to
Φ while discussing accessibility relations on SΦ and we also write ≈ instead of
≈Φ. We will write Rm instead of Ram . In the rest of the section, we fix an
X-model M and a finite closed set Φ.

Lemma 4.4 For all α ∈ ACT and all x, y ∈ S,

(a) Rαxy v Rα[x][y];

(b) For all [α]ϕ ∈ Φ, V ([α]ϕ, x) v Rα[x][y]⇒ V (ϕ, y).

Proof. Both claims are established by induction on the complexity of α. The
base case of (a) holds by definition and the rest is established easily using the
induction hypothesis. In the case of α = β+, we define for each π ∈ Π(S) of
length n the sequence [π] ∈ Π(SΦ) of length n by [π](k) := [π(k)] for all k < n;
it is then easy to establish by induction on n that Rβxπy v Rβ [x][π][y].)

The base case of (b) is follows from the fact that, for all x′ ∈ [x] and y′ ∈ [y],

⊔z∈S
(
Rmx

′z ⇒ V (ϕ, z)
)
·Rmx′y′ v V (ϕ, y′) using the definition of ≈Φ, closure

of Φ under subformulas and properties of FL-algebras. The fact itself follows
easily from properties of FL-algebras. The induction step uses Lemma 2.14
and is easy; for instance, in the case α = β+ we may use the fact that, for all
x and y, V ([β](ϕ ∧ [β+]ϕ, x) v Rβ [x][y] ⇒ V ([β+]ϕ, y) and hence, for all s, t
and π ∈ Π(S), V ([β+]ϕ, s) v Rβ [s][π][t]⇒ V (ϕ, t) as required. 2

Lemma 4.5 For all models M, all ϕ ∈ Φ and s ∈M, V (ϕ, s) = V Φ(ϕ, [s]).

Proof. The proof is by induction on the complexity of ϕ. The base case ϕ ∈ Pr
holds by definition, the cases for constants and propositional connectives are
trivial and the case ϕ = [α]ψ is established using Lemma 4.4. 2
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Theorem 4.6 Th(X) is decidable for each finite X.

Proof. Lemma 4.5 implies ϕ ∈ Th(X) iff ϕ is valid in all frames where |S| ≤
|X||Φ| where Φ is the closure of {ϕ}. Now m := |X| = m, n := m|Φ| and let
n-frames be the frames with |S| ≤ n. There are at most

n×mn2

n-frames. On each n-frame, there are n ×mω models, but there are at most
n × |Φ| ×m possible ways to evaluate elements of |Φ| on an n-frame. Hence,
there are at most

mn2+1 × n2 × |Φ|

models to check. It is not hard to show that there is an algorithm checking
validity of formulas in finite models. 2

5 Completeness

Bou et al. [4] establish a general weak completeness result for modal logics based
on finite commutative integral FL-algebras with canonical constants where 0
is the bottom element. In this section we build on their work to show how
a Hilbert-style axiomatic presentation of any finite commutative integral FL-
algebra X with canonical constants can be extended to a sound and weakly
complete axiomatization of PDL based on X. The restriction to commutative
FL-algebras seems to be necessary for our style of argument to go through and
we discuss this at appropriate places in more detail; the restriction to integral
FL-algebras is convenient. We leave generalizations of our result as an open
problem.

Fix a finite commutative integral FL-algebra X with canonical constants
denoting elements of X, together with a Hilbert-style axiomatic presentation
Log(X) in the language LX that is strongly complete with respect to X. That
is, we assume that ϕ ∈ LX is derivable from Γ ⊆ LX in Log(X), in sym-
bols Γ `Log(X) ϕ, iff each non-modal homomorphism u : LX → X such that
1 v ⊔u[Γ] satisfies 1 v u(ϕ) (values u([α]ψ) of modal formulas under u are ar-
bitrary, so u “treats” modal formulas as propositional atoms). 3 For the details
on how Log(X) looks like, see [4]. Since X is finite, `Log(X) is finitary in the
sense that if Γ `Log(X) ϕ, then there is a finite ∆ ⊆ Γ such that ∆ `Log(X) ϕ.
We note that `Log(X) is also monotonic in the sense that if Γ `Log(X) ϕ and
Γ ⊆ ∆, then ∆ `Log(X) ϕ.

Since X is commutative, we have a\b = b/a and so we use only a single
“official” implication operator →; see [13, p. 95]. Recall that ϕ ↔ ψ := (ϕ →
ψ) ∧ (ψ → ϕ); we define similarly a⇔ b := (a⇒ b) u (b⇒ a).

3 A function f : LX → X is a non-modal homomorphism iff f(c̄) = c and f commutes
with the propositional connectives ⊕ of LX and the corresponding operations ⊕X on X; we
assume that ∧X is u and ∨X is t.
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Definition 5.1 PDL(X) is the Hilbert-style axiom system extending Log(X)
with the following axioms and rules (for all formulas ϕ,ψ, all action expressions
α, β ∈ ACT and all canonical constants c̄):

(A-1) [α]1̄

(A-reg) [α]ϕ ∧ [α]ψ → [α](ϕ ∧ ψ)

(A-c̄) [α](c̄→ ϕ)↔ (c̄→ [α]ϕ)

(R-mon)
ϕ→ ψ

[α]ϕ→ [α]ψ

(A-∪) [α ∪ β]ϕ↔ ([α]ϕ ∧ [β]ϕ)

(A-;) [αβ]ϕ↔ [α][β]ϕ

(A-+) [α+]ϕ↔ [α](ϕ ∧ [α+]ϕ)

(R-+)
ϕ→ [α]ϕ

ϕ→ [α+]ϕ

The notions of proof, derivability, theorem and a formula derivable from a set
of formulas are defined as usual (see [4]). Thm(PDL(X)) is the set of theorems
of PDL(X).

Since X is fixed, we write L instead of Log(X), PDL instead of PDL(X), Thm
instead of Thm(PDL(X)) and L instead of LX for the rest of this section.

Theorem 5.2 If ϕ is a theorem of PDL, then ϕ is valid in the class of all
X-frames.

Proof. The axioms and the rule in the left column are taken from [4]. Validity
of the axioms in the right column in all FL-algebras was established in Lemma
2.14. To show that the rule (R-+) preserves validity in models, assume that
V (ϕ, s) v V ([α]ϕ, s) for all s in an arbitrary model. Take some t and assume
that a v V (ϕ, t); we prove that a v Rα+tu ⇒ V (ϕ, u) for all u. The claim to
be proved is equivalent to (∀π ∈ Π(S))(a v Rαtπu ⇒ V (ϕ, u)). This claim is
easily established by induction on the length of π. 2

We note that, without the assumption of commutativity, versions of (A-c̄) are
not sound; the axiom is used in the proof of Lemma 5.6 which is in turn applied
in most of our arguments below.

From now on, let S be the set of non-modal homomorphisms s : L → X
such that s[Thm] = {1} and let Φ be a fixed finite closed set.

Definition 5.3 The Φ-equivalence relation on S is an X-valued binary rela-
tion ∼Φ on S defined by

s ∼Φ t := ⊔ϕ∈Φ

(
s(ϕ)⇔ t(ϕ)

)
.

If Φ is clear from the context, we will write s ∼ t or just st instead of s ∼Φ t.

Lemma 5.4 The relation ∼Φ is an X-valued equivalence relation, that is, (a)
1 v s ∼ s, (b) s ∼ t = t ∼ s and (c) (s ∼ t)(t ∼ u) v s ∼ u, for all s, t, u ∈ S.

Proof. Claims (a) and (b) are clear; claim (c) follows from Lemma 2.6. 2

Completeness proofs for two-valued PDL typically use a filtration-like con-
struction of the canonical model, where states are (or boil down to) equivalence
classes of states taken from some other structure. A natural approach in our
case would be to take “equivalence classes” of non-modal homomorphisms un-
der ∼, where s ∼ t expresses “how much equivalent” s and t are with respect
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to Φ. However, in our case a simpler approach is available. We take S itself as
the set of states of the canonical model and we refer to Φ only in the definition
of the canonical Rα, which is a generalization of the definition of accessibility
relations in the greatest filtration of a Kripke model.

Definition 5.5 The canonical model modulo Φ is M = (S,R, V ) where

• S is the set of non-modal homomorphisms s : L →X such that s[Thm] =
{1};

• Rmst := ⊔[m]ϕ∈Φ

(
s([m]ϕ) ⇒ t(ϕ)

)
for all am ∈ Ac and Rαst for α 6∈ Ac

is defined as in models;

• V (p, s) := s(p) and V (ϕ, s) for ϕ 6∈ Pr is defined as in models.

We define for each α the relation RLα on S by RLαst := ⊔ϕ∈L
(
s([α]ϕ)⇒ t(ϕ)

)
.

Note that RLnst v Rnst for all an ∈ Ac and all s, t since RLn “cares” about
more formulas. RLα is the usual canonical many-valued accessibility relation,
see [4], but we cannot use it here because of the presence of the Kleene plus
iteration operator in ACT , similarly as in the case of two-valued PDL.

The following lemma states some properties of RLα that will be useful in our
proofs; the proof of the lemma can be found in [4] (the logics studied there are
mono-modal, but the same approach applies here).

Lemma 5.6 The following holds for all α ∈ ACT and all s ∈ S of the canon-
ical model:

(a) For all t, RLαst = ⊔ϕ∈L
{
t(ϕ) | 1 v s([α]ϕ)

}
([4], Proposition 4.1.);

(b) For all ϕ ∈ L, s([α]ϕ) = ⊔u∈S
{
RLαsu⇒ u(ϕ)

}
([4], Lemma 4.8.).

Lemma 5.7 For all [α]ϕ ∈ Φ and all s, t ∈ S, s([α]ϕ) v Rαst⇒ t(ϕ).

Proof. The claim is proved by induction on the complexity of α. The base
case is established as follows. We know that s([n]ϕ) · (s([n]ϕ)⇒ t(ϕ)) v t(ϕ);
from this s([n]ϕ) ·Rnst v t(ϕ) follows by the definition of Rn.

The cases of choice and composition in the induction step are straightfor-
ward. The case α = β+ is established by showing that, for all π ∈ Π(S), all
s, t, and all ϕ such that [β+]ϕ ∈ Φ, s([β+]ϕ) v Rβsπt⇒ t(ϕ). This claim, call
it (A), follows from the claims (s, t and [β+]ϕ ∈ Φ are fixed)

(B) s([β]ϕ) v Rβst⇒ t(ϕ);

(C) for all σ ∈ Π(S) and all u, s([β+]ϕ) v Rβsσu⇒ u([β+]ϕ).

The proof of (C) is left to the reader; (B) holds by the induction hypothesis.2

Lemma 5.8 For all α and s, t, u, Rαsu(ut) v Rαst.
Proof. We argue by induction on the complexity of α. The base case is estab-
lished as follows. If a v Rnsu(ut), then, by definition, a v ⊔[n]ϕ∈Φ

(
s([n]ϕ)⇒

u(ϕ)
)
(ut). Hence, for all [n]ϕ ∈ Φ, a v

(
s([n]ϕ) ⇒ u(ϕ)

)(
u(ϕ) ⇒ t(ϕ)

)

by the definition of u ∼ t and monotonicity of monoid multiplication (also,
[n]ϕ ∈ Φ implies ϕ ∈ Φ). It follows by the properties of FL-algebras that
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a v
(
s([n]ϕ) ⇒ t(ϕ)

)
. Since [n]ϕ ∈ Φ was arbitrary, we obtain a v Rnst. All

cases of the induction step are easy. 2

Definition 5.9 For all α and s, we define the following formula:

Rαs :=
∨

x∈S

(
Rαsx ·

∧

ϕ∈Φ

(
x(ϕ)↔ ϕ

))

Note that Rαs is well defined even though S is infinite – there are only finitely
many possible values of Rαsx for x ∈ S, as X is finite. Note also that t(Rαs) =⊔
x∈S

(
Rαsx(xt)

)
.

Lemma 5.10 For all s, t and α, t(Rαs) = Rαst.

Proof. First, Rαst v Rαst(tt) by Lemma 5.4(a), and Rαst(tt) v⊔
x∈S

(
Rαsx(xt)

)
= t(Rαs). Second, Rαsx(xt) v Rαst for all x ∈ S by Lemma

5.8. Hence,
⊔
x∈S Rαsx(xt) and so t(Rαs) v Rαst. 2

Lemma 5.11 For all s, t ∈ S and all α ∈ ACT , RLαst v Rαst.
Proof. Induction on the complexity of α. The base case follows from definition.
To establish the induction step, we reason by cases. Note that the induction
hypothesis is equivalent to the claim that, for all α, β and x, 1 v x([α]Rαx)
and 1 v x([β]Rβx) by Lemmas 5.6(b) and 5.10.

If a v RLα∪βst, then a v ⊔ϕ∈L
{
t(ϕ) | 1 v s([α ∪ β]ϕ)

}
by Lemma 5.6(a).

By the definition of S, this entails a v ⊔

{
t(ϕ) | 1 v s([α]ϕ) u s([β]ϕ)

}
. By

the induction hypothesis, 1 v s([α]Rαs) and 1 v s([β]Rβs). Hence, 1 v
s([α](Rαs∨Rβs)) and 1 v s([β](Rαs∨Rβs)) by the definition of S. It follows
that a v t(Rαs)tt(Rβs). By Lemma 5.10, a v RαsttRβst and so a v Rα∪βst.

If a v RLαβst, then a v ⊔ϕ∈L
{
t(ϕ) | 1 v s([αβ]ϕ)

}
by Lemma 5.6(a)

and so a v ⊔ϕ∈L
{
t(ϕ) | 1 v s([α][β]ϕ)

}
by the definition of S. For all x

and y, RLαsxR
L
βxy v y(Rαβs) by the induction hypothesis, Lemma 5.10 and

the definition of Rαβ . Hence, for all x, RLαsx v x([β]Rαβs) by residuation
and Lemma 5.6(b); from this is follows that 1 v s([α][β]Rαβs) by another
application of residuation and Lemma 5.6(b). Therefore, a v t(Rαβs) and so
a v Rαβst by Lemma 5.10.

Finally, we discuss the case of α+. Fix s; we write F instead of Rα+s.
Note that Rα+ is a transitive relation extending RLα . Hence, for all t, u ∈ S,
u(F ) · RLαut v t(F ) by Lemma 5.10 and the induction hypothesis applied to
RLα ; we obtain from this u(F ) v u([α]F ) for all u ∈ S by Lemma 5.6(b). Hence,
by definition of S, we have F → [α]F ∈ Thm. Hence, using (R-+), we have
F → [α+]F ∈ Thm and, using (R-mon) and (A-+), we obtain [α]F → [α+]F ∈
Thm. By the induction hypothesis we have RLαst v Rαst v Rα+st for all t and
so 1 v RLαst⇒ t(F ) for all t by Lemma 5.10. This means that 1 v s([α]F ) and
so 1 v s([α+]F ) which means that RLα+st v t(F ) for all t by Lemma 5.6(b).
Hence, RLα+st v Rα+st by Lemma 5.10. 2

Lemma 5.12 For all ϕ ∈ Φ and s ∈ S, s(ϕ) = V (ϕ, s).
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Proof. Induction on the complexity of ϕ. The base case holds by definition and
the cases for non-modal formulas and canonical constants are straightforward.
Finally, s([α]ϕ) v V ([α]ϕ, s) holds thanks to Lemma 5.7 and V ([α]ϕ, s) v
s([α]ϕ) holds thanks to Lemma 5.6(b) and Lemma 5.11. 2

Theorem 5.13 For all finite commutative integral X with canonical con-
stants, ϕ is valid in all X-frames iff ϕ is a theorem of PDL(X).

Proof. Soundness is established by Theorem 5.2. Completeness is established
as usual. If ϕ is not in Thm, then Thm 6`L ϕ since Thm is obviously closed
under `L. By strong completeness of L, there is a non-modal homomorphism
from L to X such that s[Thm] = {1} and s(ϕ) 6= 1. Let Φ be the closure of
{ϕ}; ϕ is not valid in the canonical model modulo Φ by Lemma 5.12. 2

6 On Kleene star and test

Our syntactic presentation of propositional dynamic logic differs from the stan-
dard presentation in two important respects, namely, (i) our action operators
do not include the Kleene star, but rather the Kleene plus operator; (ii) we
do not include the test operator. Kleene star and test are instrumental in the
ability of classical PDL to express standard programming constructs such as
while loops and conditionals (test suffices for the latter). In this section we
discuss these omissions.

Concerning the Kleene star, Proposition 2.13 suggests that, working with
frames based on finite integral FL-algebras, we can define, for all α ∈ ACT
and ϕ ∈ Fm(LX),

[α∗]ϕ := [α+]ϕ ∧ ϕ
as a semantically equivalent surrogate for formulas with the Kleene star. For
instance, [(a∪b)∗; a∗]p is short for [(a∪b)+]([a+]p∧p)∧ ([a+]p∧p). However,
it is clear that not all action expressions in STA can be expressed by action
expressions in ACT . Therefore, for example, [(a∗; b)∗]p is not a well-formed
formula since a∗ 6∈ ACT .

The technical problem that precluded us from working with Kleene star as a
primitive operator is related to Lemma 5.8. Take the reflexive transitive closure
R∗α of Rα, defined as in Proposition 2.8. The issue is that Lemma 5.8 fails if
Kleene star is a primitive operator and we define Rα∗ := R∗α. In particular, if
s = u 6= t, then R∗αsu(ut) v R∗αst boils down to s ∼ t v Rα+st, which does not
hold in all canonical models. (Take the canonical 2-model modulo the closure
Φ of Ψ = {[a]⊥}. As both Ψ∪ {p0} and Ψ∪ {p1} are consistent, there are two
distinct s, t such that s ∼Φ t equals 1, but Ra+st equals 0.)

Concerning test, a natural semantic interpretation of ϕ?, endorsed also in
[18,19], is

Rϕ?(s, t) =

{
V (ϕ, s) if s = t

⊥X otherwise.

However, Lemma 5.8 turns out to be problematic for such a relation as well.
(Take the model from the previous paragraph and let ϕ = [a]⊥; clearly



578 Finitely-valued Propositional Dynamic Logic

Rϕ?ss(st) equals 1, but Rϕ?st equals 0.)
It is clear that a more substantial modification of our completeness argu-

ment is needed to accommodate logics with Kleene star and test. This is an
interesting problem we leave open here.

7 Conclusion

We have studied a general framework for many-valued versions of Proposi-
tional Dynamic Logic where both formulas in states and accessibility relations
between states of a Kripke model are evaluated in a finite FL-algebra. We es-
tablished a general decidability result and we provided a general completeness
argument for PDLs based on commutative integral FL-algebras with canonical
constants. We build on previous work on many-valued modal logic and our
techniques are generalizations of the arguments used in the two-valued case;
however, to the best of our knowledge, the technical results presented here are
the first decidability and completeness results on PDL with many-valued ac-
cessibility relations. As our discussion of the informal interpretations of the
framework suggests, many-valued PDL has links to existing research in de-
scription logics and potential applications in reasoning about weighted labelled
transition systems.

Our paper also suggests a number of topics for future research. We would
like to mention especially the addition of test and further work on the standard
version of PDL with primitive Kleene star in the many-valued setting. Another
topic are generalizations of our results beyond finite (commutative integral) FL-
algebras with canonical constants; in many cases the work here would require
modifications of existing techniques used in completeness arguments for many-
valued modal logics without “structured” modal operators. Finally, informal
interpretations and applications of our framework need to be explored in more
detail.
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logic over a finite residuated lattice., Journal of Logic and Computation 21 (2011),
pp. 739–790.
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Abstract

The provability logic GLP introduced by G. Japaridze is a propositional polymodal
logic with important applications in proof theory, specificially, in ordinal analysis of
arithmetic. Though being incomplete with respect to any class of Kripke frames,
the logic GLP is complete for its neighbourhood interpretation. This completeness
result, established by L. Beklemishev and D. Gabelaia, implies strong neighbourhood
completeness of this system for the case of the so-called local semantic consequence
relation. In the given article, we consider Hilbert-style non-well-founded derivations
in the provability logic GLP and establish that GLP with the obtained derivability
relation is strongly neighbourhood complete in the case of the global semantic conse-
quence relation.

Keywords: provability logic, algebraic semantics, neighbourhood semantics, global
consequence relations, non-well-founded derivations.

1 Introduction

The provability logic GLP introduced by G. Japaridze [6] is a propositional
modal logic in a language with infinitely many modal connectives ◻0,◻1, . . . .
It is sound and complete with respect to a natural provability semantics, where
the modal connective ◻n corresponds to the provability predicate “... is prov-
able from the axioms of Peano arithmetic together with all true arithmetical
Π0
n-sentences”. This system has important applications in proof theory, speci-

ficially, in ordinal analysis of arithmetic [1]. In the given article, we consider
non-well-founded derivations in the provability logic GLP and study algebraic

1 E-mail: daniyar.shamkanov@gmail.com
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and neighbourhood semantics of the system GLP with the obtained derivability
relation.

Neighbourhood semantics is an interesting generalization of Kripke seman-
tics independently developed by D. Scott and R. Montague in [9] and [7]. The
logic GLP is incomplete with respect to any class of Kripke frames. At the same
time GLP is complete for its neighbourhood interpretation [3]. Notice that this
completeness result implies strong neighbourhood completeness of this system
for the case of the so-called local semantic consequence relation. Over neigh-
bourhood GLP-models, a formula ϕ is a local semantic consequence of Γ if for
any neighbourhood GLP-model M and any world x of M

(∀ψ ∈ Γ M, x ⊧ ψ)⇒M, x ⊧ ϕ.
A formula ϕ is a global semantic consequence of Γ if for any neighbourhood
GLP-model M (∀ψ ∈ Γ M ⊧ ψ)⇒M ⊧ ϕ.
Recently, global neighbourhood completeness of the Gödel-Löb provability logic
GL with non-well-founded derivations was established in [10,11]. In the given
article, we obtain an analogous result for the provability logic GLP.

2 Non-well-founded derivations in GLP

In this section we recall the provability logic GLP and define Hilbert-style non-
well-founded derivations for the given system.

The provability logic GLP is a propositional modal logic in a language with
infinitely many modal connectives ◻0,◻1, . . . . In other words, formulas of the
logic are built from the countable set of variables PV = {p, q, . . .} and the
constant � using propositional connectives → and ◻i for each i ∈ N. We treat
other Boolean connectives and modal connectives ◇i as abbreviations:

¬ϕ ∶= ϕ→ �, ⊺ ∶= ¬�, ϕ ∧ ψ ∶= ¬(ϕ→ ¬ψ),
ϕ ∨ ψ ∶= ¬ϕ→ ψ, ϕ↔ ψ ∶= (ϕ→ ψ) ∧ (ψ → ϕ), ◇iϕ ∶= ¬ ◻i ¬ϕ.

By Fm, we denote the set of formulas of GLP.
The provability logic GLP is defined by the following axiom schemes and

inference rules.
Axiom schemes:

(i) the tautologies of classical propositional logic;

(ii) ◻i(ϕ→ ψ)→ (◻iϕ→ ◻iψ);
(iii) ◻i(◻iϕ→ ϕ)→ ◻iϕ;

(iv) ◇iϕ→ ◻i+1 ◇i ϕ;

(v) ◻iϕ→ ◻i+1ϕ.

Inference rules:

ϕ ϕ→ ψ
mp ,

ψ

ϕ
nec .◻0ϕ
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We remark that transitivity of the modal connectives ◻i is provable in GLP,
i.e. GLP ⊢ ◻iψ → ◻i ◻i ψ for any formula ψ and any i ∈ N.

Now we define non-well-founded derivations in GLP. An ∞-derivation is a
(possibly infinite) tree whose nodes are marked by formulas of GLP and that
is constructed according to the rules (mp) and (nec). In addition, any infinite
branch in an ∞-derivation must contain infinitely many applications of the rule
(nec). An assumption leaf of an ∞-derivation is a leaf that is not marked by
an axiom of GLP.

The main fragment of an ∞-derivation is a finite tree obtained from the ∞-
derivation by cutting every infinite branch at the nearest to the root application
of the rule (nec). The local height ∣π∣ of an ∞-derivation π is the length of the
longest branch in its main fragment. An ∞-derivation consisting of a single
formula only has height 0.

For example, consider the following ∞-derivation

⋮◻0p3 ◻0p3 → p2mp
p2nec ◻0p2 ◻0p2 → p1mp

p1nec ◻0p1 ◻0p1 → p0mp ,
p0

where assumption leaves are marked by formulas of the form ◻0pi+1 → pi. The
local height of this ∞-derivation equals to 1 and its main fragment has the form

◻0p1 ◻0p1 → p0mp .
p0

Definition 2.1 We set Γ ⊢g ϕ if there is an ∞-derivation with the root marked
by ϕ in which all assumption leaves are marked by some elements of Γ.

Proposition 2.2 For any formula ϕ, we have

GLP ⊢ ϕ⇐⇒ ∅ ⊢g ϕ.
We give a proof of this proposition in the Appendix since this statement is not
essential for the global neighbourhood completeness result of the final section.

3 Algebraic semantics

In this section we consider algebraic semantics for the provability logic GLP
enriched with non-well-founded derivations.

A Magari algebra (or a diagonalizable algebra) A = (A,∧,∨,→,0,1,◻) is a
Boolean algebra (A,∧,∨,→,0,1) together with a unary map ◻∶A→ A satisfying
the identities:

◻1 = 1, ◻(x ∧ y) = ◻x ∧ ◻y, ◻(◻x→ x) = ◻x.
For any Magari algebra A, the mapping ◻ is monotone with respect to the

order (of the Boolean part) of A. Indeed, if a ⩽ b, then a ∧ b = a, ◻a ∧ ◻b =
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◻(a∧b) = ◻a, and ◻a ⩽ ◻b. In addition, we remark that an inequality ◻x ⩽ ◻◻x
holds in any Magari algebra.

We call a Magari algebra ◻-founded (or Pakhomov-Walsh-founded) 2 if, for
every sequence of its elements (ai)i∈N such that ◻ai+1 ⩽ ai, we have a0 = 1.
Note that, for any such sequence (ai)i∈N, all elements ai are equal to 1 in any◻-founded Magari algebra.

We give a series of examples of ◻-founded Magari algebras. A Magari
algebra is called σ-complete if its underlying Boolean algebra is σ-complete,
that is, each of its countable subsets S has the least upper bound ⋁S. An
equivalent condition is that every countable subset S has the greatest lower
bound ⋀S.

Proposition 3.1 Any σ-complete Magari algebra is ◻-founded.

Proof. Assume we have a σ-complete Magari algebra A and a sequence of its
elements (ai)i∈N such that ◻ai+1 ⩽ ai. We shall prove that a0 = 1.

Put b = ⋀
i∈Nai. For any i ∈ N, we have b ⩽ ai+1 and ◻b ⩽ ◻ai+1 ⩽ ai. Hence,

◻b ⩽ b, ◻b→ b = 1, ◻b = ◻(◻b→ b) = ◻1 = 1, b = 1.

We obtain that a0 = 1. ◻
Remark 3.2 Let us additionally mention an arithmetical example of ◻-
founded Magari algebra without going into details. If we consider the second-
order arithmetical theory Σ1

1 − AC0 extended with all true Σ1
1-sentences, then

its provability algebra forms a ◻-founded Magari algebra. This observation can
be obtained following the lines of Theorem 3.2 from [8].

The notion of ◻-founded Magari algebra A can be defined in terms of the
binary relation ≺A on A:

a ≺A b⇐⇒ ◻a ⩽ b.
Proposition 3.3 (see Proposition 3.1 from [11]) For any Magari algebraA = (A,∧,∨,→,0,1,◻), the relation ≺A is a strict partial order on A ∖ {1}.

Proposition 3.4 (see Proposition 3.2 from [11]) For any Magari algebraA = (A,∧,∨,→,0,1,◻), the algebra A is ◻-founded if and only if the partial
order ≺A on A ∖ {1} is well-founded.

A Boolean algebra (A,∧,∨,→,0,1) together with a sequence of unary map-
pings ◻0,◻1, . . . is called a GLP-algebra if it satisfies the following conditions
for each i ∈ N:

(i) (A,∧,∨,→,0,1,◻i) is a Magari algebra;

(ii) ◇ia ⩽ ◻i+1 ◇i a for any a ∈ A;

(iii) ◻ia ⩽ ◻i+1a for any a ∈ A.

2 This notion has been inspired by an article of F. Pakhomov and J. Walsh [8].
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A GLP-algebra A = (A,∧,∨,→,0,1,◻0,◻1, . . . ) is called ◻-founded if the
Magari algebra A0 = (A,∧,∨,→,0,1,◻0) is ◻-founded. In the same way, we
apply notions defined for the Magari algebra A0 to A. From Proposition 3.1,
we immediately see that any σ-complete GLP-algebra is ◻-founded.

Now we define a semantic consequence relation over ◻-founded GLP-
algebras, which, we shall see, corresponds to the derivability relation ⊢g. A val-
uation in a GLP-algebra A = (A,∧,∨,→,0,1,◻0,◻1, . . . ) is a function v∶Fm → A
such that v(�) = 0, v(ϕ→ ψ) = v(ϕ)→ v(ψ), and v(◻iϕ) = ◻iv(ϕ).
Definition 3.5 Given a set of formulas Γ and a formula ϕ, we set Γ ⊫g ϕ if
for any ◻-founded GLP-algebra A and any valuation v in A

(∀ψ ∈ Γ v(ψ) = 1)⇒ v(ϕ) = 1.

Lemma 3.6 For any set of formulas Γ and any formula ϕ, we have

Γ ⊢g ϕÔ⇒ Γ⊫g ϕ.
Proof. Assume π is an ∞-derivation with the root marked by ϕ in which all
assumption leaves are marked by some elements of Γ. In addition, assume we
have a ◻-founded GLP-algebra A = (X,∧,∨,→,0,1,◻0,◻1, . . . ) together with a
valuation v in A such that v(ψ) = 1 for any ψ ∈ Γ. We shall prove that v(ϕ) = 1.

For any node w of the ∞-derivation π, let πw be the subtree of π with
the root w. Also, put r(w) = ∣πw ∣. In addition, let ϕw be the formula of the
node w. A node w belongs to the (n + 1)-th slice of π if there are precisely n
applications of the rule (nec) on the path from this node to the root of π. By
cn, we denote the element ⋀{v(ϕw) ∣ w belongs to the (n + 1)-th slice of π}.

We claim that ◻0cn+1 ⩽ cn for any n ∈ N. It is sufficient to prove that◻0cn+1 ⩽ v(ϕw) whenever w belongs to the (n + 1)-th slice of π. The proof is
by induction on r(w).

If ϕw is an axiom of GLP or an element of Γ, then we immediately obtain
the required statement. Otherwise, ϕw is obtained by an application of an
inference rule in π.

If ϕw is obtained by the rule (nec), then this formula has the form ◻0ϕu,
where u is the premise of w. We see that u belongs to the (n+ 2)-th slice of π.
Consequently cn+1 ⩽ v(ϕu) and ◻0cn+1 ⩽ v(ϕw).

Suppose ϕw is obtained by the rule (mp). Consider the premises u1 and u2
of w. We have r(u1) < r(w) and r(u2) < r(w). By our induction hypotheses,
we obtain ◻0cn+1 ⩽ v(ϕu1) ∧ v(ϕu2) ⩽ v(ϕw).

This proves the claim that ◻0cn+1 ⩽ cn for any n ∈ N. Applying ◻-
foundedness of A, we note that c0 = 1. Since the root of the ∞-derivation
π belongs to the first slice of π, we conclude that c0 ⩽ v(ϕ) and v(ϕ) = 1. ◻
Theorem 3.7 (Algebraic completeness) For any set of formulas Γ and
any formula ϕ, we have

Γ ⊢g ϕ⇐⇒ Γ⊫g ϕ.
Proof. The left-to-right implication follows from Lemma 3.6. We prove the
converse. Assume Γ ⊫g ϕ. Consider the theory T = {θ ∈ Fm ∣ Γ ⊢g θ}. We see
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that T contains all axioms of GLP and is closed under the rules (mp) and (nec).
We define an equivalence relation ∼T on the set of formulas Fm by putting
µ ∼T ρ if and only of (µ↔ ρ) ∈ T . Let us denote the equivalence class of µ by[µ]T . Applying the Lindenbaum-Tarski construction, we obtain a GLP-algebraLT on the set of equivalence classes of formulas, where [µ]T ∧ [ρ]T = [µ ∧ ρ]T ,[µ]T ∨ [ρ]T = [µ ∨ ρ]T , [µ]T → [ρ]T = [µ → ρ]T , 0 = [�]T , 1 = [⊺]T and◻i[µ] = [◻iµ].

Let us check that the algebra LT is ◻-founded. Assume we have a sequence
of formulas (µi)i∈N such that ◻0[µi+1]T ⩽ [µi]T . We have [◻0µi+1 → µi]T = 1
and (◻0µi+1 → µi) ∈ T . For every i ∈ N, there exists an ∞-derivation πi for the
formula ◻0µi+1 → µi such that all assumption leaves of πi are marked by some
elements of Γ. We obtain the following ∞-derivation for the formula µ0:

⋮◻0µ3

π2⋮◻0µ3 → µ2mp
µ2nec ◻0µ2

π1⋮◻0µ2 → µ1mp
µ1nec ◻0µ1

π0⋮◻0µ1 → µ0mp ,
µ0

where all assumption leaves are marked by some elements of Γ. Hence, µ0 ∈ T
and [µ0]T = [⊺]T = 1. We conclude that the GLP-algebra LT is ◻-founded.

Consider the valuation v∶ θ ↦ [θ]T in the GLP-algebra LT . Since Γ ⊂ T ,
we have v(ψ) = 1 for any ψ ∈ Γ. From the assumption Γ ⊫ ϕ, we obtain that
v(ϕ) = 1. Consequently ϕ ∈ T and Γ ⊢g ϕ. ◻
4 Neighbourhood semantics

In this section we recall neighbourhood semantics of the provability logic GLP.
An Esakia frame (or a Magari frame) X = (X,◻) is a set X together with

a mapping ◻ ∶P(X) → P(X) such that the powerset Boolean algebra P(X)
with the mapping ◻ forms a Magari algebra.

We briefly recall a connection between scattered topological spaces and
Esakia frames (cf. [4]). Note that we allow Esakia frames and topological
spaces to be empty.

In a topological space, an open set U containing a point x is called a neigh-
bourhood of x. A set U is a punctured neighbourhood of x if x ∉ U and U ∪ {x}
is open. For a topological space (X,τ) and a subset V the derived set dτ(V )
of V is the set of limit points of V :

x ∈ dτ(V )⇐⇒ ∀U ∈ τ (x ∈ U ⇒ ∃y ≠ x (y ∈ U ∩ V )) .
The co-derived set cdτ(V ) of V is defined as X ∖ dτ(X ∖ V ). By definition,
x ∈ cdτ(V ) if and only if there is a punctured neighbourhood of x entirely
contained in V .
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In a topological space, a point having an empty punctured neighbourhood is
called isolated. A topological space (X,τ) is scattered if each non-empty subset
of X (as a topological space with the inherited topology) has an isolated point.

Proposition 4.1 (L. Esakia [5]) If (X,◻) is an Esakia frame, then X bears
a unique topology τ for which ◻ = cdτ . Moreover, the space (X,τ) is scattered.

Proposition 4.2 (H. Simmons [12], L. Esakia [5]) If (X,τ) is a scattered
topological space, then (X, cdτ) is an Esakia frame.

A neighbourhood GLP-frame X = (X,◻0,◻1, . . . ) is a set X together with
a sequence of unary mappings ◻0,◻1, . . . on P(X) such that the powerset
Boolean algebra P(X) with the given mappings forms a GLP-algebra. Elements
of X are called worlds of the frame X . A neighbourhood GLP-model is a pairM = (X , v), where X is a neighbourhood GLP-frame and v is a valuation in
the powerset GLP-algebra of X . A formula ϕ is true at a world x of a modelM, written as M, x ⊧ ϕ, if x ∈ v(ϕ). A formula ϕ is called true in M, written
as M ⊧ ϕ, if ϕ is true at all worlds of M.

A GLP-space is a polytopological space (X,τ0, τ1, . . . ), where, for each i ∈ N,
τi is scattered, τi ⊂ τi+1, and dτi(V ) ∈ τi+1 for any V ∈ P(X).
Proposition 4.3 (see Proposition 4 from [4])

(i) If (X,◻0,◻1, . . . ) is a GLP-frame, then X bears a unique series of topolo-
gies τ0, τ1, . . . such that ◻i = cdτi for every i ∈ N. Moreover, the polytopo-
logical space (X,τ0, τ1, . . . ) is a GLP-space.

(ii) If (X,τ0, τ1, . . . ) is a GLP-space, then (X, cdτ0 , cdτ1 , . . . ) is a GLP-frame.

In the sequel, we don’t distinguish GLP-frames and corresponding poly-
topological spaces so that we use the topological terminology referring to(X,τ0, τ1, . . . ) for the frame (X, cdτ0 , cdτ1 , . . . ). For example, we say that a
subset U is n-open in (X,◻0,◻1, . . . ) if it belongs to the corresponding n-th
topology on X (which is equivalent to U ⊂ ◻nU).

Now we define a global semantic consequence relation over GLP-frames.

Definition 4.4 Given a set of formulas Γ and a formula ϕ, we set Γ ⊧g ϕ if
for any GLP-model M

(∀ψ ∈ Γ M ⊧ ψ)⇒M ⊧ ϕ.
Let us recall the following neighbourhood completeness result obtained by

L. Beklemishev and D. Gabelaia in [3].

Theorem 4.5 For any formula ϕ, if GLP ⊬ ϕ, then there is a GLP-model M
and a world x such that M, x ⊭ ϕ.

We notice that, for any GLP-frame X , the powerset GLP-algebra of X is
σ-complete. Consequently this algebra is ◻-founded by Proposition 3.1. Hence
we immediately obtain the following proposition.

Proposition 4.6 For any set of formulas Γ and any formula ϕ, we have

Γ⊫g ϕÔ⇒ Γ ⊧g ϕ.



588 Global neighbourhood completeness of the provability logic GLP

5 Representation of ◻-founded Magari algebras

In this section we prove that any ◻-founded Magari algebra can be embedded
into the powerset Magari algebra of an Esakia frame. We also obtain some
related results, which will be applied in the next section.

From Proposition 3.4, we know that a Magari algebraA = (A,∧,∨,→,0,1,◻)
is ◻-founded if and only if the binary relation ≺A is well-founded on A ∖ {1},
where

a ≺A b⇐⇒ ◻a ⩽ b.
Let us recall some basic properties of well-founded relations.

A well-founded set is a pair S = (S,≺), where ≺ is a well-founded relation
on S. For any element a of S, its ordinal height in S is denoted by htS(a).
Recall that htS is defined by transfinite recursion on ≺ as follows:

htS(a) = sup{htS(b) + 1 ∣ b ≺ a}.
A homomorphism from S1 = (S1,≺1) to S2 = (S2,≺2) is a function f ∶S1 → S2

such that f(b) ≺2 f(c) whenever b ≺1 c.
Proposition 5.1 Suppose f ∶S1 → S2 is a homomorphism of well-founded sets
and a is an element of S1. Then htS1(a) ⩽ htS2(f(a)).

For well-founded sets S1 = (S1,≺1) and S2 = (S2,≺2), their product S1 × S2
is defined as the set S1 × S2 together with the following relation

(b1, b2) ≺ (c1, c2)⇐⇒ b1 ≺1 c1 and b2 ≺2 c2.
Clearly, ≺ is a well-founded relation on S1 × S2.

Proposition 5.2 Suppose a and b are elements of well-founded sets S1 and S2
respectively. Then htS1×S2((a, b)) = min{htS1(a),htS2(b)}.

For an element a of a ◻-founded Magari algebra A, define htA(a) as the
ordinal height of a with respect to ≺A. We put htA(a) =∞ if a = 1.

Lemma 5.3 Suppose a and b are elements of a ◻-founded Magari algebra A.
Then htA(a ∧ b) = min{htA(a),htA(b)} and htA(a) + 1 ⩽ htA(◻a), where we
define ∞+ 1 ∶=∞.

Proof. Assume we have a ◻-founded Magari algebra A = (A,∧,∨,→,0,1,◻)
and two elements a and b of A.

First, we prove that htA(a ∧ b) = min{htA(a),htA(b)}. If a = 1 or b = 1,
then the equality immediately holds. Suppose a ≠ 1 and b ≠ 1. Let S be the
set A ∖ {1} together with the well-founded relation ≺A. We have a ∧ b ≠ 1,
htA(a) = htS(a), htA(b) = htS(b) and htA(a ∧ b) = htS(a ∧ b). The mapping

f ∶ (c, d)↦ c ∧ d
is a homomorphism from S × S to S. From Proposition 5.2 and Proposition
5.1, we have

min{htS(a),htS(b)} = htS×S((a, b)) ⩽ htS(a ∧ b).
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Consequently,
min{htA(a),htA(b)} ⩽ htA(a ∧ b).

On the other hand, htA(a ∧ b) ⩽ htA(a) since

{e ∈ A ∖ {1} ∣ e ≺A (a ∧ b)} ⊂ {e ∈ A ∖ {1} ∣ e ≺A a}.
Analogously, we have htA(a ∧ b) ⩽ htA(b). It follows that

htA(a ∧ b) = min{htA(a),htA(b)}.
Now we prove htA(a) + 1 ⩽ htA(◻a). If ◻a = 1, then the inequality imme-

diately holds. Suppose ◻a ≠ 1. Then a ≠ 1. We see a ≺A ◻a. The required
inequality holds from the definition of htA. ◻

For a ◻-founded Magari algebra A = (A,∧,∨,→,0,1,◻) and an ordinal γ,
put MA(γ) = {a ∈ A ∣ γ ⩽ htA(a)}. We see that MA(0) = A and MA(δ) ⊃ MA(γ)
whenever δ ⩽ γ.

Lemma 5.4 For any ◻-founded Magari algebra A and any ordinal γ, the set
MA(γ) is a filter in A.

Proof. Suppose a and b belong to MA(γ). Then γ ⩽ htA(a) and γ ⩽ htA(b).
We have γ ⩽ min{htA(a),htA(b)} = htA(a ∧ b) by Lemma 5.3. Consequently
a ∧ b belongs to MA(γ).

Now suppose c belongs to MA(γ) and c ⩽ d. We shall show that d ∈ MA(γ).
We have γ ⩽ htA(c) = htA(c ∧ d) = min{htA(c),htA(d)} ⩽ htA(d) by Lemma
5.3. Hence d ∈ MA(γ). ◻

Let Ult A be the set of all ultrafilters of (the Boolean part of) a Magari
algebra A = (A,∧,∨,→,0,1,◻). Put â = {u ∈ Ult A ∣ a ∈ u} for a ∈ A. We recall
that the mapping ⋅̂ ∶a↦ â is an embedding of the Boolean algebra (A,∧,∨,→
,0,1) into the powerset Boolean algebra P(Ult A) by Stone’s representation
theorem.

Lemma 5.5 For any ◻-founded Magari algebra A, there exists a scattered
topology τ on Ult A such that ◻̂a = cdτ(â) for any element a of A.

Proof. Assume we have a ◻-founded Magari algebra A = (A,∧,∨,→,0,1,◻).
Let ht(A) = sup{htA(a) + 1 ∣ a ∈ A ∖ {1}}. We see that MA(ht(A)) = {1}. For
an ultrafilter u of A, set rk(u) ∶= min{δ ⩽ ht(A) ∣ MA(δ) ⊂ u}. Also, for an
ordinal γ, put I (γ) ∶= {u ∈ Ult A ∣ rk(u) < γ}.

Set τ = {V ⊂ Ult A ∣ ∀u ∈ V ∃a ∈ A (◻a ∈ u) ∧ (⊡̂a ∩ I (rk(u)) ⊂ V )}, where⊡a = a ∧ ◻a.
Let us check that τ is a topology on Ult A. Trivially, ∅ ∈ τ and τ is

closed under arbitrary unions. For any u ∈ Ult A, we see that ◻1 = 1 ∈ u and⊡̂1 ∩ I (rk(u)) ⊂ Ult A. Consequently Ult A ∈ τ . Assume S0 ∈ τ and S1 ∈ τ .
Consider an arbitrary u ∈ S0∩S1. By definition of τ , there exist elements b and
c of A such that ◻b ∈ u, ◻c ∈ u, ⊡̂b ∩ I (rk(u)) ⊂ S0 and ⊡̂c ∩ I (rk(u)) ⊂ S1. We

have ◻(b∧c) = (◻b∧◻c) ∈ u and ⊡̂(b ∧ c)∩I (rk(u)) = ⊡̂a∩⊡̂c∩I (rk(u)) ⊂ S0∩S1.
Therefore S0 ∩ S1 ∈ τ . This shows that τ is a topology on Ult A.
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It easily follows from the definition of τ that ⊡̂a ∈ τ , for any a ∈ A, and
I (γ) ∈ τ , for any ordinal γ. Now we claim that τ is scattered. Consider any
non-empty subset S of Ult A. There is an ultrafilter h ∈ S such that rk(h) =
min{rk(u) ∣ u ∈ S}. We see that a set {h} ∪ I (rk(h)) is a τ -neighbourhood of
h and S ∩ ({h} ∪ I (rk(h))) = {h}. Hence the ultrafilter h is an isolated point
in S. This proves that τ is a scattered topology.

It remains to show that ◻̂a = cdτ(â) for any a ∈ A. First, we check that◻̂a ⊂ cdτ(â). For any ultrafilter d, if d ∈ ◻̂a, then ⊡̂a ∩ I (rk(d)) is a punctured
neighbourhood of d. Also, ⊡̂a∩I (rk(d)) ⊂ â. By definition of the co-derived-set
operator, d ∈ cdτ(â). Consequently ◻̂a ⊂ cdτ(â).

Now we claim that cdτ(â) ⊂ ◻̂a. Consider any ultrafilter d such that d ∉ ◻̂a.
Let W be an arbitrary punctured neighbourhood of d. It is sufficient to show
that W is not included in â.

By definition of τ , there exists an element e of A such that ◻e ∈ d and⊡̂e ∩ I (rk(d)) ⊂ W . From the conditions ◻e ∈ d and ◻a ∉ d, it follows that◻(⊡e→ a) ∉ d. Hence ◻(⊡e→ a) ∉ MA(rk(d)) ⊂ d and htA(◻(⊡e→ a)) < rk(d).
Note that (⊡e→ a) ∉ MA(htA(⊡e→ a)+1). By the Boolean ultrafilter theorem,
there exists an ultrafilter w of A such that (⊡e→ a) ∉ w and MA(htA(⊡e→ a)+
1) ⊂ w. We see that ⊡e ∈ w, a ∉ w and rk(w) ⩽ htA(⊡e → a) + 1. From Lemma
5.3, we have htA(⊡e → a) + 1 ⩽ htA(◻(⊡e → a)) < rk(d). Thus rk(w) < rk(d),
w ∈ ⊡̂e ∩ I (rk(d)) and w ∉ â. Consequently w is an element of W , which does
not belong to â.

We obtain that none of the punctured neighbourhoods of d are included in
â. In other words, d ∉ cdτ(â) for any d ∉ ◻̂a. We conclude that cdτ(â) ⊂ ◻̂a.
Hence ◻̂a = cdτ(â). ◻
Theorem 5.6 A Magari algebra is ◻-founded if and only if it is embeddable
into the powerset Magari algebra of an Esakia frame.

Proof. (if) Suppose a Magari algebra A is isomorphic to a subalgebra of the
powerset Magari algebra of an Esakia frame X . The powerset Magari algebra
of X is σ-complete. Hence, by Proposition 3.1, it is ◻-founded. Since any
subalgebra of a ◻-founded Magari algebra is ◻-founded, the algebra A is ◻-
founded.

(only if) Suppose a Magari algebra A is ◻-founded. By Lemma 5.5, there
exists a scattered topology τ on Ult A such that ◻̂a = cdτ(â) for any element
a of A. We know that X = (Ult A, cdτ) is an Esakia frame by Proposition
4.2. We see that the mapping ⋅̂ ∶a ↦ â is an injective homomorphism fromA to the powerset Magari algebra of the frame X . Therefore the algebra A is
embeddable into the powerset Magari algebra of an Esakia frame. ◻

For a Magari algebra A, by TopA, we denote the set of all scattered topolo-
gies τ on Ult A such that ◻̂a = cdτ(â) for any element a of A.

Lemma 5.7 Suppose A is a Magari algebra and τ ∈ Top A. Then there is a
maximal with respect to inclusion element of Top A that extends τ .

Proof. Consider the set P = {σ ∈ Top A ∣ τ ⊂ σ}, which is a partially ordered
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set with respect to inclusion. We claim that any chain in P has an upper
bound.

Assume C is a chain in P . Let ν be the coarsest topology containing τ
and ⋃C. Note that the topology ν is scattered as an extension of a scattered
topology. For any element a of A, we have ◻̂a = cdτ(â) ⊂ cdν(â), because ν is
an extension of τ .

Now assume c is an arbitrary element of A and u ∈ cdν(ĉ). We check that
u ∈ ◻̂c. By definition of the co-derived-set operator, there is a punctured ν-
neighbourhood V of u such that V ⊂ ĉ. Since the set τ ∪⋃C is closed under
finite intersections, it is a basis of ν. Consequently there is a subset W of V with
W ∪ {u} ∈ τ ∪⋃C. We see that W ⊂ ĉ and W is a punctured neighbourhood
of u with respect to a topology κ ∈ {τ} ∪C ⊂ Top A. Hence u ∈ cdκ(ĉ) = ◻̂c.

We obtain that ◻̂a = cdν(â) for any element a of A. Therefore ν ∈ Top A
and ν is an upper bound for C in P .

We see that any chain in P has an upper bound. By Zorn’s lemma, there
is a maximal element in P , which is the required maximal extension of τ . ◻

The following lemma was inspired by Lemma 4.5 from [3].

Lemma 5.8 Suppose A is a Magari algebra and τ is a maximal element of
TopA. Then, for any u ∈ UltA and any V ∈ τ , we have V ∪{u} ∈ τ or there are
a τ -open set W and an element a of A such that u ∈W , ◻a ∉ u and V ∩W ⊂ â.

Proof. Assume u ∈ Ult A and V ∈ τ . It is sufficient to consider the case
when V ∪ {u} ∉ τ . Let σ be the coarsest topology containing τ and the set
V ∪ {u}. The topology σ is scattered as an extension of a scattered topology.
Since τ is a maximal element of Top A, the topology σ does not belong to
Top A and there exists an element a of A such that ◻̂a ≠ cdσ(â). Notice that◻̂a = cdτ(â) ⊂ cdσ(â), because τ ⊂ σ. Thus there is an ultrafilter h such that
h ∈ cdσ(â) and h ∉ cdτ(â) = ◻̂a. Hence there is a punctured σ-neighbourhood
of h that is included in â. In addition, note that τ ∪ {W ∩ (V ∪ {u}) ∣ W ∈ τ}
is a basis of σ. We see that h ∈ B and B ∖ {h} ⊂ â for some B ∈ τ ∪ {W ∩(V ∪ {u}) ∣ W ∈ τ}. If B ∈ τ , then h ∈ cdτ(â). This is a contradiction with
the condition h ∉ cdτ(â). Therefore B has the form W ∩ (V ∪ {u}) for some
W ∈ τ . Since h ∈ B = W ∩ (V ∪ {u}), we have h ∈ V or h = u. If h ∈ V , then
h ∈W ∩ V and (W ∩ V ) ∖ {h} ⊂ â. In this case, we obtain h ∈ cdτ(â), which is
a contradiction. Consequently h ∉ V and h = u. It follows that ◻a ∉ u, u ∈ W
and W ∩ V = (W ∩ (V ∪ {u})) ∖ {h} ⊂ â. ◻

For a scattered topological space (X,τ), the derivative topology τ+ on X is
defined as the coarsest topology including τ and {dτ(Y ) ∣ Y ⊂ X}. The next
lemma was inspired by Lemma 5.1 from [3].

Lemma 5.9 Suppose A = (A,∧,∨,→,0,1,◻) is a Magari algebra and τ is a
maximal element of TopA. Then the topology τ+ is generated by τ and the sets
dτ(â) for a ∈ A.

Proof. Assume τ is a maximal element of Top A. Let τ ′ be the topology
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generated by τ and the sets dτ(â) for a ∈ A. It is clear that τ ′ ⊂ τ+. We prove
the converse. We shall check that dτ(Y ) is τ ′-open for any Y ⊂ Ult A.

Consider any Y ⊂ Ult A and any u ∈ dτ(Y ). We claim that there is a τ ′-
neighbourhood of u entirely contained in dτ(Y ). Suppose ◻ ◻ a ∈ u and ◻a ∉ u
for some a ∈ A. In this case, we see u ∉ ◻̂a and

{u} ∪ ◻̂a ⊂ ◻̂ ◻ a = cdτ(◻̂a) ⊂ cdτ({u} ∪ ◻̂a).
Hence the set {u} ∪ ◻̂a is τ -open. In addition, we see

u ∈ (Ult A ∖ ◻̂a) = (Ult A ∖ cdτ(â)) = dτ(¬̂a) ∈ τ ′.
It implies that {u} = ({u} ∪ ◻̂a) ∩ (Ult A ∖ ◻̂a) ∈ τ ′.
In other words, the ultrafilter u is a τ ′-isolated point of Ult A.

Now consider the case when, for any a ∈ A, we have ◻ ◻ a ∉ u whenever◻a ∉ u. By intτ(X), we denote the τ -interior of a set X. Recall that cdτ(X) =
cdτ(intτ(X)) for any set X in any topological space. Put X = UltA∖Y . Since
u ∈ dτ(Y ) and u ∉ cdτ(X) = cdτ(intτ(X)), the set {u} ∪ intτ(X) ∉ τ . By
Lemma 5.8, there are a τ -open set W and an element c of A such that u ∈W ,◻c ∉ u and intτ(X) ∩W ⊂ ĉ. Since, for any a ∈ A, ◻ ◻ a ∉ u whenever ◻a ∉ u,
we obtain ◻ ◻ c ∉ u. It follows that

u ∈W ∩ (Ult A ∖ ◻̂ ◻ c) =W ∩ dτ(¬̂ ◻ c) ∈ τ ′.
Thus W ∩ (Ult A ∖ ◻̂ ◻ c) is a τ ′-neighbourhood of u. It remains to show that

W ∩ (Ult A ∖ ◻̂ ◻ c) ⊂ dτ(Y ).
Indeed, we have

cdτ(X) ∩W ⊂ cdτ(intτ(X)) ∩ cdτ(W ) == cdτ(intτ(X) ∩W ) ⊂ cdτ(ĉ) ⊂ cdτ(cdτ(ĉ)) = ◻̂ ◻ c, (1)

because W is a τ -open set and intτ(X) ∩W ⊂ ĉ. Hence,

W ∩ (Ult A ∖ ◻̂ ◻ c) ⊂W ∩ (Ult A ∖ (cdτ(X) ∩W )) (from 1)=W ∩ ((Ult A ∖ cdτ(X)) ∪ (Ult A ∖W ))=W ∩ (dτ(Y ) ∪ (Ult A ∖W ))= (W ∩ dτ(Y )) ∪ (W ∩ (Ult A ∖W ))=W ∩ dτ(Y )⊂ dτ(Y ).
This argument shows that any element of dτ(Y ) belongs to this set together

with a τ ′-neighbourhood. We conclude that dτ(Y ) is τ ′-open and τ ′ = τ+. ◻



Shamkanov 593

6 Global neighbourhood completeness

In this section we prove that any ◻-founded GLP-algebra can be embedded
into the powerset algebra of a GLP-frame. As a corollary, we obtain global
neighbourhood completeness for GLP w.r.t. non-well-founded derivations.

Analogously to the case of Magari algebras, by Ult A, we denote the
set of ultrafilters of a GLP-algebra A. For a GLP-algebra A = (A,∧,∨,→
,0,1,◻0,◻1, . . . ), we denote the Magari algebra (A,∧,∨,→,0,1,◻i) by Ai. We
see Ult A = Ult Ai for any i ∈ N. We call (maximal with respect to inclusion)
elements of Top Ai (maximal) i-topologies on Ult A.

Lemma 6.1 For any GLP-algebra A and any maximal i-topology τ on Ult A,
there exists a maximal (i + 1)-topology ν on Ult A such that τ ⊂ ν and dτ(Y )
is ν-open for each Y ⊂ Ult A.

Proof. Assume we have a GLP-algebra A and a maximal i-topology τ on
Ult A. Consider the coarsest topology τ ′ containing τ+ and all sets of the form{u}∪⊡̂i+1a, where u ∈ UltA, ◻i+1a ∈ u and ⊡i+1a = a∧◻i+1a. We see that τ ⊂ τ ′
and dτ(Y ) is τ ′-open for each Y ⊂ Ult A. Trivially, the topology τ ′ is scattered
as an extension of a scattered topology. We claim that τ ′ ∈ Top Ai+1.

We shall show that ◻̂i+1a = cdτ ′(â) for any element a of A. First, we
check that ◻̂i+1a ⊂ cdτ ′(â). For any ultrafilter d, if d ∈ ◻̂i+1a, then ⊡̂i+1a is
a punctured τ ′-neighbourhood of d. Also, ⊡̂i+1a ⊂ â. By definition of the
co-derived-set operator, d ∈ cdτ ′(â). Consequently ◻̂i+1a ⊂ cdτ ′(â).

Now we check that cdτ ′(â) ⊂ ◻̂i+1a. Consider any ultrafilter d such that
d ∉ ◻̂i+1a. In addition, let W be an arbitrary punctured τ ′- neighbourhood of
d. It is sufficient to show that W is not included in â.

We have ◻i+1a ∉ d, d ∉ W and W ∪ {d} ∈ τ ′. From Lemma 5.9, there is a
basis of τ ′ consisting of alls sets of the form

V ∩ dτ(b̂1) ∩⋯ ∩ dτ(b̂n) ∩ ({u1} ∪ ⊡̂i+1c1) ∩⋯ ∩ ({um} ∪ ⊡̂i+1cm),
where V ∈ τ , {b1, . . . , bn} and {c1, . . . , cm} are (possibly empty) subsets of A,{u1, . . . , um} is a subset of Ult A. In addition, ◻i+1ck ∈ uk for k ∈ {1, . . . ,m}.
Hence we have

d ∈ (V ∩ dτ(b̂1) ∩⋯ ∩ dτ(b̂n) ∩ ({u1} ∪ ⊡̂i+1c1) ∩⋯ ∩ ({um} ∪ ⊡̂i+1cm)) ⊂W∪{d}
for some element of the basis of τ ′. We see that the ultrafilter d contains◇ib1, . . . ,◇ibn and ◻i+1c1, . . . ,◻i+1cm. Also, ◇i+1¬a ∈ d. In any GLP-algebra,
we have

⋀{◇ib1, . . . ,◇ibn} ⩽ ◻i+1⋀{◇ib1, . . . ,◇ibn},⋀{◻i+1c1, . . . ,◻i+1cm} ⩽ ◻i+1⋀{⊡i+1c1, . . . ,⊡i+1cm}.
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Further, we have

(◇i+1¬a) ∧⋀{◇ib1, . . . ,◇ibn,◻i+1c1, . . . ,◻i+1cm} ⩽⩽ (◇i+1¬a) ∧ ◻i+1⋀{◇ib1, . . . ,◇ibn} ∧ ◻i+1⋀{⊡i+1c1, . . . ,⊡i+1cm} ⩽⩽◇i+1 ((¬a) ∧⋀{◇ib1, . . . ,◇ibn,⊡i+1c1, . . . ,⊡i+1cm}) ⩽⩽◇i ((¬a) ∧⋀{◇ib1, . . . ,◇ibn,⊡i+1c1, . . . ,⊡i+1cm})
We obtain ◇i ((¬a) ∧⋀{◇ib1, . . . ,◇ibn,⊡i+1c1, . . . ,⊡i+1cm}) ∈ d and

d ∈ dτ (¬̂a ∩ dτ(b̂1) ∩⋯ ∩ dτ(b̂n) ∩ ⊡̂i+1c1 ∩⋯ ∩ ⊡̂i+1cm) .
Since V is a τ -neighbourhood of d, there exists an ultrafilter w such that

w ∈ (V ∖ {d}) ∩ ¬̂a ∩ dτ(b̂1) ∩⋯ ∩ dτ(b̂n) ∩ ⊡̂i+1c1 ∩⋯ ∩ ⊡̂i+1cm ⊂W.
Consequently w is an element of W , which does not belong to â.

We obtain that none of the punctured τ ′-neighbourhoods of d are included
in â. In other words, d ∉ cdτ ′(â) for any d ∉ ◻̂i+1a. This argument shows that
cdτ ′(â) ⊂ ◻̂i+1a. Hence ◻̂i+1a = cdτ ′(â). We see τ ′ ∈ Top Ai+1.

Now we extend the topology τ ′ applying Lemma 5.7 and obtain the required
maximal (i + 1)-topology ν on Ult A. ◻
Lemma 6.2 For any ◻-founded GLP-algebra A, there exists a series of topolo-
gies τ0, τ1, . . . on Ult A such that (Ult A, τ0, τ1, . . . ) is a GLP-space and τi ∈
Top Ai for any i ∈ N.

Proof. From Lemma 5.5, there exists a topology τ ∈ Top A0. By Lemma
5.7, the topology τ can be extended to a maximal 0-topology τ0. Apply-
ing Lemma 6.1, we obtain a series of topologies τ1, τ2, . . . on Ult A such that(Ult A, τ0, τ1, . . . ) is a GLP-space and τi ∈ Top Ai for any i ∈ N. ◻

The following theorem is analogous to Theorem 5.6 and is obtained by a
similar argument. So we omit the proof.

Theorem 6.3 A GLP-algebra is ◻-founded if and only if it is embeddable into
the powerset GLP-algebra of a GLP-frame.

Theorem 6.4 For any set of formulas Γ and any formula ϕ, we have

Γ ⊢g ϕ⇐⇒ Γ⊫g ϕ⇐⇒ Γ ⊧g ϕ.
Proof. From Theorem 3.7 and Proposition 4.6, it remains to show that Γ⊫ ϕ
whenever Γ ⊧ ϕ. Assume Γ ⊧ ϕ. Also assume we have a ◻-founded GLP-algebraA = (A,∧,∨,→,0,1,◻0,◻1, . . . ) and a valuation v in A such that v(ψ) = 1 for
any ψ ∈ Γ. We shall prove v(ϕ) = 1.

By the previous theorem, there exist a GLP-frame X = (X,◻0,◻1, . . . ) and
a mapping f ∶A → P(X) such that f is an embedding of A into the powerset
GLP-algebra of X . We see that w = f ○v is valuation over X , where (X ,w) ⊧ ψ
for any ψ ∈ Γ. From the assumption Γ ⊧ ϕ, we obtain (X ,w) ⊧ ϕ. Since f is
an embedding, we conclude that v(ϕ) = 1. ◻
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Appendix

Proof. [Proof of Proposition 2.2] First, we recall an important result from [2].
The logic J is obtained from GLP by replacing axiom schemes (iv-v) with the
following ones all of which are provable in GLP:

(vi) ◇iψ → ◻j ◇i ψ for i < j;
(vii) ◻iψ → ◻j ◻i ψ for i < j;
(viii) ◻iψ → ◻i ◻j ψ for i < j.

A Kripke J-frame (W,R0,R1, . . . ) is a set W together with a sequence of
binary relations on W such that

● Ri are transitive and conversely well-founded relations;

● xRiy and yRjz implies xRiz, for i < j;
● xRjy and xRiz implies yRiz, for i < j;
● xRjy and yRiz implies xRiz, for i < j.
A notion of Kripke J-model is defined in the standard way.

L. Beklemishev showed in [2] that the logic J is Kripke complete, i.e. it is
complete for its relational interpretation over the class of Kripke J-frames. In
addition, he proved the following result: if GLP ⊬ ψ, then there is a J-model K
such that all theorems of GLP are true in K and K ⊭ ψ (see Theorem 4 from
[2]).

Now we prove that for any formula ξ

GLP ⊢ ξ ⇐⇒ ∅ ⊢g ξ.
The left-to-right implication trivially holds. We prove the converse by reductio
ad absurdum. Assume GLP ⊬ ξ and there is an ∞-derivation π with the root
marked by ξ in which all leaves are marked by some axioms of GLP. Then there
exist a J-model K and its world w such that K,w ⊭ ξ and all theorems of GLP
are true at all worlds of K. For a node x of the ∞-derivation π, let ψx be the
formula of the node x. We define a sequence of pairs (xn,wn), where xn is a
node of π and wn is a world of K, such that K,wn ⊭ ψxn . Let x0 be the root
of π and w0 = w.

Given a pair (xn,wn) such that K,wn ⊭ ψxn , we define (xn+1,wn+1). We
see that xn is not a leaf of π. Indeed, if xn is a leaf of π, then the formula
ψxn is an axiom of GLP, which is a contradiction with the assertion that all
theorems of GLP are true at all worlds of K. We have that xn is not a leaf of
π and ψxn is obtained by an application of an inference rule in π.

Suppose ψxn is obtained by the rule (nec). Let xn+1 be the premise of xn.
We have ψxn = ◻0ψxn+1 and K,wn ⊭ ◻0ψxn+1 . Then there is a world wn+1 such
that wnR0wn+1 and K,wn+1 ⊭ ψxn+1 .



596 Global neighbourhood completeness of the provability logic GLP

If ψxn is obtained by the rule (mp), then there is a node y such that y is a
premise of xn and K,wn ⊭ ψy. Set xn+1 = y and wn+1 = wn.

The sequence (xn,wn) is well-defined. We see that x0, x1, . . . is an infi-
nite branch in π. In addition, the sequence w0,w1, . . . satisfies the condition:
wnR0wn+1 if xn is a conclusion of the rule (nec) in π, and wn = wn+1, other-
wise. Since π is an ∞-derivation, the branch x0, x1, . . . contains infinitely many
applications of the rule (nec). Consequently, there is an infinite ascending se-
quence of worlds in K with respect to the relation R0, which is a contradiction
with the assertion that K is a J-model. This contradiction concluds the proof.◻
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Abstract

In [14], I presented three 13th-century approaches to modality and modal logic, fo-
cusing on the well-developed and clearly articulated views of William of Sherwood (fl.
1250), and contrasting them with the more nascent and brief views found in Pseudo-
Aquinas and Aquinas. That paper focused on Sherwood’s modal theory as found in
his Introductiones ad Logicam [10], without attempting to integrate it with what he
has to say about modes, modality, and modal reasoning in his other main treatise,
the Syncategoremata [11]. This paper extends [14] by doing this integration.

Keywords: 13th century, contingency, modal logic, mode, necessity,
syncategorematic terms, William of Sherwood

1 Introduction

In [14], I presented three 13th-century approaches to modality and modal logic,
focusing on the well-developed and clearly articulated view found in William
of Sherwood’s (fl. 1250) Introductiones ad Logicam [10], and contrasting them
with the more nascent and brief views found in Pseudo-Aquinas’s Summa totius
logicae Aristotelis and Thomas Aquinas’s short, early treatise De proposition-
ibus modalibus. There, we considered the three authors’ definitions of mode and
modal proposition; the ways in which modal propositions can be constructed
and classified according to their quality, quantity, and whether they are de re
or de dicto (or adverbial or nominal); their truth conditions; the inferential
relations that hold between these propositions; and the treatments of modal
syllogisms.

Of the three accounts considered in that paper, Sherwood’s was by far the
most sophisticated and consistent; this despite the fact that he does not discuss
modal syllogisms in his Introductiones (or indeed in any other known extant
text). But at the time, I focused on Sherwood’s modal theory as found in his
Introductiones without attempting to integrate it with what he has to say about
modes, modality, and modal logic in his other main treatise, the Syncategore-
mata [11], preferring instead to compare his analysis with two contemporary
texts. As a contribution to our understanding of modality and modal logic
in the 13th century, this paper extends the previous analysis of Sherwood on
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modality in [14] by doing this integration. This paper has four main parts:
First, in §2, I introduce William of Sherwood and discuss his importance for
the study of the history of logic generally and modal logic specifically. In §3 we
provide the context for his discussion of modal terms in the Syncategoremata by
explaining the subgenre of medieval logic it is situated in, and why one would
expect to find modal terms in it. With this background in place, the main con-
tribution of the paper is in §4, an exposition and analysis of Sherwood’s chapter
on modal terms in the Syncategoremata. This material is supplemented in §5
by consideration of what Sherwood has to say about necessity and contingency
in the other chapters. We conclude in §6, outlining scope for future work and
some of the limitations of the present study.

2 Who is William of Sherwood, and why should we care
about him?

This is not the place to rehearse the medieval history of logic more generally nor
indeed of modal logic more specifically; the reader interested in such a compre-
hensive overview is directed to [16]. What is important to know is that the 13th
century was a period of both consolidation—as the recently translated texts
of Aristotle and Avicenna circulated amongst the newly-birthed universities—
and of invention—as these texts provided European logicians with new sources
for innovation and development. By the middle of the 13th century, the es-
tablishment of the universities of Paris and Oxford fifty years earlier and the
foundation of their curriculum upon the trivium (the disciplines of logic, gram-
mar, and rhetoric) created a need for textbooks on these topics. Between 1240
and 1260, four influential textbooks were produced by authors whose names
and identities we know (albeit some to a lesser degree). These are the Intro-
ductiones ad Logicam by William of Sherwood [10,12]; Roger Bacon’s Art and
Science of Logic [2]; Lambert of Auxerre’s Summa Lamberti [9,4]; and Peter of
Spain’s Summulae Logicales [3].

Of these books, Sherwood’s is the most interesting because it is one of
the earliest and was directly influential on the succeeding books—Bacon even
says, in his Opus tertium (1267), that Sherwood was “much wiser than Albert
[the Great]; for in philosophia communis, no one is greater than he” [10, p. 6].
Sherwood was born in the early 13th century, probably between 1200 and 1205,
and died sometime between 1266 and 1272. Though records of his early life
are uncertain, from references by other scholars (not just Bacon) to him and
his works, it seems likely that Sherwood was teaching logic at the University
of Paris between 1235 and 1250, and then became a master at Oxford in 1250
[11, p. 3]. As a result, Sherwood is one of the earliest named writers we know
of in the logica nova tradition, the tradition of logic that built upon Aristotle
but extended it with the introduction of two new areas of study: the study
of the properties of terms (proprietates terminorum), and of syncategorematic
words (syncategoremata). The topic of the properties of terms, which include
signification, supposition, copulation, and appellation, makes up one chapter
of his Introductiones, which also covers such basic logical notions as proposi-



Uckelman 599

tions, predicables, syllogisms, different types of non-syllogistic arguments, and
sophisms and sophistical reasoning. But syncategorematic words were impor-
tant enough to get a treatise of their own.

There is no clear evidence as to when the Syncategoremata, or Treatise on
Syncategorematic Words, was written. Kretzmann argues that “although Sher-
wood exhibits a higher level of logical sophistication” in the Syncategoremata
than in the Introductiones, he “regularly omits details and ignores technical
distinctions he had laid down in the earlier book”; as a result, Kretzmann
concludes that the Syncategoremata was likely written quite awhile after the
Introductiones [11, p. 6]. The text was first edited by O’Donnell [8] and trans-
lated into English by Kretzmann [11]. A more recent Latin edition, along with
a German translation, was produced by Kann and Kirchhoff [13]. All Latin ref-
erences are taken from [8] because I did not have access to [13] while completing
the paper (see §6 for a further discussion of this).

Kretzmann describes this text as “an advanced treatise”, designed for stu-
dents who have already mastered the basics found in the Introductiones. After
a short introduction where Sherwood introduces the topic and provides foun-
dational definitions, the text is divided up into chapters each covering a spe-
cific syncategorematic term or group of related syncategorematic terms. These
include: omnis (‘every’/‘all’); totum (‘whole’); dictiones numerales (number
words); infinita in plurali (‘infinitely many’); uterque (‘both’); quaelelibet (‘of
every sort’); nullus (‘no’); nihil (‘nothing’); neutrum (‘neither’); praeter (‘but’);
solus (‘alone’); tantum (‘only’); est (‘is’); non (‘not’); necessario (‘necessarily’)
and contingenter (‘contingently’); incipit (‘begin’) and desinit (‘ceases’); si
(‘if’); nisi (‘unless’); quin (‘but that’); et (‘and’); vel (‘or’); an (‘whether’/‘or’);
ne (an enclitic negating particle); and sive (‘whether. . . or’). Naturally, our in-
terest here is the chapter on necessario and contingenter, though some relevant
material is also found in other chapters.

3 What are syncategorematic words?

Sherwood opens his treatise with the following claim:

In order to understand anything one must understand its parts; thus in order
that the statement may be fully understood one must understand the parts
of it [11, p. 13]. 1

Understanding the parts that make up a statement is the central focus of
medieval treatises on the properties of terms and on syncategorematic terms.
Sherwood’s introduction to the Syncategoremata proceeds to a definition of
‘syncategoremata’ or ‘syncategorematic term’ via a series of binary divisions,
resulting in a complete classification of the parts of statements. This classifi-
cation is represented in Figure 1.

The first division is between the principal parts of the statement, that is,

1 Quid ad cognitionem alicujus oportet cognoscere suas partes; ideo ut plene cognoscatur
enuntiatio oportet ejus partes cognoscere [8, p. 48].
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Parts of statements

Principal

Substantival name Verb

Secondary

w.r.t. subject/predicate w.r.t. belonging

Fig. 1. Sherwood’s classification of parts of statements.

substantival names (nomen substantivum) and verbs (verbum), and the sec-
ondary parts of a statement, which are ‘determinations’ of the principal parts.
As Kretzmann notes, “determinatio is a technical notion in medieval logic” [11,
p. 14], deriving from the notion of secondary substance outlined in Aristotle’s
Categories 3b10ff, where secondary substances are distinguished from primary
substances by means of certain qualifications. While this section of the Cate-
gories is discussing metaphysics rather than language or logic, the parallel with
the parts of speech is clear: Substances are either primary (without qualifica-
tion) or secondary (with qualification); the parts of speech are either principal
(the unqualified or undetermined parts without which a statement or sentence
cannot exist) or secondary (the parts that qualify or determine the principal
parts).

These principal parts, substantive names (or nouns) and verbs, are parts of
speech that can be used as subjects and predicates of sentences; furthermore,
they are principal because a complete statement can be made with these parts
and no others. A name (or noun or nomen) is, per Sherwood’s Introductiones,
“an utterance significant by convention, apart from time, finite 2 and direct 3 ,
no part of which taken by itself signifies anything” [10, p. 23] 4 ; this definition
distinguishes names from (a) non-significative words, (b) words which signify
but not by convention, (c) sentences and phrases, and (d) verbs. The substan-
tive names include general names like ‘human’ and ‘animal’, proper names like
‘Socrates’ and ‘Sara’, and substantivised adjectives such as ‘the white [thing]’.
A verb is “an utterance significant by convention, together with time, finite and
direct, no part of which taken by itself signifies anything” [10, p. 24]; that is,
verbs are distinguished from names by being tensed. 5 What ties these words

2 A finite term, in medieval parlance, is one which signifies a determinate or definite number
of things. Infinite terms are the complements of finite terms. For instance, ‘man’ is a finite
term (and hence a noun), and ‘non-man’ is an infinite term.
3 A term is direct (Lat. recte) if it is in the nominative case (or indicative mood, for verbs).
Sherwood notes that this is the logician’s definition of a noun, under which oblique cases of
terms are not nouns.
4 At the time of writing, I did not have access to a Latin edition of the Introductiones; see
the conclusion of this paper.
5 In giving these definitions, Sherwood is drawing upon the earlier grammatical tradition
due to Abelard via Priscian and going all the way back to Dionysius of Thrax [1,5].
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together is that they are significative, that is, they have meaning in isolation
from other words. It is the properties of these words, (signification, supposi-
tion, copulation, and appellation), that form the topic of the chapter on the
properties of terms in Sherwood’s Introductiones. As a result, they are not
our present focus. However, as Kretzmann points out, “some understanding
of these notions is essential for a thorough understanding of Sherwood’s treat-
ment of syncategorematic words” [11, p. 5], so we will provide the necessary
background information as required.

Secondary parts “are not necessary for the statement’s being”, and include
things such as “the adjectival name, the adverb, and conjunctions and prepo-
sitions” [11, p. 13]. 6 They are divided into two types, those which are “deter-
minations of principal parts in respect of the things belonging to them” and
those which are “determinations of principal parts insofar as they are subjects
or predicates” [11, pp. 14–15]. 7 The distinction here is between words that
limit the scope of a noun or a verb and those that affect the way the noun or
verb functions as a grammatical or logical subject or predicate in a statement.
For instance (to use the examples Sherwood provides), in ‘white man’ (albus
homo), ‘white’ is a secondary part of the first type; it provides a qualification
of something that belongs to the word ‘human’ 8 , while in ‘every human’, ‘ev-
ery’ does not provide a qualification of a thing or things which are human,
but instead says something about the relationship between the subject of the
sentence and the predicate. What this something is will depend not merely
on the phrase alone, but also where that phrase occurs in the sentence: For in
“Every human is an animal”, ‘every human’ will not be given the same analysis
as it will in “An animal is every human”.

It is for this reason—that the signification of a phrase like ‘every human’
is only knowable in a complete grammatical context, and not in isolation—
that secondary parts of the second type are called syncategorematic, that is
“ ‘sin-’—i.e., ‘con-’—and ‘categoreuma’—i.e., ‘significative’ or ‘predicative’, for
a syncategorematic word is always joined with something else in discourse”
[11, p. 16] 9 , where a categoreuma or categorematic word is one that is either a
primary part, or a secondary part of the first type.

So here we have our final definition:

Definition 3.1 (Syncategoremata) A syncategorematic word or term is a

6 non sunt necessaria ad esse enuntiationis. . . nomen adjectivum et adverbium et conjunc-
tiones et praepositiones [8, p. 48].
7 quaedam sunt determinationes partium principalium ratione suarum rerum. . . quaedam
sunt determinationes partium principalium in quantum sunt subjecta vel praedicata [8, p. 48].
8 Latin homo refers to humans of any gender; the addition of the word albus, with masculine
grammatical gender, not only restricts homo to those humans which are white, but also to
those humans which are male. Because English is not as strongly gendered as Latin is, it is
sometimes hard to reproduce these subtleties in translation. Nevertheless, I will in general
use ‘human’ for unmodified homo, but ‘man’ or ‘woman’ where appropriate for modified
homo.
9 ‘sin’ quod est ‘con’ et ‘categoreuma‘ quod est ‘significativum’ vel ‘praedicativum’ quasi
conpraedicativum; semper enim cum alio jungitur in sermone [8, p. 48].
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secondary part of a statement which is a determination of the principal parts
of the statement with respect to their being subjects and predicates.

From the preceding definition, it should be clear that ‘necessarily’, ‘contin-
gently’, and many other modal adverbs are syncategoremata: They are de-
terminations of the principal parts of a statement in so far as those parts are
subjects or predicates.

Here it is worth noting that Sherwood only considers modal adverbs in his
discussion of syncategorematic terms. This hearkens back to his discussion of
modes and modality in the Introductiones, in which he admits only adverbs as
modes, unlike Aquinas and Pseudo-Aquinas who also allow modal adjectives
(e.g., “That Socrates is a man is necessary”), cf. [14, p. 391].

4 Necessity and contingency as syncategoremata

In this section, we work through the chapter on modal syncategorematic terms,
providing an analysis of and commentary on Sherwood’s views.

First, Sherwood notes that such words can be used either categorematically
or syncategorematically, which brings to light a point we have not yet made
and so should make now: While we speak of ‘categorematic terms’ and ‘syncat-
egorematic terms’, this is somewhat sloppy usage. Instead, we should speak of
the uses of terms: For some terms are sometimes used categorematically—for
instance, when we speak of ‘the whole man’ (omnis homo)—and sometimes
used syncategorematically—for instance, when we speak of ‘every man’ (om-
nis homo)—while other terms can be used only categorematically and others
only syncategorematically. 10 The focus in this chapter is, naturally, the syn-
categorematic use of the terms, and we will continue to sometimes speak of
‘syncategorematic terms’ as opposed to ‘terms used syncategorematically’.

Sherwood argues that modal adverbs such as ‘necessarily’ can be used both
categorematically (that is, determining the verb it modifies “in respect of the
thing belonging to it” [11, p. 101] 11 ) and syncategorematically (that is, deter-
mining it “in respect of the composition belonging to it, or insofar as it is a
predicate” [11, p. 101] 12 ). In support of this he gives the following example
[11, p. 101] 13 :

The heaven moves necessarily. (1)

There are two ways that (1) can be understood. In the first case, “it sig-
nifies. . . that the motion of the heaven is necessary” [11, p. 101]. 14 On this
understanding, ‘necessarily’ modifies the motion of the heaven, which is a thing
that belongs to the term ‘moves’, and it is an answer to the question “How does
the heaven move?”—it moves necessarily—or “What kind of movement does

10For more on this point, and the consequences it has in terms of logical analysis, see [15].
11 ratione suae rei [8, p. 74].
12 ratione compositionis suae vel in quantum est praedicatum [8, p. 74].
13Caelum movetur necessario [8, p. 74].
14 significat quod motus caeli sit necessarius [8, p. 74].
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the heaven have?”—necessary movement. The sentence itself, though, is not
modal; it is a simple assertoric sentence, which can be either true (if the heav-
ens in fact do move necessarily) or false (if they either do not move at all or
their movement is contingent).

In the second way, the sentence signifies “that the composition of the verb
with the subject is necessary” [11, p. 101] 15 , that is, “the heaven moves” is a
necessary statement. (An analogous sophism, involving Socrates, running, and
moving, is discussed in the chapter on conditionals [11, p. 125].)

The preliminaries being rehearsed, the primary focus of this chapter is an
analysis of possible sophisms (logical puzzles or puzzles in analysis) that can
arise from either conflating the syncategorematic and categorematic uses of
a word, or from ambiguities resulting from combining the words with other
syncategorematic words. The procedure is to raise a particular sophism and
then solve it, and from this deduce certain rules governing the use of modal
adverbs.

What is a sophism? Briefly, it is a sentence which has two seemingly equally
plausible analyses that lead to opposite conclusions. (An example of a sophism
familiar to modern readers is the Liar sentence: Both the analysis from which
one concludes that it is true and the analysis from which one concludes that it
is false seem equally plausible.) Medieval logicians used these sentences, and
their opposing analyses, to distinguish good logical inference from sophistical
inference. In the case of many of the sophisms discussed in this chapter, the ex-
istence of opposing analyses trades on a conflation of the syncategorematic and
categorematic use of the same term. Other analyses involve scope ambiguities
introduced by distributives (including quantifiers) and exceptives. In each case,
Sherwood presents a sophism sentence, and then gives both a probatio ‘proof’
and a contra ‘[proof] contra’. We will follow suit in presenting the sophisms,
in what follows.

4.1 The sophisms

The first sophism is this:

Sophism 4.1 The soul of the Antichrist will be necessarily [11, p. 101]. 16

Proof. Proof: The soul of Antichrist will have necessary being because at some
time it will have unceasing, incorruptible being.

On the contrary, [the soul of Antichrist] will be contingently because it is
possible that it will not be [11, p. 101]. 17 2

This sophism is solved by distinguishing the categorematic use of ‘necessarily’
and the syncategorematic use, as in the analysis of (1). If ‘necessarily’ is

15quod compositio hujus verbi cum hoc subjecto sit necessaria [8, p. 74].
16Anima antichristi erit necessario [8, p. 74].
17Probatio: anima antichristi habebit esse necessarium quia aliquando habebit esse non
cessans incorruptibile.
Contra: contingenter erit quia possibile est ipsum non fore [8, p. 74].
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taken categorematically, then it determines what type of being Antichrist’s
soul will have. For when Antichrist exists, their soul will have its existence
necessarily, following traditional 13th-century thought that souls exist eternally,
necessarily, and incorruptibly (cf., e.g., [7]). Thus, the probatio is correct under
the categorematic analysis.

If, however, ‘necessarily’ is taken syncategorematically, then the contra is
correct: “The soul of the Antichrist will be” is not necessarily true, because
Antichrist’s existence is contingent (and if they don’t exist, then there is no
soul will be ‘the soul of the Antichrist’).

In this sophism, we see a sentence that is true when the modal adverb
modifies the predicate, but false when it modifies the sentence as a whole. In
the next sophism, we see the opposite:

Sophism 4.2 Contingents necessarily are true [11, p. 102]. 18

Proof. Proof: ‘Contingents are true’ is necessary; therefore it will be true
when it has been modified by the mode of necessity; therefore ‘contingents
necessarily are true’ is true.

On the contrary, no contingents are necessarily true [11, p. 102]. 19 2

Both Sherwood’s example and his argumentation is substantially compressed
here, so let us unpick it. First, the fact that

Contingents are true. (2)

is an indefinite sentence is important for its analysis; for Sherwood, such in-
definite (unquantified) sentences “do not determine whether the discourse is
about the whole [of the subject] or about a part” [10, p. 29]. Second, though
Sherwood does not state this explicitly anywhere in either the Introductiones or
the Syncategoremata, he takes it as given that contingent sentences are some-
times true and sometimes false. Thus (2) is not only a true statement, it is
also necessary, for if a contingent sentence was never true, then it would not
be a contingent sentence, and this is true of any contingent sentence. Since the
statement is necessarily true, we can add the modal adverb ‘necessarily’ to it,
scoping over the entire sentence, and maintain truth. This is the syncategore-
matic use of the term. However, if we take ‘necessarily’ categorematically, to
modify the predicate ‘true’ only, then it is clear why the statement would be
false: For no contingent sentence is necessarily-true. 20

At this point, Sherwood introduces some new vocabulary to describe what’s
going on: He says that in the first case (when the term is interpreted syn-

18Contingentia necessaria [sic] sunt vera [8, p. 74].
19Probatio: contingentia sunt vera; haec est necessaria; ergo modificato modo necessitatis
erit vert; ergo haec est vera: contingentia necessario sunt vera.
Contra: nulla contingentia necessario sunt vera [8, p. 74].
20Sentence structure in English is less flexible, and hence more ambiguous, than in Latin.
When we intend the categorematic reading of ‘necessarily’ as a modifier of a subject or
predicate term, we will hyphenate it with that term. When it is not so hyphenated, it should
be read syncategorematically, as an adverb modifying the verb.
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categorematically), the modal adverb ‘necessarily’ is being used as a note of
coherence, because it modifies the coherence of the subject and the predicate.
In the second case (when the term is used categorematically), it functions as
a note of inherence, because it expresses something about how the predicate
inheres in some subject (namely, necessarily).

The third sophism illustrates how modal adverbs interact with exclusive
words such as ‘only’ (solus) or ‘alone’ (tantum).

Sophism 4.3 Suppose that Socrates, Plato, and Cicero are running necessarily
and that a fourth [man is running] contingently, and that there are no more
[men]. Then only three men are running necessarily [11, p. 103]. 21

Proof. Proof: Three men necessarily are running, [and no others necessarily
are running;] therefore only three [men are running necessarily].

On the contrary, ‘only three men are running’ is contingent, because when
the fourth is running it will be false and when he is not running it will be true;
therefore it will be false when it has been modified by the mode of necessity
[11, p. 103]. 22 2

In analysing this sophism, Sherwood points out that the inclusion of ‘only’ or
‘alone’ introduces an ambiguity depending on whether the modal adverb scopes
over it or not. The distinction highlighted in the probatio and contra is between
the categorematic usage, where ‘only’ modifies ‘three men’ and ‘necessarily’
modifies ‘running’:

Three men and no more than three men are necessarily-running. (3)

and the syncategorematic usage, where ‘only’ still modifies ‘three men’ but
‘necessarily’ modifies the entire sentence:

Necessarily: Three men and no more than three men are running. (4)

In (3), neither the exclusive nor the modal adverb are within the scope of each
other; because each of the three men is individually necessarily-running, and no
other man is necessarily-running, it is true that only three men are necessarily-
running. However, in (4), the wide scope of the modal adverb makes the claim
false, because there is no reason why the fourth man couldn’t start running.

A similar analysis is given of the next sophism, which involves the exclusive
‘alone’ instead of ‘only’:

Sophism 4.4 Necessaries alone are necessarily true [11, p. 103]. 23

21Currant Sortes et Plato et Cicero necessario et quartus contingenter et non sint plures.
Deinde: tantum tres homines currunt necessario [8, p. 74].
22Probatio: tres homines necessario currunt, ergo tantum tres.
Contra: tantum tres homines currunt. Hoc est contingens, quia quarto currente erit falsa,
et illo non currente erit vera: ergo modificato modo necessitatis erit falsa [8, p. 74].
23Sola necessaria necessario sunt vera [8, p. 74].
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Proof. Proof: Necessaries necessarily are true, and no others [necessarily are
true] (which is proved inductively); therefore necessaries alone necessarily [are
true].

On the contrary, ‘necessaries alone are true’ is false; therefore, it will be
false when the mode of necessity has been added. Alternatively: on the con-
trary, contingents necessarily are true since ‘contingents are true’ is necessary;
therefore not necessaries alone [necessarily are true] [11, pp. 103–104]. 24 2

To see how this sophism is analogous to Sophism 4.3, it is sufficient to observe
that the sophism sentence is equivalent to:

Only necessaries are necessarily true. (5)

The analysis of this sophism then can proceed entirely analogously to the pre-
vious one.

The final two sophisms that Sherwood considers in this chapter involve the
interaction of modal terms with distributive ones. The most familiar distribu-
tive term is omnis (‘all’ or ‘every’), and it is the topic of the first chapter of
virtually every treatise on syncategorematic words (Sherwood’s included), and
both of the next two sophisms we look at involve this distributive term.

Sophism 4.5 Suppose that all men who exist now are running necessarily as
long as they exist, and similarly with respect to future men. Thus every man
necessarily is running [11, p. 104]. 25

Proof. Proof: ‘Every man is running’ is necessary; therefore it will be true
when it has been modified with the mode of necessity. Then if Socrates is a
man, Socrates necessarily is running [11, p. 104]. 26 2

Note that in O’Donnell’s edition and in Kretzmann’s translation, there is no
proof contra. In the discussion of this sophism at [6, p. 480], an alternative
reading of the Latin text is provided: Contra: sed Sortes est homo, ergo Sortes
necessario currit (“Contra: But Socrates is a man, therefore Socrates is neces-
sarily running”). 27 This alternative removes that curiosity in the O’Donnell-
Kretzmann versions.

This sophism is solved by introducing a distinction between whether the
necessity ties to the universal statement that every man is running or whether it
ties to all of the singular statements that are implied by this universal statement

24Probatio: necessaria necessario sunt vera et nulla alia: quod probatur inductive; ergo sola
necessaria necessario etc.
Contra: sola necessaria sunt vera. Haec est falsa; ergo addito modo necessitatis erit falsa.
Vel sic contra: contingentia necessario sunt vera quia haec est necessaria: contingentia sunt
vera; ergo non sola necessaria [8, p. 74].
25Verbi gratia, currant omnes homines qui nunc sunt necessario dum sunt, et similiter de
futuribus hominibus; inde omnis homo necessario currit [8, p. 75].
26Probatio: haec est necessaria ‘omnis homo currit’; ergo modificato modo necessitatis erit
vera. Deinde: si Sortes est homo; ergo Sortes necessario currit [8, p. 75].
27 I would also like to thank one of the anonymous referees who provided me with this text
and reference.
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(e.g., “Socrates is running”, “Sara is running”, etc.), and Sherwood says that
the same distinction applies to the next sophism as well:

Sophism 4.6 Every man of necessity is an animal, but Socrates is a man;
therefore Socrates of necessity is an animal [11, p. 105]. 28

Here is a bit of a surprise: While these two sophisms involve the same distribu-
tive term, they don’t both involve modal adverbs—this despite the fact that we
noted above that Sherwood, both here and in the Introductiones, restricted the
definition of ‘mode’ to include only adverbs. The second of the two sophisms
uses the phrase de necessitate ‘of necessity’ instead of the adverbial form nec-
essario ‘necessarily’. What we should conclude here is that these two phrases,
despite their grammatical differences, do not differ in their logical import.

4.2 The Rules

From consideration of these six sophisms, Sherwood gives the following rules
that govern the use of these adverbs, both on their own and in conjunction
with other syncategorematic words:

Rule 4.1 The word ‘necessarily’ can sometimes be a note of coherence and at
other times a note of inherence [11, p. 102]. 29

This rule is illustrated by Sophism 4.2.
Sophisms 4.3 and 4.4 form the basis for the next rule:

Rule 4.2 Sometimes there is an ambiguity in that the word ‘necessarily’ can
include the word ‘alone’ or ‘only’, or vice versa [11, p. 103]. 30

Finally, sophisms 4.5 and 4.6 give rise to the following rule:

Rule 4.3 Sometimes ambiguity occurs in that the word ‘necessarily’ can either
include a division or be included by it [11, p. 104]. 31

These rules are disappointingly banal, especially in the context of Kretzmann
describing the Syncategoremata as “an advanced treatise”. They certainly don’t
seem to be very advanced principles, or have the feeling of something being dis-
covered through the analysis of these sophisms: Surely anyone after a modicum
of reflection could tell you that syntax (whether Latin or English) is in many
cases inherently ambiguous. What do we gain from identifying these principles
and classifying them as logical rules, elevating them above other principles?

It’s hard to give a satisfactory answer to this question. When one looks at a
historical logic text, one always hopes to gain insight not only into the history
of the field but into the field itself; but it is not clear what we can learn from

28Omnis homo de necessitate est animal; sed Sortes est homo; ergo Sortes de necessitate
est animal [8, p. 75].
29 Item regula quod haec dictio ‘necessario’ quandoque potest esse nota cohaerentiae, quan-
doque nota inhaerentiae [8, p. 74].
30 Item quandoque est multiplicitas eo quod haec dictio ‘necessario’ possit includere hanc
dictionem ‘solus’ sive ‘tantum’, vel e converso [8, p. 74].
31 Item quandoque accidit multiplicitas eo quod haec dictio ‘necessario’ possit includere di-
visionem vel includi ab ea [8, p. 75].
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Sherwood here. The chapter on necessity and contingency does not, itself, tell
us much more than what we already knew, or could have easily discovered on
our own through reflection on the material presented in the Introductiones.

Perhaps an alternative question to ask is not what we, as modern logi-
cians, can learn from looking at this text, but rather what Sherwood and his
contemporaries could learn from going through these exercises. Here the an-
swer is clearer: Analysing these various sophismata makes explicit the need to
be precise about the interaction between modality and quantification, so that
propositions involving both can be properly disambiguated. In this respect, one
could compare the developments of Sherwood and his contemporaries with the
modern-day developments in quantified modal logic due to Barcan Marcus. 32

5 Necessity and contingency elsewhere in the
Syncategoremata

But the chapter of necessity and contingency is not the only place in the Syn-
categoremata where modal terms are discussed. Just as this chapter included
rules governing how modal adverbs interact with other syncategorematic terms
such as ‘alone’ or ‘every’, chapters covering other terms sometimes include
sophisms involving modal adverbs or other modal terms. In this section, we
outline these sophisms and use their analyses to augment the overall picture
we’re developing.

In the chapter on conditionals, Sherwood distinguishes natural and non-
natural consequences and this distinction relies on modal notions. Natural
consequences are those where “the consequent follows from the antecedent in
respect of some state of the one relative to the other” and in this case “it notes
an ordering of things in reality” [11, p. 123]. 33 Nonnatural consequences, on
the other hand, are those where

the consequent follows from the antecedent not in respect of a state of the one
relative to the other but solely because of the impossibility of the antecedent
or the necessity of the consequent. . . it notes an ordering of things in discourse
[11, p. 123]. 34

That is, nonnatural consequences are ones that rely on the principles of ex
impossibili quodlibet sequitur and necessarium ex quolibet sequitur.

In this chapter, he also offers a distinction between conditional propositions
and categorical statements with conditional predicates [11, ch. XVII, §§16, 17].
He considers the following sophism:

32Thanks to one of the anonymous referees for suggesting this more positive way of looking
at Sherwood’s contribution.
33consequens sequi ad antecedens ratione alicujus habitudinis unius ad aliud . . . notat or-
dinem rerum secundum rem [8, p. 80].
34consequens sequi ad antecedens, non ratione habitudinis unius ad aliud, sed solum propter
impossibilitatem antecedentis vel necessitatem consequentis. . . notat ordinem rerum secun-
dum sermonem [8, p. 80].
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Sophism 5.1 What is true is false if Antichrist exists [11, p. 122]. 35

The proof contra relies on blocking the modal inference from a contingent state-
ment to an impossible one: “the antecedent [Antichrist exists] is contingent,
and what follows [what is true is false] is impossible; therefore the conditional
is false” [11, p. 122]. 36 This same principle is appealed to in solving a sophism
in §13 of the same chapter; here we also find another modal principle, related
to the one used in the definition of nonnatural consequences, invoked: “the
antecedent is impossible, therefore the conditional is necessary” [11, p. 124]. 37

These two are just examples of true nonnatural consequences, as discussed
above.

In the chapter on ‘unless’ (nisi) 38 , we find the correlate of the principle
just described: a conditional is false when “the antecedent is necessary and
what follows it is contingent” [11, p. 129]. 39

Finally, in the chapter on disjunction, Sherwood notes that disjunctions
combined with modal terms are ambiguous between scoping over the whole
disjunction or the individual disjuncts; a sentence where the modality has wide
scope can be true without the corresponding sentence with narrow scope being
true. That is, he rejects the (obviously invalid) inference:

� �(p ∨ ¬p) ⇒ � �p ∨�¬p (6)

The example he gives is [11, p. 147] 40 :

That Socrates is running or not running is necessary. (7)

What is interesting here is that he follows this example up with two more
example combinations of a modal term with a disjunction, but this time (one
of the only times in the text) the modal term is not alethic, but epistemic [11,
pp. 147–148] 41 :

You know that the stars are even or uneven [in number]. (8)

and

That the stars are even [in number]

or that the stars are odd [in number] is known to you. (9)

35Verum est falsum si antichristus est [8, p. 80].
36antecedit contingens et sequitur impossibile; ergo conditionalis falsa [8, p. 80].
37antecedens est impossibile; ergo conditionalis necessaria [8, p. 81].
38An interesting chapter in itself, for anyone who has had to motivate to undergraduates
why ‘unless’ in English can be translated into a conditional with a negated antecedent; in
Latin, nisi is literally a compound of the negative particle non ‘not’ plus the conditional
marker si ‘if’.
39antecedit necessarium et sequitur contingens [8, p. 83].
40Sortem currere vel non currere est necessarium [8, p. 89].
41Tu scis astra esse paria vel imparia. . . astra esse paria vel astra esse imparia scitur a te
[8, p. 89].
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These are classic examples of sentences where one of the disjuncts must be
true, but which one is true is not known. Unfortunately, Sherwood does not
otherwise discuss epistemic modalities, in this text or in the Introductiones.

To sum up: In other places in the Syncategormata where modal terms occur,
we can see Sherwood relying on the following modal inferential principles:

Rule 5.1 Impossibility never follows from contingency.

Rule 5.2 Contingency never follows from necessity.

Rule 5.3 Any conditional with an impossible antecedent is necessary.

As with the case of the rules deduced at the end of the previous section, these
are neither especially interesting nor especially novel rules to pose: They are
quite basic and quite orthodox.

What we saw both in this section and in §4 is not a systematic approach:
For the rules are derived from the analyses as consequences of them, rather than
the rules being stipulated in advance and then used to analyse the sophisms.
Additionally, there is a lack of systematicity in terms of completeness: There
is no guarantee that the sophisms considered in this text exhaust all of the
possible sophisms that arise from the use of modal adverbs.

This lack of systematicity may cause a contemporary logician to bristle:
For logicians are, if anything, systematic. One could even use this lack of
systematicity to dismiss Sherwood as a worthwhile object of study. In my final
remarks below, I would like to briefly argue that even if what we have found in
this analysis seems straightforward and banal, there is still value to be gained
from having undertaken this study.

6 Some final remarks

In this paper, we have revisited William of Sherwood’s modal theory through
the lens of what he has to say about necessity and contingency in his later
treatise, the Syncategoremata. This deepens our understanding of Sherwood’s
account of modality which we originally discussed in [14]. The primary features
of Sherwood’s views on modal terms in the Syncategoremata are a distinction
between the categorematic use and the syncategorematic use of modal adverbs,
which is used to solve various sophisms, and rules that govern the interaction
of modal adverbs with distributive and exclusive terms. From this, we can see
Sherwood’s close attention to the ways in which modal terms are used in actual
discourse and where sophistical reasoning can arise from ambiguity or equivoca-
tion. This highlights a possible explanation for why Sherwood’s approach lacks
the systematicity that modern logicians strive for in their theories: Sherwood
is fundamentally interested in analysing language in discourse, and language
is inherently unsystematic. There is no way to survey all possible sophisms
involving modal terms; but it is possible to highlight common problems and
errors that people can make, and to provide rules for recognizing and avoiding
those problems. In fact, the lack of systematicity and completeness can be seen
as a virtue: By identifying types of sophisms and types of problems, and rules
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to deal with these, Sherwood makes it possible for us to extrapolate fro these
rules to novel situations. What results may not be terribly interesting modal
logic, but is of straightforward use and application in ordinary everyday modal
reasoning.

In an ideal world, I would have included a comparison, at the end of this
paper, of what Sherwood has to say on these topics with his colleagues in the
Big Four, Peter of Spain, Lambert of Auxerre, and Roger Bacon. All four men
covered similar topics in their introductory textbooks and treatises on syncate-
gorematic terms, and a comparison of the other three with Sherwood is often in
valuable because there are clear paths of influence from Sherwood’s Introduc-
tiones to the other texts and because Sherwood’s views, as some of the earliest,
are often both more nascent and more interesting. Furthermore, Kretzmann
puts forth an argument that Sherwood’s Syncategormata post-dates Peter of
Spain’s Tractatus Syncategorematum; but whichever is earlier, Kretzmann says
it is clear that “the study of either man’s work on syncategorematic words is
greatly aided by a close comparison with the work of the other” [11, p. 7].)

Unfortunately, this research was not produced in an ideal world. This paper
was completed while I was in isolation due to Covid-19 lockdown measures in
the United Kingdom, with the books that I would have needed to reference
inaccessible in my office. 42 I believe, nevertheless, that an analysis of Sher-
wood’s views alone is still of research value and of historical interest, and that
noting the shortcomings of the present paper can serve as a reminder to future
readers that research is not produced in a vacuum, but depends on so many
vital factors all coming together in the right way at the same moment—time
to work without constant interruption from a child, access to the right books,
space to work without wondering when you or one of your family members will
be the next person you know who is sick. When all these factors are lacking at
the same time, the result is papers whose scope must perforce be more modest.

References

[1] Abaelardus, P., “Glossae Super Peri Hermeneias,” Brepols Publishers, 2010, K. Jacobi
and C. Strub, eds.

[2] Bacon, R., “The Art and Science of Logic,” Pontifical Institute of Medieval Studies,
2009, T. S. Maloney, trans.

[3] Copenhaver, B. P., editor, “Peter of Spain: Summaries of Logic, Text, Translation,
Introduction, and Notes,” Oxford University Press, 2014, with C. Normore and T.
Parsons.

[4] d’Auxerre, L., “Logica (Summa Lamberti),” La Nuova Italia, 1971, F. Alessio, ed.

[5] Hall, R. and C. Lejewski, Symposium: Parts of speech, Proceedings of the Aristotelian
Society, Supplementary Volumes 39 (1963), pp. 173–204.

[6] Kirchhoff, R., “Die Syncategoremata des Wilhelm von Sherwood: Kommentierung und
historische Einordnung,” Brill, 2008.

42My sincere thanks go out to two internet friends who helped me source electronic versions
of texts or looked up relevant information in their copies of books for me, Mark Thakkar and
Justin Vlasits.



612 William of Sherwood on Necessity and Contingency

[7] Nauta, L., The preexistence of the soul in medieval thought, Recherches de Théologie
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