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Abstract. We examine the question of how many Boolean algebras, distinct up to

isomorphism, that are quotients of the powerset of the naturals by Borel ideals, can be

proved to exist in ZFC alone. The maximum possible value is easily seen to be the

cardinality of the continuum 2ℵ0 ; earlier work by Ilijas Farah had shown that this was

the value in models of Martin’s Maximum or some similar forcing axiom, but it was open

whether there could be fewer in models of the Continuum Hypothesis.

We develop and apply a new technique for constructing many ideals whose quotients

must be nonisomorphic in any model of ZFC. The technique depends on isolating a kind of

ideal, called shallow, that can be distinguished from the ideal of all finite sets even after

any isomorphic embedding, and then piecing together various copies of the ideal of all

finite sets using distinct shallow ideals. In this way we are able to demonstrate that there

are continuum-many distinct quotients by Borel ideals, indeed by analytic P-ideals, and

in fact that there is in an appropriate sense a Borel embedding of the Vitali equivalence

relation into the equivalence relation of isomorphism of quotients by analytic P-ideals. We

also show that there is an uncountable definable wellordered collection of Borel ideals with

distinct quotients.
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§1. Introduction and nomenclature.
1.1. Background. In [Far02], Farah asks the question “How Many Boolean

Algebras P(N)/I Are There?”, with the understanding that there is some de-
finability criterion being imposed on I, since if no such criterion is imposed
then every Boolean algebra of cardinality 2ℵ0 is isomorphic to one of the form
P(ω)/I and there were known to be 22ℵ0 such (pairwise nonisomorphic) Boolean
algebras. In this work we shall address only the case where I is Borel.

On the face of it the answer might appear likely to be independent of ZFC;
certainly it is possible for different models of ZFC to answer differently the
question of whether two given Borel ideals have isomorphic quotients, even when
the models are both wellfounded and have the same reals (so that the quotients
being compared are identical across the models). For example, it follows from
CH that P(ω)/Fin ∼= P(ω)/(Fin× ∅), because both P(ω)/Fin and P(ω)/(Fin×
∅) are ℵ1-saturated in the model-theoretic sense (see [Far02, Proposition 6.1]).
However it follows from OCA+MA that P(ω)/Fin 6∼= P(ω)/(Fin×∅) (see [Far00b,
Corollary 3.4.5]). Here OCA stands for the Open Coloring Axiom; see [Far00b,
Chapter 2] for definitions.

Thus Farah has addressed the question from two sides: In [Far00b] he looks at
set-theoretic propositions consistent with ZFC, such as Martin’s Maximum, that
tend to minimize the opportunity for given definable ideals to have isomorphic
quotients. On the other hand, in [Far02] he examines the question of what quo-
tients must be isomorphic if CH holds, which tends to maximize the opportunity
to find isomorphisms between definable structures of cardinality 2ℵ0 , and there-
fore (potentially) to minimize the number of isomorphism types. In this latter
case he found many partial classification results, showing for example (given CH)
that there are exactly two quotients, up to isomorphism, by dense density ideals,
but leaving open the question of whether there are 2ℵ0 (or indeed even infinitely
many) distinct quotients by Borel (or even Σ

e
1
1) ideals.

Steprāns, in [Step03], uses a variation on Sacks Forcing to show that there is
a family of 2ℵ0 distinct Π

e
0
3 ideals on a certain Polish lattice (that is, a lattice

ordering on a Polish space that is closed as a subset of the Cartesian product of
the space with itself; an ideal on such a lattice is a subset closed downward and
under join) that have pairwise nonisomorphic quotients. The method also works
to give ideals on the natural numbers, but apparently at the cost of increasing
the complexity to Π

e
1
1. At this writing it is not clear whether the method can

be refined to give Π
e

0
3 ideals on the natural numbers; if so, it would provide an

alternative proof of much of the content of Theorem 3.4.
It should be noted that Steprāns’ method provides information that the present

work does not; namely, he shows that two lattices (or two Boolean algebras, as
the case may be) are nonisomorphic by showing that neither can be completely
embedded into the other (indeed, that there is no complete embedding from the
regular open algebra of one to the regular open algebra of the other).

In this work we provide an answer, in some sense maximal, to Farah’s question.
We show that there are 2ℵ0 Borel ideals with pairwise-nonisomorphic quotients,
and that these may be chosen to be analytic P-ideals, in particular Π

e
0
3. It is not

possible (in ZFC alone) to reduce this complexity to Σ
e

0
2, because, by [JK84], CH
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implies that all Σ
e

0
2 ideals have isomorphic quotients. We also give information

about the definable cardinality of isomorphism types of Borel quotients; our
results here do not appear to be maximal and leave room for further inquiry.

1.2. Basic definitions and nomenclature. By an ideal we shall always
mean a collection I of subsets of a countably infinite index set I (usually I = ω
or I = ω × ω) such that

i) if A ∈ I and B ⊆ A, then B ∈ I
ii) if A,B ∈ I then A ∪B ∈ I
iii) if A ⊆ I and A is finite, then A ∈ I

Condition (iii) is not part of the standard definition of an ideal, but we include
it to avoid trivialities.

Elements of I are said to be I-null ; subsets of I that are not I-null are called
I-positive, and we write I+ for the collection of all I-positive sets.
I induces an equivalence relation ≈I on P(I) by

X ≈I Y ⇐⇒ X 4 Y ∈ I
If X ⊆ I we write [X]I for the ≈I-equivalence class of X. We write P(I)/I for

the Boolean algebra whose underlying set is the collection of all ≈I-equivalence
classes, and whose ∧ and ∨ are induced by ∩ and ∪ respectively.

If I and J are ideals on index sets I and J respectively, we define

I × J , {A ⊆ I × J |{m ∈ I|{n| < m,n >∈ A} ∈ J +} ∈ I}
That is, the I ×J -positive subsets of I × J are the ones with I-positively many
J -positive vertical sections.

Note that while we do not officially consider {∅} to be an ideal, we do define
I × ∅ and ∅ × I as though it were (leaving off the braces around ∅). That is, a
subset of I×ω is I ×∅-positive if and only if it has I-positively many nonempty
vertical sections, whereas a subset of ω × I is ∅ × I-positive just in case it has
no I-positive vertical sections.

Ideals I and J are Rudin–Keisler isomorphic, I ≈RK J , if (modulo null
sets) there is a bijection between the underlying sets I and J that respects the
ideals—that is, there are A ∈ I, B ∈ J , and a bijection h : I \ A→ J \ B such
that, for any X ⊆ I, X ∈ I ⇐⇒ h”X ∈ J . (By h”X we mean {h(n)|n ∈ X}.)
If I ≈RK J then easily P(I)/I ∼= P(J)/J as Boolean algebras.

If A is I-positive, we write I ¹ A for {X ⊆ I|X ∩ A ∈ I}. If B is a Boolean
algebra and x ∈ B, x 6= ∅B, we write B ¹ x for the Boolean algebra {y|y ≤B x}
with the Boolean operations inherited from B. Clearly

P(A)/I ∼= P(I)/ (I ¹ A) ∼= (P(I)/I) ¹ [A]I

via canonical isomorphisms.
Ideals in our context can never be closed under countable unions; the entire

underlying set is the union of countably many singletons, and singletons are null.
In some sense the closest we can get is the notion of a P-ideal. I is a P-ideal if,
for any countable collection of I-null sets {Bk|k ∈ ω} there’s a I-null set B that
misses only finitely much of each Bk (that is, (∀k)Bk \B ∈ Fin).

An ideal on ω is a subset of P(ω); on the latter we take the product topology.
Any reference to the descriptive-set-theoretic complexity of an ideal (say, “Borel
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ideal”, “analytic ideal”, “Π
e

0
3 ideal”) should be understood in terms of that

topology, as should any reference to Wadge reducibility between ideals.
Some specific ideals to which we shall make frequent reference:

Fin the ideal of all finite subsets of ω
Z0 the ideal of all subsets of ω with asymptotic zero density

(i.e. X ∈ Z0 ⇐⇒ limn→∞
|X∩n|

n = 0)
∅ × Fin all subsets of ω × ω with no infinite vertical sections
Fin× ∅ all subsets of ω × ω with only finitely many nonempty vertical

sections

§2. Construction of the ideals.
2.1. Motivation. The construction is an idea of Hjorth, who noted that

it was possible to “integrate” ideals with respect to a partition of the natural
numbers in such a way that the original ideal could be recovered from the order-
theoretic properties of the quotient algebra corresponding to the “integral”.

2.2. Formal definition.

Definition 2.1. Given I an ideal on ω containing Fin and ~A = (An)n∈ω a
sequence of disjoint subsets of ω (some possibly empty), we write:

I( ~A) = {X ⊆ ω|∀n X ∩An ∈ Fin ∧ {n|X ∩An 6= ∅} ∈ I}
Definition 2.2. Given ~A = (An)n∈ω a sequence of disjoint subsets of ω (some

possibly empty), we write:

P ~A = {n ∈ ω|An is infinite}
It may be easier to think of I( ~A) in terms of the positive sets: A set is I( ~A)-

positive just in case it either has infinite intersection with some An, or meets
I-positively many An. For example, any infinite An is itself an I( ~A)-positive set,
below which P(ω)/I( ~A) is isomorphic to P(ω)/Fin. On the other hand, given
any I-positive set C, we can choose one element (say, the least) from An for
each n ∈ C; the set of these is now a I( ~A)-positive set below which P(ω)/I( ~A)
is isomorphic to P(ω)/I restricted to C. By choosing ideals I with a structural
property distinguishing them from Fin (see Section 3.2.1 below) we can rule out
isomorphisms of certain types between quotient algebras.

We should note as well that we can consider our ideals as living on any count-
ably infinite set, say ω × ω, and that if every An is infinite (that is, if P ~A = ω)
then I( ~A) is Rudin–Keisler isomorphic to the ideal (∅×Fin)∩ (I ×∅) on ω×ω.

The following simple facts will come in handy:

Lemma 2.1. Let I be an ideal and ~A = (An)n∈ω a sequence of disjoint subsets
of ω.

i) For any X ⊆ ω, if we write Xn for X ∩ An and ~X for the sequence of Xn,
then

I( ~X) = I( ~A) ¹ X
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ii) For any X ⊆ ω, if we let

A′n ,
{
An if n ∈ X
∅ otherwise

and write ~A ¹ X for the sequence of A′n, then

(I ¹ X) ( ~A ¹ X) = I( ~A ¹ X)

iii) If every An is either empty or a singleton and {n|An 6= ∅} ∈ I+, then I( ~A)
is RK-isomorphic to the restriction of I to a positive set.

a

§3. Non-isomorphism results on the quotients by the ideals I( ~A).
3.1. Connection between “input” ideals and structure of Boolean

algebra.

Lemma 3.1. Let I be an ideal on ω containing Fin, let ~A = (An)n∈ω be a
sequence of disjoint subsets of ω, and let I( ~A) be as defined above. Then for every
C ⊆ P ~A, C ∈ I if and only if {An|n ∈ C} has a least upper bound with respect
to I( ~A) ( that is, {[An]I( ~A)|n ∈ C} has a least upper bound in P(ω)/I( ~A)).

Proof.
⇒: The least upper bound will be represented by X ,

⋃
n∈C An. Clearly this

is an upper bound. Suppose that Y is also a representative for an upper bound.
Then for each n ∈ C, (X \ Y ) ∩ An = An \ Y must be finite, as otherwise Y
would not be above An with respect to I( ~A). But these are the only n for which
(X \ Y ) ∩An is nonempty, and C is I-null. Therefore X \ Y is I( ~A)-null.
⇐: Suppose X (no longer defined as above) is a representative for the least

upper bound. For each n ∈ C, An \X must be finite, so X ∩An must be infinite,
and in particular nonempty (this uses n ∈ P ~A). Form Y by removing from X one
element of X ∩An for each n ∈ C. Then Y must still be an upper bound, but if
C were I-positive we would have Y <I( ~A) X, contradicting the assumption that
X is a least upper bound. Therefore C is I-null. a

3.2. Wadge reduction. The goal of this section, culminating in Theorem
3.1, is to show that, given ideals J1 and J2 with a certain property (called
shallowness), and given ~A a partition of ω into countably many infinite sets, if
P(ω)/J1( ~A) ∼= P(ω)/J2( ~A), then J1 ≤W J2.

3.2.1. ω-partitions. In [Far02], Proposition 6.1, Farah gives a list of equivalent
conditions for an atomless ideal on ω to have a quotient that is not ℵ1-saturated
in the model–theoretic sense. This derives from a result of Just and Mijajlović;
see [JM87]. We shall not make use of the model theory in this paper, and in the
interest of independent readability we instead isolate the following equivalent:

Definition 3.1. Given a Boolean algebra B and x ∈ B, x 6= 0B, we say
(xn)n∈ω is an ω-partition of x if:

i) ∀n (xn ≤ x and xn 6= 0B),
ii) ∀n 6= m xn ∧ xm = 0B, and
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iii) ∀y ≤ x[(∀n y ∧ xn = 0B) ⇒ y = 0B]

Definition 3.2. Given an ideal I on ω and a subset X of ω, X I-positive,
we say (Xn)n∈ω is an ω-partition of X with respect to I if:

i) ∀n (Xn ≤I X and Xn is I-positive ),
ii) ∀n 6= m (Xn ∩Xm is I-null ), and
iii) ∀Y ≤I X[(∀n Y ∩Xn is I-null ) ⇒ Y is I-null ]

Though not necessary for our current purposes, it is useful to note that the
nonexistence of an ω-partition is equivalent, at least in our context, to what
Farah calls countable saturation and Chang and Keisler (see [CK90], p. 256)
call ℵ1-saturation, as this provides an important constraint on nonisomorphism
results from ZFC alone. If CH holds, then any two countably saturated Boolean
algebras of the form P(ω)/I are isomorphic.

Also note that (iii) of Definition 3.2 implies that X is a least upper bound for
the Xn in the order given by I, and mutatis mutandis for Definition 3.1.

Definition 3.3. An ideal I is shallow if I 6= P(ω) and every I-positive set
has an ω-partition with respect to I.

We call these ideals “shallow” because they are the ones with respect to which
there are no “deep” sets in the sense of [Far02]. It should be noted that shal-
lowness is not a “smallness” or “simplicity” condition—there are shallow ideals
of arbitrarily high complexity, and P(ω)/Fin has smaller Borel cardinality than
P(ω)/Z0, though Fin is not shallow (in fact every set is deep with respect to
Fin) and Z0 is shallow.

It is easy to verify that P(ω)/Fin has no ω-partition below any point. On the
other hand we can get large collections of shallow ideals, whose quotients have ω-
partitions below every point (see Section 4 below). Thus our plan for establishing
nonisomorphism results between various quotients: We shall construct ideals
with shallow restrictions and restrictions RK-isomorphic to Fin; an isomorphism
cannot send anything below the former sort of point to anything below the latter
sort.

3.2.2. How an isomorphism must behave on the An. Given sequences ~A =
(An)n∈ω and ~B = (Bi)i∈ω of subsets of ω, each sequence pairwise disjoint, and
shallow ideals J1 and J2, write B1 for P(ω)/J1( ~A) and B2 for P(ω)/J2( ~B), and
suppose

φ : B1 → B2

is an isomorphism.
Let us overload the symbol φ by choosing once and for all an arbitrary lift of

φ to a function from P(ω) to P(ω), which we shall also call φ.
Now let S ⊆ ω × ω be the relation defined by

nSi ⇐⇒ φ(An) ∩Bi is infinite
⇐⇒ [φ(An) ∩Bi]J2( ~B) > 0

⇐⇒ [φ(An)]J2( ~B) ∧ [Bi]J2( ~B) > 0

⇐⇒ φ
(
[An]J1( ~A)

)
∧ [Bi]J2( ~B) > 0
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Note by the last equivalent that S does not depend on how we lifted φ.

Lemma 3.2. φ(An) is essentially the union of its infinite Bi pieces. That is,
for each n, φ(An) ≈J2( ~B)

⋃
i|nSi[φ(An) ∩Bi].

Proof. Clearly 1

φ(An) =
⋃

i|nSi

[φ(An) ∩Bi]

∪
⋃

i|¬nSi

[φ(An) ∩Bi]

∪
[
φ(An) \

⋃

i∈ω

Bi

]

The final summand does not meet any Bi and so is J2( ~B)-null.
Thus if the claim fails,

⋃
i|¬nSi[φ(An)∩Bi] is J2( ~B)-positive (call this set T ).

All the T ∩Bi are finite, by the definition of S, so there must be a J2-positive set
U of indices i on which T ∩Bi is nonempty. For each i ∈ U , choose one element
(say, the least) of T ∩Bi and let D be the set of all these.

By Lemma 2.1(iii), the subsets of D modulo J2( ~B) are an isomorphic copy
of the restriction of P(ω)/J2 to some nonzero point. Therefore there is an ω-
partition of D with respect to J2( ~B). However, below the J1( ~A) equivalence
class of An, B1 is isomorphic to P(ω)/Fin, and therefore there is no nonzero
point below [An] in B1 having an ω-partition. As φ is an isomorphism, this is a
contradiction. a

Lemma 3.3. There are only finitely many pieces as in Lemma 3.2. That is,
for each n, {i|nSi} is finite.

Proof. First observe that for any n, the set of i such that φ(An) meets Bi is
J2-null. Otherwise, let D be the set of all least elements of nonempty sets of the
form φ(An)∩Bi. Now 0 <J2( ~B) D ≤J2( ~B) φ(An), so there is some J1( ~A)-positive
D′ ≤J1( ~A) An such that φ(D′) ≈J2( ~B) D. But B1 restricted to D′ is isomorphic
to P(ω)/Fin and therefore there is no ω-partition below D′ in B1, whereas B2

restricted to D is isomorphic to P(ω)/J2 restricted to the set of all i such that
φ(An) meets Bi, so there is an ω-partition below D with respect to J2( ~B). This
is a contradiction.

Now suppose for some n, {i|nSi} is infinite (but by the above argument,
necessarily J2-null). Then φ(An) is above (by Lemma 3.2, actually equivalent to)⋃

i|nSi[φ(An)∩Bi] in the order given by J2( ~B). But a subset of
⋃

i|nSi[φ(An)∩Bi]

is J2( ~B)-positive just in case it is infinite on at least one of the Bi (because
the set of indices i being considered is J2-null). That means that P(ω)/J2( ~B)
restricted to

⋃
i|nSi[φ(An) ∩ Bi] is isomorphic to P(ω × ω)/(∅ × Fin). But it is

easily seen that ω×ω has an ω-partition with respect to ∅×Fin, whereas there is
no ω-partition below An with respect to J1( ~A). This again is a contradiction. a

1The notation
S

i|nSi is to be read “the union over all i such that nSi holds”.
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Lemma 3.4. φ(An) is the least upper bound (mod J2( ~B)) of its infinite Bi

pieces:

[φ(An)]J2( ~B) =
∨

i|nSi

[φ(An) ∩Bi]J2( ~B)

Proof. Immediate from Lemmata 3.2 and 3.3. a
Lemma 3.5. For each i, Bi ≈J2( ~B)

⋃
n|nSi[φ(An) ∩ Bi], and moreover there

are only finitely many n such that nSi. Therefore

[Bi]J2( ~B) =
∨

n|nSi

[
φ

(
[An]J1( ~A)

)
∧ [Bi]J2( ~B)

]

Proof. We apply Lemmata 3.2, 3.3 and 3.4 to a lift of φ−1, noticing that the
S relation for φ−1 is precisely the inverse of S.

a

Figure 1. Example isomorphism

B0 B1

φ(A1)

B2 B3

φ(A2)

φ(A3)

φ(A0)

· · ·

· · ·

3.2.3. Example. Suppose for example that for each n we have

2n S 2n
2n S 2n+ 1

and that no other pairs of natural numbers bear the S relation. That is, φ(A2n) is
essentially the union of infinite pieces of B2n and B2n+1, and φ(A2n+1) occupies
the “other half” of B2n and B2n+1. This situation is illustrated in Figure 1.

Then for a given set of natural numbers C, we know by Lemma 3.1 that C ∈ J1

if and only if {An|n ∈ C} has a least upper bound with respect to J1( ~A), which
happens just in case {φ(An)|n ∈ C} has a least upper bound with respect to
J2( ~B); that is, if D0 ∪D1 has such a least upper bound, where

D0 , {φ(A2n)|2n ∈ C}
D1 , {φ(A2n+1)|2n+ 1 ∈ C}

which we can rewrite

D0 = {(φ(A2n) ∩B2n) ∪ (φ(A2n) ∩B2n+1)|2n ∈ C}
D1 = {(φ(A2n+1) ∩B2n+1) ∪ (φ(A2n+1) ∩B2n+1)|2n+ 1 ∈ C}
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Now given any X ⊆ ω, it is easy to see that X is an upper bound for D0 ∪D1 if
and only if X is an upper bound for D00 ∪D01 ∪D10 ∪D11, where

D00 , {φ(A2n) ∩B2n|2n ∈ C}
D01 , {φ(A2n) ∩B2n+1|2n ∈ C}
D10 , {φ(A2n+1) ∩B2n|2n+ 1 ∈ C}
D11 , {φ(A2n+1) ∩B2n+1|2n+ 1 ∈ C}

Therefore C ∈ J1 if and only if D00 ∪D01 ∪D10 ∪D11 has a least upper bound
with respect to J2( ~B). The method used in Lemma 3.1 shows that such a least
upper bound exists just in case the set of all indices represented in the Dij ,
namely {2n, 2n+ 1|2n ∈ C ∨ 2n+ 1 ∈ C}, is J2-null.

3.2.4. Formal reduction. The example in Section 3.2.3 suggests the following
claim: for each C ⊆ P ~A,

C ∈ J1 ⇐⇒ {i|∃n(nSi ∧ n ∈ C)} ∈ J2

In the case where P ~A = ω, this equivalence gives us a Wadge reduction demon-
strating J1 ≤W J2. To see this, we must check that the function f : P(ω) →
P(ω) given by f(C) = {i|∃n(nSi ∧ n ∈ C)} is continuous. Choose a basic open
set U in the topology on P(ω); say, let {a0, . . . , ak} and {b0, . . . , b`} be given
disjoint finite sets of natural numbers and let

U = {X ⊆ ω|(∀i ≤ k)(ai ∈ X) ∧ (∀j ≤ `)(bj /∈ X)}
What we need is for f−1[U ] to be open. Choose an element C of f−1[U ]. As
f(C) ∈ U , there must be n0 . . . nk taken from C such that (∀i ≤ k)(nkSak).
Moreover no bj is an element of f(C), so for each j ≤ ` and any n such that
nSbj , we have n /∈ C; by Lemma 3.5 there are only finitely many such n.

Now given any C ′ such that (∀i ≤ k)(ni ∈ C ′) and such that C ′ does not
contain any of the finitely many n bearing the S relation to any bj , j ≤ `, we
have that f(C ′) ∈ U , so C ′ ∈ f−1[U ]. The collection of all such C ′ is an open
neighborhood of C included in f−1[U ], so f−1[U ] is open.

3.2.5. Proof of reduction.

Theorem 3.1. for each C ⊆ P ~A,

C ∈ J1 ⇐⇒ {i|∃n(nSi ∧ n ∈ C)} ∈ J2

Proof. The proof is a generalization of the argument in the example in 3.2.3.
We will argue that the following are equivalent:
i) C ∈ J1

ii) {An|n ∈ C} has a least upper bound with respect to J1( ~A)
iii) {φ(An)|n ∈ C} has a least upper bound with respect to J2( ~B)
iv) {φ(An) ∩Bi|nSi ∧ n ∈ C} has a least upper bound with respect to J2( ~B)
v) {i|∃n(nSi ∧ n ∈ C)} ∈ J2

The equivalence of (i) and (ii) is immediate from Lemma 3.1. (ii) is equivalent
to (iii) because φ is an isomorphism.

To see that (iii) is equivalent to (iv), note that D , {φ(An)|n ∈ C} and
E , {φ(An)∩Bi|nSi∧ n ∈ C} have the same collection of upper bounds with
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respect to J2( ~B) by Lemma 3.4. The equivalence of (iv) and (v) follows by the
method of proof of Lemma 3.1. a

3.3. ℵ1 distinct quotients.

Theorem 3.2. There is an uncountable collection of Borel ideals on ω such
that if I1 and I2 are ideals from the collection, then P(ω)/I1 is not isomorphic to
P(ω)/I2. Moreover, there is a definable embedding from ω1 into the isomorphism
types of quotients by Borel ideals, in the sense that there is a Borel map f :
P(ω) → P(ω) such that, for X,Y ⊆ ω coding countable ordinals, f(X) and
f(Y ) are Borel codes for ideals, and their quotients are isomorphic if and only
if X and Y code the same ordinal.

Proof. In Section 4.1 below, we show that there is a (Borel in the codes)
map α 7→ Jα such that, for α a countable ordinal, Jα is a shallow ideal, and
such that if α < β, then Jα <W Jβ .

Now let ~A = (An)n∈ω be a partition of ω into infinite sets. Then if X ⊆ ω

codes a countable ordinal α, we will let f(X) be a code for Jα( ~A). (If X does
not code a countable ordinal, we do not care what f(X) is.) The fact that there
is a Borel such f follows from the Suslin–Kleene theorem.

To see that it works, note that if P(ω)/Jα( ~A) were isomorphic to P(ω)/Jβ( ~A),
β < α, then by Theorem 3.1 we would have Jα Wadge-reducible to Jβ , contrary
to the construction. a

3.4. Continuum many distinct quotients by analytic P-ideals. The
goal of this section is to show that there is a collection of 2ℵ0 analytic P-ideals
(therefore necessarily Π

e
0
3) with pairwise nonisomorphic quotients. This is not

simply a strengthening of Theorem 3.2 because that theorem establishes a “defin-
able” injection from ω1 into the isomorphism types of quotients by Borel ideals,
which the result of this section will not.

3.4.1. Preservation of analytic P-property. Thanks to Farah for pointing out
that this next result follows directly from the definition, making it unnecessary
to appeal to Solecki’s result that analytic P-ideals are precisely the exhaustions
of lower semicontinuous submeasures (see [Sol99]). (It is by that result of Solecki
that we know, as mentioned above, that all analytic P-ideals are Π

e
0
3.)

Lemma 3.6. If I is an analytic P-ideal, then so is I( ~A).

Proof. Let B0, B1, . . . be a sequence of I( ~A)-null sets of naturals. For each
k let Ck , {n|An ∩Bk 6= ∅}; then Ck is I-null.

As I is a P-ideal, there is some I-null set C such that Ck \C is finite for every
k. Now define

B , {m|∃k[m ∈ Bk ∧ ∀`(m ∈ A` =⇒ (` ≥ k ∧ ` ∈ C))]}
Now {`|B ∩ A` 6= ∅} ⊆ C ∈ I, and the intersection of B with a given A` is

contained in the union of the intersections of finitely many Bk with A` (namely
those with k ≤ `); each of those intersections is finite (since Bk ∈ I( ~A)), so
B ∩A` is finite. Thus B ∈ I( ~A).

For each k, the elements of Bk \ B are either in A` for ` < k (there can be
only finitely many of these), or in A` for some ` /∈ C. However in the latter case
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we have ` ∈ Ck \ C, and Ck \ C is finite. Since each Bk ∩ A` is finite, we get
that Bk \B is finite. Thus B is the required witness demonstrating that I( ~A) is
a P-ideal. (That I( ~A) is analytic is trivial quantifier-counting.) a

(Actually the method gives that if I is a P-ideal, analytic or not, then so is
I( ~A), but we will not make use of this.)
Remark. An alternative proof of Lemma 3.6 applies the result of Solecki to which
we have made reference: If I = Exh(ϕ) for a lower semicontinuous submeasure
ϕ, then I( ~A) = Exh(ψ), where

ψ(X) = ϕ({n|X ∩An 6= ∅})
+

1
m+ 1

, where m is least such that X ∩Am 6= ∅

See [Sol99] for definitions.
3.4.2. Attempt using Borel reducibility. It was originally hoped that the method

of Section 3.2 would show, given that P(ω)/J1( ~A) ∼= P(ω)/J2( ~A), not merely
that J1 ≤W J2, but that J1 ≤B J2 as equivalence relations. As Louveau points
out, Borel reducibility of equivalence relations is in some sense the dimension-2
analogue of Wadge reducibility.

Had this held, then we could have used the ideals given by Louveau and
Veličkovič in [LV94] to establish the result immediately (they give a collection of
2ℵ0 analytic P-ideals such that none is Borel reducible to another as equivalence
relations).

However there does not seem to be any direct way to establish this implication.
The natural thing to try would be to establish, for X,Y ⊆ ω, that

X 4 Y ∈ J1 ⇐⇒ f(X)4 f(Y ) ∈ J2

where
f(X) , {m ∈ ω|(∃n ∈ X)mSn}

But that’s false. Look again at the example in Section 3.2.3, illustrated in
Figure 1, and take X to be the set of even natural numbers and Y to be the set
of odd natural numbers. Then X 4 Y is ω, but f(X)4 f(Y ) is ∅.

Note that what goes wrong has to do with the fact that the S relation in this
example is neither a function nor one-one. If we knew that S were a bijection,
then the proposed reduction would not be merely a Borel reduction of equivalence
relations but a Rudin–Keisler isomorphism between the ideals. I am indebted
to Farah for the idea that we can make S do what we want by paring down the
underlying set.

3.4.3. More Technical Lemmata. In this section we prove some easy, yet nota-
tionally messy, facts about the possible structure of ideals I( ~A). The reader may
wish to skip ahead to Section 3.4.4 and refer back to this section as necessary.

Lemma 3.7. If J1 and J2 are shallow ideals and ~A and ~B are sequences of
pairwise disjoint subsets of ω such that P(ω)/J1( ~A) ∼= P(ω)/J2( ~B), and if P ~A
is J1-positive, then P ~B is J2-positive.

Proof. This lemma will be proved below after two preliminary results. a
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Definition 3.4. A set X ⊆ ω is shallow with respect to an ideal I if X is
I-positive and I ¹ X is shallow.

(Note that it is stronger to say that a set is shallow than to say it is not deep
—a shallow set is not only not deep; it has no deep sets below it.)

Lemma 3.8. If I is shallow and P ~A is I-null, then one of the following six
cases holds:

i) I( ~A) = P(ω)
ii) I( ~A) ≈RK Fin
iii) I( ~A) ≈RK ∅ × Fin
iv) I( ~A) is shallow
v) [ω]I( ~A) = [X]I( ~A) ∨̇ [Y ]I( ~A), where I( ~A) ¹ X ≈RK Fin and Y is I( ~A)-

shallow. 2

vi) [ω]I( ~A) = [X]I( ~A) ∨̇ [Y ]I( ~A), where I( ~A) ¹ X ≈RK ∅ × Fin and Y is I( ~A)-
shallow.

Proof. Let Q ~A , {n|An ∈ Fin ∧ An 6= ∅}. Then P ~A is either empty, finite
nonempty, or infinite, and Q ~A is either I-null or I-positive. The cases break
down as follows:

P ~A = ∅ P ~A finite nonempty P ~A infinite
Q ~A ∈ I (i) (ii) (iii)
Q ~A ∈ I+ (iv) (v) (vi)

a
Lemma 3.9. Suppose I is shallow and P ~A is I-positive. Then there is an

I( ~A)-shallow set, and moreover, given any X ⊆ ω such that X is I( ~A)-shallow,
there is Y ⊆ ω disjoint from X such that Y is also I( ~A)-shallow.

Proof. Let Y equal {k|(∃n ∈ P ~A)(k is the least element of An)}. Then Y is
I( ~A)-positive, and I( ~A) ¹ Y is Rudin–Keisler isomorphic to I, which is shallow
by hypothesis. Thus Y is I( ~A)-shallow.

Given an I( ~A)-shallow set X, for every n, X ∩ An must be finite, because
otherwise X ∩ An would be an (I( ~A) ¹ X)-positive set without an ω-partition.
So for each n ∈ P ~A let A′n , An \X; each such A′n is infinite and in particular
nonempty. Now, much as before, let

Y , {k|(∃n ∈ P ~A)(k is the least element of A′n)}

then Y is disjoint from X and I( ~A)-shallow. a
Proof of Lemma 3.7. Suppose to the contrary that P ~B is J2-null. Then

J2( ~B) falls into one of the six cases of Lemma 3.8. But cases (i), (ii) and (iii) are
ruled out because they imply there is no J2( ~B)-shallow set, when there must be a
J1( ~A)-shallow set because P ~A is J1-positive. Cases (iv), (v) and (vi), pulled back
via the isomorphism to P(ω)/J1( ~A), would contradict the “moreover” clause of
Lemma 3.9. a
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Figure 2. Paring an isomorphism

A1 A2 A3 A4 · · ·

· · ·B1B0 B2 B3 B4

3.4.4. Paring technique. First we explain how, given an arbitrary isomor-
phism from P(ω)/J1( ~A) onto P(ω)/J2( ~B), to cut down the underlying sets to
get an isomorphism between pieces of these Boolean algebras, whose correspond-
ing S relation is now a function. The technique will then be run in the other
direction to make S into a bijection.

Each An is sent by φ to some subset of the union of all Bi with nSi (modulo
a J2( ~B)-null difference). We take in to be the first such i, and we pare away,
from the underlying set of P(ω)/J2( ~B), the image of An restricted to each of
the other i with nSi. Then we must also pare away from the underlying set of
P(ω)/J1( ~A) the part of An that is sent to those other i. See Figure 2.

This now leaves an isomorphism between two Boolean algebras that are re-
strictions of the previous ones, such that in the new S relation in is the unique
natural number satisfying nSin. Moreover the ideal formed by restricting J1( ~A)
is in fact Rudin–Keisler isomorphic to the original, because we had to leave an
infinite piece of each An.

This description is not quite precise because we have not shown that φ sends
the remaining part of the first algebra to the remaining part of the second, and
in fact it may not, exactly. But if we define

in , least i such that nSi (for each n)

Dn , φ(An) ∩Bin

A′n , An ∩ φ−1(Dn)

X ,
⋃
n∈ω

A′n

B′i , φ(X) ∩Bi (for each i)

then certainly φ restricts to an isomorphism

φ : B1 ¹ [X]J1( ~A)
∼= B2 ¹ [φ(X)]J2( ~B)

2By a ∨̇ b, where a and b are elements of a Boolean algebra, we mean a ∨ b, but imply as
well that a ∧ b = 0.
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Roughly, X is the part left after paring away the top half of Figure 2, and B′i
is what should be left of Bi. The technicality here is that we do not know (at
least by the methods so far developed) that B′i is empty in the case that Bi has
been entirely pared away. However we do have:

Claim 3.1. If i = in for some n then B′i is infinite, otherwise not.
Proof. Suppose i = in. Then [Dn]J2( ~B) is positive, so

[B′i]J2( ~B) = [φ(X)]J2( ~B) ∧ [Bi]J2( ~B)

≥ [φ(A′n)]J2( ~B) ∧ [Bi]J2( ~B)

= [φ(An)]J2( ~B) ∧ [Dn]J2( ~B) ∧ [Bi]J2( ~B)

= [Dn]J2( ~B) ∧ [Dn]J2( ~B)

> 0

Otherwise, for each of the finitely many n such that nSi, we have [A′n]J1( ~A) ∧
[φ−1(Bi)]J1( ~A) = 0B1 , so [B′i]J2( ~B) = 0B2 . a

So we know that the S relation of the pared-down isomorphism is a function
(it sends n to in) and that it is a subset of the original S.

We can now establish

Theorem 3.3. Given shallow ideals J1 and J2 and sequences ~A and ~B such
that P ~A is J1-positive, and given that P(ω)/J1( ~A) ∼= P(ω)/J2( ~B), there is an
injective partial function f : ω ⇀ ω such that the domain of f is J1-positive,
and such that for X ⊆ dom(f), X ∈ J1 ⇐⇒ f”X ∈ J2.

Proof. Given an isomorphism φ and working as above, writing ~A′ and ~B′

for the sequences (A′n)n∈ω and (B′i)i∈ω respectively, we obtain a restricted iso-
morphism

φ : P(ω)/J1( ~A′) → P(ω)/J2( ~B′)
such that the new S relation, call it S(1), given by

nS(1)i ⇐⇒ φ
(
[A′n]J1( ~A′)

)
∧ [B′i]J2( ~B′) > 0

is a function.
Moreover by Lemma 3.7 we know that P ~B is J2-positive; therefore the inverse

isomorphism
φ−1 : P(ω)/J2( ~B′) → P(ω)/J1( ~A′)

can similarly be pared down to

φ−1 : P(ω)/J2( ~B′′) → P(ω)/J1( ~A′′)

and a new inverse S relation, S(2), given by

iS(2)n ⇐⇒ φ−1
(
[B′′i ]J2( ~B′′)

)
∧ [A′′n]J1( ~A′′) > 0

Now the desired f is simply the inverse of S(2); we have dom(f) = P ~A′′ , which
again by Lemma 3.7 must be J1-positive.

a
The following is the main result of this Section 3.4:
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Theorem 3.4. There are at least E0-many distinct quotients by analytic P-
ideals; that is, there is a Borel function f : P(ω) → P(ω) such that, for any
X,Y ⊆ ω, f(X) and f(Y ) are Borel codes for analytic P-ideals, and the quotients
of P(ω) by said ideals are isomorphic as Boolean algebras if and only if X 4 Y
is finite.

Proof. In Section 4.2 below, we describe a shallow ideal Z~a and an injective
algebra-of-sets homomorphism :̂P(ω) → P(ω), C 7→ Ĉ, such that Ĉ is Z~a-
positive if and only if C is infinite, such that if C4D is finite then so is Ĉ4D̂,
and such that if C and D are almost disjoint, then there is no RK-reduction
from any nontrivial piece of Z~a ¹ Ĉ to Z~a ¹ D̂. That is, there is no injective
partial function h : ω ⇀ ω such that dom(h) ∈ (Z~a ¹ Ĉ)+ with

∀Y ⊆ dom(h) Y ∈ Z~a ¹ Ĉ ⇐⇒ h”Y ∈ Z~a ¹ D̂

Fix a partition ~A = (An)n∈ω of ω into infinite sets. For C ⊆ ω, write IC for
Z~a ¹ Ĉ, and let let f(C) be a Borel code for the ideal IC( ~A). (That we can find
a Borel—indeed, recursive—function f that accomplishes this is a consequence
of the Suslin–Kleene theorem; see the discussion in Section 4.1.3.)

If C 4 D is finite, then IC and ID are literally the same ideal, so trivially
P(ω)/IC( ~A) and P(ω)/ID( ~A) are isomorphic.

If on the other hand C 4 D is infinite, then without loss of generality sup-
pose C \ D is infinite, and assume there is an isomorphism φ : P(ω)/IC( ~A) ∼=
P(ω)/ID( ~A). Note IC\D = Z~a ¹ Ĉ \D = Z~a ¹ (Ĉ \ D̂) = (Z~a ¹ Ĉ) ¹
(Ĉ \ D̂) = IC ¹ (Ĉ \ D̂). By Lemma 2.1 (and using its notation) we have
IC\D( ~A ¹ Ĉ \D) = IC( ~A ¹ Ĉ \D) = IC( ~A) ¹ X, where X ,

⋃
n∈Ĉ\D An is

clearly IC( ~A)-positive. Then φ restricts to an isomorphism

φ : P(ω)/IC\D
(
~A ¹ Ĉ \D

) ∼= P(ω)/
(
ID( ~A) ¹ φ(X)

)
= P(ω)/ID( ~B)

(writing φ(X) for some representative of φ of the equivalence class of X, and
~B = (Bn)n∈ω where Bn , An ∩ φ(X)). But now by Theorem 3.3 there is an
injective partial h : ω ⇀ ω, dom(h) ∈ (IC\D

)+, that RK-reduces a positive piece
of IC\D to ID. This is a contradiction.

a

3.5. Remarks on the use of the Axiom of Choice. In Sections 3.2 and
3.4 we have used the Axiom of Choice to conclude that any isomorphism φ :
P(ω)/I ∼= P(ω)/J , for ideals I and J , must lift to a map φ : P(ω) → P(ω).
This application of AC is mostly for notational and expository convenience. For
example the S relation defined in Section 3.2.2 does not require the lifting at all.
Also for Lemmata 3.2, 3.3, 3.4 and 3.5 we do not need any Choice at all.

In the proof of Theorem 3.1, we are finally making use of a fragment of AC
in a way that does not seem to be eliminable; to get the equivalence between
(iv) and (v) we appear to need representatives for all the φ

(
[An]J1( ~A)

)
at once.

However we do not need full AC; countable AC for reals is enough. This same
fragment also suffices for all the results of Section 3.
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§4. Existence of collections of “input” ideals with desired proper-
ties.

4.1. ℵ1 “input” ideals. In order to get the result of Section 3.3, we need to
find a “definable” collection of ℵ1 shallow ideals, all of distinct Wadge rank.

4.1.1. If I is shallow, so is I × J .

Lemma 4.1. Let I be a shallow ideal on ω, and let J be an arbitrary ideal on
ω. Then I × J is shallow.

Proof. Let X be an I × J -positive subset of ω × ω; we wish to find an
ω-partition of X with respect to I × J .

The intuition is simple: I × J is the ideal whose positive sets are the ones
that have I-positively many J -positive vertical sections. So we will project
everything down to the horizontal axis, the one corresponding to I and work
with the properties of I. Nothing interesting happens in the vertical sections; J
is treated as a black box.

Let X̌ ⊆ ω be the projection, to the first coordinate, of all J -positive vertical
sections of X:

X̌ , {n ∈ ω|{m|〈n,m〉 ∈ X} is J -positive}
Now X̌ is an I-positive subset of ω (by the definition of I ×J ), so there is an

ω-partition of X̌ with respect to I, call it (X̌n)n∈ω.
Now we can recover an ω-partition of the original set by taking the vertical

sections above the X̌n: Let

Xn , {〈k, `〉 ∈ X|k ∈ X̌n}
We must now check that this (Xn)n∈ω is an ω-partition of X with respect

to I × J . Clauses (i) and (ii) of Definition 3.2 are easy. We shall verify the
contrapositive of clause (iii): Let Y ⊆ X be I × J -positive; we must check that
Y ∩Xn is I × J -positive for some n. Project the J -positive vertical sections of
Y to the first coordinate as we did for X:

Y̌ , {n ∈ ω|{m|〈n,m〉 ∈ Y } is J -positive}
Now Y̌ is I-positive, so for some n, Y̌ ∩ X̌n is I-positive. But then easily Y ∩Xn

is I × J -positive. a

4.1.2. The ideal of density Z0 is shallow.

Lemma 4.2 (Folklore?). Z0 is shallow.

Proof. See for example [Far02, Prop. 3.3(5)], or work directly as an exercise:
Define an ω-partition of ω with respect to Z0 by

Xn , {i ∈ ω|2n divides i but 2n+1 does not}
(For completeness, take 0 to be an element of X0.) Now generalize to get an
ω-partition of any Z0-positive set. a
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4.1.3. There are J of arbitrarily high Borel rank. We apply an elementary
argument found in [Kec95], Exercise 23.4 on page 180, with the hint on page 362.
Here it is shown that for any set of reals A there is an ideal IA such that A is
Wadge–reducible to IA. We reproduce the argument: For x ∈ 2ω, let Cx ⊆ 2<ω

be { x ¹ n | n ∈ ω}, and given A ⊆ 2ω, let IA be the ideal on 2<ω generated
by all sets Cx for x ∈ A, and all finite subsets of 2<ω. That is, for B ⊆ 2<ω,
B ∈ IA ⇐⇒ (∃{x0, x1, . . . , xn−1} ⊆ A)(B \ ∪i<nCxi

is finite).
If x 6= y, then Cx ∩ Cy is finite. The map x 7→ Cx is a continuous function

from 2ω to P(2<ω) reducing A to IA.
A finer analysis shows that if ξ ≥ 3 is a countable ordinal and A is Σ

e
0
ξ then

IA is also Σ
e

0
ξ ; therefore, if A is Σ

e
0
ξ-complete, then so is IA. (This calculation,

reported by Kechris in a personal communication, may be found in [Oli03].) This
finishes the part of the argument taken from Kechris’ book.

Now for a given countable ordinal β, let WO<β be the set of all elements of
2ω that code an ordinal less than β. By [Ster78], WO<ωα is Σ

e
0
2·α-complete. For

each α let Aα , WO<ωα·ω and let Iα , IAα
in the sense of the Kechris argument

above. Then Iα is Σ
e

0
α·ω-complete.

(See also Zafrany ([Zaf89]), who proves the complexity claims about WO<ωα

by first defining ideals of unbounded Borel complexity; such ideals are exactly
what we need here. However Zafrany does not define these ideals in a uniform
way on ω, but rather on different countable sets as α increases; it is not clear
to me whether any slight modification of his work would provide the ideals we
want directly, without going through the Kechris argument.)

Now let Jα , Z0 × Iα. Then Jα is a shallow ideal and is Σ
e

0
α·ω+n for some

n, but is also Σ
e

0
α·ω-hard. Therefore, for any countable α, β with α < β we have

that Jα <W Jβ .
It remains to check that there is a Borel function f : P(ω) → P(ω) such

that, if X is a code for a countable ordinal α, then f(X) is a Borel code for Jα.
For this we appeal to the Suslin–Kleene theorem; see [Mos80, 7B], and observe
that we can find recursive functions that, given a code for a countable α, return
Σ
e

1
1-codes for Jα and its complement.
4.2. Mutually RK-irreducible analytic P-ideals. In this section, using

a construction reminiscent of (but much simpler than) that of Louveau and
Veličkovič in [LV94], we define continuum-many analytic P-ideals with the prop-
erty that every positive set has an ω-partition, such that if J1, J2 are dis-
tinct ideals from the collection and X ⊆ ω is J1-positive, there is no injection
h : X → ω such that

(∀Y ⊆ X) Y ∈ J1 ⇐⇒ h”Y ∈ J2

Let ~a = (ai)i∈ω be a sequence increasing fast enough that the ratio ai+1/(
∑i

k=0 ak)
goes to infinity as i goes to infinity. Let ni =

∑i−1
k=0 ai, and let Ii = [ni, ni+1),

so that |Ii| = ai. Write Z~a for the ideal

X ∈ Z~a ⇐⇒ lim
i→∞

|X ∩ Ii|
ai

= 0

Note Z~a is shallow.
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Now we can define the algebra-of-sets homomorphism ̂ : P(ω) → P(ω)
promised in the proof of Theorem 3.4:

Ĉ ,
⋃

i∈C

Ii

For any A ⊆ ω, let IA be the ideal of sets whose density on Ii goes to zero as
i goes to infinity for i ∈ A:

X ∈ IA ⇐⇒ lim
i→∞
i∈A

|X ∩ Ii|
ai

= 0

In other words, IA = Z~a ¹ Â.

Claim 4.1. If A and B are almost disjoint, then there is no IA-positive set
X such that IA ¹ X is Rudin–Keisler isomorphic to any piece of IB.

Proof. Suppose to the contrary that X is IA-positive and h : X → ω is an
injection such that for all Y ⊆ X,

Y ∈ IA ⇐⇒ h”Y ∈ IB

Now since X is positive, there is ε > 0 such that for infinitely many i ∈ A,
µi(X) > ε, where µi(X) is the density of X on Ii.

Choose M0 such that for i > M0, ai/(
∑i−1

k=0 ak) > 3/ε. Define:

I−i = {n ∈ Ii|h(n) ∈ Ij , j < i}
I+
i = {n ∈ Ii|h(n) ∈ Ij , j > i}
I=
i = {n ∈ Ii|h(n) ∈ Ii}

X− =
⋃

i

(X ∩ I−i )

X+ =
⋃

i

(X ∩ I+
i )

X= =
⋃

i

(X ∩ I=
i )

Now for i > M0 we have

|I−i | ≤
i−1∑

k=0

ak ≤ (ε/3)ai

so µi(X−) ≤ µi(I−i ) ≤ ε/3.
Now there must be M1 > M0 such that for all i > M0, i ∈ A, we have

µi(X=) ≤ ε/3, because if for infinitely many i ∈ A this inequality failed, we
could take Y to be X= on those infinitely many intervals, and then µi(Y ) would
not approach 0 as i→∞ in A, but µi(h”Y ) would equal zero for all but finitely
many i ∈ B. (A and B are almost disjoint, and h sends elements of each Y ∩ Ii
into the same Ii.)

So now for infinitely many i > M1 we have that µi(X) > ε, but µi(X−) ≤ ε/3
and µi(X=) ≤ ε/3. So for such i we have µi(X+) > ε/3.
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Now let Y be the union of X+ ∩ Ii for the infinitely many i mentioned in
the previous paragraph. Then Y is not in IA, because µi(Y ) is infinitely often
greater than ε/3. However h”Y is in IB , because everything in Y gets sent by
h to a higher interval, and the condition ai+1/(

∑i
k=0 ak) → ∞ now guarantees

that µi(h”Y ) → 0 as i→∞ (in fact we need not even restrict to i ∈ B). a
Each IA (for A infinite) is shallow because it is the restriction of Z~a to a

positive set, and is an analytic P-ideal because it is the exhaustion of a lower
semicontinuous submeasure ϕ given by

ϕ(X) , sup
i∈A

|X ∩ Ii|
ai

(See [Sol99] for the result that the analytic P-ideals are precisely the exhaus-
tions of lower semicontinuous submeasures.)
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