
Math. Log. Quart. 46 (2001) 3, 1 – 11

Mathematical Logic
Quarterly

c© WILEY-VCH Verlag Berlin GmbH 2001

On the computational complexity of best L1-approximation

Paulo Oliva

BRICS, Department of Computer Science, University of Aarhus, DK-8000 Aarhus
C, Denmark1)

Abstract. It is well known that for a given continuous function f : [0, 1] → R and a
number n there exists a unique polynomial pn ∈ Pn (polynomials of degree ≤ n) which
best L1-approximates f . We establish the first upper bound on the complexity of the
sequence (pn)n∈N, assuming f is polynomial-time computable. Our complexity analysis
makes essential use of the modulus of uniqueness for L1-approximation presented in [13].

Mathematics Subject Classification: 41A52, 41A10, 68Q17, 03F10.

Keywords: L1-approximation, Strong Unicity, Proof Mining, Computable Analysis.

1 Introduction

It is well known in approximation theory (cf. Jackson’s theorem, [1] or [3]) that for
a fixed continuous function f on the interval [0, 1] (written f ∈ C[0, 1]) and a fixed
n ∈ N there exists a unique element of Pn (polynomials of degree ≤ n with real
coefficients) which best approximates f with respect to the L1-norm

‖g‖1 :≡
∫ 1

0

|g(x)| dx.

More precisely, given f ∈ C[0, 1] and n ∈ N there exists a unique polynomial
pn ∈ Pn such that

‖f − pn‖1 ≤ ‖f − p‖1,

for any p ∈ Pn. In this paper we analyze the computational complexity of the
sequence (pn)n∈N, assuming f is a polynomial-time computable function. Since the
coefficients of each pn are potentially real numbers, in our analysis we make use
of the concepts and tools developed in computable analysis (a brief introduction to
computable analysis is presented in Section 2).

BRICS – Basic Research in Computer Science, funded by the Danish National Research
Foundation.

1)e-mail:pbo@brics.dk

c© WILEY-VCH Verlag Berlin GmbH, 13086 Berlin, 2001 0942-5616/01/4610-0001 $ 17.50+.50/0

2 Paulo Oliva

Our development in this paper follows the pattern used by Ko [4] in the analysis
of the sequence (pn)n∈N of best Chebysheff approximations. The main difference in
our approach is that we make a bold distinction between two steps in the analysis:

i) Finding a modulus of uniqueness Φ (see Section 3).
ii) Using Φ to compute (analyze the complexity of) the sequence (pn)n∈N.

This distinction is important for understanding the difficulty in computing (or
analysing the complexity of) the sequence (pn)n∈N of best L1-approximations: The
first modulus of uniqueness for L1-approximation was presented very recently (cf.
[13]), although uniqueness for L1-approximation was known for over eighty years [3].

In Section 3 we present the notion of modulus of uniqueness and the modulus of
uniqueness for L1-approximation (see [13]) which is used by the algorithm described
in Section 4. The general idea of the algorithm is taken from [8]. The algorithm is
given together with the proof of correctness and complexity analysis.

R e ma r k 1.1. In the following we make use of well-known classical complexity
classes P, NP, PSPACE, FP, #P and classes in the polynomial hierarchy. More-
over, relativized complexity classes are represented by C[A], where C is a complexity
class and A is an oracle, e.g. P[NP] (= ∆P

2) means polynomial time with NP oracle.
Readers not familiar with classical complexity theory are referred to e.g. [15].

2 Computable Analysis

While classical complexity theory deals with subsets of (or functions on) countable
sets (e.g. N, Σ∗ for a finite alphabet Σ, etc.) computable (or effective) analysis
deals mainly with operations on uncountable sets (e.g. R, C[0, 1], Σω, etc.). In this
section we give a brief introduction to Ko’s approach to effective analysis as presented
in [5] and [6]. Therefore, all the definitions, Theorem 2.7 and Corollary 2.8 in this
subsection are taken from [5] with small changes on the notation. For other essentially
equivalent approaches to computable analysis see, for instance, [16] and [17].

2.1 Computable real number

Real numbers are represented by converging sequence of dyadic approximations. (A
rational number is dyadic if it has a finite binary representation. The set of dyadic
numbers is represented as D.) If d ∈ D has binary representation bm . . . b1.e1 . . . en

(bi, ej ∈ {0, 1}) then d is said to have precision n (written prec(d) = n). A function
ψ : N → D is a Cauchy name for a real number x if |x−ψ(n)| ≤ 2−n, for all n ∈ N. A
real number x is computable if it has a computable Cauchy name, i.e. if there exists
a Turing machine Mx generating on input n ∈ N a dn ∈ D such that d0, d1, . . . is a
Cauchy sequence converging to x with fixed rate 2−n.

For our complexity analysis we must carefully fix how inputs are given. Natural
numbers will be represented by elements of the set S1 = {0}∗, and the dyadic numbers
by elements of S2 ⊂ {·, 0, 1}∗ in the standard way. For the sake of simplicity we shall
confuse the elements of S1 and S2 with the numbers they represent.

If there is a Turing machine Mx which on input n ∈ S1 outputs a string dn ∈ S2

such that ψ(n) :≡ dn is a Cauchy name for x and moreover the machine Mx works in

On the computational complexity of best L1-approximation 3

polynomial time2) we say that x is a polynomial-time computable real number (written
x ∈ PR). The class PR can be characterized via general left cuts as follows.

D e f i n i t i o n 2.1. Let ψ be a Cauchy name of x ∈ R. The set

L = {d ∈ S2 : d ≤ ψ(prec(d))}
is called the left cut of x associated with ψ (or a general left cut of x).

L e mma 2.2. Let x ∈ R. x ∈ PR iff x has a general left cut in P.

P r o o f. If x ∈ R has a polynomial-time computable Cauchy name ψ, it is clear
that the general left cut associated with this ψ will be in P. On the other hand,
suppose L is a general left cut of x in P. Given a precision k ∈ S1, by binary search
on L, we can find a d such that |x− d| ≤ 2−k. Since L ∈ P, the binary search can be
performed in polynomial time. �

In this way we have reduced the problem of the complexity of a real number x to
the complexity (in the sense of classical complexity theory) of a general left cut of x.
The same idea can be used to define the class of nondeterministic polynomial-time
computable real number NPR, i.e. a real number x belongs to NPR if x has a general
left cut in NP.

R e ma r k 2.3. In Section 4 we make use of a general left cut L of a real number x
in order to compute an approximation d ∈ D of x with precision k (i.e. |x−d| ≤ 2−k).
As mentioned above, this can be done in polynomial time with oracle access to L.

We shall now define computability and complexity for sequences of polynomials.
Here we use Ko’s notion of strong computability which is defined as follows. For
simplicity we assume that the n-th polynomial has degree n.

D e f i n i t i o n 2.4. A sequence of polynomials (pn)n∈N is strongly computable if
there exists a Turing machine M which, for given n, k ∈ S1, generates an (n+1)-tuple
b0, . . . , bn ∈ S2 such that |ai−bi| ≤ 2−k, for 0 ≤ i ≤ n, where pn(x) = a0 + . . .+anx

n.
If the Turing machineM above works in polynomial time we say that the sequence

(pn)n∈N is strongly polynomial-time computable. Strong NP computability is defined
as follows.

D e f i n i t i o n 2.5. A sequence of polynomials (pn)n∈N is strongly NP computable
if there exists a polynomial-time non-deterministic Turing machine M such that, for
given n, k ∈ S1 at least one computation path is accepting, and in each accepting path
an (n + 1)-tuple b0, . . . , bn ∈ S2 is output such that |ai − bi| ≤ 2−k, for 0 ≤ i ≤ n,
where pn(x) = a0 + . . .+ anx

n.
This definition can be generalized, for instance, as follows:

i) if M is a polynomial-time deterministic oracle Turing machine with an NP
oracle then (pn)n∈N is said to be strongly ∆P

2 computable;
ii) if M is a polynomial-time non-deterministic oracle Turing machine with an NP

oracle then (pn)n∈N is said to be strongly ΣP
2 computable, etc.

2)The running time of a Turing machine is calculated as usual with respect to the size of the
input string. It is fair to give the input n in unary since the required output ψ(n) = dn must be
close to x by 2−n, i.e. the string dn (∈ S2) will normally have precision (and consequently length)
greater n.

4 Paulo Oliva

2.2 Computable real valued functions

We now investigate computability of functions f : R → R. In this case we are
interested in estimating the time required to compute f(x) for any given x ∈ R

(even non-computable ones). Since we are only interested in the complexity of f , we
abstract from the complexity of the input x. That is done by assuming that x is given
via an oracle machine Ox which on input m returns in constant time a dm ∈ D such
that |x− dm| ≤ 2−m.

D e f i n i t i o n 2.6. A function f : R → R is said to be computable if there exists
an oracle Turing machines Mf which on input n (and oracle Ox) outputs dn ∈ D such
that |f(x) − dn| ≤ 2−n.

From the definition above, it follows that any computable function is continuous.
Moreover, it can also be proved that any computable f , on a fixed compact interval
[a, b], has a computable modulus of uniform continuity, i.e. there exists a computable
(in the sense of classical recursion theory) function ωf : N → N such that

∀k ∈ N;x, y ∈ [a, b](|x− y| ≤ 2−ωf (k) → |f(x)− f(y)| ≤ 2−k).

T h e o r e m 2.7 ([5]). If f : [a, b] → R is computable on [a, b] then
• f is continuous on [a, b] and
• f has a computable modulus of uniform continuity on [a, b].
As a corollary of Theorem 2.7 we get a complete characterization of the com-

putable functions in terms of computability of two number theoretic functions.
C o r o l l a r y 2.8 ([5]). A function f : [a, b] → R is computable iff there exist two

computable functions fr : D ∩ [a, b]× N → D and ωf : N → N such that
• ∀d ∈ D ∩ [a, b];n ∈ N (|f(d)− fr(d, n)| ≤ 2−n),
• ωf is a modulus of uniform continuity for f on [a, b].
The restriction to a compact domain here is essential since a continuous function

on R need not to be uniformly continuous on R. Once we have this characterization
of computable functions f on compact intervals via a pair of computable number
theoretic functions (fr, ωf) we can easily define the complexity of real functions on
[a, b]. A function f : [a, b] → R is polynomial-time computable if fr ∈ FP and ωf is a
polynomial.

2.3 Complexity of integration

Note that integration is an operation which takes an f (e.g. in C[0, 1]) and returns an
x ∈ R. There is no well established notion of complexity classes for such operations.
The best we can do is to analyze the complexity of the real number x when the
complexity of f is fixed. A result which shows that integration is a difficult operation
(in the sense just explained) is due to Friedman [2] and establishes that the integral of
a polynomial-time computable function is always a polynomial-time computable real
number iff FP = #P. In our analysis we abstract from the complexity of integration
by the use of an oracle. If we want to take into account the complexity of integration
(oracle Bf of Section 4) the best result is given in [7]:

T h e o r e m 2.9. If f ∈ C[0, 1] is polynomial-time computable then the real number∫ 1

0 f(x) dx is in PSPACER.

On the computational complexity of best L1-approximation 5

3 The modulus of uniqueness

Let U and V be Polish spaces (i.e. complete, separable metric spaces) and G :
U × V → R a real-valued continuous function. The fact that G(u, ·) has at most one
root in some compact set Vu ⊆ V (parametrized by u) is expressed as

∀u ∈ U ; v1, v2 ∈ Vu

(∧2
i=1G(u, vi) = 0 → v1 = v2

)
.

A modulus of uniqueness (notion introduced in [8]) for the function G is a func-
tional Φ such that

∀u ∈ U ; v1, v2 ∈ Vu; k ∈ N
(∧2

i=1 |G(u, vi)| ≤ 2−Φ(u,k) → dV (v1, v2) ≤ 2−k
)

where dV is a metric in V . The functional Φ generally depends on the representation
of u as an element of the Polish space U .

R e ma r k 3.1. It turns out that for a broad class of (even non-constructive) proofs
of uniqueness theorems one can extract moduli of uniqueness (cf. [9]). Two such
extractions have been carried out in the context of approximation theory (namely for
the Chebyshev approximation [8, 9] and L1-approximation [13]) as part of the project
of proof mining (extraction of constructive content from prima facie ineffective proofs
in mathematical analysis by means of logical analysis). For the case under study
(L1-approximation) the modulus of uniqueness was extracted from Cheney’s proof of
Jackson’s theorem (cf. [1, 3]). Further information about the project of proof mining
and other applications can be found in [10, 11, 12].

The main application of the modulus of uniqueness Φ(u, k) of a function G is its
use in the computation of a root of G(u, ·) uniformly in u, given that a root exists
(see [8]). In the rest of the paper we carry out all the details of this computation
for the case of L1-approximation using the modulus of uniqueness presented in [13].
First, however, we explain how the general picture described above indeed applies to
L1-approximation. We should keep in mind though that the whole procedure is very
general, and by no means confined to the area of approximation theory.

3.1 Best L1-approximation

Let (C[0, 1], ‖ · ‖1) denote the normed linear space of all continuous functions on the
interval [0, 1] with metric d(f, g) = ‖f − g‖1. The distance of an element f ∈ C[0, 1]
from the subspace Pn (polynomials of degree ≤ n) with respect to the L1-norm is
defined as dist1(f, Pn) :≡ infp∈Pn ‖f − p‖1. Therefore, an element p∗ is a best L1-
approximation of f from Pn if ‖f − p∗‖1 = dist1(f, Pn). If we define a function
G : (C[0, 1], ‖ · ‖1) × Pn → R as G(f, p) :≡ ‖f − p‖1 − dist1(f, Pn) it is clear that
G(f, p∗) = 0, i.e. the best L1-approximations of f from Pn are precisely the roots of
the function G(f, ·).

We have not argued so far that any f ∈ C[0, 1] indeed has a best L1-approximation.
This can be done in the following way. Let Kf,n :≡ {p ∈ Pn : ‖p‖1 ≤ 2‖f‖1}. Any
best L1-approximation of f from Kf,n is also a best L1-approximation of f from Pn

(cf. Lemma 3.3). Since Kf,n is a bounded and closed subset of the finite-dimensional
subspace Pn of the normed linear space (C[0, 1], ‖ · ‖1), it is compact. The existence
of a best L1-approximation then follows from the fact that G is continuous and
therefore attains its infimum in the compact set Kf,n. As shown in [3], the best
L1-approximation of any f ∈ C[0, 1] from Pn is in fact unique (henceforth called pn).

6 Paulo Oliva

A modulus of uniqueness for L1-approximation is a functional Φ such that, for all
f in C[0, 1],

∀n ∈ N; p1, p2 ∈ Kf,n; k ∈ N
(2∧

i=1

(|G(f, pi)| ≤ 2−Φ(f,n,k)) → ‖p1 − p2‖1 ≤ 2−k
)
.

We note that a modulus for the space Kf,n can be easily extended to a modulus
for the whole space Pn.

As pointed out in Remark 3.1, one can try to extract from a proof of the unique-
ness of best L1-approximation such a functional Φ. Such extraction is carried for Ch-
eney’s proof (cf. [1]) in [13] where a modulus of uniqueness Φ for L1-approximation
is obtained. The logical meta-theorems which guarantee the extraction of moduli of
uniqueness, however, can only be applied when the function G (whose uniqueness
of the root has been proved) is explicitly definable by a term of the underlying for-
mal system and in particular continuous as a function on a Polish space. Since the
space (C[0, 1], ‖ · ‖1) is not complete, for the extraction of Φ we use the Polish space
U = (C[0, 1], ‖ · ‖∞) instead. The functional G being continuous w.r.t. the uniform
topology in C[0, 1] follows from the fact that ‖ · ‖1 is continuous in (C[0, 1], ‖ · ‖∞)
(which follows from ‖f‖1 ≤ ‖f‖∞).3)

As already mentioned, it is important that the functional Φ will in general depend
on f through its representation as an element of (C[0, 1], ‖·‖∞). Such f is represented
as a pair (fr, ωf), where the first element is the restriction of f to the dyadic numbers
and ωf is the modulus of uniform continuity of f (cf. Corollary 2.8).

3.2 Modulus of uniqueness for L1-approximation

As mentioned above, the computation of the sequence4) (pn)n∈N for a given func-
tion f ∈ C[0, 1] makes essential use of the modulus of uniqueness for best L1-
approximation. We present the modulus (taken from [13], cf. Remark 3.1) in this
section.

T h e o r e m 3.2 ([13]). Let

Φ(ωf , n, k) :≡ 2k+(4n2+10n+18) log(n+2)+ωf(k+(2n2+5n+6) log(n+2)).

The functional Φ is a modulus of uniqueness for the best L1-approximation of any
f ∈ C[0, 1], having modulus of uniform continuity ωf , from Pn, i.e. for all n ∈ N,
p1, p2 ∈ Pn,

∀k ∈ N
(2∧

i=1

‖f − pi‖1 − dist1(ωf , Pn) ≤ 2−Φ(ωf ,n,k) → ‖p1 − p2‖1 ≤ 2−k
)
.

Throughout the rest of the article, Φ will denote the modulus of uniqueness defined
in Theorem 3.2.

It is important to notice that (besides being independent of p1 and p2) the modulus
of uniqueness Φ depends on f only through its modulus of uniform continuity ωf and
does not depend on any particular value of the function f . Moreover, the above

3)The continuity of G (w.r.t. the uniform topology in C[0, 1]) also follows from the fact that G is
primitive recursively definable in (fr , ωf) and n (cf. [8]). Actually, this is the fact which guarantees
the applicability of the meta-theorems of [8] (cf. Remark 3.1) to Cheney’s proof of Jackson’s theorem
yielding the results of [13].

4)Throughout the rest of the paper pn will denote the best L1-approximation of f ∈ C[0, 1] from
Pn, for a fixed f .

On the computational complexity of best L1-approximation 7

modulus has optimal k-dependency (as follows from [14]). In the following sections
we will make use of some facts about the L1-norm which we present here. For the
rest of this section we let f and n be fixed.

L e mma 3.3. Let Kf,n :≡ {p ∈ Pn : ‖p‖1 ≤ 2‖f‖1}. The zero polynomial (which
belongs to Kf,n) L1-approximates f better than any p 6∈ Kf,n.

P r o o f. Let p 6∈ Kf,n be fixed, i.e. ‖p‖1 > 2‖f‖1. Therefore, by the triangle
inequality for the L1-norm, ‖f − p‖1 > ‖f‖1. �

As a consequence of Lemma 3.3 we get that dist1(f, Pn) = dist1(f,Kf,n). There-
fore, any polynomial p∗ such that ‖f−p∗‖1 = dist1(f,Kf,n) is a best L1-approximation
of f from Pn.

Markov’s inequality states that, for any given p ∈ Pn, ‖p′‖∞ ≤ 2n2‖p‖∞, where
p′ denotes the first derivative of p.

L e mma 3.4. If p ∈ Pn then ‖p‖∞ ≤ 2(n+ 1)2‖p‖1.
P r o o f. Let p(x) = a0+a1x+. . .+anx

n. Define p̃(x) :≡ a0x+a1
2 x

2+. . .+ an

n+1x
n+1.

It is clear that for any x ∈ [0, 1],
|p̃(x)| = | ∫ x

0
p(y)dy| ≤ ∫ x

0
|p(y)|dy ≤ ‖p‖1,

therefore, ‖p̃‖∞ ≤ ‖p‖1. Since the derivative of p̃ equals p, by Markov’s inequality,
we have ‖p‖∞ ≤ 2(n+ 1)2‖p‖1. �

L e mma 3.5. Let p(x) = a0 +a1x+ . . .+anx
n be an element of Pn and M ∈ R

∗
+.

If ‖p‖1 ≤M then |ai| ≤ 4(n+ 1)2(i+1)M , 0 ≤ i ≤ n.
P r o o f. Let p(x) = a0 + a1x + . . . + anx

n and assume ‖p‖1 ≤ M . By Lemma
3.4 we have, (1) ‖p‖∞ ≤ 2(n + 1)2M . Let p(i) denote the i-th derivative of p. It is
clear that ai = p(i)(0)

i! . By applying Markov’s inequality i times and by (1) we have
(2) ‖p(i)‖∞ ≤ 2i+1(n+ 1)2(i+1)M , and therefore,

|ai| = |p(i)(0)|
i!

(2)

≤ 2i+1(n+ 1)2(i+1)M

i!
≤ 4(n+ 1)2(i+1)M.

�
Let p(x) = a0 + a1x + . . .+ anx

n be any polynomial in Kf,n (which, by Lemma
3.3, includes pn). By the definition of Kf,n and Lemma 3.5 we have that |ai| ≤
8(n+1)2(i+1) M , for 0 ≤ i ≤ n, whereM ∈ D is an upper bound on ‖f‖1. Since we will
use this bound on the coefficients of the elements of Kf,n we give it a name, Cn,i :≡
8(n + 1)2(i+1) M . We will also need a function Θ(n, k) such that for polynomials
p(x) = a0 + a1x+ . . .+ anx

n,

(1) ‖p‖1 ≤ 2−Θ(n,k) →
n∧

i=0

|ai| ≤ 2−k,

which can be easily derived from Lemma 3.5, for instance Θ(n, k) :≡ 2(n+1) log(n+
1) + k + 2.

D e f i n i t i o n 3.6. A set of elements Nn,k ⊂ Pn is called a (n, k)-net (for Kf,n) if
for any element p̃ ∈ Kf,n there exists an element p ∈ Nn,k which is (k+1)-close to p̃,
i.e. ‖p− p̃‖1 ≤ 2−k−1.

We want to choose a net based on the representation of the dyadic numbers so
that we have control over the precision of the elements.

8 Paulo Oliva

L e mma 3.7. Let Cn,k,i :≡ {a ∈ S2 : prec(a) ≤ k+log(n+1
i+1) and |a| ≤ Cn,i}. The

space of polynomials Nn,k :≡ {a0 + . . .+ anx
n : ai ∈ Cn,k,i, 0 ≤ i ≤ n} is a (n, k)-net.

P r o o f. Take an arbitrary element of Kf,n, say p̃(x) = b0 + . . . + bnx
n. In the

way we have chosen the coefficients of the elements of Nn,k we are able to find p(x) =
a0 + . . .+ anx

n ∈ Nn,k such that |ai − bi| ≤ 2−k−1(i+1)
n+1 , 0 ≤ i ≤ n, i.e.

‖p− p̃‖1 = ‖(a0 − b0) + . . .+ (an − bn)xn‖1

=
∫ 1

0

|(a0 − b0) + . . .+ (an − bn)xn|dx

≤ |a0 − b0|+ . . .+
|an−1 − bn−1|

n
+
|an − bn|
n+ 1

≤ 2−k−1

n+ 1
+ . . .+

2−k−1n

n(n+ 1)
+

2−k−1(n+ 1)
(n+ 1)(n+ 1)

= 2−k−1.

�

4 The complexity of (pn)n∈N

For the rest of the article f denotes a fixed polynomial-time computable function.
As mentioned before, we will analyze the complexity of the sequence (pn)n∈N relative
to the complexity of integration. Therefore, in the following we will make use of an
oracle Bf which is supposed to answer queries about integration.

In the case of the best Chebyshev approximation the value dist∞(f, Pn) can be
computed beforehand, and that value can be used in the computation of the best
Chebyshev approximation of f from Pn. For the sake of comparison between the two
cases of Chebyshev and L1-approximation, in the first part of this section we first
analyze the complexity of (pn)n∈N relative to an oracle Af for dist1(f, Pn) (as done
in [4] for the Chebyshev case). Then, in the last section we present an algorithm
which does not need the values of dist1(f, Pn) in advance. From this algorithm we
obtain a complexity upper bound for the sequence (pn)n∈N relative solely to the oracle
Bf .

4.1 Using oracle Af for dist1(f, Pn)

Let Ln be a general left cut of the real number dist1(f, Pn). The oracle Af decides
the set

{〈n, d〉 : d ∈ Ln}
where n ∈ S1 and d ∈ S2. The second oracle Bf answers queries about general left
cuts of the real numbers ‖f − p‖1, uniformly in p. More precisely, let Ln,p denote a
general left cut of the real number ‖f − p‖1. The oracle Bf decides the set 5)

{〈n, p, e〉 : e ∈ Ln,p}
where n ∈ S1 and a0, . . . , an, e ∈ S2. As done in [4] for the Chebyshev case, we first
show how to decide a certain set Gf using the oracles Af and Bf . (The oracles are
used as mentioned in Remark 2.3.)

5)If p(x) = a0 + . . . + anxn ∈ Pn we also write, for convenience, 〈. . . , p, . . .〉 instead of
〈. . . , a0, . . . , an, . . .〉.

On the computational complexity of best L1-approximation 9

〈n, k, a0, . . . , an〉 ∈ Gf ;n, k ∈ S1 and a0, . . . , an ∈ S2

Oracles: Af , Bf

Let s :≡ Φ(ωf , n,Θ(n, k));
If p 6∈ Nn,s+1 output no; (cf. Lemma 3.7)
Compute dist1(f, Pn) with precision s+ 3 (let the resulting value be d ∈ S2);
Compute ‖f − p‖1 with precision s+ 3 (let the resulting value be e ∈ S2);
Output yes iff |d− e| ≤ 2−s−1.

T h e o r e m 4.1. Let f ∈ C[0, 1] be polynomial-time computable and ωf a poly-
nomial modulus of uniform continuity of f . There exists a multi-valued function αf

which on input n and k (∈ S1) produces a non-empty set of (n+ 1)-tuples (∈ Sn+1
2)

(representing elements of Pn) such that for each 〈a0, . . . , an〉 ∈ αf (n, k),
(i) for 0 ≤ i ≤ n, prec(ai) ≤ Φ(ωf , n,Θ(n, k)) + log(n+1

i+1) + 1;
(ii) for 0 ≤ i ≤ n, |bi − ai| ≤ 2−k (where pn(x) = b0 + . . .+ bnx

n).
Moreover,
(iii) Graph(αf) ∈ P[Af , Bf].

P r o o f. Let s be a shorthand for Φ(ωf , n,Θ(n, k)). We define αf to be the func-
tion that maps each n, k ∈ S1 to all (n + 1)-tuples 〈a0, . . . , an〉 ∈ Sn+1

2 such that
〈n, k, a0, . . . , an〉 ∈ Gf , i.e. αf is the function whose graph is Gf . We first have to
argue that αf is total. Let n, k be fixed. By Lemma 3.7 and the fact that pn ∈ Kf,n,
there exists a p ∈ Nn,s+1 such that ‖pn − p‖1 ≤ 2−s−2. By the triangle inequality for
the L1-norm we get ‖f − p‖1 − dist1(f, Pn) ≤ 2−s−2. By the computation of d and e
we have

| d− dist1(f, Pn) | ≤ 2−s−3 and | e− ‖f − p‖1 | ≤ 2−s−3,
which implies |d− e| ≤ 2−s−1, and the input p is accepted.

(i) Immediate consequence of the definition of a net (3.6) and the definition of αf .

(ii) Suppose 〈a0, . . . , an〉 ∈ αf (n, k) (let p(x) :≡ ∑n
i=0 aix

i). This implies |e − d| ≤
2−s−1, d and e as above. We then obtain ‖f − p‖1− dist1(f, Pn) ≤ 2−s. By Theorem
3.2 we get ‖pn − p‖1 ≤ 2−Θ(n,k). And by (1) of Section 3.2, |bi − ai| ≤ 2−k, for
0 ≤ i ≤ n, where pn(x) = b0 + . . .+ bnx

n.

(iii) Since ωf is a polynomial (cf. Section 2.2), Φ(ωf , n,Θ(n, k)) is also a polynomial
and the procedure Gf above can be performed in polynomial time (in Af and Bf).
Notice also that since f is fixed the net Nn,s+1 has size exponential on the input. �

C o r o l l a r y 4.2. Let f ∈ C[0, 1] be polynomial-time computable. The sequence of
best L1-approximation (pn)n∈N is strongly NP[Af , Bf] computable.

P r o o f. Let n, k ∈ S1 be given. We define a non-deterministic oracle Turing ma-
chine M as follows. The oracles of M will be the sets Af and Bf . Each computation
path ofM takes into consideration one element p ∈ Nn,s+1 (s as above). The machine
(in each path) decides whether 〈n, k, p〉 belongs to Gf (i.e. Graph(αf)) or not. If yes
then the path is accepted and the machine outputs p. Note that, by Theorem 4.1 (i),
the size of p is a polynomial on n and k. �

10 Paulo Oliva

We obtain, for instance, that if Af and Bf are in NP then Graph(αf) ∈ ∆P
2 and

(pn)n∈N is strongly ΣP
2 computable.

R e ma r k 4.3. Note that the set
L :≡ {〈n, d〉 ∈ S1 × S2 : ∀p ∈ Nn,k (d ≤ ‖f − p‖k+1

1)}
where the k above abbreviates prec(d) and ‖f − p‖k+1

1 is a (k + 1)-approximation of
the value ‖f − p‖1, does the job of the oracle Af . In other words, the set

Ln :≡ {d ∈ S2 : 〈n, d〉 ∈ L}
is a general left cut of dist1(f, Pn). An algorithm for deciding the complement of
L can be given as follows. On input d ∈ S2 (with precision k) and n ∈ S1, non-
deterministically choose a polynomial from Nn,k and compute the value of ‖f − p‖1

with precision k + 1 (say e). Then, answer yes (i.e. 〈n, d〉 6∈ L) when d > e. In this
way, using the oracle Bf for integration, we obtain an upper bound coNP[Bf] on
the complexity of the oracle Af . Note also that the above procedure does not make
use of the fact that the best L1-approximation of f is unique.

4.2 Absolute complexity of (pn)n∈N

In this section we present another algorithm which only uses the oracle Bf for a gen-
eral left cuts of ‖f − p‖1 (and does not make use of the oracle Af). We first use Bf

to define the set G̃f ,

〈n, k, p, p̃〉 ∈ G̃f ; n, k ∈ S1 and p, p̃ ∈ Sn+1
2

Oracles: Bf

Let s :≡ Φ(ωf , n,Θ(n, k));
If p 6∈ Nn,s+1 output no; (cf. Lemma 3.7)
Compute ‖f − p‖1 with precision s+ 3 (let the resulting value be e ∈ S2);
Compute ‖f − p̃‖1 with precision s+ 3 (let the resulting value be ẽ ∈ S2);
Output yes iff e ≤ ẽ+ 2−s−1.

Note that deciding membership for the set G̃f can be done in polynomial-time using
the oracle Bf , i.e. G̃f ∈ P[Bf]. Let

Gf :≡ {〈n, k, p〉 : ∀p̃ ∈ Nn,Φ(ωf ,n,Θ(n,k))+1

(〈n, k, p, p̃〉 ∈ G̃f

)}.
T h e o r e m 4.4. Let f ∈ C[0, 1] be polynomial-time computable and ωf a poly-

nomial modulus of uniform continuity of f . There exists a multi-valued function βf

which on input n and k (∈ S1) produces a non-empty set of (n+ 1)-tuples (∈ Sn+1
2)

(representing elements of Pn) such that for each 〈a0, . . . , an〉 ∈ βf (n, k),
(i) for 0 ≤ i ≤ n, prec(ai) ≤ Φ(ωf , n,Θ(n, k)) + log(n+1

i+1) + 1;
(ii) for 0 ≤ i ≤ n, |bi − ai| ≤ 2−k (where pn(x) = b0 + . . .+ bnx

n).
Moreover,
(iii) Graph(βf) ∈ coNP[Bf].

P r o o f. Let s be a shorthand for Φ(ωf , n,Θ(n, k)). We define βf to be the func-
tion that maps each n, k ∈ S1 to all (n + 1)-tuples 〈a0, . . . , an〉 ∈ Sn+1

2 such that

On the computational complexity of best L1-approximation 11

〈n, k, a0, . . . , an〉 ∈ Gf , i.e. βf is the function whose graph is Gf . First we have
to prove that βf is total. Let p be an element of Nn,s+1 such that ‖f − p‖1 ≤
minp̃∈Nn,s+1 ‖f − p̃‖1. Then, clearly, 〈n, k, p, p̃〉 ∈ G̃, for all p̃ ∈ Nn,s+1. Therefore,
〈n, k, p〉 ∈ Graph(βf).

(i) Immediate consequence of the definition of a net (3.6) and the definition of βf .

(ii) Assume 〈n, k, p, p̃〉 ∈ G̃f , for all p̃ ∈ Nn,s+1. That implies

(∗) ∀p̃ ∈ Nn,s+1

(‖f − p‖1 ≤ ‖f − p̃‖1 + 3 · 2−s−2
)
.

Since pn ∈ Kf,n (and by the definition of (n, k)-net) there is an element p̃ ∈ Nn,s+1

such that ‖pn−p̃‖1 ≤ 2−s−2 and by triangle inequality we get, ‖f−p̃‖1 ≤ dist(f, Pn)+
2−s−2. By (∗) we get, ‖f − p‖1 ≤ dist1(f, Pn)+2−s. Hence, by Theorem 3.2 we have
‖pn − p‖1 ≤ 2−Θ(n,k). And by (1) of Section 3.2 |bi − ai| ≤ 2−k, for 0 ≤ i ≤ n, where
pn(x) = b0 + . . .+ bnx

n.

(iii) Similar to Theorem 4.1 (iii). �
C o r o l l a r y 4.5. Let f ∈ C[0, 1] be polynomial-time computable, then the sequence

(pn)n∈N is strongly NP computable in NP[Bf].
P r o o f. Let n, k ∈ S1 be given. We define a non-deterministic oracle Turing

machine M as follows. The oracle of M will be the set Graph(βf) (which is in
coNP[Bf]). Each computation path of M takes into consideration one element p ∈
Nn,s+1 (s as above). The machine (in each path) decides whether 〈n, k, p〉 belongs
to Graph(βf) or not. If yes then the path is accepted and the machine outputs
p. We also note that, as our oracle we can as well use the complement of the set
Graph(βf). �

5 Conclusion

We have established the first complexity upper bound on the sequence (pn)n∈N of
best L1-approximations of a polynomial time computable f ∈ C[0, 1]. For the com-
plexity analysis we made use of two oracles Af and Bf solving generalized left cuts
of dist1(f, Pn) and ‖f − p‖1 respectively in two different ways:

1) Relative to both oracles Af and Bf . We have shown that the sequence (pn)n∈N

is strongly NP computable relative to those oracles. Since the oracle Af has
a trivial coNP[Bf] upper bound (cf. Remark 4.3) we obtain that (pn)n∈N is
strongly NP[NP[Bf], Bf] computable, i.e. strongly NP computable relative to
an NP[Bf] oracle.

2) Relative to oracle Bf . We have also analyzed the complexity of (pn)n∈N without
first computing the value dist1(f, Pn). In this case we concluded directly that
the sequence (pn)n∈N is strongly NP computable relative to an NP[Bf] oracle.

One should note that our complexity analysis strongly relies on the modulus of
uniqueness for L1-approximation, first presented in [13].

In [4] a relation is established between the sequence (pn)n∈N (of best Chebysheff
approximations of a polynomial time computable f ∈ C[0, 1]) and separation of well
known complexity classes. It is not known whether similar results also hold in the
case under study of L1-approximation.

12 Paulo Oliva

Acknowledgement. I would like to thank Ulrich Kohlenbach for interesting
discussions and many helpful suggestions.

References

[1] E.W. Cheney. Approximation Theory. AMS Chelsea Publishing, 1966.
[2] H. Friedman. On the computational complexity of maximization and integration. Ad-

vances in Mathematics, 53:80–98, 1984.
[3] D. Jackson. Note on a class of polynomials of approximation. Transactions of the Amer-

ican Mathematical Society, 22:320–326, 1921.
[4] K.-I. Ko. On the computational complexity of best Chebycheff approximation. Journal

of Complexity, 2:95–120, 1986.
[5] K.-I. Ko. Complexity theory of real functions. Birkhäuser, Boston-Basel-Berlin, 1991.
[6] K.-I. Ko. Polynomial-time computability in Analysis. In Yu L. Ershov, S.S. Goncharov,

A. Nerode, and J.B. Remmel, editors, Handbook of recursive mathematics (vol. 2),
volume 139 of Studies in Logic and the Foundations of Mathematics, pages 1271–1317.
North-Holland, Amsterdam, 1998.

[7] K.-I. Ko and H. Friedman. Computational complexity of real functions. Theoretical
Computer Science, 20:323–352, 1982.

[8] U. Kohlenbach. Effective moduli from ineffective uniqueness proofs. An unwinding of
de La Vallée Poussin’s proof for Chebycheff approximation. Annals of Pure and Applied
Logic, 64:27–94, 1993.

[9] U. Kohlenbach. New effective moduli of uniqueness and uniform a–priori estimates for
constants of strong unicity by logical analysis of known proofs in best approximation
theory. Numerical Functional Analysis and Optimization, 14:581–606, 1993.

[10] U. Kohlenbach. Analysing proofs in Analysis. In W. Hodges, M. Hyland, C. Stein-
horn, and J. Truss, editors, Logic: from Foundations to Applications, pages 225–260.
European Logic Colloquium (Keele, 1993), Oxford University Press, 1996.

[11] U. Kohlenbach. On the computational content of the Krasnoselski and Ishikawa fixed
point theorems. In J. Blanck, V. Brattka, and P. Hertling, editors, Computability and
Complexity in Analysis, (CCA’2000), volume 2064 of Lecture Notes in Computer Sci-
ence, pages 119–145. Springer, 2001.

[12] U. Kohlenbach. A quantitative version of a theorem due to Borwein-Reich-Shafrir. Nu-
merical Functional Analysis and Optimization, 22:641–656, 2001.

[13] U. Kohlenbach and P. Oliva. Proof mining in L1-approximation. Submitted (35 pages),
2001. An extended technical report version can be found in: BRICS Report Series
(http://www.brics.dk/RS/01/14/BRICS-RS-01-14.ps.gz), RS-01-14 (38 pages), 2001.

[14] A. Kroó. On the continuity of best approximations in the space of integrable functions.
Acta Mathematica Academiae Scientiarum Hungaricae, 32:331–348, 1978.

[15] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[16] M. Pour-El and J. Ian Richards. Computability in Analysis and Physics. Perspectives

in Mathematical Logic. Springer-Verlag, 1989.
[17] K. Weihrauch. Computable Analysis. Springer-Verlag, 2000.

