Skip to main content
Log in

Making Knowledge in Synthetic Biology: Design Meets Kludge

  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Synthetic biology is an umbrella term that covers a range of aims, approaches, and techniques. They are all brought together by common practices of analogizing, synthesizing, mechanicizing, and kludging. With a focus on kludging as the connection point between biology, engineering, and evolution, I show how synthetic biology’s successes depend on custom-built kludges and a creative, “make-it-work” attitude to the construction of biological systems. Such practices do not fit neatly, however, into synthetic biology’s celebration of rational design. Nor do they straightforwardly embody Richard Feynman’s “last blackboard” statement (1988) that without creating something it cannot be understood. Reflecting further on the relationship between synthetic construction and knowledge making gives philosophy of science new avenues of insight into scientific practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon U (2007) Simplicity in biology. Nature 446: 497.

    Google Scholar 

  • Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2: 2006.0028. Doi: 10.1038/msb4100073

    Google Scholar 

  • Arkin A (2008) Setting the standard in synthetic biology. Nature Biotechnology 26:771–774.

    Google Scholar 

  • Arkin AP, Fletcher DA (2006) Fast, cheap and somewhat in control. Genome Biology 7: 114. Doi: 10.1186/gb-2006-7-8-114

    Google Scholar 

  • Auffray C, Imbeaud S, Roux-Rouquie M, Hood L (2003) From functional genomics to systems biology: Concepts and practices. Comptes Rendus Biologies 326: 879–892.

    Google Scholar 

  • Bamford G (1993) Popper’s explications of ad hocness: Circularity, empirical content, and scientific practice. British Journal for the Philosophy of Science 44: 335–355.

    Google Scholar 

  • Barrett CL, Kim TY, Kim HU, Palsson BØ, Lee SY (2006) Systems biology as a foundation for genome-scale synthetic biology. Current Opinion in Biotechnology 17: 1–5.

    Google Scholar 

  • Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405: 590–593.

    Google Scholar 

  • Benner SA, Sismour AM (2005) Synthetic biology. Nature Reviews Genetics 6: 533–543.

    Google Scholar 

  • Blake WJ, Issacs FJ (2004) Synthetic biology evolves. Trends in Biotechnology 22: 321–324.

    Google Scholar 

  • Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422: 633–637.

    Google Scholar 

  • Botstein D (2004) Ira Herskowitz: 1946–2003. Genetics 166: 653–660.

    Google Scholar 

  • Boyle PM, Silver PA (2009) Harnessing nature’s toolbox: Regulatory elements for synthetic biology. Journal of the Royal Society Interface 6 (Suppl. 4): S535–S546.

    Google Scholar 

  • Breithaupt H (2006) The engineer’s approach to biology. EMBO Reports 7: 21–24.

    Google Scholar 

  • Brent R (2000) Genomic biology. Cell 100: 169–183.

    Google Scholar 

  • Çaǧatay T, Turcotte M, Elowitz MB, Garcia-Ojalvo J, Süel GM (2009) Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell 139: 512–522.

    Google Scholar 

  • Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology 26: 787–793.

    Google Scholar 

  • Cello J, Paul AV, Wimmer E (2002). Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science 297: 1016–1018.

    Google Scholar 

  • Chan LY, Kosuri S, Endy D (2005) Refactoring bacteriophage T7. Molecular Systems Biology 1:2005.0018. Doi: 10.1038/msb4100025

    Google Scholar 

  • Chatterjee R, Yuan L (2006) Directed evolution of metabolic pathways. Trends in Biotechnology 24: 28–38.

    Google Scholar 

  • Church GM (2005) From systems to synthetic biology. Molecular Systems Biology 1: 2005. 0032 Doi:10.1038/msb4100007

    Google Scholar 

  • Costelloe T (2008) Giambattista Vico. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/vico/

  • Creager ANH, Lunbeck E, Wise MN, eds (2007) Science Without Laws: Model Systems, Cases, Exemplary Narratives. Durham, NC: Duke University Press.

    Google Scholar 

  • de Lorenzo V, Danchin A (2008) Synthetic biology: Discovering new worlds and new words. EMBO Reports 9: 822–827.

    Google Scholar 

  • de Regt HW, Leonelli S, Eigner K, eds (2009) Scientific Understanding: Philosophical Perspectives. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Deamer D (2005) A giant step towards artificial life? Trends in Biotechnology 23: 336–338.

    Google Scholar 

  • Deamer D (2009) On the origin of systems: Systems biology, synthetic biology and the origin of life. EMBO Reports 10 (special issue): S1–S4.

    Google Scholar 

  • Delbrück M (1979) Interview with Max Delbrück. Oral history project, California Institute of Technology Archives, CA. http://oralhistories.library.caltech.edu/16/

    Google Scholar 

  • Drubin DA, Way JC, Silver PA (2007) Designing biological systems. Genes and Development 21: 242–254.

    Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over flux through an engineered metabolic pathway. Nature Biotechnology 27: 753–759.

    Google Scholar 

  • Eldar A, Chary VK, Xenopoulos P, Fonts ME, Losón OC, Dworkin J, Piggot PJ, Elowitz MB (2009) Partial penetrance facilitates developmental evolution in bacteria. Nature 460: 510–514.

    Google Scholar 

  • Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of synthetic networks with predicted functions. Nature Biotechnology 27: 465–471.

    Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338.

    Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297: 1183–1186.

    Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438: 449–453.

    Google Scholar 

  • Endy D (2006) Synthetic biology Life 2.0. The Economist http://www.economist.com/science/displaystory.cfm?storyJd=7854314

  • Endy D (2008) Synthetic biology: Can we make biology easy to engineer? Industrial Biotechnology 4: 340–351.

    Google Scholar 

  • Ferber D (2004) Microbes made to order. Science 303: 158–161.

    Google Scholar 

  • Feynman RP (1965) The Character of Physical Law. London: BBC.

    Google Scholar 

  • Feynman RP (1986) Personal observations on the reliability of the shuttle. In: Report of the Presidential Commission on the Space Shuttle Challenger Accident. Vol 2, Appendix F. http://history.nasa.gov/rogersrep/v2appf.htm

  • Feynman RP (1988) Last blackboard. Photo ID 1.10-29. http://www.archives.caltech.edu

  • Feynman RP as told to Leighton R (1988) What Do You Care What Other People Think? Further Adventures of a Curious Character. New York: Norton.

    Google Scholar 

  • Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Molecular Systems Biology 2: 45. Doi:10.1038/msb4100090

    Google Scholar 

  • Forster MR (2007) A philosopher’s guide to empirical success. Philosophy of Science 74: 588–600.

    Google Scholar 

  • Francois P, Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proceedings of the National Academy of Science of the USA 101: 580–585.

    Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339–342.

    Google Scholar 

  • Gil R, Silva FJ, Peretó J, Moya A (2004) Determination of the core of a minimal bacterial gene set. Microbiology and Molecular Biology Reviews 68: 518–537.

    Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchinson CA3, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proceedings of the National Academy of Sciences USA 103: 425–430.

    Google Scholar 

  • Goodwin W (2009) Global climate modeling as applied science. Paper presented at Models and Simulations 3, Charlottesville, Virginia: March 5–7, 2009. http://philsci-archive.pitt.edu/archive/00004517/

  • Gould SJ (1997) The exaptive excellence of spandrels as a term and prototype. Proceedings of the National Academy of Sciences USA 94: 10750–10755.

    Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation: A missing term in the science of form. Paleobiology 8: 4–15.

    Google Scholar 

  • Granholm JW (1962) How to design a kludge. Datamation (Feb). http://neil.franMin.ch/Jokes_and_Fun/Kludge.html

  • Gregory TR (2009) Flaws of the fudge factor. http://network.nature.com/people/trgregory/blog/2009/03/21/flaws-of-the-fudge-factor

  • Grinnell F (2009) Discovery in the lab: Plato’s paradox and Delbrück’s principle of limited sloppiness. FASEB Journal 23: 7–9.

    Google Scholar 

  • Guet CC, Elowitz MB, Hsing W, Leibler S (2002) Combinatorial synthesis of genetic networks. Science 296: 1466–1470.

    Google Scholar 

  • Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J, Cantor CR, Elston TC, Collins JJ (2006) A bottom-up approach to gene regulation. Nature 439: 856–860.

    Google Scholar 

  • Gunawardena J (2008) Programming with models. Paper presented at Modelling Complex Biological Systems in the Context of Genomics, Lille Spring School, Villeneuve d’Ascq, France: April 7–11, 2008. http://epigenomique.free.fr/LILLE_08/en/index.php

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular biology. Nature 402 (Suppl.): C47–C52.

    Google Scholar 

  • Haseltine EL, Arnold FH (2007) Synthetic gene circuits: Design with directed evolution. Annual Review of Biophysical and Biomolecular Structure 36: 1–19.

    Google Scholar 

  • Heinemann M, Panke S. 2006. Synthetic biology: Putting engineering into biology. Bioinformatics 22: 2790–2799.

    Google Scholar 

  • Henkel J, Maurer SM (2007) The economics of synthetic biology. Molecular Systems Biology 3: 117. Doi:10.1038/msb4100161

    Google Scholar 

  • Hold C, Panke S (2009) Towards the engineering of in vitro systems. Journal of the Royal Society Interface 6 (Suppl. 4): S507–S521.

    Google Scholar 

  • Huang S, Wikswo J (2006) Dimensions of systems biology. Reviews of Physiology, Biochemistry and Pharmacology 157: 81–104.

    Google Scholar 

  • Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P, Raineri E, Garriga-Canut M, Serrano L (2008) Evolvability and hierarchy in rewired bacterial networks. Nature 452: 840–845.

    Google Scholar 

  • Issacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nature Biotechnology 24: 545–554.

    Google Scholar 

  • Jan YN, Jan LY (1998) Serendipity, the principle of limited sloppiness, and neural development. International Journal of Developmental Biology 42: 531–533.

    Google Scholar 

  • Katsnelson A (2009) Brick by brick. The Scientist 23(2): 42–47.

    Google Scholar 

  • Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chemical Biology 3: 64–76.

    Google Scholar 

  • Keizer G (2009) Microsoft plans monster Patch Tuesday next week. http://www.computerworld.com/s/article/9139155/Microsoft_plan_monster_Patch_Tuesday_next_week

  • Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development Nature Reviews Drug Discovery 2: 1019–1026

    Google Scholar 

  • Knight T (2003) Idempotent vector design for standard assembly of biobricks MIT Synthetic Biology Working Group http://dspace.mit.edu/handle/1721.1/21168

  • Koide T, Pang WL, Baliga NS (2009) The role of predictive modelling in rationally re-engineering biological systems Nature Reviews Microbiology 7: 297–305

    Google Scholar 

  • Koopman P, Hoffman RR (2003) Work-arounds, make-work and kludges IEEE Intelligent Systems (Nov/Dec): 70–75

  • Koyabashi H, Kærn M, Araki M, Chung K, Gardner TS, Cantro CR, Collins JJ (2004) Programmable cells: Interfacing natural and engineered gene networks Proceedings of the National Academy of Sciences USA 101: 8414–8419.

    Google Scholar 

  • Lakatos I (1968–9) Criticism and the methodology of scientific research programmes. Proceedings of the Aristotelian Society 69: 149–186.

    Google Scholar 

  • Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchinson II CA, Smith HO, Venter JC (2007) Genome transplantation in bacteria: Changing one species to another. Science 317: 632–638.

    Google Scholar 

  • Lartigue C, Vashee S, Algire MA, Chuang R-Y, Benders GA, Ma L, Noskov VN, Denisova EA, Gibson DG, Assad-Garcia N, et al. (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325: 1693–1696.

    Google Scholar 

  • Lazebnik Y (2002) Can a biologist fix a radio? Or what I learned while studying apoptosis. Cancer Cell 2: 179–182.

    Google Scholar 

  • Leffall J (2007) Are patches leading to exploits? http://redmondmag.com/articles/2007/10/12/are-patches-leading-to-exploits.aspx

  • Leffall J (2009) What Patch Tuesday’s patchy record means. http://mcpmag.com/articles/2009/10/19/patch-tuesday-patchy-record.aspx

  • Lenhard J, Winsberg E (forthcoming) Holism and entrenchment in climate modelling. http://www.cas.usf.edu/∼ewinsb/papers.html

  • Linden DJ (2007) The Accidental Mind: How Brain Evolution Has Given Us Love, Memory, Dreams, and God. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Loettgers A (2009) Synthetic biology and the emergence of a dual meaning of noise. Biological Theory 4: 340–356.

    Google Scholar 

  • Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: A review. Naturwissenschaften 93: 1–13.

    Google Scholar 

  • Marcus G (2008) Kluge: The Haphazard Evolution of the Human Mind. NY: Houghton Mifflin.

    Google Scholar 

  • Marguet P, Balagadde F, Tan C, You L (2007) Biology by design: Reduction and synthesis of cellular components and behaviour. Journal of the Royal Society Interface 4(15): 607–623.

    Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology 21: 796–802.

    Google Scholar 

  • Mazia D (1953) Letter to Joshua Lederberg, October 23. The Joshua Lederberg Papers, National Library of Medicine. http://profiles.nlm.nih.gov/BB/A/K/T/N/

  • Michalodimitrakis K, Isalan M (2008) Engineering prokaryotic gene circuits. FEMS Microbiology Reviews 33: 27–37.

    Google Scholar 

  • Miner RC (1998) Verum-factum and practical wisdom in the early writings of Giambattista Vico. Journal of the History of Ideas 59: 53–73.

    Google Scholar 

  • Minty JJ, Varedi KSM, Lin XN (2009) Network benchmarking: A happy marriage between systems and synthetic biology. Chemistry and Biology 16: 239–241.

    Google Scholar 

  • Morange M (2009) A new revolution? EMBO Reports 10 (special issue), S50–S553.

    Google Scholar 

  • Mukherji S, van Oudenaarden A (2009) Synthetic biology: Understanding biological design from synthetic circuits. Nature Reviews Genetics 10: 859–871.

    Google Scholar 

  • Muntendam R, Melillo E, Ryden A, Kayser O (2009) Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Applied Microbiology and Biotechnology 84: 1003–1019.

    Google Scholar 

  • Myers PZ (2008) Algorithmic inelegance. http://seedmagazine.com/content/article/algorithmicJnelegance/

  • NEST (New and Emerging Science and Technology), European Community (2005) Synthetic biology: Applying Engineering to Biology. Brussels: European Commission Directorate General for Research. http://www.univ-poitiers.fr/recherche/documents/pcrdt7/syntheticbiology.pdf

    Google Scholar 

  • Nicolaou KC, Vourloumis D, Winssinger N, Baran PS (2000) The art and science of total synthesis at the dawn of the twenty-first century. Angewandte Chemie (International Edition) 39: 44–122.

    Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Applied Microbiology and Biotechnology 55: 263–283.

    Google Scholar 

  • Noireaux V, Bar-Ziv R, Godefroy J, Salman H, Libchaber A (2005) Toward an artificial cell based on gene expression in vesicles. Physical Biology 2: 1–8.

    Google Scholar 

  • O’Malley MA, Dupre J (2005) Fundamental issues in systems biology. BioEssays 27: 1270–1776.

    Google Scholar 

  • O’Malley MA, Powell A, Davies JF, Calvert J (2008) Knowledge-making distinctions in synthetic biology. BioEssays 30: 57–65.

    Google Scholar 

  • Oransky I (2008) Seymour Benzer. The Lancet 371: 24.

    Google Scholar 

  • Paulsson J (2004) Summing up the noise in gene networks. Nature 427: 415–418.

    Google Scholar 

  • Peccoud J, Blauvelt MF, Cai Y, Cooper KL, Crasta O, DeLalla EC, Evans C, Folkerts O, Lyons BM, Mane SP, Shelton R, Sweede MA, Waldon SA (2008) Targeted development of registries of biological parts. PLoS One 3(7): e2671. Doi:10.1371/journal.pone.0002671.

    Google Scholar 

  • Pleiss J (2006) The promise of synthetic biology. Applied Microbiology and Biotechnology 73: 735–739.

    Google Scholar 

  • Popper KR (1963) Conjectures and Refutations: The Growth of Scientific Knowledge. London: Routledge.

    Google Scholar 

  • Pósfai G, Plunkett III G, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Proceedings of the National Academy of Sciences USA 312: 1044–1046.

    Google Scholar 

  • Powell A, O’Malley MA, Müller-Wille SEW, Calvert J, Dupré J (2007) Disciplinary baptisms: A comparison of the naming stories of genetics, molecular biology, genomics and systems biology. History and Philosophy of the Life Sciences 29: 5–32.

    Google Scholar 

  • Prather KLJ, Martin CH (2008) De novo biosynthetic pathways: Rational design of microbial chemical factories. Current Opinion in Biotechnology 19: 468–474.

    Google Scholar 

  • Purnick PEM, Weiss R (2009) The second wave of synthetic biology: From modules to systems. Nature Reviews Molecular Cell Biology 10: 410–422.

    Google Scholar 

  • Radder H, ed (2003) The Philosophy of Scientific Experimentation. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135: 216–226.

    Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943.

    Google Scholar 

  • Root-Bernstein RS (1989) How scientists really think. Perspectives in Biology and Medicine 32: 472–488.

    Google Scholar 

  • Serrano L (2007) Synthetic biology: Promises and challenges. Molecular Systems Biology 3: 158. Doi:10.1038/msb4100202

    Google Scholar 

  • Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. Journal of Biological Engineering 2:5. Doi:10.1186/1754-1611-2-5

    Google Scholar 

  • Simpson ML (2004) Rewiring the cell: Synthetic biology moves towards higher functional complexity. Trends in Biotechnology 22: 555–557.

    Google Scholar 

  • Smith HO, Hutchinson III CA, Pfanndoch C, Venter JC (2003) Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of Sciences USA 100: 15440–15445.

    Google Scholar 

  • Sole RV, Munteanu A, Rodríguez-Caso C, Macia J (2007) Synthetic protocell biology: From reproduction to computation. Philosophical Transactions of the Royal Society London B 362: 1727–39.

    Google Scholar 

  • Sorger P (2005) A reductionist’s systems biology. Current Opinion in Cell Biology 17: 9–11.

    Google Scholar 

  • Sprinzak D, Elowitz MB (2005) Reconstruction of genetic circuits. Nature 438: 443–448.

    Google Scholar 

  • Stich S (2006) Is morality an elegant machine or a kludge? Journal of Cognition and Culture 6: 181–189.

    Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409: 387–390.

    Google Scholar 

  • Szybalski W (1978) Nobel prizes and restriction enzymes. Gene 4: 181–182.

    Google Scholar 

  • Tanenbaum AS (1988) Computer Networks. 2nd ed. New York: Prentice Hall.

    Google Scholar 

  • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: More options to engineer cells. Trends in Biotechnology 25: 132–137.

    Google Scholar 

  • Vaughan D (1996) The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA. Chicago: University of Chicago Press.

    Google Scholar 

  • Vermuri GN, Aristidou AA (2005) Metabolic engineering in the -omics era: Elucidating and modulating regulatory networks. Microbiology and Molecular Biology Reviews 69: 197–216.

    Google Scholar 

  • Voigt CA (2006) Genetic parts to program bacteria. Current Opinion in Biotechnology 17: 548–557.

    Google Scholar 

  • Weber W, Fussenegger M (2009) The impact of synthetic biology on drug discovery. Drug Discovery Today 14: 956–963.

    Google Scholar 

  • Wimsatt WC (2007) Re-engineering Philosophy for Limited Beings: Piece-wise Approximations to Reality. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Current Opinion in Microbiology 6: 125–134.

    Google Scholar 

  • Yildirim MA, Vidal M (2008) Systems engineering to systems biology. Molecular Systems Biology 4: 185. Doi:10.1038/msb2008.22

    Google Scholar 

  • Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proceedings of the National Academy of Sciences USA 99: 16587–16591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen A. O’Malley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Malley, M.A. Making Knowledge in Synthetic Biology: Design Meets Kludge. Biol Theory 4, 378–389 (2009). https://doi.org/10.1162/BIOT_a_00006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1162/BIOT_a_00006

Keywords

Navigation