Skip to main content
Log in

The Experimental Study of Bacterial Evolution and Its Implications for the Modern Synthesis of Evolutionary Biology

  • Original Research
  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s. These experimental analyses focused on the evolution of population and genetic structure, the adaptive gain of new functions, and the evolutionary consequences of competition dynamics. This large body of research aimed to make evolutionary theory testable and predictive, by giving it mechanistic underpinnings. Although evolutionary microbiologists promoted bacterial experiments as methodologically advantageous and a source of general insight into evolution, they also acknowledged the biological differences of bacteria. My historical overview concludes with reflections on what bacterial evolutionary research achieved in this period, and its implications for the still-developing modern synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, Ken J. and Hegeman, George. 1976. “Selective Disadvantage of Non-functional Protein Synthesis in Escherichia coli.” Journal of Molecular Evolution 8: 317–328.

    Article  Google Scholar 

  • Atwood, Kimball C., Schneider, Lillian K. and Ryan, Francis J. 1951a. “Periodic Selection in Escherichia coli.” Proceedings of the National Academy of Sciences USA 37: 146–155.

    Article  Google Scholar 

  • Atwood, Kimball C., Schneider, Lillian K. and Ryan, Francis J. 1951b.. “Selective Mechanisms in Bacteria.” Cold Spring Harbor Symposia on Quantitative Biology 16: 345–355.

    Article  Google Scholar 

  • Avery, Oswald T., MacLeod, Colin M. and McCarty, Maclyn. 1944. “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types. Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III.” Journal of Experimental Medicine 79: 137–158.

    Article  Google Scholar 

  • Barrick, Jeffrey E. and Lenski, Richard E. 2013. “Genome Dynamics During Experimental Evolution.” Nature Reviews Genetics 14: 827–839.

    Article  Google Scholar 

  • Beadle, George W. and Tatum, Edward L. 1941. “Genetic Control of Biochemical Reactions in Neurospora.” Proceedings of the National Academy of Sciences USA 27: 499–506.

    Article  Google Scholar 

  • Betz, Joan L., Brown, Paul R., Smyth, Maurice J. and Clarke, Patricia H. 1974. “Evolution in Action.” Nature 247: 261–264.

    Article  Google Scholar 

  • Betz, Joan L. and Clarke, Patricia H. 1972. “Selective Evolution of Phenylacetamide-Utilizing Strains of Pseudomonas aeruginosa.” Journal of General Microbiology 73: 161–174.

    Article  Google Scholar 

  • Bonner, David. 1946. “Biochemical Mutations in Neurospora.” Cold Spring Harbor Symposium in Quantitative Biology 11: 14–24.

    Article  Google Scholar 

  • Brock, Thomas D. 1990. The Emergence of Bacterial Genetics. Cold Spring Harbor: Cold Spring Harbor Press.

    Google Scholar 

  • Brown, Jane E., Brown, P. R. and Clarke, Patricia H. 1969. “Butyramide-Utilizing Mutations of Pseudomonas aeruginosa 8602 Which Produce an Amidase with Altered Substrate Specificity.” Journal of General Microbiology 57: 273–285.

    Article  Google Scholar 

  • Bryson, Vernon and Szybalski, Waclaw. 1952. “Microbial Selection. Part II: The Turbidostatic Selector – A Device for Automatic Isolation of Bacterial Variants.” Science 116: 43–51.

    Article  Google Scholar 

  • Cain, Joseph A. 1993. “Common Problems and Cooperative Solutions: Organizational Activity in Evolutionary Studies, 1936–1947.” Isis 84: 1–25.

    Google Scholar 

  • Campbell, Allan. 1985. “Accelerated Evolution.” Cell 43: 391–392.

    Article  Google Scholar 

  • Clarke, Patricia H. 1975. “Enzyme Evolution in Action.” New Scientist 17: 146–147.

    Google Scholar 

  • Clarke, Patricia H. 1978. “Experiments in Microbial Evolution.” L. Nicholas Ornston and John R. Sokatch (eds.), The Bacteria: A Treatise on Structure and Function. Volume VI: Bacterial Diversity. New York: Academic Press, pp. 137–218.

  • Clarke, Patricia H. 1980. “Experiments in Microbial Evolution: New Enzymes, New Metabolic Activities (The Leeuwenhoek Lecture, 1979).” Proceedings of the Royal Society London B 207: 385–404.

    Article  Google Scholar 

  • Clarke, Patricia H. 1985. “The Scientific Study of Bacteria : 1780–1980.” Edward R. Leadbetter and Jeanne S. Poindexter (eds.), Bacteria in Nature (Vol 1): Bacterial Activities in Perspective. New York: Plenum, pp. 1–37.

    Google Scholar 

  • Clarke, Patricia H. and Drew, Robert. 1988. “An Experiment in Enzyme Evolution. Studies with Pseudomonas aeruginosa Amidase.” Bioscience Reports 8: 103–120.

    Article  Google Scholar 

  • Creager, Angela N. H. 2007. “Adaptation or Selection? Old Issues and New Stakes in the Postwar Debates Over Bacterial Drug Resistance.” Studies in the History and Philosophy of Biological and Biomedical Sciences 38: 159–190.

    Article  Google Scholar 

  • Crow, J. F. and Kimura, M. 1965. “Evolution in Sexual and Asexual Populations.” American Naturalist 99: 439–450.

    Article  Google Scholar 

  • Darlington, C. D. 1939. The Evolution of Genetic Systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davis, Rowland H. 2003. The Microbial Models of Molecular Biology. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Dean, A. C. R. and Hinshelwood, Cyril. 1954. “The Stability of Various Adaptations of Bact. lactis aerogenes (Aerobacter aerogenes).” Proceedings of the Royal Society London B 142: 45–60.

    Article  Google Scholar 

  • Demerec, Milislav. 1951. “Foreword.” Cold Spring Harbor Symposia on Quantitative Biology 16: v.

  • Dienes, L. 1946. “Complex Reproductive Processes in Bacteria.” Cold Spring Harbor Symposium in Quantitative Biology 11: 51–59.

    Article  Google Scholar 

  • Dietrich, Michael R. 1994. “The Origins of the Neutral Theory of Molecular Evolution.” Journal of the History of Biology 27: 21–59.

    Article  Google Scholar 

  • Dietrich, Michael R. 1998. “Paradox and Persuasion: Negotiating the Place of Molecular Evolution Within Evolutionary Biology.” Journal of the History of Biology 31: 85–111.

    Article  Google Scholar 

  • Dobzhansky, Theodosius. 1951. Genetics and the Origin of Species, 3rd ed. New York: Columbia University Press.

    Google Scholar 

  • Dykhuizen, Daniel E. 1990. “Experimental Studies of Natural Selection in Bacteria.” Annual Review of Ecology and Systematics 21: 373–398.

    Article  Google Scholar 

  • Dykhuizen, Daniel E. 1993. “Chemostats Used for Studying Natural Selection and Adaptive Evolution.” Methods in Enzymology 224: 613–631.

    Article  Google Scholar 

  • Dykhuizen, Daniel E. and Dean, Antony M. 1990. “Enzyme Activity and Fitness: Evolution in Solution.” Trends in Evolution and Ecology 5: 257–262.

    Article  Google Scholar 

  • Dykhuizen, Daniel E. and Green, Louis. 1991. “Recombination in Escherichia coli and the Definition of Biological Species.” Journal of Bacteriology 173: 7257–7268.

    Article  Google Scholar 

  • Dykhuizen, Daniel E. and Hartl, Daniel L. 1980. “Selective Neutrality of 6PGD Allozymes in E. coli and the Effects of Genetic Background.” Genetics 96: 801–817.

    Google Scholar 

  • Dykhuizen, Daniel E. and Hartl, Daniel L. 1981. “Evolution of Competitive Ability in Escherichia coli.” Evolution 35: 581–594.

    Article  Google Scholar 

  • Dykhuizen, Daniel E. and Hartl, Daniel L. 1983. “Selection in Chemostats.” Microbiology Reviews 47: 150–168.

    Google Scholar 

  • Elena, Santiago F. and Lenski, Richard E. 2003. “Evolution Experiments with Microorganisms: The Dynamics and Genetic Bases of Adaptation.” Nature Reviews Genetics 4: 457–469.

    Article  Google Scholar 

  • Evans, Ralph. 1986. “Niche Expansion in Bacteria: Can Infectious Gene Exchange Affect the Rate of Evolution?” Genetics 113: 775–795.

    Google Scholar 

  • Gause, Georgii F. 1934. The Struggle for Existence. Baltimore: Williams and Wilkins.

    Book  Google Scholar 

  • Guttman, David S. and Dykhuizen, Daniel. 1994. “Clonal Divergence in Escherichia coli as a Result of Recombination, Not Mutation.” Science 266: 1380–1383.

    Article  Google Scholar 

  • Hall, Barry G. 1978. “Experimental Evolution of a New Enzymatic Function. II. Evolution of Multiple Functions for ebg Enzyme in E. coli.” Genetics 89: 453–465.

    Google Scholar 

  • Hall, Barry G. 1982. “Evolution on a Petri Dish.” Max K. Hecht, Bruce Wallace and Ghillean T. Prance (eds.), Evolutionary Biology. Vol. 15. New York: Plenum, pp. 85–150.

    Google Scholar 

  • Hall, Barry G. 1984. “The Evolved ß-Galactosidase System of E. coli.” Robert P. Mortlock (ed.), Microorganisms as Model Systems for Studying Evolution. New York: Plenum, pp. 165–185.

    Chapter  Google Scholar 

  • Hall, Barry G. 1989. “Selection, Adaptation, and Bacterial Operons.” Genome 31: 265–279.

    Article  Google Scholar 

  • Hall, Barry G. 1999. “Experimental Evolution of Ebg Enzyme Provides Clues About the Evolution of Catalysis and to Evolutionary Potential.” FEMS Microbiology Letters 174: 1–8.

    Article  Google Scholar 

  • Hall, Barry G. and Hartl, Daniel L. 1974. “Regulation of Newly Evolved Enzymes. I. Selection of a Novel Lactase Regulated by Lactose in Escherichia coli.” Genetics 76: 391–400.

    Google Scholar 

  • Hall, Barry G., Yokoyama, Shozo and Calhoun, David H. 1983. “Role of Cryptic Genes in Microbial Evolution.” Molecular Biology and Evolution 1: 109–124.

    Google Scholar 

  • Hartl, Daniel L. and Dykhuizen, Daniel E. 1984. “The Population Genetics of Escherichia coli.” Annual Review of Genetics 18: 31–68.

    Article  Google Scholar 

  • Hartl, Daniel L., Dykhuizen, Daniel E. and Dean, Antony M. 1985. “Limits of Adaptation: The Evolution of Selective Neutrality.” Genetics 111: 655–674.

    Google Scholar 

  • Hartley, Brian S. 1979. “Evolution of Enzyme Structure.” Proceedings of the Royal Society London B 205: 443–452.

    Article  Google Scholar 

  • Hartley, Brian S. 1984. “Experimental Evolution of Ribitol Dehydrogenase.” Robert P. Mortlock (ed.), Microorganisms as Model Systems for Studying Evolution. New York: Plenum, pp. 23–54.

    Chapter  Google Scholar 

  • Hayes, William. 1966. “The Leeuwenhoek Lecture, 1965: Some Controversial Aspects of Bacterial Sexuality.” Proceedings of the Royal Society London B 165: 1–19.

    Article  Google Scholar 

  • Hegeman, George D. 1966. “Synthesis of the Enzymes of the Mandelate Pathway by Pseudomonas putida. III. Isolation and Properties of Constitutive Mutants.” Journal of Bacteriology 91: 1161–1167.

    Google Scholar 

  • Hegeman, George D. and Rosenberg, S. L. 1970. “The Evolution of Bacterial Enzyme Systems.” Annual Review of Microbiology 24: 429–462.

    Article  Google Scholar 

  • Helling, Robert B., Vargas, Christopher N. and Adams, Julian. 1987. “Evolution of Escherichia coli During Growth in a Constant Environment.” Genetics 116: 349–358.

    Google Scholar 

  • Herbert, Denis, Elsworth, R. and Telling, R. C. 1956. “The Continuous Culture of Bacteria: A Theoretical and Experimental Study.” Journal of General Microbiology 14: 601–622.

    Article  Google Scholar 

  • Huxley, Julian. (ed.). 1940. The New Systematics. Oxford: Oxford University Press.

    Google Scholar 

  • Huxley, Julian.. 1942. Evolution: The Modern Synthesis. 1st Ed. London: George Allen & Unwin.

    Google Scholar 

  • Huxley, Julian.. (ed). 1974. Evolution: The Modern Synthesis. 3rd Ed. London: George Allen & Unwin.

    Google Scholar 

  • Huxley, Julian, Hardy, A. C. and Ford, E. B. (eds.). 1954. Evolution as a Process. London: George Allen & Unwin.

    Google Scholar 

  • Jacob, François and Wollman, Elie L. 1961. Sexuality and the Genetics of Bacteria. New York: Academic Press.

    Google Scholar 

  • Jepsen, Glenn L., Mayr, Ernst and Simpson, George G. (eds.). 1949. Genetics, Paleontology, and Evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Kimura, Motoo. 1968. “Evolutionary Rate at the Molecular Level.” Nature 127: 624–626.

    Article  Google Scholar 

  • King, Jack L. and Jukes, Thomas H. 1969. “Non-Darwinian Evolution.” Science 164: 788–798.

    Article  Google Scholar 

  • Koch, Arthur L. 1974. “The Pertinence of the Periodic Selection Phenomenon to Prokaryote Evolution.” Genetics 77: 127–142.

    Google Scholar 

  • Kubitschek, Herbert E. 1974. “Operation of Selection Pressure on Microbial Poulations.” Michael J. Carlile and John J. Skehel (eds.), Evolution in the Microbial World. Cambridge: Cambridge University Press, pp. 105–130.

    Google Scholar 

  • Lederberg, Joshua. 1948. “Problems in Microbial Genetics.” Heredity 2: 145–198.

    Article  Google Scholar 

  • Lederberg, Joshua.. 1987. “Genetic Recombination in Bacteria: A Discovery Account.” Annual Review of Genetics 21: 23–46.

    Article  Google Scholar 

  • Lederberg and Tatum. 1946. “Gene Recombination in Escherichia coli.” Nature 158: 558.

    Article  Google Scholar 

  • Lenski, Richard E. 1995. “Evolution in Experimental Populations of Bacteria.” S. Baumberg, J. P. W Young, E. M. H. Wellington and J. R. Saunders (eds.), Population Genetics of Bacteria. Cambridge: Cambridge University Press, pp. 193–215.

    Google Scholar 

  • Lenski, Richard E. and Levin, Bruce R. 1985a. “Constraints on the Evolution of Bacteria and Virulent Phage: A Model, Some Experiments, and Predictions for Natural Communities.” American Naturalist 125: 585–602.

    Article  Google Scholar 

  • Lenski, Richard E. and Levin, Bruce R.. 1985b. “Bacteria and Phage: A Model System for the Study of the Ecology and Co-evolution of Hosts and Parasites.” D. Rollinson and R. M. Anderson (eds.), Ecology and Genetics of Host-Parasite Interactions. London: Academic Press, pp. 227–242.

    Google Scholar 

  • Lerner Stephen A., Wu, Tai T. and Lin, Edmund C. C. 1964. "Evolution of a Catabolic Pathway in Bacteria." Science 146: 1313-1315. Levin, Bruce R. 1972. “Coexistence of Two Asexual Strains on a Single Resource.” Science 175: 1272–1274.

    Article  Google Scholar 

  • Levin, Bruce R.. 1981. “Periodic Selection, Infectious Gene Exchange and the Genetic Structure of E. coli Populations.” Genetics 99: 1–23.

    Google Scholar 

  • Levin, Bruce R. and Bergstrom, Carl T. 2000. “Bacteria are Different: Observations, Interpretations, Speculations, and Opinions About the Mechanisms of Adaptive Evolution in Prokaryotes.” Proceedings of the National Academy of Sciences United States of America 97: 6981–6985.

    Article  Google Scholar 

  • Lin, Edmund C. C., Hacking, A. J. and Aguilar, J. 1976. “Experimental Models of Acquisitive Evolution.” BioScience 26: 548–555.

    Article  Google Scholar 

  • Love, Alan C. 2009. “Marine Invertebrates, Model Organisms, and the Modern Synthesis: Epistemic Values, Evo-Devo, and Exclusion.” Theory in Biosciences 128: 19–42.

    Article  Google Scholar 

  • Luria, Salvador E. 1946. “Spontaneous Bacterial Mutations to Resistance to Antibacterial Agents.” Cold Spring Harbor Symposium in Quantitative Biology 11: 130–138.

    Article  Google Scholar 

  • Luria, Salvador E. and Delbrück, Max. 1943. “Mutations of Bacteria from Virus Sensitivity to Virus Resistance.” Genetics 28: 491–511.

    Google Scholar 

  • Lwoff, André. 1946. “Some Problems Connected with Spontaneous Biochemical Mutations in Bacteria.” Cold Spring Harbor Symposium in Quantitative Biology 11: 139–155.

    Article  Google Scholar 

  • Maruyama, Takeo and Kimura, Motoo. 1980. “Genetic Variability and Effective Population Size When Local Extinction and Recolonization of Subpopulations are Frequent.” Proceedings of the National Academy of Sciences United States of America 77: 6710–6714.

    Article  Google Scholar 

  • Maynard Smith, John, Smith, Noel H., O’Rourke, Maria and Spratt, Brian G. 1993. “How Clonal are Bacteria?” Proceedings of the National Academy of Sciences United States of America 90: 4384–4388.

    Article  Google Scholar 

  • Maynard Smith, John, Dowson, Christopher G. and Spratt, Brian G. 1991. “Localized Sex in Bacteria.” Nature 349: 29–31.

    Article  Google Scholar 

  • Mayr, Ernst.. 1954. “Change of Genetic Environment and Evolution.” Julian Huxley, Alister C. Hardy, and Edmund B. Ford (eds.), Evolution as a Process. London: George Allen and Unwin, pp. 157–180.

    Google Scholar 

  • Mayr, Ernst.. 1957. “Difficulties and Importance of the Biological Species.” Ernst Mayr (ed.), The Species Problem. Washington, DC: American Association for the Advancement of Science, pp. 371–388.

    Google Scholar 

  • Mayr, Ernst.. 1961. “Cause and Effect in Biology.” Science 134: 1501–1506.

    Article  Google Scholar 

  • Mayr, Ernst and Provine, William B. 1980. The Evolutionary Synthesis: Perspectives on the Unification of Biology. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Milkman, Roger D. 1972. “How Much Room is Left for Non-Darwinian Evolution?” H. H. Smith (ed.), Evolution of Genetic Systems. New York: Gordon and Breach, pp. 217–229.

    Google Scholar 

  • Milkman, Roger D.. 1973. “Electrophoretic Variation in Escherichia coli from Natural Sources.” Science 182: 1024–1026.

    Article  Google Scholar 

  • Milkman, Roger D.. 1997. “Recombination and Population Structure in Escherichia coli.” Genetics 146: 745–750.

    Google Scholar 

  • Monod, Jacques. 1950. “La technique de culture continue: théorie et applications.” Annales de l’Institut Pasteur: Journal de Microbiologie 79: 390–410. http://gallicia.bnf.fr.

  • Mortlock, Robert P. 1982. “Metabolic Acquisitions Through Laboratory Selection.” Annual Review of Microbiology 36: 259–284.

    Article  Google Scholar 

  • Mortlock, Robert P. 1983. “Experiments in Evolution Using Microorganisms.” BioScience 33: 308–313.

    Article  Google Scholar 

  • Mortlock, Robert P. and Wood, Willis A. 1964. “Metabolism of Pentoses and Pentitols by Aerobacter aerogenes. I. Demonstration of Pentose Isomerose, Pentulokinase, and Pentitol Dehydrogenase Enzyme Families.” Journal of Bacteriology 68: 838–844.

    Google Scholar 

  • Mortlock, Robert P., Fossitt, D. D. and Wood, Willis A. 1965. “A Basis for Utilization of Unnatural Pentoses and Pentitols by Aerobacter aerogenes.” Proceedings of the National Academy of Sciences Unites States of America 54: 572–579.

    Article  Google Scholar 

  • Moser, Hermann. 1957. “Structure and Dynamics of Bacterial Populations Maintained in the Chemostat.” Cold Spring Harbor Symposia on Quantitative Biology 22: 121–137.

    Article  Google Scholar 

  • Novick, Aaron. 1955. “Growth of Bacteria.” Annual Review of Microbiology 9: 97–110.

    Article  Google Scholar 

  • Novick, Aaron and Szilard, Leo. 1950a. “Experiments with the Chemostat on Spontaneous Mutations of Bacteria.” Proceedings of the National Academy of Sciences Unites States of America 36: 708–719.

    Article  Google Scholar 

  • Novick, Aaron and Szilard, Leo.. 1950b. “Description of the Chemostat.” Science 112: 715–716.

    Article  Google Scholar 

  • Powell, E. O. 1958. “Criteria for the Growth of Contaminants and Mutants in Continuous Culture.” Journal of General Microbiology 18: 259–268.

    Article  Google Scholar 

  • Ravin, Arnold W. 1976. “Francis J. Ryan (1916–1963).” Genetics 84: 1–25.

    Google Scholar 

  • Rigby, Peter W. J., Burleigh, Bruce D. Jr. and Hartley, Brian S. 1974. “Gene Duplication in Experimental Enzyme Evolution.” Nature 251: 200–204.

    Article  Google Scholar 

  • Rigby, Peter W. J., Gething, Mary J. and Hartley, Brian S. 1976. “Construction of Intergeneric Hybrids Using Bacteriophage P1CM: Transfer of the Klebsiella aerogenes Ribitol Dehydrogenase Gene to Escherichia coli.” Journal of Bacteriology 125: 728–738.

    Google Scholar 

  • Rosenzweig, R. Frank, Sharp, R. R., Treves, David S. and Adams, Julian. 1994. “Microbial Evolution in a Simple Unstructured Environment: Genetic Differentiation in Escherichia coli.” Genetics 137: 903–917.

    Google Scholar 

  • Ryan, Francis J. 1953. “Evolution Observed.” Scientific American 189: 78–82.

    Article  Google Scholar 

  • Schneider, Lillian K. 1950. “Population Dynamics in Escherichia coli (Abstracts of Seminar Papers Presented at the Marine Biological Laboratory July 5, 1950).” Biological Bulletin 99: 331.

    Google Scholar 

  • Selander, Robert K. and Levin, Bruce R. 1980. “Genetic Diversity and Structure in Escherichia coli Populations.” Science 210: 545–547.

    Article  Google Scholar 

  • Selander, Robert K., Musser, James M., Caugant, Dominique A., Gilmour, Marion N. and Whittam, Thomas S. 1987. “Population Genetics of Pathogenic Bacteria.” Microbial Pathogenesis 3: 1–7.

    Article  Google Scholar 

  • Sheppard, P. M. 1954. “Evolution in Bisexually Reproducing Organisms.” Julian Huxley, Alister C. Hardy and Edmund B. Ford (eds.), Evolution as a Process. London: George Allen and Unwin, pp. 201–218.

    Google Scholar 

  • Smith, Hal L. and Waltman, Paul. 1995. Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Stebbins, G. Ledyard. 1950. Variation and Evolution in Plants. New York: Columbia University Press.

    Google Scholar 

  • Stephenson, Marjorie. 1949. Bacterial Metabolism. 3rd Ed. London: Longmans, Green.

    Google Scholar 

  • Stewart, Frank M. and Levin, Bruce R. 1973. “Partitioning of Resources and the Outcome of Interspecfic Competition: A Model and Some General Considerations.” American Naturalist 107: 171–198.

    Article  Google Scholar 

  • Stocker, Bruce A. D. 1949. “Measurements of Rate of Mutation of Flagellar Antigenic Phase in Salmonella typhi-murium.” Journal of Hygiene 47: 398–413.

    Article  Google Scholar 

  • Tatum, Edward L. 1946. “Induced Biochemical Mutations in Bacteria.” Cold Spring Harbor Symposium in Quantitative Biology 11: 278–284.

    Article  Google Scholar 

  • Tempest, David W. 1970. “The Place of Continuous Culture in Microbiological Research.” Anthony H. Rose and John F. Wilkinson (eds.), Advances in Microbial Physiology. Vol. 4. London: Academic Press, pp. 223–250.

    Google Scholar 

  • Whittam, Thomas S., Ochman, Howard and Selander, Robert K. 1983. “Multilocus Genetic Structure in Natural Populations of Escherichia coli.” Proceedings of the National Academy of Sciences United States of America 80: 1751–1755.

    Article  Google Scholar 

  • Whittam, Thomas S. 1995. “Genetic Population Structure and Pathogenicity in Enteric Bacteria.” S. Baumberg, J. P. W. Young, E. M. H. Wellington and J. R. Saunders (eds.), Population Genetics of Bacteria. Cambridge: Cambridge University Press, pp. 217–245.

    Google Scholar 

  • Wu, Tai T. 1978. “Experimental Evolution in Bacteria.” CRC Critical Reviews in Microbiology 6: 33–52.

    Article  Google Scholar 

  • Wu, Tai T., Lin, Edmund C. C. and Tanaka, Shuji. 1968. “Mutants of Aerobacter aerogenes Capable of Using Xylitol as a Novel Carbon.” Journal of Bacteriology 96: 447–456.

    Google Scholar 

  • Wyss, Orville and Haas, Felix L. 1953. “Genetics of Microorganisms.” Annual Review of Microbiology 7: 47–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen A. O’Malley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Malley, M.A. The Experimental Study of Bacterial Evolution and Its Implications for the Modern Synthesis of Evolutionary Biology. J Hist Biol 51, 319–354 (2018). https://doi.org/10.1007/s10739-017-9493-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-017-9493-8

Keywords

Navigation