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Abstract

Our computational metaphysics group describes its use of au-

tomated reasoning tools to study Leibniz’s theory of concepts. We

start with a reconstruction of Leibniz’s theory within the theory

of abstract objects (henceforth ‘object theory’). Leibniz’s theory

of concepts, under this reconstruction, has a non-modal algebra

of concepts, a concept-containment theory of truth, and a modal

metaphysics of complete individual concepts. We show how the

object-theoretic reconstruction of these components of Leibniz’s

theory can be represented for investigation by means of automated

theorem provers and finite model builders. The fundamental theo-

rem of Leibniz’s theory is derived using these tools.

1 Introduction

The computational metaphysics group at Stanford University’s Meta-

physics Research Lab has been engaged in a project of implementing

object theory, i.e., the axiomatic theory of abstract objects [19, 20], in a
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first-order (with identity) automated reasoning environment. The first

efforts [4] established that Prover9 could be used to represent and de-

rive the theorems that govern possible worlds [22] and Platonic Forms

[17]. Our focus over the past several years has been to represent and

derive the theorems in [24], a paper that shows how to apply object the-

ory to derive Leibniz’s non-modal ‘calculus’ of concepts, his containment

theory of truth, and his modal metaphysics of ‘complete individual con-

cepts’ (defined below). Leibniz’s theory of concepts is still interesting

today, for several reasons. The calculus of concepts was one of the first

axiomatizations of semi-lattices; his containment theory of truth antici-

pated work on generalized quantifiers [12]; and the modal metaphysics of

complete individual concepts shows how to reconcile Lewis’s ‘counterpart’

interpretation of quantified modal logic [11] with the standard (Kripke)

interpretation [8]. Though these features were explored in detail in [24],

we rehearse the basics below, when we sketch the background of our work

with automated reasoning tools.

In this paper, we describe not only our results of using E, Vampire,

and Paradox to automate the theory of concepts, but also the obstacles,

insights, and other interesting issues that arose during the course of our

investigations. The use of automated deduction tools allowed us to find

out interesting things about representing richer logics in FOL= (first-order

logic with identity), and about the reasoning needed to derive Leibniz’s

results. In what follows, we focus on the core principles of Leibniz’s theory

of concepts, and we make no attempt to derive or explain the many other

ambitious theories Leibniz attempted to develop (such as his theodicy for

explaining the presence of evil, or his plan for world peace by dissolving

the ideological case for religious wars).

2 Overview of Object Theory and

Two Applications

2.1 The Basics of Object Theory

Object theory [19, 20, 22, 24] is an axiom system formalized in a syntac-

tically second-order modal predicate calculus in which there is a primi-

tive 1-place predicate E! (‘concreteness’). (Identity is not primitive; see

below.) The system uses complex terms of two kinds, namely, definite
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descriptions and λ-expressions, where the latter denote relations rather

than functions. The distinguishing feature of object theory is that the

language uses two kinds of atomic formulas:

• Fnx1 . . . xn (for n ≥ 0)

– These are the atomic (‘exemplification’) formulas of standard

FOL. When n ≥ 1, these are read as “x1, . . . , xn exemplify Fn”

and when n = 0, as “F 0 is true”.

• xF 1

– These are new, monadic atomic (‘encoding’) formulas. These

are read as “x encodes F 1” and we henceforth drop the super-

script on the F 1.

In what follows, we’ll often substitute the variables x, y, z, . . . for x1, x2, . . .

and say that they range over objects or individuals, while the variables

Fn, Gn, . . . range over n-place relations (recall that the language of object

theory is second-order).

Encoding formulas are best explained by first introducing two de-

fined predicates used in object theory: being ordinary (‘O!’) and being

abstract (‘A!’). An ordinary object is one that is possibly concrete (i.e.,

O!x =df 3E!x), whereas an abstract object is one that couldn’t be con-

crete (i.e., A!x =df ¬3E!x). Note that these definitions partition the

domain of objects.

Intuitively, ordinary objects are the kinds of things we might encounter

in experience. They only exemplify their properties, and the standard for-

mulas of the classical predicate calculus are sufficient to represent claims

about which properties and relations ordinary objects exemplify or stand

in.

But abstract objects aren’t given in experience; nor is there a Pla-

tonic heaven out there containing abstract objects waiting to be discov-

ered. Instead, abstract objects are identified by the properties by which

we conceive of them. For example, mathematical objects are abstract ob-

jects; the only way we can get information about them is by way of our

theories of them. We use encoding formulas to indicate the properties F

by which we theoretically conceive of an abstract object x. For example,

where κ is a uniquely defined object term in some mathematical theory T ,

object theory identifies κ as the abstract object that encodes all and only
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the (mathematical) properties attributed to κ in T (either by assump-

tion or by proof). Though mathematical objects are identified by their

encoded properties, they also exemplify non-mathematical properties. So

whereas the number 0 of Peano Number Theory encodes such mathemat-

ical properties as [λx x < 1], [λx ∀y(y + x = y)], etc., it exemplifies non-

mathematical properties, such as being thought about by mathematician

z, being abstract, not being a building, etc. The first of the latter group is

contingently exemplified by 0 (depending on the mathematician), while

the second and third are necessarily exemplified by 0. However, the prop-

erties encoded by 0 constitute 0, since they are even more important to

the identity of 0 than its necessarily exemplified properties.

We mentioned that there are two kinds of complex terms, definite

descriptions and λ-expressions. Descriptions denote individuals, while

the n-place λ-expressions denote n-place relations. Definite descriptions

have the form ıxφ, and are to be read: the x in fact such that φ. In

the modal contexts of object theory, these terms are interpreted rigidly

(i.e., semantically, ıxφ denotes the unique object that satisfies φ, if there

is one, at the actual world of the model). λ-expressions have the form

[λx1 . . . xn φ]. The principles of α-, β-, and η-conversion for λ-expressions

are assumed as axioms, though β-conversion is taken to be an equivalence

and not an equation. It is important to note that λ-expressions obey

the restriction that φ have no encoding subformulas. This is to avoid

a Russell-style paradox.1 As previously mentioned, λ-expressions are to

be understood relationally in object theory, not functionally. That is,

[λx1 . . . xn φ] doesn’t denote an n-ary function, but rather an n-place

relation, i.e., an element of a primitive domain of n-place relations.2

1If we were to allow a predicate of the form [λx ∃F (xF & ¬Fx)], then an abstract

object that encodes such a property would exemplify the property if and only if it

doesn’t. The paradox is avoided by banishing encoding from λ-expressions.
2Note that since λ-expressions may not contain encoding subformulas, the com-

prehension principle for relations derivable from β-Conversion becomes similarly re-

stricted. β-Conversion asserts that [λx1 . . . xn φ]y1 . . . yn ≡ φy1,...,ynx1,...,xn . We can univer-

sally generalize on each of the yis to obtain:

∀y1 . . . ∀yn([λx1 . . . xn φ]y1 . . . yn ≡ φy1,...,ynx1,...,xn )

Then we apply the Rule of Necessitation and existential generalization to obtain:

∃Fn2∀y1 . . . ∀yn(Fny1 . . . yn ≡ φ), provided Fn doesn’t occur free in φ and φ

has no encoding subformulas.

This comprehension principle doesn’t guarantee that there are any relations definable

in terms of encoding predications.
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The two main principles governing encoding predications and abstract

objects are a comprehension principle and an identity principle for objects.

The comprehension principle asserts: for any formula φ that places a

condition on properties, there is an abstract object that encodes all and

only the properties F satisfying (in Tarski’s sense) φ. The comprehension

principle is formalized as a schema:

∃x(A!x& ∀F (xF ≡ φ)), where φ is any formula in which x doesn’t

occur free

Here are some instances:

∃x(A!x& ∀F (xF ≡ Fa))

∃x(A!x& ∀F (xF ≡ F = R ∨ F = S))

∃x(A!x& ∀F (xF ≡ In Peano Number Theory, F0))

These respectively assert the existence of an abstract object that: (a)

encodes just the properties exemplified by object a; (b) encodes just the

properties R and S, and (c) encodes just the properties attributed to 0

in Peano Number Theory.3

Identity is not primitive in object theory. Rather, it is defined for

both objects and relations. Since the definition of relation identity doesn’t

play a role in what follows, we discuss only the definition of identity for

objects. We define: x = y iff either x and y are ordinary objects that

necessarily exemplify the same properties or x and y are abstract objects

that necessarily encode the same properties, i.e.,

x = y =df

(O!x&O!y & 2∀F (Fx ≡ Fy)) ∨ (A!x&A!y & 2∀F (xF ≡ yF ))

Thus, if we know that objects x and y are abstract, we have to show

that they necessarily encode the same properties to show that they are

3The informal construction “In Peano Number Theory, F0” can be analyzed in

object theory as well. A theory is analyzed as an abstract object that encodes proposi-

tions p by encoding the propositional properties of the form [λy p] (read this predicate

as: being such that p). Then we can define “In theory T , F0” as T [λy F0], i.e., as

T encodes the property being such that 0 exemplifies F. This analysis applies to any

other mathematical individual κ, mathematical theory T , and constructions of the

form “In theory T , Fκ”. For a full discussion of the analysis of mathematics within

object theory, see [13].
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identical. With identity for objects and relations defined, object theory

adds an axiom schema for substitution of identicals.

In addition to the above principles, one other principle is added to the

standard principles of second-order quantified modal logic, namely, the

claim that if x possibly encodes a property F it necessarily encodes F :

3xF → 2xF

Thus, encoding predications are not relative to any circumstance; under

the standard interpretation of the modal operators, this principle guaran-

tees that if an encoding statement is true at any possible world, it is true at

every possible world. By contrast, the truth of exemplification statements

(and complex statements containing them) can vary from world to world.

2.2 Application to Possible Worlds

Object theory has been applied in a variety of ways. Our present focus

is on Leibniz’s theory of concepts, which includes a non-modal calcu-

lus of concepts, the concept containment theory of truth, and a modal

metaphysics of concepts. However, to represent the latter, we must ex-

plain how possible worlds are analyzed in object theory. Though possible

worlds (since [7]) are usually taken as semantically-primitive entities and

used to formulate truth conditions for modal statements (as we did above,

in explaining the axiom 3xF → 2xF ), object theory takes a different ap-

proach. Though the language of object theory includes modal operators,

it uses these operators to define possible worlds as abstract objects of a

certain kind and derive the main principles governing worlds from object-

theoretic axioms. This, it is claimed, justifies the use of possible worlds

when doing modal semantics (including in the modal semantics of object

theory). So we will often contrast the possible worlds definable in object

theory with the ‘semantically primitive possible worlds’ used in standard

modal semantics that we sometimes reference. In what follows, we first

rehearse the object-theoretic analysis of possible worlds and then rehearse

the theory of Leibnizian concepts.

Possible worlds are defined as situations, where a situation is any

abstract object that encodes only propositional properties of the form

[λy p]:

Situation(x) =df A!x& ∀F (xF → ∃p(F = [λy p]))
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When x is a situation, we say that x makes proposition p true (or p is

true in x), written x |= p, just in case x encodes being such that p:

x |= p =df Situation(x) & x[λy p]

Then, we define a possible world to be any situation that might be such

that it encodes all and only the true propositions [22]:

World(x) =df Situation(x) & 3∀p((x |= p) ≡ p)

If we then say that an object x is maximal just in case x is a situation

and, for every proposition p, either p is true in x or ¬p is true in x, i.e.,

Maximal(x) =df Situation(x) & ∀p((x |= p) ∨ (x |= ¬p))

then it follows that every possible world is maximal:

∀x(World(x)→ Maximal(x))

Moreover, let us say that an object x is actual just in case x is a situation

such that every proposition true in x is true, i.e.,

Actual(x) =df Situation(x) & ∀p((x |= p)→ p)

It then follows that there is a unique actual world. That is, where ∃!xφ
asserts that there is a unique x such that φ:

∃!x(World(x) & Actual(x))

The fundamental theorems of world theory are also provable, namely, that

p is necessarily true if and only if p is true in all possible worlds, and p is

possibly true if and only if p is true in some possible world [22]:

2p ≡ ∀x(World(x)→ x |= p)

3p ≡ ∃x(World(x) & x |= p)

These theorems play an important role in the analysis of Leibniz’s modal

metaphysics of concepts, in which he asserts that if an object x exemplifies

a property F but might not have, then not only does the individual concept

of x contain the general concept of F , but there is a counterpart of the

concept of x that doesn’t contain the concept of F and that appears at

some other possible world. One of our main goals is to represent and

prove this claim within an automated reasoning environment.
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2.3 Application to Leibniz’s Theory of Concepts

As mentioned previously on several occasions, Leibniz’s theory of concepts

has three components: a non-modal calculus of concepts, the containment

theory of truth, and a modal metaphysics of concepts. We can integrate

and unify all three facets of Leibniz’s work by deriving the main theorems

of each within object theory. In the remainder of this section, we shall use

the variables x, y, z as restricted variables that range just over abstract

objects.

2.3.1 Leibniz’s Non-modal Calculus of Concepts.

The first step of this integration is to recognize that abstract objects serve

as a good analysis of Leibnizian concepts generally, so that we may define:

x is a Leibnizian concept (‘C!x’) =df A!x

Since Leibnizian concepts are abstract objects, we immediately obtain the

first three theorems of Leibniz’s [9], namely, that identity for concepts is

reflexive, symmetric, and transitive. This is derivable from the definition

of identity for abstract objects (see Section 2.1).4

The two final key definitions that yield, as theorems, the axioms of

Leibniz’s calculus of concepts [9] are: concept summation (⊕) and concept

inclusion (�):

x⊕y =df ız(C!z & ∀F (zF ≡ xF ∨ yF ))

x � y =df ∀F (xF → yF )

From these two definitions, it follows that ⊕ is an idempotent, commuta-

tive, and associative operation on the concepts, and that � is a reflexive,

anti-symmetric, and transitive condition [24].5 Thus, if we think of con-

cept summation as a join operation, Leibniz’s ‘calculus’ of concepts is

in effect a semi-lattice. Though we have not pursued the matter, the

semi-lattice can be extended to a lattice by introducing a meet operation

4It is an easy logical theorem that 2∀F (xF ≡ xF ). But then, when x is a concept,

it is abstract, and so it follows from the definition of identity that x = x. Using the

principle of substitution of identicals, we can then derive the symmetry and transitivity

of identity for abstract objects.
5Note we say condition here rather than relation because the definition of � has

encoding subformulas and, as such, � is not guaranteed to be a relation.
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x⊗y, i.e., concept multiplication, by replacing the disjunction sign in the

definition of x⊕y with an ampersand.

Here are some other key theorems derivable from the above theory of

concepts (see [24], Theorems 25–27):

x � y ≡ ∃z(x⊕z = y)

x � y ≡ x⊕y = y

x⊕y = y ≡ ∃z(x⊕z = y)

Finally, Leibniz’s notion of concept containment is just the converse of

concept inclusion:

x � y =df y � x

Thus, one can prove theorems analogous to the above that are stated in

terms of concept containment instead of concept inclusion.

We have not yet brought automated reasoning tools to bear on the

above object-theoretic reconstruction of Leibniz’s algebra of concepts. In-

stead, the focus of our investigations was on the work described in the

remainder of this section. However, in a separate project using Prover9,

we verified versions of the above theorems in which ⊕ and � were taken

as primitive and axiomatized instead of defined as in object theory.6

2.3.2 Leibniz’s Containment Theory of Truth.

Though Leibnizian concepts are identified generally as abstract objects,

special kinds of Leibnizian concepts can be defined. For example, there

are general concepts of properties (e.g., the concept of being a king, etc.)

and concepts of individuals (e.g., the concept of Alexander the Great).

Both play a role in Leibniz’s containment theory of truth.

First, we define “the concept of F” (‘cF ’) as follows:

cF =df ıx(C!x& ∀G(xG ≡ F⇒G))

In this definition, F⇒G is defined as necessary implication: 2∀x(Fx→
Gx). Thus, cF is the concept that encodes exactly the properties that

are necessarily implied by the property F .

Next, we define ‘the concept of individual u’ (‘cu’), where u is a re-

stricted variable ranging over ordinary individuals, as follows:

6See http://mally.stanford.edu/cm/leibniz/ for a description of this work and

links to all the input and output files.
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cu =df ıx(C!x& ∀F (xF ≡ Fu))

For example, the concept of Alexander (ca) is the concept that encodes ex-

actly the properties Alexander (a) exemplifies. Note that in this example,

Alexander gets correlated with a concept that contains his properties. If

we restate this using the concepts of simple set theory: the proper name

‘a’ is correlated with a set of properties. This recalls the treatment of

proper names as generalized quantifiers [12].7

The definitions of cF and cu put us into a position to represent Leib-

niz’s containment theory of truth. Leibniz asserts that a simple predica-

tion ‘Alexander is king’ (‘Ka’) is to be analyzed as: the concept Alexander

contains the concept of being a king.8 Where cK is the concept of being

a king and ca is the concept of Alexander, we can represent Leibniz’s

analysis as:

ca � cK

The equivalence of Ka and Leibniz’s analysis ca � cK is derivable in

object theory, since it is a general theorem that for any ordinary object

u and property F :

Theorem 38, [24]:

Fu ≡ cu � cF

7Indeed, if we define ‘the concept of every person’ as the concept that encodes

exactly the properties F such that every person exemplifies F , then the containment

theory of truth described below will offer a unified ‘subject-predicate’ analysis of the

sentences ‘Alexander is happy’ and ‘Every person is happy’. On the containment theory

of truth, the former is true because the concept of Alexander contains the concept of

being happy, while the latter is true because the concept of every person contains the

concept of being happy.
8Leibniz asserts his containment theory of truth in the following passage taken from

the translation in [15], 18-19 (the source is [3], 51):

...every true universal affirmative categorical proposition simply shows

some connection between predicate and subject (a direct connexion,

which is what is always meant here). This connexion is, that the predi-

cate is said to be in the subject, or to be contained in the subject; either

absolutely and regarded in itself, or at any rate, in some instance; i.e.,

that the subject is said to contain the predicate in a stated fashion. This

is to say that the concept of the subject, either in itself or with some

addition, involves the concept of the predicate.

The translator titled the fragment from which this passage is taken as ‘Elements of a

Calculus’.
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It is important to note that Theorem 38 is an example of a theorem that

isn’t a necessary truth. The reason is easy to see if we take possible worlds

as semantically primitive and speak in terms of the classical semantics of

modal logic: the formula Fu can change in truth value from world to

world, but the formula cu � cF uses a term, cu, that is rigidly defined

in terms of what is true at the actual world. cu encodes all and only the

properties that u in fact exemplifies. Hence, if u is in fact F (i.e., Fu is

true at the actual world w0) and there is a world w1 where u fails to be

F , then the left side of Theorem 38 is false at w1 while the right side of

Theorem 38 is true at w1 (cu is the object that encodes all the properties

that u exemplifies at w0, and since u does in fact exemplify F at w0, one

can show that cu contains cF ).9 The fact that the proof of Theorem 38

rests on a contingency actually works in Leibniz’s favor: he introduced

the notion of a hypothetical necessity in response to (his contemporary)

Antoine Arnauld, who charged that he mistakenly analyzed the contingent

claim Ka in terms of the necessary claim ca � cK . Theorem 38 is indeed

a kind of hypothetical necessity, if we understood that to mean that its

proof depends on a contingency and that we can detach and then prove

ca � cK only given the contingent Ka as a premise.

The above facts about Theorem 38 can be traced back to an interest-

ing feature of object theory, namely, that rigid definite descriptions are

governed by a logical axiom that fails to be a necessary truth.10 When

one includes such a rigidifying operator that is semantically interpreted

with respect to the facts at the actual world of the model, then one must

stipulate: the Rule of Necessitation may not be applied to any axiom

governing the operator having the form of a conditional in which a (po-

tentially contingent) formula φ appears on one side of the conditional in

a non-rigid context and appears on the other side of the conditional in a

9It is interesting to note that for some properties G, the proof that cu encodes G

will rest on a contingency (namely, when G is a property contingently exemplified by

u), but the proof that cF encodes G doesn’t. That’s because it is provable that if

F ⇒ G then 2(F ⇒ G).
10Instead of stating this logical axiom in its full generality, here is an example of an

instance:

FıxGx ≡ ∃x(Gx& ∀y(Gy → y=x) & Fx)

This is a version of Russell’s analysis of definite description, first described in [18]. If

the description ıxGx rigidly denotes the object that is uniquely G at the actual world

(assuming there is one), then the above principle will fail to be necessarily true if there

is a unique G at the actual world that is F at a world w1, but where nothing is G at

w1 or where two distinct things are G.
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rigid context. Nor can the Rule of Necessitation be allowed to apply to

any theorem derived from such axioms. Note that the actuality operator

is similar to the rigid definite description operator in this regard; for a

full discussion of logical truths that aren’t necessary, see [21]. As we shall

see, this issue won’t surface when we represent definite descriptions, since

primitive descriptions will be eliminated under the standard Russellian

analysis.

2.3.3 Leibniz’s Modal Metaphysics of Concepts.

Finally, we reach the most compelling ideas in Leibniz’s metaphysics, in

which he uses the containment theory of truth to analyze modal predica-

tions and, in the course of doing so, relates concepts of individuals and

possible worlds. In various passages, Leibniz talks about possible individ-

uals.11 However, it is generally thought that Leibniz’s containment theory

of truth was designed to replace talk of individuals having properties with

talk of containment holding between concepts. Consequently, most com-

mentators believe that we should interpret Leibniz’s references to possible

individuals as references to concepts of individuals. Leibniz does after all

say that a concept of an individual may appear at a (unique) possible

world.

To represent these ideas, we continue to use u as a restricted variable

over ordinary individuals and use w as a restricted variable ranging over

possible worlds (i.e., the worlds defined in an Section 2.2). We then define:

RealizesAt(u, x, w) =df ∀F ((w |=Fu) ≡ xF )

AppearsAt(x,w) =df ∃uRealizesAt(u, x, w)

IndividualConcept(x) =df ∃wAppearsAt(x,w)

From these definitions, it follows that every individual concept appears

at a unique world ([24], Theorem 31):

IndividualConcept(x)→ ∃!wAppearsAt(x,w)

Moreover, not only is there a concept of the individual Alexander (which

we’ve defined as ca), but for each possible world w, there is a concept of

11See, for example, the Theodicy ([10], 371 = [5], vi, 363), where he talks about the

‘several Sextuses’, and in a letter to Hessen-Rheinfels, where he talks about the ‘many

possible Adams’ ([16], 51 = [5], ii, 20).
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the individual of Alexander at w, cwa , which encodes exactly the properties

F that Alexander exemplifies at w. Thus, we may define:

cwu =df ıx(C!x& ∀F (xF ≡ w |= Fu))

Where wα is the actual world, it is easy to show that ca is identical to cwαa
(i.e., the concept of Alexander is identical to the concept of Alexander at

the actual world). Moreover, one can show that for any ordinary individ-

ual u, cu is an individual concept, and that for any ordinary individual u

and world w, cwu is an individual concept:

∀uIndividualConcept(cu)

∀u,wIndividualConcept(cwu )

These facts put us in a position to see that both the Kripkean [8] and

Lewisian [11] interpretation of possible objects can exist side-by-side (though

Lewis’s possible individuals are represented at the level of concepts).

Kripke believes that a modal claim such as “Obama might have had a

son” is true because

there is a possible world where Obama himself has a son.

By contrast, Lewis takes this modal claim to be true because

there is a possible world where a counterpart of Obama has a son.

The precise Leibnizian picture we’ve developed enables us to show how

Kripke’s view holds with respect to ordinary individuals, while Lewis’s

view holds with respect to Leibnizian complete individual concepts.

To see that Kripke’s view holds with respect to ordinary individuals,

we need only observe that it is Obama himself who fails to have a son

in our world but who has a son at some other world. However, to see

why Lewis’s view holds with respect to concepts of ordinary individuals,

we must first partition the concepts of ordinary individuals into groups of

counterparts. Let (italic, non-bold) c, c′ range over individual concepts.

Then we may define:

Counterparts(c, c′) =df ∃u∃w1∃w2(c =cw1
u & c′ =cw2

u )

In other words, individual concepts c and c′ are counterparts whenever

there is an ordinary object u and worlds w1 and w2 such that c is the

concept of u-at-w1 and c′ is the concept of u-at-w2. So, if w′ is a world
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where Obama does have a son, cw
′

o is a counterpart of the concept of

Obama (co), given that co = cwαo . Obama, wα and w′ are thus witnesses

to the definition of Counterparts(co, c
w′

o ).

Now, as we saw above, individual concepts appear at a unique world.

So they are, in some sense, world-bound individuals. Thus, we obtain

Lewis-style truth conditions for modal claims in the domain of Leibnizian

individual concepts, given the following fundamental theorem (applied to

Alexander):

If Alexander is king but might not have been, then:

(a) the concept of Alexander contains the concept of being a king,

and

(b) some individual concept that is a counterpart to the concept

of Alexander fails to contain the concept of being a king and

appears at some non-actual possible world.

Formally and generally, where u is any ordinary object, c is any individual

concept, and F is any property, we have:

Theorem 40a [24]:

(Fu& 3¬Fu)→ [cu � cF &

∃c(Counterparts(c, cu) & c 6� cF & ∃w(w 6=wα & Appears(c, w)))]

Similarly, we have:

If Obama doesn’t have a son but might have, then:

(a) the concept of Obama fails to contains the concept of having

a son, and

(b) some individual concept that is a counterpart to the concept

of Obama contains the concept of having a son and appears at

some non-actual possible world.

Formally and more generally, this becomes:

Theorem 40b [24]:

(¬Fu& 3Fu)→ [cu 6� cF &

∃c(Counterparts(c, cu) & c � cF & ∃w(w 6=wα & Appears(c, w)))]

The main goal of our efforts to implement Leibniz’s modal metaphysics

computationally was to obtain a proof of the above two theorems using

an automated reasoning engine. In what follows, we’ll work our way to

an understanding of our computational implementation of Theorem 40a.
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3 Summary of Our Representational

Techniques

The fundamental idea behind our work in implementing object theory in

an automated reasoning environment is this: instead of building a cus-

tomized theorem prover that understands the syntax of object theory,

we use the language of standard theorem provers to represent the first-

order truth conditions of the statements of object theory. The first order

truth conditions can be understood in terms of the object theory’s nat-

ural semantics and model theory. This is entirely appropriate because

the minimal models of object theory reveal that despite its second-order

syntax, it has general Henkin models [6]. We did not employ a mechanical

procedure for translating the formulas of object theory into TPTP syn-

tax, but rather carried it out by hand. In constructing the translations,

we adopted various conventions, some of which are discussed below.

Our basic convention was to translate the second-order quantified

modal syntax of object theory into FOL=, supplemented with predicates

that sort individuals into four domains: objects, properties, propositions,

and points. Our representation can be written directly in TPTP syntax

without further processing. In what follows, we summarize the techniques

we developed in order to produce TPTP problem files for the theorems

in [24].

3.1 Representing Second-Order Syntax Using

First-Order Syntax

The most important first step of the process is to recognize that in the

semantics of object theory, 1-place properties have an exemplification ex-

tension among objects and that this extension varies from possible world

to possible world. However, since possible worlds are going to be one of

the targets of object-theoretic analysis, we call the semantically-primitive

possible worlds points. Moreover, we refer to 0-place relations as propo-

sitions. Thus to translate modal claims involving the individual vari-

ables x, y, z, . . ., property variables F 1, G1, . . . and propositional variables

F 0, G0, . . . (which we write using P,Q, . . .), we introduce the following

basic sorts:

object(X)

property(F)
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proposition(P)

point(D)

Moreover, since the simple and complex predications in object theory take

place in a modal language, we adopted the convention of introducing an

extra argument place in primitive or defined conditions, which relativizes

them with respect to a point D. When translating explicitly modal claims,

that extra argument place can be bound by a quantifier over points.

Whereas uppercase D is a variable ranging over points, we represent a

basic (non-modal) predication of the form Fx using a named point:

ex1 wrt(F,X,d)

Here, d is the semantically primitive ‘actual world’ that serves as the

distinguished element of the domain of possible worlds found in classi-

cal modal semantics. In general, then, since a formula like Fx can ap-

pear within a modal context, we represent it with the primitive condition

ex1 wrt(F,X,D), which has an argument place for point D. Note that we

also add as an axiom the right-handed sorting rule that asserts that if

ex1 wrt(F,X,D), then F is a property, X is an object, and D is a point:

fof(sort ex1 wrt,type,

(! [F,X,D] : (ex1 wrt(F,X,D) =>

(property(F) & object(X) & point(D))))).

This, in effect, tells the theorem prover that we’re primarily interested in

models in which the arguments of the relation ex1 wrt are entities of the

appropriate sorts. Such right-handed sorting rules allow us to represent

facts that come for free in a second-order language.

Next, we represent a basic modal predication of the form 2Fx as:

(! [D] : (point(D) => ex1 wrt(F,X,D)))

Possibility claims are represented in a similar way, using existential quan-

tifications over points.

To represent the primitive predicate ‘E!x’ and the defined predicates

‘O!x’ and ‘A!x’, we introduced the property constants e, o and a. Just

as in object theory, e is primitive. But o and a are defined as (cf. the

definitions described in Section 2.1):

fof(o,definition,

(! [X,D] : ((object(X) & point(D)) => (ex1 wrt(o,X,D) <=>

(? [D2] : (point(D2) & ex1 wrt(e,X,D2))))))).



17 Jesse Alama, Paul E. Oppenheimer, Edward N. Zalta

fof(a,definition,

(! [X,D] : ((object(X) & point(D)) => (ex1 wrt(a,X,D) <=>

~(? [D2] : (point(D2) & ex1 wrt(e,X,D2))))))).

Now to introduce the constant c to denote the property of being a con-

cept, we asserted that the property of being a concept is identical to the

property of being abstract, i.e.,

fof(being a concept is being abstract,axiom,c=a).

The above techniques are an important first step towards solving the prob-

lem of representing the object-theoretic definitions of the various meta-

physical kinds used by Leibniz, such as concepts of individuals, concepts

of properties, possible worlds, etc.

3.2 Representing the Two Modes of Predication

Now the distinguishing feature of the language of object theory is that it

has two fundamental modes of predication. In addition to predications

of the form Fx (familiar from standard FOL), there are also predications

of the form xF . We represent the latter as enc wrt(X,F,D), and require

the following right-handed sorting rule:

fof(sort enc wrt,type,

(! [X,F,D] : (enc wrt(X,F,D) =>

(object(X) & property(F) & point(D))))).

The formula enc wrt(X,F,D) will appear in several of the definitions that

are given below.

3.3 Representing Identity Claims

Recall the disjunctive definition of object-theoretic identity x = y in Sec-

tion 2.1. To represent that definition, we developed two preliminary

definitions, one for the identity of ordinary objects (o equal wrt) and

one for the identity of abstract objects (a equal wrt).12 We then repre-

sented x = y in terms of the general notion object equal wrt(X,Y,D)

12The definition of o equal wrt is:

fof(o equal wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(o equal wrt(X,Y,D) <=> (ex1 wrt(o,X,D) & ex1 wrt(o,Y,D) &

(! [D2] : (point(D2) => (! [F] : (property(F) =>
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by stipulating that object equal wrt(X,Y,D) holds if and only if either

o equal wrt(X,Y,D) or a equal wrt(X,Y,D), as follows:

fof(object equal wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(object equal wrt(X,Y,D) <=>

(o equal wrt(X,Y,D) | a equal wrt(X,Y,D)))))).

Finally, we then connected general identity object equal wrt(X,Y,D)

with the built-in equality of the reasoning system. This bridge principle

asserts:

fof(object equal wrt implies identity,theorem,

(! [X,Y] : ((object(X) & object(Y)) =>

(? [D] : (point(D) & object equal wrt(X,Y,D)) =>

X = Y)))).

That is, if objects X and Y are object equal at some point D, then they

are identical. This definition suffices because it is a theorem that any

objects o equal at some point are o equal at every point, and also a

theorem that any objects a equal at some point are a equal at every

point.

With the above bridge principle in place, inferences about object-

theoretic identity can be drawn by the automated reasoning engine using

system equality (e.g., via demodulation).

3.4 Representing Definite Descriptions

Here are two examples of how we represent definite descriptions. Recall

that we introduced the term cu to denote the concept c that encodes all

and only the properties that u in fact exemplifies, and we introduced the

term cF to denote the concept c that encodes all and only the properties

necessarily implied by F . Consider first how we represent cu. We begin by

introducing the relational condition concept of individual wrt(X,U,D),

which holds just in case U is an ordinary object and X is a concept (i.e.,

(ex1 wrt(F,X,D2) <=> ex1 wrt(F,Y,D2))))))))))).

This says that X and Y are o equal with respect to point D just in case X and Y are both

ordinary objects and at every point D2, they exemplify the same properties. A similar

definition defines: X and Y are a equal with respect to point D just in case X and Y are

both abstract objects and at every point D2, they encode the same properties.
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abstract object) that encodes exactly the properties F such that U exem-

plifies F:

fof(concept of individual wrt,definition,

(! [X,U,D] : ((object(X) & object(U) & point(D)) =>

(concept of individual wrt(X,U,D) <=> (ex1 wrt(c,X,D) &

ex1 wrt(o,U,D) & (! [F] : (property(F) =>

(enc wrt(X,F,D) <=> ex1 wrt(F,U,D))))))))).

We then introduce is the concept of individual wrt(X,U,D) as hold-

ing whenever X is a concept of individual U with respect to point D and

anything Z that is a concept of individual U with respect to point D is

object equal to X:

fof(is the concept of individual wrt,definition,

(! [X,U,D] : ((object(X) & object(U) & point(D)) =>

(is the concept of individual wrt(X,U,D) <=>

(concept of individual wrt(X,U,D) &

(! [Z] : (concept of individual wrt(Z,U,D) =>

object equal wrt(Z,X,D)))))))).

Here X corresponds to cu when is the concept of individual wrt(X,U,d).

Consider second how we represent cF . We begin by introducing the

relational condition concept of wrt(Y,F,D), which holds just in case Y

is a concept that encodes just the properties necessarily implied by F .

Formally:

fof(concept of wrt,definition,

(! [Y,F,D] : ((object(Y) & property(F) & point(D)) =>

(concept of wrt(Y,F,D) <=>

(ex1 wrt(c,Y,D) & (! [G] : (property(G) =>

(enc wrt(Y,G,D) <=> implies wrt(F,G,D))))))))).

Then we introduce is the concept of wrt(Y,F,D) as holding whenever

Y is a concept of property F at point D and anything Z that is a concept

of F at D is object equal to Y:

fof(is the concept of wrt,definition,

(! [Y,F,D] : ((object(Y) & property(F) & point(D)) =>

(is the concept of wrt(Y,F,D) <=>

(concept of wrt(Y,F,D) & (! [Z] : (object(Z) =>

(concept of wrt(Z,F,D) => object equal wrt(Z,Y,D))))))))).
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Thus, Y corresponds to cF when is the concept of wrt(Y,F,d).13 All

of the above definitions play an important role in the statement and proof

of the fundamental theorem of Leibniz’s modal theory of concepts.

3.5 Representing λ-Expressions

As an example of how we represented λ-expressions, consider [λz Py],

which denotes the property: being a z such that y exemplifies P . We dis-

cussed such λ-expressions in footnote 3 and at the beginning of Section 2.2

(on world theory). To properly understand these expressions, note that,

in object theory, it is a theorem that for every property P and object y,

there exists a proposition Py. Moreover, for each such proposition, object

theory’s comprehension principle for properties asserts (cf. footnote 2):

∃F2∀x(Fx ≡ Py)

i.e., there is a property F such that, necessarily, an object x exemplifies

F if and only if Py. We use the λ-expression [λz Py] to denote such a

property. It obeys the principle:

2([λz Py]x ≡ (Py)xz )

However, the variable z bound by the λ in [λz Py] is vacuously bound

since it doesn’t appear in Py. So (Py)xz (i.e., the result of substituting x

for z in Py) is just the formula Py. Hence we have: 2([λz Py]x ≡ Py),

i.e., necessarily, x exemplifies being such that Py if and only if Py.

We represented these facts as follows:

fof(existence proposition plug1,axiom,

(! [X,F] : ((object(X) & property(F)) =>

(? [P] : (proposition(P) & plug1(P,F,X)))))).

fof(proposition plug1 truth,definition,

(! [X,F,P] : ((object(X) & property(F) & proposition(P)) =>

(plug1(P,F,X) => (! [D] : (point(D) =>

(true wrt(P,D) <=> ex1 wrt(F,X,D)))))))).

fof(existence vac,axiom,

(! [P] : (proposition(P) =>

(? [Q] : (property(Q) & is being such that(Q,P)))))).

13It is important to note here that, in contrast to the concept of an individual, we

need not have linked Y to the concept of F at the distinguished point d, given what we

said in footnote 9.
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fof(truth wrt vac,axiom,

(! [P,Q] : ((proposition(P) & property(Q)) =>

(is being such that(Q,P) =>

(! [D,X] : ((point(D) & object(X)) =>

(ex1 wrt(Q,X,D) <=> true wrt(P,D)))))))).

The first asserts that for any property F and object X, there is a proposition

P obtained by plugging X into F, where the truth conditions for plugging

are defined by the second principle as: if P is the proposition obtained

by plugging X into F, then for every point D, P is true with respect to

D whenever X exemplifies F with respect to D. The third asserts that for

every proposition P, there is a property Q such that Q is being such that

P. The fourth asserts that if Q is being such that P, then for any point D

and object X, X exemplifies Q at D if and only if P is true at D.

4 Representing the Fundamental Theorem

We now apply the techniques just summarized to the representation of

one of the two fundamental theorems described at the end of Section 2,

namely, Theorem 40a. The antecedent of Theorem 40a is:

Fu& 3¬Fu (A)

Since the variable ‘u’ is a restricted variable ranging over ordinary objects,

we represent the first conjunct as:

ex1 wrt(o,U,d) & ex1 wrt(F,U,d),

where o is the property of being ordinary, F is a variable ranging over

properties, U is a variable ranging over objects, and d is the distinguished

point. By using sortal predicates to make everything explicit, the con-

junction (A) can be represented as follows:

object(U) & property(F) & ex1 wrt(o,U,d) & ex1 wrt(F,U,d) &

(? [D] : (point(D) & ~ex1 wrt(F,U,D))) (A)

In other words, the antecedent of Theorem 40a becomes:

(If) U is an object, F is a property, U exemplifies being ordinary at

d, U exemplifies F at d, and there is a point D such that U fails to

exemplify F at D, (then) ...
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Now the first conjunct of the consequent of Theorem 40a is:

cu � cF (B)

This is not a theorem of object theory, though it follows from the facts

that Fu ≡ cu � cF (referenced earlier as Theorem 38a) and the premise

Fu. Hence it follows from the antecedent of Theorem 40a. If we recall

the earlier definitions of cu, cF and �, we can represent this clause as

follows, in which cu is represented by X, cF is represented by Y and � is

represented by contains wrt(X,Y,d):

(? [X,Y] : object(X) & object(Y) & ex1 wrt(c,X,d) &

ex1 wrt(c,Y,d) & is the concept of individual wrt(X,U,d) &

is the concept of wrt(Y,F,d) & contains wrt(X,Y,d)) (B)

The first four conjuncts of (B) tell us that X and Y are both objects and,

in particular, both concepts. The fifth and sixth conjuncts of (B), i.e.,

is the concept of individual wrt(X,U,d)

is the concept of wrt(Y,F,d)

were defined in Section 3.4. We therefore know that the X and Y asserted

to exist in (B) corresponds to cu and cF , respectively, in the language of

object theory.

The final conjunct of (B) is contains wrt(X,Y,d). This asserts that

object X contains object Y at point d, where this is defined this as:

fof(contains wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(contains wrt(Y,X,D) <=> included in wrt(X,Y,D))))).

Here, included in wrt(X,Y,D) is defined as you might expect given our

discussion of � in Section 2.3.14

Finally, we turn to the second conjunct of the consequent of Theorem

40a. It asserts:

14The definition is:

fof(included in wrt,definition,

(! [X,Y,D] : ((object(X) & object(Y) & point(D)) =>

(included in wrt(X,Y,D) <=>

(ex1 wrt(c,X,D) & ex1 wrt(c,Y,D) &

(! [F] : (property(F) => (enc wrt(X,F,D) => enc wrt(Y,F,D))))))))).



23 Jesse Alama, Paul E. Oppenheimer, Edward N. Zalta

∃c(Counterparts(c, cu) & c 6� cF & ∃w(w 6=wα & Appears(c, w)))

Given that we already know X represents cu and Y represents cF , this

becomes represented as follows:

(? [Z] : (object(Z) & ex1 wrt(c,Z,d) & counterparts wrt(Z,X,d) &

~contains wrt(Z,Y,d) & (? [A,W] : (object(A) & object(W) &

is the actual world wrt(A,d) & world wrt(W,d) &

~equal wrt(W,A,d) & appears in wrt(Z,W,d))))).

We can now represent Theorem40a:

fof(theorem 40a,conjecture,

(! [U,F] : ((object(U) & property(F)) =>

((ex1 wrt(o,U,d) & ex1 wrt(F,U,d) &

(? [D] : (point(D) & ~ex1 wrt(F,U,D)))) =>

(? [X,Y] : (object(X) & object(Y) & ex1 wrt(c,X,d) &

ex1 wrt(c,Y,d) & is the concept of individual wrt(X,U,d) &

is the concept of wrt(Y,F,d) & contains wrt(X,Y,d) &

(? [Z] : (object(Z) & ex1 wrt(c,Z,d) &

counterparts wrt(Z,X,d) & ~contains wrt(Z,Y,d) &

(? [A,W] : (object(A) & object(W) &

is the actual world wrt(A,d) & world wrt(W,d) &

~equal wrt(W,A,d) & appears in wrt(Z,W,d))))))))))).

Theorem 40b has a similar representation. The problem files for both The-

orem40a and Theorem40b are available online.15 A web page containing

the links to all the relevant files is also available.16

5 Techniques for Speeding Up the Workflow

Our work consisted of developing a theory (i.e., a structured collection

of theorems and definitions) in TPTP notation. Faced with the task of

adding premises to a TPTP file for some conjecture, we generally used

[24] as a guide. To formalize (proofs of) theorems, we proceeded in the

usual naive way. If the original proof referred to a previous theorem,

we included it in the TPTP file. Similarly, whenever defined notions

appeared in a conjecture or premise, we included their definitions in the

15See http://mally.stanford.edu/cm/concepts/theorem40a.p and theorem40b.p.
16See http://mally.stanford.edu/cm/concepts/.
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TPTP file. Our workflow can intuitively be understood as taking a kind

of poor man’s closure operation: first we looked at the primitive and

defined notions that appeared in the conjecture to be proved and then we

kept adding to the file those axioms, definitions, and previous theorems

governing the primitive and defined notions that we thought would be

needed to yield a proof of the conjecture.

To facilitate constructing this “closure”, we wrote a script that in-

spects a TPTP file and reports on the predicate symbols and function

symbols appearing in it. (The script is essentially just a front end to

the standard GetSymbols tool distributed with TPTP.) The procedure

is embarrassingly simple, but it prevented us from wasting time trying

to diagnose a countersatisfiable conjecture that failed because of lack of

information about one of the notions in the conjecture. The script thus

highlighted in red those symbols that occur exactly once in the problem

(i.e., hapax legomena). This is a quick check for whether there is a gap

in the problem because, intuitively, a predicate or function that occurs

exactly once is a red flag. Of course, such a heuristic is far from complete.

In certain situations, a problem may well be solvable while having symbols

that appear exactly once. Equality counts as an undefined binary pred-

icate symbol from our program’s point of view, and at times we worked

with problems where a single equation was present in the problem. At

other times, it is acceptable for there to be primitive (undefined) notions

that by chance do occur exactly once.

Another useful program we found ourselves in need of and developed

was a tool for running multiple theorem provers and extracting the sets of

premises used in the proofs (TSTP/TPTP derivations). It is quite inter-

esting to see that different theorem provers “react” differently to one and

the same theorem proving problem. After relying on the theorem provers

to tell us which premises they used in a proof, we systematically tried re-

moving premises and testing for the existence of a proof or a countermodel

using the reduced set of premises. What we found is that our premise sets

were almost always bigger than necessary. At times, a surprisingly large

number of premises could be cut. We were often delightfully puzzled into

rethinking our initial proof because we had expected that certain lem-

mas or definitions could not be removed. In order to be very clear about

the power of the axioms, we wanted the extra insight that came from

minimizing the premise sets.

The above tools, developed to prune unneeded concepts and premises
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from the proof of a given conjecture, were bundled together to make the

Tipi program, which is written in Perl and available online.17 Tipi was

constructed as a catch-all tool for our formalization project. Tipi has

proved of value in other formalization projects as well [1,2].

When we first started our project, we produced a separate input file

for each theorem in [24]. This works fine as long as one doesn’t end up

having to go back and redo theorems when representational improvements

are discovered. In the course of working on theorem-proving problems, we

often had to make on-the-fly adjustments to our representations. If one

regards our theory as a kind of tree of dependencies, in which formulas

depend (either by definition or by derivation) on other formulas, such on-

the-fly changes can quickly lead to confusion. One may confidently think

that a small change to a formula φ makes no difference to the provability of

a theorem ψ that depends it, only to be shown wrong by a countermodel.

In general, any change to a formula reopens the question of whether some

other dependent formula is provable; indeed, any change to a prior axiom,

definition, or theorem, requires checking all the theorems that depended

on that changed formula. Once dozens of theorems are involved, one has

to ensure that axioms, definitions, and theorems are kept synchronized

across multiple files. We sometimes were satisfied that a problem was

solved only to have to revisit the problem when we discovered we could

correct or improve the formulation some principle.

This problem of dependence is of course not unique to theorem prov-

ing; it is clearly an old, well-recognized issue in software engineering gen-

erally. In our case, we designed a suite of makefiles to help keep ourselves

honest about the status of our theory as we made changes to it. The

solution we arrived at is to regenerate problems from a master file. Each

formula capable of generating a problem, that is, each theorem or lemma,

is annotated with the axioms, definitions, sorts, theorems, and lemmas

that are used in its derivation. The TPTP problem files are generated

automatically from a master file containing the latest version of the de-

pendencies.

17https://github.com/jessealama/tipi and http://arxiv.org/abs/1204.0901.
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6 Observations

6.1 What We’ve Learned

Although our computational study of [24] didn’t reveal any errors of rea-

soning, we did come away from the research with some new insights about

the implementation of object theory using automated reasoning tools.

One of the interesting things we learned concerned the demands that our

representational methods placed on the definition of notions from object

theory. Originally, we thought that it might help cut down the search

space for proofs if we prefaced each definiendum with an antecedent that

both sorted the variables and also introduced any restrictions on the vari-

ables. After all, reasoning with restricted variables eliminates inference

steps and thus potential errors of reasoning. So, for example, situations

are definable in object theory as abstract objects of a certain kind. We

wondered whether proof search would be more efficient with this restric-

tion, i.e., if we defined the world-relative condition situation wrt(X,D)

only for those objects X known to be abstract, as follows:

fof(situation wrt,definition,

(! [X,D] : ((object(X) & point(D)) => (ex1 wrt(a,X,D) =>

(situation wrt(X,D) <=> (! [F] : (property(F) => (enc wrt(X,F,D) =>

(? [P] : (proposition(P) & is being such that(F,P))))))))))).

However, in the end, we discovered that our provers do better if we don’t

use restricted variables when introducing the definiendum. The more

general way of formulating such definitions is to introduce the definiendum

as soon as the variables in the argument places are sorted. On that

method, the above definition becomes:

fof(situation wrt,definition,

(! [X,D] : ((object(X) & point(D)) => (situation wrt(X,D) <=>

(ex1 wrt(a,X,D) & (! [F] : (property(F) => (enc wrt(X,F,D) =>

(? [P] : (proposition(P) & is being such that(F,P))))))))))).

Thus, we adhered to the following format for introducing an n-place con-

dition Definiendum(X1,...,Xn):

(! [X1,...,Xn]: ((sort1(X1) & ... & sortn(Xn)) =>

(Definiendum(X1,...,Xn) <=> ...X1...Xn...))).
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Another interesting question that arose was when to formulate our

theorems in their most general modal form, i.e., as necessary truths (pref-

aced by a universal quantifier over all points), as opposed to formulating

them as non-modal facts that hold just of the distinguished point d. In

many modal systems, this question doesn’t arise since every theorem is a

necessary truth. But object theory allows for reasoning with contingent

premises and with a contingent axiom governing rigid definite descrip-

tions. We noted earlier that the presence of rigid definite descriptions in

certain contexts is a tip-off that it may be inappropriate to use the Rule of

Necessitation (see especially the discussion following Theorem 38). One

has to keep track of theorems that are proved with a contingent premise or

that depend on the contingent axiom governing rigid definite descriptions.

In Section 2.3, we introduced Theorem 38, which asserts that an or-

dinary object u exemplifies F if and only if the concept of individual u

contains the concept of property F . This theorem is a key part of the proof

of Theorem 40a. It is important to recognize that Theorem 38 should be

proved only in the following form (as a fact about the distinguished point

d):

fof(theorem38,theorem,

(! [U,F] : ((object(U) & property(F)) => (ex1 wrt(o,U,d) =>

(? [Y,Z] : (object(Y) & object(Z) & ex1 wrt(c,Y,d) &

ex1 wrt(c,Z,d) & is the concept of individual wrt(Y,U,d) &

is the concept of wrt(Z,F,d) &

(ex1 wrt(F,U,d) <=> contains wrt(Y,Z,d)))))))).

and not in the following form (as a fact about every point D):

fof(theorem38,theorem,

(! [U,F] : ((object(U) & property(F)) => (! [D] : (point(D) =>

(ex1 wrt(o,U,D) => (? [Y,Z] : (object(Y) & object(Z) &

ex1 wrt(c,Y,D) & ex1 wrt(c,Z,D) &

is the concept of individual wrt(Y,U,D) &

is the concept of wrt(Z,F,D) &

(ex1 wrt(F,U,D) <=> contains wrt(Y,Z,D)))))))))).

When representing object theoretic claims, one always has to ask: is

this provably true only with respect to the distinguished point d or is

it provable for every point D? Of course, one must take care not to get

confused by the fact that possible worlds are defined in object theory, and
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so we can express claims that have both variables ranging over defined

possible worlds as well as variables ranging over the primitive sort point.

The question of when to represent a theorem as a necessary truth affects

only those claims involving the modal operator ‘necessarily’, not claims

about possible worlds per se.18

An interesting point emerged about representing object theory’s two

main axiom schemata. Basically, we adopted the expedient of representing

only the instances of the schemata that we needed as a premise to prove

a conjecture. For example, as noted earlier, the main comprehension

schema for abstract objects asserts:

∃x(A!x& ∀F (xF ≡ φ)), provided x doesn’t occur free in φ

Since there is no way to represent schemata in first-order syntax, our

policy was this: if any theorem that required the existence of an abstract

object given by some instance of the above schema, then we formulated the

particular instance as a premise. So, for example, if a theorem required the

existence of the concept of individual u, we would represent the following

instance:

∃x(A!x& ∀F (xF ≡ Fu))

Then, given the definition of the concept of individual u, we would be

assured that the domain contained such a concept.

We also followed this procedure to address the problem of represent-

ing the β-conversion schema. Since we don’t have a general way of rep-

resenting all the various different λ-abstracts in FOL=, we simply had to

manually represent various λ-abstracts and axiomatize them as needed.

Thankfully, few instances were needed to complete the formalization.

We see two possible ways to represent these two axiom schemata in

full generality. One is to reason syntactically about the formulas allowed

18In general, we adopted the policy of proving necessitations of theorems only when

they were required for the proof of another theorem. For example, the following nec-

essary truth was needed for the proof of Theorem 40a:

fof(uniqueness of concept of individual in wrt,lemma,

(! [D] : (point(D) => (![X,Y,U,W] : ((object(X) & object(Y) &

object(U) & object(W)) => (world wrt(W,D) =>

((concept of individual in wrt(X,U,W,D) &

concept of individual in wrt(Y,U,W,D)) =>

a equal wrt(X,Y,D)))))))).

This asserts that for every point D, if X and Y are both concepts of the individual U

with respect to D, then X and Y are identical abstract objects with respect to D.
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in instances of the schema. The other is to formulate them in third-order

logic, analogously to the way in which the induction axiom for arithmetic

can be formulated as a single second-order axiom rather than as a schema

for generating first-order axioms.

6.2 Future Work

At the time of writing, we haven’t yet proved every lemma upon which

Theorems 40a and 40b depend; only a few remain. Once the work is

complete, we hope to put the theorems into a form that can be submitted

to the TPTP Library. This will require an additional step of determining

which of the axioms, definitions, lemmas, sorting principles, etc., consti-

tute the core part of the theory. Once we identify the core part of the

theory, we can look for a model of all of the key principles upon which

Theorems 40a and 40b depend. We’ve found models of the premise sets

in each of the separate input files for the theorems we’ve proved thus far,

but until the work is complete, we won’t be in a position to identify the

core group of principles that require a consistency check. As of release

6.1.0 of the TPTP Library, there is a new section devoted to philosophy.

We plan to submit this theory for inclusion in that section.

One long-term goal of our project is to identify desiderata for the de-

sign and implementation of a customized, native prover for object theory.

A customized prover would allow us to input formulas that more closely re-

semble those of object theory. Furthermore, customized theorem provers

and model builders might be able to recognize subformulas, recognize

which formulas have no encoding subformulas, generate instances of the

comprehension schema for relations, and generally be more attuned to

the special features of object theory. Reasoning in object theory is more

structured than simply throwing a set of formulas at a theorem prover

and looking for a refutation. There are dependencies such as the depen-

dence of definitions on their justifying theorems, and the restriction on

the Rule of Necessitation to formulas that do not depend on contingent

assumptions. This makes the definition of provability in object theory

more subtle, which understandably complicates the implementation of

any system that tries to be faithful to it.

However, there may be obstacles to developing a native theorem prover

for object theory. If the work in [14] is correct, there is a feature of object

theory that suggests it may be difficult to adapt those existing reason-
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ing engines which are based on some form of functional type theory. For

the discussion in [14] established that object theory (a) contains formu-

las that neither are terms themselves nor can be converted to terms by

λ-abstraction, and therefore (b) involves reasoning that seems to be cap-

turable only in the logic of relational rather than functional type theory.

Consequently, if existing automated reasoning engines depend essentially

on some form of functional type theory to define and navigate the search

space for finding proofs, then it may be that new methods (e.g., ones that

work in a relational type-theoretic environment and not just in a func-

tional type-theoretic environment) will have to be incorporated into the

design and implementation of a customized prover for object theory.

Finally, if new methods and tools are developed to make the process go

more quickly and smoothly, it should be easier to investigate object the-

ory’s Frege-style derivation of the Dedekind-Peano axioms for arithmetic

[23].
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