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Abstract. We show how to determine the -th bit of Chaitin’s algorithmically random real number
by solving instances of the halting problem. From this we then reduce the problem of determin-

ing the -th bit of to determining whether a certain Diophantine equation with two parameters,
and , has solutions for an odd or an even number of values of . We also demonstrate two further
examples of in number theory: an exponential Diophantine equation with a parameter which has
an odd number of solutions iff the -th bit of is 1, and a polynomial of positive integer variables
and a parameter that takes on an odd number of positive values iff the -th bit of is 1.

Keywords: Diophantine Equation, , Algorithmic Information Theory, Randomness, Hilbert’s
Tenth Problem

1. Introduction and Motivation
In his 1975 paper [3], Gregory Chaitin introduced the number . is a real number between 0 and 1
which is the halting probability: the probability that a randomly chosen program will halt. In order to
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make this precise, one must choose a particular (recursive) programming language in which the programs
are self-delimiting binary strings. This allows us to choose a random program by flipping an unbiased
coin to generate each bit, stopping when we reach a valid (self-delimited) program. This method makes
longer programs increasingly unlikely and allows to be a well defined probability. The exact value
of obviously depends upon which programming language we choose, and thus Chaitin [4] specifies a
particular language to make talk of concrete. However, its important properties are the same regardless
and the exact language chosen need not concern us.1

It is well known that if we had access to we could solve the halting problem [4]. Furthermore, if
we had some method of solving the halting problem then we could compute to any desired accuracy.
In this sense there is an equivalence between and the halting problem: the ability to compute one gives
us the ability to compute the other.

It is also well known that both the halting problem and have analogues in number theory. The
halting problem has been shown to be equivalent to the problem of determining whether a given Dio-
phantine equation has solutions, while has been shown to be equivalent to determining whether a finite
or infinite amount of Diophantine equations of a particular type have solutions. However, unlike their
counterparts in the theory of computability, these number theoretic versions have no direct connection
between them. In this paper, we present a new representation of within number theory that revolves
around a matter of parity rather than finitude and makes clear the link between the number theoretic
analogues of and the halting problem.

In Sections 2 and 3 we provide the formal definitions of and a related real number , presenting
an efficient method for using the solutions to the halting problem to determine . In Sections 4 and 5,
we then introduce Diophantine equations and review the known method of using them to represent ,
providing proofs when they will facilitate the proofs of our new results. In Sections 6 and 7 we present
and prove our results for a new representation of and discuss their implications.

2. Algorithmic Randomness and
Definition 2.1. is formally defined by the following equation, where ranges over all programs in the
language specified by Chaitin [4] and is the number of digits in the binary representation of .

halts
(1)

The importance of lies in its contrasting properties of being both an algorithmically random and
recursively enumerable real number.

As a random real, is uncomputable in a very strong sense. If we look at the binary expansion of
(the infinite sequence of 1’s and 0’s following the binary point), this sequence is highly incompressible.
To see how this is so, let us compare it with the number from Copeland and Proudfoot [6], a non-
recursive real that is not random.

Definition 2.2. is the real number between 0 and 1 whose -th binary digit is 1 if the -th program
halts when given no input and 0 otherwise. In order to pick out a particular ordering of programs, let

1The properties possessed by are numerous and we can only discuss the most pertinent here. For further information on ’s
exotic attributes, see [4, 10, 1, 2].
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each program have a binary representation as above and let them be ordered in the usual lexical ordering
for binary strings. We could also write:

halts
(2)

in an encoding of the answers to every instance of the halting problem in a single real number.
While each bit of tells us whether a particular program halts when run with no input, we can easily use
the bits of to answer the more common formulation of halting problem: ‘does program halt when
run on input ?’. Given and , we can (recursively) construct a new program which takes no input and
simulates the computation of on . The bit of corresponding to this new program tells us whether or
not halts on .

The concept of compressibility for an infinite string can be understood through examining the min-
imum amount of advice needed to find out bits of that string [4]. For recursive infinite strings (such
as the binary digits of ), we can perform massive compression by asking for the bits of a particular
program which will generate every bit of , one by one. In this sense, there are only finitely many bits
of information (those of that particular program) in the infinite bitstring that makes up .

On the other hand, if we wish to determine the bits of , there is no program that will do this, since
the halting problem is undecidable. Therefore, determining bits of will require an amount of advice
that increases with the value of . Clearly we could find out bits of with bits of advice as we
could be directly given those bits. However, Chaitin [4] shows how we can do better than this, using
only bits. This is because the bits of represent instances of the halting problem and to solve
these, we only need to know how many of the programs halt. We can then simulate each program
in parallel until this many have halted, being confident that every one that is still running will never
halt. Therefore, while the (Turing) non-computability of makes it globally incompressible (computing
infinitely many bits of requires infinitely many bits of advice), it is still locally compressible as bits
of are computable from bits of advice.

In contrast, Chaitin [4] defines a random real as one for which calculating bits of its binary ex-
pansion requires more than bits of advice. The reason that more than bits are needed is that the
advice, just like the program itself, must be self-delimiting. Chaitin [3] has shown that satisfies this
condition and is thus a random real. In this way, the first bits of contain bits of algorithmically
incompressible information.

In addition to recursive incompressibility, random reals are also characterised by recursive unpre-
dictability [4]. Consider a ‘predictive’ program that takes a finite initial segment of an infinite bitstring
and returns a value indicating either ‘the next bit is 1’, ‘the next bit is 0’ or ‘no prediction’. If any
such program is run on all finite prefixes of the binary expansion of a random real and makes an infinite
amount of predictions, the limiting relative frequency of correct predictions approaches . In other words
when any program is used to predict infinitely many bits of a random real, such as , it does no better
than random — even with information about all the prior bits.

In contrast to these results, is a recursively enumerable (r.e.) real. For a mathematical object to be
r.e. it need not be computable, but there must be a certain method of successively approximating it. For a
set of positive integers to be r.e. there must be a program that halts on if and only if is in the set. For an
infinite binary sequence to be r.e. there must be a program that halts on if and only if the -th bit of the
sequence is 1. For a real number to be r.e. there must be a program that takes a positive integer and
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generates a rational approximation where is an increasing sequence of rationals that converges
to . In the case of , we can construct such a sequence which we shall denote , where

halts in steps

(3)

However, it is also important to ask whether the binary expansion of is an r.e. bitstring. For , this
is the case because there is a program that halts on if and only if the -th bit is 1 — indeed this is just
a universal program, which simulates the -th program (and thus halts iff the -th program does). For
however, there is no such program. This is a rather surprising, but crucial, fact about .

We can see that this must be true given the incompressibility of . If there were a program to enu-
merate the bits of , we could use the trick described above for compressing : we could determine
bits of by asking how many of these values make this program halt (and thereby require only
bits). Therefore, as is incompressible, we see that there is indeed no such program for and that its
sequence of bits is not r.e. Because all random reals share the property of being incompressible, this
argument carries over and no random real can have an r.e. sequence of bits.

In the remainder of the paper, we shall use the fact that is an r.e. real to express it through Dio-
phantine equations and thereby show how algorithmic randomness occurs even in the heart of number
theory.

3. Computing from
Having seen that there are interesting connections between and , it is natural to ask whether we can
compute given access to (or in the language of recursion theory, whether is Turing reducible to ).
One way to go about this is to construct a program that takes two positive integers, and , as input
and halts iff . Such a program is quite easy to construct, it just needs to enumerate (as done
in the previous section) and check at each stage whether , halting if this is true and continuing
otherwise. Since approaches from below, if then there is some for which and
halts as required. On the other hand, if then there is no such and will not halt. From , we

can determine whether or not halts on a given input, and thus whether or not each is less than .
To determine the first bits of , we just need to determine the greatest value of for which .

We will then know that for this , and thus that if is expressed as a digit binary
number (with leading zeros if required), it will be the first digits of .

We can therefore use to determine the first bits of , by checking whether halts when applied
to and for each value of from 1 to . This technique allows us to determine the first bits
of from carefully chosen bits of . Indeed, given these bits, it is so simple to compute the first
bits of , that we could do it by simply combining them with a truth table and is not only Turing

reducible to , but also truth table reducible.
However, if we are prepared to sacrifice this extreme algorithmic simplicity, we can get by with even

fewer bits of by using a bisection search. In the bits of that we need we know there is a lot of
structure: if then for all , . Similarly, if then for all , . Thus,
all we need to find is the greatest value of for which . This can be done by first trying
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and checking if it is less than or greater than . If it is greater, we then try the midpoint of 0 and . If
it is less, we try the midpoint of and . We proceed in this manner until finding the value of for
which and .

Performing this type of bisection search on items requires only queries, rounding up
to the nearest integer. As we do not need to test for or , there are only remaining
values to check and we can therefore get the first bits of with only bits of . From the incompress-
ibility of , we can see that this must be optimal: no less than bits of any other real whatsoever can
give us bits of .2

Having shown a method for determining the bits of from an r.e. sequence of bits ( ), we will now
examine Diophantine equations and look at how this method can be used to find in number theory.

4. Diophantine Equations and Hilbert’s Tenth Problem

Definition 4.1. A Diophantine equation is an equation of the form

(4)

where is a polynomial with integer coefficients. The variables are typically allowed to range over
the integers or the non-negative integers, but here it will be convenient to restrict them to the positive
integers.

The study of Diophantine equations is a central area of number theory. It is well known that some
Diophantine equations have solutions (such as ) and some do not (such as ).
The task of devising an algorithm for determining whether or not an arbitrary Diophantine equation is
solvable is known as Hilbert’s tenth problem and has been a major area of research in 20th Century
mathematics (see Matiyasevich [8]).

Definition 4.2. A family of Diophantine equations is a relation of the form

(5)

where we distinguish between the variables which are called parameters and
which are called unknowns. Fixing values of the parameters, specifies one of the individual Diophantine
equations that comprise the family.

Definition 4.3. A set of -tuples, , is Diophantine iff it can be represented by a family of Diophantine
equations in the following way

(6)
2It may seem like there is a contradiction here because we could use the compression trick for again, giving us a method for
computing bits of from only bits of advice. However, this turns out to be impossible because to use the bisection
search, we need to find out the value of one bit of before we know which bit to ask for next. There is no time at which we
know in advance a complete set of bits of that we can ask for in compressed form.
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Many sets, such as the square numbers or the pairs such that divides are Diophantine.
The question of exactly which sets are Diophantine has received considerable attention and was solved
through the work of Martin Davis, Hilary Putnam, Julia Robinson and Yuri Matiyasevich (DPRM ) [8].

Theorem 4.1. (DPRM Theorem)
Every r.e. set of -tuples of positive integers is Diophantine, that is:

(7)

Proof:
See [8].

The DPRM Theorem provides an excellent tool for showing the existence of Diophantine equations
with certain properties. All that is needed is to come up with a set that has the desired property and prove
that it is r.e. For example, the following is immediately evident:

Corollary 4.1. (Family of Diophantine equations for )
There is a family of Diophantine equations:

(8)

which has solutions for a given value of iff the -th bit of is 1 or, equivalently, iff the -th program
halts.

Proof:
The set of positive integers such that the -th bit of is 1 is clearly an r.e. set. Thus, by the DPRM
Theorem, there is a family of Diophantine equations with a parameter, , which has a solution for a given
value of iff the -th bit of is 1.

From this it is clear that Hilbert’s tenth problem must be recursively undecidable. No program could
decide whether a given Diophantine equation has a solution because this would allow a program to
compute the bits of — a task that is known to be non-recursive.3 We therefore have undecidability in
number theory, with direct analogues of the halting problem and . In what follows we show how we
can also find algorithmic randomness and, in doing so, add to this list.

5. Chaitin’s Expression of Through Diophantine Equations

From the DPRM Theorem, we can see that cannot be directly represented by a Diophantine set (one that
has as a member iff the -th bit of is 1) because the bits of are not r.e. However, taking a slightly
different approach, Chaitin [4] shows that the bits of can be found in another property of Diophantine
equations.
3Indeed, it was long known that the recursive undecidability of Hilbert’s Tenth Problem would follow immediately from the
DPRM Theorem and this was the main motivation for its proof — the Diophantine representations for all other r.e. sets being a
nice corollary.
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Theorem 5.1. (Family of Diophantine Equations for via Finitude)
There is a family of Diophantine equations

(9)

such that for a given there are infinitely many values of for which it has a solution if the -th bit of
is 1 and finitely many values of for which it has a solution if the -th bit of is 0.

Proof:
There is a program that takes two inputs, and , generating and returning the value of its -th
bit. As increases, the -th bit of may change between 0 and 1 many times, but since is
monotonically increasing, each bit can only change finitely many times (at most ). Therefore, the
-th bit of will eventually settle on either a 0 or a 1 and because converges to , this final
value must be the same as the -th bit of . Thus, the -th bit of will only differ from the -th bit of
for finitely many values of .
Let be the set of pairs such that returns 1 when applied to and . If the -th bit of is

0, will return 1 (the correct value for but incorrect for ) for only finitely many values of . On
the other hand, if the -th bit of is 1, will return 1 for infinitely many values of . In other words,
for a given , there are infinitely many pairs if the -th bit of is 1 and finitely many if
it is 0. Since is recursive, it is r.e. and thus via the DPRM Theorem there is a Diophantine equation,

, that has a solution iff . Thus, for a given value of , this equation
has solutions for infinitely many values of iff the -th bit of is 1.

Chaitin takes this result further and provides a simpler example of occurring in number theory.
In doing so he moves to exponential Diophantine equations. Where the polynomial in a Diophantine
equation consists of variables and integer constants composed together with addition and multiplication,
exponential Diophantine equations merely add exponentiation to this list, with the proviso that no neg-
ative constants can appear in the exponents. In proving the DPRM Theorem, Matiyasevich [8] showed
that all sets which are exponential Diophantine are Diophantine as well. However, Chaitin’s move to
exponential Diophantine equations allows the use of another key result due to Matiyasevich [8] which
concerns not just the existence of solutions to an equation, but the quantity of solutions as well.

Theorem 5.2. (Existence of Singlefold Exponential Diophantine Equations)
For any Diophantine set, , there is a family of exponential Diophantine equations

(10)

that is a singlefold representation of : it has exactly one solution for and no solutions
otherwise.

Proof:
See [8].

Theorem 5.3. (Family of Exponential Diophantine Equations for via Finitude)
There is a family of exponential Diophantine equations

(11)

with infinitely many solutions for if the -th bit of is 1 and finitely many if the -th bit of is 0.



280 T. Ord and T. D. Kieu / A New Family of Diophantine Equations for

Proof:
Let be the family of singlefold exponential Diophantine equations for of
Theorem 5.1. The existence of is ensured by Theorem 5.2. Given a value of , there is a single
solution for each of infinitely many values of iff the -th bit of is 1. If we treat as another
unknown instead of a parameter, we get which is a family of exponential
Diophantine equations with infinitely many solutions for iff the -th bit of is 1.

Thus, while the question of whether a Diophantine equation has solutions is undecidable in gen-
eral, the question of whether an exponential Diophantine equation has infinitely many solutions is much
worse. The task is no longer r.e. (since solving it gives the bits of ) and as a single parameter is varied,
the results fluctuate in an algorithmically random manner: there is absolutely no recursive pattern to be
found.

Chaitin [4] went even further than we have here by actually constructing an exponential Diophantine
equation . This equation was automatically generated from a complex register
machine program and is very large, with approximately 17,000 unknowns. While it is has been shown
that this can be reduced to just three [8], doing so would be a very challenging task.

6. A New Expression of Through Diophantine Equations
Using the method of computing from discussed in Section 3 we can now present our main results.
While the bits of occur in Theorems 5.1 and 5.3 through the distinction between the finite and the
infinite, the presentation below remains within the realms of the finite, with the bits of occurring in the
changes of parity.

Theorem 6.1. (Family of Diophantine Equations for via Parity)
There is a family of Diophantine equations

(12)

such that for a given :

there are less than values of , taken from , for which there is a solution,

and there are an odd number of values of for which there is a solution iff the -th bit of is 1.

Proof:
Let be the set of pairs of positive integers such that . From Section 3, we see that
is r.e. and so, by the DPRM Theorem, there exists a Diophantine equation, ,
which has a solution iff . Since , implies that ,
and so these are the only values of for which can have solutions.

If the greatest value of for which is odd, then the -th bit of must be 1 and similarly, if
the greatest value of for which is even, then the -th bit of must be 0. As the greatest value
of for which is equal to the number of values of for which , it follows that for a
given , there are an odd number of values of for which has solutions iff
the -th bit of is 1.
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Unlike the representation of through finitude, this representation would allow to be directly
computed by determining whether certain Diophantine equations have solutions (i.e. by solving several
instances of Hilbert’s tenth problem). This mirrors the relationship between and the halting problem in
computability theory. Even the efficiency of the computation is preserved: the bisection approach could
also be used here to determine the -th bit of from the solutions to just instances of Hilbert’s tenth
problem.

Theorem 6.2. (Family of Exponential Diophantine Equations for via Parity)
There is a family of exponential Diophantine equations

(13)

which for a given ,

has less than solutions, where takes distinct values from the set ,

and has an odd number of solutions iff the -th bit of is 1.

Proof:
Let be the singlefold family of exponential Diophantine equations for .
Given a value of , there is a single solution for each of an odd number of values of iff the -th bit of
is 1. If we treat as another unknown instead of as a parameter, we get .

For a given value of , this has less than solutions and in these solutions, takes distinct values from
. Furthermore, the number of solutions is odd iff the -th bit of is 1.

In addition to the above results, we can use both the finitude and parity methods to produce a new
source of algorithmic randomness in number theory. Using the following lemma [8], we can design
polynomial expressions with variables and a parameter ranging over the positive integers that exhibit
randomness in the number of positive values they assume as is varied.

Lemma 6.1. Given a family of Diophantine equations with two parameters

(14)

we can construct a polynomial with integer coefficients, one parameter and one additional variable as
follows

(15)

If we restrict the variables to values in the positive integers, then the set of positive values that this
polynomial assumes for a given is exactly the set of all such that has
solutions.

Proof:
For all such that , the polynomial will
assume the value . For all such that ,
will assume a non-positive value. Thus, will assume all values of such that

has solutions and no other positive values.
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Theorem 6.3. (Polynomial Expression for via Finitude)

(16)

is a polynomial with integer coefficients and a parameter . If we restrict the variables to values in the
positive integers, then this polynomial assumes infinitely many positive values iff the -th bit of is 1.

Proof:
By Lemma 6.1, the set of positive values that assumes for a given is precisely the set of such that

has solutions. By Theorem 5.1, this set has infinitely many members iff the
-th bit of is 1, so must assume a countable infinity of positive values iff the -th bit of is 1.

Theorem 6.4. (Polynomial Expression for via Parity)

(17)

is a polynomial with integer coefficients and a parameter . If we restrict the variables to values in the
positive integers, then

this polynomial assumes less than values in the positive integers, taken from ,

and the number of positive values that it takes is odd iff the -th bit of is 1.

Proof:
From Lemma 6.1, the set of positive integer values that assumes for a given
is precisely the set of such that . By Theorem 6.1, this set only includes values from

. Theorem 6.1 also tells us that there are an odd number of such that iff
the -th bit of is 1, so must assume an odd number of positive values iff the -th
bit of is 1.

While Theorems 6.1, 6.2 and 6.4 are presented in terms of producing the -th bit of , the ideas
behind them have a somewhat more general application. In each theorem, a set of values is discussed
and its size is considered. For Theorem 6.1, this is the number of values of for which has
solutions, for Theorem 6.2 it is the number of solutions for and for Theorem 6.4 it is the number
of positive values taken by . For a given value of , each of these quantities will equal the same
number which we shall call .

Previously, we just looked at the parity of and used this single bit of information to determine a
single bit of . Since may take on different values, it contains additional bits of information
and these can directly provide all prior bits of . When is expressed in binary (with enough leading
zeros to give digits) it comprises the first bits of . For example, if for , there are six solutions
to , then the first five bits of are 00110.

In this way, we can see that the first bits of are just the bits of . So, given ,
there are only two possibilities for : either or . Thus, while the sequence

is algorithmically random, the sequence is highly structured.
We can also extend our results to the expression of in different bases. If we consider the represen-

tation of in base , we can generate an equation for finding its -th digit by replacing all references
to with . Instead of checking the parity of the appropriate quantity, the -th digit is simply the
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remainder when this quantity is divided by . Similarly, if we represent the quantity in base with
enough leading zeros, it forms the first digits in a base representation of and must be one of

.

7. Concluding Remarks

In this paper we report on our findings on the existence of a new family of Diophantine equations for
determining the digits of . Our equations differ from the previous families of Diophantine equations
in several important features. Previously, a particular bit of was represented by whether some Dio-
phantine equations have solutions for a finite or infinite number of values of a given parameter or, in
the exponential Diophantine case, whether the number of solutions is finite. In contrast, our formulation
always has a finite number of parameter values for which solutions could occur and a finite number of
solutions in the case of the exponential Diophantine equations. The value of the corresponding bit of
depends only on whether this number is even or odd. Thus, in the relatively mundane switching be-

tween an odd or an even number of solutions as a parameter is varied, the full subtlety of algorithmic
randomness is felt: the incompressibility and the unpredictability.

These new families of Diophantine equations for also provide a symmetry to the relationship
between randomness and undecidability in the fields of computability and number theory. Just as we
can directly compute (in its guise as the halting probability) from solutions to instances of the halting
problem, so can we compute (in its guise as a property of a family of Diophantine equations) from
solutions to instances of Hilbert’s tenth problem. Furthermore, the translation into the domain of number
theory preserves the efficiency of the computation, producing bits of from either the solutions to
instances of the halting problem or the solutions to instances of Hilbert’s tenth problem.

Finally, we provide a further example of how algorithmic randomness occurs in number theory: a
polynomial with positive integer variables and a parameter that takes on an odd number of positive
values iff the -th bit of is 1. Along with the other results of this paper, this hints at the variety of
ways in which this randomness can occur. While the polynomials and exponentials that give rise to
algorithmic randomness are not of the type that are likely to occur in classical research in number theory,
their importance lies in showing that in some places there are facts with no recursive pattern at all.
This is not to say that these facts are completely patternless — on the contrary, we have shown intricate
dependencies between the expressions of and those of the halting problem — but in the face of so
subtle a pattern, computer programs can perform no better than coin tossing. Without some means to
transcend the fundamental limits of our current computers, whether through some kind of mathematical
insight or radical new technology4, they will remain completely beyond our grasp.
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