
“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 253 — #1

Int. Journ. of Unconventional Computing, Vol. 5, pp. 253–265 ©2009 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

Using Biased Coins as Oracles

Toby Ord
1

and Tien D. Kieu
2

1Faculty of Philosophy, University of Oxford, Oxford, OX1 4JJ, UK
E-mail: toby.ord@philosophy.ox.ac.uk

2Centre for Atom Optics and Ultrafast Spectroscopy,
Swinburne University of Technology, Hawthorn 3122, Australia

E-mail: kieu@phg.com.au

Received: January 31, 2007. In final form: April 30, 2007.

While it is well known that a Turing machine equipped with the ability
to flip a fair coin cannot compute more than a standard Turing machine,
we show that this is not true for a biased coin. Indeed, any oracle set
X may be coded as a probabilitypX such that if a Turing machine is
given a coin which lands heads with probabilitypX it can compute any
function recursive inX with arbitrarily high probability. We also show
how the assumption of a non-recursive bias can be weakened by using a
sequence of increasingly accurate recursive biases or by choosing the bias
at random from a distribution with a non-recursive mean. We conclude by
briefly mentioning some implications regarding the physical realisability
of such methods.

Keywords: Probabilistic Turing machine, hypercomputation, oracle, qubit.

1 INTRODUCTION AND MOTIVATION

The Turing machine is well known to be a very robust model of computation.
In almost all textbooks on the theory of computation, one can find a list of
extensions to the Turing machine that offer it more primitive resources, such
as extra tapes or nondeterminism, and yet do not give it the ability to compute
any additional functions. Amongst such resources it is not uncommon to find
references to probabilistic methods such as coin tossing.

These methods can be made precise with the introduction of the probabilis-
tic Turing machine or PTM [3]. A PTM is a standard Turing machine with a
special randomising state. When the machine is in this state, the transition to
a new state is not governed by what is on the tape, but by a random event.

253

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 254 — #2

254 T. Ord and T. D. Kieu

A fair coin is tossed and the machine goes to the specified 1-state if the coin
comes up heads and the 0-state if it comes up tails.

Unlike a Turing machine, a PTM will not necessarily return the same output
when run multiple times on the same input. Care must therefore be taken in
defining what it means for a function to be computed by a PTM. One way is
to say that a PTM computes a given function,f , if when givenx as input,
along with a measure of accuracyj ∈ N, it producesf (x) with probability
at least 1− 1

2j
. By this definition, a function is computable by a PTM if and

only if it can be computed with arbitrarily high confidence. Alternatively, we
could relax this definition and say that a PTM computesf if and only if when
givenx as input, it producesf (x) with some probability greater than12.

It is quite easy to see that with either definition, a PTM computes only
the recursive functions. For any PTMP , there is a Turing machineT that
simulates it.T simulates each branch of the computation in parallel and keeps
track of their respective probabilities.T also keeps a table which associates
outputs with their probabilities. When a branch halts and returns some value
y, T creates a new position in the table fory and stores the probability of that
branch occurring. If a branch has already halted with outputy, T simply adds
the new probability of producingy to the old value. After each update to the
table,T checks whether the new value fory is greater thanP ’s threshold (12
or 1− 1

2j
) and halts returningy if this is so. In this way,T halts with output

y if and only if P returnsy with sufficient probability.
This argument can also be extended to deal with more complicated proba-

bilistic methods. For example, we could allow biased coins where the chance
that heads comes up is some given rational number. We could even allow the
bias to be any recursive real number (as defined in Section 2 of this paper). In
each case,T can still keep track of the probability of each computation branch
and test to see whether an output occurs with high enough probability to be
deemedthe output of the PTM.

It is important to ask, however, what can be computed if non-recursive
probabilities are used. In this paper, we show that allowing coins with non-
recursive biases makes the above argument fail quite spectacularly. We first
show that a PTM can compute arbitrarily accurate estimates to the bias on
its coin and then strengthen this to computing arbitrarily many bits of the
binary expansion of the bias.1 From this, we reach several strong theorems
about the power of PTMs, showing in particular that there is a single PTM
that acts as a universalo-machine: when equipped with a probability coding

1Since this paper was written, an article by Santos [8] has been brought to our attention
wherein a result similar to our Theorem 4.1 was obtained. However, it is our opinion that
Santos’s proof is incomplete, lacking an explanation of how the binary expansion of the prob-
ability can be computed from the rational approximations. In any event, we think the present
account is useful for its further results, discussion of the physical implications, and clarity of
presentation.

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 255 — #3

Using Biased Coins as Oracles 255

a given oracle, it simulates a giveno-machine with that oracle on a given
input to a given level of confidence. Thus, the addition of randomness to the
resources of a Turing machine expands its set of computable functions. Only
when the coins are restricted to recursive biases do they offer no additional
power.

In the remaining sections, we show two ways in which the same results
are possible with slightly weakened resources. Specifically, we show how a
sequence of rationally biased coins can be used, so long as the biases converge
effectively to a non-recursive real or the biases are drawn at random from a
distribution with a non-recursive mean. Finally, we point to some interesting
physical applications in which these types of probabilistic methods seem to
be consistent with quantum mechanics.

2 APPROXIMATING p TO ARBITRARY ACCURACY

The natural way to approximate the probability,p, that the coin will land
heads, is to look at the average number of heads inn tosses. By the weak law
of large numbers, this value (which we will denote byp̂) approachesp asn
approaches infinity. However, to approximatep effectively, we need to know
how fast this convergence is likely to be. This can be expressed by asking how
many tosses are required beforep̂ is within a given distance ofp with a given
level of confidence. Specifically, we will ask for a method of calculatingn

such that when at leastn tosses are made,
∣∣p̂ − p

∣∣ < 1
2k

with probability at

least 1− 1
2j

for givenj, k ∈ N.
The probability distribution of possible values ofp̂ for a given value ofn

is a binomial distribution with meanp. The variance of̂p is given by

σ 2 = p(1 − p)

n
(2.1)

This variance depends upon the unknown value ofp, however since it has
a maximum wherep = 1

2, we can see that

σ 2 ≤ 1

4n
(2.2)

With this upper bound for the variance, we can use the Chebyshev inequality

∀ε ≥ 0 P(|x − µ| ≥ ε) ≤ σ 2

ε2
(2.3)

to form an upper bound for the probability of error

∀k P

(∣∣p̂ − p
∣∣ ≥ 1

2k

)
≤ 22k

4n
(2.4)

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 256 — #4

256 T. Ord and T. D. Kieu

Therefore, if we insist on a chance of error of at most1
2j

, this can be
achieved so long as

22k

4n
≤ 1

2j
(2.5)

n ≥ 2j+2k−2 (2.6)

Thus, for each value ofp ∈ [0,1] we can compute an approximation ofp
that is within an arbitrarily small distance of the true value with an arbitrarily
high probability. More formally,

Theorem 2.1. There is a specific PTM that, when equipped with a probability
p, takes inputs j, k ∈ N and outputs a rational approximation to p that is
within 1

2k
of the true value with probability at least 1 − 1

2j
.

Proof. The PTM simply tosses its coin 2j+2k−2 times and returns the ratio of
heads to tails. By the argument above, this approximation will suffice.�

This method of approximating a real number by successively accurate ratio-
nal approximations can also be used to define what it means for a real to be
computable by a (deterministic) Turing machine. For convenience, we say

Definition 2.2. {xn} converges quickly to x if and only if |xn − x| < 1
2n for

all n.

We can then define a recursive real:

Definition 2.3. x ∈ R is recursive if and only if there is a Turing machine that
takesn ∈ N as input and returnsxn ∈ Q, where{xn} converges quickly tox.

The recursive reals given by this definition are well studied and include a
great many of the reals actually encountered in mathematics, including all the
algebraic numbers as well asπ ande. However, since there are uncountably
many reals but only countably many Turing machines, it is clear that most of
them are not recursive. If a PTM is equipped with one of these non-recursive
reals as its probability, then our algorithm above shows that in a certain sense,
this PTM can compute this real—a feat that is impossible with a deterministic
Turing machine.

However, there is still some room to question whether the PTM of Theo-
rem 2.1 actually computes its probability. Consider, for example, the following
alternative definition of a recursive real.

Definition 2.4. x ∈ R is recursive if and only if there is a Turing machine that
takes no input and outputs a sequence{xn} which converges quickly tox.

This definition is evidently equivalent to the previous one when it comes
to deterministic Turing machines, but it is not immediately clear that the
equivalence holds for PTMs. While the PTM ofTheorem 2.1 can compute each
approximation tox with arbitrary accuracy, it is not clear that a PTM could
output an infinite sequence of approximations with themall being correct with

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 257 — #5

Using Biased Coins as Oracles 257

arbitrarily high probability. However, we now show that this can be achieved
by requiring each successive event to be more and more probable.

For a given minimum probabilityq that an entire infinite sequence of events
will occur, we can set the probability of thei-th event occurringqi = q2−i

. It
follows that the chance of all events occurring is

∞∏
i=1

q2−i = q
∑∞
i=1 2−i = q (2.7)

In addition, we can consider the chance that all events in an infinite suffix
of the sequence occur. The chance of all events after eventN occurring is

∞∏
i=N+1

q2−i = q
∑∞
i=N+1 2−i = q2−N

(2.8)

Thus, for eachε > 0, there is a value ofN such that the probability of all events
after eventN occurring is withinε of 1. Moreover, if we are just interested in
there beingsome suchN after which all events occur, this will happen with
probability 1.

This construction can be applied in the case of our approximations top. In
particular, we can find a new valuej ′ as a function ofj andk which can then
be substituted into our formula for the number of required coin tosses.

1 − 1

2j ′ =
(

1 − 1

2j

)2−k

(2.9)

Using a Taylor expansion, we can see that for 0< x, y < 1

(1 − x)y < 1 − xy (2.10)

and thus

1 − 1

2j ′ < 1 −
(

1

2j

) (
1

2k

)
(2.11)

1 − 1

2j ′ < 1 − 1

2j+k
(2.12)

j ′ < j + k (2.13)

Putting this all together:

Theorem 2.5. There is a specific PTM that, when equipped with a probability
p, takes input j ∈ N and outputs a sequence

{
p̂k

}
that converges quickly to

p with probability 1 − 1
2j

. Furthermore, with probability 1, there is some N

such that
∣∣p̂k − p

∣∣ < 1
2k

for all k > N .

Proof. For each value in the sequence, the PTM simply tosses its coin 2j+3k−2

times and returns the ratio of heads to tails. By the argument above, these
approximations will suffice. �

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 258 — #6

258 T. Ord and T. D. Kieu

3 COMPUTING THE BINARY EXPANSION OF p

The definitions of the previous section are not the only ways that the recursive
reals can be defined. Instead of using converging sequences of rationals, we
can use the original technique due to Turing [9] of using the baseb expansion.
For simplicity, we use the binary expansion and only consider those reals in
the unit interval.

Definition 3.1. x ∈ R is recursive if and only if there is a Turing machine that
takesn ∈ N as input and returnsbn, then-th bit of the binary expansion ofx.

As before, we can rephrase this to speak of Turing machines that take no
input:

Definition 3.2. x ∈ R is recursive if and only if there is a Turing machine
that takes no input and returns the sequence{bn}, corresponding to the binary
expansion ofx.

Both definitions run into an ambiguity in the case ofdyadic rationals: those
that can be expressed in the formn2m . For such numbers, there are two binary
expansions so we adopt the convention of using the one containing an infinite
number of 0s.

By extending our method for approximatingp, we can also approximate
the binary expansion ofp. Unfortunately this will not be possible ifp is a
dyadic rational, so for now consider the case where it is not, andp thus has a
unique infinite binary expansion in which both 0 and 1 occur infinitely many
times. To compute the binary expansion ofp, we need a method that takes
inputsj, l and gives us the value ofbl with probability 1− 1

2j
.

It may seem as though this can be achieved simply by computingp̂l+1 and
taking itsl-th bit, but problems arise when a run of consecutive 0s or 1s occurs
around this point in the expansion. For instance, if we want the third bit and
p̂4 = 0.01111111,then the true value ofp could be as low as 0.01101111 or as
high as 0.10001111 and we canthus be certain of none of the bits. By using the
following algorithm, which we shall callA, we can overcome this problem.

• k := l

• repeat

– k := k + 1

– computep̂k (by tossing the coin 2j+3k−2 times)

– if p̂k < 1 and there are both a 0 and a 1 between thel-th andk-th
bits of the expansion of̂pk then output thel-th bit and halt

An analysis ofA is made somewhat complex by the fact that it involves
random events and does not always give the correct output, but for now we

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 259 — #7

Using Biased Coins as Oracles 259

will just consider the most probable case where the probabilistically generated
sequence

{
p̂k

}
converges quickly top. We can see that there must be a value

of k for which p̂k is less than one and has both a 0 and a 1 between its
l-th andk-th bits, for if there were not then̂pk would either be approaching
a dyadic rational or failing to converge—each of which would contradict
our assumptions. Therefore, so long asp is not a dyadic rational and

{
p̂k

}
converges quickly top,A will always halt. When it does, the value ofp̂k will
be in the form

p̂k = ·b1 . . . bl1 · · · 10bk · · · (3.1)

or

p̂k = ·b1 · · · bl0 · · · 01bk · · · (3.2)

In either case, adding or subtracting a value smaller than1
2k

will not change

any of the firstl bits of p̂k and sincep is within 1
2k

of p̂k, their firstl bits must
be identical.

It is important to note, however, that while all runs of 1s or 0s within the
expansion ofp must come to an end, they can be arbitrarily long, so the
running time ofA depends upon the value ofp. If the l-th bit of the expansion
of p is followed by a run ofm identical bits, then we must computel + m

values ofp̂k, requiring at most 2j+3l+3m−1 coin tosses.
What about those cases where

{
p̂k

}
does not converge quickly top? This

can be for two different reasons—either it converges top, but not as quickly
as required or it does not converge top at all. The first of these cases occurs
with probability 1

2j
and while it cannot causeA to fail to halt, it may well

cause an incorrect output. The second case occurs only with probability 0, and
may either cause an incorrect output or non-termination.

Theorem 3.3. There is a PTM that implements A. Equipped with any non-
dyadic probabilityp, it takes positive integers j and l, outputting the l-th bit of
the binary expansion ofp with probability greater than 1− 1

2j
. The probability

that it returns an incorrect answer is less than 1
2j

, while the probability that it
does not terminate is 0.

Proof. Immediate. �

We can also modifyA to formA∞ which takes onlyj as input and outputs
the entire expansion ofp. In this case it outputs thel-th digit when it has output
all prior digits and has found a value ofp̂k with a 0 and a 1 between itsl-th
andk-th digits.A∞ uses the high likelihood of

{
p̂k

}
converging quickly to

p to greater effect thanA, by generating theentire expansion with arbitrarily
high probability

Theorem 3.4. There is a PTM that implements A∞. Equipped with any non-
dyadic probability p, it takes a positive integer j , outputting the entire binary

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 260 — #8

260 T. Ord and T. D. Kieu

expansion of p with probability greater than 1 − 1
2j

. The probability that

it outputs finitely many incorrect bits is less than 1
2j

, while the probability that it
outputs infinitely many incorrect bits or outputs only a finite number of bits is 0.

Proof. Immediate. �

4 USING THE BINARY EXPANSION OF p AS AN ORACLE

In 1939,Alan Turing [10] introduced a very influential extension to his theoret-
ical computing machines. Turing’so-machines are standard Turing machines
combined with a special ‘oracle’, which can answer questions about a particu-
lar set of natural numbers, called its oracle set. Like a PTM, ano-machine has
a special query state and two answer states, but instead of the answer being
given randomly, it corresponds to whether a certain number is in the oracle
set. To specify the number whose membership is being questioned, a special
symbolψ is inscribed twice on the tape and the number of squares between
each inscription ofψ is taken as the query to the oracle. Depending on which
oracle set is given, ano-machine can compute different classes of functions,
and they thus give rise to a notion of relative computability.

Corresponding to ano-machine with oracleX we can construct a PTM
with probabilitypX where then-th digit of the binary expansion ofpX is 1
if n ∈ X and 0 otherwise. A PTM equipped withpX can perform all basic
operations of a Turing machine, as well as determining whethern ∈ X for
anyn. It can do this by simulatingA∞ in parallel with its main computation,
storing the bits ofp produced byA∞ and examining them when needed. If
it needs to test whethern ∈ X and has not yet determinedbn, it simply waits
until this is found.

In the cases wherepX is a dyadic rational this method will not work, but
sinceX will be recursive, there is a probabilistic Turing machine that can
simulate such ano-machine without using any probabilistic methods at all. In
this way, these methods suffice to simulate anyo-machine.

Theorem 4.1. For any o-machine M with oracle X, there is a PTM PM
equipped with probability pX that when given the same inputs plus one addi-
tional input j , PM produces the same output as M with probability greater
than 1 − 1

2j
.

Proof. Immediate. �

Since all functions of the formf : Nn → Nm or f : Nn → Rm are
computable by someo-machine, we can see that there are probabilities that
would allow PTMs to compute any such functions.

Corollary 4.2. For any function f : Nn → Nm or f : Nn → Rm, there
exists a PTM that when given inputs j, x1, . . . , xn producesf (x1, . . . , xn)with

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 261 — #9

Using Biased Coins as Oracles 261

probability greater than 1 − 1
2j

, produces incorrect output with probability

less than 1
2j

and diverges with probability 0.

Since these natural and real numbers can be used to code other mathematical
objects, this set of PTM computable functions includes a vast number of
interesting mathematical functions. Given an appropriately biased coin, a PTM
could decide the halting problem or the truths of first order arithmetic.

Finally, just as there is a single universal Turing machine which can take
the code of a Turing machine as input and simulate it, so there is a universal
o-machine which takes the code of an arbitraryo-machine and simulates it
so long as it is equipped with the oracle of the machine being simulated. A
similar job can be performed by a specific PTM, provided that theo-machine
to be simulated does not have an oracle set that would be encoded as a dyadic
rational. As sucho-machines can only compute recursive functions, this is not
a great concern.

Theorem 4.3. There is a specific PTM PU that takes inputs j, n,m ∈ N and
when equipped with any non-dyadic probabilitypX, PU computes the result of
applying the o-machine with oracle X and index n to the input m, producing
the correct output with probability at least 1 − 1

2j
.

Proof. Immediate. �

5 GETTING BY WITH INCREASINGLY ACCURATE BIASES

These same results can all be realised without the need for a coin with an
infinitely precise bias. Instead, consider a variant of the PTM which is given
a succession of coins{cn} where then-th coin is used for then-th toss. If the
probability ofcn coming up heads is given by the rational probabilitypn and
{pn} converges quickly to some arbitrary realp, then all of the above results
hold with only minor modifications.

If we once again approximatep using the average number of times heads
comes up inn tosses, we find that the mean ofp̂ is no longerp, butµ, where

µ =
∑n
i=1pi

n
≤

∑n
i=1(p + 1

2i
)

n
<
np + 1

n
= p + 1

n
(5.1)

By a similar argument, we find the lower bound forµ, and see that

p − 1

n
< µ < p + 1

n
(5.2)

The variance is now given by

σ 2 =
n∑
i=1

pi(1 − pi)

n2
≤ 1

4n
(5.3)

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 262 — #10

262 T. Ord and T. D. Kieu

We can now once again use the Chebyshev inequality to form an upper
bound for the probability of error. If we setn = 2j+2k (which is 4 times
higher than the value ofn used previously), we see that

P

(∣∣p̂ − µ
∣∣ < 1

2k+1

)
≥ 1 − 1

2j

P

(∣∣p̂ − p
∣∣ < 1

2k+1
+ 1

2j+2k

)
≥ 1 − 1

2j
(5.4)

P

(∣∣p̂ − p
∣∣ < 1

2k

)
≥ 1 − 1

2j

And so this new value ofn suffices in this case. Replacing all later references
to 2j+2k−2 with 2j+2k and references to 2j+3k−2 with 2j+3k, all the theorems
follow. It is also easy to see that we could relax our constraint that the sequence
of biases converges quickly. Instead it can converge very slowly, so long as
there is a recursive bound on how slowly. That way the machine could use this
bound to calculate a subsequence of coins whose probabilities would converge
quickly.

6 GETTING BY WITH RANDOMLY CHOSEN BIASES

Another way that we can avoid the need for a coin with an infinitely accurate
bias is via a probability distribution of finitely accurate biases. As in the pre-
vious section, we use a sequence of coins{cn} where then-th coin is used for
then-th toss. This time however, the bias on each coin will be chosen with
an independent random trial from a fixed probability distribution. We will
see that so long as the mean of this distribution is a non-recursive real, access
to this randomisation extends the PTM’s powers. Specifically, it can compute
the binary expansion of the mean with arbitrarily high confidence.

We first consider the case of a discrete probability distribution, where the
probability of choosing the biasxi ∈ [0,1] is denoted byP(xi is chosen).
To generate the value of then-th coin toss, we must combine the process of
randomly choosing a bias with the process of tossing a coin with that bias. Let
z be a random variable representing the result of the coin toss, equalling 1 if
the coin lands heads and 0 if tails. From the rules of conditional probability,

P(z = 1) =
∑
i

P (z = 1 | xi is chosen)P (xi is chosen)

=
∑
i

xiP (xi is chosen)

= µx (6.1)

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 263 — #11

Using Biased Coins as Oracles 263

The same is true if we use a continuous distributionρ(x). In this case

P(z = 1) =
∫ 1

0
P(z = 1 | x is chosen)ρ(x is chosen)dx

=
∫ 1

0
xρ(x is chosen)dx

= µx (6.2)

In either caseP(z = 0) = 1−µx . Thus, the combined process of randomly
choosing a bias between 0 and 1 from any distribution with meanµx and then
flipping the appropriate coin is equivalent to the process of flipping a single
coin with biasµx . From this it is clear that one can determine the binary
expansion ofµx with arbitrary confidence using the methods of Sections 2–4.
Indeed, all the results of those sections hold for this modified type of PTM
without the need for any additional coin tosses.

In the case of discrete distributions, it is interesting to consider howµx
could be non-recursive. Recall that for a discrete distribution, the mean is
defined by

∑
i xiP (xi) and that the recursive reals are closed under finite sums

and products. Thus, if the distribution is finite, the only possibilities are that at
least one of the possible biases is non-recursive or at least one of the associated
probabilities is non-recursive. For infinite discrete distributions there is the
additional possibility of one or both of the sequences{xi} and{P(xi)} being
non-recursive despite all the individual elements being recursive.

Therefore, this method of randomly choosing a bias from a given distribu-
tion and then flipping a coin with that bias allows a PTM to exceed the power
of a Turing machine without relying upon coins with infinitely precise biases.

7 CONCLUSIONS

Over the course of this paper, we have shown three ways to implement an
abstract oracle by tossing biased coins. This was achieved by demonstrating
a computational equivalence betweeno-machines and three different classes
of PTM. These results show that it is very careless to say that randomness
does not increase the power of the Turing machine. While this is true of fair
coins and recursively biased coins, they form only a set of measure zero in
the space of all possible biased coins. Indeed, if a bias is chosen completely at
random (from a uniform distribution over[0,1]) then with probability one, it
would be non-recursive and thus extend the powers of a Turing machine that
had access to it.

This is not only of mathematical interest, but is particularly significant in
the study of what is physically computable. There has been continued interest
over the years about whether some form ofo-machine might be physically

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 264 — #12

264 T. Ord and T. D. Kieu

realisable [2, 4, 7]. A simple way to go about implementing an oracle would
be to measure some quantity, such as the distance between two particles, with
finer and finer accuracy. If this distance happened to be a non-recursive real,
we could then use the methods of section 3 to compute the binary expansion
and use this as an oracle set. However, such methods based on measuring
continuous quantities could quickly run into fundamental limits of quantum
mechanics, especially if there exists some fundamental lengthscale such as that
of the Planck scale which is demanded by some theories of quantum gravity.

Using randomness provides an alternative that does not run afoul of these
limitations. It allows one to measure an underlying continuous quantity with
a sequence of discrete measurements that do not individually become increas-
ingly accurate. It is the increasing total number of measurements that provides
the accuracy, so no particular measurement needs to be more accurate than
the quantum limits.

In fact, quantum mechanics even suggests a way to simulate such biased
coin tosses. Aqubit is any quantum system that has two possible states and,
when measured, is seen to take on one of these states randomly [6]. Each state
of a qubit has an associatedprobability amplitude, which is a complex number
that defines the probability that the system will be found in that state. These
probability amplitudes are allowed to be arbitrary complex numbers having
moduli less than one and thus the induced probabilities, which are squares of
the moduli, are arbitrary reals between 0 and 1. A qubit therefore seems to be
a physical implementation of an arbitrarily biased coin.

There is, however, an important difference: while a biased coin can be
flipped as many times as one wishes, a qubit is destroyed once its state is deter-
mined. Furthermore, by theno cloning theorem of quantum mechanics [11],
we cannot get around this destructive measurement by making perfect copies
of the qubit.

However, the technique of section 6 seems to offer a way out. If there is any
method which creates qubits with biases chosen randomly around some non-
recursive mean, then this method implements a non-recursive oracle. Since
the non-recursive values this mean could take form a set of measure one in
the space of all possible biases, this appears quite plausible and it would seem
to require an independent physical principle to force all such methods to pick
out only recursive means.

If we furthermore wish to harness this non-recursive power to compute
some particular non-recursive function, we need to know more about the non-
recursive mean around which our biases are generated. For instance, we could
try to create a PTM for deciding whether a given formula of the predicate
calculus is a tautology by using a mean that codes the set of halting Turing
machines, or even by using thehalting probability�, described by Chaitin [1],
in the setting up of a qubit [5].

However, it appears to be very difficult to generate biased qubits around
such a known mean. Consider some controllable variableλ (such as the amount

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 265 — #13

Using Biased Coins as Oracles 265

of time an electron is exposed to a magnetic field) involved in creating the
probability amplitudea(λ) for a qubit state and let us suppose that we could
generate this controllable variable in some distributionPλ with the appropri-
ate mean. Even then, we would still have further difficulties to overcome as
the relationship between the bias of a qubit, represented by|a(λ)|2, and the
controllable variables that determine it is inevitably non-linear. It is then not
sufficient to control the mean of the controlled variablesλ: we must also pre-
cisely determine the details both of their distributionsPλ and of the functions
a(λ), which can and will be affected by generally uncontrollable quantum
decoherence, to obtain the mean of the quantum probabilities through their
distributionsPa ,

Pa = Pλ

/∣∣∣∣d|a|
2

dλ

∣∣∣∣ , (7.1)

and it seems quite unlikely that all of these would be possible.
The use of biased coins to compute more than the Turing machine is

certainly of physical interest and, although it is not yet clear how it could
be physically harnessed to increase our computational abilities, the close
connections with quantum theory suggest a potential for further study.

REFERENCES

[1] Gregory J. Chaitin. A Theory of program size formally identical to information theory.
Journal of the ACM 22(3) (July 1975), 329–340.

[2] B. Jack Copeland. Hypercomputation.Minds and Machines 12 (2002), 461–502.

[3] J. Gill. Computational complexity of probabilistic turing machines.SIAM Journal of
Computing 6 (1977), 675–695.

[4] Tien D. Kieu. Computing the noncomputable.Contemporary Physics 44 (2003), 51–71.

[5] Michael A. Nielsen. Computable functions, quantum measurements, and quantum dynam-
ics.Physical Review Letters 79 (1997), 2915–2918.

[6] MichaelA. Nielsen and Isaac L. Chuang.Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, 2000.

[7] Toby Ord. Hypercomputation: Computing MoreThan theTuring Machine. Technical Report
arXiv:math.LO/0209332, University of Melbourne, Melbourne,Australia, September 2002.
Available at http://www.arxiv.org/abs/math.LO/0209332.

[8] E. S. Santos. Computability by probabilistic turing machines.Transactions of the American
Mathematical Society, 159 (1971), 165–184.

[9] Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society 42 (1936), 230–265.

[10] Alan M. Turing. Systems of logic based on the ordinals.Proceedings of the London
Mathematical Society 45 (1939), 161–228.

[11] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned.Nature 299 (1982),
802–803.

“IJUC” — “IJUC-MS-(5)” — 2009/1/24 — 10:28 — page 266 — #14

