Int. Journ. of Unconventional Computing, Vol. 5, pp. 253-265 ©2009 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

Using Biased Coins as Oracles

ToBY ORD! AND TIEN D. KIEU?

IFaculty of Philosophy, University of Oxford, Oxford, OX1 4JJ, UK
E-mail: toby.ord@philosophy.ox.ac.uk
2Centre for Atom Optics and Ultrafast Spectroscopy,
Swinburne University of Technology, Hawthorn 3122, Australia
E-mail: kieu@phg.com.au

Received: January 31, 2007. In final form: April 30, 2007.

While it is well known that a Turing machine equipped with the ability

to flip a fair coin cannot compute more than a standard Turing machine,
we show that this is not true for a biased coin. Indeed, any oracle set
X may be coded as a probabilifyy such that if a Turing machine is
given a coin which lands heads with probabiljiy it can compute any
function recursive inX with arbitrarily high probability. We also show
how the assumption of a non-recursive bias can be weakened by using a
sequence of increasingly accurate recursive biases or by choosing the bias
at random from a distribution with a non-recursive mean. We conclude by
briefly mentioning some implications regarding the physical realisability
of such methods.

Keywords: Probabilistic Turing machine, hypercomputation, oracle, qubit.

1 INTRODUCTION AND MOTIVATION

The Turing machine is well known to be a very robust model of computation.
In almost all textbooks on the theory of computation, one can find a list of
extensions to the Turing machine that offer it more primitive resources, such
as extra tapes or nondeterminism, and yet do not give it the ability to compute
any additional functions. Amongst such resources it is not uncommon to find
references to probabilistic methods such as coin tossing.

These methods can be made precise with the introduction of the probabilis-
tic Turing machine or PTM [3]. APTM is a standard Turing machine with a
special randomising state. When the machine is in this state, the transition to
a new state is not governed by what is on the tape, but by a random event.

253

254 T. OrD AND T. D. KIEU

A fair coin is tossed and the machine goes to the specified 1-state if the coin
comes up heads and the O-state if it comes up tails.

Unlike a Turing machine, a PTM will not necessarily return the same output
when run multiple times on the same input. Care must therefore be taken in
defining what it means for a function to be computed by a PTM. One way is
to say that a PTM computes a given functigh, if when givenx as input,
along with a measure of accuragye N, it producesf (x) with probability
at least 1— 2% By this definition, a function is computable by a PTM if and
only if it can be computed with arbitrarily high confidence. Alternatively, we
could relax this definition and say that a PTM compuytaéand only if when
givenx as input, it produceg (x) with some probability greater tha@

It is quite easy to see that with either definition, a PTM computes only
the recursive functions. For any PTW, there is a Turing machin& that
simulates itT simulates each branch of the computation in parallel and keeps
track of their respective probabilitie®. also keeps a table which associates
outputs with their probabilities. When a branch halts and returns some value
y, T creates a new position in the table foand stores the probability of that
branch occurring. If a branch has already halted with ougp@t simply adds
the new probability of producing to the old value. After each update to the
table,T checks whether the new value foiis greater tharP’s threshold %

orl— 2—1j) and halts returning if this is so. In this wayI' halts with output
y if and only if P returnsy with sufficient probability.

This argument can also be extended to deal with more complicated proba-
bilistic methods. For example, we could allow biased coins where the chance
that heads comes up is some given rational number. We could even allow the
bias to be any recursive real number (as defined in Section 2 of this paper). In
each casel’ can still keep track of the probability of each computation branch
and test to see whether an output occurs with high enough probability to be
deemedahe output of the PTM.

It is important to ask, however, what can be computed if non-recursive
probabilities are used. In this paper, we show that allowing coins with non-
recursive biases makes the above argument fail quite spectacularly. We first
show that a PTM can compute arbitrarily accurate estimates to the bias on
its coin and then strengthen this to computing arbitrarily many bits of the
binary expansion of the bidsFrom this, we reach several strong theorems
about the power of PTMs, showing in particular that there is a single PTM
that acts as a universaimachine: when equipped with a probability coding

1since this paper was written, an article by Santos [8] has been brought to our attention
wherein a result similar to our Theorem 4.1 was obtained. However, it is our opinion that
Santos’s proof is incomplete, lacking an explanation of how the binary expansion of the prob-
ability can be computed from the rational approximations. In any event, we think the present
account is useful for its further results, discussion of the physical implications, and clarity of
presentation.

USING BIASED COINS AS ORACLES 255

a given oracle, it simulates a givenmachine with that oracle on a given
input to a given level of confidence. Thus, the addition of randomness to the
resources of a Turing machine expands its set of computable functions. Only
when the coins are restricted to recursive biases do they offer no additional
power.

In the remaining sections, we show two ways in which the same results
are possible with slightly weakened resources. Specifically, we show how a
sequence of rationally biased coins can be used, so long as the biases converge
effectively to a non-recursive real or the biases are drawn at random from a
distribution with a non-recursive mean. Finally, we point to some interesting
physical applications in which these types of probabilistic methods seem to
be consistent with quantum mechanics.

2 APPROXIMATING p TOARBITRARY ACCURACY

The natural way to approximate the probabilipy, that the coin will land
heads, is to look at the average number of headsasses. By the weak law
of large numbers, this value (which we will denote pyapproachep asn
approaches infinity. However, to approximateffectively, we need to know
how fast this convergence is likely to be. This can be expressed by asking how
many tosses are required befgrés within a given distance gf with a given
level of confidence. Specifically, we will ask for a method of calculating
such that when at leasttosses are madép — p| < zlk with probability at
least 1— 2 for given j, k € N.

The probability distribution of possible values pffor a given value of:
is a binomial distribution with meap. The variance op is given by

2 pd—p)
0f=—-=
n

2.1)

This variance depends upon the unknown valug,dfowever since it has

a maximum where = 3, we can see that
1
2o~ 2.2
= 4n 22)

With this upper bound for the variance, we can use the Chebyshev inequality

N

Ve>0 P(x—pul>e) < :—2 (2.3)

to form an upper bound for the probability of error

R 1) _2*
vk Plp-plz5) =4 (2.4)

256 T. OrD AND T. D. KIEU

Therefore, if we insist on a chance of error of at méﬁx this can be
achieved so long as

2% 1

- <= 25

4n — 2J (2:5)
n > 2/t%k=2 (2.6)

Thus, for each value g € [0, 1] we can compute an approximation pf
that is within an arbitrarily small distance of the true value with an arbitrarily
high probability. More formally,

Theorem 2.1. Thereisa specific PTM that, when equipped with a probability
p, takesinputs j, k € N and outputs a rational approximation to p that is
within 3 of the true value with probability at least 1 — -

Proof. The PTM simply tosses its coin 2%~2 times and returns the ratio of
heads to tails. By the argument above, this approximation will sufficed

This method of approximating a real number by successively accurate ratio-
nal approximations can also be used to define what it means for a real to be
computable by a (deterministic) Turing machine. For convenience, we say

Definition 2.2. {x,} converges quickly to x if and only if |x, — x| < Zi for
all n.

We can then define a recursive real:

Definition 2.3. x € Risrecursiveif and only if there is a Turing machine that
takesn € N as input and returns, € Q, where{x, } converges quickly ta.

The recursive reals given by this definition are well studied and include a
great many of the reals actually encountered in mathematics, including all the
algebraic numbers as well asande. However, since there are uncountably
many reals but only countably many Turing machines, it is clear that most of
them are not recursive. If a PTM is equipped with one of these non-recursive
reals as its probability, then our algorithm above shows that in a certain sense,
this PTM can compute this real—a feat that is impossible with a deterministic
Turing machine.

However, there is still some room to question whether the PTM of Theo-
rem 2.1 actually computes its probability. Consider, for example, the following
alternative definition of a recursive real.

Definition 2.4. x € Risrecursiveif and only if there is a Turing machine that
takes no input and outputs a sequefg which converges quickly te.

This definition is evidently equivalent to the previous one when it comes
to deterministic Turing machines, but it is not immediately clear that the
equivalence holds for PTMs. While the PTM of Theorem 2.1 can compute each
approximation tax with arbitrary accuracy, it is not clear that a PTM could
output an infinite sequence of approximations with ttainbeing correct with

USING BIASED COINS AS ORACLES 257

arbitrarily high probability. However, we now show that this can be achieved
by requiring each successive event to be more and more probable.

For a given minimum probability that an entire infinite sequence of events
will occur, we can set the probability of thieth event occurring; = g2 . It
follows that the chance of all events occurring is

o0 . .
[[4% =q==% =4 (2.7)
i=1
In addition, we can consider the chance that all events in an infinite suffix
of the sequence occur. The chance of all events after évemcurring is

oo

—i 00 —i ~N
1_[g% = grizna? = 42 (2.8)
i=N+1

Thus, foreack > 0, thereis avalue d¥ such that the probability of all events
after eventV occurring is withine of 1. Moreover, if we are just interested in
there beingsome suchN after which all events occur, this will happen with
probability 1.

This construction can be applied in the case of our approximatiopslto
particular, we can find a new valyéas a function ofi andk which can then
be substituted into our formula for the number of required coin tosses.

1 1\2"
1_F:<1_§) (2.9)
Using a Taylor expansion, we can see thatfer @,y < 1
1-—x) <1l—xy (2.10)
and thus
1 1 1
1 1
j<j+k (2.13)

Putting this all together:

Theorem 2.5. Thereisa specific PTM that, when equipped with a probability
p, takesinput j € N and outputs a sequence { ﬁk} that converges quickly to
p with probability 1 — 2—1/ Furthermore, with probability 1, there is some N
suchthat |p — p| < % for allk > N.

Proof. Foreach value in the sequence, the PTM simply tosses its £6ffi 2

times and returns the ratio of heads to tails. By the argument above, these
approximations will suffice. a

258 T. OrD AND T. D. KIEU

3 COMPUTING THE BINARY EXPANSION OF p

The definitions of the previous section are not the only ways that the recursive
reals can be defined. Instead of using converging sequences of rationals, we
can use the original technique due to Turing [9] of using the basgyansion.

For simplicity, we use the binary expansion and only consider those reals in
the unit interval.

Definition 3.1. x € Risrecursive if and only if there is a Turing machine that
takesn € N as input and returns,, then-th bit of the binary expansion aof.

As before, we can rephrase this to speak of Turing machines that take no
input:

Definition 3.2. x € R is recursive if and only if there is a Turing machine
that takes no input and returns the sequdigg corresponding to the binary
expansion of.

Both definitions run into an ambiguity in the casedghdic rationals: those
that can be expressed in the fogfn. For such numbers, there are two binary
expansions so we adopt the convention of using the one containing an infinite
number of 0s.

By extending our method for approximating we can also approximate
the binary expansion gb. Unfortunately this will not be possible j is a
dyadic rational, so for now consider the case where it is not getiais has a
unigue infinite binary expansion in which both 0 and 1 occur infinitely many
times. To compute the binary expansiongfwe need a method that takes
inputsj, [and gives us the value &f with probability 1— zi]

It may seem as though this can be achieved simply by compgtingand
taking itsi-th bit, but problems arise when a run of consecutive Os or 1s occurs
around this point in the expansion. For instance, if we want the third bit and
pa = 0.01111111then the true value gf could be as low as.01101111 or as
high as 010001111 and we cathus be certain of none of the bits. By using the
following algorithm, which we shall calt, we can overcome this problem.

o k=1
e repeat
—k=k+1
— computepy (by tossing the coin 232 times)

— if px < 1 and there are bbta 0 and a 1 between tlig¢h andk-th
bits of the expansion gf; then output the-th bit and halt

An analysis ofA is made somewhat complex by the fact that it involves
random events and does not always give the correct output, but for now we

USING BIASED COINS AS ORACLES 259

will just consider the most probable case where the probabilistically generated
sequence{ﬁk} converges quickly tp. We can see that there must be a value
of k for which p; is less than one and has haa 0 and a 1 between its
[-th andk-th bits, for if there were not thep; would either be approaching

a dyadic rational or failing to converge—each of which would contradict
our assumptions. Therefore, so longzass not a dyadic rational an{jﬁk}
converges quickly te, A will always halt. When it does, the value pf will

be in the form

pr=-b1...by1---10b; - - (3.1)
or
pr=-br---b0---Olby - -- (3.2)

In either case, adding or subtracting a value smallergaamill not change

any of the first bits of p; and sincep is within Zik of py, their first/ bits must
be identical.

It is important to note, however, that while all runs of 1s or Os within the
expansion ofp must come to an end, they can be arbitrarily long, so the
running time ofA depends upon the value pf If the /-th bit of the expansion
of p is followed by a run ofn identical bits, then we must compute+ m
values ofpy, requiring at most 2-3+37-1 coin tosses.

What about those cases whe{rfa(} does not converge quickly te? This
can be for two different reasons—either it convergeg,tbut not as quickly
as required or it does not convergep@t all. The first of these cases occurs
with probability 2—1, and while it cannot causg to fail to halt, it may well
cause an incorrect output. The second case occurs only with probability 0, and
may either cause an incorrect output or non-termination.

Theorem 3.3. Thereis a PTM that implements A. Equipped with any non-
dyadic probability p, it takes positiveintegers j and /, outputting the/-th bit of
thebinary expansion of p with probability greater than 1— 2% . The probability
that it returns an incorrect answer islessthan 2% while the probability that it
does not terminate is 0.

Proof. Immediate. O

We can also modifyA to form A, which takes onlyj as input and outputs
the entire expansion ¢f. In this case it outputs theth digit when it has output
all prior digits and has found a value pf with a 0 and a 1 between itsth
andk-th digits. A, uses the high likelihood o{ﬁk} converging quickly to
p to greater effect thard, by generating thentire expansion with arbitrarily
high probability

Theorem 3.4. Thereisa PTM that implements A . Equipped with any non-
dyadic probability p, it takes a positive integer j, outputting the entire binary

260 T. OrD AND T. D. KIEU

expansion of p with probability greater than 1 — 2—1, The probability that

it outputsfinitely manyincorrect bitsislessthan 2% , whiletheprobability that it
outputsinfinitely many incorrect bitsor outputsonly afinite number of bitsisO.

Proof. Immediate. O

4 USING THE BINARY EXPANSION OF p ASAN ORACLE

In 1939, Alan Turing [10] introduced a very influential extension to his theoret-
ical computing machines. Turinggsmachines are standard Turing machines
combined with a special ‘oracle’, which can answer questions about a particu-
lar set of natural numbers, called its oracle set. Like a PTM-arachine has

a special query state and two answer states, but instead of the answer being
given randomly, it corresponds to whether a certain number is in the oracle
set. To specify the number whose membership is being questioned, a special
symbolyr is inscribed twice on the tape and the number of squares between
each inscription of) is taken as the query to the oracle. Depending on which
oracle set is given, aprmachine can compute different classes of functions,
and they thus give rise to a notion of relative computability.

Corresponding to am-machine with oracleX we can construct a PTM
with probability py where then-th digit of the binary expansion gfy is 1
if n € X and 0 otherwise. A PTM equipped wifhyy can perform all basic
operations of a Turing machine, as well as determining whetherX for
anyn. It can do this by simulating », in parallel with its main computation,
storing the bits ofp produced byA,, and examining them when needed. If
it needs to test whethere X and has not yet determineéd, it simply waits
until this is found.

In the cases whergy is a dyadic rational this method will not work, but
since X will be recursive, there is a probabilistic Turing machine that can
simulate such an-machine without using any probabilistic methods at all. In
this way, these methods suffice to simulate anyachine.

Theorem 4.1. For any o-machine M with oracle X, there is a PTM Py
equipped with probability px that when given the same inputs plus one addi-
tional input j, Py produces the same output as M with probability greater
than1— L.

2

Proof. Immediate. O

Since all functions of the formy : N* — N™ or f : N* — R™ are
computable by some-machine, we can see that there are probabilities that
would allow PTMs to compute any such functions.

Corollary 4.2. For any function f : N* — N" or f : N* — R™, there
existsaPTM that whengiveninputs j, x1, ..., x, produces f (x1, ..., x,) With

USING BIASED COINS AS ORACLES 261

probability greater than 1 — 2—1, produces incorrect output with probability
lessthan - and diverges with probability 0.

Since these natural and real numbers can be used to code other mathematical
objects, this set of PTM computable functions includes a vast number of
interesting mathematical functions. Given an appropriately biased coin, aPTM
could decide the halting problem or the truths of first order arithmetic.

Finally, just as there is a single universal Turing machine which can take
the code of a Turing machine as input and simulate it, so there is a universal
o-machine which takes the code of an arbitrargnachine and simulates it
so long as it is equipped with the oracle of the machine being simulated. A
similar job can be performed by a specific PTM, provided thabthgachine
to be simulated does not have an oracle set that would be encoded as a dyadic
rational. As sucl-machines can only compute recursive functions, this is not
a great concern.

Theorem 4.3. Thereisa specific PTM Py that takesinputs j, n, m € N and
when equipped with any non-dyadic probability px, Py computestheresult of
applying the o-machine with oracle X and index n to the input m, producing
the correct output with probability at least 1 — 3-.

Proof. Immediate. O

5 GETTING BY WITH INCREASINGLY ACCURATE BIASES

These same results can all be realised without the need for a coin with an
infinitely precise bias. Instead, consider a variant of the PTM which is given
a succession of coing,,} where then-th coin is used for the-th toss. If the
probability ofc, coming up heads is given by the rational probabilityand
{pn} converges quickly to some arbitrary rgglthen all of the above results
hold with only minor modifications.

If we once again approximafe using the average number of times heads
comes up im tosses, we find that the meanfs no longerp, but ., where

noo. n 1
_ LizPi 52’=1(p+2’) wrl_ Lt (5.1)
n n n n
By a similar argument, we find the lower bound forand see that
1 1
p——<pu<p+- (5.2)
n n

The variance is now given by

n
s _mpi-p) _ 1
=E _— < — 5.3
?) n? ~ 4n (5:3)

262 T. OrD AND T. D. KIEU

We can now once again use the Chebyshev inequality to form an upper
bound for the probability of error. If we set = 2/+% (which is 4 times
higher than the value of used previously), we see that

R 1 1

P |P—M‘<W 21—5

. 1 1 1
P<|p—p|<ﬁ+m>21—§ (5.4)

A 1 1
P(‘P—P|<§)21—E

And so this new value of suffices in this case. Replacing all later references
to 2/+2—2 with 2/+2 and references to/23*—2 with 2/+3¢ all the theorems
follow. Itis also easy to see that we could relax our constraint that the sequence
of biases converges quickly. Instead it can converge very slowly, so long as
there is a recursive bound on how slowly. That way the machine could use this
bound to calculate a subsequence of coins whose probabilities would converge
quickly.

6 GETTING BY WITH RANDOMLY CHOSEN BIASES

Another way that we can avoid the need for a coin with an infinitely accurate
bias is via a probability distribution of finitely accurate biases. As in the pre-
vious section, we use a sequence of c¢in$ where the:-th coin is used for
the n-th toss. This time however, the bias on each coin will be chosen with
an independent random trial from a fixed probability distribution. We will
see that so long as the mean of this distribution is a non-recursive real, access
to this randomisation extends the PTM’s powers. Specifically, it can compute
the binary expansion of the mean with arbitrarily high confidence.

We first consider the case of a discrete probability distribution, where the
probability of choosing the biag; € [0, 1] is denoted byP (x; is chosei.
To generate the value of theth coin toss, we must combine the process of
randomly choosing a bias with the process of tossing a coin with that bias. Let
z be a random variable representing the result of the coin toss, equalling 1 if
the coin lands heads and 0 if tails. From the rules of conditional probability,

Pz=1) = Z P(z = 1| x; is choselP (x; is chosen

1

= Zx,- P(x; is choseh

1

= MUx (6.1)

USING BIASED COINS AS ORACLES 263

The same is true if we use a continuous distribui@n). In this case

1
P(z=1 = / P(z = 1] xis chosemp(x is chosejdx
0

1
:/ xp(x is chosepdx
0

= s (6.2)

In either case’ (z = 0) = 1— u,. Thus, the combined process of randomly
choosing a bias between 0 and 1 from any distribution with megaand then
flipping the appropriate coin is equivalent to the process of flipping a single
coin with biasu,. From this it is clear that one can determine the binary
expansion of, with arbitrary confidence using the methods of Sections 2—-4.
Indeed, all the results of those sections hold for this modified type of PTM
without the need for any additional coin tosses.

In the case of discrete distributions, it is interesting to consider how
could be non-recursive. Recall that for a discrete distribution, the mean is
defined by) _; x; P (x;) and that the recursive reals are closed under finite sums
and products. Thus, if the distribution is finite, the only possibilities are that at
least one of the possible biases is non-recursive or at least one of the associated
probabilities is non-recursive. For infinite discrete distributions there is the
additional possibility of one or both of the sequenges$ and{P (x;)} being
non-recursive despite all the individual elements being recursive.

Therefore, this method of randomly choosing a bias from a given distribu-
tion and then flipping a coin with that bias allows a PTM to exceed the power
of a Turing machine without relying upon coins with infinitely precise biases.

7 CONCLUSIONS

Over the course of this paper, we have shown three ways to implement an
abstract oracle by tossing biased coins. This was achieved by demonstrating
a computational equivalence betweemachines and three different classes
of PTM. These results show that it is very careless to say that randomness
does not increase the power of the Turing machine. While this is true of fair
coins and recursively biased coins, they form only a set of measure zero in
the space of all possible biased coins. Indeed, if a bias is chosen completely at
random (from a uniform distribution ov¢®, 1]) then with probability one, it
would be non-recursive and thus extend the powers of a Turing machine that
had access to it.

This is not only of mathematical interest, but is particularly significant in
the study of what is physically computable. There has been continued interest
over the years about whether some fornvahachine might be physically

264 T. OrD AND T. D. KIEU

realisable [2, 4, 7]. A simple way to go about implementing an oracle would
be to measure some quantity, such as the distance between two particles, with
finer and finer accuracy. If this distance happened to be a non-recursive real,
we could then use the methods of section 3 to compute the binary expansion
and use this as an oracle set. However, such methods based on measuring
continuous quantities could quickly run into fundamental limits of quantum
mechanics, especially if there exists some fundamental lengthscale such as that
of the Planck scale which is demanded by some theories of quantum gravity.

Using randomness provides an alternative that does not run afoul of these
limitations. It allows one to measure an underlying continuous quantity with
a sequence of discrete measurements that do not individually become increas-
ingly accurate. Itis the increasing total number of measurements that provides
the accuracy, so no particular measurement needs to be more accurate than
the quantum limits.

In fact, quantum mechanics even suggests a way to simulate such biased
coin tosses. Ayubit is any quantum system that has two possible states and,
when measured, is seen to take on one of these states randomly [6]. Each state
of a qubit has an associatpbbability amplitude, which is a complex number
that defines the probability that the system will be found in that state. These
probability amplitudes are allowed to be arbitrary complex numbers having
moduli less than one and thus the induced probabilities, which are squares of
the moduli, are arbitrary reals between 0 and 1. A qubit therefore seems to be
a physical implementation of an arbitrarily biased coin.

There is, however, an important difference: while a biased coin can be
flipped as many times as one wishes, a qubit is destroyed once its state is deter-
mined. Furthermore, by thao cloning theorem of quantum mechanics [11],
we cannot get around this destructive measurement by making perfect copies
of the qubit.

However, the technique of section 6 seems to offer a way out. If there is any
method which creates qubits with biases chosen randomly around some non-
recursive mean, then this method implements a non-recursive oracle. Since
the non-recursive values this mean could take form a set of measure one in
the space of all possible biases, this appears quite plausible and it would seem
to require an independent physical principle to force all such methods to pick
out only recursive means.

If we furthermore wish to harness this non-recursive power to compute
some particular non-recursive function, we need to know more about the non-
recursive mean around which our biases are generated. For instance, we could
try to create a PTM for deciding whether a given formula of the predicate
calculus is a tautology by using a mean that codes the set of halting Turing
machines, or even by using thalting probability 2, described by Chaitin[1],
in the setting up of a qubit [5].

However, it appears to be very difficult to generate biased qubits around
such aknown mean. Consider some controllable variafdach as the amount

USING BIASED COINS AS ORACLES 265

of time an electron is exposed to a magnetic field) involved in creating the
probability amplitudez (1) for a qubit state and let us suppose that we could
generate this controllable variable in some distributiyrwith the appropri-

ate mean. Even then, we would still have further difficulties to overcome as
the relationship between the bias of a qubit, represented ®@y|2, and the
controllable variables that determine it is inevitably non-linear. It is then not
sufficient to control the mean of the controlled varialilesie must also pre-
cisely determine the details both of their distributidhsand of the functions
a()), which can and will be affected by generally uncontrollable quantum
decoherence, to obtain the mean of the quantum probabilities through their

Pa - P} | |
d)\.

and it seems quite unlikely that all of these would be possible.

The use of biased coins to compute more than the Turing machine is
certainly of physical interest and, although it is not yet clear how it could
be physically harnessed to increase our computational abilities, the close
connections with quantum theory suggest a potential for further study.

, (7.1)

REFERENCES

[1] Gregory J. Chaitin. A Theory of program size formally identical to information theory.
Journal of the ACM 22(3) (July 1975), 329-340.

[2] B.Jack Copeland. Hypercomputatidviinds and Machines 12 (2002), 461-502.

[3] J. Gill. Computational complexity of probabilistic turing machin€8AM Journal of
Computing 6 (1977), 675-695.

[4] Tien D. Kieu. Computing the noncomputab@ontemporary Physics 44 (2003), 51-71.

[5] Michael A. Nielsen. Computable functions, quantum measurements, and quantum dynam-
ics. Physical Review Letters 79 (1997), 2915-2918.

[6] Michael A. Nielsen and Isaac L. Chuar@uantum Computation and Quantum Information.
Cambridge University Press, Cambridge, 2000.

[7] Toby Ord. Hypercomputation: Computing More Than the Turing Machine. Technical Report
arXiv:math.LO/0209332, University of Melbourne, Melbourne, Australia, September 2002.
Available at http://www.arxiv.org/abs/math.LO/0209332.

[8] E.S. Santos. Computability by probabilistic turing machifieansactions of the American
Mathematical Society, 159 (1971), 165-184.

[9] Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society 42 (1936), 230-265.

[10] Alan M. Turing. Systems of logic based on the ordinadPsoceedings of the London
Mathematical Society 45 (1939), 161-228.

[11] W. K. Wootters and W. H. Zurek. A single guantum cannot be clohatlre 299 (1982),
802-803.

