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Hippocampal and
neocortical
contributions to
memory: advances in
the complementary
learning systems
framework

Randall C. O’Reilly and Kenneth A. Norman

The complementary learning systems framework provides a simple set of
principles, derived from converging biological, psychological and
computational constraints, for understanding the differential contributions of

the neocortex and hippocampus to learning and memory. The central principles

are that the neocortex has alow learning rate and uses overlapping distributed
representations to extract the general statistical structure of the environment,
whereas the hippocampus learns rapidly using separated representations to
encode the details of specific events while minimizing interference. In recent
years, we have instantiated these principles in working computational models,
and have used these models to address human and animal learning and
memory findings, across a wide range of domains and paradigms. Here,

we review a few representative applications of our models, focusing on two
domains: recognition memory and animal learning in the fear-conditioning
paradigm. In both domains, the models have generated novel predictions that
have been tested and confirmed.
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How does the brain learn and memorize? Although
we are very far from having a single theory that
accounts for all learning and memory data, this
article describes one parsimonious theory of how the
neocortex and hippocampus contribute to learning
and memory, implemented in biologically-based
neural-network computer simulations, which has
been used to address animal and human data in
paradigms ranging from episodic recognition
memory to discrimination learning to fear
conditioning. Furthermore, this theory has
generated several distinctive predictions that have
been confirmed by subsequent experiments. Based
on this initial success, we can optimistically and
provocatively claim that this theory represents an
important first step towards a comprehensive theory
of the neural basis of memory.

Far from being a radical new theory of the
biological basis of memory, our theory, which we

call the Complementary Learning Systems (CLS)
model [1-3], incorporates several widely-held ideas
about hippocampal and neocortical contributions to
memory, that have been developed over many years
by many different researchers (e.g. [4-21]). Thus,

we think of it as a ‘consensual’ model, with our
primary contributions being: (1) to emphasize certain
computational principles in describing the division of
labor between hippocampus and neocortex; and (2) to
implement these principles in working computational
models, which can be used to explore whether the
principles are sufficient to account for specific
findings, and to generate novel predictions.

The complementary learning systems framework

The CLS framework is based on the logic of tradeoffs
between mutually incompatible computational goals.
The central tradeoff behind our framework involves
two basic types of learning that an organism must
engage in —learning about specifics versus
generalities —which require conflicting neural
architectures as summarized in Fig. 1.

Thus, each of these types of learning can be more
optimally achieved by using two separate, but
nonetheless highly interactive, memory systems
with different specializations [3,24,25,2,1,10]): The
hippocampus, which is specialized for rapidly and
automatically encoding arbitrary conjunctions of
existing cortical representations, and the neocortex,
which is specialized for slowly developing
representations of the general statistical structure
of the environment. The hippocampus assigns
distinct representations to input patterns to avoid
interference across memories, whereas neocortex
uses overlapping representations that encode shared
structure across many different experiences.
Furthermore, neocortex uses a small learning rate to
gradually integrate new information with existing
knowledge, whereas hippocampus uses a large
learning rate to encode episodic memories of specific
events as they unfold. This framework contrasts for
example with the framework of [26] which attempts
to accommodate stable category learning and rapid
memorization within a single system.

These computational principles outlined here
converge nicely with analyses of the physiological
properties of the hippocampus and neocortex [2,3,27].
As just one example, the notion that the hippocampus
should use distinct representations is supported the
fact that hippocampal areas have much sparser levels
of firing than those in the neocortex (e.g. [28,29]);
mathematical analyses (e.g. [5,27]) show that making
activity more sparse results in reduced overlap
between representations (‘pattern separation’).

We have constructed neural-network models of the
hippocampus and cortex (and their often complex
interactions) that instantiate the complementary
learning systems principles outlined above, and
incorporate key aspects of the anatomy and
physiology of these structures [24,2,32,1]
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Two incompatible goals

Remember specifics Extract generalities

Example: Where is car parked? Best parking strategy?
Need to: Avoid interference Accumulate experience
Solution: (1) | Separate representations | Overlapping representations
(keep days separate) (integrate over days)
€S) Sreay
strategy)
(2) | Fast learning Slow learning
(encode immediately) (integrate over days)
(3) | Learn automatically Task driven learning
(encode everything) (extract relevant stuff)
System: Hippocampus Neocortex
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Fig. 1. Computational motivation for two complementary learning and memory systems in the brain:
there are two goals that such systems need to solve. One goal is to remember specific information, in
this example where one’s car is parked on a specific day (D1 =day 1, D2 =day 2, etc). The other goal is
to extract generalities across many experiences, for example in developing the best parking strategy
over several different days. The neural solutions to these goals are incompatible: Memorizing
specifics requires separate representations that are learned quickly, and automatically, whereas
extracting generalities requires overlapping representations and slow learning (to integrate over
experiences) and is driven by task-specific constraints. Thus, it makes sense to have two separate
neural systems separately optimized for each of these goals.

(different models implement different parts of cortex,
but all use the same general parameters and learning
mechanisms, which are held to be the same across
most cortical areas, with possible exceptions for
highly specialized areas such as primary sensory or
motor cortex). All of these models are very similar and
can be considered one unified model. In one line of
research, we have demonstrated that the model can
account for a wide range of findings in human
episodic memory paradigms including cued recall and
recognition [1]. In another line of research, we have
applied our models to a similarly large number of
animal learning paradigms including nonlinear
discrimination, habituation, fear conditioning, and
transitive inference [2,22,23]. Some representative
examples of these applications are presented below.

A biologically-based dual-process recognition
memory model
As applied to recognition memory, the CLS model
belongs to a long tradition of ‘dual-process’ theories
of recognition. The defining feature of dual-process
theories is the idea that one can recognize
a previously studied item as such based on
(2) recall of specific details from the study episode,
or (2) a non-specific sense of familiarity that tracks
the global match between the test item and stored
memory traces (for a review, see [21]).

We show that the hippocampal model can support
recall of specific studied details, and that, although
cortex cannot support recall of once-presented
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Fig. 2. lllustration of the sharpening of activation patterns over the
hidden layer in our cortical model, which we use as measure of
familiarity. (a) the hidden layer responding to a given input pattern
before sharpening, where the activations (more active =lighter color)
are relatively undifferentiated. (b) the hidden layer after Hebbian
learning and inhibitory competition produce sharpening, where a
subset of the units are strongly active and the remainder are inhibited.

stimuli, it is possible to extract a scalar familiarity
signal from a model of medial temporal lobe cortex
(MTLC) [1]. In this respect, our model resembles
other dual-process theories that have linked recall
to the hippocampus and familiarity to MTLC
(e.0.[20,14,12]). However, this resemblance is only
superficial. Whereas the other theories use simple,
verbally stated dichotomies to characterize the
difference between hippocampal and cortical
contributions (e.g. associative versus item memory),
the CLS model grounds its conception of hippocampal
and cortical contributions in terms of graded
architectural differences between these structures
(e.g. representations are more sparse in the
hippocampus). As a result, the CLS model’s
predictions frequently cut across the boundaries
proposed by other researchers (e.g. Aggleton and
Brown argue that cortex can support item recognition
on its own, but — as discussed below —the CLS model
predicts that item recognition will depend on the
hippocampus when non-studied lure items are
similar to studied items).

Given our earlier statement that cortex learnsin
small increments, how can it support familiarity
judgments after a single exposure to a stimulus?

We show that familiarity signals arise in the cortical
model via a ‘sharpening’ dynamic (Fig. 2), where the
contrast between the more active and the less active
neurons is increased over presentations of a given
input pattern (see also [33]). On the first presentation
of an item, the hidden neurons are not very well tuned
to the input pattern, producing a broad distribution of
relatively weak activations across the hidden layer.
However, the most active units will tune their
weights the most (via Hebbian learning), and will
therefore become more activated upon subsequent
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Fig. 3. The hippocampus model with a example pattern of activity (active units shown in white)
showing the relative levels of sparseness across the different layers. Input represents converging
cortical input into entorhinal cortex (superficial layers, EC_in), which project to the dentate gyrus (DG)
and areas CA3 and CAL CA1 projects back to the deep EC layers (EC_out), which then in principle
project back out to the cortex to drive behavior (although in the model we just monitor EC_out
directly). The cortical model shown in Fig. 2 represents cortical processing taking place in surrounding
cortical areas providing input to the hippocampus (e.g. the perirhinal cortex). In some simulations,
the cortical and hippocampal components are combined, in which case the cortical familiarity signal
is read off of EC_in, and in other cases we simulate the models separately to more carefully evaluate

their distinctive properties.

presentations of the item. Critically, these more active
neurons will produce greater inhibitory competition,
which depresses the activations of the rest of the more
weakly activated neurons. This dynamic is consistent
with neural recording data showing decreased
responding of some perirhinal neurons with repeated
presentation of stimuli (e.g. [34,35]). The evidence for
increased firing of other neurons is not as clear, but
this is not strictly required by the model — increased
inhibition could cancel out increased activations of
the ‘winners'.

The hippocampal model (Fig. 3) supports recall in
the following manner: when stimuli are presented
at study, the hippocampus develops relatively
non-overlapping (pattern-separated) representations
in region CA3 (pattern separation is strongly
facilitated by the very sparse dentate gyrus (DG)
inputs). Active units in CA3 are linked to one
another (again via Hebbian learning), and to a
re-representation of the input pattern in region CAL.
At test, presentation of a partial version of a studied
pattern leads to reconstruction of the complete
original CA3 representation (i.e. ‘pattern
completion’) and, through this, reconstruction of the
entire studied pattern on the output layer (and then
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to cortex) viaarea CAL. As reviewed in [1,2],
our hippocampal model closely resembles other
neural-network models of the hippocampus set
forth by [15,36,16—19] — there are differences but
the family resemblance between these models far
outweighs the differences. We apply the hippocampal
model to recognition by computing how well
retrieved information matches the recall cue.
Equipped with these basic mechanisms, we
summarize two representative applications of these
models to recognition memory that are described in
detail, along with many others, in [1].

Effects of lure similarity

We can use manipulations of lure similarity to
contrast the properties of the cortex and hippocampus
(Fig. 4a). For dissimilar stimuli (e.g. study the word
cat and test with cat and potato) both the cortical and
hippocampal systems should provide a memory signal
that clearly discriminates between studied words
(cat) and non-studied lures (potato). However, when
stimuli are highly similar (e.g. study cat and test with
cat and cats), the cortical familiarity signal will not
support good discrimination because the lures (cats)
will tend to activate the sharpened (familiar)
representations of the studied items (cat). By
contrast, hippocampal pattern separation (coupled
with its ability to recall the actual studied item,

if pattern separation fails) should enable it to still
distinguish between these similar items, providing
good recognition memory performance.

Interestingly, the model also predicts that cortex
will be able to discriminate well between studied
items and similar lures, if memory is tested using a
forced-choice (FC) paradigm instead of the standard
yes-no (Y/N) paradigm (Fig. 4b). In the FC test,
participants must choose between a studied item and
corresponding related lures (e.g. rat versus rats).
The model predicts that even though the cortical
representations overlap considerably, studied items
should reliably be slightly more familiar than
corresponding lures. In collaboration with
Andrew Mayes and Juliet Holdstock, we were able
to test these predictions on a patient (YR) who has
selective hippocampal damage [37]. YR exhibited
deficits relative to matched controls only in the
related lure Y/N condition, and not in unrelated lure
conditions [38] or related lure conditions with
FC testing. This is just as predicted by our model.

Interference and the list strength effect

As noted earlier, an important motivation for the
unique properties of the hippocampus is to avoid
interference from different memories. Nevertheless,
interference cannot be completely avoided, and,
paradoxically, our models suggest that in certain
recognition memory paradigms hippocampally-based
discrimination actually suffers more interference
than the cortically-based discrimination. Specifically,
we simulated a ‘list-strength’ paradigm, which
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Fig. 4. (a) Yes-No (Y/N) recognition performance in the hippocampal
and cortical models (Hippo, hippocampus, MTLC, medial temporal lobe
cortex) as a function of similarity between target and lure (proportion of
shared input features). As lures become more similar to studied items,
lures become increasingly familiar, and recognition performance in
MTLC decreases in a graded fashion. The hippocampal model is more
robust to the lure similarity manipulation because of its pattern-
separation abilities; lures have to be almost identical to studied items to
trigger appreciable (false) recall. (b) Forced-choice (FC) recognition
performance (percentage corrext) in the two models, as a function of
target-lure similarity. The cortical model shows good FC performance
even with similar lures. (c) The effect of list strength on recognition
accuracy in the two models. The cortical model exhibits no list-strength
effect: the strong interference condition is the same as the weak one.
The hippocampal model does exhibit a list-strength effect: the strong
interference condition is worse than the weak one.

measures the effect of strengthening some list items
on memory for other, non-strengthened list items.
For example, compare studying: apple bicycle versus
apple bicycle bicycle bicycle, with testing on: apple
robot. Does strengthening some list items (bicycle)
affect participants’ ability to discriminate between
other (non-strengthened) studied items (apple) and
non-studied lure items (robot)? We found that
increasing list strength impairs subjects’ ability

to discriminate between studied items and lures
based on hippocampal recall, but it does not

impair discrimination based on cortical

familiarity (see Fig. 4c).

How can we explain these results? The key is to
appreciate that recognition discrimination depends
on the difference in responding to studied and lure
items. We found that interference does in fact
degrade the cortical network’s responding to studied
items, but it degrades responding to lures as well.
Thus, the difference between studied items and
lures does not decrease, and overall recognition
is unharmed.

In contrast with the cortex, the response of the
hippocampus to lures is essentially zero because of
its strong pattern separation abilities. Nevertheless,
strengthening of interference items still degrades
the memory traces of other studied items. Thus,
the studied item recognition signal goes down in the
hippocampus, and is not compensated for by a similar
decrease in the signal for lure items. This resultsina
smaller difference between studied and lure items
and a list strength interference effect.
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Up to this point, nearly all experiments that have
looked for a list strength effect for recognition have
failed to find one (e.g. [39]). According to the model,
this finding can be explained in terms of subjects
relying on familiarity; conversely, it should be
possible to find a list strength effect using recognition
tests and measures that load more heavily on the
recall process. This prediction was confirmed in [40].

Pattern completion and contextual fear conditioning
inrats
The same models and principles described above have
been applied to a wide variety of animal learning
phenomena [2,22,23]. Here, we summarize one
application of the model that captures its general
principles particularly well, and has been tested with
both intact and hippocampally lesioned rats [22,41].
The key idea behind this model is that the
hippocampus can rapidly and automatically encode
aconjunctive representation of an environmental
context as a result of simply being exposed to the
environment, which provides the basis for the
hippocampal involvement in encoding episodic
memories in humans. By contrast, the cortex requires
more learning trials and specific task demands to
encode novel conjunctive representations. In rats,
we can use the fear conditioning paradigm to
demonstrate the existence of this conjunctive
representation by taking advantage of hippocampal
pattern completion triggered by a cue that was
reliably associated with the environmental context.
Specifically, the model was applied to the following
experimental paradigm (Fig. 5a). First, rats were
repeatedly pre-exposed by transporting them
in a distinctive black ice bucket to a distinct
environmental context (A). Thus, we expected this
bucket to become a reliable cue associated with the
pre-exposure environment. Then, we transported the
rats in the bucket into a different environment (C),
where they were immediately shocked and then
removed from the environment. The question is, did
they associate this shock with the actual environment
where they were shocked (C), or to the pre-exposure
environment (A), the memory of which could have
been cued by the bucket? In the model, we found that
the simulated bucket cue triggered hippocampal



pattern completion to the pre-exposure environment,
which was then associated with the shock (Fig. 5b).
In the rats, we tested for this effect by later putting
the rats (using a novel transport container) in

either the conditioning environment (C) or in the
pre-exposure environment A, and measuring
freezing. We found that rats pre-exposed to A
exhibited freezing in A, not C. We also ran a control
with rats pre-exposed to another environment B that
showed no freezing in either condition. Furthermore,
as predicted by the model, these results depend on an
intact hippocampus: hippocampal lesions selectively
eliminated the freezing of the A pre-exposure group
to environment A (Fig. 5¢).

Consistent with the complementary learning
systems framework, the cortex can nevertheless learn
to associate shock with a conditioning context, if it is
given repeated exposures to the environment in the
presence of the shock. We demonstrated thisin an
additional control experiment where sham and
hippocampally lesioned rats were shocked three
times over 6 min; there were no differences between
the lesioned and control group in freezing under this
condition [41]. Thus, the unique contribution of the
hippocampus is specifically with rapid and automatic
learning of conjunctive information, not simply with
any form of conjunctive learning (see [2] for many
other demonstrations of this point).

Conclusions
How well do we understand hippocampal and
neocortical contributions to memory? The
representative applications of the CLS model
described above, coupled with the much larger range
of applications described in [1,2], show that networks
based on CLS principles can be used to explain and
predict results in highly disparate learning and
memory domains. Because our models incorporate
many widely held views, this should be good news
for many researchers.

However, it is important to note that the
CLS model differs in subtle but important ways
from other prominent frameworks that specifically
contrast hippocampus and cortex. For example,
Aggleton and Brown [20] stipulate that medial
temporal cortex can only support item recognition,
whereas hippocampus is required for making
associative links between items (which is similar
in many respects to [12]). By contrast, we find such
a distinction too rigid to account for both animal
nonlinear discrimination learning data, and human
recognition memory data, as discussed in detail
in [1,2]. Gluck and Myers postulate that the
hippocampus can perform a form of pattern
separation called ‘predictive differentiation’,
whereas the cortex cannot [42]. The focus on pattern
separation is consonant with our own model, but
their model specifies that separation only occurs over
repeated trials in response to specific task demands,
as implemented via error-driven backpropagation
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Fig. 5. (a) Design of the conditioning experiment in rats. The black ice
bucket was used to transport rats into the pre-exposure environment
(A), and then served as a retrieval cue when rats were immediately
shocked in the conditioning environment (C). Testing in context Aor C
(with adifferent, cage or transport cue) determines which environment
was associated with shock. (b) Predictions from the model, showing
that rats pre-exposed to A should associate this environment with the
shock actually delivered in environment C. (c) Results from intact
(Sham) and hippocampally lesioned rats (Hipp.) confirm the
predictions of the model.

learning. By contrast, we think that this kind of
task-driven differentiation is more characteristic of
cortex, whereas the hippocampus can automatically
and rapidly form pattern separated representations.
Finally, Eichenbaum and Cohen postulate that the
hippocampus is specialized for flexible, relational
processing, in contrast with a cortex that relies

on rote, habit learning [14]. We find this
characterization appealing in some respects

(e.g. hippocampal pattern completion might produce
some kinds of ‘flexibility’ that the cortex lacks),

but it tends to suffer from imprecision. Furthermore,
we have recently found that detailed simulations of
the transitive inference paradigm in our model are
inconsistent with Eichenbaum'’s characterization

of hippocampal involvement in this task [23]. We
believe that the CLS model overcomes some of the
limitations of other models, and plan to continue to
expand the scope of data it can address.
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The pages of Trends in Cognitive Sciences provide a unique forum for debate for all cognitive scientists. Our Opinion section
features articles that present a personal viewpoint on a research topic, and the Letters page welcomes responses to any of

the articles in previous issues.

If you would like to respond to the issues raised in this month’s Trends in Cognitive Sciences or, alternatively,
if you think there are topics that should be featured in the Opinion section, please write to:

http://tics.trends.com

The Editor, Trends in Cognitive Sciences,

84 Theobald’s Road, London,
UK WC1X 8RR
e-mail: tics@current-trends.com



