Skip to main content
Log in

Abstract

We give an affirmative answer to the following question: Is any Borel subset of a Cantor set C a sum of a countable number of pairwise disjoint h-homogeneous subspaces that are closed in X? It follows that every Borel set \({X \subset {\bf R}^n}\) can be partitioned into countably many h-homogeneous subspaces that are G δ -sets in X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandrov P.S., Urysohn P.S.: Ueber nulldimensionale Punktmengen. Math. Ann. 98, 89–106 (1927)

    Article  Google Scholar 

  2. van Engelen, F.: Homogeneous Zero-Dimensional Absolute Borel Sets, CWI Tract, vol. 27. Centre for Mathematics and Computer Science, Amsterdam (1986)

  3. Keldysh L.: Sur la structure des ensembles mesurables B. Math. USSR-Sb 15(57), 7–98 (1944)

    Google Scholar 

  4. Lusin N.: Lecons sur les ensembles analytiques et leurs applications. Gauthier-Villars, Paris (1930)

    MATH  Google Scholar 

  5. Matveev M.V.: Basic homogeneity in the class of zero-dimensional spaces. Filomat 12(2), 1–20 (1998)

    Google Scholar 

  6. Medvedev, S.V.: On the structure of metric h-homogeneous spaces. In: General Topology. Mappings of Topological Spaces. Moscow State University, pp. 77–98, (in Russian) (1986)

  7. Medvedev S.V.: On properties of h-homogeneous spaces of first category. Topol. Appl. 157(18), 2819–2828 (2010)

    Article  MATH  Google Scholar 

  8. Motorov, D.B.: Zero-dimensional and linearly ordered bicompacta: properties of homogeneity type, Uspekhi Math. Nauk. 44:6 (1989), 159160 (in Russian); English tranlation in: Russ. Math. Surv. 44(6),19–191 (1989)

  9. Ostrovsky, A.: Maps of Borel sets. In: Proceedings of the Steklov Institute of Mathematics, 252, 225–247 (2006)

  10. Ostrovskii A.V.: On a question of L.V. Keldysh concerning the structure of Borel sets. Math. USSR-Sb 59, 317–337 (1988)

    Article  MathSciNet  Google Scholar 

  11. Ostrovsky A.: Borel sets as sums of canonical elements. Doklady Math. 75(2), 213–217 (2007)

    Article  MATH  Google Scholar 

  12. Steel J.: Analytic sets and Borel isomorphism. Fund. Math. 198(2), 83–88 (1980)

    MathSciNet  Google Scholar 

  13. Terada T.: Spaces whose all nonempty clopen subsets are homeomorphic. Yokohama Math. J. 40, 87–93 (1993)

    MathSciNet  MATH  Google Scholar 

  14. van Engelen, F., Miller, A.W., Steel, J.: Rigid Borel sets and better quasi-order theory. In: Logic and Combinatorics (Arcata, Calif., 1985), vol. 65 of Contemp. Math., pp. 199–222. Amer. Math. Soc., Providence, RI, (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Ostrovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovsky, A. σ-Homogeneity of Borel sets. Arch. Math. Logic 50, 661–664 (2011). https://doi.org/10.1007/s00153-011-0239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-011-0239-6

Keywords

Mathematics Subject Classification (2000)

Navigation