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Abstract

Given a pseudovariety C, it is proved that a residually-C superstable
group G has a finite series G0 E G1 · · · E Gn = G such that G0 is solvable
and each factor Gi+1/Gi is in C (0 ≤ i ≤ n−1). In particular a residually
finite superstable group is solvable-by-finite and if it is ω-stable then it is
nilpotent-by-finite. Given a finitely generated group G, we show that if
G is ω-stable and satisfies some residual properties (residual solvability,
residual finiteness,. . .), then G is finite.

1 Introduction

In this paper we are concerned with groups satisfying some residual properties
under model-theoretic assumptions as the ω-stability and the superstability.
There has been a considerable work in the study of residually finite groups and
more generally residually-C groups when C is a pseudovariety, but it seems that
there is not a lot of literature on residually-C groups under model-theoretic
considerations. We notice that it was shown in [3, Exercice 7, Chapter 5], that
a residually finite group of finite Morley rank is abelian-by-finite.

A subgroup H ≤ G is said equationally-definable if H is definable by a
finite collection of equations, that is, if there exist words w1(x), · · · , wn(x), with
parameters from G such that H =

⋂
1≤i≤n{g ∈ G | G |= wi(g) = 1}. Recall

that a class of groups C is called a pseudovariety if C is closed under finite
cartesian products, subgroups and quotients groups. We recall also that a group
G is said to be residually-C, if for any nontrivial element g ∈ G there exists a
homomorphism f : G → A ∈ C such that f(g) 6= 1. Our main result is as
follows.

Theorem 1.1 Let C be a pseudovariety and G a superstable residually-C group.
Then G has a finite series G0 E G1 · · · E Gn = G such that each Gi is
equationally-definable, G0 is solvable and each factor Gi+1/Gi is in C. If G is
ω-stable, then G0 is nilpotent; in addition if every ω-stable residually-C abelian
group is of bounded exponent, then G0 is of bounded exponent.

Corollary 1.2 A residually finite superstable group G is solvable-by-finite and
if it is ω-stable then it is nilpotent-by-finite and of bounded exponent.
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Proof
The class C of finite groups forms a pseudovariety and therefore by Theorem

1.1, G is solvable-by-finite. If G is ω-stable, by Theorem 1.1, it is sufficient to
show that every ω-stable residually finite abelian group is of bounded exponent.
But this is a consequence of Macintyre’s Theorem on the structure of abelian
ω-stable groups, as there is no finite nontrivial divisible group. �

It should be noted that residual finiteness is not conserved by elementary
equivalence. For instance the free group F2 of rank 2 is residually finite, whereas
any nonprincipal ultrapower of it is not, as it contains Q which is not residually
finite.

A. Baudisch has shown that a superstable group G has definable subgroups
1 = H0 E H1 E · · · E Hr E G such that Hi+1/Hi is infinite and either abelian
or simple modulo a finite center and Hr is of finite index in G [1, Theorem 1.1].
The referee of the present paper has pointed out that the first part of Theorem
1.1, when C does not contain an infinite simple group, and the first part of
Corollary 1.2 follow from Lemma 2.2 (2) (below) and the result of Baudisch [1,
Theorem 1.1], as follows. By [1, Corollary 1.9], G contains a unique maximal
normal solvable subgroup rad(G) (which is equationally-definable). Hence, by
Lemma 2.2(2), G/rad(G) = G∗ is a residually-C group. Assume G∗ infinite. By
[1, Theorem 1.1], G∗ contains an infinite definable subnormal subgroup H that
is either abelian or simple modulo a finite center. A subnormal abelian definable
subgroup would be contained in a definable normal nilpotent subgroup. This is
impossible. In the other case G∗ is not a residually-C group. Hence G∗ is finite
as desired.

The proof of Theorem 1.1 is based on the use of different notions of compo-
nents related to C (see Definition 2.1 and 2.6), the use of equationally-definable
subgroups, and induction on the U -rank. It is also based on the use of the in-
decomposability theorem for superstable groups, and for that purpose we prove
Proposition 2.4 which states that a superstable group has either a big normal
α-connected definable subgroup or a big normal nilpotent definable subgroup.

We will be interested in finitely generated ω-stable groups. This arises nat-
urally in the context of Cherlin-Zil’ber Conjecture. In that context, one can
ask about the existence of an infinite finitely generated group of finite Morley
rank. This is motivated by the fact that the existence of such a group implies
the existence of a simple group of finite Morley rank which can not be algebraic
over an algebraically closed field and gives a counterexample to the Cherlin-
Zil’ber Conjecture (Proposition 3.2). But one must ask first about the existence
of an infinite finitely generated ω-stable group. By Corollary 1.2, we may con-
clude that a finitely generated residually finite ω-stable group is finite. In the
superstable case we have the following characterization.

Corollary 1.3 A finitely generated residually finite group is superstable if and
only if it is abelian-by-finite.

Proof
A finitely generated solvable non(abelian-by-finite) group interprets arith-

metic and thus it can not be stable. Therefore a superstable finitely generated
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residually finite group is abelian-by-finite. For the other direction, the conclu-
sion follows from [4]. �

It is a theorem of Mal’cev [9, Theorem 4.2] that a finitely generated linear
group is residually finite. Combining this theorem with the above results, we
may conclude that a finitely generated linear superstable group is abelian-by-
finite and if it is ω-stable then it is finite.

The paper is organized as follows. In the next section we prove some propo-
sitions and lemmas needed in the sequel and we end by the proof of Theorem
1.1. The goal of Section 3 is to give some observations and remarks in the
finitely generated case.

2 Preliminaries and proofs

All our notations are standard and concerning conventions about U -rank and
superstability we refer the reader to [2]. Before proving Theorem 1.1, we need
some preparatory lemmas and definitions.

Definition 2.1 Let G be a group and let C be a class of groups.
(1) We define the C-component of G, denoted GC , to be the intersection of

all normal equationally-definable subgroups K of G for which G/K ∈ C.
(2) We say that G is C-connected if G = GC .

If G is ω-stable, then by the DCC, GC is equationally-definable. It is known,
when C is closed by subgroups and finite directs products, that G/A,G/B ∈ C
imply (G/A ∩B) ∈ C. This last property will be used freely without explicit
reference. It follows that if C is a pseudovariety, then G/GC ∈ C.

It is more natural to take in the definition of the C-component, definable
subgroups instead of equationally-definable subgroups. But for our purpose, we
want to conserve the property of being residually-C by quotients and thus we
need the equational definability, as shown by the property (2) of the following
lemma.

Lemma 2.2 Let C be a pseudovariety and G a group.
(1) GC is normal in G. If G is stable and if K is an equationally-definable

subgroup which contains a normal subgroup L such that G/L ∈ C, then GC ≤ K.
(2) If G is residually-C, then G/K is residually-C for any equationally-

definable normal subgroup K of G.
(3) Suppose that G is C-connected and ω-stable. If H is an equationally-

definable normal subgroup of G, then G/H is C-connected.

Proof
(1) Clearly GC is normal. Let K be an equationally-definable subgroup of

G containing a normal subgroup L such that G/L ∈ C. Then M =
⋂
g∈GK

g

is normal, and equationally-definable by the Baldwin-Saxl lemma. Moreover,
M contains also L. Therefore G/M ∈ C. Since M ≤ K and GC ≤ M we get
GC ≤ K as desired.
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(2) Let K be definable by
∧

1≤i≤n wi(āi, x) = 1. Let us denote π : G→ G/K
the canonical morphism.

Let g ∈ G such that π(g) 6= 1; that is g 6∈ K. Then there is some 1 ≤
p ≤ n such that wp(āp, g) 6= 1. Since G is residually-C, there exists a surjective
morphism φ : G→ L, where L ∈ C, such that φ(wp(āp, g)) 6= 1.

We claim that φ(g) 6∈ φ(K). If φ(g) ∈ φ(K), then there exists an ele-
ment g′ ∈ K such that φ(g) = φ(g′). Since g′ ∈ K we get φ(wp(āp, g′)) =
wp(φ(āp), φ(g′)) = 1 and thus φ(wp(āp, g)) = 1; a contradiction.

Since φ is surjective, φ(K) is a normal subgroup of L. Let π′ : L → H =
L/φ(K) be the canonical morphism. We define f : G/K → H by f(π(x)) =
π′(φ(x)). Then f is a morphism. Now if f(π(g)) = 1, then π′(φ(g)) = 1 and
thus φ(g) ∈ φ(K); a contradiction. Thus G/K is residually-C as desired.

(3) Let us denote by π1 : G→ G/H and by π2 : G/H →M = (G/H)/(G/H)C

the canonical morphisms. Since H is equationally-definable in G and (G/H)C is
equationally-definable in (G/H) it follows that L = ker(π2◦π1) is an equationally-
definable normal subgroup of G. Since G/L ∼= M and M ∈ C we find G/L ∈ C
and since G is C-connected we get G = L and thus M = 1. �

We need the next lemma which is a refinement of some statements in [8].
Let G be a subgroup of a stable group G and let H ≤ G. We say that H is
relatively equationally-definable if there is an equationally-definable subgroup
N ≤ G, with parameters only from G, such that H = G ∩ N . Notice that
in that case, H is equationally-definable in G. We notice also that if H is
relatively equationally-definable, then H is relatively definable in the sense of
[8, Definition 1.0.2].

Lemma 2.3 A subnormal solvable subgroup of a substable group lies in a nor-
mal solvable and relatively equationally-definable subgroup.

Proof
Let G be a substable group in the ambient group G. We first show the lemma

for solvable normal subgroups. Let H be a normal solvable subgroup of G. The
proof is by induction on the derived length of H. If H has derived length 0, the
result is clear.

Suppose H is of derived length n + 1. Then H(n) is abelian and normal.
Let K be the center of CG(H(n)) in G. Then H(n) ≤ K E G. Since K can be
written as an intersection of centralizers of elements of G, K is the intersection
with G of an equationally-definable (with parameters only from G) subgroup K̄
of G.

Let N = ∩g∈GK̄g and B = NG(N). Then, as in [8, Lemma 1.1.6], G ≤ B,
K ≤ N , the group G1 = G/K is substable and it is a subgroup of the stable
group G1 = B/N .

Let f : B → B/N be the canonical morphism. Then f(H) is a normal and
solvable subgroup of derived length n inG1. Thus, by induction, f(H) ≤ K1 and
K1 is a solvable normal and relatively equationally-definable subgroup of G1.
Let K̄1 be an equationally-definable (with parameters only from G1) subgroup
of G1 such that G1 ∩ K̄1 = K1. Then H ≤ f−1(K1) = f−1(K̄1) ∩G. Now since
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K̄1 (resp. N) is equationally-definable with parameters only from G1 (resp.
from G), f−1(K̄1) is equationally-definable (with parameters only from G) and
the result follows.

Let H be a subnormal solvable subgroup of G. The proof is, as above, by
induction on the derived length of H. If H is of derived length 0, then the
result is clear. Suppose H is of derived length n+ 1. Then H(n) is abelian and
subnormal. By [8, Corollary 1.2.12], H(n) lies in a normal nilpotent subgroup;
which by the first case above, lies in a normal solvable relatively equationally-
definable subgroup K. We do the same construction as above: f : B → B/N ,
f(H) is solvable and of derived length n, and f−1(K1) is a solvable and normal
relatively equationally-definable subgroup containing H. �

Proposition 2.4 Let G be a superstable group of U -rank ωαn+β where α and
β are ordinals, n ∈ N∗ and β < ωα. Then either the α-connected component
Γ of G contains a definable α-connected normal subgroup K of G such that
U(K) ≥ ωα, or Γ lies in a normal definable nilpotent subgroup K such that
U(K) ≥ ωαn.

Proof
Write Γ =

∧
i∈λ φi(G) where each φi(x) is a formula defining a subgroup of

G. Let G ≺ G be an elementary saturated extension of G of cardinality greater
than max{λ+, |Th(G)|+}, and let Γ1 =

∧
i∈λ φi(G).

We have U(Γ1) = ωαn, Γ1 is
∧

-definable and α-connected and thus α-
indecomposable. We notice also that Γ1 is a normal subgroup of G.

Suppose first that Γ1 is not nilpotent. By the Indecomposability Theorem
[2, V, Theorem 3.1] (or by [2, VI.2., Proposition 2.4]), for any s ∈ N, Γs1 is∧

-definable and α-connected. Since Γs1 is nontrivial, U(Γs1) = ωαp for some
p ≤ n. Therefore the descending central series stabilizes and thus there exists
m ∈ N such that Γm1 = [Γm1 ,Γ1].

Let us show that Γm1 is definable by using only parameters from G. By [2,
VI, Lemma 2.3], for every nontrivial g ∈ Γm1 , g−1gΓ1 is α-indecomposable. By
the Indecomposability Theorem [2, V, Theorem 3.1], there exist q ∈ N∗ and
nontrivial elements g1, . . . , gq in Γm1 such that [Γm1 ,Γ1] = g−1

1 gΓ1
1 · · · g−1

q gΓ1
q .

Since Γm1 = [Γm1 ,Γ1] and, since Γm1 is normal in G, Γm1 is clearly defined by
the formula ∃y1 · · · ∃ym(x = g−1

1 gy11 · · · g−1
q g

yq
q ). Now since Γ1 is definable using

only parameters from G and since Γm1 is a characteristic subgroup of Γ1 we find
that Γm1 is fixed setwise by any automorphism of G which fixes G pointwise.
Therefore Γm1 is definable using only parameters from G (see for instance [6,
Proposition 4.3. 25]). Thus by taking H = φ(G), where φ is formula defining
Γm1 by using only parameters from G, we find U(H) ≥ ωα.

We conclude that G has a definable normal subgroup K which is α-connected
and U(K) ≥ ωα.

Suppose now that Γ1 is nilpotent. Then, by [8, Theorem 1.1.10], Γ1 ≤ K,
where K is a definable nilpotent normal subgroup of G.

Since G is λ-saturated we find that G |= ∀x(
∧

1≤i≤n φi(x) ⇒ φ(x)), where
φ is a formula defining K. We also have U(K) ≥ U(Γ1) = ωαn. Therefore, by
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elementary equivalence and since U(φi(G)) ≥ U(Γ), G has a definable nilpotent
normal subgroup with U -rank greater than ωαn. �

Proposition 2.5 Let C be a pseudovariety and G a superstable residually-C
group of U -rank ωαn + β where α and β are ordinals, n ∈ N∗ and β < ωα. If
K is a definable α-connected normal subgroup of G, then G/CG(K) ∈ C.

Proof
Let (Hi)i∈λ be the list of all normal subgroups of G such that G/Hi ∈ C.

Since G is residually-C, we obtain
⋂
iHi = 1. Now since Hi is normal in G we

have [K,Hi] ≤ Hi. Therefore
⋂
i[K,Hi] = 1.

Since K is α-connected, for every h ∈ Hi, h−1hK is α-indecomposable and
definable. By the Indecomposability Theorem [2, V, Theorem 3.1], [K,Hi] is a
definable and connected subgroup of G and

[K,Hi] = h−1
i,1h

K
i,2 · · ·h−1

i,mi
hKi,mi

, for some mi ≤ 2n and hi,j ∈ Hi for j = 1,mi.

Let

φ(x, y1, y2, · · · , y2n) := ∃z1 · · · ∃z2n(x = y−1
1 yz11 · · · y

−1
2n y

z2n
2n ∧

∧
1≤i≤2n

ψ(zi)),

hi = (hi,1, · · · , hi,mi
, 1, · · · , 1),

where ψ(x) is a formula defining K. Then {[K,Hi] : i ∈ λ} = {φ(G, hi) : i ∈ λ}
is uniformly definable by the formula φ above. Therefore, by the Baldwin-Saxl
lemma, we get

1 =
⋂
i∈λ

[K,Hi] = [K,H1] ∩ · · · ∩ [K,Hp].

Therefore [H1∩· · ·∩Hp,K] = 1 and thus L = H1∩· · ·∩Hp ≤ CG(K). Since
G/L ∈ C, we obtain G/CG(K) ∈ C. �

Definition 2.6 Let G be a group and C be a pseudovariety.
(1) If G is ω-stable, by the DCC on definable subgroups, we find that G has

a finite series G0 E G1 · · · E Gn = G such that Gn−1 = GC and Gi = Gi+1
C

and G0 = G0
C . We call G0 the smallest C-component of G and we denote it

CG. Notice that CG is C-connected and that Gi+1/Gi ∈ C.
(2) Suppose that G is stable. We define the C-centralizer component of G,

denoted GC , to be the intersection of all normal subgroups K which are definable
by intersection of centralizers and such that G/K ∈ C. Since G is stable, GC is
definable and is an intersection of centralizers. Notice also that G/GC ∈ C. By
the DCC on centralizers, we find thatG has a finite seriesG0 E G1 · · · E Gn = G
such that Gn−1 = GC and Gi = Gi+1C and G0 = G0C . We call G0 the smallest
C-centralizer component of G and we denote it CG. Notice that Gi+1/Gi ∈ C.
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Proof of Theorem 1.1
We treat first the ω-stable case. If CG is nilpotent, then G satisfies the

conclusion of the theorem. Thus we may show the theorem for C-connected
groups.

Let G be a C-connected group of minimal Lascar rank for which the theorem
does not hold. Let U(G) = ωαn + β, where n ∈ N∗, α, β are ordinals and
β < ωα. Let K be the α-connected component of G. Since G is ω-stable, K is
definable. Therefore, by Proposition 2.5, G/CG(K) ∈ C.

Since G is C-connected, we find CG(K) = G. Therefore K ≤ Z(G) and
thus ωαn = U(K) ≤ U(Z(G)). Thus U(G/Z(G)) < U(G). By Lemma 2.2 (2),
G/Z(G) is residually-C and, by Lemma 2.2 (3), G/Z(G) is C-connected. By
the minimality of the rank of G, G/Z(G) is nilpotent. It follows that G is also
nilpotent; a final contradiction.

If every ω-stable residually-C abelian group is of bounded exponent, then
the conclusion for the bounded exponent follows as above, by induction on the
rank and by seeing that Z(G) is of bounded exponent.

We treat the superstable case. Let G be a superstable residually-C group of
minimal Lascar rank for which the theorem does not hold. Let U(G) = ωαn+β,
where n ∈ N∗, α, β are ordinals and β < ωα.

Suppose that the theorem holds for the smallest C-centralizer connected
component CG of G. Since CG = G0 E G1 · · · E Gn = G, Gi+1/Gi ∈ C,
and any equationally-definable subgroup of CG is also an equationally-definable
subgroup of G, we may conclude that the theorem holds also for G. Therefore
U(CG) = U(G) and hence we may assume without loss of generality that G =
CG; that is if K is a normal subgroup which is an intersection of centralizers
such that G/K ∈ C, then K = G.

By Proposition 2.4, either G has a normal definable α-connected subgroup
K such that U(K) ≥ ωα or G has a normal nilpotent subgroup K such that
U(K) ≥ ωαn.

We treat the first case; that is G has a normal definable α-connected sub-
group K such that U(K) ≥ ωα. Then, by Proposition 2.5, G/CG(K) ∈ C. Since
CG(K) is an intersection of centralizers, and by our assumption we find that
G = CG(K) and thus we obtain K ≤ Z(G).

Therefore K ≤ Z(G) and thus ωα ≤ U(K) ≤ U(Z(G)). Thus U(G/Z(G)) <
U(G). By Lemma 2.2 (2), G/Z(G) is residually-C. By the minimality of the
rank of G, G/Z(G) satisfies the conclusion of the theorem and so does G; a
contradiction.

Now we suppose that G has a normal nilpotent subgroup K such that
U(K) ≥ ωαn. By Lemma 2.3, K lies in a solvable equationally-definable sub-
group L. Therefore U(L) ≥ ωα and thus U(G/L) < U(G). By Lemma 2.2
(2), G/L is residually-C. By the minimality of the rank of G, G/L satisfies the
conclusion of the theorem and so does G; a contradiction. �
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3 The finitely generated case and final remarks

We are interested in finitely generated ω-stable groups. As noticed in the intro-
duction this is motivated by the Cherlin-Zil’ber conjecture and by the possible
existence of an infinite finitely generated ω-stable group.

In several situations, when one works with ranks, one realizes that the propo-
sitions which one wants to show depend only on certain properties of the classes
of groups considered. For that reason and to avoid repetitions we introduce
the following definitions. Let C be a class of groups. We say that C is closed
under definability (abbreviated as CD-class) if whenever G is in C and K is a
normal definable subgroup of G, K and G/K are in C. For instance, the fol-
lowing classes are a CD-classes: any variety of groups, solvable groups, finite
groups, pseudofinite groups, ω-stable groups, groups of finite Morley rank, affine
algebraic groups.

We say that C is closed under definability inversely (abbreviated as CDI-
class) if whenever G is a group having a normal definable subgroup K such that
K and G/K are in C, then G is in C. For instance, the class of solvable groups
and the class of finite groups are CDI-classes.

Let (C1, C2) be a pair of classes of groups. We say that (C1, C2) is a good pair
of classes of groups if the following conditions are satisfied:

(i) C2 is a CD-class and a CDI-class,
(ii) if G ∈ C1 and K is a normal definable subgroup of G, then G/K ∈ C1,
(iii) if G ∈ C1 and K is a normal definable subgroup of G of finite index,

then K ∈ C1,
(iv) if G ∈ C1 and K is a normal definable subgroup of G such that G/K ∈

C2, then K ∈ C1,
(v) if G ∈ C1 and G/Z(G) ∈ C2, where Z(G) is finite, then G ∈ C2.
For instance, if C1 is a CD-class and C2 is a CD-class and a CDI-class satis-

fying (v), then (C1, C2) is a good pair of classes of groups.

Theorem 3.1 Let (C1, C2) be a good pair of classes of groups. If C1\C2 contains
an infinite superstable group (resp. ω-stable, resp. of finite MR), then C1 \ C2
contains also an infinite superstable (resp. ω-stable, resp. of finite MR) group
which is either C2-by-finite or simple or nilpotent-by-finite (resp. abelian-by-
finite).

Proof
We shall treat first the superstable case. Let G ∈ C1 \ C2 be infinite of

minimal Lascar rank. Let U(G) = ωαn+β, where n ∈ N∗ and α, β are ordinals
with β < ωα.

Suppose that G has a normal definable subgroup K satisfying U(K) ≥ ωα

and of infinite index. By our supposition, U(K) < U(G) and also U(G/K) <
U(G). By (ii), G/K ∈ C1. Since G/K is infinite, by minimality of the rank of
G we get G/K ∈ C2 and therefore, by (iv), K ∈ C1. Since U(K) < U(G) we get
K ∈ C2. Since C2 is a CDI-classe we get G ∈ C2; a contradiction.
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Thus any definable normal subgroup K of G is either of finite index or
satisfies U(K) < ωα. In particular β = 0 and U(G) = ωαn.

By Proposition 2.4, either G has a normal definable α-connected subgroup
H such that U(H) ≥ ωα or G has a normal nilpotent subgroup K such that
U(K) ≥ ωαn.

If G has a definable α-connected normal subgroup H such that U(H) ≥ ωα,
then H has a finite index in G. By (iii), H ∈ C1. If H ∈ C2, then G is C2-by-
finite and we are done. Otherwise H ∈ C1 \ C2. In that case, we replace G by
H and thus we may assume that G is α-connected. Therefore, every definable
normal proper subgroup K of G satisfies U(K) < ωα. If U(Z(G)) ≥ ωα, then
G is abelian and we are done. If is not the case, by [2, Proposition 6], G/Z(G)
is simple and it is clearly infinite.

Clearly G/Z(G) ∈ C1. Suppose that G/Z(G) ∈ C2. By (iv), Z(G) ∈ C1.
If Z(G) is infinite, then since U(Z(G)) < U(G) we get Z(G) ∈ C2. Therefore

G ∈ C2, a contradiction.
If Z(G) is finite, then by (v), we find G ∈ C2 which is also a contradiction.
Therefore G/Z(G) ∈ C1 \ C2 and thus C1 \ C2 contains an infinite simple

group.
If G has a normal nilpotent subgroup K such that U(K) ≥ ωαn, then K

has a finite index and thus G is nilpotent-by-finite.
This ends the proof in the superstable case.
In the ω-stable case, by the DCC we may assume G connected. As in the

previous case, G is either abelian or G/Z(G) is infinite simple. �

Proposition 3.2 If there exists an infinite finitely generated ω-stable (resp. of
finite MR) group, then there exists an infinite simple finitely generated ω-stable
(resp. of finite MR) group (which is not linear, and in particular is not algebraic
over an algebraically closed field).

Proof
Let C1 be the class of finitely generated groups and let C2 be the class of

finite groups. Then it is easily checked that (C1, C2) is a good pair of classes of
groups. Using Macintyre’s Theorem on the structure of ω-stable abelian groups
and by Theorem 3.1, there exists an infinite simple ω-stable (resp. of finite MR)
finitely generated group G. Now if G is linear, then G is residually finite and
thus finite as it is simple. �

The previous proposition shows in particular that if the Cherlin-Zil’ber Con-
jecture is true, then every finitely generated group of finite Morley rank is finite.
This in particular suggests the following problem.

Question 1. Is there an infinite finitely generated group of finite Morley rank
?

We believe that every finitely generated ω-stable group is finite. What can
be said about finitely generated groups of small Morley rank ? By [3, Corollary
6.6, Theorem 9.19] a group of finite Morley rank ≤ 2 is solvable-by-finite. The
following proposition shows that in that case such groups are finite.
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Proposition 3.3 A finitely generated solvable-by-finite or residually-solvable ω-
stable group is finite.

Proof
By Theorem 1.1, a residually-solvable ω-stable group is solvable and thus

we may show the proposition for solvable-by-finite groups. Let C1 be the class
of finitely generated solvable-by-finite groups and let C2 be the class of finite
groups. Then it is easily checked that (C1, C2) is a good pair of classes of groups.
By Theorem 3.1, if C1 \ C2 contains an infinite ω-stable group, then C1 \ C2
contains an infinite abelian-by-finite or simple ω-stable group G. Since G is
finitely generated, by Macintyre’s Theorem on the structure of abelian ω-stable
groups, the first case is impossible. The second case is clearly impossible. �

We notice that the above proposition can also be deduced from that fact
that an infinite finitely generated solvable-by-finite ω-stable group G interprets
arithmetic and thus it must be abelian-by-finite (and we conclude by Macintyre’s
Theorem on the structure of abelian ω-stable groups).

Proposition 3.4 If there exists a finitely generated (resp. finitely presented)
group of Morley rank 3, then there exists a finitely generated (resp. finitely
presented) simple bad group of Morley rank 3.

Proof
Let G be a finitely generated group of Morley rank 3. We may assume

G connected. Suppose that there exists an infinite normal definable subgroup
K of G. Then G/K is of rank ≤ 2. Therefore G/K is nilpotent and finitely
generated, and thus finite by Proposition 3.3. Since K is of finite index in G,
K is finitely generated and thus, since it is of rank ≤ 2, it is finite. Therefore
G is finite, a contradiction. Therefore every definable normal subgroup of G is
finite and thus M = G/Z(G) is a simple finitely generated group of rank 3. By
[3, Lemma 13.8] M is a simple bad group or isomorphic to PSL2(K) for some
algebraically closed field K. But it is not difficult to see that PSL2(K) is never
finitely generated and therefore M is a simple bad group. Now if G is finitely
presented, then M is finitely presented since Z(G) is finite. �

We give another application of Theorem 3.1.

Proposition 3.5 A superstable pseudofinite group is solvable-by-finite.

Proof
By taking C1 to be the class of pseudofinite groups and by C2 to be the class

of solvable-by-finite groups, it is easily checked that (C1, C2) is a good pair of
classes of groups. By Theorem 3.1, if C1 \ C2 contains an infinite superstable
group, then C1 \ C2 contains an infinite simple group G. So there exists an
infinite simple pseudofinite superstable group G. By Wilson’s Theorem [10],
G is elementary equivalent to a Chevalley group over a pseudofinite field. But
such a group is not stable by [5, Fact 2.2]. �

The precedent proposition can also be deduced from the result of Baudish
previously cited [1, Theorem 1.1] and by using Wilson’s Theorem [10]. The

10



above result is a special case of a more general result by Macpherson and Tent
which states that a pseudofinite stable group is solvable-by-finite [5]. Notice that
Khelif has shown that any pseudofinite group of finite Morley rank is abelian-
by-finite. Notice also that nilpotent-by-finite pseudofinite ω-stable groups which
are not abelian-by-finite exist and some examples are known to Sabbagh and
Zilb’er and there is an example in [5] (see the discussion of this in [5]). In fact
in the ω-stable case we observe the following.

Proposition 3.6 An ω-stable pseudofinite group is nilpotent-by-abelian-by-finite.

Proof
The connected component ofG is solvable and therefore nilpotent-by-abelian,

by [7] (or see [3], p. 171). �

Notice that it is known that a finitely generated pseudofinite solvable-by-
finite group is finite. By the above mentioned result of Macpherson and Tent,
we conclude that a stable finitely generated pseudofinite group is finite.

The present paper leaves the following question open.
Question 2. What can be said about finitely generated residually finite stable
groups ?

An announced recent result of Z. Sela claims that the free group of rank 2
is stable. Therefore one can hope to get, certainly under additional hypothesis,
an alternative which look likes the Tits alternative for finitely generated linear
groups.
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Université Claude Bernard Lyon-1,
Bâtiment Braconnier, 21 Avenue Claude Bernard,
69622 Villeurbanne Cedex, France.
ould@math.univ-lyon1.fr

12


