
Journal of Near Eastern Studies, volume 80, number 2, October 2021. © 2021 The University of Chicago. All rights reserved. Published by  
The University of Chicago Press. https://doi.org/10.1086/715767

Journal of 
Near Eastern Studies

291

Introduction

An inquiry into numbers should start with what num-
bers are, and here the opening quotation from the 
philosopher and mathematician Bertrand Russell is 
appropriate. He defined a number not as the quan-
tity of a set of objects, but rather as quantity shared 
by sets of objects. From a cognitive standpoint, the 
apprehension of a shared property is abstraction, and 
the conceptual products or concepts that are formed 
are “abstract.” Abstraction forms “abstract” concepts 
by identifying properties common to sets of objects, 
inducting from particulars, and applying inductive 
insights to new domains; extracting content from its 
original circumstances to remove their influence on 
its meaning; combining parts to form wholes, often 
in such a way that sums are greater than their con-
stitutive parts; and reinterpreting processes or rela-
tions as permanent entities in their own right, making 

them available to act as inputs to other processes or 
relations.1

 As an ineffable concept of quantity shared between 
sets of objects, a number is easily visualized and ex-
pressed in material form,2 as for example by pointing 
to something that has the quantity in question or by 
displaying the requisite quantity of fingers. A material 
form like the fingers that represents by instantiating 
quantity then acts as a reference set for the set of enu-
merated objects. Visualizing numbers is not merely en-
abled by the use of material forms, it arguably depends 
on them, since language has little capacity to instanti-
ate quantity.3 Material instantiation not only occasions 

1 Dreyfus, “Advanced Mathematical Thinking Processes” (1991); 
Ferrari, “Abstraction in Mathematics” (2003); Gray and Tall, “Du-
ality, Ambiguity” (1994); Sfard and Linchevski, “Gains and Pitfalls” 
(1994).

2 Malafouris, “Grasping the Concept” (2010), 40.
3 Language has little instantiative capacity because syllabic quan-

tity is not what makes number-words numerically meaningful. An 
exception is found in Brazil, where Mundurucu lexical numbers in-
stantiate quantity through the number of syllables (Rooryck, et al., 
“Mundurucu Number Words” [2017]). These also denote objects 
whose quantity exemplifies the number in question, the indexical 
use of language more typical in emerging numbers. Mundurucu 
numbers count to about four, a range consistent with the biological 
endowment for appreciating quantity. The perceptible range of small 
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naming in language, it influences numerical properties, 
as for example, using the fingers influences numbers 
toward organization by tens. Instantiation also yields a  
contiguity between forms like fingers, tallies, tokens, and  
notations that has no counterpart in non-numerical 
language.4

 When does a concept of shared quantity, an “ab-
stract” concept of number, emerge from the percep-
tual experience of quantity? The so-called number 
sense enables us to appreciate quantities up to about 
three or four (“subitization”) and above that amount, 
appreciate the difference between larger and smaller 
quantities (“magnitude appreciation”), assuming the 
difference is above a threshold of noticeability.5 This 
perceptual system influences the way numbers emerge 
across languages and cultures as one, two, (perhaps) 
about three or four, and many, as typically expressed 
through gestural or linguistic reference to objects with 
the requisite quantity. Arguably, as soon as such ref-
erence sets become involved, a connection between 
sets is indicated. However, emergent numbers differ 
from the modern Western construct often assumed to 
typify what numbers are as concepts,6 acquiring prop-
erties of content, structure, and organization as they 
become elaborated.
 As a concept, a number is thus abstract from its in-
ception; it is also concrete in depending on material 
forms, both the physical objects that have quantity 
and the reference sets that share and represent quan-
tity and signal connections between sets.7 This depen-
dence on material form remains true even for highly 
elaborated numbers mediated by notations, like those 
of the Western numerical tradition,8 as notations have 
a material aspect that is often overlooked in empha-
sizing their symbolic qualities.9 In short, numbers do 
not start out “concrete” to become “abstract” at some 
later point in time, a historical notion and associated 
labels that are problematic, as will be discussed. How-
ever, the way in which numbers are conceptualized 

quantities, which is limited to about three or four, effectively pre-
cludes the use of syllabic instantiation to represent higher numbers.

4 Malafouris, How Things Shape the Mind (2013), 89–118 differ-
entiates the linguistic from the material sign; Overmann applies this 
distinction to numbers in Material Origin (2019), 19–24.

5 Piazza, “Neurocognitive Start-up Tools” (2010): 542; also see 
Dehaene, “Neural Basis” (2003).

6 Rotman, Mathematics as Sign (2000), 40.
7 Overmann, Material Origin (2019), 53–56, 219–21.
8 Schlimm, “Numbers through Numerals” (2018).
9 Overmann, “Constructing a Concept” (2018): 465.

does change, since they do not emerge in the form 
of the Western numbers familiar to most researchers. 
This conceptual change is the phenomenon we want 
to understand, in terms of both the process and mech-
anisms that cause change over time and the resultant 
differences in elaboration.
 As numbers are abstract from their inception and 
remain materially bound even at their most elaborated, 
new terms and concepts are needed to understand the 
phenomenon of conceptual change. This is particu-
larly true in Near Eastern studies, where for decades, 
the labels “abstract” and “concrete” have dominated 
how the archaic number systems of Mesopotamia have  
been understood, chiefly through the work of archaeol-
ogist Denise Schmandt-Besserat10 and psychologist Pe-
ter Damerow.11 In the decades since these works were 
produced, research in numerical cognition has grown 
considerably, yielding new insights into cognitive, lin-
guistic, and ethnographic aspects of numbers and nu-
meracy. And in the past ten years, new paradigms in 
cognitive archaeology have been used to examine the 
role of material forms in numerical cognition, particu-
larly in realizing and elaborating numerical concepts.12

 Schmandt-Besserat drew upon work by sociologist  
Lucian Lévy-Bruhl,13 whose cultural psychology catego-
rized societies as “primitive” or “civilized.” Perhaps  
because it was consistent with Lévy-Bruhl’s view of 
societal modes of thinking as progressively evolving, 
Schmandt-Besserat appropriated a quote from Bertrand  
Russell: 

It is only at a high stage of civilisation that we 
could take [the series of natural numbers] as our 
starting-point. It must have required many ages 
to discover that a brace of pheasants and a couple 

10 E.g., Schmandt-Besserat, “Use of Clay” (1974), “Archaic Re-
cording System” (1977), “Earliest Precursor” (1978), “From To-
kens to Tablets” (1981), “Emergence of Recording” (1982), How 
Writing Came About (1992), and Before Writing (1992).

11 E.g., Damerow, Abstraction and Representation (2010), 275– 
97; also see “Individual Development” (1988), “Number as a Second- 
Order Concept” (1996), “Prehistory and Cognitive Development” 
(1996), “Material Culture” (2007), and “Origins of Writing and 
Arithmetic” (2012).

12 Malafouris, “Grasping the Concept” (2010) and How Things 
Shape the Mind (2013), 106–16; Overmann, “Beyond Writing” 
(2016) and “Role of Materiality” (2016).

13 Schmandt-Besserat, “Emergence of Recording” (1982): 873, 
cited Lévy-Bruhl’s publication, Les Fonctions Mentales dans les Sociétés 
Inférieures (1912).
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of days were both instances of the number 2: the 
degree of abstraction involved is far from easy.14

However, where Russell perhaps observed the intan-
gibility of both numbers and time, Schmandt-Besserat  
used the quote to claim that Neolithic peoples were 
unable to recognize quantity shared between sets of 
physical (tangible) objects, including the small, geomet-
rically shaped clay objects known as “tokens” used as  
numerical counters during the Neolithic. To Schmandt- 
Besserat, tokens had no inherent numerical meaning or  
relation to one another beyond representing, in strict 
one-to-one fashion, whatever it was they counted.15 
This is unlikely to have been true, given the innate ca-
pacity to appreciate small quantities, which Meso-
potamian peoples shared,16 as well as the “bundling 
relations” between tokens,17 which imply the ability 
to count because quantities like six and ten exceed the 
range perceptible through the innate ability to appre-
ciate quantity.18

 The term “token” evoked the type–token distinction 
of the philosopher Charles Sanders Peirce.19 Peircean 
“tokens” are physical objects, like instances of the let-

14 Russell, Introduction to Mathematical Philosophy (1920), 3. 
Schmandt-Besserat used only the first portion of the second sen-
tence, eliding it as follows: “It . . . required many ages to discover 
that a brace of pheasants and a couple of days were both instances of 
the number 2” (Schmandt-Besserat, Before Writing Vol. 1 [1992], 
187 and How Writing Came About [1992], 111).

15 I.e., “one-to-one correspondence without a number system” 
(Schmandt-Besserat, Before Writing Vol. 1 [1992], 187).

16 The phylogenetic distribution of the number sense means that 
ancient peoples had the ability to appreciate quantity (Overmann, 
Material Origin [2019], 45–46). This biological endowment also 
influences numerical aspects of language, something detectable in 
Mesopotamian languages; see ibid., 112–30.

17 In bundling, some amount of tokens of one value were equiva-
lent to and could be exchanged for a single token of the next higher 
value; debundling reversed the operation. Tokens were unlikely 
to have been manipulated solely using bundling–debundling, as it 
would be easier to count them the way coins are counted today—not 
by exchanging values between quarters, dimes, and nickels, but by 
scooping up, for example, three quarters, two dimes, and a nickel 
as equivalent to a dollar. (This should not be interpreted as sug-
gesting that tokens had monetary value; they did not.) Bundling– 
debundling would also have involved substituting/simplifying (e.g., 
analogous to replacing groups of coins with dollars) and organizing 
tokens by numerical magnitude; both would have been a function of 
habits acquired with older technologies like fingers and tallies and a 
practical matter of making information more accessible and intelligi-
ble (Ibid., 137–38, 141, 181).

18 Overmann, Material Origin (2019), 176–77.
19 Peirce, “Prolegomena” (1906): 506.

ter “A” inked in various fonts, while a “type” is a con-
cept that encompasses all such relevant tokens, like the 
conceptual letter “A.” In Schmandt-Besserat’s view, to-
kens were used for accounting without any type, in this 
case a concept of number: “ . . . there are no tokens to 
express abstractly numbers such as ‘1’ or ‘10’. Instead, 
a particular counter was needed to account for each 
type of goods: Jars of oil were counted with ovoids, 
small measures of grain with cones, and large measures 
of grain with spheres.”20 Nor could these objects be re-
duced “to mere instantiations of a type, i.e. to tokens” 
in the Peircean sense,21 since, on Schmandt-Besserat’s 
interpretation, they were instead meaningful as repre-
sentations of specific commodities. Schmandt-Besserat 
hypothesized that the emergence of writing marked  
the conceptual leap from the concreteness of tokens to  
an abstract concept of number; this was manifest as writ-
ing quantity and commodity separately, where tokens 
had conjointly encoded both as differences of shape,  
size, and quantity.22

 Damerow similarly drew upon Russell’s work, fo-
cusing on the set-theoretical paradox that had led 
Russell to create his theory of logical types,23 a logi-
cal paradox in set membership that Damerow found 
to have implications for cognitive structures.24 Dame-
row saw token-based accounting as involving concrete 
numbers and the emergence of writing as enabling 
the development of abstract or “second-order” num-
bers,25 thereby differentiating “material means” from 
“conceptual structures”26 but ignoring the material-
ity of writing. He also anchored his use of the terms 

20 Schmandt-Besserat, Before Writing  vol. 1 (1992), 6. Schmandt- 
Besserat initially applied the terms “abstract” and “concrete” to writ-
ing, not tokens: “Hypotheses about the origin of writing generally 
postulate an evolution from the concrete to the abstract: an initial 
pictographic stage that in the course of time and perhaps because of 
the carelessness of scribes becomes increasingly schematic” (“Earliest 
Precursor” [1978]: 50). Neurological reasons why written charac-
ters lose depictiveness are discussed in Overmann, “Beyond Writing” 
(2016): 289–90 and Material Origin (2019), 187–94.

21 Schlaudt, “Type and Token” (2020): 633.
22 In “Grasping the Concept” (2010) and How Things Shape the 

Mind (2013), 106–16, Malafouris sees the separate representation 
of quantity and commodity in writing as bringing forth an abstract 
concept of number from a concrete one.

23 Russell, “Theory of Logical Types” (1910); Soames, Dawn of 
Analysis (2003), 150–57; also see discussion in Overmann, Material 
Origin (2019), 32–34.

24 Damerow, Abstraction and Representation (2010), 41–67.
25 Damerow, “Number as a Second-Order Concept” (1996): 

139–48.
26 Damerow, Abstraction and Representation (2010), 44.
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“abstract” and “concrete” in the work of psychologist 
Jean Piaget, known for applying his ideas about devel-
opment in children to entire societies. Piaget too had 
drawn on work by Lévy-Bruhl, so Damerow’s use of 
Piagetian theory had the unfortunate effect of rein-
forcing the labels’ evolutionary connotations and con-
comitant underestimation of “primitive” numeracy.27 
This has lingered as the impression that Mesopotamian 
numbers, particularly those associated with the Neo-
lithic tokens, were unusually concrete and rudimentary, 
an interpretation that is not supportable when these 
complex archaic numbers are compared to modern cul-
tural number systems, particularly those counting no 
higher than subitizable quantities like two or three.28

 Neither Schmandt-Besserat nor Damerow ever men-
tioned the fact (or its implications) that tokens and the 
first form of writing, the numerical impressions that re-
sembled and were often made with tokens, were nearly 
identical: as material forms with the same shapes, sizes, 
and quantities, they differed chiefly in that tokens 
were manipulable, while impressions were fixed. Proto- 
cuneiform numerical notations were highly similar as 
well, differing mainly in the addition of small pictures 
used to identify commodities. Beyond postulating that  
numerical impressions and proto-cuneiform notations 
marked a sudden conceptual leap to abstract numbers, 
neither scholar interrogated how or why this might 
have occurred. Indeed, given the continuity of form 
between the different numerical technologies and the  
added innovation of small pictures, perhaps they should  
have suspected instead that writing signaled the for-
mation of abstract concepts of commodities. In fact, 
object-specific counting appears to have been practiced 
long after writing emerged in the mid-to-late fourth 
millennium bc, since place value, which developed as 
the second millennium bc began, appears to have func-
tioned to “ease movement between one metrological 

27 Piaget, “Logique Génétique” (1928), 194, and Child’s Concep
tion (1952); also see criticisms in Chrisomalis, “Evaluating Ancient 
Numeracy” (2005) and Overmann, Material Origin (2019), 49–53.

28 Most restricted systems are located toward the ends of the 
ancient migrations that peopled the continents, a non-random geo-
graphic distribution that positions numerical realization and elabora-
tion as demographically informed and differentially timed by global 
migration (Overmann, Material Origin [2016], 98–102). For Aus-
tralian and Amazonian examples, see Bowern and Zentz, “Diversity 
in the Numeral Systems” (2012); Epps, “Growing a Numeral Sys-
tem” (2006).

system and another,”29 which implies counting speci-
fied by object type.
 Two lasting impressions were produced. First, the  
emergence of writing is widely believed to have marked 
or caused a sudden and dramatic change in the way 
numbers were conceptualized. Second, the Mesopota-
mian numbers associated with the Neolithic tokens are 
understood as concrete to an extent that has been thor-
oughly conflated with emerging numbers that count  
no higher than two or three. These views, now deeply 
entrenched, have stymied investigation into the con-
ceptualization process and how and why a conceptual 
product like numbers might change. As it stands, the 
situation is unfortunate, not least because the archae-
ological record of Mesopotamia has significant po-
tential to provide insight into ancient numeracy. Not 
only does it contain prehistory’s first unambiguous 
numbers, the numerical impressions and such tokens 
as accompany them, it also has the requisite duration 
and extent to support cognitive analyses and interpre-
tations, and generate insights with the potential to in-
fluence how we understand numbers and their origin 
and elaboration generally.
 Accordingly, it seems time to retire the labels “ab-
stract” and “concrete,” for they inaccurately charac-
terize what numbers are as concepts,30 incompletely 
describe the process, mechanisms, and states of concep-
tual change in numbers,31 and evoke outdated concepts 
of progressive cultural evolution.32 As argued here, they 
also grossly underestimate the cognitive implications 
of object-specific counting. To remedy this, an ethno-
graphic comparison to a contemporary number system 
with object-specific counting is offered.
 Discarding the labels does not entail discarding 
the research that generated them. On the contrary, 
the present analysis necessarily draws upon the care-
ful work of Damerow and his colleagues, especially 
Robert Englund and Hans Nissen,33 in analyzing the 

29 Robson, Mathematics in Ancient Iraq (2008), 16, 75–76.
30 Overmann, Material Origin (2019), 25–30.
31 Ibid., 207–27, and “Updating the ‘Abstract–Concrete’ Distinc-

tion” (2018): 13–15.
32 Damerow, “Prehistory and Cognitive Development” (1996); 

Lévy-Bruhl, Fonctions Mentales (1912) and L’âme Primitive (1927); 
Piaget, “Logique Génétique” (1928); Schmandt-Besserat, Before 
Writing Vol. 1 (1992).

33 E.g., Damerow, “Individual Development” (1988): 143; Dame-
row and Englund, ATU 2 (1987); Damerow, Englund, and Nissen,  
“Ersten Zahldarstellungen” (1988); Damerow and Meinzer, “Com-
putertomografische Untersuchung” (1995); Englund, ATU 5 
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numerical impressions and proto-cuneiform notations  
of the Uruk period. These statistical and archaeological 
analyses attest the numerical meaning of the archaic 
technologies and provide insight into characteristics 
like numerical extent and organization. They also at-
test the numerical meaning of tokens, at least those of 
the mid-fourth millennium bc associated with bullae, 
envelopes, and tablets, as originally discerned by Vivian  
L. Broman, A. Leo Oppenheim, and Pierre Amiet.34 
What is at issue, however, is how we might understand 
the number system that has been so carefully recovered,  
not as an emergent system but as a highly elaborated 
system whose object-specificity represents a strategy for 
dealing with the robust use of numbers in the absence 
of written notations.
 Essential to any renovation program are two compo-
nents. The first is describing the process and mechanisms 
associated with numerical realization and elaboration 
in such a way that the notion that numbers “become 
abstract” and “stop being concrete” at some point is 
replaced by a nuanced view of conceptual change in 
numbers, which after all was Damerow’s goal. The pro-
cess and mechanisms have been described as a matter 
of incorporating material forms whose properties act as 
proxies for numerical properties, a technological layering 
systematized by device properties that emerges reliably 
and predictably from the interaction of cognitive capaci-
ties, behaviors, and material forms.35 They are discussed 

(1994) and “Texts from the Late Uruk Period” (1998); Nissen, 
“Archaic Texts” (1986); Nissen, Damerow, and Englund, Archaic 
Bookkeeping (1993).

34 Broman, Jarmo Figurines (1958); Oppenheim, “On an Oper-
ational Device” (1959); Amiet, “Il y a 5000 Ans” (1966): 20–22. 
Small clay objects dated as early as the ninth and tenth millennia 
bc have been categorized as “tokens” (Schmandt-Besserat, Before 
Writing vol. 2 [1992]; the expanded dataset of Overmann, Mate
rial Origin [2019] includes tenth-millennium material from Moore 
and Tangye, “Stone and Other Artifacts” [2000]). However, before 
the mid-fourth millennium bc, no tokens are accompanied by the 
corresponding numerical impressions that might attest their numer-
ical meaning. While their shapes and sizes may be suggestive, form 
is not dispositive of purpose, and there are no reliable methods or 
criteria for diagnosing the social purpose of unaccompanied tokens 
in ambiguous find contexts; see criticisms in Englund, “Review: 
Denise Schmandt-Besserat, How Writing Came About” (1998); Fri-
berg, “Preliterate Counting” (1994); Lieberman, “Of Clay Pebbles” 
(1980); Michalowski, “Review: Tokenism” (1993); Oates, “Early 
Writing” (1993); Shendge, “Use of Seals” (1983); Zimansky, “Re-
view of Denise Schmandt-Besserat’s Before Writing” (1993).

35 Overmann, “Constructing a Concept” (2018): 468–77, Mate
rial Origin (2019), 207–27, and “Updating the ‘Abstract–Concrete’ 
Distinction” (2018): 13–15.

briefly in the concluding section, for the use of material 
forms like tokens for counting was a crucial difference 
between Mesopotamia and Polynesia.
 The second renovationist component is gaining in-
sight into what Mesopotamian numbers would have 
been like as they changed, ideally in such a way that 
the impression that they were unusually concrete and 
rudimentary in the Neolithic is dislodged. Toward this 
end, the focus here is on understanding the numbers 
used with tokens when writing first emerged: the early 
Uruk period when the numerical meaning of tokens 
becomes visible to modern eyes through their assem-
blages with numerical impressions of corresponding 
shapes, sizes, and quantities, and the proto-cuneiform 
numerical notations and labels that followed. For this 
purpose, I compare Mesopotamian numbers to those of  
Polynesia, whose cultural number system is geographi-
cally, temporally, culturally, linguistically, and historically 
distinct from that of Mesopotamia. The analysis capital-
izes on key characteristics of Polynesian numbers, par-
ticularly object-specific counting, polyvalence (the ability 
to assume different numerical values), and context- 
dependent value, to understand similar properties in 
Mesopotamian numbers.

An Ethnographic Comparison

On studying the traditional number systems of Poly-
nesia, someone familiar with the Neolithic tokens used 
for counting in Mesopotamia might well experience déjà 
vu. Take, for example, the number systems of Tonga, 
a Polynesian nation whose mid-Pacific landmass is an 
archipelago colonized some 3,000 years ago by settlers 
who spoke an Austronesian language (see Fig. 1).36 
The Tongan language has a general counting sequence 
used to count most things and several specialized se-
quences for counting items like sugarcane, fish, yams, 
and coconuts37—just like the Neolithic tokens and their  
direct successors, the numerical impressions and proto- 
cuneiform notations of the Uruk period, had a general 
system for counting most discrete objects and special-
ized systems for counting things like grain, fish, and dairy 
products.38 And, just like the archaic Mesopotamian  

36 Guérin, “Oceanic Subgroup” (2017); Rieth and Cochrane, 
“Chronology of Colonization” (2018).

37 Bender and Beller, “Counting in Tongan” (2007): 219–22.
38 Nissen, Damerow, and Englund, Archaic Bookkeeping (1993), 

28–29, Fig. 28.
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counting sequences did,39 the multiple Tongan count-
ing sequences followed specific patterns in their com-
position; shared a common term for the smallest unit, 
whose numerical value could change; used polyvalent 
terms with contextual numerical value; conjoined the rep-
resentation of quantity and commodity; and were relative 
scales of value (see Fig. 2 and discussion throughout).
 There is another reason for feeling déjà vu. Like the 
token-based accounting of the Neolithic,40 Polynesian 
numbers have been interpreted as concrete: “Distinct 
number systems for certain objects within the same 
language seem to reveal a lack of abstract thinking and  
are therefore often taken as cognitively deficient.”41 Such 
interpretations have employed a relatively straightfor-

39 Ibid.
40 See e.g., Schmandt-Besserat’s (1992) publications Before Writ

ing and How Writing Came About, and Damerow’s (1996) publica-
tions “Number as a Second-Order Concept” and “Prehistory and 
Cognitive Development.”

41 Beller and Bender, “Cognitive Advantages” (2005): 214.

ward distinction between “concrete” and “abstract”: 
numbers are concrete if they are “applied to particular 
objects, as peaches, pounds, [or] yards,” and they are 
abstract when they are not, as in the expression “two 
and three are five.”42 As thus narrowly defined,43 the 
distinction hinges on two things: whether or not num-
bers are conceived as objects or entities in their own right 
(the property of entitivity), rather than as properties  
of quantity or collections of objects, and whether  

42 Thomson, Practical Arithmetic (1846), 261.
43 The term abstract can also have four other meanings: the pos-

sible metaphysical status of numbers as intangible, invisible entities, 
the view of mathematical realism; fidelity in depiction, as in art, the 
sense in which Schmandt-Besserat first used the term (“Earliest Pre-
cursor” [1978]: 50); purpose, the knowledge for knowledge’s sake of 
Greek theoretical mathematics but not Babylonian applied mathe-
matics (Høyrup, In Measure, Number, and Weight [1994], 23–43); 
and purity, as in something that becomes distilled or rarified. See also 
the discussion in Overmann, “Updating the ‘Abstract–Concrete’ 
Distinction” (2018): 6–9.

Figure 1—Schematic Map of Polynesian Colonization. Polynesia is the region of the Pacific Ocean bounded by Hawai‘i, Rapa Nui 
(Easter Island), and Aotearoa (New Zealand). Tikopia, a Polynesian outlier, is culturally Polynesian but geographically located in Melanesia. 
Nukuoro, a Polynesian outlier in Micronesia, is not shown; it would lie slightly beyond the figure’s upper left side. Fiji, which is Melanesian, 
is linguistically related to the extent it is used to anchor the Polynesian language family in relational analyses. The islands, languages, and 
dialects mentioned in the text and shown in the figure reflect the historical evidence and the study’s focus on numerical elaboration in the 
central and peripheral portions of Polynesia. Date ranges were adapted from Rieth and Cochrane, “Chronology of Colonization” (2018), 
5–14, Table 7.1.
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numbers relate to each other or to the objects they 
count (the property of relatedness).
 In 2007, an analysis of the Tongan number systems 
reached an unexpected conclusion: the specialized count-
ing sequences, rather than being “older and less ef-
ficient than the general one,”44 were derived from it 
and, moreover, functioned as cognitively efficient tools 
for mental calculation. In 2020, a subsequent analysis 
of Polynesian numbers reconstructed the traditional 
counting method that both explained and unified the 
general and specialized sequences found throughout the  
region.45 Building upon this work, the analysis presented  
here compares and contrasts the counting sequences 
of Polynesia and Mesopotamia to see whether similar 
insights might be realized for the ancient numbers.
 The material is organized as follows: first, Polyne-
sian general and specialized counting sequences are 
described in terms of properties like polyvalence, 
context-dependent value, and relations; the method 
of counting that influenced these properties; and the 
implications for mental calculation. These insights are 
then used to examine archaic Mesopotamian numbers 
as represented by tokens, numerical impressions, proto- 
cuneiform notations, and cuneiform numbers, focus-
ing on proto-cuneiform notations as the technology 
providing the most detailed insight into Mesopota-
mian object-specific counting. The article concludes by  
examining the nature of number concepts and numeri-
cal thinking generally and the role of material forms in 
them, particularly in highly elaborated but unwritten 
number systems.
 Comparing ancient number systems to living ones 
has the potential to open new windows on extinct handi-
work. Certainly, while the dozen or so proto-cuneiform 
number systems have long been recognized as special-
ized and derived,46 the idea that they may have also  
represented mental faculty with abstract number con-
cepts is a new perspective on their cognitive significance,  
one that strongly counters their historical interpretation 
as particularly concrete and rudimentary. The converse 
is perhaps less intuitive, since the goal of comparing liv-
ing number systems to ancient ones is not to position 
the former as some kind of prehistoric relic, but rather 
to celebrate the pragmatic inven tiveness and cognitive 

44 Bender and Beller, “Counting in Tongan” (2007): 214.
45 Overmann, “Curious Idea” (2020): 69–73, and “Counting by 

‘Elevens’ ” (2021).
46 E.g., Nissen, Damerow, and Englund, Archaic Bookkeeping 

(1993).

dexterity of creative peoples in vibrant societies across 
time and space, as well as capitalize on opportunities 
for generating new insights into the uniquely human 
aptitude for numbers.
 There is a practical benefit to be realized as well. Tra-
ditional Polynesian number systems were documented  
observationally and linguistically, types of evidence 
largely unavailable for ancient numbers. Observational  
insight into ancient behaviors like counting is precluded  
by the lack of contemporary descriptions and depic-
tions. This necessitates that they be reconstructed  
inferentially from evidence like scribal errors, notational  
fixedness, and the lack of recording interim steps that 
imply tokens were used for calculating.47 The sema-
siographic nature of numerical notations means that 
the phonetic values of ancient number-words must 
be reconstructed, often incompletely, from evidence 
like phonographic writing (which for Sumerian num-
bers began to emerge centuries after writing did48) or 
comparative vocabulary (which is precluded for iso-
lated languages like Sumerian and Elamite). This has  
forced a reliance on numerical notations, forms that 
lack pronunciation clues and which thus cannot reveal 
whether and how polyvalent terms might have been 
distinguished morphologically. As a result, analyses of 
ancient numbers have necessarily been based on ar-
chaeological and textual data, yielding interpretations 
that observational and linguistic insights can challenge.

Polynesian Counting

Polynesia is a roughly triangular region of the south- 
central Pacific Ocean bounded by Hawai‘i to the north, 
Rapa Nui (Easter Island) to the east, and Aotearoa 
(New Zealand) to the south (Fig. 1). It contains over 
a thousand islands, mostly volcanic but some created 
by continental submergence. The oceanic migration 
that colonized the islands has been traced archaeologi-
cally, linguistically, and genetically to maritime cultures 
originating in Taiwan and, ultimately, China.49 Colo-
nization of central Polynesia began nearly 3,000 years 
ago from Melanesian island groups in the vicinity of 
Fiji; it continued eastward into the Cook Islands and 

47 Høyrup, Lengths, Widths, Surfaces (2002), 73, 195–96; Over-
mann, Material Origin (2019), 198–99.

48 Damerow, “Individual Development” (1988): 144.
49 Chambers, “Genetics and Origins” (2013); Guérin, “Oceanic 

Subgroup” (2017); Hurles et al., “Untangling Oceanic Settlement” 
(2003); Lipson, “Population Turnover” (2018).
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Tuamotu Archipelago before expanding as far as Ha-
wai‘i, Rapa Nui, and New Zealand, the region’s north-
ern, eastern, and southern peripheries, over the last 
thousand years.50 The few westward settlements like 
Tikopia and Nukuoro are known as outliers, culturally 
Polynesian but geographically located in Melanesia or 
Micronesia. Relations between Polynesian languages 
and dialects closely track with this geographic settle-
ment pattern.51 Beyond its western border, Polynesia 
developed in relative isolation;52 this made it an ideal 
“laboratory” for studying cultural developments like 
numbers, especially in its northern, eastern, and south-
ern regions.53

 European exploration of the Pacific began in the 
marginal seas on its western side, with expeditions 
reaching the Moluccas in 1509, Malacca in 1511, and 
southern China in 1513.54 In 1513, the eastern side 
of the Pacific was sighted from the Isthmus of Pan-
ama by Vasco Núñez de Balboa, who named the ocean 
Mar del Sur (“South Sea”), an appellation persisting 
in terms like “South Sea islands.” In 1520, Ferdinand 
Magellan would give the ocean a different name, Mar 
Pacífico (“Peaceful Sea”), memorializing its compara-
tive calm after the difficult passage around the tip of 
South America; he would reach the Polynesian Tuamo-
tus in 1521. Spanish, Dutch, English, and French ex-
peditions to Polynesia soon followed. These explorers, 
and the naturalist scientists who accompanied them, 
documented many aspects of Polynesian languages and 
culture, including their numbers, providing a limited 
and often imperfect insight into traditional Polynesian 
counting practices and number-words.55

50 Rieth and Cochrane, “Chronology of Colonization” (2018).
51 Lynch, Ross, and Crowley, Oceanic Languages (2002).
52 Kirch, Evolution of the Polynesian Chiefdoms (1984), 3.
53 Suggs, Archaeology of Nuku Hiva (1960), 194.
54 Lach, Asia in the Making of Europe (1994); Ricklefs, History of 

Modern Indonesia (1981).
55 Early observers faced significant linguistic and cultural barri-

ers. They were generally untrained in the wide range of fields in 
which they were expected to record data. Their descriptions tended 
to lack detail and were biased by the prevalent Eurocentric view of 
traditional practices as primitive. They could also misunderstand 
what they saw, sometimes hilariously so: for instance, the Spanish at-
tempted to elicit number-words by showing written Western numer-
als to the Rapa Nui islanders (González de Haedo, Voyage of Captain 
Don Felipe Gonzalez [2007], 110); the English thought Māori num-
bers were vigesimal (Chamisso, “Du Grand Océan” [1825], 27); the 
French said that Māori counted by elevens (Balbi, “Observations sur 
la Classification” [1826], 256–57); and the French collected Tongan 
words purported to be numbers that were instead salacious, if not 

 The homogeneity of counting practices and number- 
words throughout the region was often remarked  
upon.56 Some linguistic differences were also noted, both  
as local changes in pronunciation and as differences in 
numerical vocabularies. In some cases, the names for 
the higher powers were replaced by distinct lexemes 
(e.g., the unique term for 103, piere, in Rapanui57), and 
in others, their order in the exponential sequence dif-
fered (e.g., mano was 104 in Tongan but 103 in Ha-
waiian58). The numeral classifiers59 observed in western 
Polynesia dwindled and disappeared in the central 
and peripheral regions, where languages developed 
object-specified counting.60 In Polynesian languages, 
numeral classifiers and object-specified counting are 
linked, as both count different types of objects differ-
ently, and both can multiply numerical values.61 As 
settlement expanded from western Polynesia into the 
region’s center and peripheries, counting simplified 

obscene (Labillardière, “Appendix: Vocabulaire” [1799], 50; Mar-
tin, Account of the Natives [1818], 370–71). However limited or 
flawed, the historical observations nonetheless provide valuable and 
unique insight into traditional Polynesian numbers before they were 
much altered by exposure to Western concepts and practices.

56 See e.g., Cook, Voyage Towards the South Pole (1777), table 
facing 364; Forster, “Remarks on the Human Species” (1778), table 
facing 284; Hale, United States Exploring Expedition (1846), 62–63; 
Lesson and Garnot, Voyage Autour du Monde (1826), 84.

57 Fuentes, Diccionario y Gramática (1960), 617; Roussel, Vocab
ulaire de la Langue (1908), 219.

58 Clark, “Hawaiian Method” (1839): 93; Martin, Account of 
the Natives (1818), 369; Rabone, Vocabulary of the Tonga Language 
(1845), 166. Note that exponential values were also shifted upward 
by a factor of four in Hawai‘i but not in Tonga.

59 Numeral classifiers are “special morphemes which only appear 
next to a numeral, or a quantifier. They may categorize the referent 
of a noun in terms of its animacy, shape, and other inherent proper-
ties” (Aikhenvald, Classifiers [2000], 3). They have been associated 
with the abstract/concrete distinction: Lévy-Bruhl thought classifi-
ers marked the absence of an abstract concept of number (Fonctions 
Mentales [1912], 219–30). Here they are taken as a way of marking 
commodity in the absence of written notations (or other material 
forms of recording). Also see the discussion of numeral classifiers in 
regard to the abstract–concrete distinction in Valério and Ferrara, 
“Numeracy at the Dawn of Writing” (2021): 3–6.

60 Bender and Beller, “Numeral Classifiers” (2006): 393.
61 Ibid.: 399. So-called power classifiers “indicate a precise 

value—either the base of the number system or one of its powers—
that serves as a factor for the adjoined numeral. As power classifiers 
replace other classifiers, they typically indicate the new counting unit 
independently of the object concerned. A few classifiers, however, 
adopt both a classifying and a multiplying function: they have a pre-
cise value and are restricted to certain objects indicating, for instance, 
‘tens of coconuts’ ” (ibid., “Numeral Classifiers” [2007]: 824).
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and dominant patterns emerged, shifting the decimal 
powers upward by factors of two or four. For exam-
ple, one rau meant 100 in Tahitian but 200 in Māori 
and 400 in Hawaiian.62 Simplified, dominant count-
ing sequences would be consistent with counting in 
an initially more limited fashion in newly established 
colonies, in terms of both smaller quantities and fewer 
types of goods.63

 Notations, whether for numbers or language, were 
unknown prior to European contact, though the Ron-
gorongo script discovered on Rapa Nui in the nine-
teenth century is a possible exception. Rongorongo 
has not been satisfactorily translated,64 but is thought 
to have perhaps functioned as a mnemonic device for 
chants.65 Whether its invention predated European 
contact remains unestablished, and the idea of writing 
is known to have been introduced in Rapa Nui by the 
Spanish in the late eighteenth century, specifically as 
numbers.66

Characteristics of Polynesian Numbers

In their organization, structure, vocabulary, and counting  
methods, the Tongan number systems are often illus-
trative of Polynesian number systems generally. Other  
Polynesian number systems will be referenced as well, 
noting that while the method of counting by sort-
ing remained the same, the associated powers were 
shifted upward in some areas, as previously noted, and 
a binary variant of counting-by-sorting developed in 
Manga reva.67 As was noted earlier, the Tongan num-
ber systems included a general sequence for counting  
most objects and multiple specialized sequences used to 
count specific types of objects (Fig. 2).68 The general  
counting sequence had a standard decimal organiza-
tion and regular exponential structure.69 Object-specific 

62 Best, “Māori Numeration” (1906): 165; Chamisso, Über Die 
Hawaiische Sprache (1837), 57; Jaussen, Grammaire et Dictionnaire 
(1861), 24.

63 Overmann, “Counting by ‘Elevens’ ” (2021): 7–8.
64 Davletshin, “Numerals and Phonetic Complements” (2012): 

243.
65 Fischer, Rongorongo: The Easter Island Script (1997), 163.
66 González de Haedo, Voyage of Captain Don Felipe Gonzalez 

(2007), 109–110; Métraux, “Numerals from Easter Island” (1936): 
253.

67 Overmann, “Curious Idea” (2020): 72, Figure 4.
68 Bender and Beller, “Counting in Tongan” (2007): 218–22.
69 In mathematics, exponents are the powers to which a given 

number is raised, typically the base of the number system. For ex-
ample, in a decimal number system, the base number is ten, and 

counting was likewise decimal but took as its basic unit 
a pair, two items counted together as a single item. The 
specialized Tongan count ing sequences for counting 
fish, yams, and coconuts introduced a new term for the 
bundle created by counting ten pairs, giving it a name 
glossed as the English word score, chosen to reflect 
its numerical value of twenty. The introduced term af-
fected how higher bundles were counted but not the 
resultant numerical values: for example, one score of  
fish and ten pairs of sugarcane both meant twenty items 
(compare Figs. 2b and 2c, 101 column).
 Object-specific counting was used to count abun-
dant objects with particular cultural value (e.g., asso-
ciated with subsistence and redistribution) that were 
enumerated often and to significant quantities.70 Im-
portantly, counting large quantities of objects was more  
efficient when objects were handled two at a time, 
while continuing to treat them as a single unit meant 
the counting sequence was unaltered. That is, rather 
than counting two, four, six, eight, as we might count 
with pairs, counting remained one, two, three, four, etc. 
Counting collectively with pairs had the effect of shift-
ing numerical values upward by a factor of two, such 
that ten counted with pairs had the numerical value 
twenty. Besides Tonga, this upward shift was character-
istic of numbers in Rarotonga (Cook Islands), Tahiti, 
New Zealand, Mangareva, and the northwestern Mar-
quesas.71 Similarly, four-based counting shifted numer-
ical values upward by a factor of four, such that ten 
counted with a unit of four had the numerical value 
forty; this was documented in Hawai‘i, the southeast-
ern Marquesas, and Mangareva.72 Counting collec-
tively created side-by-side counting sequences: the  
general sequence for items counted singly and object- 
specific sequences for items counted in pairs (found 
throughout Polynesia), fours (prevalent in the north-
ern and eastern peripheries, and documented in New 

the powers of ten are one (100), ten (101), hundred (102), thousand 
(103), ten thousand (104), hundred thousand (105), million (106), 
etc., introducing new productive terms (Sizer, “Base and Subbase” 
(2004)). Each exponent is ten times the previous one, the exponen-
tial structure of decimal numbers.

70 Bender and Beller, “Counting in Tongan” (2007): 227.
71 Buzacott, Te Akataka (1854); Jaussen, Grammaire et Diction

naire (1861); Best, “Māori Numeration” (1906); Janeau, Essai de 
Grammaire (1908); Lemaître, “Systèmes de Numération” (1985).

72 Jaussen, Grammaire et Dictionnaire (1861); Kanepuu, “Ka 
Helu Hawaii” (1867); Lemaître, “Systèmes de Numération” (1985).
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Zealand), and eights (Mangareva, which lies toward 
the eastern periphery).
 Numerical relations within any particular counting  
sequence, general or specified, included those of accu-
mulation and grouping. Accumulation allowed items  
to be counted sequentially (i.e., the Polynesian equiv-
alents of one, two, three, etc.). Grouping created intra- 
system relations in which, for example, an afe’s worth 
of objects was equivalent to ten teau of them. Equiv-
alences of value between the general and specified se-
quences linked them and created inter-system relations, 
as for example, an afe’s worth of objects counted with 
a specialized sequence was numerically equivalent to 
twice that amount counted with the general sequence.73 
Together, these relations allowed numerical values to 
be expressed by doubling. In Māori, one of the two 
Polynesian languages of New Zealand, the number 240 
was expressed as kotahi rau ma rua (topu)—literally, 
one hundred and two [tens] (doubled)74; the amount 
was understood as doubled, an implicit binary factor-

73 Bender and Beller, “Counting in Tongan” (2007): 220, 
Table 2.

74 Best, “Māori Numeration” (1906): 179.

ability (i.e., the ability to be doubled, as in the present 
case, or halved in reverse, if used) because the items 
were counted in pairs.75 Note the implied place that 
valued two as ten each; this is further discussed below 
in conjunction with the counting method, its realiza-
tion of exponential structure, the practice of rounding 
to the most significant digits, and the relative scale of 
value (the idea that an exponent’s value is derived from 
those adjacent to it, rather than being anchored by the 
decimal point).
 As can also be seen in Figure 2, the lowest unit in 
Tongan counting sequences could change numerically 
from one to two, contextual value that depended on 
what the item was, which determined whether it would 
be counted singly or in pairs. Terms for bundled values 

75 The interesting question is whether terms like 240 represented 
mental doubling (e.g., like we use in converting two dozen to the 
number twentyfour) or ondemand generation (e.g., like we do in 
expressing and understanding numbers we have never encountered 
before, like fourteen million, nine hundred sixtyeight thousand, seven 
hundred and eightytwo). While either would represent an impressive 
mental faculty with numbers, the latter suggests a greater frequency 
of use, consistent with lexicalization.

Figure 2—Tongan General and Specialized, Derived Counting Sequences. In Tonga, a single method of counting (Figure 3a) was dif-
ferentiated by whether the basic unit was a single or pairs, the presence or absence of higher bundling, and morphological changes encoding 
the commodity being counted (see Table 2). (a) The general system used to count most objects was a decimal system with regular base-10 
exponents. (b) The system for counting sugarcane was likewise regularly decimal but took a pair (two pieces counted together) as its basic unit. 
This “collective counting” doubled the resultant numerical values, relative to the general system from which it was derived, as each unit was 
numerically worth two. (c) The system for counting fish, yams, and coconuts took the pair as its basic unit, but bundled them in groups of ten 
to create scores (numerically worth 20), which were then counted by tens as 10scores, 100scores, etc. Like the system for counting sugarcane, 
numerical amounts were shifted upward by a factor of two, relative to the general system. Number-words also differed to specify the item 
being counted (see the numbered notes below the units 101 and 102; also see Table 2). The method of visualization was based on that of 
Nissen, Damerow, and Englund, Archaic Bookkeeping (1993), 28–29, Figure 28; the data visualized were derived from multiple sources, 
particularly Bender and Beller, “Counting in Tongan” (2007): 222, Table 2.
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like teau were also shared between counting sequences 
but took their value from the lowest unit of counting. 
The term with the greatest number of possible values 
was teau, which meant 100 objects counted with the 
general sequence, 200 (100 pairs) when referring to 
sugarcane, or 2000 (one 100-score, with each score 
worth 20 each) with coconuts or yams.76 For Meso-
potamia, this same quality has been used to argue that 
numbers were concrete,77 the idea being that poly-
valence meant a number like ten was not understood 
as having the same numerical value across counting  
sequences.78 In the Tongan and other Polynesian count-
ing sequences, this was demonstrably false, since poly-
valent terms like teau and equivalence relations like 
twenty singles, ten pairs, and five fours were understood 
implicitly and acted to link the different counting 
sequences.
 Beyond recognizing intra- and inter-system relations 
and polyvalent, contextual value, Polynesians were  
adept at combining the different counting sequences 
to express numerical amounts in language. Traditional 
Hawaiian numbers, which were decimal but assumed 
a unit of four, could be expressed in five ways: in the 
four-based decimal system; as standard decimal num-
bers; with pair-counting, as in the term for twenty, 
iwakalua;79 by irregular terms like the word for thirty, 

76 Bender and Beller, “Counting in Tongan” (2007): 220, 
Table 2.

77 E.g., Schmandt-Besserat, Before Writing vol. 1 (1992) and 
How Writing Came About (1992); also see Damerow, “Number as 
a Second-Order Concept” (1996) and “Prehistory and Cognitive 
Development” (1996).

78 Chrisomalis has compellingly argued against the idea that 
Mesopotamian peoples were particularly incompetent or concrete 
in their conceptualization of numbers: “If . . . polyvalence and  
context-dependence imply an absence of abstract number concepts, 
then paradoxically, the quasi-literate Uruk accountants would be less 
numerate than the average Sumerian who did not use texts, only 
number words” (Chrisomalis, “Evaluating Ancient Numeracy” 
[2005]: 4); “the accountants and scribes who used [tokens and 
numbers] were able to manage complex administrative tasks, and it is 
implausible that they did not recognize that ‘8 sheep’ and ‘8 bushels 
of grain’ had something in common” (Chrisomalis, “Cognitive and 
Cultural Foundations” [2009]: 502); and “in order for these context- 
dependent numerals to represent a stage of ‘archaic arithmetic’ in 
the evolution of numeration, . . . we would expect similar systems to 
be present in other civilizations. Yet nothing of the sort can be found 
in Shang, Predynastic Egyptian, or Zapotec inscriptions, the other 
early and independently invented systems” (Chrisomalis, Numerical 
Notation [2010], 237). Also see discussion in Overmann, Material 
Origin (2019), 162–64.

79 The Hawaiian word for twenty, iwakalua, which means nine 
and two, is consistent with counting with pairs: The first nine pairs 

kanakolu; or as some combination of these choices (see 
Table 1).80 Rather than confusion or concreteness, this 
variability of linguistic expression displayed a consider-
able command of the highly elaborated numerical re-
lations, just as Māori expressions like 240 did. Indeed, 
this expressive variability implies a faculty in mentally 
manipulating numerical relations that is the very an-
tithesis of concreteness.
 Polyvalent terms necessitated that the context of 
use be indicated in some fashion so that numerical val-
ues were correctly expressed and interpreted. The in-
tended counting sequence was identified linguistically 
through grouping terms and morphological changes 
(see Table 2): kau, a group analogous to the English 
term score, was only used when counting fish, yams, 
or coconuts; tefuhi and tefua, both words for 10score, 
differentiated whether yams or coconuts were meant.81 
Conversely, linguistic marking served to encode the 
type of object being enumerated, the grouping rela-
tions used, and the exponential register intended. This  
object-specific marking conjoined commodity and quan-
tity in a way that evokes the same conjoinment in the 
Neolithic tokens and Uruk-period numerical impres-
sions of Mesopotamia.

Traditional Polynesian Counting

Rather than being dissociated or separately developed, 
the different counting sequences were derived from 
a single method of counting. This method, attested 
throughout Polynesia by behavioral observations, nu-
merical structure, and language, set aside every tenth 
item to act as a counter (see Figure 3a)82: in Tikopia, 
“in counting grains of rice [the informant] reckoned 
nine and then put aside the tenth grain, and so on. 
Afterwards he reckoned up the tenth grains to reckon 
the hundreds.”83 In New Zealand, European observ-
ers misunderstood the practice of putting aside one of 
every ten as counting by “elevens.”84 The practice has 

(or 18 items) are counted into the heap of items counted, and the 
last pair (two items) is reserved as a counter for the next round 
(Overmann, “Curious Idea” [2020]: 71).

80 Clark, “Hawaiian Method” (1839): 93 and Ellis, Narrative of 
a Tour (1826), 502.

81 Bender and Beller, “Counting in Tongan” (2007): 220, 
Table 2.

82 Overmann, “Curious Idea” (2020): 69–73.
83 Durrad, “Tikopia Vocabulary” (1913): 146.
84 Conant, Number Concept (1896), 122–23. It is indeed pos-

sible to count by setting aside every eleventh item as a tally; this 
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also been documented in Papua New Guinea, where it 
is used to count yams in groups of six to realize a sim-
ilarly impressive exponential structure, although there 
the method is used only with single items, not pairs or 
fours.85

 Essentially, commodities were counted by sorting 
them into separate piles: objects considered as having 
been counted and objects set aside to represent the 
count. In the first round, every tenth item set aside as 

produces an accurate enumeration, albeit in base 11 rather than  
base 10. It is unlikely the Polynesians did this, as “elevens” count-
ing fails to yield the relations found throughout the region, wherein 
terms like twenty singles, ten pairs, and five fours were recognized as 
equivalent in numerical value and could be exchanged in expressing 
smaller numbers (see e.g., Table 1).

85 Döhler, Grammar of Komnzo (2018), 16–18; Evans, “Two 
Pus One” (2009): 331–32; Williams, Papuans of the TransFly 
(1936), 226–27. Also see Overmann, “Curious Idea” (2020): 76, 
Figure 5.

a counter represented ten of whatever commodity was 
being counted; in the second round, every tenth item 
was valued at a hundred; in the third, as a thousand; and 
so on (see Fig. 3a). Successive rounds created both an 
exponential structure and an abacus-like device. This 
device, composed of piles of the commodity being 
enumerated, was ephemeral, given that the elements 
regained their status as commodities once counting 
them had finished. Once exponential registers were 
formed by sorting commodities into piles, moving 
items between them would have involved exchanging 
ten items for one, or one item for ten in reverse, oper-
ations reminiscent of the bundling/debundling used 
with Neolithic tokens. However, there are no historical 
descriptions of such bundling/debundling operations 
in Polynesia, perhaps either because the movement of 
items between exponential registers was simply not re-
marked, or the size and weight of enumerated com-
modities like coconuts would have tended to preclude 
them.

Table 1—Flexible Expressions of Hawaiian Numbers. Numerical expressions in the traditional Hawaiian number system, showing some 
documented exceptions (highlighted in bold font) to regular four-based decimal forms. Numbers under 40 (the productive term ten fours) 
could be expressed in four-based decimal form (e.g., ten would be two fours and two ones, as in the first form for 85,650) or standard deci-
mal form (e.g., ten, as in the second form for 85,650). Such forms suggest that beyond simply recognizing amounts like twenty singles, ten 
pairs, and five fours as equivalued, Hawaiians combined the different counting sequences to achieve succinctness of expression, in the process 
displaying a considerable command of the highly elaborated numerical relations. Key: iwakalua, 20 (lit., 9 and 2); kahi, 1; kanaha, 40 (lit., 
ten fours); kanakolu, 30 (ten threes?); kauna, unit of four; kini, 40,000; kolu, 3; lau, 400; lima, 5; lua, 2; mano, 4000; umi, 10. Values, 
expressions, and numerical meanings from Clark, “Hawaiian Method” (1839): 93; Ellis, Narrative of a Tour (1826), 479.

Value Expression and Numerical Meaning Notes

50
kanaha me ka umi
1(40) + 1(10)

Four-based counting combined with  
 decimal counting

60
akahi kanaha me ka iwakalua
1(40) + 1(20)

Four-based counting combined with  
 pairs counting

70

akahi kanaha me ke kanakolu
1(40) + 1(30)

Four-based counting combined with  
 an irregular term

hookahi kanaha me na umi ekolu
1(40) + 3(10)

Four-based counting combined with  
 decimal counting

80
elua kanaha
2(40)

Four-based counting

100
elua kanaha me ka iwakalua
2(40) + 1(20)

Four-based counting combined with  
 pairs counting

600
hookahi lau a me na kanaha elima
1(400) + 5(40)

Four-based counting

10,000
elua mano me na lau elima
2(4000) + 5(400)

Four-based counting

85,650

elua kini, hoohaki mano, eha lau, akahi kanaha, elua kauna me alua
2(40,000), 1(4000), 4(400), 1(40), 2(4), 2(1)

Four-based counting

elua kini, hoohaki mano, eha lau, akahi kanaha me ka umi
2(40,000), 1(4000), 4(400), 1(40) + 1(10)

Four-based counting combined with  
 decimal counting

846,248
2 lehu, 1 kini, 1 mano, 5 lau, 6 kanaha, and 2 kauna
2(400,000), 1(40,000), 1(4000), 5(400), 6(40), 2(4)

Four-based counting

864,895
2 kini, 1 lehu, 6 mano, 2 rau, 2 kanaha, 1 umi, and 5
2(400,000), 1(40,000), 6(4000), 2(400), 2(40), 1(10), and 5

Four-based counting combined with  
 decimal counting
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 The exponential value of the counters emerged 
from their literal physical placement in being counted 
(e.g., an item placed in the pile of hundreds had that 
value) and the order created by successive rounds of 
counting (e.g., thousands would be adjacent to and 
one register higher than hundreds). Any particular 
exponent was understood through its relation to the 

previous one from which it was created, as well as the 
one that would immediately follow it, assuming it were 
needed (i.e., a pile of counters greater than ten occa-
sioned a subsequent round of counting, while fewer 
than ten counters did not). Sequential place value was 
assumed in numerical expressions, as was the case in 
the Māori example noted earlier for the number 240, 

Table 2—Tongan General and Object-specific Counting. Object-specific counting encoded both the object being counted and the bun-
dles used in counting. For example, tefuhi specified pieces of yam, tefua coconuts, both in the quantity glossed as 10score. Polyvalent terms 
were understood in context: teau was understood to mean 100 items counted with the general system if it followed hongofulu in sequence; 
100 pairs (or 200 items) of sugarcane thatch if it followed tetula in sequence; or one 100score (or 2000 items) of fish, pieces of yam, or 
coconuts if it followed, respectively, honogofulu, tefuhi, or tefua in sequence. Data from Churchward, Tongan Grammar (1985), 171–89; 
Rabone, Vocabulary of the Tonga Language (1845); format after Bender and Beller, “Counting in Tongan” (2007): 220, Table 2.

Nr General system
Derived systems

Unit Sugarcanea Unit Fishb Pieces of yamc Coconutsd

1 taha — — — — — —
2 ua 1 pair taha 1 pair taha taha taha
3 tolu — — — — — —
4 fā 2 pairs ua 2 pairs ua ua ua
5 nima — — — — — —
6 ono 3 pairs tolu 3 pairs tolu tolu tolu

10 hongofulu — — — — — —
20 uofulu 10 pairs tetula 1 score taha tekau tekau
30 tolungofulu — — — — — —
40 fāngofulu 20 pairs uangotula 2 scores ua uangakau uangakau
50 nimangofulu — — — — — —
60 onongofulu 30 pairs tolungotula 3 scores tolu tolungakau tolungakau

100 teau — — — — — —
200 uangeau 100 pairs teau 1 10-score hongofulu tefuhi tefua
300 tolungeau — — — — — —
400 fāngeau 200 pairs uangeau 2 10-scores uofulu uangofuhi uaofua
500 nimageau — — — — — —
600 onongeau 300 pairs tolungeau 3 10-scores tolungofulu tolungofuhi tolufua

1000 (taha) afe — — — — — —
2000 ua afe 1000 pairs (taha) afe 1 100-score teau teau teau
3000 tolu afe — — — — — —
4000 fā afe 2000 pairs ua afe 2 100-scores uangeau uangeau uangeau
5000 nima afe — — — — — —
6000 ono afe 3000 pairs tolu afe 3 100-scores tolungeau tolungeau tolungeau

aFor sugarcane thatch (au), the numbers one and nine could be preceded by ha au ‘e (ha, article; ‘e introduced the number and related it to 
the preceding words) and followed by nga‘ahoa (pair of). Two pairs of sugarcane (four items) would be ha au ‘e ua nga‘ahoa (or simply 
ua). Higher numbers omitted nga‘ahoa: Ten pairs (20 items), ha au ‘e tetula; 100 pairs (200 items), ha au ‘e teau; 1000 pairs (2000 items), 
ha au ‘e taha afe.

bFor fish (mata‘i ika), the numbers one to nine could be preceded by ha mata‘i ika ‘e and followed by nga‘ahoa. Two pairs of fish (four items) 
would be ha mata‘i ika ‘e ua nga‘ahoa. Higher numbers were preceded by ha kau ika ‘e (kau, score): Two scores (40 items), ha kau ika ‘e 
ua; 20 scores (400 items), ha kau ika ‘e uofulu; 200 scores (4000 items), ha kau ika ‘e uangeau.

cFor pieces of yam (konga ‘ufi or pulopula), the numbers one to nine could be preceded by ha konga ‘ufi ‘e and followed by nga‘ahoa. Two 
pairs of yam pieces (four items) would be ha konga ‘ufi ‘e ua nga‘ahoa. Higher numbers were preceded by ha pulopula ‘e: Two scores  
(40 items), ha pulopula ‘e uangakau; 20 scores (400 items), ha pulopula ‘e uangofuhi; 200 scores (4000 items), ha pulopula ‘e uangeau.

dFor coconuts (niu), the numbers one to nine could be preceded by ha taua‘i niu ‘e (taua‘i, pair of). Two pairs of coconuts (four items) 
would be ha taua‘i niu ‘e ua. Higher numbers were preceded by ha niu ‘e: Two scores (40 items), ha niu ‘e uangakau; 20 scores  
(400 items), ha niu ‘e uofua; 200 scores (4000 items), ha niu ‘e uangeau.
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where the unit following the hundreds was understood 
as tens rather than ones.86 This relative scale of values 
evokes the so-called floating sexagesimal place value 
of later Mesopotamian numbers, wherein exponential 
value was relative to the adjacent exponents and set by 
the context of use.87 Floating value can be difficult to 
understand from the perspective of an absolute scale, 
like Western numbers anchored by the decimal point, 
but may be intuitive in a system in which exponents 
take their value from their place within a counting se-
quence, as they did in traditional Polynesian counting.
 As practiced in Polynesia, the method of counting 
was efficient and pragmatic.88 It minimized the physi-

86 Best, “Māori Numeration” (1906): 179.
87 Proust, “Du Calcul Flottant” (2013).
88 Overmann, “Curious Idea” (2020): 69.

cal effort involved in counting bulky, heavy items like 
unhusked coconuts by (1) avoiding the need to cre-
ate bundles of increasing size and weight, since sort-
ing meant there was no need to create a thousand by 
grouping ten bundles of a hundred each;89 (2) han-
dling most of the enumerated items only once; and 
(3) eliminating the need for ancillary recording, as 
the goods themselves served this purpose for the du-
ration of counting. Similarly, the method minimized 
mental effort by (4) reducing counting to a matter of 
repetitively counting from one to 1090 and (5) using 
the goods themselves to keep track of the exponential  

89 Ibid., “Counting by ‘Elevens’ ” (2021): 17–19.
90 This remains implicit to Polynesian counting: “Typically, serial 

counting involves the numerals up to 10 and restarts from 1 ev-
ery time a multiple of 10 is reached” (Bender and Beller, “Numeral 
Classifiers” [2006]: 387).

Figure 3—Traditional Polynesian Counting. (a) Basic counting method. This method of decimal counting produces the seemingly dif-
ferent results shown in Figure 2 because it works with singles, pairs, or fours as the basic unit. It works by setting aside every tenth item to 
represent ten items counted; the items set aside as counters acquire the value of 10 times the previous unit in the next round of counting. 
The method could be extended indefinitely, ending only when the number of counters dropped below ten. It explains why Polynesian 
counting could reach into the millions, was structured exponentially, and remained strongly decimal across time and distance despite the 
seeming absence of permanent devices for counting. (b) Mangarevan binary variant. In Mangareva, the counting method shown in (a) was 
adapted after an initial round of decimal counting to incorporate the binary relations between one, two, four, and eight. It too was capable 
of counting with singles, pairs, fours, or eights as the basic unit. Counting started as before, but in the second round, counting proceeded by 
eights, with any remaining counters counted by fours, then twos, and then one, producing one or none of these amounts. When added to 
the basic method, the Mangarevan variant produces the seemingly different results shown in Figure 4a (sequences 3–5) because both work 
with singles, pairs, fours, and eights. The diagrams were adapted from Overmann, “Curious Idea” (2020): 70–71, Figures 2 and 3. Readers 
interested in seeing the counting methods in operation, including the different outcomes yielded when the unit is adjusted between singles, 
pairs, fours, and eights, can consult an online algorithm provided for this purpose: https://doi.org/10.13140/RG.2.2.20943.71848/1.
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register, with linguistic markers also helping to serve 
this purpose. Items (4) and (5) would have decreased 
demands on cognitive processes like memory and atten-
tion, while also increasing the likelihood that counting  
would produce accurate and reliable results. Counting 
collectively further reduced physical and mental effort91 
by (6) condensing counting, by a factor of two when 
the unit was a pair (compare Figs. 2b and 2c), by four 
when the unit was a group of four, and in Mangareva, 
by eight when the unit was eight.92

 In Mangareva, a unique variant emerged,93 facili-
tated by the availability of terms produced by counting 
with singles, pairs, fours, and eights and the binary re-
lation between these values (see Fig. 3b). The variant 
began as usual, setting aside every tenth item to be used 
as a counter. However, in the second round, counting 
proceeded by eights (varu), giving the word varu two 
values within the same sequence, both eight and ten 
eights (this brings to mind the two different values the 
sign N46 has within the System Š" for grain in the proto- 
cuneiform notations). Any remainder was then easily  
counted by fours (tataua), twos (paua), and ones (tauga).  
Binary counting was restricted to fairly low quantities, 
an upper limit94 that likely reflected the fact once count-
ing proceeded by eights, it was no longer decimal.95

Mental Calculation

The claim that Polynesian numbers functioned as cog-
nitively efficient tools for mental calculation requires 
some clarification.96 The intra- and inter-system rela-
tions that equivalued terms within and between the 
different counting sequences—a quality whose pur-
ported absence has been used as evidence of concrete-
ness in the archaic Mesopotamian numbers—facilitated 
the mental performance of operations like doubling 
and exchanging, as these were implicit to expressing 
numerical values in language (e.g., as in the Hawai-
ian, Māori, and Tongan examples given). However, 
the idea of mental calculation goes further in assum-

91 Bender and Beller, “Numeral Classifiers” (2007): 825.
92 Handy, Native Culture (1923), 184; Janeau, Essai de Gram

maire (1908), 20; Martin, Account of the Natives (1818), 370.
93 Overmann, “Curious Idea” (2020).
94 Hiroa, Ethnology of Mangareva (1938), 417; Janeau, Essai de 

Grammaire (1908), 20.
95 Overmann, “Curious Idea” (2020): 78.
96 Bender and Beller, “Counting in Tongan” (2007), “Extending 

the Limits” (2008), “Mangarevan Invention” (2014), “Numeration 
Systems” (2018), and “Power of 2” (2017).

ing that the redistribution of commodities, a common 
Polynesian social practice, necessarily involved arithme-
tic; that the absence of notations necessitated the arith-
metic be performed mentally97; and that arithmetical 
calculations resembled those used in the West (e.g., 
“273 + 219).”98 These assumptions are examined in 
turn, noting that even on a conservative interpretation, 
the claim that numbers were mentally manipulated is 
supported, and this in turn means that they were not 
concrete in the manner that has been supposed.
 First, redistribution need not involve arithmetic—
nor numbers, for that matter—as societies with few 
numbers manage such things quite effectively (e.g., 
by pairing goods to ensure their equivalence). Along 
these lines, it must be noted that none of the dozens 
of Polynesian vocabularies, dictionaries, and grammars 
compiled by early explorers provide terms analogous  
to “addition” or “division,” the operations most likely in  
accumulating goods given as tribute and distributing  
them between people. Similarly, where historical sources  
used terms like “reckoning,”99 they meant knowing the 
names of the higher exponents (e.g., million), not cal-
culating per se. Nonetheless, the availability of highly 
elaborated numbers, plus their use in counting objects 
for social purposes of display, celebration, feasting, 
tribute, and gifting, suggests that Polynesian redis-
tribution did involve, minimally, the kinds of calcula-
tions implicit to the linguistic expressions of numerical 
values.
 Second, arithmetic need not have been performed 
mentally, as the physical arrangement of goods during 
counting meant they both represented the count in  
situ and were available to be manipulated in ways anal-
ogous to an abacus. Counting suggests the possibility  
that redistribution involved combining or separating 
goods and then recounting them, a material form of cal-
culating. This would be consistent with historical ac-
counts, which mention counting but not calculating 
per se.100 However, counting physical objects by the 
hundreds or thousands—let alone recounting them—is  

97 Ibid., “Counting in Tongan” (2007): 228.
98 Ibid., “Mangarevan Invention” (2014): 1325.
99 Crook, Account of the Marquesas Islands (2007), 73.
100 More recent descriptions must be viewed through the lens of 

Western cultural exposure and significant loss of traditional knowl-
edge. A survey of dictionaries from the early nineteenth century 
shows that within decades of their introduction by missionaries, 
Western decimal numbers had largely replaced traditional ones, and 
several twentieth-century ethnographies mention informants having 
an imperfect grasp of traditional practices.
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laborious enough, even with efficient methods. Fur-
ther, an abacus comprised of sizeable, weighty items 
like coconuts would not be ideal for complex manipu-
lations. For these reasons, exponents like millions were  
unlikely to have represented physical counting.101 While  
this does not necessarily entail that the higher expo-
nents were realized through calculating, they did reflect  
“a continuation of naming multiples,”102 a conceptual 
process in and of itself.
 Finally, calculations need not have resembled Western  
ones, as the practice of rounding to the most significant 
digits was widespread.103 Rounding is documented by 
words that named the excess over a round number in 
counting (often glossed as remainder), including tūmā 
(common throughout Polynesia104), koena (Hawaiian105),  
akatouara (Mangarevan106), toēnga (Tuamotuan107), 
and tauwhara (Māori108). Rounding suggests the re-
mainders produced by all but the final rounds of count-
ing may simply have been labeled accordingly (see 
Figs. 3a and 3b), and that arithmetic, if used, might 
have been a relatively straightforward matter of com-
bining the rounded significant units—of course, only if 
they all related to the same commodity.109 For example, 
adding 273 and 219 of sugarcane might have involved 
rounding both to two teau each. Given the same unit 
(teau), two teau and two teau of sugarcane would make 
four teau. With dissimilar units (teau and afe), two teau 
and two afe of sugarcane would make two afe and two 
teau (as ordered by magnitude). Arithmetic based on 

101 Bender and Beller, “Counting in Tongan” (2007): 232–33.
102 Hiroa, Ethnology of Mangareva (1938), 417.
103 Rounding down was implicit to counting as remainders dis-

carded from all but the final rounds. Rounding up does not appear 
to have been used: “If eighty-three, or eighty-five, or eighty-six birds 
were put into a calabash [a gourd used as a utensil], that vessel would 
be said to contain hokowha (eighty), ka whakarerea nga tauwhara 
(the odd ones are omitted)” (Best, “Māori Numeration” [1906]: 
155). If rounding up were practiced, quantities like 86 would be 
expected to occasion it.

104 Lemaître, “Systèmes de Numération” (1985): 3.
105 Andrews, Vocabulary of Words (1836), 71.
106 Tregear, Dictionary of Mangareva (1899), 7.
107 Stimson, Dictionary of Some Tuamotuan Dialects (1964), 

542.
108 Best, “Māori Numeration” (1906): 166.
109 Adding dissimilar commodities would likely have been dif-

ficult in both the Polynesian and Mesopotamian number systems 
since the same unit might not mean the same number of items; this 
in turn suggests a reason why the components yielding a sum might 
remain “identifiable” in Old Babylonian addition (Høyrup, Lengths, 
Widths, Surfaces [2002], 19).

rounding would be consistent with intra- and inter- 
system relations, the exponential structure, the rela-
tive scale of value, and the kinds of operations implicit 
to linguistic expressions of numbers. Such arithmetic 
might differ from the Western variant in the details of 
its relations, operations, and algorithms, but its “men-
tal” nature most certainly would not.
 The interesting qualities of traditional Polynesian 
numbers—the multiple counting sequences with their 
specific patterns of composition, shared smallest unit, 
polyvalent and context-dependent value, and relative 
scale of value—can be traced to the method of count-
ing. So too can aspects of expressing numbers in lan-
guage, like the conjoined representation of quantity 
and commodity and the use of doubling and rounding. 
Without insight into the method of counting that ex-
plains and unites them, the various counting sequences 
create an impression of confusingly mixed bases and 
disconnected polyvalent terms, especially when the 
set of possible variants is incomplete. An example is 
shown in Figure 4a, the counting sequences of Manga-
reva.110 Omission of counting by fours or eights gives  
an impression of confused disconnectedness and mixed 
bases, though counting by fours was widespread in the 
eastern and northern peripheries,111 and counting by 
eights was documented in Mangareva.112 Even with 
those added, without the counting method, there is lit-
tle basis for understanding how or even whether such  
counting sequences were related, leaving them as opaque  
to modern eyes as those of archaic Mesopotamia have 
been.

Archaic Mesopotamian  
Number Systems, Reconsidered

Mesopotamia, today roughly synonymous with the 
modern countries of Syria, Iran, and Iraq, was the an-
cient civilization that flourished in the region between 
the Tigris and Euphrates Rivers, famous as part of the 
fertile crescent where agriculture first developed (see 
Fig. 5). The region opened to human habitation dur ing 
the climate shift that began the Holocene about 12,000  
years ago. During the Neolithic (8300–4500 bc), ex-
tant populations from the Levant and Zagros Mountains  

110 As recorded by Hiroa (Ethnology of Mangareva [1938], 417) 
and as visualized after Nissen, Damerow, and Englund (Archaic 
Bookkeeping [1993], 28–29, Figure 28).

111 Overmann, “Curious Idea” (2020): 72, Figure 4.
112 Janeau, Essai de Grammaire (1908), 20.
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expanded into the Mesopotamian plain.113 Today these  
groups are known as Akkadians, Elamites, and Sume-
rians, names more convenient as modern labels than  

113 Lazaridis, et al., “Genomic Insights.” 

accurate as reflections of ancient social, ethnic, and 
cultural identities. The Neolithic was asso ciated with 
rapid demographic increase, larger and more perma-
nent settlements, and impressive innovation. The latter 
included one of the earliest known systems of writing 

Figure 4a–b—Counting in Mangareva. (a) Five Mangarevan counting sequences as recorded by Hiroa (Ethnology of Mangareva [1938], 
417) and as visualized after Nissen, Damerow, and Englund (Archaic Bookkeeping [1993], 28–29, Figure 28). The first two (general and 
breadfruit) used the counting method shown in Figure 3a, the last three (turtles, fish, and coconuts) the counting method shown in Fig-
ure 3b. Without insight into the counting method, these counting sequences and their polyvalent terms might remain oddly disconnected, 
as they have been in the Mesopotamian number systems. Comparing these sequences to those in Figure 3 also highlights the importance 
of visualization in interpreting numerical structure and organization. (b) Hypothetical replacement of the counting sequences in Figure 4a 
with token shapes; the result resembles the proto-cuneiform counting sequences of the Uruk period in Mesopotamia. Note that relative to 
counting with singles (sequences 1 and 3), counting with pairs (sequences 2 and 4) and fours (sequence 5) displaces the unit upward (i.e., 
one place to the left, a higher numerical magnitude).
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and numbers, which would become elaborated as lit-
eracy and mathematics by the Old Babylonian period 
(2000–1600 bc).114

Characteristics of Mesopotamian Numbers

The numerical traditions associated with the Sumerians,  
Akkadians, and Elamites were distinctive. As attested by 
the notations used, the first was sexagesimal in structure, 
the others decimal. Numbers differed linguistically as 
well, as is clear from the phonetic values for number- 
words that emerged in writing in the mid-third mil-
lennium bc. These show the Sumerians to have had a 
“quinary-vigesimal system, with traces of decimal count-
ing”115 at quantities below sixty, the point at which  
numbers became sexagesimal.116 Akkadian spoken num-
bers were decimal, as is typical for Semitic languages.117 

114 Overmann, Material Origin (2019); Robson, “Mesopota-
mian Mathematics” (2007); Veldhuis, “Levels of Literacy” (2011).

115 Seidenberg, “Sixty System of Sumer” (1965): 440.
116 Blažek, Numerals (1999), 329; Powell, “Origin of the Sex-

agesimal System” (1972): 7.
117 Huehnergard, “Proto-Semitic” (2019); Lipínski, Semitic 

Languages (2001); Miller and Shipp, Akkadian Handbook (2014); 
Powell, “Notes on Akkadian Numbers” (1979).

Elamite spoken numbers likely differed from both, given 
their decimal adaptation of the sexagesimal notations118 
and Elamite’s status as a linguistic isolate, but as these 
numbers are known only as numerical notations, their 
sound values are unknown.119 All three languages also 
differed in grammatical number, the feature of language 
that distinguishes singular from plural, in terms of its 
structure, method of marking, and animacy.120

 As neighboring number systems tend toward simi-
larity of structure, organization, and extent,121 the sub-
stantial differences between notational and spoken forms 
of numbers suggest the three numerical traditions orig-
inated independently122—that is, before the societies  

118 Englund, “State of Decipherment” (2004), 107–108, 110–13.
119 Tavernier, “Elamite” (2020), 175–76.
120 Overmann, Material Origin (2019), 121–23.
121 Overmann, “Material Scaffolds” (2013): 23–26.
122 Neither lexical numbers nor grammatical number appeared 

in writing for centuries after writing was invented. Consistent 
with the view of Neolithic numbers as severely concrete, this has 
sometimes been interpreted to mean ancient languages may have 
lacked these features (Dahl, “Comment on ‘Numerosity’ ” [2015]: 
647–48), though this seems unlikely, given that tokens, impressions, 
and notations had numerical meaning. A more likely explanation 
for the relatively late emergence of numerical features in writing is 
found in the combination of two circumstances. First, early writing 

Figure 5—Mesopotamia in the third millennium bc, with the geographic locations of three major linguistic groups: Sumer, Akkad, and 
Elam. Sumer was located to the west of the top of the Persian Gulf, which at the time extended inland much further than it does today (as 
represented by the dashed lines), an area that today is roughly contiguous with Iraq. Akkad lay further west and to the north of Sumer in 
what is now Syria, Elam to the east and north in modern-day Iran. Even during the earliest period (Pre-Uruk V, 8500–3500 bc), token 
and impression assemblages were widely distributed throughout the region, either through trade (e.g., Susa in Elam) or as cultural outposts 
(e.g., Habuba Kabira, an Uruk settlement in Akkad). The map was adapted from an image in the public domain; data were sourced from 
Overmann, Material Origin (2019); Schmandt-Besserat, Before Writing vol. 2 (1992).



A New Look at Old Numbers, and What It Reveals about Numeration F 309

came into the increased contact with one another  
that characterized the Neolithic. In fact, small number- 
words have been reconstructed for Proto-Afroasiatic, 
the hypothetical reconstructed language ancestral to 
Proto-Semitic (and thus, Akkadian) spoken in the Le-
vant before the Neolithic.123 Worked bones with possi-
ble utility as tallies dated to the Late Upper Paleolithic 
have also been found in the Levant.124 These suggest 
that spoken and material forms of numbers were not 
only available before the Neolithic but may have had 
a lengthy prehistory prior to their representation by 
tokens.125

 The technologies used to represent and manipulate  
numerical information—tokens, numerical impressions,  
proto-cuneiform notations, and cuneiform numbers—
have been connected through correspondences of shape, 
size, and quantity, with their meaning anchored by the 
unambiguously numerical nature of cuneiform num-
bers.126 Though these technologies were shared between  
the various societies and cultures that comprised 

lacked the ability to represent sound values, techniques that began 
to appear in the third millennium bc (Hyman, “Of Glyphs and 
Glottography” [2006]). Second, written numbers are semantically 
meaningful without phonography and in fact lose essential qualities 
and capabilities through the visual complexity it adds (e.g., contrast 
the concision and ability to represent numerical and spatial relations 
of 23,115 and twentythree thousand, one hundred and fifteen). This 
meant there had to be reasons to add sound values to numbers. And 
indeed, Akkadian scribes wrote hundred and thousand phonetically 
because these decimal terms lacked concise sexagesimal counter-
parts (Thureau-Dangin, “Sketch of a History” [1939]: 107), and 
as Sumerian became a classical language (Woods, “Bilingualism” 
[2006]), Akkadian scribes recorded the sound values of small num-
bers (e.g., two through ten; see Edzard, “Sumerisch 1 bis 10 in Ebla” 
[1980]), much as someone today might be motivated to learn Latin 
names for Roman numerals.

123 Blažek, “Afroasiatic Migrations” (n.d.); Ehret, Reconstructing 
ProtoAfroasiatic (1995).

124 Overmann, Material Origin (2019), 146–52. While the Pa-
leolithic/early Neolithic artifacts are ambiguous regarding any use 
as tallies, they would have provided “the kind of tactile and visual 
regularity important in numerical patterning” (ibid., “Role of Ma-
teriality” [2016]: 48); textual sources mention tallies in the third 
millennium (Black et al., Electronic Text Corpus, “Debate between 
Grain and Sheep” [2005]: c.5.3.2), unambiguous artifactual tallies 
appear in the first millennium (Henkelman and Folmer, “Your Tally 
Is Full! ” [2016]).

125 Overmann, Material Origin (2019), 127–30. Proto-numbers 
cannot be reconstructed for Sumerian or Elamite, as both are isolates.

126 Amiet, MDP 43 vol. 1 (1972), 67–108; Englund, “Examina-
tion of the ‘Textual’ Witnesses” (2006), “State of Decipherment” 
(2004), and “Texts from the Late Uruk Period” (1998); Friberg, 
“Preliterate Counting” (1994); Nissen, Damerow, and Englund, 
Archaic Bookkeeping (1993).

Mesopotamia, the invention of sexagesimal numeration is 
usually ascribed to the Sumerians,127 an origin war  ranted 
by the strong and persistent decimality of Akkadian 
numbers in particular. Together, these technologies 
were used over a period of several thousand years. This  
temporal span remains impressive even when tokens 
are considered only from the mid-fourth to the late 
third/early second millennia bc, or from the point at 
which associated impressions corroborate their numer-
ical meaning to the point at which their archaeological 
prevalence significantly dwindles, as perhaps replaced 
by a form of abacus.128 While the four technol ogies are  
archaeologically and textually attested as emerging in  
the sequence given,129 concurrent use was significant,  
with tokens persisting as a manipulable technology 
suitable for calculating.130 This was unlike numerical  
impressions, proto-cuneiform notations, and cuneiform  
numbers, which were effectively fixed once they had been  
impressed into clay.

Mesopotamian Accounting

As represented by tokens, numerical impressions, and 
proto-cuneiform notations, archaic Sumerian num-
bers consisted of a general system and over a dozen 
specialized systems for counting specific items (see 
Fig. 6).131 Tokens, the earliest of these numerical tech-
nologies, are understood as numerical counters when 

127 Powell, “Sumerian Area Measures” (1972): 172, claimed that 
“the presence of a sexagesimal system of notation in the archaic texts 
from Uruk and Jemdet Nasr constitute[s] the best—indeed irrefut-
able—evidence that Sumerian is the language of those texts.”

128 Tokens may have been replaced by undifferentiated count-
ers valued solely by their physical placement on a counting surface 
(Woods, “Abacus in Mesopotamia” [2017]), plausibly in conjunc-
tion with the emergence of other simplified/standardized forms 
(e.g., cuneiform numerals and place value) in the late third/early 
second millennium bc (Chrisomalis, Numerical Notation [2010], 
243; Robson, Mathematics in Ancient Iraq [2008], 16, 75–76). For 
an analysis of archaeological prevalence, see Overmann, Material 
Origin (2019), 172–73.

129 The sequence of counting technologies that are the focus here 
consisted of tokens used as numerical counters (prior to 3500 bc), 
envelopes containing tokens (3500–3400 bc), numerical impres-
sions that resembled tokens (3400–3350 bc), and proto-cuneiform 
notations (3300 bc and thereafter) (Englund, “State of Decipher-
ment” [2004], 122, Figure 5.12). Notably, none provides insight 
into spoken numbers.

130 Høyrup, Lengths, Widths, Surfaces (2002), 73, 195–96; Over-
mann, Material Origin (2019), 170–73, 198–99.

131 Nissen, Damerow, and Englund, Archaic Bookkeeping (1993), 
28–29, Figure 28.
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accompanied by corresponding numerical impressions. 
As listed in the Cuneiform Digital Library, the signs 
in token-impression assemblages assigned to the Pre-
Uruk V period (8500–3500 bc) are consistent with 
the general sexagesimal counting sequence (S), bisex-
agesimal counting (B), and the systems for area (G) 
and capacities of grain (Š, Š', and Š"). These assem-
blages were distributed throughout the region, repre-
senting trade and cultural outposts (see Fig. 5). As was 
true of Polynesia, specified counting appears to have 
been used with commodities “important enough to be 
counted with more than sporadic frequency, and at the 
same time . . .  sufficiently abundant to make an abbre-
viation [of the counting process] desirable.”132

 In comparison to the token-impression assemblages, 
proto-cuneiform notations (Uruk V [3500–3350 bc] 
and thereafter) provide insight into an expanded set of  

132 Beller and Bender, “Cognitive Advantages” (2005): 218.

specialized number systems, and accordingly, are used 
here as providing the most detailed insight for the com -
parison with Polynesian counting sequences. As shown 
by the proto-cuneiform notations, the general number 
system had a regular sexagesimal structure comprised 
of an alternating sub-base of ten and base of six,133 with 
signs within each system related through bundling 
(e.g., ten N1 were equivalent to one N14; six N14 to 
one N34; etc.; see Fig. 6). The specialized systems were 
likewise sexagesimal but can be categorized according 

133 Thureau-Dangin, “Sketch of a History” (1939): 102–105. 
The base of a number system is the value used to produce other 
numbers (Comrie, “Numeral Bases” [2013]). For example, in dec-
imal, the number ten is the base, and ten and its multiples (hun
dred, thousand, etc.) are productive. Some number systems also have 
sub-bases, a smaller value with the same productive function. While 
Western decimal numbers lack a sub-base, Roman numerals had a 
sub-base of five, adding V, L, and D (5, 50, and 500) to the decimal 
powers of ten (X, C, and M, or 10, 100, and 1000).

Figure 6—Proto-cuneiform Counting Sequences. Mesopotamian general and derived counting sequences. The derived sequences were 
categorized by how closely they conformed to the general sequence. Unambiguously derived sequences counted discrete objects capable of 
being bundled or counted individually. These sequences were differentiated by what they counted (Purpose column) and the extent of count-
ing; Systems B and B* were further differentiated by the addition of a binary step after sixty that shifted subsequent values upward by a factor 
of two. Metrologically influenced sequences varied more extensively (also see Table 3). These systems involved containers for bulk items like 
grain or oil or continuous extents like area. These sequences reversed the initial bundling of the general sequence, with the next highest value 
above the unit worth six instead of ten. Possibly this reflected an aspect of the counting method, with fractional units perhaps combining to 
a unit that would shift subsequent values to the expected patterning of ten and six (as would be consistent with Figure 4b). Source: redrawn 
from Nissen, Damerow, and Englund (Archaic Bookkeeping [1993], 28–29, Figure 28) and aligned according to Damerow and Englund 
(ATU 2 [1987], 165). Consistent with ATU 2, the specialized sequences for time (U) and dairy products (Db and Dc) are not shown; they 
would be categorized as metrologically influenced.
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to how closely their composition followed the general 
pattern (see Table 3). Systems in the first category 
were unambiguously derived from the general system, 
following it in structure, organization, and bundling 
and deviating from it in regularized ways (e.g., both 
bisexagesimal systems included a binary step after sixty 
that shifted subsequent values upward by a factor of 
two). Systems in the second category conformed less 
to the general system. They were used with commod-
ities counted in bulk like grain and the continuous ex-
tents of area, so their bundling may have influenced 
by metrological relations and considerations. Alterna-
tively, they might indicate adaptations of the counting 
method, analogous to the binary variant of Polynesian 
counting found in Mangareva (see Fig. 3b).
 Like the Polynesian counting sequences, proto- 
cuneiform number systems shared their lowest unit: 
this was the sign N1 and its variants made by adding 
marks like horizontal lines. These number systems also 
comprised relative scales of value, to the extent that 
numerical values cannot always be assigned to them 
with certainty.134 These number systems included poly-
valent, contextually dependent terms, as for example, 
N45 meant 3,600 or had a relative value of ten N14 
or six N50, depending on whether it appeared in Sys-
tem S, Š, or G (see Table 4). Quantity and commodity 
were conjointly represented: the former as repetition, 
the latter as shape and size, and both with reference 
to which signs were present and how they were or-
dered. While this quality has been used to character-
ize ancient numbers as concrete when representation 
was conjoined (tokens and impressions) and abstract 
when it was separated (proto-cuneiform notations and 

134 Nissen, Damerow, and Englund, Archaic Bookkeeping (1993).

cuneiform numbers),135 the Polynesian data suggest 
that, alternatively, conjoined quantity and commod-
ity may have reflected the linguistic differentiation of 
object-specific counting and/or numeral classifiers. It 
is possible that Sumerian number-words were similarly 
differentiated at one time, a feature perhaps lost by the 
time the sound values of number-words were recorded 
in writing.

Mental Calculation

Overall, their parallels with Polynesian numbers sug-
gest that the archaic Mesopotamian number systems 
might well have gained their interesting qualities from 
a method of counting that differed according to the 
commodity being counted. Such an origin would sug-
gest that the ancient numbers possessed not just the in-
tra-system (bundling) relations shown in the numerical 
impressions and early proto-cuneiform notations, but 
inter-system relations as well, with polyvalent terms  
likely differentiated linguistically in a way that tokens 
and notations cannot show because they lack a phonetic  
component. An origin in counting would also suggest 
that the archaic Mesopotamian numbers were likely to 
have been, as Polynesian numbers were, cognitively 
efficient tools for mental calculation. Here the sexa-
gesimal factorability was likely to have been advanta-
geous. However, Sumerian number-words below sixty 

135 E.g., Damerow, Abstraction and Representation (2010), 159–
66, 275–97, “Individual Development” (1988): 133–51, “Number 
as a Second-Order Concept” (1996), and “Prehistory and Cognitive 
Development” (1996); Schmandt-Besserat, Before Writing Vol. 1 
(1992), “Emergence of Recording” (1982), “From Tokens to Tab-
lets” (1981), “Prehistoric Administrative Technologies” (2018), and 
“Token System” (2010).

Table 3—Characteristics of Uruk-period Specialized, Derived Number Systems. Six traits of the Uruk-period specialized, derived num-
ber systems were compared to those of the general system, Sexagesimal System S. As can be seen, unambiguously derived systems conformed 
more closely to the general system, while the metrologically influenced systems were more likely to contain polyvalent, context-dependent 
values. Dashes indicate that a counting sequence lacked the information needed for comparison.

System traits (compared to those  
of the general system, System S)

Derived systems
Unambiguous Metrological

S' B B* Š Š' Š" Š* E G

Lowest unit sign is shared Yes Yes Yes Yes Yes Yes Yes Yes Yes
Lowest unit value is shared Yes Yes Yes No No No No Yes No
10–6 patterning is shared Yes Yes Yes No No No No — No
New bundling values introduced — Yes Yes Yes — Yes Yes — Yes
Polyvalent value No Yes No Yes Yes Yes No Yes Yes
Bundling multiplication is regular — Yes Yes No — No No — No
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were quinary-decimal-vigesimal in structure.136 As a 
result, sexagesimal factorability may have been used 
to express numbers higher than sixty, with numbers 
lower than sixty expressed decimally, analogous to way 
Hawaiian numbers were traditionally expressed (see 
Table 1). This possibility might then position the step 
above sixty—doubled in Systems B and B* and tripled 
in Systems Š, Š", and Š*—as a feature marking the 
shift between the two. It also implies that sexagesimal 
factorability might not have been as pervasive as binary 
factorability was to Polynesian numbers, particularly 
in numbers lower than sixty, leaving the nature of the 
corresponding mental calculations less clear.
 There were also significant differences between the 
two. For example, the archaic Mesopotamian number 
systems are less clearly derived from a single method 
of counting in the way demonstrable for Polynesia. 
While it is possible to construct a sexagesimal variant 

136 Blažek, Numerals (1999), 329; Powell, “Origin of the Sex-
agesimal System” (1972): 7. Sumerian number-words below sixty 
were organized by five, ten, and twenty: Six is glossed as 5 + 1; 
seven, 5 + 2; nine, 5 + 4; thirty, 3 × 10; forty, 20 × 2; and fifty,  
40 + 10. Structuring by five and ten emerges from counting with the 
hands, twenty from recruiting the feet (Epps, et al., “On Numeral 
Complexity” [2012]: 67), typically producing decimal or quinary–
vigesimal number systems.

of the Polynesian counting method, the result neither 
unifies nor explains all the specialized systems found 
in the proto-cuneiform notations, particularly the ones 
influenced by metrology. A single counting method 
would also not explain why the metrologically influ-
enced systems reversed the tensix bundling of the 
general number system. It is possible that fractional 
units were combined into a unit in a way analogous to 
counting with pairs or fours. This would shift some of 
the subsequent values to the expected tensix pattern-
ing, and it would also offset the associated signs from 
those of the general system (as is true in the hypo-
thetical replacement of Polynesian units by token-like 
shapes; see Fig. 4b, sequences 2, 4, and 5). In addition, 
archaic Mesopotamian exponential structure did not 
exhibit the same extensibility as Polynesian counting, 
which may have reached 108 in Mangareva in eastern 
Polynesia and 1010 in Nukuoro, a Polynesian outlier 
in Micronesia.137 Instead, it appears to have expanded 
more slowly, perhaps as occasioned by the competitive 
boasting of kings.138 However, it may also be the case 
that there are currently insufficient data from which to 
reconstruct a unifying counting method for Mesopo-
tamia, one that can account for both the metrological 
variants and things like the dual use of signs for quan-
tity (e.g., N46 in System Š" for grain).

The Material Difference

Crucially, archaic Mesopotamian counting differed in 
its material substrate. Where the enumerated goods 
themselves were used as counters in Polynesia, small 
objects made of clay (tokens) or impressions and nota-
tions made on clay surfaces (writing and its impressed 
precursors) were used in Mesopotamia. Obviously, if 

137 Harrison and Jackson (“Higher Numerals” [1984]: 61) noted 
a Nukuoro term for 1010 but did not specify what it was. Lemaître 
(“Systèmes de Numération” [1985]: 9, Table 5) gave maeaea as the 
Mangarevan term for 108, though Hiroa (Ethnology of Mangareva 
[1938], 417) valued it as 107. The exponential reach of both is con-
sistent with the Proto-Polynesian (PPn) term for 106, *ki(l)u, given 
by Clark (“Proto-Polynesian Numerals” [1999]: 197). Clark also 
questioned the PPn term, not because of its cognate status or geo-
graphic distribution, but rather, on grounds of doubting “whether 
anyone in [Proto-Polynesian] times ever had a million of anything, 
or even counted that high as a mental exercise” (Ibid.). See Bender 
and Beller, “ ‘Fanciful’ or Genuine?” (2006): 38–41 and “Numeral 
Classifiers” (2006): 400–401 for reasons why such terms should be 
accepted.

138 Howorth, “Later Rulers” (1902): 14; Thureau-Dangin, “Nou-
veau Cône” (1900): 383–84.

Table 4—Shared and Polyvalent Signs in the Proto-cuneiform  
Number Systems. Signs were shared by different counting se-
quences with either the same or different value, making the latter 
polyvalent and context dependent. That is, some shared signs may 
have had the same value regardless of the counting sequence in 
which they appeared (e.g., N1, unit), while others acquired a value 
particular to the sequence in which it was used (e.g., N14 was worth 
ten of the unit in Systems S, B, and E but six of the unit in Systems 
Š and G). N46 was unique in having two different values within a 
single counting sequence (Š"), differentiated by position of use; this 
evokes the term varu in Mangarevan binary counting, which has the 
value eight when positioned lower in the sequence and ten eights in 
the higher position.

Sign Systems Remark

N1 S, Š, E, G Shared; same value
N2 S', B Shared; same value
N8 S, B, E, G Polyvalent, context-dependent value
N14 S, B, Š, E, G Polyvalent, context-dependent value
N24 Š', E Polyvalent, context-dependent value
N34 S, B, Š Polyvalent, context-dependent value
N45 S, Š, G Polyvalent, context-dependent value

N46 Š"
Polyvalent; two values within the same  
 system

N48 S, Š Polyvalent, context-dependent value
N50 S, G Polyvalent, context-dependent value
N54 B, B* Shared; same value
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material forms had not been used to represent num-
bers, this ancient numeracy would have remained in-
visible, beyond its influence on descendent number 
systems. But the significance of tokens and notations 
exceeds this, as they enabled numbers to be separated 
from the process of counting.139 Separating numbers 
from the items they counted by means of material 
proxies was at least as significant as separating the rep-
resentation of quantity and commodity, for it helped 
influence numbers toward being conceived as objects 
more defined by their relations to one another than the 
things they enumerated, influencing numbers toward 
becoming a relational system.
 Using these material forms as proxies also afforded 
opportunities for their material properties, relations, 
and capabilities to inform numerical ones.140 For ex-
ample, the manipulability of tokens (and later abacus 
counters141) not only enabled the explication of re-
lations and performance of calculations, but also in-
fluenced the conceptualization of numbers as objects 
which could be manipulated, even when represented 
by fixed notations. Notational concision made feasible 
the accumulation of relational data at volumes well be-
yond those possible with tokens. This would have in-
fluenced numbers toward being conceived in relational 
terms, and calculation toward the increased involve-
ment of relational data as an alternative to manipu-
lating counters. Concision also increased the volume 
of data that could be visually appreciated at one time, 
increasing the potential for recognizing numerical pat-
terns and relations. And the combined use of tokens 
for calculating and notations for recording enabled 
bundling/debundling operations and calculations to 
become much more complex than the limits of human 
memory could afford.
 Writing too would significantly affect how numbers 
were conceived. Handwriting would occasion the neu-
rological reorganization that enables characters to be 
recognized through their features and context rather 
than their resemblance to objects.142 As this phenom-

139 Malafouris, “Grasping the Concept” (2010) and How Things 
Shape the Mind (2013), 106–16.

140 Frege, Foundations of Arithmetic (1953), xv–xvi, 22; Hutchins,  
“Material Anchors” (2005): 1562; also see discussion in Overmann, 
Material Origin (2019), 36–40, 179–227.

141 E.g., undifferentiated counters as used with an abacus 
(Woods, “Abacus in Mesopotamia” [2017]).

142 Coltheart, “Neuronal Recycling Hypothesis” (2014); De-
haene and Cohen, “Cultural Recycling” (2007); Dehaene, et al., 
“Illiterate to Literate” (2015).

enon transformed early writing into a system of liter-
acy,143 it also helped influence numbers toward being 
conceived as entities (as represented and influenced 
by single signs) rather than collections of objects (sets 
of tokens), even though both are composed of mul-
tiple elements (  vs. seven discrete tokens).144 Non- 
numerical writing also allowed calculations to be docu-
mented, codified, and elaborated, allowing them to be  
analyzed and influencing them toward greater com-
plexity. And as calculations were becoming more com-
plex, they were also becoming more dependent on 
both the mental knowledge of numerical relations and 
the use of material forms to record results and visualize 
patterns.
 The comparison with traditional Polynesian count-
ing has yielded a radically different interpretation for  
archaic Mesopotamian numbers. The Polynesian data  
suggest that multiple counting sequences, specific com-
positional patterns, a shared term for a smallest unit 
with variable numerical value, polyvalent terms with 
contextual value, conjoined representation of quantity 
and commodity, and relative scales of value might not 
be, after all, characteristic of non-abstract, rudimen-
tary concepts of numbers used in strict one-to-one 
cor respondence in the manner claimed by Schmandt- 
Besserat and Damerow. Instead, these qualities might 
well indicate fairly elaborate constructs of number. They 
were laden with intra- and inter-system relations, dif-
ferentiated materially and perhaps linguistically as well,  
and fully suited to calculating mentally with number- 
words; the use of tokens, impressions, and notations rep-
resented a further turn toward mathematical elaboration.
 If the ancient object-specific number systems were 
derived from a method of counting, it might be possible  

143 The literacy involved in reading the words in this footnote is a 
cognitive state that emerges when a society handwrites convention-
alized, non-numerical signs at the volume demanded by a bureau-
cratic state over generations; over time, the material form of writing 
changes to reflect incremental behavioral-psychological change in 
its users, distributes this change to new users when they learn to 
read and write, and gains increasing fidelity to language (Overmann, 
“Beyond Writing” [2016]: 290–93 and Material Origin [2019], 
187–95). Literacy in this sense involves the ability to recognize signs 
topologically, which over time relaxes their need to depict and al-
lows them to covary; it differs from “this means that” associations 
between early written forms and semantic ranges, which depend in-
stead on the sign resembling an object (e.g., jar) or conventional 
form (quartered circle).

144 Overmann, “Constructing a Concept” (2018): 476 and Ma
terial Origin (2019), 197.
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to reconstruct that method, and gain new insight 
into token-based accounting as currently understood 
through archaeological means. Admittedly, the endeavor  
will be challenging. Reconstructing the Polynesian count-
ing method involved evidence that is largely unavailable 
for Mesopotamian numbers,145 since counting behav-
iors leave little if any archaeological trace, depictions 
have not been found, and descriptions and lexicons 
were not possible before the emergence of writing. 
Although Sumerian number-words currently provide 
clues to little except finger-counting,146 a possible start-
ing point might be to investigate the possibility that 
object-specific counting was linguistically differentiated  
in a manner similar to that found in central and pe-
ripheral Polynesia. If certain of the specified systems 
(see Fig. 6) are reduced to their basic shapes and sizes 
(see Fig. 7), the removed components might be said 
to specify and multiply, evoking the two functions of 
numeral classifiers and object-specified counting in 
Polynesian languages. That is, in addition to serving 
as conventions differentiating signs in visual language, 
these marks may have represented aspects of spoken 
language that might provide insight into the method 
of counting.
 However, the sound values of Sumerian number- 
words were not recorded for several centuries or more 
after writing emerged: “Our knowledge of the Sume-

145 Overmann, “Curious Idea” (2020): 69–73.
146 Diakonoff, “Some Reflections” (1983): 92–93.

rian series of number words is derived from lexical lists 
written down more than 1200 years after the archaic 
texts. Only the number words from one to ten are at-
tested by two earlier sources, for which the time in-
terval is only a few hundred years.”147 That is, we do  
not have phonetic insight into any Sumerian lexical  
numbers until the early third millennium bc and as 
filtered through Akkadian hands,148 and then only for  
the small numbers (one through ten), which the Poly-
nesian case suggests are less likely to have been mor-
phologically differentiated for object-specified counting.  
Phonetic insight into large Sumerian lexical numbers, 
which are more likely to be morphologically differenti-
ated, is not available until more than a thousand years 
after writing emerged. In the central and peripheral 
portions of Polynesia, over a similar span of time and 
without encountering other languages to any significant 
extent, numeral classifiers had largely disappeared and  
object-specified counting had developed.149 This sug-
gests that by the time writing recorded the sound values 
of Sumerian number-words, little trace of linguistically 
differentiated counting might have remained, especially 
for larger values, potentially leaving the proto-cuneiform  
markings (see Fig. 7) as their only indication.

147 Damerow, “Individual Development” (1988): 144.
148 Civil, “Studies on Early Dynastic Lexicography” (1982): 3–6; 

Edzard, “Sumerisch 1 bis 10 in Ebla” (1980).
149 Bender and Beller, “Numeral Classifiers” (2006): 393.

Figure 7—Proto-cuneiform Shapes, Sizes, and Possible Classifiers. Several of the specialized number systems can be reduced to a vo-
cabulary of basic shapes and sizes by removing modifiers. Once removed, the modifiers can be categorized as performing specifying or mul-
tiplying functions. These functions evoke the similar features in Polynesian number-words and suggest that the marks may have represented 
aspects of spoken language, in addition to serving as conventions differentiating signs in visual language. Specifying marks were moved to the 
rightmost column, while multipliers were removed to the bottom row.
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Concluding Remarks

The notion that “a non-literate culture cannot be ex-
pected to advance mathematics beyond the stage of 
numeral words and counting”150 requires nuance. So-
cieties without writing in any form are not literate, as 
a matter of definition.151 Notations, numerical or oth-
erwise, were unknown in Polynesia prior to European 
contact, and traditional Polynesian numeracy was a 
matter of general and object-specific number-words, 
elaborate counting behaviors, and material forms like  
tallies and the commodities sorted as they were counted.  
Yet Polynesian numbers were relationally complex, and 
their manipulation involved a degree of mental agility 
difficult to match once calculation depends on mate-
rial forms. This numerical elaboration is not surprising, 
since these societies were complex152 and used num-
bers extensively.153

 The Mesopotamian societies which used tokens, nu-
merical impressions, and proto-cuneiform notations to 
count and calculate were also not literate, in the strict-
est sense of the term. Tokens and impressions were not 
handwritten and thus could not occasion the neuro-
logical reorganization needed for literacy; impressions 
were numerical and thus lacked the range of language 
needed to produce literacy; and the non-numerical 
component of proto-cuneiform had not yet accumu-
lated sufficient behavioral-psychological change to 
become a system of literacy, though it was on its way 
to developing as such.154 But all these technologies—

150 Tee, “Mathematics in the Pacific Basin” (1988): 401.
151 Numerical notations need not be written, as they can consist 

of non-written material forms, like beads on an abacus or notches 
on a tally. When they are written but unaccompanied by writing for  
non-numerical language, numerical notations cannot give rise to liter-
acy, as they are only a subset of the language’s vocabulary, lack the 
ambiguity that motivates the inclusion of techniques like phonogra-
phy to specify the word intended, are semantically sufficient without 
sound values, and can be rearranged indefinitely without becoming 
ill-formed or suggesting syntactic and grammatical features of lan-
guage like word order (Overmann, “Beyond Writing” [2016]: 295).

152 The complexity of Polynesian societies has been claimed to 
have “approached the formative levels of the old Fertile Crescent 
civilizations” (Sahlins, “Poor Man, Rich Man” [1961]: 194). This 
may be an underestimation, given their complex social organization, 
political stratification, and technology; the latter is convincingly at-
tested by the distances involved in regional colonization and inter- 
island travel, and the navigation and sailing skills required.

153 Bender and Beller, “Numeral Classifiers” (2006) and “Count-
ing in Tongan” (2007); also see Overmann, “Polynesian Bibliogra-
phy” (2020).

154 Overmann, “Beyond Writing” (2016): 293–96.

notations, impressions, tokens, and the tallies and fin-
gers that preceded them all—were material forms of 
number, capable of allowing numerical information to 
be represented and manipulated. The combination of 
tokens and notations in particular enabled relational  
knowledge to increase to an unprecedented extent, and  
calculations became so complex that they first strained 
and then exceeded the limits of human memory and 
attention, necessarily involving and becoming depen-
dent on material forms for their representation and 
manipulation.
 There is a curious tension in the idea that mathemat-
ics—the seeming height of abstractness in numbers—
gained increased calculational complexity through the 
use of material forms like tokens and notations and the 
relational knowledge they conjointly enabled, while 
losing some of the mental agility implicit to extracting 
and exchanging factors in number-words. This trajec-
tory reaches perhaps its fullest extent in the Western 
mathematical tradition, where numbers have become 
a single sequence characterized by the potential for an 
extremely dense intra-system relatedness; even simple 
algorithms can involve interim steps at volumes impos-
ing substantial if not unsupportable demands on cogni-
tive resources; and calculation relies on material forms 
like notations and calculators to reduce mental effort 
to a manageable level. Of the two case studies consid-
ered here, Polynesian numbers might seem the more 
abstract, given that the absence of notational forms like 
tokens implies a greater dependence on in-the-head 
manipulation. On the other hand, thinking of num-
ber concepts in terms of abstractness and concreteness 
misunderstands their nature, which is always a mix of 
neural activity, material forms instantiating numerical 
information, and behaviors interfacing the two, inde-
pendent of the degree of elaboration achieved in any 
particular number system. What the comparison shows 
is how the incorporation of different material forms al-
ters the respective contribution of these components.
 The comparison also challenges the idea that “num-
ber” is a monolithic construct, one identical to what 
contemporary Western numbers are today.155 This view 
of numbers is partly an effect of what numbers are, 
concepts realized and elaborated through the inter-
action of shared psychological processes, physiological 
characteristics, behaviors, and systematized material 
forms, processes that produce highly similar outcomes 

155 Rotman, Mathematics as Sign (2000), 40.
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cross-culturally.156 It is partly an effect of the asymme-
try inherent in understanding less elaborated numbers 
from the perspective of highly elaborated ones, a sub-
set effect, where the reverse implies absent concepts 
and properties.157 It is also partly an effect of language, 
which does not readily discriminate between the highly 
relational entity that is three in the Western numerical 
tradition; the discrete and ordinally sequenced three in 
Papua New Guinean body-counting158; and the fuzzy 
concept about three in an emerging number system.159 
To this list must now be added the three that has more 
relations than those of ordinal accumulation but fewer 
than the potentially infinite Western set, a category 
that would include both of the case studies considered 
here.
 The comparison of traditional Polynesian and Meso-
potamian numbers challenges the idea of a monolithic 
construct, first by revealing significant differences in 
characteristics like relatedness, and second by show-
ing how these are ultimately traceable to the material 
forms used. The Polynesian number systems had ex-
tensive intra-system relations; these were facilitated by 
the counting method, which both accumulated and 
grouped in a manner analogous to an abacus. The 
counting method also provided a basis for inter-system 
relations, in equating quantities like twenty singles, ten 
pairs, and five fours realized by differences in the unit of 
counting. Yet a device made of commodities is not easy 
to manipulate in the way needed for calculations more 
complex than the simplest arithmetic, and it is certainly 
not persistent in the way needed to display or record 
even a single result.
 As for archaic Mesopotamian numbers, if the intra-  
and inter-system relations between tokens used for 
counting began as a method of counting and associ-
ated number-words similar to those of Polynesian, they 
would ultimately become much more extensively elab-
orated. This was particularly true of the general num-
ber system (analogous to the positive portion of the 
Western number line, absent its anchoring zero) in the 
form of relations like multiplication and reciprocals. 
Where rearranging tokens had entailed losing their 
previous arrangement, recording them with notations 
allowed comparisons of whole-part relations in a way 

156 Overmann, “Constructing a Concept” (2018), 464–65 and 
Material Origin (2019), 43–106.

157 Ibid., 207–209
158 Saxe, Cultural Development (2012).
159 Rooryck, et al., “Mundurucu Number Words” (2017).

that had not been feasible with tokens alone.160 Tables 
of such relations acted as scale models, enabling not 
just the collection of data at volume but their concur-
rent appreciation.161 Visual apprehension of the rela-
tions and the patterns they formed yielded knowledge 
and new conceptualizations of numbers.162 Coupled 
with the material abstraction of numbers away from the 
goods they enumerated, notations and tables and their 
creation and memorization as part of scribal training 
caused numbers to be increasingly conceived in terms 
of their relations, elements of a system in which the 
relations were critical to what numbers were, in the 
same way notes are to music and sounds to language.163

 Ultimately, the ability to understand materially rep-
resented numbers whose elaborational status is poorly 
understood, like those represented by tokens and im-
pressions in the mid-to-late fourth millennium bc, may 
require that they be compared to highly elaborated, 
unwritten number systems like those of Polynesia. The 
key to understanding the latter, in turn, may be exam-
ining not just their numerical structure and linguistic 
expression, but their material substrate as well.
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