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As well known, the WKBJ approximation method provides an 
approximate solution to the Schrödinger equation of a 
quantum mechanical system; but the method fails at the 
classical turning points (classically forbidden region) of the 
system’s potential energy function. Solutions about these 
“inaccessible” regions are derived by the transformation of 
Schrödinger equation to either the Airy or modified Airy 
differential equation. The asymptotic expansion of these 
solutions are appropriately connected (connection formulae) 
with the WKBJ solutions to provide full range solutions and 
these are used to derive the standard energy level formula 
(Semiclassical quantization rule), which is applied to obtain 
the modified semiclassical quantization rule. 
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1. Introduction 
An exact solution of the Schrödinger equation is an impractical 
proposition except for the simplest of potentials. In most cases of 
practical interest, one has to settle for an approximate solution. Thus, 
several methods of approximation have been devised for tackling 
various types of problems in Quantum mechanics. The asymptotic or 
WKBJ approximation provides analytical expressions that pave the 
way for an approximate description of the mechanisms underlying 
some physical phenomena [1-7]. With it one obtains provision of 
simple and good approximate solution to the Schrödinger equation 
that has been widely used for many approximate calculations of 
quantum mechanical quantities [8-21]. In particular, this approximate 
method finds useful applications in theoretical nuclear physics [22-
24]. The condition for the application of WKBJ approximation is not 
satisfied at the regions surrounding the classical turning points of the 
system’s potential energy function. However, transformation of the 
equation of either the Airy or modified Airy differential equation 
provides more accurate solutions at such inaccessible regions. These 
solutions are asymptotically extendable to the regions where the 
WKBJ method is valid, leading to connection formulae. 

The purpose of this paper is to present a method for the 
construction of the WKBJ wavefunctions based on the explicit 
consideration of matching between the results obtained from the 
classically allowed and classically forbidden region which is a pure 
asymptotic approximation technique via the asymptoticity of the Airy 
and modified Airy functions. These connection formulae are later 
used to derive the semiclassical quantization condition and also 
provide its extension to the modified semiclassical quantization 
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condition. The paper is organized as follows. A brief review of the 
WKBJ concepts is presented in section 2; section 3 contains the 
derivation of the connection formulae. Section 4 contains the 
semiclassical quantization condition, while section 5 contains the 
conclusion. 

2. Review of the WKBJ approximation 
methods 

The principle underlying the method is elucidated in the following 
way; the stationary wave equation which involves a one-dimensional 
potential V(x) is 

 ( ) ( )
2

2
2 ( ) 0Ψ + Ψ =

d x K x x
dx

, (1) 

with the local wavenumber 

 ( )
1

2

2

2( ) µ⎧ ⎫= −⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭
K x E V x , if E > V(x) (2) 

 [ ]
1

2

2

2 ( ) ( )µ⎧ ⎫= − =⎨ ⎬
⎩ ⎭

V x E ir x , if E<V(x). (3) 

If V(x) = V0 (a constant), then equation (1) has solution 

 ( )0( ) expΨ = ±x iK x , (4) 

where 

 [ ]
1
2

0 02

2µ⎧ ⎫= −⎨ ⎬
⎩ ⎭

K E V . (5) 
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Equation (4) suggests that if V(x) is no longer a constant but varies 
slowly with x, slow variation of V(x) with x means, that it varies 
appreciably only over a small distances and it does approximate a 
constant potential, i.e., | ( )dV x dx | is small, and provided x is not 
near classical turning point for which we would have [E – V(x)] = 0. 
We may try a solution of equation (1) in the form 

 ( ) ( )expΨ = ⎡ ⎤⎣ ⎦x iu x , (6) 

this converts the linear, time-independent Schrödinger equation for 
( )Ψ x  into the nonlinear Riccati’s equation for the function u(x), i.e., 

 ( ) ( ) ( )2 2′′ ′− = −⎡ ⎤⎣ ⎦i u x u x K x  (7) 

The nonlinearity of equation (7) can be used to develop an iteration 
procedure to obtain the zero-order approximation solution. 

 ( )0 0
0

( )= ± +∫
x

u x K t dt C , (8) 

where C0 is arbitrary constant of integration. Suppose Un(x) is the nth 
order iteration, then on re-writing equation(7). Wehave, 

 ( ) ( ) ( )
1

2 2
1 1

0
+ +′′⎡ ⎤= ± + +⎣ ⎦∫

x

n n nu x K t i u t dt C . (9) 

For n = 0, equation (9) gives 

 ( ) ( ) ( )
1

2 2
1 1

0

′⎡ ⎤=± ± +⎣ ⎦∫
x

u x K t iK t dt C . (10) 

Consequence of this procedure to the correct functions, u(x), demands 
that u1(x) should be close to u0(x). This is possible only if 
 ( ) ( )2′ <<K x K x . (11) 
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If condition (11) holds, then Binomial expansion of the integrand in 
equation (10) gives, 

 1
0

1( ) ( ) [ ( )] ,
2

≈± +∫
x

u x K t dt Ln K x  (12) 

where the constant of integration, C1, can be absorbed into the 
normalization of ( )Ψ x . This first order iteration equation (12) 
constitutes the WKBJ approximation; and leads to the general 
approximate wavefunction. By equation (6), 

 1 2

0 0

( ) [ ( )] { exp[ ( ) ] exp[ ( ) ]}−Ψ = + −∫ ∫
x x

x K x A i K t dt B K t dt . (13) 

Whereas in the classically forbidden region (or classically 
inaccessible region) E < Imin(x), where the wave number K(x) = ir(x). 
Then, the general approximate wave function r(x) > 0 is obtained as, 

 1 2

0 0

( ) [ ( )] { exp[ ( ) ] exp[ ( ) ]}−Ψ = − +∫ ∫
x x

x r x A r t dt B r t dt  (14) 

3. Derivation of the connection formulae 
The validity of equations (13) and (14) depends on the condition (11) 
being satisfied and by virtue of equations (2) and (3), we have 

3
2

2

( ) 2 [ ( )] 1
2

µ
−

′ ⎧ ⎫− <<⎨ ⎬
⎩ ⎭

V x E V x , (15) 

according to E > V(x) or vice-versa. Thus, condition(11) breaks either 
at the classical turning points, where V(x) = E, or anywhere V(x) has a 
very steep gradient, since our iteration procedure already assumed 
that V(x) varies slowly with x, which implies that ( ) 1′ <V x , it 
follows that equations (13) and (14) become invalid around the 
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classical turning points. Hence, the necessity for another approximate 
solution of the Schrödinger equation that is valid near a classical 
turning point. Connection formulae give the correct transfer of the 
approximate solution valid in the classical region, i.e., E > V(x) or 
vice-versa. The formulae also depend on whether ( )′V x is positive or 
negative at such turning point. The connection formulae which relate 
oscillatory and exponential behaviour of the wave forms on the 
opposite sides of the classical turning points can be matched. 

 
Figure 1: Graph of V(x) showing the intervals (a, b) and (c, d) around the turning 
points x1 and x2, where WKBJ approximation is valid. F and H are the classically 
forbidden regions, while G is the classically allowed region. 

In Fig. 1, V(x1) = V(x2) = E, so that the WKBJ approximation is 
invalid in the interval < <a x b  and < <c x d , since V(x) is assumed 
to vary slowly with x, we take V(x) to be a linear function of x in 
( , )a b  and ( , )c d ; which are respectively neighbourhoods of the 
turning points x1 and x2. For 1< <a x x , we expand V(x) in power 
series about x1 and retain only the first two terms to give 

1 1 1( ) ( ) ( ) ' ( ) ( )≈ − − = + −V x V x x x V x E x x F  (16) 
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Where 1( )′=F V x , equation (16) is the required linear 

approximation of V(x) in 1( , )a x  and its use in equation (1) gives 

12

2( ) ( ) ( ) 0µ′′Ψ − − Ψ =
Fx x x x . (17) 

The substitution 
1

3

12

2 ( )µξ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

F x x  , (18) 

transforms equation (17) into Airy differential equation 

( ) ( ) 0.ξ ξ ξ′′Ψ − Ψ =  (19) 

In a similar fashion, for x1<x<b 

1( ) ( ) .= − −V x E x x F  (20) 

Then, equation (1) becomes 

( ) ( ) 0η η η′′Ψ + Ψ = , (21) 

with 

  
1

3

12

2 ( )µη ⎛ ⎞= −⎜ ⎟
⎝ ⎠

F x x . (22) 

 Equation (21) is the Modified Airy differential equation and has 

general solution [25] 
3 31 1

2 2 2 2
1 1

3 3

2 2( ) ( ) ( )
3 3

η η η η η−Ψ = +A J B J  (23) 
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where ( )η±nJ  are the independent solutions of Bessel’s differential 

equation of order 1/3; with A and B representing the arbitrary 

constants of integration. From equations (18) and (22), it is easily 

seen that: 

.η ξ= −  (24) 

Therefore, the solution of equation (19) is: 

3 31
2 2 2

1 1
3 3

2 2( ) ( ) ( )
3 3

ξ ξ ξ ξ−
⎡ ⎤Ψ = − +⎢ ⎥⎣ ⎦

A I B I , (25) 

where ( )±nI x  satisfies the Modified Bessel’s differential equation 

of order n. With the use of the asymptotic expansions of Jn(x) and 

In(x) [25, 26] and the facts that Ψ(ξ) must be normalized (for Ψ(ξ) 

to be normalized, A = B), then, the above equation becomes 
31

4 2
0

2( ) exp( )
3

ξ ξ ξ
−

Ψ = −B , (26) 

where 

0
3

2 π
=

BB , (27) 

 is an arbitrary constant. 

Similarly, putting A = B and using the asymptotic expansion of 

( )±nJ x  [25, 26] in equation (23) gives 
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31
4 2

0
2( ) 2
3 4

πη η η
− ⎡ ⎤Ψ = −⎢ ⎥⎣ ⎦

B Cos . (28) 

Equations (26) and (28) give the connected formula from region 

F(x<x1) (i. e. classically inaccessible region) to region G(x1<x) 

with B0 = 1 as 

1

1

3 31 1
4 2 4 22 2exp[ ] 2

3 3 4
πξ ξ η η

− −

<
<

⎡ ⎤− → −⎢ ⎥⎣ ⎦x x
x x

Cos .  

(29) 

Now, using equations (16), (18) and (3) in equation (29), we have 

the connection formula as, 

1

1

1 1
2 2[ ( )] exp[ ( ) ] 2[ ( )] ( )

4
π− − ⎡ ⎤

− → −⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫
x x

x x

r x r t dt K x Cos K t dt ,

 (30) 

so also, the second connection formula at x1 can be obtained as: 

1

1

1 1
2 2[ ( )] exp[ ( ) ] [ ( )] ( ) .

4
π− ⎡ ⎤

− ← −⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫
x x

x x

r x r t dt K x Cos K t dt

 (31) 

In the similar manner, the two connection formulae at x2 are 

obtained as: 
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2

2

1 1
2 22 [ ( )] ( ) [ ( )] exp[ ( ) ]

4
π− −⎡ ⎤

− ← −⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫
x x

x x

K x Cos K t dt r x r t dt

 (32) 

and 

2

2

1 1
2 2[ ( )] ( ) [ ( )] exp[ ( ) ]

4
π− −⎡ ⎤

− → −⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫
x x

x x

K x Cos K t dt r x r t dt . 

 (33) 

4. SEMICLASSICAL QUANTIZATION 

 CONDITION: BOHR-SOMMERFELD 

 QUANTIZATION CONDITION. 
A simple example of the application of the WKBJ approximation 

is presented here that served as a derivation of the lowest-order 

Bohr-Sommerfeld quantization rule [7, 13, 16, 27, 28]. The aim is 

to find the energy levels of a particle moving in the 0ne-

dimensional potential well as shown in Fig. 1. For any assumed 

energy level E, there are just two turning points of the classical 

motion such that V(x1) = V(x2) = E. Consider equation (30) which 

is the connection formula at the classical turning point x1 (i.e. the 

formula that connects the solution at the classically allowed region 

with the solution at the classically forbidden region), if 
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11
2

1 1 1( ) [ ( )] exp[ ( ) ],α
−

Ψ = <∫
x

x

x r x r t dt x x  (34) 

this implies that 

1

1
2

2 2 1 2( ) 2 [ ( )] ( ) ,
4
πα

− ⎡ ⎤
Ψ = − <⎢ ⎥

⎢ ⎥⎣ ⎦
∫
x

x

x K x Cos K t dt x x  (35) 

and from equation (32) which is the connection formula at the 

classical turning point x2, if 

2

1
2

3 3 2( ) [ ( )] exp[ ( ) ],α
−

Ψ = − <∫
x

x

x r x r t dt x x , (36) 

then 
21

2
4 4 1 2( ) [ ( )] [ ( ) ],

4
πα

−
Ψ = − <∫

x

x

x K x Cos K t dt x x .  (37) 

Where ( 1, 2,3, 4)α =i i  are non-zero arbitrary constants. 

Hence, in the interval x1<x<x2 we have Ψ2(x) = Ψ4(x). 

Since
1

2[ ( )] 0,
−

≠K x  

  
2 2

1 1

( ) ( ) ( )= − +∫ ∫ ∫
x xx

x x x

K t dt K t dt K t dt  . (38) 

We can write that: 
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2 2

1 1

[ ( ) ] {[ ( ) ] [ ( ) ]}
4 4 2
π π π

− = − − −∫ ∫ ∫
x xx

x x x

Cos K t dt Cos K t dt K t dt  

1

( 1) [ ( ) ] ,
4
π

= − −∫
x

n

x

Cos K t dt  (39) 

provided 
2

1

[ ( ) ] ; 0,1, 2,3...
2
π π− = =∫

x

x

K t dt n n  , (40) 

which implies that 
2

1

4 2[ ( ) ] ( 1) [ ( ) ]
4 4
π πα α− = − −∫ ∫

x x
n

x x

Cos K t dt Cos K t dt   (41) 

i.e. 

4 2( 1)α α= − n . (42) 

Equations (40) and (42) are the conditions for which 

2 4( ) ( )Ψ = Ψx x  in x1<x<x2; in particular equation (40) is re-written 

as : 
2

1

1
2 1{2 [ ( )]} ( ) ; 0,1,2,3..

2
µ π− = + =∫

x

x

E V t dt n n  (43) 

or classically, 



 Apeiron, Vol. 12, No. 2, April 2005 213 

© 2005 C. Roy Keys Inc. — http://redshift.vif.com 

1 12 ( ) ( ) , 0,1,2,3,...
2 2

π= + = + =J n n h n   (44) 

Where 

 
2

1

( ) 2 ( )= =∫ ∫
x

x

J P t dt P t dt  . (45) 

Which is the required semiclassical quantization rule, which can be 
used to determine the allowed energy values E of a given potentials. 

As earlier stated WKBJ approximation is a semiclassical 
approximation, since it is expected to be most useful in the nearly 
classical limit of large quantum numbers. The method will not be 
good for, say, the first few lowest states, so in order to overcome this 
shortcomings there is a need for a modified semiclassical quantization 
condition. For a particle oscillating between the two classical turning 
points x1 and x2, we obtain the semiclassical quantization condition 
by requiring that the total phase during one period of oscillation to be 
an integral multiple of 2π; [13] such that 

 1 2 2φ φ π− − =
J n , (46) 

where 1φ  is the phase loss due to reflection at the classical turning 

point x1 and 2φ  is the phase loss due to reflection at x2. Equation 

(46) becomes 

 
2

1

1 2
2 ( ) 2 .φ φ π− − =∫

x

x

P t dt n  (47) 
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Taking 1φ and 2φ  to be equal to 
2
π  leads to the modified semiclassical 

quantization rule, i. e. 

 
2

1

1 22 ( )( ) ( ) ;
4

φ φτ π τ
π
+

= + =∫
x

x

P t dt n , (48) 

where τ is the Maslov index, which denotes the total phase loss 

during one period in units of 
2
π . It contains contributions from the 

phase losses 1φ  and 2φ  due to reflections at points x1 and x2, 

respectively. It is pertinent to note that taking 1φ  = 2φ  = 
2
π  and an 

integer Maslov index 2τ =  in equation (48), we have the familiar 
semiclassical quantization rule i. e. equation (43). 

2. 5. Conclusion 
We have presented a method for the construction of WKBJ 
wavefunctions based on the explicit consideration of matching 
between the solutions obtained from classically allowed and 
classically inaccessible regions which involves a pure asymptotic 
approximation technique. The connection formulae derived are 
applied to obtain the Bohr-Sommerfeld quantization rule (Standard 
WKBJ quantization rule) and also, this quantization condition is 
extended to obtain the modified semiclassical quantization rule which 
involves phase losses at the classical turning points. 

It is obvious that the modified semiclassical quantization rule will 
produce more accurate results than familiar (Standard) WKBJ 
quantization rule. To demonstrate the efficiency of this method, one 
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can apply this method to find the quantized energy of the Pöschl-
Teller potential, Cornell potential and Wood-Saxon potential. 
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