Skip to main content
Log in

Quantum Reality and Measurement: A Quantum Logical Approach

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The recently established universal uncertainty principle revealed that two nowhere commuting observables can be measured simultaneously in some state, whereas they have no joint probability distribution in any state. Thus, one measuring apparatus can simultaneously measure two observables that have no simultaneous reality. In order to reconcile this discrepancy, an approach based on quantum logic is proposed to establish the relation between quantum reality and measurement. We provide a language speaking of values of observables independent of measurement based on quantum logic and we construct in this language the state-dependent notions of joint determinateness, value identity, and simultaneous measurability. This naturally provides a contextual interpretation, in which we can safely claim such a statement that one measuring apparatus measures one observable in one context and simultaneously it measures another nowhere commuting observable in another incompatible context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970)

    Article  MATH  ADS  Google Scholar 

  2. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–845 (1936)

    Article  Google Scholar 

  3. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature (London) 121, 580–590 (1928)

    Article  MATH  ADS  Google Scholar 

  4. Davies, E.B.: Quantum Theory of Open Systems. Academic, London (1976)

    MATH  Google Scholar 

  5. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239–260 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  7. Gudder, S.: Joint distributions of observables. J. Math. Mech. 18, 325–335 (1968)

    MATH  MathSciNet  Google Scholar 

  8. Heisenberg, W.: The Physical Principles of the Quantum Theory. University of Chicago Press, Chicago (1930). [Reprinted by Dover, New York (1949, 1967)]

    MATH  Google Scholar 

  9. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Ozawa, M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79–87 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  12. Ozawa, M.: Physical content of Heisenberg’s uncertainty relation: Limitation and reformulation. Phys. Lett. A 318, 21–29 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Ozawa, M.: Uncertainty principle for quantum instruments and computing. Int. J. Quantum Inf. 1, 569–588 (2003)

    Article  MATH  Google Scholar 

  14. Ozawa, M.: Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003) (6 pages)

    Article  ADS  Google Scholar 

  15. Ozawa, M.: Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys. (N.Y.) 311, 350–416 (2004)

    Article  MATH  ADS  Google Scholar 

  16. Ozawa, M.: Perfect correlations between noncommuting observables. Phys. Lett. A 335, 11–19 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Ozawa, M.: Quantum perfect correlations. Ann. Phys. (N.Y.) 321, 744–769 (2006)

    Article  MATH  ADS  Google Scholar 

  18. Ozawa, M.: Simultaneous measurability of non-commuting observables and the universal uncertainty principle. In: Hirota, O., Shapiro, J., Sasaki, M. (eds.) Proc. 8th Int. Conf. on Quantum Communication, Measurement and Computing, pp. 363–368. NICT Press, Tokyo (2007)

    Google Scholar 

  19. Ozawa, M.: Transfer principle in quantum set theory. J. Symb. Log. 72, 625–648 (2007)

    Article  MATH  Google Scholar 

  20. Takeuti, G.: Quantum set theory. In: Beltrametti, E.G., van Fraassen, B.C. (eds.) Current Issues in Quantum Logic, pp. 303–322. Plenum, New York (1981)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanao Ozawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozawa, M. Quantum Reality and Measurement: A Quantum Logical Approach. Found Phys 41, 592–607 (2011). https://doi.org/10.1007/s10701-010-9462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9462-y

Keywords

Navigation