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Abstract

Various combinations of temporal logics, epistemic and doxastic logics,
and action logics have been used to reason about (groups of) agents in
social situations. A key issue that has emerged is how best to represent and
reason about the underlying protocol that governs the agents’ interactions
in a particular social situation. In this paper, we propose a PDL-style logic
for reasoning about protocols under imperfect information.

Our paper touches on a number of issues surrounding the relationship
between an agent’s abilities, available choices and information in an interac-
tive situation. The main question we address is under what circumstances
can the agent commit to a protocol or plan, and what can she achieve by
doing so?

Keywords: Epistemic Temporal Logic, Logics of Rational Agency

1 Introduction and Motivation

There is a growing literature using different (multi-)modal logics to reason about
communities of agents engaged in some form of social interaction. In particular,
various combinations of temporal logics, epistemic and doxastic logics, action log-
ics and preference logics have been studied in this context1. A key issue that has
emerged is how best to represent and reason about the underlying protocol that
governs the agents’ interactions in a particular social situation.

∗Tilburg Center for Logic and Philosophy of Science, e.j.pacuit@uvt.nl
†s.e.simon@uva.nl
1A complete survey of these “logics of rational agency” is outside the scope of this paper.

The interested reader can consult [46, 51, 29] for a discussion and for references to the relevant
literature.
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Intuitively, a protocol describes what the agents “can” or “cannot” do (say,
observe) in a social interactive situation. This leads to substantive assumptions
about the formal model, such as which actions (observations, messages, utter-
ances) are available (permitted) at any given moment. These assumptions can be
roughly categorized according to the different uses of “can”:

1. To describe physical, temporal or historical possibilities: A typical example
is the assumption an agent cannot receive a message unless another agent
sent it earlier. Such assumptions limit the options available to the agents at
any given moment.

2. To describe the agents’ abilities, or skills: The options available to an agent
at any given moment are defined not only by what is “physically possible,”
but also by the agent’s capacity to perform various actions. For example,
“Ann can throw a bulls-eye” typically means that Ann has the ability to
(repeatedly) throw a bulls-eye.

3. To describe compliance to some type of norm: The social or conversational2

norms at play in the interactive situation being modeled (i.e., the “rules of
the game”) impose further constraints on the options available to each agent.
For example, common conversational rules include: “Do not blurt everything
out at the beginning”; “Do not repeat yourself”; “Let others speak in turn”;
and “Be honest.” Imposing such rules restricts the legitimate sequences of
possible statements.

So, a protocol encodes not only which options are feasible, but also what is per-
missible for the agents to do or say. Of course, an interesting and important
component of a logical analysis of rational agents is to disambiguate these differ-
ent meanings of “can” (cf. [20, 49, 8, 14, 7]). In this paper, we take a more abstract
perspective in which a protocol simply identifies a subtree from the “grand stage”
of all possible sequences of events that could take place in an interactive situation.

A number of authors have forcefully argued that the underlying protocol is an
important component of any analysis of (social) interactive situations and should
be explicitly represented in a formal model (cf. [9, 47, 33, 21, 53, 54]). Indeed,
much of the work over the past 20 years using epistemic logic to reason about
distributed algorithms has provided interesting case studies highlighting the in-
terplay between protocol analysis and epistemic reasoning (an important example
here is the seminal paper by Halpern and Moses on the “generals problem” [16]).

The central question of this paper is what do the agents “know” about the
underlying protocol, and how is this reflected in the logic used to reason about

2See [33, Section 6] for a discussion of Gricean norms in this context.
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social interactions? A typical assumption is that there is a fixed, global protocol
that all the agents have (explicitly or implicitly) agreed to follow (and this is
commonly known). This is the assumption in the epistemic temporal logics, as
discussed by Parikh and Ramanujam [33], Halpern and Moses [16], van Benthem
et al. [47, Section 4], among many others ([9, 46] are textbook presentations of this
literature). These logical systems use linear or branching time models with added
epistemic structure induced by the agents’ different capacities for observing events.
The models provide a “grand stage” where histories of some social interaction
unfold constrained by an underlying protocol. Thus, the protocol is represented
extensionally in the models as a set of histories (sequences of events)3. From the
point of view of the logical systems that have been developed to reason about
these structures (e.g., as discussed in [17, 48, 47]), the protocol is only implicitly
represented, for example, with statements of the form “Fϕ” meaning that “ϕ is
true at some moment in the future (after the agents perform actions consistent
with the protocol).”

In this paper, we develop a logical framework where protocol(s) are “first-class
citizens” (cf. [43]). This provides a local perspective where simple protocols can
be combined to construct more complex ones. Thus, we drop the assumption
that there is a single, fixed protocol and consider situations where the protocol is
created “as needed.” A number of authors have suggested different variations of
propositional dynamic logic (PDL) to reason about protocols, or strategies, from
this local, “constructive” point of view (for example, see [9, 43, 48, 53, 55]). The
idea is that PDL-action expressions explicitly describe different protocols. Under
this interpretation, the PDL formula [π]ϕ has the interpretation “ϕ is guaranteed
to be true by following the protocol π.” Here, “following the protocol π” means
that agent(s) makes choices so that the resulting sequence of events matches π.

We start with a single agent who, in each possible state, can choose from a
finite set of actions (the actions she “can” perform in the sense of points 1 and 2
above). The many-agent case is discussed in Section 5. Each action corresponds
to a (possibly nondeterministic) transition from the current state to a new state,
and there may be different actions available at different states. In other words, we
assume that the agent is in a labeled transition system, which we call an arena.
The arena describes the actions that are available at each state and the possible
consequences of each action. The following is an example of an arena:

3cf. [52], where the models are generated by unfolding some multi-agent finite state machine.
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s0

s1 s2

s3 s4 s5

a b

c d c d

A protocol is a tree with labels from the (finite) set of possible actions. We are
interested in what properties the agent(s) can guarantee will be true by adopting
a given protocol. The idea is that adopting a protocol at a state restricts the
paths that the agent will follow from that state. In general, adopting a protocol
does not commit the agent(s) to a single course of action, but, rather, focuses
the agent’s(s’) attention on the “relevant” decision problems. Thus, “adopting a
protocol” simply amounts to “committing to a plan,” something that is crucial for
an autonomous (rational) agent (this is argued most forcefully by Bratman [3]).
In his influential book, Michael Bratman argues, inter alia, that

plans help make deliberation tractable for limited beings like us. They
provide a clear, concrete purpose for deliberation, rather than merely
a general injunction to do the best. They narrow the scope of the
deliberation to a limited set of options. And they help answer a ques-
tion that tends to remain unasked within traditional decision theory,
namely; where do decision problems come from? [3, pg. 33]

One contribution of our paper is to explore the conditions under which agent(s)
can engage in such (future-directed) planning (cf. [6, 28]). We focus on structural
properties of the interactive situation (i.e., what the agents can do) and what the
agents “know” about the decision problems they face. We leave for future work
how to incorporate the agents’ motivating attitudes (e.g., desires, goals, wishes)
into our logical analysis. Thus, we focus on when the agent(s) can (implicitly or
explicitly) agree to adopt a protocol, or commit to a plan, instead of why the
agent(s) would want to agree to a protocol, or plan.

Our first observation is that it is important to interpret the PDL actions ex-
pressions over finite trees rather than paths. In other words, our basic actions
expressions denote finite trees instead of the usual one-step actions (cf. [36]). For
example, suppose that the agent is in state s0 in the above arena and consider
the protocol “either choose c or choose d.” This protocol gives only partial infor-
mation about what actions to follow at a given state (e.g., the protocol does not
offer any advice about what to do at s0). This protocol can be described by the
PDL expression (a ∪ b); c ∪ (a ∪ b); d. Note that every path in the above arena
is consistent with this protocol, so we can say that this protocol is enabled at s0.
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However, as Johan van Benthem points out [46], this way of thinking about the
protocol misses a crucial point: The agent must commit to do either c or d inde-
pendent of which action is chosen at state s0. In other words, by committing to
this protocol (at s0), the agent must choose between the following two restrictions
on future choices:

s0

s1 s2

s3 s4

a b

c c
-or-

s0

s1 s2

s4 s5

a b

d d

This distinction is not important if we are interested in only the states that can
result by following this protocol—in this case, {s3, s4} ∪ {s4, s5}. However, it is
becomes important when constructing complex plans from simpler ones using the
regular operations of PDL (union ∪, concatenation ; and Kleene star ∗) or if an
agent conditions on the plans of another agent (or her future self).

An interesting feature of allowing branching in atomic programs is that we can
represent a choice between a and b in two different ways. The picture on the left
denotes the atomic tree consisting of two branches, one labeled with a and the
other with b. The picture on the right is a complex program built using the union
operator from two atomic trees, each containing only one branch.

a b v.s. a b
⋃

These two programs have very different interpretations corresponding to different
ways of understanding what it means for an agent to commit the plan: do a or
do b. On the first interpretation, the agent commits to choosing between actions
a or b when the time comes (possibly ignoring the other options that may be
available to the agent at that moment). On the second interpretation, the agent
must choose between two future courses of actions: doing a or doing b. The point
is that a and b each may lead to a different set of states.

Our main contribution in this paper is to analyze different ways in which a
protocol “can” be adopted (by either a single agent or a group of agents) taking
each agent’s point of view into account. Since we assume that actions may be
nondeterministic, there may be many ways in which a protocol can be “realized”
at a position in an arena. This creates uncertainty for the agent since, in general,
she may not know which state results from a particular action. However, there
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may be other sources of imperfect information. For example, the agent may have
only limited memory or observational power, or the agent may be uncertain about
the exact “starting position” or initial state of the situation. Thus, at certain
positions in the arena, for whatever reason, it may appear to the agent that she
is in a different position or set of positions. For example, consider the following
situation where the agent cannot distinguish between nodes s1 and s2 and the
protocol pictured to the right (do a followed by c or do b followed by d):

s0

s1 s2

s3

a b

c d
a b

c d

This protocol is clearly enabled in the situation without the uncertainty relation
between s1 and s2. However, in the above situation at s0, the agent cannot agree
to “knowingly” follow the protocol since she is uncertain about the actions that
are available at states4 s1 and s2.

Sections 2 and 3 introduce our formal models (an arena (with imperfect in-
formation) and a protocol) and discusses two key definitions: what it means for
a protocol to be enabled (Definition 2.4) and what it means to be subjectively
enabled (Definition 3.3). Section 4 develops a PDL-style logic for reasoning about
what agents can achieve in arenas by committing to protocols, or plans, with a
complete axiomatization provided in Theorem 4.8. Section 6.2 compares our logic
to similar logical frameworks, and Section 5 focuses on extending our analysis to
the many-agent situation.

2 Preliminaries: Arenas and Protocols

The definitions in this section are standard and are included to make the paper
self-contained and to fix notation (the key notions are Definitions 2.2, 2.3 and 2.4).

Basic protocols. As discussed in the previous section, protocols are finite labeled
trees. We first settle on notation for finite trees. Let Σ be a finite set whose
elements are called actions. A Σ-labeled (finite) tree T is a tuple (S, {⇒a}a∈Σ, s0)
where S is a (finite) set of nodes, s0 ∈ S is the root, and for each a ∈ Σ, ⇒a⊆

4Alternatively, we can say that the agent forgets at state s1 (and s2) the choice that was
made at state s0.
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S × S is the edge relation satisfying the usual properties (we write si⇒a sj for
(si, sj) ∈⇒a):

1. irreflexive: for each a ∈ Σ and s ∈ S, it is not the case that s⇒a s;

2. antisymmetric: for each a ∈ Σ and s, t ∈ S, if s⇒a t then it is not the case
that t⇒a s; and

3. unique predecessor: for each s ∈ S with s 6= s0 there is a unique t such that
t⇒a s for some a.

For a node s ∈ S, let A(s) = {a ∈ Σ | ∃s′ ∈ S where s⇒a s
′} denote the set of

actions available at s. A node s is called a leaf node if A(s) = ∅, and the set of all
leaf nodes in the tree is denoted by frontier(T ). For a set X and a finite sequence
ρ = x1x2 . . . xm ∈ X∗, let last(ρ) = xm denote the last element in this sequence
and first(ρ) = x1 the first element. We extend this notion to a set Y ⊆ X∗ as
last(Y ) = {x | ∃ρ ∈ Y with last(ρ) = x}. The following definition is standard:

Definition 2.1 (Paths) A path in the tree T = (S, {⇒a}a∈Σ, s0) is an alternat-
ing sequence of nodes and actions ρ = s0a0s1a1 · · · ak−1sk satisfying the following
condition: for all j : 0 ≤ j < k, we have sj⇒aj sj+1. The length of a path ρ,
denoted len(ρ), is the number of actions appearing in ρ. A path ρ is maximal in
T if first(ρ) = s0 and A(last(ρ)) = ∅. Let Paths(T ) denote the set of all maximal
paths in T . For ρ = s0a0s1a1 . . . sk, let head(ρ) = a0 and tail(ρ) = s1a1 . . . sk. /

In some cases, it is convenient to define a path as a sequence of states (or actions).
For example, we say a sequence of states σ = s0s1 · · · sk is a path of states if
there are actions a0, . . . , ak−1 such that s0a0s1a1 · · · ak−1sk is a path (define a path
of actions similarly). We can use these definitions to define the height of a finite
tree T (the length of the longest path): height(T ) = max{len(ρ) | ρ ∈ Paths(T )}.
Note that the above labeled trees may be nondeterministic since two edges from
the same node can have the same label (i.e., there may be distinct nodes s, s′ and
s′′ such that s⇒a s

′ and s⇒a s
′′). However, if the tree is intended to represent

a protocol or plan that an agent has committed to follow, then it is natural to
restrict attention to deterministic trees:

Definition 2.2 (Basic Protocol) A finite tree T = (S, {⇒a}a∈Σ, s0) is called a
(basic) protocol if it is deterministic: for each s, s′, s′′ ∈ S and a ∈ Σ, if s⇒a s

′

and s⇒a s
′′ then s′ = s′′. /

Finite arenas. We model an interactive (or decision-theoretic) situation in a
standard way as a labeled transition system, which we call an arena (or finite
state machines, following standard terminology in theoretical computer science
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literature, or a frame, following standard terminology in the modal logic litera-
ture).

Definition 2.3 (Finite Arena) Let W be a nonempty finite set, whose elements
are called positions or states, and Σ a finite set of basic actions. An arena is
a structure G = (W, {→a}a∈Σ) where for each a ∈ Σ, →a ⊆ W ×W . Following
standard notation, we write w→a v if (w, v) ∈ →a . /

The above notation for available actions and paths (Definition 2.1) is readily
applied to finite arenas. Finite arenas are “third-person” models of the interactive
situation describing:

1. all available choices for the agent(s) at each state (for each state s, this is
the set A(s)); and

2. the sequence of all possible decision problems the agent(s) will encounter
(via the transitions given by →a for each a ∈ Σ).

A protocol or plan restricts the available choices for the agent(s). Intuitively,
if an agent agrees to follow a finite protocol, then she commits to restricting her
choices to all and only those actions compatible with the protocol. Of course, not
all protocols can be followed in any situation. This leads us to the key notion
of a protocol being enabled at a state u in an arena. If there is no uncertainty
in the arena, then the formal definition of a protocol being enabled is completely
straightforward: A protocol T is enabled at u in G if T can be embedded in the
unwinding of u. We give the formal details of this definition below.

• Suppose that T = (S, {⇒a}a∈Σ, s) and T ′ = (S ′, {⇒′a}a∈Σ, s
′). We say that

T can be embedded in T ′, denoted T v T ′, if there is an injective function
f : S → S ′ such that for all a ∈ Σ and s, t ∈ S, s⇒a t iff f(s) ⇒′a f(t).

• Suppose that T = (S, {⇒a}a∈Σ, s) can be embedded in T ′ = (S ′, {⇒′a
}a∈Σ, s

′) (with embedding f). The tree5 (f [S], {⇒′′a}a∈Σ, f(s)) where for
a ∈ Σ, ⇒′′a is the relation⇒′a ∩ (f [S]× f [S]) is called a restriction of T ′ to
T and is denoted T ′ |\ T . If T is a protocol and T ′ and arbitrary tree, then,
since T is deterministic and T ′ is nondeterministic, there may be more than
one embedding of T into T ′. In such a case, let the union of the restrictions
be the restriction of T ′ by T .

• Let G = (W, {→a}a∈Σ) be an arena. The unwinding, or tree unfolding,
of G at state u the tree Tu = (Su, {⇒u

a}a∈Σ, su) where 1. Su is the set of all

5Recall that for X ⊆ S, f [X] = {f(s) |s ∈ X}.
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paths of nodes starting at u (Su = {x0x1 · · · xn | for each i = 0, . . . , n xi ∈
W where x0 = u and x0x1 · · ·xn is a path of states in G} (note that Defini-
tion 2.1 can be applied to arenas as well as to trees), 2. ux1 · · ·xn ⇒u

a

ux1 · · ·xnxn+1 iff xn→a xn+1, and 3. su = (u) (i.e., the path consisting of
the single state u). Note that, in general, the tree unfolding Tu will be a
nondeterministic tree.

Definition 2.4 (Enabled) Suppose that T is a basic protocol and that G =
(W, {→a}a∈Σ) is an arena. We say that T is enabled at u, denoted enabled(t, u),
if T can be embedded in Tu. /

Intuitively, if a protocol T is enabled at a state u in an arena G, then it is
(physically, objectively) possible for the agent to agree to follow T . Of course, this
does not necessarily mean that the agent knows (or believes) that she can follow
T ; the agent wants to follow T ; or that it is in the agent’s interest to follow T .

3 Imperfect Information

A protocol being enabled simply means that the protocol is feasible— i.e., physi-
cally possible. In this section, we explore a different sense in which a protocol is
“possible,” one that takes into account the agent’s point of view. Our first task is
to extend the definition of an arena with an explicit representation of the agent’s
“point of view” at each position in the arena. As is standard in the epistemic
logic literature, we use a relation on the set of states in an arena to represent the
agent’s uncertainty about her position in the arena. In general, there are many
sources of this uncertainty: For example,

1. if action a is nondeterministic, then the agent may be uncertain about which
state will result by choosing a;

2. the agent may have some prior (partial) information about the interactive
situation; or

3. the agent may be limited in what she can observe and what she remembers.

In many situations, it is interesting to distinguish between these different sources,
but for now, we keep things simple by describing the agent’s point of view at each
state.

Definition 3.1 (Arena with Imperfect Information) An arena with im-
perfect information is a structure GI = (W, {→a}a∈Σ,;) where (W, {→a}a∈Σ)
is a finite arena and ;⊆ W ×W . /

9



For each position u in an arena, let I(u) = {w | u ; w} be the agent’s “point of
view.” A useful way of thinking about the ; relation is as special “ε-transitions”6

(well-studied in the automata-theoretic literature). They represent transitions
that the agent does not have control over, and so they cannot be ruled out by
committing to a protocol or plan. An important conceptual point to keep in mind
is that ; is not the same “type” of transition as the Σ-labeled action transitions.
Rather than the agent deciding whether or not to follow such a transition, ε-
transitions are externally imposed “silent” transitions that generate uncertainty.

The above models do not impose any structural properties on the action and ;

relations. However, a number of properties discussed in the literature are natural
in many situations. Suppose that the agent is in position w but “thinks” she is
in position v (i.e., w ; v), and consider an action a ∈ A(w) ∩A(v). In this case,
the agent is aware that she can do a and will not fail. Furthermore, unless there
is a “miracle,” doing action a should not remove the agent’s “uncertainty” (e.g.,
the ; relation). Formally,

• No Miracles: For all a ∈ Σ and all w, v, w′, v′ ∈ W , if w ; v, w→aw
′,

and v→a v
′, then w′ ; v′.

Imposing no miracles means that the basic actions are assumed to be “uninfor-
mative”. No miracles covers the situation when a ∈ A(w) ∩ A(v) (recall that
A(w) is the set of actions available at w). The remaining interesting situations
are when an action a is available only in one of the states. First, if a ∈ A(w), but
a 6∈ A(v), then the agent does not realize that a is actually available. Second, if
a ∈ A(v), but a 6∈ A(w), then the agent believes that she can do a, but will fail7

if she attempts to execute this action. Each of these situations is covered by the
following two properties:

• Success: If w ; v, then A(v) ⊆ A(w).

• Awareness: If w ; v, then A(w) ⊆ A(v).

Of course, if ; is symmetric, then these properties are equivalent and we have
A(w) = A(v) provided w ; v. These properties address the relationship between
the actions available at the current state (which the agent may not have access to)
and the actions available at states the agent considers “possible” (via ;). The

6We are very grateful to R. Ramanujam, who suggested (among other things) this way of
thinking about the agent’s “uncertainty” in the context of our paper.

7Note that we do not address in this paper what happens (from the agent’s point of view) if
she tries to do an action a that is not actually available (i.e., the agent attempts action a). This
interesting situation will be addressed in future work. See [26] for a very interesting discussion
relevant to this situation.
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next property focuses on the relationship between the actions available at the set
of states the agent considers “possible.” If w ; v and w ; v′, then the agent
may find herself in either v or v′ and so should face the same decision problem:

• Certainty of available actions: If w ; v and w ; v′, then A(v) = A(v′).

Of course, these properties are all equivalent in the important special case when
the agent’s ε-transition is an equivalence relation (a common assumption in the
epistemic logic and game theory8 literature). When ; is an equivalence relation,
we follow standard notation and write ∼ for ;. This special case is particularly
interesting since it helps position our work within the broad literature using various
combinations of modal logics to reason about game/decision-theoretic situations
(cf. [27, 44]. We will return to these properties throughout the paper but do not
commit ourselves to any of them at this point.

For a protocol T and a position u, the notion of T being enabled (Definition
2.4) at u is well defined for an arena with imperfect information. However, as
discussed above, this is an objective notion from the modeler’s point of view that
does not take into account that the agents may be imperfectly informed about
their “location” in the arena. What we need is a subjective version of Definition
2.4. One idea is to mimic the restriction operation of Definition 2.4, but to ensure
at each step that we take into account all and only the positions that the agent
has access to via the ; relation. Intuitively, a protocol T is subjectively enabled
at a position u in an arena with imperfect information if:

1. the agent is certain that T is enabled (for all v ∈ I(u), T is enabled at v);
and

2. the agent will be certain that she is, in fact, following the protocol at every
stage of the protocol.

This second point is important as there is a difference between “knowing that
a protocol is enabled” and “being able to knowingly follow a protocol.”9 This
difference is crucial for an agent contemplating committing to a long-term plan.
10 Thus, our definition must take into account the forest {Tv | v ∈ I(u)} for every
position u not ruled out by the protocol.

8Of course, game theorists tend to focus on arenas that are themselves trees—i.e., extensive
games with imperfect information.

9See [5] for a discussion related to this point.
10After all, an agent cannot commit to a temporally-extended plan if she is certain now that

she will not be able to choose in a way that is consistent with that plan. Of course, this does not
preclude the possibility that the agent may need to revise or drop her plan even after committing
to it (perhaps because she learned that the plan is no longer feasible) [22].
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According to Definition 2.4, enabled(T, u) is true if there is an embedding of
T into Tu. We have to complicate this simple picture in the presence of imperfect
information. We start by stating the most general definition and then show how
to simplify it in the presence of the structural assumptions discussed above (e.g.,
assuming ; is an equivalence relation).11 First of all, note that in arenas with
imperfect information, the restriction of a protocol T is not a tree, but, rather, a
forest (possibly containing trees of different heights). Thus, we need to introduce
notation for forests in an arena. Let G be an arena (with imperfect information).
First, recall that the notion of a path (Definition 2.1) applies to arenas and, by
assumption, the last element of a path is always a state. We say that a path ρ
is an initial segment of ρ′ if ρ′ is ρ followed by a possibly empty path. Formally,
ρ = w0a0 · · · ak−1wk is an initial segment of ρ′ if there is an i ≥ 0 such that
ρ′ = w0a0 · · · ak−1wkak+1 · · · ak+i−1wk+i. Given a set of paths X that is closed
under initial segment, we define an edge relation in the obvious way: ρ⇒X

a ρ′ iff
ρ = w0a0 · · · ak−1wk and ρ′ = w0a0 · · · ak−1wkaw. A set of paths X from an arena
G that is closed under initial segment is called a forest in G if {⇒X

a }a∈Σ satisfies
the properties 1, 2 and 3 in the definition of a tree given above.

It is not hard to see that if a protocol T is enabled at u, then the restriction
of T at u gives us a forest X with each path in X is associated with a node in T .
Generalizing to situations with imperfect information, we may need to associate
more than one path with a node in T . Thus, we define the restriction of T in an
arena with imperfect information to be a forest X and function mapping paths in
X onto nodes in T :

Definition 3.2 (Subjective Restriction) Let GI = (W, {→a}a∈Σ,;) be an
arena with imperfect information, u ∈ W and T = (S, {⇒a}a∈Σ, s0) a proto-
col. The subjective restriction of T in (GI , u), denoted (GI , u) |\sT , is a pair
(X, f) where X is a forest in GI and f is a function from X onto S. Both X and
f are defined inductively as follows:

0. X0 = I(u) (v ∈ X0 is understood as a one-element sequence) and for all
v ∈ X0, set f0(v) = s0

n. Suppose Xn and fn have been constructed, for each ρ ∈ Sn, for all a ∈
A(fn(ρ)), let Ya = {ρaw | last(ρ)→aw in GI }∪

⋃
{I(w) | last(ρ)→aw in GI }.

Define
Xn+1 = Xn ∪

⋃
a∈A(fn(ρ)),ρ∈Xn

Ya

11The reader interested only in this special case can use the statement of Lemma 6.1 in place
of the definition given below.
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Let fn+1 extend fn such that for each new node ρaw ∈ Ya, set fn+1(ρaw) = s′

where fn(ρ)⇒a s
′ in12 T .

Let X = Xheight(T ) and f = fheight(T ). Finally, define the frontier of (GI , u) |\sT
as follows: frontier((GI , u) |\sT ) = {last(ρ) ∈ W | A(f(ρ)) = ∅}. /

Define the actions available at a path in a forest as follows: suppose that X is a for-
est and ρ ∈ X and define A(ρ) = {a ∈ Σ | there is a ρ′ ∈ X such that ρ⇒X

a ρ′}.

Definition 3.3 (Subjectively Enabled) A protocol T is subjectively enabled
at u in GI = (W,→,;), denoted s-enabled(T, (GI , u)), if the structure (GI , u)|\sT =
(X, f) satisfies the condition ∀ρ ∈ X, A(ρ) = A(f(ρ)). /

Notice that without additional structural assumptions on ;, a protocol being
subjectively enabled does not imply that the protocol is enabled. For example,
consider the arena below and the protocol discussed in the introduction: “either
do a followed by c or do b followed by d.” This protocol is subjectively enabled
but not enabled at state s0.

s0

s1 s2

s3 s4

a b

d c

s5

s6 s7

s9 s10s8

a b

d dc c

s11

s12 s13

c d

(Note that the protocol is still subjectively enabled if we impose the no miracle
property, which would add a number ; edges.)

We conclude this section with two observations. The first is that in situations
of perfect information, subjectively enabled is equivalent to enabled:

Proposition 3.4 Suppose that GI = (W, {→a}a∈Σ,;) satisfies the property that
for all w ∈ W , I(w) = {w}. Then, for any protocol T and state w ∈ W , T is
enabled at w in (W, {→a}a∈Σ) iff T is subjectively enabled at w in GI .

The proof follows by unpacking the definitions and is left to the reader. Ad-
ditional structural properties can further simplify the definition of subjectively
enabled. We have already remarked that a protocol being “subjectively enabled”
at a state w is, in general, not equivalent to the agent knowing that the protocol is
enabled at w (i.e., the protocol is objectively enabled according to Definition 2.4
at every state in I(w)) A simple argument shows that these notions coincide when
the agent is certain of her available actions and the actions are not informative:

12Since T is deterministic, fn+1 is well defined.
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Lemma 3.5 Suppose that GI = (W, {→a}a∈Σ,;) satisfies certainty of actions
and no miracles. Then, the agent knows that t is enabled at u iff t is subjectively
enabled at u.

4 What can be Achieved with Protocols?

An arena with imperfect information describes what can happen in an interactive
situation both objectively (from the modeler’s point of view) and subjectively
(from the agent’s point of view via the ; relations). That is, they describe both
what is physically possible for the agent to do and what she thinks she can do in
an interactive situation. We have not yet addressed what the agent is able to do in
an interactive situation. In this section, we focus on a different sense of “can” that
takes into account the agent’s “abilities.” We study a number of logical systems
that describe what can be achieved in an interactive situation.

What can be achieved in an interactive situations depends on the protocol or
plan that the agent is currently following. Thus far, we have focused only on basic
protocols. It is convenient to give an explicit syntax for describing basic protocols.

Definition 4.1 (Syntax for Protocols) Let V be a countable set of node vari-
ables. A protocol expression is inductively defined as follows:

• For each x ∈ V , (x) is a protocol expression.

• Suppose that J = {a1, . . . , am} is a set of (distinct) actions and for each ai
we have a (unique) protocol expression tai . Then,

(x, a1, ta1) + · · ·+ (x, am, tam)

is a protocol expression where x is a new variable not appearing in tai .

Let P(V) denote the set of protocol expressions. /

The idea is that the expression (x, a, ta) denotes the subtree where x is the root
and there is an a-edge from x to the subtree described by ta. Note that this syntax
generates only deterministic trees (i.e., basic protocols) since each action a in a
protocol expression is associated with only one subtree. Of course, there are other
ways to syntactically describe finite trees, but the particular choice of syntax is
not crucial for our analysis. The important point is that each syntactic expression
t ∈ P(V) corresponds to an finite tree Tt:

Definition 4.2 (Interpretation of Protocol Expressions) Given t ∈ P(V),
we can inductively define the basic protocol Tt generated by t as follows:
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• if t = (x), then let Tt = (St,⇒t, sx) where St = {sx} and ⇒t= ∅.

• if t = (x, a1, ta1) + · · ·+ (x, ak, tak), then inductively we have trees T1, . . .Tk

where for j : 1 ≤ j ≤ k, Tj = (Sj,⇒j, sj). Define Tt = (St,⇒t, sx) where sx
is a new state and

– St = {sx} ∪ ST1 ∪ . . . ∪ STk .
– ⇒t= (

⋃
j=1,...,k ⇒j) ∪ {sx⇒aj jsj | 1 ≤ j ≤ k}. /

For t ∈ P(V), we often abuse notation and identify t with Tt. The following
example illustrates the above construction:

x0

x1 x2

x3 x4 x5 x6

a b

c 1

d
1 c 2

d
2

The syntactic representation of this tree using
Definition 4.1 is:
• t = (x0, a, t1) + (x0, b, t2) where

– t1 = (x1, c1, (x3)) + (x1, d1, (x4)) and

– t2 = (x2, c2, (x5)) + (x2, d2, (x6)).

The next step is a syntax for describing complex protocols. To keep things
simple, we focus on the regular operations familiar from action logics such as
PDL: Let Σ be a finite set of basic actions, and define Γ to be the smallest set of
expressions generated by the following grammar:

t | π1; π2 | π1 ∪ π2 | π∗

where t ∈ P(V) is a basic protocol (using actions from Σ). Note that we do not
include tests in our language. Adding tests raises a number of interesting issues
(many have been extensively discussed in the literature on knowledge programs
[9, 10]); however, we leave this extension for future work.13 We can easily adopt
the standard interpretation of these operations to our setting:

1. π1; π2 is the protocol where the agent first adopts the protocol π1 and then
(no matter what happens) adopts the protocol π2;

2. π1 ∪ π2 is the protocol where the agent must first choose which of the two
protocols to adopt; and

13Note that there is nothing inherently difficult about adding tests to our language; and,
indeed, the results in this paper can be adapted to this situation. We do not include them here
to simplify the setting and focus on issues that are orthogonal to issues that are relevant when
tests are in the language.
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3. π∗ is the protocol where the agent continues with protocol π any finite
number of times (including zero).

Of course, there may be other natural operations in this context, such as “merg-
ing”14 or “revising” (cf. [22]).

Committing to a basic protocol T restricts the choices available to the agent,
but there is a trade-off: It also increases the agent’s ability of the agent to guaran-
tee that certain propositions are true. Formally, each basic protocol is associated
with a set of states X (the frontier of T in an arena). The agent can “force” the
situation to end up in these states by making choices consistent with the proto-
col. There are a number of ways to make precise what it means for an agent to
“guarantee” that some proposition is true because she adopts the protocols T .
One option is to see what is true no matter what the agent does, as long as it is
consistent with T . A second option recognizes that T still represents choices for
the agent that will be settled in the course of the interaction. In this case, we are
interested in what the agent can force by doing something consistent with T . The
situation is even more interesting when the agent commits to a complex protocol.
If the protocol involves the operators ∪ or Kleene star, then the agent first must
choose which set of states she wants to have the ability to force. For example,
consider the protocol T1 ∪ T2; in order to commit to this protocol, the agent must
choose which of the two basic protocols to follow. More generally, given a complex
protocol π, the agent must first decide both how to go about adopting π and then
make her choices “in the moment” consistent with this plan.

This discussion suggests that our basic modality will be interpreted as a se-
quence of two quantifiers (each corresponding to the different “types” of decisions
the agent makes when committing to a protocol). This is familiar from other
modal logics of ability (cf. [1]) and game logics [32]. Of the four possible com-
binations of quantifiers, we take the following two as primitive (corresponding to
∃∀ and ∃∃ respectively):

• 〈π〉∀α: By adopting the protocol π, α is guaranteed to be true.

• 〈π〉∃α: By adopting the protocol π, the agent can do something consistent
with the protocol that will make α true.

As usual, the remaining two possible combinations of quantifiers are dual to these.
We take “adopting a protocol” to mean that the agent decides how to follow the
protocol (so an existential quantifier over the different sets of states the agent can
force). The second quantifier is over the different ways that the agent actually
implements the protocol. These notions are objective since they do not take into

14Yanjing Wang has an extensive discussion in his dissertation [55] (using PDL).
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account the fact that the agent may be imperfectly informed about her current
position in the arena. This suggests the following “epistemized” versions of the
above operators:

• 〈π〉2α: By agreeing to adopt the protocol π, the agent is certain that α is
guaranteed to be true.

• 〈π〉3α: By agreeing to adopt the protocol π, the agent is can “knowingly”
do something consistent with the protocol that will make α true.

4.1 Epistemic Protocol Logic

Let At be a countable set of atomic propositions and Γ a set of protocol expressions
as defined in Definition 4.2 (based on basic actions Σ). The epistemic protocol
language is the smallest set LEPL of formulas generated by:

p ∈ At | ¬α | α1 ∨ α2 | 2α | 〈π〉∃α | 〈π〉∀α | 〈π〉2α | 〈π〉3α

where π ∈ Γ. As a convention we use > = p ∨ ¬p. We also define 3α = ¬2¬α,
[π]∃α = ¬〈π〉∀¬α, [π]∀α = ¬〈π〉∃¬α, [π]3α = ¬〈π〉2¬α and [π]2α = ¬〈π〉3¬α.
We discussed the four protocol modalities above. The remaining modality 2

quantifies over states accessible (in one step) via the ; relation. Thus, it describes
what is true from the agent’s point of view. As usual, models are arenas with
valuation functions:

Definition 4.3 (Model) Let GI = (W, {→a}a∈Σ,;) be an arena with imperfect
information (Definition 3.1). A model based on GI is a structure (W, {→a}a∈Σ,;
, V ) where and V : At→ 2W a valuation function. /

Before defining truth in a model, we must “interpret” complex protocols. The
idea is to associate with each protocol π the collection of states that the agent can
force by following π. Formally, we define sets RQπ ⊆ W × 2W for Q ∈ {∃,∀,2,3}
by induction on the structure of π. We start with the atomic protocols.

Atomic Protocols. For an atomic protocol expressions t, and Q ∈ {∃,∀,2,3},
we define the relation RQt ⊆ W × 2W as follows:

• RF
t = {(u,X) | enabled(Tt, u) and last(frontier(Tu |\ Tt)) = X} (for F ∈
{∃, ∀}).

• R2
t = {(u,X) | s-enabled(Tt, u) and last(frontier((G, u) |\sTt)) = X}.
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The definition of R3
t is more complicated. The issue is that, in this case,

the way the agent implements the protocol must take into account the agent’s
imperfect information. This suggests the following notion: given a path ρ =
s0
ta0s

1
t . . . s

k
t ∈ Paths(t), the subjective path defined by ρ on the structure

(G, u) |\st = (S,⇒, f) is the sequence S(ρ, u) = Z0Z1 . . . Zk where for all j :
0 ≤ j ≤ k, Zj = {s ∈ S | f(s) = sjt}. We now have

• R3
t = {(u,X) | s-enabled(Tt, u) and ∃ρ ∈ Paths(Tt) with S(ρ, u) = Z0Z1 . . . Zk

and X = Zk}.

Composition.

• R∃π1;π2
= {(u,X) | ∃Y ⊆ W such that (u, Y ) ∈ R∃π1 and ∃vj ∈ Y such that

(vj, X) ∈ R∃π2}.

• for F ∈ {∀,2,3},

– RF
π1;π2

= {(u,X) | ∃Y = {v1, . . . , vk} such that (u, Y ) ∈ RF
π1

and ∀vj ∈
Y , there exists Xj ⊆ X such that (vj, Xj) ∈ RF

π2
and

⋃
j=1,...,kXj = X}.

Note that in the definition above, we can assume the set Y is finite since our
models are finitely branching. The definition of union and Kleene star is standard
(though some care must be taken in the latter case to use a fixed-point definition):

Union. For Q ∈ {∃,∀,2,3}, RQπ1∪π2 = RQπ1 ∪R
Q
π2

.

Iteration.

• R∃π∗ =
⋃
n≥0(R∃π)n.

For Q ∈ {∀,2,3}, it is tempting to define iteration as RQπ∗ =
⋃
n≥0(RQπ )n.

However, this definition does not give the intended interpretation of the Kleene
star operator. To see this, consider the simple tree t consisting of a root and
two outgoing edges a and b. Intuitively, the above definition would force all
the branches of t∗ to be of the same depth. This also illustrates the underlying
difference between our approach and that of standard dynamic logic: Sequential
composition in our setting is defined over trees rather than over paths. The
semantics of Kleene star, thus, needs to be defined with respect to a least fixed-
point operator. We formalize this as follows: Let · be a binary operator over
W × 2W , which is defined as:

• R1 ·R2 = {(u,X) | ∃w1, Y1, . . . , wk, Yk with (u, {w1, . . . , wk}) ∈ R1,
∀j, (wj, Yj) ∈ R2 and X =

⋃
j Yj}.
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for all R1, R2 ⊆ W × 2W .
Given a Z ⊆ W ×2W , let FZ be the operator over the domain W ×2W defined

as FZ(R) = R> ∪ Z · R where R> = {(u, {u}) | u ∈ W}. Observe that the
operator · is monotonic in the following sense: If R1 ⊆ R2, then R0 ·R1 ⊆ R0 ·R2.
This also implies that FZ is monotonic for every Z ⊆ W × 2W . Thus, by the
Knaster-Tarski theorem we have that for every Z, the least fixed-point (LFP) of
FZ exists. LFP(FZ) can be computed as the limit of the following sequence of
partial solutions: R0 = R>, Rj+1 = FZ(Rj)(= R> ∪ Z · Ri) and Rλ = ∪ν<λRλ for
a limit ordinal λ. For Q ∈ {∀,2,3}, we define:

• RQπ∗ = LFP(FRQπ ).

We are now in a position to formally define truth in a model:

Definition 4.4 (Truth) The truth of a formula α ∈ LEPL in a model M =
(W,→,;, V ) at a position u (denoted M,u |= α) is defined as follows:

• M,u |= p iff p ∈ V (u)

• M,u |= ¬α iff M,u 6|= α

• M,u |= α1 ∨ α2 iff M,u |= α1 or M,u |= α2

• M,u |= 2α iff for all w such that u; w we have M,w |= α

• M,u |= 〈π〉∃α iff ∃(u,X) ∈ R∃π, ∃w ∈ X such that M,w |= α

• M,u |= 〈π〉∀α iff ∃(u,X) ∈ R∀π such that ∀w ∈ X we have M,w |= α

• M,u |= 〈π〉2α iff ∃(u,X) ∈ R2
π such that ∀w ∈ X we have M,w |= α

• M,u |= 〈π〉3α iff ∃(u,X) ∈ R3
π such that ∀w ∈ X we have M,w |= α

where for Q ∈ {∃,∀,2,3}, RQπ ⊆ W × 2W is defined above. The logical notions
satisfiability and validity are defined as usual. /

The first technical contribution of this paper is a sound and (weakly) complete
axiom system (in the language LEPL) for the class of all arenas with imperfect
information. A straightforward consequence of this completeness proof is decid-
ability of the satisfiability problem, which we discuss below.

The axiomatization and completeness proof extends the one found in [36] to
situations with imperfect information. In this section, we present this axiom
system and discuss the proof (details can be found in Appendix A). First of
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all, note that the language LEPL extends the standard PDL language: Let ea
denote the tree ea = (x, a, y) with a single a-edge, and define for each a ∈ Σ,
〈a〉α = 〈ea〉∃α. Given the semantics defined above (Definitions 4.3 and 4.4), we
have the standard interpretation for 〈a〉α: 〈a〉α holds at a state u iff there is a
state w such that u

a−→ w and α holds at w.
A key observation is that whether a protocol t is (subjectively) enabled can

be described by a standard PDL formula. Formally, for each protocol T , let t
√

be
a formula that is intended to denote that the tree structure t is enabled. This is
defined inductively on the structure of t as:

• if t = (x), then t
√

= >.

• if t = (x, a1, ta1) + . . .+ (x, ak, tak), then

t
√

= (
∧
j=1,...,k(〈aj〉> ∧ [aj]t

√

aj
)).

We use the formula t2
√

to denote that the protocol t is subjectively enabled:

• if t = (x), then t2
√

= >.

• if t = (x, a1, ta1) + . . .+ (x, ak, tak), then

t2
√

= (
∧
j=1,...,k(2〈aj〉> ∧2[aj]t

2
√

aj
)).

It is straightforward to check that these definitions work as intended:

Lemma 4.5 For any protocol T and model M = (W,→,;, V ), for each w ∈ W ,
M,w |= t

√
iff enabled(t, w) holds, and M,w |= t2

√
iff s-enabled((G, w), t) holds.

The above reductions from trees to standard PDL formulas suggest that the meth-
ods of Kozen and Parikh [24] to prove completeness of PDL are also applicable in
our setting. Our axiomatization follows this “reduction axiom” methodology (i.e.,
the Segerberg axioms for complex programs) with one important twist: Since the
atomic protocols still encode the structure of a tree, we need to provide “reduc-
tion axioms” for atomic protocol trees as well. The key idea is to define a formula
pushQ(t, α) for Q ∈ {∃, ∀,2} which means that t is (subjectively) enabled and
that α holds at all the frontier nodes selected by the relation RQt . These formulas
will be defined by induction on the structure of t: For atomic trees t = (x),

(C1) push∃((x), α) = α.

(C2) push∀((x), α) = α.

(C3) push2((x), α) = 2α.
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For t = (x, a1, ta1) + . . .+ (x, ak, tak) and A = {a1, . . . , ak}, we have

(C4) push∃(t, α) =
∨
am∈A 〈am〉〈tam〉

∃α.

(C5) push∀(t, α) =
∧
am∈A[am]〈tam〉

∀α.

(C6) push2(t, α) =
∧
am∈A2[aj]〈taj〉

2α.

Note that we have not given the corresponding formula for 〈t〉3α. This formula
is of a different nature than the formulas above. The intended interpretation of
〈t〉3α is that the protocol t is subjectively enabled and α holds at all frontier nodes
reached along a subjective path in t. Formally, (recall that Paths(t) is the set of
maximal paths in Tt), when the path consists of a single node (i.e., ρ = (x)) we
have:

(P1) cpath((x), α) = 2α.

When the path ρ is consists of at least two nodes, we have:

(P2) cpath(ρ, α) = 2[head(ρ)]cpath(tail(ρ), α).

Definition 4.6 (Axiomatization) The epistemic protocol logic, denoted EPL,
is the smallest set of formulas from LEPL containing all instances of the following
axiom schemes and closed under the following inference rules:

Propositional Tautologies

(A1) All instances of propositional tautologies.

Normality Axioms

(A2) (a) 〈π〉∃(α1∨α2) ≡ 〈π〉∃α1∨〈π〉∃α2

(b) 2α1 ∧2(α1 ⊃ α2) ⊃ 2α2

Reduction axioms for atomic and composite protocols

(A3) 〈t〉∀α ≡ t
√
∧ push∀(t, α)

(A4) 〈t〉∃α ≡ t
√
∧ push∃(t, α)

(A5) 〈t〉2α ≡ t2
√
∧ push2(t, α)

(A6) 〈t〉3α ≡ t2
√
∧

∨
ρ∈Paths(t)

cpath(ρ, α)

for Q ∈ {∃,∀,2,3}

(A7) 〈π1 ∪ π2〉Qα ≡ 〈π1〉Qα ∨ 〈π2〉Qα

(A8) 〈π1; π2〉Qα ≡ 〈π1〉Q〈π2〉Qα

(A9) 〈π∗〉Qα ≡ α ∨ 〈π〉Q〈π∗〉Qα
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Inference rules

(MP) α, α ⊃ β (NG) α (KG) α
β [a]α 2α

(INDQ) 〈π〉Qα ⊃ α

〈π∗〉Qα ⊃ α
for Q ∈ {∃,∀,2,3}

/

Some remarks are in order. First, restricting attention to finite trees ensures
that that the disjunction in axiom A6 is finite. Second, note that normality axioms
for 〈π〉∀ and 〈π〉2 are not valid. Finally, since the action modalities make assertions
about the frontier of trees (and forests), the relation RQπ is not “upward closed.”
Nonetheless, the usual PDL axiom for composite programs is still sound:

Proposition 4.7 〈π1; π2〉Qα ≡ 〈π1〉Q〈π2〉Qα is valid for Q ∈ {∃,∀,2,3}.

Proof. We give a proof for the case when Q = ∀, the other cases are similar.
Suppose that M,u |= 〈π1; π2〉∀α. We will show M,u |= 〈π1〉∀〈π2〉∀α. Since M,u |=
〈π1; π2〉∀, there exists (u,X) ∈ R∀π1;π2

such that ∀w ∈ X, M,w |= α. Hence, there
exists Y = {v1, . . . , vk} such that (u, Y ) ∈ R∀π1 and ∀vj ∈ Y , there exists Xj ⊆ X
such that (vj, Xj) ∈ R∀π2 and

⋃
j=1,...,kXj = X. Therefore, ∀vk ∈ Y , we have

M, vk |= 〈π2〉∀α and, hence, M,u |= 〈π1〉∀〈π2〉∀α.
Conversely, suppose thatM,u |= 〈π1〉∀〈π2〉∀α. We will showM,u |= 〈π1; π2〉∀α.

We have M,u |= 〈π1〉∀〈π2〉∀α iff there exists (u, Y ) ∈ R∀π1 such that ∀vk ∈ Y ,

M, vk |= 〈π2〉∀α. M, vk |= 〈π2〉∀α iff there exists (vk, Xk) ∈ R∀π2 such that ∀wk ∈
Xk, M,wk |= α. Let X =

⋃
kXk; from the definition of R∀ we get (u,X) ∈ R∀π1;π2

.

Hence, M,u |= 〈π1; π2〉∀α. qed

We can now state the two main theorems of this section:

Theorem 4.8 EPL is sound and weakly complete with respect to the class of all
arenas with imperfect information.

Corollary 4.9 The satisfiability problem for EPL is decidable in nondeterministic
double exponential time.15

15This is an upper bound; the precise lower bound of the satisfiability problem is left open.
The proof is a direct consequence of the proof of the completeness theorem since we construct
a finite model.
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Remark 4.10 Note that the definition of subjectively enabled considers only sin-
gle steps of the ; relation. One natural generalization here (which we are explor-
ing in a companion paper) is to consider the transitive closure of ; in Definition
3.3. This suggests extending the language with a 2∗ operator, which in turn may
open the door to the many axiomatization issues in epistemic temporal languages
with common knowledge (cf. [48] for references and a discussion). Also rele-
vant here are the axiomatizations of products of PDL and various epistemic and
doxastic logics [38].

We can incorporate the properties discussed in Section 3. Recall that a formula
ϕ ∈ LEPL is valid in an arena (with imperfect information) if it is valid in every
model based on the arena. First, note that a standard modal correspondence
argument (cf. [2, Chapter 3]) gives us:

Lemma 4.11 Let GI = (W, {→a}a∈Σ,;) be an arena with imperfect information.
Then,

• GI satisfies no miracles iff [a]2α ⊃ 2[a]α is valid.

• GI satisfies success iff 3〈a〉> ⊃ 〈a〉> is valid.

• GI satisfies awareness iff 〈a〉> ⊃ 2〈a〉> is valid.

• GI satisfies certainty of actions iff 3〈a〉> ⊃ 2〈a〉> is valid.

Furthermore, it is not hard to see that adding the axioms in the above Lemma to
the axioms in Definition 4.6 leads to a sound and weakly complete axiomatization
of the relevant class of models.

5 Joint Protocols

The central issue addressed in this paper is the circumstances under which an
agent can “knowingly” agree to follow a protocol or plan. We have seen that even
in the single-agent case, this notion is interesting and non-trivial to formalize.
However, the situation becomes even more interesting and complex in situations
with more than one agent. A first approach to the multiagent situation is to
assume that each agent follows her own “local” protocol. More formally, we can
associate with each agent a set of local actions and define (local) protocols for
each agent as before (Definitions 2.2 and 4.1) based on the agents’ local actions.
This is the underlying idea behind the interpreted systems of Halpern and others
(see [9] for a discussion and references to the relevant literature). However, this
approach hides an important distinction between an action profile and a joint
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action. The former is a sequence of (individual) actions describing choices made
by each agent, while the latter involves an additional component “gluing” the
agents’ actions together.

The nature of this additional component is the subject of much debate among
philosophers (cf. M. Bratman on “shared intentions” [4], M. Gilbert on “joint
commitments” [12], and R. Sugden on “team reasoning” [41], among others [39,
42]). The logic we present in this section does not commit to any specific view of
joint actions. Our goal is to extend the analysis from the previous sections to the
many-agent situation where some of the basic actions are classified as joint actions.
Taking inspiration from concurrency theory, we use a “location function” that
specifies for each basic action a set of agents involved in the action. Formally, the
function agents : Σ→ 2N specifies for each action the subset of players associated
with the action. Such a function has been extensively used in the analysis of
asynchronous systems, where it typically specifies synchronized communication
among a group of agents [56, 30]. Also relevant for this paper is [35] where such
a function is used to explicitly specify the source of agents’ uncertainty in terms
of synchronization actions. In this paper, if i ∈ agents(a), then this means that
agent i is involved in the execution of a. In other words, in order to do action a,
each agent in agents(a) must do his or her “part” (whatever that may be). For
example, if a is the action “lift the piano” and agents(a) = {i, j}, then doing
action a means that i lifts the left side and j lifts the right side (or vice versa).
Thus, we do not specify how the agents in agents(a) go about doing action a.

The definition of a (basic) protocol is the same as in the previous sections. That
is, a (joint) protocol is a finite labeled tree (Definition 2.2) where the labels now
represent joint actions. While this move to the many-agent setting raises many
technical and conceptual questions (cf. [27]), we focus on one specific question:
What does it means for a joint protocol to be subjectively enabled? In the single-
agent case this was defined by taking the closure under the uncertainty relation
of the player at every stage (or node corresponding to the protocol tree). This
technique does not work in the case of joint protocols since the actions (and not
the nodes) specify the agents involved in the protocol. Below, we discuss a number
of ways to solve this problem. We start with a very simple solution: Whenever a
joint action a is in a protocol, we require that for each agent i ∈ agents(a), the
action a must be enabled at all the states that i considers possible (specified by
i’s uncertainty relation). We formalize these ideas below.

Many-Agent Epistemic Protocol Logic

Let N = {1, . . . , n} be the set of agents. A multi-agent arena with imperfect
information is a tuple GI = (W, {→a}a∈Σ, {;i}i∈N) where (W, {→a}a∈Σ) is a

24



finite arena, as earlier, and for each i ∈ N , the relation ;i⊆ W ×W specifies the
uncertainty of agent i. For a position u ∈ W , let Ii(u) = {w ∈ W | u ;i w}.
The definition of a protocol remains the same as earlier: a (finite) labeled tree
where the labels are now interpreted as joint actions. For a protocol tree T ,
let ξT denote the set of agents involved in the protocol T — i.e., ξT = {i ∈
N | ∃s ∈ S,∃a ∈ A(s) with i ∈ agents(a)}. Thus, a local protocol for agent i
is one in which ξT = {i} or, in other words, for all actions a occurring in T
we have agents(a) = {i}. For any finite path ρ such that A(last(ρ)) 6= ∅, let
N (ρ) = {i ∈ N | ∃a ∈ A(last(ρ)) and i ∈ agents(a)}.

The subjective restriction of T = (S, {⇒a}a∈Σ, s0) in (GI , u) (denoted
(GI , u) |\sT ) is a tuple (X, f, act) where X is a forest in GI , f is a map f : X → S
and act is a map act : X → 2Σ. This is defined inductively as follows:

0. We have two cases to consider:

• if A(s0) = ∅, then X0 =
⋃
i∈ξT Ii(u); and

• if A(s0) 6= ∅, then X0 =
⋃
i∈N (s0) Ii(u) (v ∈ X0 is understood as a

one-element sequence). For all v ∈ X0, set f0(v) = s0 and act(v) =
{a ∈ A(s0) | v ∈ Ii(u) and i ∈ agents(a)}.

n. Suppose that Xn and fn have been constructed. For each ρ ∈ Sn, we need
to consider two cases:

• if A(fn(ρ)) 6= ∅, then for all a ∈ act(ρ), let

Y ρ
a = {ρaw | last(ρ)→aw in GI} and Zρ

a =
⋃
ρ′∈Y ρa

⋃
i∈N (ρ′) Ii(ρ′).

Let fn+1 extend fn such that for all ρ′ ∈ Zρ
a , fn+1(ρ′) = s′ where

fn(ρ)⇒a s
′ in T . The map actn+1 is also defined as an extension of

actn, where for all ρ′ ∈ Zρ
a we define actn+1(ρ′) = {a ∈ A(last(ρ)) |

last(ρ′) ∈ Ii(ρ) and i ∈ agents(a)}. Define

Xn+1 = Xn ∪
⋃

ρ∈Xn,a∈A(fn(ρ))

Zρ
a .

• if A(fn(ρ)) = ∅, then Xn+1 = Xn ∪
⋃
ρ∈Xn,i∈ξT Ii(ρ).

Finally, let X = Xheight(T ), f = fheight(T ) and act = actheight(T ).

Remark 5.1 Observe that in the above definition, when A(fk(ρ)) = ∅ for some
k, we take the closure under the uncertainty relation of all the agents involved in
the protocol T . This reflects the fact that at the end of the protocol, the analysis
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takes into account the uncertainty of all the players involved in the protocol. In
general, one could consider any group of agents ξ ⊆ N and define the closure with
respect to this group.

Definition 5.2 (Subjectively Enabled for Joint Protocols) A joint proto-
col T is subjectively enabled at u in GI = (W,→,;) if the structure (GI , u)|\sT =
(X, f, act) satisfies the condition ∀ρ ∈ X, act(ρ) = A(ρ). /

Thus, in order for a joint protocol to be subjectively enabled, it is required that
for each joint action a in the protocol, for all i ∈ agents(a), a is enabled at all the
states that i considers possible. Of course, this is only one of many different ways
to formally define what it means for a joint protocol to be subjectively enabled.
Another approach would be to require that the relevant actions are enabled in
the states in the intersection of the uncertainty relation of the agents involved.
This corresponds to the distributed knowledge of the relevant agents. At the other
extreme, we could base our definition of subjectively enabled on the common
knowledge of the relevant agents. A detailed analysis of this and other issues
raised by the many-agent setting will be left for future work. We conclude this
section with a brief discussion of axiomatic issues.

Given the above definition of subjectively enabled, we can prove a completeness
theorem for the class of multiagent arenas with imperfect information (in the obvi-
ous language) using the methods discussed in Section 4.1. The crucial observation
is that a joint protocol being subjectively enabled is expressible in a multiagent
epistemic PDL language. Given a protocol specification t, let ξt be the set of agents
involved in t — i.e., ξt = {i ∈ N | ∃s ∈ Tt,∃a ∈ A(s) such that i ∈ agents(a)}.
The formula t2

√
(ξt), which denotes that the joint protocol t is subjectively en-

abled, is defined as:

• if t = (x), then t2
√
(ξt) =

∧
i∈ξt 2i>.

• if t = (x, a1, ta1) + . . .+ (x, ak, tak) with A = {a1, . . . , ak}, then

t2
√
(ξt) =

∧
aj∈A

∧
i∈agents(aj)

(2i〈aj〉> ∧2i[aj]t
2
√

aj
(ξt)).

6 Conclusion and Discussion

This paper focuses on the interplay between epistemic reasoning and protocol
analysis. In particular, we developed an epistemic protocol logic and discussed
what it means for an agent to “subjectively” agree to follow a given protocol.
We see this as one step towards addressing the fundamental problem of how to
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model agents “knowing a protocol, plan or strategy” in situations with imperfect
information, and we proved a number of results about our logical system. We
conclude with a discussion of related and future work.

6.1 Actions, Abilities and Know-How

Our paper touches on a number of issues surrounding the relationship between
an agent’s abilities, available choices and information in an interactive situation.
The issues here are subtle and a complete discussion is beyond the scope of this
paper; however, we would like to explain how our logical frameworks fit into
to this broader literature. We assume that the agents may be uncertain about
which (basic) actions are available (i.e., which choices are feasible). Amidst this
uncertainty, the agents commit to a (joint) plan or protocol. Some features of our
notion of a plan are worth highlighting:

• Plans are compositional: complex plans are built from simpler ones using
the standard regular operators (concatenation, union and Kleene star).

• Plans may be partial: basic protocols may be branching.

• We do not include tests in our language.

In this paper, we focus on the question under what circumstances can an agent
commit to a (joint) protocol or plan, and what can she achieve by doing so? But,
this is only one of many different questions that can be investigated. We men-
tion here three questions that are related to issues that have come up in this paper.

What does it mean for an agent to “know a protocol”? As we remarked in the
introduction, a common assumption is that it is common knowledge that there is a
fixed protocol which all the agents have (implicitly or explicitly) agreed to follow.
In what sense do the agents know the protocol? Formally, the protocol describes
which states or histories are “in the model”, so the proposition expressing that
“the protocol is being followed” is the set of all elements in the model (i.e., the set
W of all possible worlds in the model). Thus, in terms of the agents’ propositional
knowledge, “knowing the protocol” amounts to knowing “that the set of possible
states is W ,” but this just means that the agent knows that ‘>’. Nonetheless,
“knowing the protocol” has important practical and pragmatic ramifications on
the agents’ information. First, the protocol explicitly limits the available obser-
vations, messages and/or actions available (or permitted) to the agent.16 Second,
the protocol affects how the agents interpret their observations [33]. These two

16So, for example, truth of ϕ no longer implies that ϕ can be announced, cf. [47].
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aspects of knowing a protocol are extensively discussed in Yanjing Wang’s recent
PhD thesis [55].17

How do the agents come to know a protocol? Our logical frameworks focus on
what agents can achieve by committing to a protocol or plan. But, we do not ad-
dress the dynamics of these commitments. A dynamic (epistemic) protocol logic
has recently been introduced by Yanjing Wang [55, Chapter 4]. The key idea is
to extend PDL with a program announcement modality, denoted [!π] where π is
a PDL action expression (unlike us, Wang does not allow branching for atomic
programs). Formulas are interpreted in the usual PDL models at a state and a
program expression representing the protocol the agents are currently committed
to. So, for example, it may be currently true that the agent can do a (i.e., a
complies with the current protocol), but after announcing that the protocol is b,
then a is no longer compliant (i.e., the following formula is true 〈a〉>∧ [!b]¬〈a〉>).
This type of dynamics also makes sense in our setting. Indeed, it would be a very
interesting line of research to add Wang’s “protocol announcement” operators to
our epistemic protocol logic (section 4.1). A related question (which is also dis-
cussed by Wang [55, Chapter 4]) is what natural operations change the current
protocol (rather than replace the current protocol)?

What is the (formal) difference between an agent knowing that she can achieve ϕ
and knowing how to achieve ϕ?18 Much of the work on epistemic extensions of
logics of actions and abilities has focused on the distinction between de re/de dicto
knowledge of what agents can achieve [44, 19, 50, 23]. To illustrate the issue, we
use an example from [19]: Suppose that Ann, who is blind, is standing with her
hand on a light switch. She currently does not know whether the light is on or
off. The question is does she have the ability to turn the light on? Is she capable
of turning the light on? Does she know how to turn the light on? This depends on
how what we mean by “ability”. She has two options available to her: toggle the
switch (t) or do nothing (s). This situation is represented by the following arena
with imperfect information:

17In particular, see Chapters 2 and 3.
18Philosophers since Gilbert Ryle [37, Chapter 2] have discussed the distinction between

“knowing that” and “knowing how”. Consult [11] for an up-to-date survey of the current philo-
sophical debate. Certainly, some of the issues raised in this debate are relevant to the discussion
here, but we leave a complete analysis for a different occasion. See [40] for logical analysis of
“knowing how” that is related to the framework we develop in this paper.
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t s t s
Suppose that the actual state is w1, so the light is currently off. Now, since

Ann is blind, she does not know that the light is off (w1 |= ¬2f)19. Furthermore,
the following formulas are true at w1: 〈t〉o (“after toggling the light switch (t),
the light will be on (o)”), ¬2〈t〉o (“Ann does not know that after toggling the
light switch, the light will be on”), 2(〈t〉> ∧ 〈s〉>) (“Ann knows that she can
toggle the switch (t) and she can do nothing (s)”, and 〈t〉¬2o (“after toggling
the switch Ann does not know that the light is on”). These formulas describe the
basic options available at w1 and the information Ann has about these options.
Consider the basic plan “turn the light on”20 (denoted by l). Agreeing to this
plan commits Ann to a choice between t and o, but this choice can only be made
“in the moment” (since, the “correct” option depends on the state of affairs). So,
l is a basic protocol consisting of a tree with two branches, one labeled with t and
the other labeled with o. We have:

• w1 |= 〈l〉∃o∧¬〈l〉∀o: executing the plan “turning the light on” can lead to a
situation where the light is on, but this is not guaranteed (i.e., the plan may
fail).

• w1 |= 2〈l〉∃o: Ann knows that she is capable of turning the light on. She
has de dicto knowledge that she can turn the light on.

• w1 |= ¬〈l〉3o: Ann cannot knowingly turn on the light (she does not have
de re knowledge that she can turn the light on): there is no subjective path
leading to states satisfying o (note that all elements of the last element of
the subject path must satisfy o).21

So, our logical framework can express interesting relationships between a plan π,
propositions that can be “brought about” by following π and what the agent(s)

19We do not label the modal operator since Ann is the only agent.
20Alternatively, we may use the command “make sure the light is on!” to describe this plan.
21It is interesting to note that if t was informative for Ann, so that there is no uncertainty

for Ann between states w3 and w5, then 〈l〉3o would be true at state w1. For example, suppose
that Ann was not blind, but was standing outside of the room with the door shut and t was the
action “open the door”.
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knows about π: For example, 2〈π〉∀ϕ means “the agent knows that she can bring
about ϕ by following π”, 〈π〉∀2ϕ means “the agent can bring about her knowledge
of ϕ by following π”, and 〈π〉2ϕ means “the agent knows how to follow π in
order to bring about ϕ”. Arguable, the issues discussed above become even more
pressing when developing logics of explicit strategies for reasoning about game-
theoretic situations [45]. In particular, a player may know that she can win the
game without actually knowing how (see [44] for a discussion). We conclude this
subsection with an initial discussion about how to use our framework for reasoning
about strategies in games with imperfect information. Consider an extensive game
where Bob moves first (he can choose between x and y) and Ann moves second
(she can choose between a and b) without knowledge of Bob’s choice:

w0

w1 w2

pA w6pB w5pBw4pAw3

x
y

a b a b

x y

a b

Suppose that pA denotes a win for Ann and pB a win for Bob. Let s be the plan
on the right which can be thought of as a strategy for Ann. Indeed, this is a
winning strategy for Ann: w0 |= 〈s〉∀pA. Furthermore, Ann knows that this is a
winning strategy, w0 |= 2〈s〉∀pA (assume that w0 ∈ I(w0) for Ann). However,
even though this strategy is subjectively enabled for Ann, she does not know how
to use this strategy to win the game (in the terminology of van Benthem [44]: the
strategy is not prescriptive22 That is, w0 |= ¬〈s〉2pA. These are only some initial
observations about how to use our logical systems to reason about strategies in
imperfect information games — a complete discussion will be left for future work.

We conclude this section by observing that the definition of subjectively en-
abled (Definition 3.3) can be simplified when ; is an equivalence relation:

Proposition 6.1 Let GI = (W, {→a}a∈Σ,;) be an arena with imperfect infor-
mation where ; is an equivalence relation that satisfies no miracles. Then, for
any protocol T , T is subjectively enabled at position u in GI iff there is a function
f mapping nodes in T = (S, {⇒a}a∈Σ, s) to positions in GI (f : S → W ) such
that

22This should be contrasted with a strategy that is uniform. In our terminology, a protocol
π is uniform if it is subjectively enabled and it is prescriptive for ϕ if 〈π〉2ϕ is true at the root
node. Van Benthem showed that in games with perfect recall a winning strategy for player i is
uniform iff it is prescriptive (for the proposition expressing that player i won the game) [44].

30



1. f(s) = u; and

2. for all t ∈ S, if a ∈ A(t) and v ∈ I(f(t)), then a ∈ A(v).

This simple (but instructive) proof is left to the reader. This Proposition is im-
portant because it can be used to establish connections between our work and
existing literature on related topics. Much of the current work on protocols and
strategies discusses epistemic issues: Witness the “knowledge programs” of Fagin
et al. [10, 15] and the recent contributions of Jan van Eijck and Yanjing Wang, as
well as others using PDL to reason about executing a knowledge program [53, 55].
The focus here tends to be on knowing some objective, under the assumption
that the agents implicitly agree to follow a “knowledge protocol” designed by the
modeler to achieve the objective. Our work suggests a different question where
the protocols themselves can be the object of knowledge: Given some (epistemic)
objective, is there a protocol that the agents can (knowingly) agree to follow that
will achieve the objective? Certainly, much more can be said on this topic (and
has: see, for example, [25, 18]), but this will be left for future work.

6.2 Comparisons

There are many other interesting questions to ask about the logical system intro-
duced in the previous section. For example, we can show that LEPL is strictly more
expressive than PDL, but what about concurrent PDL, game logic, the modal µ-
calculus, or branching time temporal logic (CTL)? This section contains a number
of preliminary observations; a more-detailed comparison with related logical sys-
tems will be left for future work. It is easy to see that PDL is a fragment of LEPL
(indeed, we use this in our axiomatization). Furthermore, a simple adaptation
of Peleg’s [34] argument showing that concurrent PDL (CPDL) is strictly more
expressive than PDL shows that LEPL without 〈π〉2 and 〈π〉3 (as considered in
[36]) is strictly more expressive than PDL. The main idea stems from a crucial
observation made in [34]: No PDL formula can express the property of spawning
an unbounded number of processes in parallel. This can be expressed in LEPL
using the branching in our atomic programs.

Observation 6.2 LEPL is strictly more expressive than PDL.

Proof. Consider the formula: ϕ = 〈(t; (a ∪ b))∗〉∀[a]⊥ where t = (x, a, y1) +
(x, b, y2). In other words, t is the tree with two branches labeled a and b. Consider
the model M (see [34], page 459, Figure 1) consisting of an infinite sequence of
states labeled 0,1,2,. . .. From every state i, i > 0 there are both a and b edges
leading to i− 1. There is also a “bypassing” edge from every odd state 2i + 1 to
state 2i− 1.

31



It can be easily verified that, on the one hand, ϕ is satisfiable in every even state
of the model. On the other hand, no odd state satisfies ϕ since in any restriction
starting from an odd state, some branch will always be forced to remain on the
main path and will not use bypasses. Therefore, ϕ precisely describes the even
states of the model. Now, from [34] (pages 472-475), we have the following lemma:

Lemma 6.3 ([34]) Every PDL formula in the model M defines either a finite or
a cofinite set.

It follows that no PDL formula can be equivalent to ϕ. qed

Of course, the interesting question is whether our language LEPL is more ex-
pressive than that of CPDL. Indeed, LEPL is very similar to the language of
CPDL. The crucial difference is that CPDL allows parallel branching on arbitrary
programs: There is a program operator ‘π1 ∩ π2’ meaning “execute π1 and π2 in
parallel.” However, parallel branching occurs only at the atomic level in LEPL.
Thus, determining whether LEPL is as expressive as the language of CPDL re-
duces to showing that every regular expression involving a parallel operator ∩ can
be rewritten as a regular expression where the atomic programs are finite trees.
A related question is can we characterize the fragment of the µ-calculus that is
equivalent to our epistemic protocol logic?23 We leave these interesting questions
for future work.

Finding the precise relationship between our epistemic protocol logic and other
logical frameworks raises an important quesiton: can we characterize the expres-
sive power of our epistemic protocol language (over the class of arenas with imper-
fect information). In order to tackle this problem, we need a notion of equivalence
between models corresponding to equivalence with respect to LEPL. For example,
it is well known that (standard) PDL formulas are invariant under bisimulation24,
and this fact is instrumental in helping us understand the precise relationship
between PDL and other logical languages (interpreted over the same structures,
such as the µ-calculus). Consider the following arenas:

23Note that the key construction in this paper (iterating a finitely branching tree) can also
be represented in the µ-calculus: For example, µp.〈a〉p ∧ 〈b〉p defines the same tree at t∗where
t = (x, a, (x1)) + (x, b, (x2)) (the atomic tree with two branches one labeled with a and the other
with b).

24We assume the reader is familiar with the notion of bisimulation. See [2] for a detailed
discussion.
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a
b c

G1

t0

t1 t′1

t2 t3

a a

b c

G2

u0

u1 u′1

u2 u3 u4 u5

a a

b c b c

G3

Note that though G1 and G2 are trace equivalent25 but not bisimilar; and, indeed,
it is not hard to find a formula of LEPL that can distinguish these models.26

Furthermore, it is not hard to see that there is no formula of LEPL that can
distinguish G1 and G3. An interesting line of research, which we leave for future
work, is to find the appropriate notion of equivalence between models (cf. [31]).

Another interesting question concerns the choice of the modal language. Note
that the modalities ‘〈π〉2’ and ‘〈π〉3’ are “epistemized” versions of the action
modalities ‘〈π〉∀’ and ‘〈π〉∃’. A natural question is whether we can drop the for-
mer modalities in favor of a more expressive protocol language that incorporates
uncertainty in the tree structure. More generally, we would like to construct the
“actual” uncertainty an agent faces as a consistent product of uncertainty de-
scribed in the model and uncertainty specified in a protocol. This is closer in
spirit to the notion of product update used in dynamic epistemic logics (cf. [46]
and references therein).

The main idea here is to consider protocol trees, denoted by Pε(V) (cf. Def-
inition 4.1), over an extended alphabet set Σε = Σ ∪ {ε}. The ε edges specify
the uncertainty relation in the atomic protocol tree, and the notion of a protocol
t being enabled at a state u can be defined in a manner similar to Definition
3.3. The idea is that the ε edges in the protocol tree match the silent transitions
; present in the model. Of particular interest is the subclass of protocol trees
P2
ε (V) ⊆ Pε(V) where the labels on the path strictly alternate between ε and an

action symbol in Σ, and the ε edge is never combined with Σ in the branching
structure.

Proposition 6.4 If the protocol tree includes uncertainty (as described above),
then the 〈π〉2 and 〈π〉3 modalities are definable using 〈π〉∀ and 〈π〉∃.

25Trace equivalent means that the models contain the same sequence of actions: In this case,
{ab, ac}.

26Consider the basic protocol t which consists of one a-edge followed by tree with to branches,
one labeled with b and the other with c. This protocol is enabled in G1 (indeed, it is isomorphic
to G1) but not in G2.
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A formal statement27 of this proposition and a sketch of the proof can be found
in Appendix B. This proposition shows that being able to specify the uncertainty
relation directly on the protocol tree gives rise to a more general framework.
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A Proof of Theorem 4.8

To show completeness, we prove that every consistent formula is satisfiable. Let
α0 be a consistent formula, and CL(α0) denote the subformula closure of α0. In
addition to the usual closure, we also require that

1. 〈t〉Qα ∈ CL(α0) implies pushQ(t, α) ∈ CL(α0) for Q ∈ {∃,∀,2} and

2. 〈t〉3α ∈ CL(α0) implies
∨
ρ∈Paths(t) cpath(ρ, α) ∈ CL(α0).

Let AT (α0) be the set of all maximal consistent subsets of CL(α0), referred to
as atoms. We use u,w to range over the set of atoms. Each u ∈ AT (α0) is
a finite set of formulas and we denote the conjunction of all formulas in u by
û. For a nonempty subset X ⊆ AT , let X̃ =

∨
w∈X û. Define the transition

relation on AT (α0) as follows: u
a−→ w iff û ∧ 〈a〉ŵ is consistent. We define

the uncertainty relation as: u ; w iff û ∧ 3ŵ is consistent. The valuation V is
defined as V (w) = {p ∈ P | p ∈ w}. The model is M = (W,→,;, V ) where
W = AT (α0). We also make use of the following notation, for u ∈ W and an
action a ∈ Σ, let (u, a)→ = {w | u a−→ w}. The key observations are:

• For all 〈π〉∃α ∈ CL(α0) and for all u ∈ W , û ∧ 〈π〉∃α is consistent iff there
exists (u,X) ∈ R∃π and w ∈ X such that α ∈ w.

• For F ∈ {∀,2,3}, for all 〈π〉Fα ∈ CL(α0) and for all u ∈ W , û ∧ 〈α〉F is
consistent iff there exists (u,X) ∈ RF

π such that for all w ∈ X, α ∈ w.
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We present proofs for the cases 〈π〉∃α and 〈π〉2α. The arguments for the
remaining cases are similar. The following lemma can be shown using standard
modal logic techniques.

Lemma A.1 For all u ∈ W , we have the following properties.

• if û ∧ 〈a〉α is consistent then there exists w such that u→aw and ŵ ∧ α is
consistent.

• if û ∧ [a]α is consistent then for all w such that u→aw we have ŵ ∧ α is
consistent.

• if û ∧ 2α is consistent then for all w such that u ; w we have ŵ ∧ α is
consistent.

• if û ∧ 3α is consistent then there exists w such that u ; w and ŵ ∧ α is
consistent.

Lemma A.2 For all t ∈ P(V), for all u,w ∈ W , if û ∧ 〈t〉∃ŵ is consistent then

∃X ⊆ W such that (u,X) ∈ R∃t and ` ŵ ⊃ X̃.

Proof. By induction on the structure of t.

• t = (x): From axiom (A4) case (C1) we get 〈(x)〉∃α ≡ α. The lemma follows
from this quite easily.

• t = (x, a1, ta1)+ . . .+(x, ak, tak): Suppose û∧〈t〉∃ŵ is consistent, from axiom
(A4) we get û ∧ t

√
is consistent. Therefore there exists sets Y1, . . . , Yk such

that ∀j : 1 ≤ j ≤ l, for all vlj ∈ Yj we have u
aj−→ vlj. From (A4) case (C4)

we get û∧ (
∨
aj∈A 〈am〉〈tam〉

∃ŵ) is consistent. Therefore there exists vrm such

that u
am−→ vrm and vrm ∧ 〈tam〉

∃ŵ is consistent. By induction hypothesis,
for all j, l we get ∃X l

j such that (vlj, X
l
j) ∈ R∃taj and there exists Xr

m such

that (vrm, X
r
m) ∈ R∃tam , ` ŵ ⊃ X̃r

m. Let X =
⋃
j=1,...,k

⋃
l=1,...,|Yj |X

l
j, from

semantics we get (u,X) ∈ R∃t . We also have ` X̃r
m ⊃ X̃ and ` ŵ ⊃ X̃r

m and

thus ` ŵ ⊃ X̃ as required.

qed

The following two lemmas can be proved using standard techniques.

Lemma A.3 For all π ∈ Γ, for all u,w ∈ W , if û ∧ 〈π〉∃ŵ is consistent then

∃X ⊆ W such that (u,X) ∈ R∃π and ` ŵ ⊃ X̃.
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Lemma A.4 For all 〈t〉∃α ∈ CL(α0) and for all u ∈ W if there exists (u,X) ∈ R∃t
and w ∈ X such that α ∈ w then û ∧ 〈t〉∃α is consistent.

Lemma A.5 For all 〈π〉∃α ∈ CL(α0) and for all u ∈ W , û ∧ 〈π〉∃α is consistent
iff ∃(u,X) ∈ R∃π, ∃w ∈ X such that α ∈ w.

Proof. (⇒) Let Xα = {w | ŵ ∧α is consistent}. Suppose û∧ 〈π〉∃α is consistent.
From axiom (A2a) we get ∃w ∈ Xα such that û∧〈π〉∃ŵ is consistent. From lemma

A.3, there exists X ⊆ W such that (u,X) ∈ R∃π and ` ŵ ⊃ X̃. Since ` ŵ ⊃ α, we
have ∃(u,X) ∈ R∃π, ∃w ∈ X such that α ∈ w.
(⇐) Suppose ∃(u,X) ∈ R∃π, ∃w ∈ X such that α ∈ w. We need to show that
û ∧ 〈π〉∃α is consistent. This is done by induction on the structure of π.

• The case when π = t ∈ P(V) follows from lemma A.4. For π = π1 ∪ π2 the
result follows from axiom (A7).

• π = π1; π2: Suppose (u,X) ∈ R∃π1;π2
and ∃w ∈ X such that α ∈ w. From the

definition of R∃ we get that there exists Y ⊆ W such that (u, Y ) ∈ R∃π1 and

∃v ∈ Y such that (v,X) ∈ R∃π2 . By induction hypothesis we have v̂∧〈π2〉∃α
is consistent. By definition of closure we have 〈π2〉∃α ∈ CL(α0). Therefore
we get 〈π2〉∃α ∈ v. Again applying induction hypothesis we get that û ∧
〈π1〉∃〈π2〉∃α is consistent. From (A8) we get û ∧ 〈π1; π2〉∃α is consistent.

• π = π∗1: From definition of R∃ there must be sets Y1, . . . , Yk such that u ∈ Y1,
X = Yk and for all j : 1 < j < k, ∃vj ∈ Yj such that (vj, Xj+1) ∈ R∃π1 .

From (A9) we get ŵ ∧ 〈π∗1〉
∃α is consistent. By definition of closure, we

have 〈π1〉∃〈π∗1〉
∃α ∈ CL(α0). By induction hypothesis, v̂k−1 ∧ 〈π1〉∃〈π∗1〉

∃α is
consistent and therefore from (A9) v̂k−1 ∧ 〈π∗1〉

∃α is consistent. Continuing
in this manner we get û ∧ 〈π∗1〉

∃α is consistent.

qed

Lemma A.6 For all t ∈ P(V), for all X ⊆ W and for all u ∈ W the following
holds:

1. if (u,X) ∈ R2
t then û ∧ 〈t〉2X̃ is consistent.

2. if û ∧ 〈t〉2X̃ is consistent then there exists X ′ ⊆ X such that (u,X ′) ∈ R2
t .

Proof. The proof is by induction of the structure of the atomic tree t.
Let t = (x).

40



Suppose (u,X) ∈ R2
t then from semantics we have X = {w | u ; w}. This

implies that for all w ∈ X, ŵ ∧ X̃ is consistent. From Lemma A.1 we get û∧2X̃
is consistent. From axiom (A5) case (C3) we get û ∧ 〈t〉2X̃ is consistent.

Suppose û∧〈t〉2X̃ is consistent then by axiom (A5) case (C3) we have û∧2X̃
is consistent. By Lemma A.1 we get for all w such that u; w, ŵ∧X̃ is consistent.
Let X ′ = {w | u; w}, it is easy to see that X ′ ⊆ X and thus from the semantics
we get (u,X ′) ∈ R2

t .
Let t = (x, a1, ta1) + . . .+ (x, ak, tak).

Suppose (u,X) ∈ R2
t . From semantics we have ∀wl ∈ I(u), ∀aj ∈ A, ∀v ∈

(wl, aj)→ there exists Xv
l,j such that (v,Xv

l,j) ∈ R2
taj

. This implies that for all

wl ∈ I(u) and for all aj ∈ A, ŵl ∧ 〈aj〉> is consistent and therefore û ∧2〈aj〉> is

consistent. By applying induction hypothesis and due to the fact that ` X̃v
j,l
⊃ X̃

we get that v̂ ∧ 〈taj〉
2X̃ is consistent for all wl ∈ I(u), for all aj ∈ A and for all

v ∈ (wl, aj)→. Thus from Lemma A.1 and axiom (A5) case (C6) we can deduce

that û ∧ 〈t〉2X̃ is consistent.

Suppose û∧〈t〉2X̃ is consistent. From axiom (A5) case (C6) we get that for all
wl ∈ I(u), for all aj ∈ A, ŵl∧〈aj〉> is consistent. This implies that (wl, aj)→ 6= ∅.
From axiom (A5) case (C6) we also have that û ∧ 2[aj]〈taj〉

2X̃ is consistent for
all aj ∈ A and therefore for all wl ∈ I(u), for all aj ∈ A, for all v ∈ (wl, aj)→,

v̂ ∧ 〈taj〉
2X̃ is consistent. By induction hypothesis, there exists Xv

l,j ⊆ X such
that (v,Xv

l,j) ∈ R2
taj

. Let X ′ =
⋃
l=1,...,m

⋃
j=1,...,k

⋃
v∈(wl,aj)→

Xv
l,j, by definition of

R2
t we have (u,X ′) ∈ R2

t . qed

Lemma A.7 For all π ∈ Γ, for all X ⊆ W and u ∈ W , if û∧〈π〉2X̃ is consistent
then there exists X ′ ⊆ X such that (u,X ′) ∈ R2

π .

Proof. By induction on the structure of π.

• π = t ∈ P(V): Suppose û ∧ 〈t〉2X̃ is consistent. From lemma A.6 item 2, it
follows that there exists X ′ ⊆ X such that (u,X ′) ∈ R2

π .

• π = π1∪π2: By axiom (A7) we get û∧〈π1〉2X̃ is consistent or û∧〈π2〉2X̃ is
consistent. By induction hypothesis there exists X1 ⊆ X such that (u,X1) ∈
R2
π1

or there existsX2 ⊆ X such that (u,X2) ∈ R2
π2

. Hence we have (u,X1) ∈
R2
π1∪π2 or (u,X2) ∈ R2

π1∪π2 .

• π = π1; π2: By axiom (A8), û ∧ 〈π1〉2〈π2〉2X̃ is consistent. Hence û ∧
〈π1〉2(

∨
(ŵ ∧ 〈π2〉2X̃)) is consistent, where the join is taken over all w ∈

Y = {w | w ∧ 〈π2〉2X̃ is consistent}. So û ∧ 〈π1〉2Ỹ is consistent. By
induction hypothesis, there exists Y ′ ⊆ Y such that (u, Y ′) ∈ R2

π1
. We also

41



have that for all w ∈ Y , ŵ ∧ 〈π2〉2X̃ is consistent. Therefore we get for all

wj ∈ Y ′ = {w1, . . . , wk}, ŵj∧〈π2〉2X̃ is consistent. By induction hypothesis,
there exists Xj ⊆ X such that (wj, Xj) ∈ R2

π2
. Let X ′ =

⋃
j=1,...,kXk ⊆ X,

we get (u,X ′) ∈ R2
π1;π2

.

• π = π∗1: Let Z be the least set containing X and closed under the condi-

tion: for all w, if ŵ ∧ 〈π1〉2Z̃ is consistent, then w ∈ Z. By definition of Z
and induction hypothesis, we get for all w ∈ Z, there exists Xw ⊆ X such
that (w,Xw) ∈ R2

π∗1
. It is also easy to see that ` X̃ ⊃ Z̃. Using standard

techniques, it is also easy to show that ` 〈π1〉2Z̃ ⊃ Z̃.

Applying the induction rule (IND2), we have ` 〈π∗1〉
2Z̃ ⊃ Z̃. By assumption,

û∧〈π∗1〉
2X̃ is consistent. So û∧〈π∗1〉

2Z̃ is consistent. Hence û∧Z̃ is consistent
and therefore u ∈ Z. Thus we have (u,X ′) ∈ R2

π∗1
for some X ′ ⊆ X.

qed

Lemma A.8 For all 〈π〉2α ∈ CL(α0), for all u ∈ W , û ∧ 〈π〉2α is consistent iff
there exists (u,X) ∈ R2

π such that ∀w ∈ X, α ∈ w.

Proof. (⇒) Follows from Lemma A.7 (consider the set Xα = {w ∈ W | α ∈ w}).
(⇐) Suppose ∃(u,X) ∈ R2

π such that ∀w ∈ X, α ∈ w. We need to show that
û ∧ 〈π〉2α is consistent, this is done by induction on the structure of π.

• The case when π = t ∈ P(V) follows from Lemma A.6. For π = π1 ∪ π2 the
result follows from axiom (A7).

• π = π1; π2: Since (u,X) ∈ R2
π1;π2

, there exists Y = {v1, . . . , vk}, there
exists sets X1, . . . , Xk ⊆ X such that

⋃
j=1,...,kXj = X, for all j : 1 ≤ j ≤

k, (vj, Xj) ∈ Rπ2 and (u, Y ) ∈ R2
π1

. By induction hypothesis, for all j,
v̂j ∧ 〈π2〉2α is consistent. Since vj is an atom and 〈π2〉2α ∈ CL(α0), we
get 〈π2〉2α ∈ vj. Again by induction hypothesis we have û ∧ 〈π1〉2〈π2〉2α is
consistent. Hence from (A8) we have û ∧ 〈π1; π2〉2α is consistent.

• π = π∗1: If u ∈ X then ` û ⊃ X̃. We have ` X̃ ⊃ α and hence we get û ∧ α
is consistent. From axiom (A9) we have û ∧ 〈π∗1〉

2α is consistent.

Else we have (u,X) ∈ R2
π1;π∗1

. Let Z0 = X and Zn+1 = Zn ∪ {w | (w,Z ′) ∈
R2
π1
, Z ′ ⊆ Zn}. Take the least m such that u ∈ Zm. We have for all w ∈

Zm−1, ` ŵ ⊃ 〈π∗1〉
2X̃ ′ for someX ′ ⊆ X. We also have (u, Z ′m) ∈ R2

π1
for some

Z ′m = {v1, . . . , vk} ⊆ Zm. Let X1, . . . , Xk ⊆ X such that ∀j : 1 ≤ j ≤ k, we
have (vj, Xj) ∈ R2

π∗1
and X ′ =

⋃
j=1,...,kXj. By an argument similar to the
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previous case we can show that û∧〈π1〉2〈π∗1〉
2X̃ ′ is consistent. Hence we get

û∧ 〈π1; π∗1〉
2α is consistent. Therefore from axiom (A9) we have û∧ 〈π∗1〉

2α
is consistent.

qed

A routine induction gives us the following Lemma from which Theorem 4.8 follows
using the usual argument.

Lemma A.9 For all β ∈ CL(α0), for all u ∈ W , M,u |= β iff β ∈ u.

B Proposition 6.4

For technical convenience we assume that the uncertainty relation ; is reflexive.
We can also extend the definition of the relation RQπ in the standard manner, where
R∃π would represent a subjective path in the structure (G, u) |\ t. In particular, for
an “epsilon free” expression π, this would coincide with a deterministic (objective)
path in (G, u) |\ t. Consider the subclass of protocol trees P2

ε (V) ⊆ Pε(V) which
satisfies the following conditions: t ∈ P2

ε (V) iff

• For all maximal paths ρ : s1z1 . . . zk−1sk ∈ Paths(Tt) we have

– z1 = zk−1 = ε.

– for all j : 1 ≤ j < k − 1, zj+1 ∈ Σ if zj = ε and zj+1 = ε if zj ∈ Σ.
I.e., the labels on the path strictly alternate between ε and an action
symbol in Σ.

• for all s ∈ St, if ε ∈ A(s) then A(s) = {ε}. I.e., the ε edge is never combined
with Σ in the branching structure.

We show that if the uncertainty relation is allowed to be specified in the pro-
tocol tree then the modalities 〈π〉2 and 〈π〉3 can be eliminated. Formally, let
L′EPL be the fragment of the language LEPL (defined in Section 4) which does
not include formulas of the form 〈π〉2α and 〈π〉3α. We can show the following
translation result.

Proposition B.1 For all α ∈ LEPL, there exists α′ ∈ L′EPL such that M,u |= α
iff M,u |= α′.

Proof. We present a proof sketch here. The idea is to translate the constructs 〈π〉2
and 〈π〉3 into 〈π′〉∀ and 〈π′〉∃ respectively where π′ is a composite tree expression
over the expanded set P2

ε (V).
The interesting case is when π is atomic, i.e. π = t ∈ P(V). We define a

translation function [[·]] : P(V)→ P2
ε (V) inductively as follows:
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• if t = (x), [[t]] = (y1, ε, (x, ε, y2)). In other words, the single node tree is
expanded to a path which is prefixed and suffixed with an ε edge.

• if t = (x, a1, ta1) + . . . + (x, ak, tak) we define [[t]] = (y, ε, tx) where tx =
(x, a1, [[ta1 ]]) + . . .+ (x, ak, [[tak ]]).

The translation function [[·]] can be extended to the compositional operators
as well as to formulas in the obvious manner where we have,

• [[〈π〉2α]] = 〈[[π]]〉∀[[α]].

• [[〈π〉3α]] = 〈[[π]]〉∃[[α]].

It is then an easy inductive argument to show that the translation preserves
the satisfaction relation. In other words, M,u |= α iff M,u |= [[α]]. qed
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