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Abstract 
 

Alhazen problem of reflection at a concave spherical surface is one of the most discussed problems in 

optics. It was solved by Alhazen, The number of solution points vary from zero to a maximum of four. 

However, his solution is known to be prolix. Huygens solved the problem and identified the solution 
points to be points of intersection of the given circle and a hyperbola. Many other lines of attack were 

attempted with their solutions. New solutions are offered from time to time. In this paper we offer a 

solution based on the criterion to be satisfied by reflection of a ray of light at a concave spherical surface. 
Based on that criterion we show that it is impossible for a circle containing both end points of the path of 

the ray inside it, to reflect rays from one point to the other. However, for every point on the given circle, 

we can construct two orthogonal circles (orthogonal conics in general) which reflect rays from one given 
point to the other, while the given circle is a non-reflector.  
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Introduction 

 
The centuries old Alhazen‟s problem was originally formulated by Ptolemy (ca 100-170) and was later 

taken up by Alhazen
1
 (ca 965-1040) who is also known as Ibn al–Haytham. That his fame as a 

mathematician rested on his treatment of this problem goes to show his contribution to its solution. The 
problem appears deceptively simple, but yet it took centuries for mathematicians to solve it. Alhazen‟s 

solution was “horribly prolix”
2
.Notable among others who solved this problem was Huygens. Mihas gives 

a detailed version of Huygens‟ solution
3
. Elkin gave a method

4
 to show how to calculate the position of 

the required points in the general case with respect to the relative location of the points and the circle. 
Smith gave a reconstruction of Alhazen‟s solution

5
. He credits Alhazen‟s solution to be remarkably 

ingenious and elegant in its conceptual simplicity. He also gave Ptolemy‟s solutions for different cases of 

location of the two points within the circle
6
. We demonstrate in this paper, using a new geometrical 

approach, that it is impossible for a concave spherical reflector to reflect light rays from a given point A, 

to another given point B, when both points lie within the circle (cross section of the spherical reflector). If 

it is simply a question of the points merely be located on the circle at which reflections occur - while the 

reflector is another circle (spherical reflector) which intersects the given circle at the point of incidence - 
then all points on the given circle can be solution points of the problem. Our solution is based on the 

construction of Apollonius circle that intersects the line segment formed from the two given points 

harmonically in a ratio k : 1, (k 1). 
 

Statement of the Alhazen problem 

 

Alhazen‟s problem may be stated thus: From any two points opposite a reflecting surface – which may 

be plane, spherical concave (or convex) – to find a point (or points) on the surface at which a ray of light 

from one of the two points will be reflected to the other. 



2 
 

 

Solution to Alhazen problem  
 

This solution is applies for concave spherical reflectors Let the two given points be A, B and the given 

circle (section of the spherical reflector) centered at O enclose the two points A and B (see Fig. 1). The 
problem is to find the points on the circle at which a ray of light from A is reflected to pass through B.   

 

Apollonius circle
7
 

 

Let P be an arbitrarily chosen point on the given circle (see Fig. 1). Then the ratio of the distances AP, BP 

of the point P from A and B defines a ratio, k.  
 

 
 

Let us bisect the angle APB. Let the internal bisector intersect the line through A, B at C. Let the external 

bisector PD intersect that line at D.  
 

 

 
 

 

Fig. 1 A, B are the given points inside the given circle (red) centered at O. P is an arbitrary point 

on the circle. Angle APB is bisected by PC internally and PD externally. The circle through C, P, 
D is Apollonius circle determined by the ratio AP : PB = k : 1. 

 

 
Let us draw the circle with CD as diameter (green). It passes through the point P, since angle CPD is a 

right angle. (the internal and the external bisectors PC and PD are mutually perpendicular). The circle is 

called Apollonius circle defined by the value of the constant k
7
. Every point Pi on the Apollonius circle 

follows Eq. (2) below. 
 

 
 
Therefore PiC bisects the angle APiB for all Pi. 

 

The family of α circles 

 

Since P is an arbitrarily chosen point on the given circle the above arguments are valid for any choice of 
P. For different choices we get different values of the ratio of distances AP : PB and different values of k. 
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For different values of k we get different Apollonius circles (See Fig. 2.). They form a family of coaxial, 

non intersecting circles. Let us call it the family of α circles
7
. 

 

 
 

 
 
 
 

Fig. 2. Figure shows a few members of the family of the α circles (coaxial, non intersecting 
circles). 

 
If we construct the perpendicular bisector of AB, called the radical axis (the red vertical line), the 

Apollonius circles on the left of it have values of k < 1. That is, for circles on left of the radical axis, k < 1 
and for those on the right k > 1. 

  

The family of β circles 
 

 

 
 
Fig. 3, Figure shows a few members of the β family of circles. They intersect the members of the α family 

orthogonally. 
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Let us draw the circles passing through points A, B and Pi. These circles form a family of coaxial 

intersecting circles (see Fig. 3). Let us call this, the family of β circles. Each of the β circles intersect 
every member of the α circles orthogonally

7
. 

 

Reflection of light at points on the given circle 
 

Let a ray of light from A be incident at point Pi on the given circle. Pi is the point of intersection of three 

circles. (see Fig. 4) -  a pair of orthogonal α and β circles and the given circle. 
 

 

 
 

Fig. 4, Figure shows three circles intersecting at Pi. The Apollonius circle, the circle orthogonal to 

it at Pi and the given circle (red). APi is an incident ray of light at Pi. Pi B is the reflected ray.   

 
The ray APi gets reflected to go along Pi B making equal angles with Pi C.  

 

The question arises: Which of the three circles reflects the ray APi to go through B? Do all the three 

circles reflect it? Or, are there many more circles that reflect rays from A to go through B? Is there any 
criterion to decide which one, if only one of them reflects? 

 

Criterion to decide if a given circle reflects a ray of light from a given point to go through 

another given point 
 
If the diameter CD of a given circle is divided harmonically by points A and B, then one point lies inside 

and the other point lies outside the circle. Any point P on that circle (we may call it the mirror circle) 

reflects rays from A to pass through B or rays from B to pass through A. The reflector circle is the 

Apollonius circle defined by the ratio of the distances PA and PB. The circle orthogonal to it at P and, 
passing through points C and D acts as the normal circle (we may call it the mirror circle). Thus, it is to be 

noted that it is the pair of orthogonal circles that reflect the rays from one point to another point. It is not 

one circle that decides the reflection of a ray of light incident at a point on it. (see the Appendix). 
 

Solution to Alhazen problem 

 
From the criterion of harmonic division given above, we see that the given circle is not a member of the 

family of α circles. It is not a member of the family of β circles either. Therefore, it is clear that it is 
impossible for the given circle to reflect rays from one given point to another, since both the given points 

lye inside it.  
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Looking at it from a different angle, if the condition required to be satisfied is only that, that the point of 

reflection merely lies on the circle, then every point on the given circle satisfies this condition. As such, 
all points on the given circle reflect rays from one given point to another in it. But note that the circle 

containing the points is not the circle that reflects the rays from one given point to another point in it. 

 

Discussion 
 

Ptolemy‟s solutions to the problem correspond to points of intersection of the given circle and the circle 
passing through the three points – the center of the given circle and the two given points

6
. But the two 

circles are not orthogonal at the solution points. Therefore, those points cannot be considered to be the 

end points of path of reflection from the given circle. 

 
Huygens solutions correspond to points of intersection of the given circle and a hyperbola

3
. Obviously,  

the two conic sections cannot be orthogonal at the solution points. Therefore, those points cannot be 

considered to be the points of reflection from the given circle. However, it is possible that the ellipse 
orthogonal to the hyperbola at that point could act as the reflector. 

 

Fujimura et. al
1
. call this problem as „Ptolemy - Alhazen interior Problem‟. Their solutions correspond to 

the solutions of a fourth degree equation and include all points of common tangency of an ellipse and a 

unit circle. But it could be the ellipse and not the circle that acts as the reflector. In their geometric 

approach to the problem their solutions correspond to points of intersection of the given circle (a unit 

circle) and a conic section. For the exterior problem they show the points of intersection of the unit circle 
and a hyperbola as the solution points. Here again, it cannot be ruled out that the ellipse which is 

orthogonal to the hyperbola at the solution points that acts as the reflector. 
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Appendix 

 

It is not only in the case of reflection of light rays at spherical surfaces that two circles (orthogonal) are 
involved. In general, reflection at curved surfaces involves two orthogonal conics, for example, two 

coaxial, confocal central conics such as an ellipse and hyperbola; or two coaxial, confocal, intersecting 

parabolas. The condition to be satisfied being that that the point of incidence must be a point of 

intersection of two orthogonal conics. 
 

The internal and external bisectors (which are orthogonal) of the angle subtended by a reflected ray 

couple, define two points of intersection with the line through the feet of the ray couple and, a circle – the 
Apollonius circle. The feet of the ray couple (the object and the eye as they are usually referred to) define 

two pints that intersect the diameter of the Apollonius circle harmonically.  

 
Thus, basically it is the harmonic division of a line segment in a given ratio that underlies the solution of 

Alhazen Problem, through the construction of Apollonius circle and reflection of light from it.  
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