Skip to main content
Log in

Issues in commonsense set theory

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The success of set theory as a foundation for mathematics inspires its use in artificial intelligence, particularly in commonsense reasoning. In this survey, we briefly review classical set theory from an AI perspective, and then consider alternative set theories. Desirable properties of a possible commonsense set theory are investigated, treating different aspects like cumulative hierarchy, self-reference, cardinality, etc. Assorted examples from the ground-breaking research on the subject are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann, W. (1956). Zur Axiomatik der Mengenlehre.Mathematische Annalen 131: 336–345.

    Google Scholar 

  • Aczel, P. (1988).Non-Well-Founded Sets. Center for the Study of Language and Information: Stanford, CA.

    Google Scholar 

  • Akman, V. (1992). Undaunted Sets.SIGACT News 23: 47–48.

    Google Scholar 

  • Allgayer, J. (1990). SB-ONE+-Dealing with Sets Efficiently. In Aiello, L. C. (ed.) Proceedings ofThe Ninth European Conference on Artificial Intelligence, 13–18. Pitman: London.

    Google Scholar 

  • Barwise, J. (1975).Admissible Sets and Structures. Springer-Verlag: Berlin.

    Google Scholar 

  • Barwise, J. (1977). An Introduction to First-Order Logic. In Barwise, J. (ed.)Handbook of Mathematical Logic, 5–46. North-Holland: Amsterdam.

    Google Scholar 

  • Barwise, J. (1985). Model-Theoretic Logics: Background and Aims. In Barwise, J. & Feferman, S. (eds.)Model-Theoretic Logics, 3–23. Springer-Verlag: New York.

    Google Scholar 

  • Barwise, J. (1989a). Situations, Sets, and the Axiom of Foundation. InThe Situation in Logic, 177–200. Center for the Study of Language and Information: Stanford, CA.

    Google Scholar 

  • Barwise, J. (1989b). Situated Set Theory. InThe Situation in Logic, 289–292. Center for the Study of Language and Information: Stanford, CA.

    Google Scholar 

  • Barwise, J. (1989c). AFA and the Unification of Information. InThe Situation in Logic, 277–283. Center for the Study of Language and Information: Stanford, CA.

    Google Scholar 

  • Barwise, J. (1989d). On the Model Theory of Common Knowledge. InThe Situation in Logic, 201–220. Center for the Study of Language and Information: Stanford, CA.

    Google Scholar 

  • Barwise, J. (1990). Consistency and Logical Consequence. In Dunn, J. M. & Gupta, A. (eds.)Truth or Consequences, 111–122. Kluwer: Dordrecht, Holland.

    Google Scholar 

  • Barwise, J. & Etchemendy, J. (1987).The Liar: An Essay on Truth and Circularity. New York: Oxford University Press.

    Google Scholar 

  • Barwise, J. & Moss, L. (1991). Hypersets.Mathematical Intelligencer 13: 31–41.

    Google Scholar 

  • Barwise, J. & Perry, J. (1983).Situations and Attitudes. MIT Press: Cambridge, MA.

    Google Scholar 

  • Bernays, P. (1937). A System of Axiomatic Set Theory, I.Journal of Symbolic Logic 2: 65–77. (II.ibid. 6: 1–17, 1941.III.ibid. 7: 65–89, 1942. IV.ibid. 7: 133–145, 1942, V.ibid. 8: 89–104, 1943. VI.ibid. 13: 65–79 1948. VII.ibid. 19: 81–96, 1954.)

    Google Scholar 

  • Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M. & Wos, L. (1986). Set Theory in First-Order Logic.Journal of Automated Reasoning 2: 287–327.

    Google Scholar 

  • Brown, F. M. (1978). Towards the Automation of Set Theory and its Logic.Artificial Intelligence 10: 281–316.

    Google Scholar 

  • Cantor, G. (1883). Fondaments d'une théorie générale des ensembles.Acta Mathematica 2: 381–408.

    Google Scholar 

  • Cantor, G. (1932).Gesammelte Abhandlungen mathematischen und philosophischen Inhalts (ed. by E. Zermelo). Springer-Verlag: Berlin.

    Google Scholar 

  • Feferman, S. (1984). Toward Useful Type-Free Theories, I.Journal of Symbolic Logic 49: 75–111.

    Google Scholar 

  • Fraenkel, A. A. (1922). Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre.Mathematische Annalen 86: 230–237.

    Google Scholar 

  • Fraenkel, A. A., Bar-Hillel, Y. & Levy, A. (1973).Foundations of Set Theory. North-Holland: Amsterdam.

    Google Scholar 

  • Frege, G. (1893).Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet (Volume I). Jena.

  • Gilmore, P. (1974). The Consistency of Partial Set Theory without Extensionality. In Jech, T. J. (ed.)Axiomatic Set Theory, 147–153. American Mathematical Society: Providence, RI.

    Google Scholar 

  • Goldblatt, R. (1984).Topoi: The Categorial Analysis of Logic. North-Holland: Amsterdam.

    Google Scholar 

  • Gödel, K. (1940).The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Princeton University Press: Princeton, NJ.

    Google Scholar 

  • Gödel, K. (1947). What is Cantor's Continuum Problem?American Mathematical Monthly 54: 515–525.

    Google Scholar 

  • Halmos, P. R. (1974).Naive Set Theory. Springer-Verlag: New York.

    Google Scholar 

  • van Heijenhoort, J. (1967).From Frege to Gödel. Harvard University Press: Cambridge, MA.

    Google Scholar 

  • Kripke, S. (1964). Transfinite Recursion on Admissible Ordinals, I–II.Journal of Symbolic Logic 29: 161–162.

    Google Scholar 

  • Kunen, K. (1980).Set Theory: An Introduction to Independence Proofs. North-Holland: Amsterdam.

    Google Scholar 

  • Mac Lane, S. (1986).Mathematics: Form and Function. Springer-Verlag: New York.

    Google Scholar 

  • McCarthy, J. (1959). Programs with Common Sense. In Proceedings ofThe Teddington Conference on Mechanization of Thought Processes, 75–91. Her Majesty's Stationary Office: London.

    Google Scholar 

  • McCarthy, J. (1969). Some Philosophical Problems from the Standpoint of Artificial Intelligence. In Meltzer, B. & Michie, D. (eds.)Machine Intelligence: 463–502. Edinburgh University Press: Edinburgh, UK.

    Google Scholar 

  • McCarthy, J. (1977). Epistemological Problems of Artificial Intelligence. In Proceedings ofThe Fifth International Joint Conference on Artificial Intelligence, 1038–1044.

  • McCarthy, J. (1980). Circumscription — A Form of Non-Monotonic Reasoning.Artificial Intelligence 13: 27–39. (Addendum: 171–172.)

    Article  Google Scholar 

  • McCarthy, J. (1983). Artificial Intelligence Needs More Emphasis on Basic Research: President's Quarterly Message.AI Magazine 4: 5.

    Google Scholar 

  • McCarthy, J. (1984). We Need Better Standards for Artificial Intelligence Research: President's Message.AI Magazine 5: 7–8.

    Google Scholar 

  • McCarthy, J. (1985). Acceptance Address,International Joint Conference on Artificial Intelligence (IJCAI), Award for Research Excellence, Los Angeles, CA.

  • McCarthy, J. (1988). Mathematical Logic in Artificial Intelligence.Daedalus 117: 297–311.

    Google Scholar 

  • Mendelson, E. (1987).Introduction to Mathematical Logic. Wadsworth & Brooks/Cole: Belmont, CA.

    Google Scholar 

  • Minsky, M. (1981). A Framework for Representing Knowledge. In Haugeland, J. (ed.)Mind Design, 95–128. MIT Press: Cambridge, MA.

    Google Scholar 

  • Mirimanoff, D. (1917). Les antinomies de Russell et de Burali-Forti et le probléme fondamental de la théorie des ensembles.L'Enseignment Mathematique 19: 37–52.

    Google Scholar 

  • Mislove, M. W., Moss, L. & Oles, F. J. (1990). Partial Sets. In Cooper, R., Mukai, K. & Perry, J. (eds.)Situation Theory and Its Applications: 117–131, Number 22 in CSLI Lecture Notes. Center for the Study of Language and Information: Stanford, CA.

    Google Scholar 

  • Morse, A. (1965).A Theory of Sets. Academic Press: San Diego, CA.

    Google Scholar 

  • Mostowski, A. (1979). Thirty Years of Foundational Studies. In Kuratowski, K.et al. (eds.)Andrzej Mostowski: Foundational Studies, Selected Works. North-Holland: Amsterdam.

    Google Scholar 

  • von Neumann, J. (1925). Eine Axiomatisierung der Mengenlehre.J. für Math. 154: 219–240. (Corrections:ibid.,155: 128, 1926.)

    Google Scholar 

  • Pakkan, M. (1993). Solving Equations in the Universe of Hypersets. M.S. Thesis, Dept. of Computer Engineering and Information Science, Bilkent University, Ankara, Turkey.

    Google Scholar 

  • Parsons, C. (1977). What is the Iterative Conception of Set? In Butts, R. E. & Hintikka, J. (eds.)Logic, Foundations of Mathematics, and Computability Theory, 339–345. Kluwer: Dordrecht, Holland.

    Google Scholar 

  • Parsons, C. (1990). Mathematical Intuition. In Yourgrau, P. (ed.)Demonstratives, 195–214. Oxford University Press: Oxford.

    Google Scholar 

  • Perlis, D. (1985). Languages with Self-Reference I: Foundations.Artificial Intelligence 25(3): 301–322.

    Google Scholar 

  • Perlis, D. (1987). Circumscribing with Sets.Artificial Intelligence 37: 201–211.

    Google Scholar 

  • Perlis, D. (1988). Commonsense Set Theory. In Maes, P. & Nardi, D. (eds.)Meta-Level Architectures and Reflection, 87–98. Elsevier: Amsterdam.

    Google Scholar 

  • Quaife, A. (1992). Automated Deduction in von Neumann-Bernays-Gödel Set Theory.Journal of Automated Reasoning 8: 91–147.

    Google Scholar 

  • Quine, W. V. (1937). New Foundations for Mathematical Logic.American Mathematical Monthly 44: 70–80.

    Google Scholar 

  • Schwartz, J. T., Dewar, R. B. K., Dubinsky, E. & Schonberg, E. (1986).Programming with Sets: An Introduction to SETL. Springer-Verlag: New York.

    Google Scholar 

  • Shoenfield, J. R. (1977). Axioms of Set Theory. In Barwise, J. (ed.)Handbook of Mathematical Logic, 321–344. North-Holland: Amsterdam.

    Google Scholar 

  • Skolem, T. (1922). Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre. InWiss. Vorträge gehalten auf dem 5. Kongress der Skandinav. Mathematiker in Helsingförs, 217–232.

  • Suppes, P. (1972).Axiomatic Set Theory. Dover: New York.

    Google Scholar 

  • Suppes, P. & Sheehan, J. (1981) CAI Course in Axiomatic Set Theory. In Suppes, P. (ed.)University-Level Computer-Assisted Instruction at Stanford: 1968–1980, 3–80, Institute for Mathematical Studies in the Social Sciences, Stanford University: Stanford, CA.

    Google Scholar 

  • Tiles, M. (1989).The Philosophy of Set Theory. Basil Blackwell: Oxford, UK.

    Google Scholar 

  • Whitehead, A. N. & Russell, B. (1910).Principia Mathematica (3 Volumes). Cambridge University Press: Cambridge, UK.

    Google Scholar 

  • Zadrozny, W. (1989). Cardinalities and Well Orderings in a Common-Sense Set Theory. In Brachman R. J., Levesque H. J. & Reiter, R. (eds.) Proceedings ofThe First International Conference on Principles of Knowledge Representation and Reasoning, 486–497. Morgan Kaufmann: San Mateo, CA.

    Google Scholar 

  • Zadrozny, W. & Kim, M. (1993). Computational Mereology: A Prolegomenon Illuminated by a Study of Part-Of Relations for Multimedia Indexing. InBar-Ilan Symposium on the Foundations of AI (BISFAI-93), Israel.

  • Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre.Mathematische Annalen 65: 261–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakkan, M., Akman, V. Issues in commonsense set theory. Artif Intell Rev 8, 279–308 (1994). https://doi.org/10.1007/BF00849061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00849061

Key words

Navigation