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ABSTRACT

Computer vision systems that are applied for image

understanding in real-world environments require the

capability to focus operations on task relevant events

in an ongoing input stream of visual information.

Attentive systems must indirectly provide solutions to

characteristic challenges in real-world processing,

such as the complexity in input imagery and uncer-

tainty in the acquired information. We address 

successful methodologies on saliency and feature

selection, describe attentive systems with respect to

object and scene recognition, and review saccadic

interpretation under decision processes. In robotic

systems, we understand attention embedded in the

context of optimizing sensorimotor behavior and 

multisensor-based active perception. We present an

overview on system architectures that play a crucial

role in attentive robots, with emphasis on multimodal

information fusion and humanoid robots.

I. INTRODUCTION

Vision systems with the task of operating in real-

world environments must tackle challenges that arise

from the specific conditions and the uncertainty in the

visual information of the captured images. Selective

attention is necessary to focus on information that is

relevant to a current task and mandatory to make a

choice for the processing of appropriate data sources

in response to a specific system state in space and time.

In machine vision, the development of enabling tech-

nologies such as video surveillance systems, miniatur-

ized mobile sensors, and ambient intelligence systems

involves the real-time analysis of enormous quantities

of data. Knowledge has to be applied concerning what

needs to be attended to and when and what to do in a

meaningful sequence, in correspondence with visual

feedback. Methods on attention and control are

mandatory to render computer vision systems more

robust. In mobile robots, the embodied actuators may

affect perception in an even greater sense, introducing

mobility and thereby deciding the observer’s view-

point, linking physical presence with specificity in its

sensoric experience. The following sections review

attention architectures in machine vision and robotic

systems, with an emphasis on research results pre-

sented at the International Workshop on Attention and

Performance in Computer Vision 2003 (Paletta et al.,

2003).

II. ATTENTIVE COMPUTER 
VISION SYSTEMS

Attention architectures in machine vision are 

introduced from the view of bottom-up processing in

terms of saliency operators. In analogy to top-down

paths in human perception (Braun et al., 2001), task-

dependent modulation of feature extraction is a rele-

vant issue, in particular regarding the task of object

search in real-world scenes. Contextual modulation of

processing enables us to take advantage of context

cues in order to focus processing on most promising,

such as salient image information. In addition, sac-

cadic integration operates on the process chain of 

contextually related local interpretations of a global

object or scene information. Finally, in dynamic vision,

the extraction of visual motion plays an outstanding

role in providing essential cues and attracting 

attention.
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A. Saliency from Feature Selection

Saliency of a local image area must be defined on

the basis of the specific visual information and, accord-

ingly, on the basis of an appropriate feature detector.

Attentive processing in computer vision initially used

saliency-based models, in which the strength of the

response of feature detectors determined candidate

locations by matching (Clark and Ferrier, 1988). In a

model of purely bottom-up information processing,

the Culhane-Tsotsos feature detector (Culhane and

Tsotsos, 1992) builds a hierarchy of representations

relying on the assumption that input cell values

directly reflect how salient a specific location is. A

saliency operator based on information measures with

respect to spatial locations and scales of objects in an

image is provided by Jagersand (1995). It results from

the expected information gain from Kullback contrasts

between successive resolution lengths.

More elaborated models of attentive stimulus-

driven search were proposed by Itti et al. (1998), com-

bining first multiscale image features into a single

topographical saliency map. Competition among

neurons in this map give rise to a single winning loca-

tion that corresponds to the next attended target (Sec.

IIB). The underlying model is based on the Feature

Integration Theory from Treisman and Gelade (1980).

A referring implementation that is invariant to simi-

larity transformation is described by Lionelle and

Draper (2003). The saliency of local image regions has

more recently become relevant in object recognition

and wide-base line stereo (Fraundorfer and Bischof,

2003), taking into account the three closely interrelated

aspects of saliency, scale, and content. The detector is

translation, rotation, and scale invariant.

In current machine attention, bottom-up selection

plays an important role in providing early cues in a

multistage competetive scheme of attention processing

(Navalpakkam and Itti, 2002). Backer and Mertsching

(2003) introduced a cascaded computation by selecting

a small number of discrete items in a preattentive

phase analyzing symmetry, eccentricity, color contrast,

and depth, and then applied smiattentive processes of

tracking and information accumulation until a single

cue of interest could be more efficiently selected.

B. Object and Scene Recognition

Top-down processing has been emphasized in com-

puter vision tasks related to object search. The main

focus of research is on how to integrate bottom-up and

top-down information to attain an efficient decision on

where to focus attention to within the input image. A

critical task in computer vision is the recognition of

entities of interest in the visual appearance (i.e., object

recognition). In real-world environments, object recog-

nition must cope with a high number of degrees of

freedom (pose, scale, illumination, etc.), and uncer-

tainty in the visual information plays a major role.

Attention supports object search by constraining the

dimension of the search space by limiting the visual

information to a restricted set of hypotheses bounded

to regions.

One central thesis is that attention acts to optimize

the search procedure inherent in a solution to vision

(Tsotsos et al., 1995). The accordingly proposed selec-

tive tuning model emphasized the role of top-down

processing in attention mechanisms. Analogously,

task-based attention (de Laar et al., 1997) operates in

top-down information paths, adjusting a processing

layer of intermediate features in a goal-driven manner.

An influential model in attention modeling is to

feed bottom-up information into a competitive pro-

cessing layer, where feature responses are competing

according to a winner-takes-all (WTA) strategy for pri-

ority in interpretation (Itti et al., 1998; Navalpakkam

and Itti, 2002). Ramstrøm and Christensen (2002) 

proposed a distributed control layer inspired by

market principles in which bottom-up feature

responses are competing according to a game theoret-

ical model—the competetive equilibrium—with top-

down information.

Visual attention in terms of an interactive process

has been considered by Lee et al. (2003), in which

attentional behavior should be biased with respect to

particular objects, spatial locations, and time. A

spiking neural network, for example, can bias selective

behavior in such a way that it speeds up (facilitates) or

slows down (interferes) with the processing of a given

visual stimulus, gradually relating “where” and

“when” access of information in the network. The

network can then manipulate the amount of bottom-

up and top-down influence on a search task to inves-

tigate the dynamic and modulatory aspects of selective

attention.

A face detection task demonstrates the new func-

tionality (Fig. 105.1), allocating the focus of attention

to possible target locations. Skin color, facial features,

and ellipse-like shape determine a bottom-up map that

is correlated with cued features. The net input netj(t)
of a spiking neural network node j at time t is,

(1)

where B and T stand for the bottom-up and top-down

inputs, n and m are the dimensions of the bottom-up
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and multiplicative weights, respectively. The (xi
B)2 term

reinforces correlation between the bottom-up and top-

down information stream, depending on whether they

are consistent or not. The impact of the top-down

information is illustrated by the different behaviors in

Fig. 105.1B and C, showing the refined selection of

targets not only due to generic visual features (B) but

also from the maximization of information between

extracted and object-cued features (C).

These computational models of selective attention

in the visual search task support the spotlighting of a

sequence of regions of interest. Applications are in the

detection of objects of interest and scene recognition

that is simply based on the occurrence of objects

within. Any geometrical or probabilistic relation

between serially focused information is not investi-

gated here. However, context analysis would be

mandatory for any more extended analysis of the

scene or part-based object recognition.

C. Contextual Cueing and Attention
Strategies

In computer vision, we face the challenging task of

detecting objects of interest in outdoor environments.

Changing illumination, different weather conditions,

and noise in the imaging process are the most impor-

tant issues that require a truly robust detection system.

Recent work on real-time video interpretation there-

fore considers attentional mechanisms (Navalpakkam

and Itti, 2002) and cascaded systems (Viola and Jones,

2001) to coarsely analyze the complete video frame in

a first step, reject irrelevant hypotheses, and iteratively

apply increasingly complex classifiers with appropri-

ate level of detail (Sec. IIA). Attention from context

priming (Torralba and Sinha, 2001; Ogris and Paletta,

2003) makes sense out of globally defined environ-

mental features to set priors on object-related observ-

able variables to obtain spatial pointers to regions of

interest and therefore significantly improves the

quality of service in real-time interpretation. Cascaded

processing serves as fundamental methodology in

sequential saccadic interpretation, giving rise to

improved analysis from any updating evidence.

1. Context Priming

Investigations on the binding between scene recog-

nition and object localization made in experimental

psychology have produced clear evidence that highly

local features play an important role into facilitating

FPO

(A)

(B)

(C)

FIGURE 105.1 Example of interactive processing with natural images containing faces (Lee et al., 2003).

The model (A) allocates focus of attention to possible target locations. The more task-relevant the target loca-

tion with respect to the cue, the more likely the location is selected early in the attentional trajectory. Results

from bottom-up WTA attention (B) are contrasted to scanpaths from graded interactive top-down attention

processing (C).
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detection from predictive schemes (Hollingworth and

Henderson, 2002). In particular, the visual system

infers knowledge about stimuli occurring in certain

locations, leading to expectancies regarding the most

probable target in the different locations (location-

specific target expectancies). Related work on scene

recognition concerns the contextual mapping from

objects to objects (Rimey, 1993) and from global scene

features to object hypotheses (Torralba and Sinha,

2001) with respect to a static environment.

The extraction of scene landmarks has recently been

applied for priming tasks in attentive object detection

(Ogris and Paletta, 2003). Landmarks can be detected

more robustly and rapidly than arbitrary objects. The

use of landmark configurations inherently includes

local spatial context and thus becomes more locally

discriminative and predictive than using global fea-

tures (Fig. 105.2A). Landmark configurations are then

mapped to visual object events in local proximity.

Defining the mapping in terms of a probabilistic esti-

mation of direction b,

(2)

where image pixel xi provides confidence p for being

on a line to landmark li, and li,t Œ li is an associated

landmark appearance sampled at time t. This confi-

dence is exponentially decreasing—according to a

Gaussian N (·)—with increasing angle b from the ref-

erence line mb (from landmark li to object ok). The

approach integrates, then, those landmarks lj that have

been consecutively visited in an observation sequence

and been selected as estimators for the next object loca-

tion, by

(3)

Figure 105.2B illustrates the result of a recursive esti-

mation of attention from predictions of individual
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landmarks. Experimental results on frames of a video

scene demonstrate an average prediction error of ª3°

in the attention direction and a hit rate of ª94% (Ogris

and Paletta, 2003).

2. Saccadic Information Integration

The framework of active and purposive vision laid

the conceptual basis to understand computer vision

tasks from the perspective of acquiring and optimiz-

ing sequential decisions in goal-driven tasks. In this

context, Bandera et al. (1996) introduced reinforcement

learning to improve the performance of foveal visual

attention for the task of model-based object recogni-

tion. Recent attempts to model Markovian decision

processes for automatic gaze control in face and scene

perception (Henderson et al., 2001) and attentive view-

point control (Paletta and Pinz, 2000) demonstrate the

potential for automatic saccade and viewpoint control

for the interpretation of objects and scenes.

III. ATTENTION IN ROBOTIC SYSTEMS

The understanding of how to design intelligent

robotic systems has seen a paradigm shift during the

last decade. Robot architectures are no longer control

driven by symbolic artificial intelligence (sense-

plan-act) and do not rely on universal perceptual

reconstructions of the environment by purposive

sensor-driven control (sense-act) and interpretation

schemes. Instead, with reference to situatedness,

embodiment, and context-relatedness of task perform-

ance, visual perception has been relocated as a func-

tional basis for behavior-based control (Arkin, 1998).

Attention has been playing an increasingly important

role in providing solutions to the control of a. growing

stream of sensory input. Mobile robots are often

‘thrown’ into a complex environment where they have

to apply their knowledge and find out about what

FPO

(a) (b)

FIGURE 105.2 Spatial attention from local context (Ogris and Paletta, 2003). (A) Landmark configura-

tions are discriminated locally to provide (B) attentive pointers to nearby object locations.
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needs to be attended to and when and what to do in

correspondence with visual feedback.

A. Autonomous Multisensor Robots

Common tasks in the control of autonomous mobile

robots are collision avoidance, navigation, and track-

ing and manipulation of objects (Coelho et al., 2001).

In order to execute these tasks correctly, the robot

needs to detect objects and free space in its environ-

ment quickly and reliably, emphasizing the role of

machine attention to find points of interest.

Multisensor data provide new challenges on selec-

tive attention to autonomous and mobile robot

systems. In particular, humanoid robots are involved

in a multitude of sensory inputs, such as from image

feature, motion, and audio signal streams (Vijayaku-

mar et al., 2001). Vijayakumar et al. (2001) applied a

WTA network for saliency computation according to

Itti et al.’s (1998) model on a 30 degrees of freedom

(DOF) humanoid with pan and tilt peripheral and

foveal vision, demonstrating motion and person detec-

tion in video-rate attention control.

Objects usually have range discontinuities at their

borders that can help to detect them. Models compris-

ing depth as a feature typically use stereo vision to

compute it, which is computationally expensive, and

only a fraction of the image pixels contribute to the

computed 3D point clouds. Frintrop et al. (2003)

describe attention from a multimodal 3D laser scanner.

The attention system has a similar structure as the

Neuromorphic Vision Toolkit (Itti et al., 1998), but uses

only intensity and orientation as features. Depth infor-

mation is intensity coded, and the system is capable of

simultaneously processing both remission and depth

value images, generating a single saliency map for

both. Figure 105.3 illustrates how focus of attention

from reflectance and range images contributes to clas-

sification and detection using fusion of the individual

sensor maps.

Cognitive aspects in robot attention were imple-

mented by Dickinson et al. (1997). Here, an active

object recognition strategy combined the use of an

attention mechanism for viewpoint selection to dis-

ambiguate recovered object features. The attention

mechanism consisted of a probabilistic search through

a hierarchy of predicted feature observations. Paletta

and Rome (2000) describe a robotic system that uses

task-specific knowledge in order to direct attention to

certain regions of interest. Object detection is per-

formed by an appearance-based classification of the

regions of interest (ROIs). Because the domain objects

(sewer pipe inlets) are often very similar, the system

learns an information-fusion approach to disam-

biguate objects. The classification is performed itera-

tively with images taken from different viewpoints,

Reflectance image

Focus of
Attention

Detected chair

Attention Classification

Reflectance image

Range image Range image

Reflectance image

Focus of
Attention

Detected chair

Attention Classification

Reflectance image

Range image Range image

FIGURE 105.3 The custom 3D range finder mounted on top of the mobile robot KURT2 (upper right).

Office scene imaged with the 3D scanner in range- and remission-value modes. The system, described in

(Frintrop et al., 2003, 2004), performs attention-based ROI selection and successive classification within the

ROI.
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until the confidence is sufficient for making a decision.

The robot KISMET (Breazeal and Scasselatti, 1999)

integrated perception, attention, drives, emotions,

behavior arbitration, and expressive acts in order to

interact socially with humans. The attention system

was based on Wolfe’s model (Wolfe, 2000) and inte-

grated perceptions with habituation effects and influ-

ences from the robot’s motivational and behavioral

state to create a context-dependent attention activation

map. Finally, joint attention is highly relevant in the

supervised learning stages of human development,

specifically for the capability to interact with the envi-

ronment. Nagai et al. (2003) demonstrated the finding

of and attending to a salient object in the robot’s view

and a sensorimotor coordination when the visual

attention succeeds. Based on these mechanisms, the

robot learns the sensorimotor coordination when the

robot can watch the salient object by shifting its gaze

direction from the caregiver’s face to the object.

B. Visuomotor Attention

Oculomotor control is not just important for spatial

but also for sequential attention. Because eye move-

ments must be executed in a sequential manner, it is

crucial to focus visual attention at the right time on the

right targets so that subsequent information processes,

in particular motor planning and execution, receive

relevant information sufficiently fast to update

ongoing processes. From this viewpoint, oculomotor

control may, for example, be a crucial constraint on

how movement of other body parts are planned.

Miyashita et al. (1996) showed that anticipatory sac-

cades in sequential procedural learning in monkeys

are tightly coupled to the limb-motor system. Simi-

lend, Shibata et al. (2001) developed a biomimetic gaze

stabilization that is mused for attentional mechanisms

in a humanoid robot (Vijayakumar et al., 2001).

Actually, robot visuomotor attention is in its early

stages. Coelho et al. (2001) demonstrated the impor-

tance of learning of visual features that the observer

has to attend to for more efficient grasping. They con-

structed constellations of visual features to predict rel-

ative hand-object postures that lead reliably to haptic

utility.

IV. CONCLUSION

Attention is an ongoing research topic in computer

vision that gains increasingly in importance under the

guidance of cognitive vision system research. The

classic application fields, such as video analysis, sur-

veillance, and robotics, and not the only ones to

depend on attention methodologies. Emerging tech-

nologies, such as mobile vision, wearable computing,

and service robotics, are by nature limited in compu-

tational resources but should operate in everyday’s

complex contexts and work environments. These

upcoming challenges to both computational and

semantic complexity provide the motivation to rein-

force research on attentional mechanisms in machine

vision and mobile robot perception.

References

Arkin, R. C. (1998). “Behavior-Based Robotics.” MIT Press, Cam-

bridge, MA.

Backer, G., and Mertsching, B. (2003). Two selection stages provide

efficient object-based attentional control for dynamic vision. In
“Proceedings of the Workshop on Attention and Performance 

in Computer Vision,” pp. 9–16. Joanneum Research, Graz,

Austria.

Bandera, C., Vice, F. J., Bravo, J. M., Harmon, M. E., and Baird, L. C.

(1996). Residual Q-learning applied to visual attention. In “Pro-

ceedings of the International Conference on Machine Learning,”

(Lorenza Saitta Ed.) pp. 20–27. Morgan Kaufmann Publishers,

San Francisco, CA: Bari, Italy.

Braun, J., Koch, C., Lee, D. K., and Itti, L. (2001). Perceptual conse-

quences of multilevel selection. In “Visual Attention and Corti-

cal Circuits” (J. Braun, C. Koch, and J. L. Davis, Eds.), pp.

215–242. MIT Press, Cambridge, MA.

Breazeal, S., and Scasselatti, B. (1999). A context-dependent attention

system for a social robot. In “Proceedings of the International

Joint Conference on Artificial Intelligence,” (Thomas Dean, Ed.)

Vol. 2, pp. 1146–1153. Morgan Kaufmann, San Francisco, CA:

Stockholm, Sweden.

Clark, J., and Ferrier, N. (1988). Modal control of an attentive vision

system. In “Proceedings of the International Conference on Com-

puter Vision”, pp. 514–523. Tampo, Florida.

Coelho, J., Piater, J., and Grupen, R. (2001). Visual perceptual cate-

gories for reaching and grasping with a humanoid robot. Robot-
ics Autonomous Syst. 37, 195–219. Santa Maighenta Ligure, Italy,

Springer.

Culhane, S., and Tsotsos, J. (1992). An attentional prototype for early

vision. In “Proceedings of the European Conference on Com-

puter Vision,” pp. 551–560. Sauta Maighenta Ligure, Italy,

Springer.

de Laar, P. V., Heskes, T., and Gielen, C. (1997). Task-dependent

learning of attention. Neural Networks 10, 981–992.

Dickinson, S. J., Christensen, H. I., Tsotsos, J. K., and Olofsson, G.

(1997). Active object recognition integrating attention and view-

point control. Comput. Vis. Image Understanding, 67, 239–260.

Fraundorfer, F., and Bischof, H. (2003). Utilizing saliency operators

for image matching. In “Proceedings of the Workshop on Atten-

tion and Performance in Computer Vision”, pp. 17–24. Joanneum

Research, Graz, Austria.

Frintrop, S., Nüchter, A., and Surmann, H. (2004). Visual attention

for object recognition in spatial 3D data. In “Proceedings of the

2nd Workshop on Attention and Performance in Computational

Vision,” pp. 75–82. Joanneum Research, Graz, Austria.

Frintrop, S., Rome, E., Nüchter, A., and Surmann, H. (2003). An

attentive, multi-modal laser “eye”. In “Proceedings of the Inter-

national Conference on Computer Vision Systems,” pp. 202–211.

Joanneum Research, Graz, Austria.

INO105  11/11/04  12:58 PM  Page 647



648 CHAPTER 105. ATTENTION ARCHITECTURES FOR MACHINE VISION AND MOBILE ROBOTS

SECTION IV. SYSTEMS

Henderson, J. M., Falk, R., Minut, S., Dyer, F. C., and Mahadevan, S.

(2001). Gaze control for face learning and recognition by humans

and machines. In “From Fragments to Objects: Segmentation and

Grouping in Vision” (T. Shipley and P. Kellman, Eds.), pp.

463–481. Elsevier Science, Oxford.

Hollingworth, A., and Henderson, J. (2002). Accurate visual memory

for previously attended objects in natural scenes. J. Expe. Psychol.
Hum. Perception Performance 28, 113–136.

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based

visual attention for rapid scene analysis. IEEE Trans. Pattern
Analysis Machine Intell. 20, 1254–1259.

Jagersand, M. (1995). Saliency maps and attention selection scale and

spatial coordinates: An information theoretic approach. In “Pro-

ceedings of the International Conference on Computer Vision,”

pp. 195–202. Boston, MA.

Lee, K., Buxton, H., and Feng, J. (2003). Selective attention for cue-

guided search using a spiking neural network. In “Proceedings

of the Workshop on Attention and Performance in Computer

Vision,” pp. 55–63. Graz, Austria.

Lionelle, A., and Draper, B. (2003). Evaluation of selective attention

under similarity transforms. In “Proceedings of the Workshop on

Attention and Performance in Computer Vision,” pp. 31–38.

Graz, Austria.

Miyashita, K., Kato, R., Miyauchi, S., and Hikosaka, O. (1996). Antic-

ipatory saccades in sequential procedural learning monkeys. J.
Neurophysiol. 76, 1361–1365.

Nagai, Y., Hosoda, K., Morita, A., and Asada, M. (2003). Joint atten-

tion emerges through bootstrap learning. In “Proceedings of the

International Conference on Intelligent Robotic Systems,” pp.

168–173. Las Reges, Nevarda.

Navalpakkam, V., and Itti, L. (2002). A goal oriented attention guid-

ance model. In “Proceedings of the International Workshop on

Biologically Motivated Computer Vision,” Heinrila H. Bulthoff,

Seong-Whau Lee, Tomah A. Poggio, Clairliau Wallranean (Eds.)

pp. 453–461. Tübingen, Germany, Springer.

Ogris, G., and Paletta, L. (2003). Contextual cueing for spatial atten-

tion in object detection from video. In “Proceedings of the Work-

shop on Attention and Performance in Computer Vision,” pp.

64–72. Joanneum Research, Graz, Austria.

Paletta, L., Humphreys, G., and Fisher, R. (Eds.) (2003). “Proceed-

ings of the International Workshop on Attention and Perfor-

mance in Computer Vision.” Joanneum Research, Graz, 

Austria.

Paletta, L., and Pinz, A. (2000). Active object recognition by view

integration and reinforcement learning. Robotics Autonomous
Syst. 31, 71–86.

Paletta, L., and Rome, F. (2000). Learning fusion strategies for visual

object detection. In “Proceedings of the International Conference

on Intelligent Robots and Systems,” pp. 1446–1452. Takamatsu,

Japan.

Ramstrøm, O., and Christensen, H. (2002). Visual attention using

game theory. In “Proceedings of the International Workshop on

Biologically Motivated Computer Vision,” Heinrila H. Bulthoff,

Seong-Whau Lee, Tomah A. Poggio, Clairliau Wallranean (Eds.)

pp. 462–471.

Rimey, R. D. (1993). Control of selective perception using bayes nets

and decision theory. Technical Report TR468. Computer Science

Department, University of Rochester.

Shibata, T., Vijayakumar, S., Conradt, J., and Schaal, S. (2001). Bio-

mimetic oculomotor control. Adaptive Behav. 9, 189–207.

Torralba, A., and Sinha, P. (2001). Statistical context priming for

object detection. In “Proceedings of the International Conference

on Computer Vision,” pp. 763–770. Vaucourer, Canada. IEEE.

Treisman, A., and Gelade, G. (1980). A feature integration theory of

attention. Cogn. Psychol. 12, 97–136.

Tsotsos, J. K., Culhane, S. M., Wai, W, Y. K., Lai, Y., Davis, N., and

Nuflo, F. (1995). Modelling visual attention via selective tuning.

Artificial Intell. 78, 507–545.

Vijayakumar, S., Conradt, J., Shibata, T., and Schaal, S. (2001). Overt

visual attention for a humanoid robot. In “Proceedings of the

International Conference on Intelligent Robots and Systems,”

Maui, Hi. Vol. 4, pp. 2332–2337.

Viola, P., and Jones, M. (2001). Rapid object detection using a boosted

cascade of simple features. In “Proceedings of the Conference on

Computer Vision and Pattern Recognition,” Kauai, HI. pp.

511–518. IEEE.

Wolfe, J. M. (2000). Visual attention. In “Seeing” (K. K. DeValois,

Ed.), pp. 335–386. Academic Press, San Diego, CA.

INO105  11/11/04  12:58 PM  Page 648


