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1 Introduction 

Topos theory may to a large extent be developed within a constructive higher or- 
der logic (see BELL [l]). However the very definition of an elementary topos relies 
on a nonpredicativity: the axiom for the subobject classifier. Fortunately, the more 
restricted class of Grothendieck topoi (see [4]), i. e. sheaves over sites (generalised 
topological spaces), are amenable to a predicative treatment. In this paper we focus 
on defining sheaf semantics in a predicative way, and prove, constructively, the com- 
pleteness of the semantics for first order logic. Somewhat surprisingly, we can use the 
same construction principle of the sites as for so called geometric theories (cf. [l]). 
There are of course other approaches to semantics with constructive completeness 
proofs: H .  C. M .  DE SWART with Beth models, W. VELDMAN with Kripke models, 
and more recently DRAGALIN [2], and SAMBIN [lo] with formal spaces. Sheaf seman- 
tics is a generalisation of all of these kinds of semantics, and gives a richer class of 
models. As examples, we have the constructive nonstandard models of arithmetic [6,7] 
and analysis [9]. 

2 Categories and presheaves 

The type theory we use as a metatheory is essentially the one presented in MARTIN- 
LOF [5], with the exception that we do not assume extensional equality. The reader 
is referred to NORDSTROM, PETERSSON and SMITH [8] for a precise “modern” for- 
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mulation of the type theory. We reformulate some basic notions of category theory, 
using sets (types) with equivalence relations. 

A small category C consists of a set C, the set of objects of the category, and 
for each pair of objects a, b E C a set of morphisms Homc(a, b )  with an equivalence 
relation - ( ~ , ~ , b ) ,  moreover there is a composition function 

comp E Homc(b, c) -, Homc(a, b) + Homc(a, c) 

(as usual we write f o g  for comp(f, g)), and an identity morphism 1, E HomC(a, a) ,  
for each a ,  b, c E C. The composition o should respect -, and satisfy the usual monoid 
laws up to --equality. 

It will not be necessary to consider equalities between objects of a category. The 
category of sets, with equalities, belonging to a universe U is a small category. See 
HOFMANN [3 Chapter 6.31 for categorical properties. A set in this category is called 
finite if it is isomorphic to a canonical finite set Nk = (0, . . . , k - 1). Another simple 
example of a small category is a preorder on a set. 

D e f i n i t  i o n  2.1. Let C be a small category. A presheaf F over  C is a triple 
( F ,  M ,  M ) ,  where F ( a )  is a set, equipped with an equivalence relation za, for each 
a E C, and where, for any a, b E C, M,&) E F ( b )  + F ( a )  is a function such that 
Ma,b(f)(u) Ma Ma,b(g)(v), whenever f -(C,a,b) 9 ,  t~ wb v ,  and f, 9 E HomC(a, b ) .  w e  
write F(f) for Ma,b(f). Moreover, the contravariant functorial properties are required 
of F up to =-equality. 

Natural transformations are now defined in the obvious way, as a family of mor- 
phisms depending on a category. It can be shown straightforwardly that the (large) 
category of presheaves over C has finite products. Let 1 denote the terminal presheaf. 
A presheaf F is inhabited if there is a natural transformation from 1 to F .  

3 Grothendieck topologies and sheaves 

A Grothendieck topology, or a site, is a generalised topology on a category, which is 
given by specifying what families of morphisms, with a common codomain, are to be 
counted as basic covers of the codomain (see MAC LANE and MOERDIJK [4]). 

We shall only consider sites on small categories C with pullbacks. Let Co(d) = 
(Cc E C)Homc(c,d), the set of morphisms with codomain d. We assume there is a 
function that produces the pullback, given two objects from this set. Let A(d) be the 
set of small families of morphisms with codomain d, i.e. (XI E U ) [ I  -+ Co(d)]. We 
write elements of this set as (fi : ci + d)icf. 

D e f i n i t i o n 3 . 1 .  A basisforasiteon CisarelationK(d,w) ( d ~ C , w € A ( d ) ) ,  
read as w covers d, satisfying the following conditions 

(a) if f E HomC(c,d) is an isomorphism, then the unit family (f : c -+ d)iEN, 

(b) if (fi : ci -+ d)iEr covers d and g E Homc(c, d), then the pullbacks of the family 

(c) if (fi : c, + d)icr covers d ,  and (gij : b i j  -, ci)jEj, covers ci for each i 6 1 ,  then 

covers d; 

along g, (7r2 : ci xd c -+ c)iEr, covers c; 

the composite family (f, o gij : b i j  --* d)(,,j)e(xiE,)j, covers d. 
The notion of sheaf is now defined with respect to covers as usual (see [4]). 
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D e f i n i t i o n  3.2. Let P be a presheaf over the category C and let K be a basis 
on C. A (C, K)-relation R on P is a relation R(c,  z) ( c  E C, z E P ( c ) )  respecting 
the equality of P in the second argument, and satisfying the monotonicity and cover 
conditions (writing z i R(c) for R(c, z) below): 

(a) if z k R(c)  and f E Homc(d, c ) ,  then P ( f ) ( z )  i R(d); 
(b) if (f; : c; + c);cr covers c, and z E P(c )  is such that P ( f ; ) ( z )  i R(c;)  for each 

We exemplify this notion by the objectwise equality on a sheaf. First note that 

P r o p o s i t i o n  3.3. Let P be a sheaf over ( C ,  K ) ,  and let M, be the equality 

i E I, then z i R(c) .  

the product of finitely many sheaves is a sheaf. 

on P(c ) .  Then 

T I ( % )  =c T Z ( Z )  ( c  E c, z E P(c )  x P(c ) )  

is a ( C ,  K)-relation on the product sheaf P 2  = P x P .  
P r o o f .  The first two conditions in the definition of a (C, K)-relation are immedi- 

ate. To prove the covering property, assume z E P(c)  x P (c )  and that ( f i  : c, ----f c) ic1 
is a cover of c such that 7r1(P2(fi)(z)) %,, r2 (P2( f , ) ( z ) ) ,  (i E I ) .  By naturality it 
follows that P ( f i ) ( r l ( z ) )  =c, P(fi)(7r2(z)), Since ( f i  : ci -+ c)icr is a cover and P is 

0 a sheaf, it follows that A ~ ( z )  %, T ~ ( z ) .  

4 Presheaf semantics 

D e f i n i t i o n  4.1. Let L be a many sorted first order language. Let C be a 
category with pullbacks and let K be a basis for a site on this category. A presheaf 
interpretation of L over (C, K )  is an assignment of objects to  the sorts and to the 
constant-, function- and relation-symbols of L as follows. To every sort T, there is a 
presheaf [T] over ( C , K ) .  To every constant symbol c of sort T there is an element 
[ c ]  : 1 i IT], where 1 is the terminal presheaf. To every function symbol f of sort 
TI x . . . x T, - T there is a natural transformation [f] : [TI] x . . . x [T,] 4 [TI. To 
every relation symbol R of sort 71 x . . . x T,, there is a (C, K)-relation [R]I on the 
presheaf ( [ T I ]  x . . . x [T,]. We denote such an interpretation by M = (C, K ,  8.1). 

An interpretation of an L-term t of sort T with variables among Z = zy , , . . , ~2 
is a natural transformation [t]a : [TI] x . . . x [T,,] 4 [TI. The product is 1 if the list 
c is empty. The interpretation is defined by induction on t in the obvious way. A 
variable t = zfl is interpreted as the projection, [ t ] ~  = 7rl : [TI] x . . . x [Tn] 4 [T;]. 
A constant t = c is interpreted as the composition of [c ]  with the unique terminal 
morphismfrom[q]~...~[T,,] . I f t  = f ( t l  , . . .  , t n ) ,  then It]== [f]o([t,]a,...,[tn]Ia),. 

D e f i n i t i o n  4.2. Let there be given an interpretation [.] of L over (C, K ) .  Define 
for each L-formula 'p with free variables among 5 = 21' , . . . , z 2 ,  each c E C, and 
each sequence E = a l l . .  .,a, with ai E [ q ] ( c ) ,  the forcing relafion over ( C , K ) ,  
c It-r cp[E]. To simplify notation we write T instead of [T ] .  The forcing relation is 
defined inductively: 

1. c I l y  I [ E ]  iff c is covered by an empty family; 
2. c IF= R( t1 , .  . . , t m ) [ ~ ]  iff ( ( [ t l ] & ( ~ ) ,  . . . , (I[tm]lr)c(c)) i [Rl(c); 



324 Erik Palmgren 

3. c IF= ('p A +)[Z] iff c IFF p[Z] and c I t =  +[El; 
4. c IF= ('p v +)[Z] iff there is some cover (f; : ci --f c ) i c l  such that for all i E I ,  

5. c It-= ('p -+ $)[Z] iff for all d E C and f E HomC(d, c ) ,  
d I F F  ~ [ ~ i ( f ) ( a i ) ,  . . . , ~ n ( f ) ( a n ) ]  implies d IFF +[~l(f)(al), . . . ~ n ( f ) ( a n ) ] ;  

6 .  c IF= (3yT'p)[Z] iff there is some cover (fi : Ci + C)iEl, and some Ti E T ( c ~ )  

( i  E I ) ,  such that for all i E I ,  ci l F ~ , u ~  V'[Tl(fi)(al) ,  . . . , Tn( f i ) (a , ) ,  r i ] ,  where 
'p' = 'p(u'/y') and 74' is the first variable (in some fixed ordering) not in Z and 
not bound in 'p; 

7. c 1l-E (Vy''p)[E] iff for all d E C, every f E Homc(d,c), and for all 7 E ~ ( d ) ,  
d  IFF,"^ 'p'[~l(f)(al), . . . , Tn(f) (an) ,  71, where Q' = 'p(u'/y') and 21' is chosen 
as above. 

The forcing relation naturally extends to sequences of formulas r = ( 'p i ) ic l  with free 
variables among Z: 

c i  I F F  V[Tl( f i ) (a l ) ,  . . ' 7  ~ n ( f i ) ( a n ) ]  or c i  115 + [ T l ( f i ) ( a l ) , .  . . , ~ n ( f i ) ( a n ) l ;  

c IF5 I@] iff for each i E I ,  c IF= pi[Z]. 

R e  m a r k  . Note that we do not need to consider covering sieves as in [ll]. The 
variable trick in the 3- and V-cases is to ensure that the forcing relation is welldefined. 
The forcing relation depends only on the variables actually free in the forced formula. 
We can show in the usual manner that this semantics satisfies the monotonicity and 
covering property (see [4] or [ll]). 

D e f i n i t i o n 4 . 3 .  Let M = (C,K,[.J)beapresheafinterpretationofL. Aformula 
Q is valid in  M under  the assumptions I', if whenever C = xy , . .  . , x? _> FV(I', Q), 

c E C, a1 E [q](c), . . . , an E [rn](c), and c IFF l?[crl, . . . , an],  then c IFF p[cul,. . . , an]. 
In this case we write r IFM 'p. 

Let t denote derivability in first order, many-sorted intuitionistic logic without 
axioms for equality. 

T h e o r e m  4.4  (Soundness). For every  presheaf interpretai ion M of L, where 
each sort  is interpreted b y  an inhabited presheaf,  and for all sequences of L - formulas  
r and L- formulas  'p, 

J? t Q implies  r kM Q. 

P r o o f .  By induction on derivations. The assumption that the presheaves are 
inhabited is used in the introduction rule for 3. 0 

For sheaf semantics, Proposition 3.3 gives a simple interpretation 
of equality. Since the natural transformations and the (C, K)-relations respect this 
equality objectwise, it is easy to check the validity of the usual equality axioms for a 
language L .  

R e  m a r k . 

5 Completeness 

For the completeness theorem we use a syntactic site, similar to  the one introduced in 
BELL [l, p. '2491, for proving a completeness theorem for so called geometric theories 
(see also [4]). However we will allow arbitrary formulas in the site and not just 
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geometric formulas. Our own contribution is the proof that this topology indeed 
yields a constructive completeness theorem for full first order intuitionistic logic. 

Throughout this section L is a first order, many sorted language. We let 'p E i 
denote that z is a string of distinct variables, which includes the free variables of 'p. 

We abbreviate x y  y? A . . . A xp =T,  y c  by Z = g. Two strings of variables 
2;' , .. . , x&m and yr' , . . . , y z  are compatible if m = n and ui = r, for i = 1, . . . , m. 

D e f i n i t i o n  5.1. Let C be a theory with closed axioms in the language L in- 
cluding the equality theory for L.  The objects of the category Syn(C) of C-provably  
functional relations are pairs ('p,z), where 'p is an L-formula with 'p C Z; the mor- 
phisms from (cp,z) to ($,a) are triples (ii; 8;5), where 8 is an L-formula with 8 E ii, V 
such that ii is compatible with T ,  and 5 is compatible with jj, and such that 8 is 
C-provably  functional,  i. e. 

(a) C I- EG[[e(S,G/Z,v) -.+ c p ( ~ / ~ )  A $(z/v)], 

( c )  c I- \JsZqe(x,qz,v)  A o ( ~ , ~ / i i , z )  -+ z = FI. 
(b) C I- ' / s [ c p ( S / F )  -+ 3 G 8 ( S 1 G / i i ,  C)], 

Two such arrows (51 ; 81; 51) and ( 5 2 ;  82; 5 2 )  are equal (-) if 

c I- vs [cpo(s/~) -.+ rn (el (s, q i i 1 ,  cl) ++ e,(s, ~ / i i ~ ,  z2))1. 
The identity morphism on ('p,Z) is given by (E;F = jj A cp;g), where Z and g are 
compatible but have no common variables. The composition of ( i i l ;  8; 5) and (E; p; %I) 
is ( T i 2 ;  3 S B ( i i 2 , F / E 1 , 5 )  A e ( F ,  S z / B ,  S1);Sz). It is assumed that the substitutions are 
always done with fresh variables. 

L e m m a  5.2 .  T h e  category Syn(C) has pullbacks and finite products.  
P r o o f .  Straightforward (cf. BELL [l]). E.g.  the terminal object is (T ,E) ,  where 

E denotes the empty string of variables. The construction of the pullback object of 
0 

D e f i n i t i o n  5.3. The syntact ic  basis (Syn(C), K c )  is the following. Let the cover 
relation K c  be given by saying that ( ( Z i ;  8 i ;  j j i )  : ('pi , Zi) -+ ($J, j j ) ) i e ~  E A(($, 3) )  is 
a cover iff I is finite and C I- V E [ $ ( Z / j j )  -.+ ViEl  3Zi O i ( i i / j j i ) ] .  

It is straightforward to  check that this relation actually satisfies Definition 3.1. 
L e m m a  5.4. Every  representable presheaf Horn(-, ($,a)) over  (Syn(C), K x )  is 

Let C be a theory with closed axioms in the language L ,  including the equality 
theory for L. The generic sheaf model M ( C ,  L )  of this theory is defined as follows. 
The basis of the site is (Syn(C), K x ) .  

the arrows (Z; 8; g) and (Z; p; 5) is (3T8(S, F/T, jj) A e(Z, F/Z,  V), S, Z). 

a sheaf. 0 

A sort 7 is interpreted as the sheaf [ T I )  = Homsyn(c)(-, (T, z r ) ) .  

by [cI)(lp,f) = (z; zT = c;  z'),  where zT $! F .  

transformation defined by 

where Z, z and 5 = 01, . . . , vn are freshly chosen variables. 

. A constant symbol c of sort r is interpreted by the natural transformation given 

. A function symbol f of sort r1 x . . .  x rn -+ r is interpreted by the natural 

KfB(lp,~)((zl;el;zl) ,...,(zn;e,;z,)) = ( i i ; 3 ~ A ~ = ~ e i ( ~ , v i / T ~ , ~ i ) A  f ( G )  = z ; z ) ,  
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. The interpretation of a relation symbol R of sort q x . . x T, is given by letting 
[R](9, f )  be the set of all tuples (all.  . . ,an) E [ q ] ( ' p ,Z )  x . . . x [T,]((P,~) such 
that C I- 'p(Ti/C) A A:=l &(Tii, vi/Z,, z i )  -, R(vl,. . . , D,), where a, = (Z,; 0;; z , )  
and the variables U, 5 are freshly chosen. 

It is readily checked that this constitutes a model. 
T h e o r e m  5.5. Lei C be a theory with closed axioms an the language L which 

includes the equality theory o f L .  Then for any ai E [~i]($,z) (i = 1,. . . , n) and any 
'p jj = y? , . . . , y? we have 

(~515) lky l ,  . . . ,yn C P [ ~ I , .  . an] ifl C I- $(Z/C) A AY=I ei(Z1 yi/Ci, zi) + CP,  

where a, = (Ti; B i ;  zf'), and It- is the forcing relation associated with M ( C ,  L ) .  
P r o o f .  By induction on the complexity of 'p. We do three illustrative cases. 
cp = I: By definition ( $ , T )  Ityl ,._., yn I [ a l , .  . .,an] if and only if ($,z) has an 

empty cover, i. e. C I- $(Ti/C) + 1. Since each Bi is functional on $, this is equivalent 
to  C I- $(Ti/C) A 8  -, I, where 3 = 

(1) C I - $ ( E / Z ) A 8 + ' p .  

Let $' = $ ( E / T )  A 3g(e A g). We have $' E Z, z .  By (l), projecting in all but the 
last coordinates yields a covering morphism, 

0 , ( E , y i / F i ,  z , ) .  
'p = 3 z T g :  We prove only the (+)-direction. Suppose 

e = ( z , z ;$ 'Az=  u ; ~ )  : ( $ ' , E , z )  -, ($,z). 
Define a morphism 77 : ($',GI z )  -+ (TI w T )  by 77 = (Z, z ;  $' A z = w; w), projection in 
the last coordinate. It follows that  

c I- 4' A (4' A 2 = u )  A 8 ( 5 / ~ )  A ($' A z = W) -+ 6. 

($',2, 2) l k y l , . . . , y n , z  ~ [ a i  0 e,  . . . , an 0 el 771. 

($,Ti) l k y * ,  ...,yn ' pb l , .  ..,an]. 

So by the inductive hypothesis, 

Since e is a covering map, we have by definition of the 3-case 

'p = 'pol -+ 'pz: We prove only the (+) direction. Suppose ($,.) 1I-v 'p[?F], where 
Ti. Define an inclusion - a = a1 , . .  . , an. Let p 

morp hism 
3jj ($(G/T)  A 3 A 'pl). Then p 

p = (Ti;v;z) : (p,Ti) -+ ( $ , T )  

by v = p A E = Z. Since 01 , . . . , 0, are functional, we have C I- p A 8 -+ 91. By 
the inductive hypothesis, ( p ,  Ti) Il-g 'pl[al o p, . . . ,a, o p]. Hence by the assumption 
( p ,  Ti) It-g 'pa[al o p, . . . ,a, o p]. By the inductive hypothesis, C I- p A 8 -+ 'pz, but 

0 

R e m a r k .  Note that the generic model gives a sound interpretation of intuition- 
istic logic eventhough its sorts need not be inhabited. In the proof of the soundness 
theorem we just need to  replace the covering identity map in the 3-case by a suitable 
projection. 

this implies C I- $(Ti/T) A 8 -, -, 'p2. 
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C o r o 11 a r  y 5.6 (Strong Completeness Theorem). Let C be a closed theory i n  the 
language L which includes the equality theory of L.  T h e n  f o r  all closed L- formulas  p, 

I k ' ( C I L )  $7 iff C I- p. 

P r o o f .  This follows from the previous theorem, by letting ($ ,Z )  be the terminal 

E x a m p 1 e . We may give a simple model-theoretic proof of the conservativity of 
adding function symbols. (There is of course a direct proof-theoretic argument too.) 
Let C be an L-theory, as in the completeness theorem, such that C I- VxU3!y' p(x, y) 
and f $! L. Then we can show that C + {Vxy (f(x) = y t+ p(z, y))} is a conservative 
extension of C, by expanding the generic model M ( C ,  L )  with an interpretation off :  

object. 0 
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