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Glossary

Hub: a brain region that has high centrality in a network. Hubs can be identified

by many different centrality metrics such as degree or betweenness centrality.

Degree is the number of edges that connect the vertex with other vertices.

Betweenness centrality quantifies the fraction of the shortest paths in the graph

that pass through the vertex [51].

Graph: a mathematical description of network data, which is defined by a set of

nodes or ‘vertices’ and by connections or ‘edges’ that link the vertices. In brain

networks, brain areas constitute the vertices and the edges are defined by

structural, functional or effective connectivity.

Magneto- and electroencephalography (M/EEG): techniques that measure

non-invasively at the scalp level the magnetic and electric fields, respectively,

produced by coherent neuronal activity. The macroscopic magnetic fields are

thought to emerge from summation of ionic currents in cell bodies of

thousands of coaligned pyramidal neurons whereas the electric potential

differences are associated with the corresponding volume-conducted currents

in the extracellular space.

Phase synchrony: a consistent, non-random phase difference between two

signals. Phase correlations of neuronal oscillations may be tightly associated

with millisecond-range temporal correlations in neuronal firing (spike syn-

chrony), but phase correlations may also be observed between oscillations in

much longer time scales, up to hundreds of seconds.
The systems-level neuronal mechanisms that coordinate
temporally, anatomically and functionally distributed
neuronal activity into coherent cognitive operations in
the human brain have remained poorly understood. Syn-
chronization of neuronal oscillations may regulate net-
work communication and could thus serve as such a
mechanism. Evidence for this hypothesis, however,
was until recently sparse, as methodological challenges
limit the investigation of interareal interactions with non-
invasive magneto- and electroencephalography (M/EEG)
recordings. Nevertheless, recent advances in M/EEG
source reconstruction and clustering methods support
complete phase-interaction mappings that are essential
for uncovering the large-scale neuronal assemblies and
their functional roles. These data show that synchroniza-
tion is a robust and behaviorally significant phenomenon
in task-relevant cortical networks and could hence bind
distributed neuronal processing to coherent cognitive
states.

Interareal synchronization coordinates anatomically
distributed processing
Psychophysical data suggest that perception and cognition
operate with integrated object representations and yet, at
the neuronal level, these objects are represented by neu-
rons signaling only the objects’ constituent features. Neu-
ronal feature representations are constructed from
peripheral sensory information in a simple to complex
manner [1] in the cortical hierarchy from primary sensory
cortices to higher-level sensory and associative cortices,
where the identities and higher-level abstractions of
objects are represented [2–5]. This anatomical distribution
of functionally specialized neuronal feature processing is
the basis for a ‘perceptual binding problem’ [6]: what
mechanisms integrate the scattered neuronal feature
representations into a coherent perceptual object repre-
sentation?

Higher-level functions, such as attention, working mem-
ory (WM) and sensory awareness, also arise from neuronal
activity that is distributed both anatomically and tempo-
rally in widespread cortical networks. The neuronal sub-
strates of these functions involve the posterior parietal
(PPC), temporal and prefrontal cortices (PFC) [7–10].
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Thus, perception and cognition emerge through coopera-
tion of numerous distinct brain regions, which, like the
‘perceptual binding problem’, poses a generic binding
problem: what are the mechanisms that coordinate the
communication and integration in the network of
task-relevant brain structures [11,12]?

Rhythmic millisecond-range spike–time correlations
(i.e. spike synchronization) may be one mechanism for
feature integration because neurons effectively detect
and respond to temporally coincident spikes and synchro-
nization thus boosts the impact of neuronal signals on
downstream neurons [6,13]. Synchronization thus confers
on a neuronal assembly an advantage over less coherent
neurons in the competition of engaging their target neu-
rons [14,15].

Several early studies from cat and monkey visual corti-
ces showed that stimulus-related neuronal activity
becomes transiently synchronized and entrained into gam-
ma-frequency band (30–80 Hz) oscillations if the stimulus
features are in line with Gestalt binding criteria, such as
continuity, similarity, colinearity and common motion, and
hence were likely to represent a common physical object
(Figure 1a; for reviews, see [6,14], but see [16]). Important-
ly, spike synchronization was also associated with sensory
Source modeling: a family of methods to reconstruct from M/EEG signals the

time series of the underlying cortical sources.
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Figure 1. (a) Interareal synchronization among visual cortical regions is observed in cat field potential recordings for perceptually coherent objects that share related

features. Left panel: interareal synchronization among cell groups with overlapping receptive fields in area 17 when activated by single light bar. Adapted from [87].

Synchronization is also observed for superimposed gratings between areas A18 and posteromedial lateral suprasylvian (PMLS) sulcus (middle panel, adapted from [88]),

and for patch gratings among visual, parietal and motor cortical regions (right panel, adapted from [89]). (b) Blood oxygenation level-dependent (BOLD) signal correlations

in functional magnetic resonance imaging (fMRI) are correlated with oscillation amplitude–amplitude correlations in electrophysiological recordings and define stable

patterns of interareal functional connectivity. This network has a salient community structure and can be divided into dorsal attention, frontoparietal task control, cingulo-

opercular task control, sensori-, sensorimotor, default and visual systems. Adapted from [27].
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awareness of the presented stimuli, demonstrating that
synchrony is functionally relevant at the systems level [17].
Later field potential and multiunit recordings have shown
that gamma-band synchronization is also strengthened by
attention (for review, see [18,19], but see [20]), which
suggests that interareal spike synchronization may con-
tribute mechanistically to the coordination of attentional
signals across brain regions [21].

In addition to spike synchronization, correlations be-
tween neuronal oscillations per se may also have a functional
role. Oscillations are directly associated with rhythmic
membrane potential fluctuations [22,23] so that neuronal
excitability is stronger in one phase than in the opposite.
Hence, oscillations impose excitability windows that regu-
late neuronal activity in local networks and thereby both
facilitate interactions between areas having an appropriate
phase difference and suppress inputs arriving at the inhibi-
tory phase. Phase correlations of neuronal oscillations could
thus play a key mechanistic role in coordinating interareal
communication [24] and collective neuronal dynamics, and
could thereby underlie the coordination of anatomically
distributed neuronal activity into coherent cognitive states
[12,14,25].

In time scales much longer than those of spike synchro-
nization and phase correlations, oscillations are also
220
coupled through amplitude–amplitude correlations. In
humans, these correlations characterize spontaneous
resting-state activity and are closely associated with inter-
areal correlations of slow fluctuations in the blood oxygen-
ation level-dependent (BOLD) signals recorded with
functional magnetic resonance imaging (fMRI) [26].
Graphs of such slow functional connectivity can be parti-
tioned into several distinct modules, or ‘subgraphs’, that
constitute functionally distinct task-positive and -nega-
tive systems such as sensory, dorsal and ventral attention,
cingulo-opercular, as well as default mode networks
(Figure 1b) [27].

Although the human functional connectome, as defined
by fMRI, has been studied intensively over the past decade,
much less is known about spike synchronization and phase
correlations of fast neuronal oscillations in the human
cortex. Non-invasive recordings of spike synchrony appear
impossible at the moment, but phase correlations can be
investigated non-invasively with M/EEG (see Glossary).
We review here the brief history of M/EEG studies that
have used source modeling in investigations of interareal
phase synchronization and its role in human perception
and cognition. We also outline the principal methodological
challenges in analyses of neuronal interactions in non-
invasive M/EEG data.
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Signal- and source-space views on synchronized
oscillations and their attentional and perceptual
correlates in the human brain
If interareal interactions contributed mechanistically to
the binding of scattered neuronal activities into cognitive
functions, they should be observed among the task-rele-
vant cortical regions and be correlated with behavioral
measures. MEG and EEG can be used to probe non-inva-
sively the phase and amplitude dynamics of ongoing activ-
ity of local neuronal assemblies in human cortex and are
thus the primary experimental tools for addressing the
functional significance of interareal phase and amplitude
interactions in human cognitive operations.

Analyses of phase synchrony between MEG-sensor or
EEG-electrode signals have shown that the strength of
synchronization in the alpha (8–14 Hz), beta (14–30 Hz)
and gamma (30–120 Hz) frequency bands is indeed corre-
lated positively with sensory awareness [28,29], complex
cognitive task performance [30], attention [31] and work-
ing memory [32–34]. These and many other signal-space
studies thus strongly suggest that task demands for cog-
nitive integration are associated with long-range synchro-
nization of cortical oscillations. However, sensor-to-sensor
interaction analyses can be confounded by signal mixing,
source amplitude changes, and other issues [35] (see
Boxes 1 and 2). Most importantly, signal-space data shed
little light on the underlying synchronized anatomical
structures. Identification of the anatomical sources is cru-
cial for appropriate interpretations of the results because
even nearby cortical regions (see, for example, the ‘default’
and ‘task control’ systems in Figure 1b) may play very
different functional roles. For instance, the functional
implications of ‘frontoposterior’ M/EEG synchronization
would be different if the underlying (undiscovered) sources
were in the default-mode network than if they were in the
dorsal attention network.

Source reconstruction approaches hold great promise
for solving these problems but although source modeling
methods have been available for nearly two decades, tech-
nical and computational challenges have hindered carto-
graphic mapping of interareal interactions in source space.
Box 1. A paradigm for non-invasive interaction mapping with M

Coherent postsynaptic currents in a sufficiently large sheet of colinearly

oriented pyramidal neurons produce a macroscopic electromagnetic

field that can be recorded by measuring electric potential differences

with EEG and magnetic fields or field gradients with MEG. Although

these fields can be estimated accurately from known current sources

through ‘forward’ modeling, the reconstruction of unknown sources

from measured fields (i.e. ‘inverse’ modeling) is an ill-posed problem

with no unique solutions. Nevertheless, constraints, such as minimiza-

tion of total current and modeling of sources on individual cortical

surfaces, can be exploited to obtain good estimates of the neuronal

sources underlying M/EEG signals.

Figure Ia displays matrices of interaction strengths as quantified with

phase-locking values (PLVs, z-axis, see Box 3) between every cortical

patch in a whole-cortex parcellation of 150 patches. In the ‘control

condition’ (C), the simulated patch time series are uncorrelated and

have equal mean amplitudes whereas in the ‘task condition’ (T), 10 out

of 150 cortical patches are mutually phase synchronized as depicted in

the graph with small phase lags but without a change in mean

amplitude. Forward modeling yields a virtual M/EEG recording of these

synthetic cortical data and subsequent phase synchrony analyses

(Figure Ib) between all pairs of 204 planar gradiometers reveal
Nevertheless, in the past decade, a growing number of
studies on interareal synchronization have used M/EEG
data and various source modeling methods. Most studies
have considered interactions among �2–9 cortical regions
of interest (ROIs) and successfully revealed modulations of
interareal synchrony pertaining to perceptual or attention-
al task performance [36–40]. Gross et al. [36] investigated
the role of interareal synchronization in attention with an
attention–blink paradigm, where visual stimuli were pre-
sented at a rapid stimulus presentation rate and the
subjects’ task was to detect target letters presented ran-
domly in the stimulus stream. In this paradigm, target
letters preceded by another target shortly before are diffi-
cult to detect. Beta (14–30 Hz) frequency band synchroni-
zation between PFC, PPC, temporal and cingulate regions
was stronger when the target stimulus was detected than
when it was not (Figure 2a), indicating a role for this
interaction in attention. In another study, spatial attention
was found to enhance gamma-band synchronization be-
tween ROIs in the middle temporal (MT) area, intrapar-
ietal sulcus (IPS) and frontal eye fields (FEF) when visual
stimuli were in the attended compared to the ignored
hemifield [38]. This study was among the first demonstra-
tions of similarity in attention-related interareal synchro-
nization in humans and monkeys. Kveraga et al. [40]
investigated interareal synchronization in the contextual
association network by minimum–norm–estimate (MNE)-
based source modeling and ROIs in visual, parahippocam-
pal and medial prefrontal regions, and observed that tran-
sient synchronization in high alpha- and beta-frequency
bands in this network was correlated with behavioral
contextual associations (Figure 2b). These data together
suggest that synchrony among task-relevant structures is
indeed strengthened in experimental conditions where
successful task performance dictates a joint operation of
many distinct cortical areas.

Comparable results have been obtained with intracranial
EEG recordings, which yield much more sharply localized
signals with less mixing than M/EEG (see Box 1) but, on the
contrary, allow only sparse sampling. The interareal syn-
chronization in these direct cortical recordings has been
/EEG

considerable artificial synchrony that is caused by the mixing of cortical

signals at the scalp level. Task condition synchronization can be

estimated roughly by subtracting the control condition (‘T-C’) or by

using an interaction metric that is insensitive to linear signal mixing

(such as the imaginary part of PLV, ‘Im(T)’, see Box 2), but in either case,

the resulting sensor-level connectivity is not anatomically informative.

Cortically constrained minimum-norm-estimates (MNE) can be

used to reconstruct cortical phase and amplitude dynamics (Figure

Ic,d). The matrices in Figure Ic show the pairwise synchronization

among cortical patches (same as in (a)) obtained by MNE inverse

modeling of the M/EEG sensor signals (see (b)). Importantly, although

there is a considerable amount of artificial synchronization in inverse

modeled data even in the absence of any true correlations (Figure Ic,

left panel), the inverse transform successfully reduces the fraction of

corrupted signal pairs compared to the sensor level (Figure Ie; p-gr.,

planar gradiometers; mag., magnetometers). The source reconstruc-

tion also recovers relatively well the simulated time series (see Figure

Id) and reveals the original simulated phase correlation network (see

Figure Ic, right panels, color scale as in (b)), albeit with residual

spurious correlations (see Box 2). Advanced inverse methods and

cortical parcellations can further improve the source separability.
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Figure I. A schematic illustration of the signal mixing problem in M/EEG recordings and source reconstructed data. (a) The matrices show all-to-all pair-wise phase

synchrony, as indexed by a phase locking value (PLV), in a simulation of uncorrelated cortical patches (left panel, control condition, C) and in a simulation of a set of

correlated patches with an amplitude equal to the uncorrelated ones (middle panel, task condition, T). The anatomical background (right panel) shows the left and right,

respectively, flattened cortical surfaces with colored patches indicating the correlated sources in T and the black connections indicating the correlations per se (M,

middle; F, frontal; T, temporal; O, occipital; S, sulcus; G, gyrus). (b) All-to-all pair-wise phase synchrony matrices for MEG planar gradiometers can be obtained by

forward modeling the data in (a) in conditions C and T (left panels). Subtraction of the control from the task condition (T-C, middle up) or a usage of a signal-mixing-

insensitive interaction metric (here the imaginary part of PLV, Im(T), middle down) can be used to compensate for artificial synchrony. The interactions in MEG sensor

layout (right panel) are not very informative about the underlying anatomy [see (a)]. (c,d) Inverse modeling can be used to estimate with acceptable fidelity the source

patch time series (d) from the measured M/EEG time series, which thereafter can be used to obtain an all-to-all pair-wise phase synchrony matrix for patches covering

the complete cortical surface (c) and to estimate task-condition networks [see (b)], albeit with residual spurious interactions (see Box 2). (e) Cumulative probability

distributions of C condition matrices in a (original, black), b (MEG planar gradiometers, green; MEG magnetometers, cyan; EEG, purple), and c (source reconstruction,

red). The distributions show that source reconstruction alleviates signal mixing but does not remove it completely.
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Box 2. Challenges in electrophysiological connectivity analyses

We summarize here the central confounders and pitfalls in M/EEG-

based interaction analyses as well as possible strategies for addres-

sing them in empirical work.

Volume conduction and linear signal mixing: ‘artificial’ synchrony

As illustrated in Box 1, the mixing of neuronal signals is inevitable in

M/EEG recordings. This problem influences, albeit to a lesser extent,

the invasive electrophysiological recordings with depth and subdural

electrodes. In coherence and phase synchrony estimates, linear

mixing of signals causes artificial synchrony between nearby sources.

Nevertheless, artificial synchrony can be attenuated or removed by

several measures. (1) Baseline compensation or control conditions

can be used to identify non-artificial changes in phase synchrony

when using interaction metrics such as the phase-locking value (PLV),

pairwise phase consistency or mutual information. This approach is,

however, sensitive to concurrent changes in source amplitudes

[35,50]. (2) Because linear mixing is always instantaneous, interaction

metrics that detect exclusively lagged interactions and suppress zero-

phase lag synchrony, such as the imaginary coherence, imaginary

part of the phase locking value, phase-slope index and the (weighted)

phase-lag index, are immune to artificial synchrony but at the cost of

an inability to detect true zero-phase lag interactions [80]. (3) Directed

interactions such as those revealed by transfer entropy and partial

directed coherence [37,43] may be robust against linear mixing. (4) CF

phase interaction analyses are nonlinear and (see Box 3) are not

contaminated by artificial synchrony although local CF interactions

are sensitive to broadband artifacts.

‘Spurious’ synchrony

Spurious interactions (Figure Ia,b) persist even after artificial interac-

tions are removed in one way or another and thus constitute a

profound problem. The spurious interactions can be suppressed by

minimizing the effects of linear mixing in the first place, for instance

with source reconstruction and efficient cortical parcellation ap-

proaches [48–50]. At present, however, there are no established

effective strategies or unique solutions for removing residual

spurious interactions.

Stimulus-evoked responses

Additive neuronal activity and also phase resetting of ongoing activity

caused by exogenous events bias all interaction estimates directly. If

the evoked components did not have intertrial latency variability, their

effect could be estimated and compensated by surrogate data

obtained with trial shuffling, but because such latency variability is

a well-known phenomenon [81], the true efficiency of trial shuffling

remains unclear. The ultimate solution is thus to use experimental

designs where the time window of interest is not contaminated by

evoked responses at all.

Signal-to-noise ratio dynamics

Spontaneous and stimulus-induced changes in the amplitudes of

ongoing activity change (i) the signal-to-noise ratio of signals from a

given source in relation to environmental and sensor noise and (ii) the

balance in the mixing of signals from multiple concurrent sources.

Both effects influence the accuracy of phase (and amplitude)

estimates of the signal from the source of interest and thereby bias

the interaction estimates. Although the effects of the signal-to-noise

ratio changes on interaction estimates can be estimated with

simulations [49], they remain a significant putative confounder.
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Artificial

”Denied”

True

(a)

MFG

MTG

MFS    

(b)

TRENDS in Cognitive Sciences 

Figure I. ‘Artificial’, ‘spurious’ and ‘denied’ interactions in networks influenced

by signal mixing. (a) The schematic graph shows two brain regions (red and

yellow nodes) that are coupled by an interaction (black line). After M/EEG data

acquisition and inverse modeling, signals from these regions are mixed with

signals from nearby regions (grey nodes, blurry background indicates

significant mixing). The mixing results in artificial linear correlations

including artificial phase synchronization with a 0- or 180-degree phase

difference between the affected signals (green lines). This mixing also results

in the mirroring of the true interaction into spurious interactions (red lines) that

at least partially maintain the characteristics of the true interaction such as a

phase difference or directionality. (b) A subset of the task-control network from

Box 1, Figure Ic. The black lines indicate the true phase interaction and red lines

the spurious interactions. Using a control condition (as here), or an interaction

metric that is insensitive to artificial synchrony, does not abolish the spurious

interactions. Artificial connections in the graph, however, become ‘denied’

(dashed green lines) in the sense that because of associated strong signal

mixing, it is impossible to observe true interactions between these nodes (e.g.

here the connection between the MFS and MFG, cf. Box 1, Figure Ia, right

panel).
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found to be correlated with sensory awareness [41], top-
down attentional control [42] and working memory [43,44].
The study of Gaillard et al. [41] investigated differences in
the conscious and non-conscious processing of words by
using a masking procedure and intracerebral EEG. In the
conscious condition, causality analysis revealed an informa-
tion flow among the occipital and occipitotemporal cortices
as well as from occipital to frontal electrodes (Figure 2c). In
the non-conscious condition, no causal interactions were
observed.

Observations made with source-localized M/EEG data
and with invasive intracranial recordings from humans are
thus in line with findings from invasive animal recordings
and show that interareal synchronization among the
task-relevant sensory and executive regions (see
Figure 1b, right panel) is correlated with behavior and
modulated by attentional and perceptual loads. Important-
ly, these studies support the hypothesis that, in the human
brain, interareal synchronization mechanistically underlies
the coordination of neuronal communication and integra-
tion of anatomically distributed processing. Insight into
large-scale brain dynamics obtained by ROI-based M/
EEG analysis approaches is, nevertheless, limited by two
factors. First, the selection of ROIs is sparse and might not
yield an accurate or adequate selection of the brain struc-
tures that contribute to the experimental task performance.
Second, the leakage of spurious interactions (see Boxes 1c
and 2) from regions outside the ROIs is a confounder that is
223
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Figure 2. Synchronization among task-relevant cortical regions is observed in several different cognitive tasks. (a) Frontoparietal beta-band synchronization is correlated

with the success of allocating attention towards a stimulus in an attention-blink paradigm. Adapted from [36]. (b) Representation of contextual information is associated

with beta-band synchronization among medial frontal, parahippocampal and visual regions. Adapted from [40]. (c) Granger causality analysis shows that visual awareness

is correlated with directed beta-band interaction from occipital to frontal cortex. Adapted from [41]. (d) The first all-to-all mapping of interareal phase correlations reveals

visual stimulus-induced network synchrony occipital, temporal and parietal regions. Adapted from [45]. (e) Attentive, visually paced reading is associated with both

coherence and directed interactions in the alpha band in a network of occipitotemporal, temporal, orbital and motor areas. Adapted from [37]. (f) Perceptual binding of

ambiguous audiovisual stimuli is correlated with beta-band synchronization among frontocentral and occipitotemporal regions. Adapted from [48]. (g) Alpha-, beta- and

gamma-band phase synchrony is sustained and load dependent during the visual working memory (VWM) retention period. Left panel: The black line shows the fraction of

interactions (connection density, K, y-axis) that were strengthened by the VWM as a function of frequency (x-axis). The gray line shows the fraction of interaction that was

positively correlated with memory load. Middle panel: Connection densities of task performance-related networks in the alpha (red), beta (green) and gamma (blue)

frequency bands as a function of time. The rectangle denotes the memory retention period. Right panel: Connection densities of load-dependent networks. Adapted from

[49]. (h) In the same task, intraparietal sulcus (intPS) is the principal hub in the alpha- and beta- (not shown) band phase interactions that predicted the individual VWM

capacity. Adapted from [49].
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difficult to control. These limitations can be avoided by an
‘all-to-all’ mapping of interactions between pairs of sources
throughout the cortical surface, which reveals the dominant
connections in the entire network.

All-to-all mapping of phase correlations in cortical
networks
One of the first mappings of all-to-all interareal synchrony
was made by David et al. [45], who used MNE-based source
modeling and observed that occipital and occipitotemporal
large-scale networks became synchronized during a visual
task (Figure 2d). Later studies have used, for example,
source clustering- and beamforming-based approaches to
investigate the functional significance of interareal coher-
ence across the whole brain. Pollok and colleagues showed
that sensorimotor integration was correlated with interar-
eal alpha-band coherence among cerebellum, thalamus and
premotor cortex [46,47]. Kujala et al. [37] studied large-scale
cortical networks during reading, and recorded MEG during
fast, intermediate and slow presentation rates of words that
comprised a meaningful story that was comprehended only
at the slow presentation rates. Reading was associated with
enhanced alpha-band coherence in a network comprising
the cerebellum, PFC, temporal cortical regions and orbital
structures, whereas comprehension strengthened synchro-
ny among cerebellar and temporal regions (Figure 2e). In
addition, this study addressed causal interactions among
these regions, and found that the cerebellum and inferior
temporal regions were the nodes driving the information
flow in a posterior to anterior direction. A study by Hipp et al.
[48] used EEG recordings to investigate the functional
significance of interareal synchrony in an audiovisual task.
The strength of beta- and gamma-band phase synchrony
among central and temporal brain regions was correlated
with the perception of ambiguous audiovisual stimuli
(Figure 2g), which is in line with prior studies in cats and
monkeys on the role of beta- and gamma-band synchrony in
perceptual binding.

A similar approach was used by Palva and colleagues
[49,50], who performed a complete cortical mapping of
dynamic 3–90-Hz phase interactions during visual work-
ing memory (VWM) encoding and retention by using MNE-
based M/EEG source reconstruction and a cortical parcel-
lation that minimizes spurious interactions. In these data,
interareal synchronization concurrently in the alpha (8–
14 Hz), beta (14–30 Hz) and gamma bands was sustained
and load dependent during the VWM retention period
(Figures 2g and 3) [49]. Interareal synchronization in
alpha- and beta-frequency bands also predicted the indi-
vidual VWM capacity, which indicates the functional sig-
nificance of interareal synchronization in supporting
human VWM (Figure 2h).

Taken together, these data suggest a mechanistic role for
phase correlations in large-scale cortical networks in per-
ceptual, attentional and WM processing. These studies also
demonstrate that all-to-all analysis approaches are feasible,
informative, and may reveal as complete as possible net-
works of interareal interactions in a hypothesis-free manner
and hence support unbiased investigations on the functional
significance of neuronal synchrony. Further insight into the
topological significance of these connections, and also into
the connected brain regions and the whole network, can be
obtained by depicting the interaction data as graphs where
the brain regions are the vertices and the interactions the
connecting edges.

Insights from graph theory
Graph theoretical network metrics have been widely used
to characterize the properties of cerebral networks defined
by structural, functional or effective connectivity in MRI
data [51,52]. These metrics yields insight into the network
properties at three levels: edges, vertices and the entire
graph.

At the graph level, several metrics can be used to
characterize specific topological attributes. Brain connec-
tivity graphs have high clustering, short average path
lengths, dense intramodular connectivity and sparse inter-
modular connections [51] that are the hallmarks of a small-
world organization [53]. Small-world structures are asso-
ciated with high local and global efficiency in information
transmission as well as facilitated parallel processing
within hierarchically organized modules [51].

Several studies have used signal-space M/EEG connec-
tivity analyses to explore the graph properties of interareal
networks during task execution [32,54–59]. These data, in
summary, show that, at the scalp level, brain graph prop-
erties are informative about pathological conditions and
modulated by cognitive tasks. Kitzbichler et al. [32] showed
that even nearby frequency bands can exhibit very differ-
ent kinds of topologies in task-induced networks.

However, in signal-space data and to a lesser extent in
source space (see Figure Id in Box 1), the signal mixing has
dramatic effects on the observed network topology (see
Figure I in Box 2). Source signals are spread by mixing
to produce artificial synchronization and the true interac-
tions are mirrored in several spurious interactions, which
artificially increases clustering in the network. On the
contrary, the removal of the artificial interactions by using
a control condition or a mixing-insensitive interaction
metric (see Box 3) does not remove the spurious interac-
tions, and yet, the subset of true interactions that was
masked by artificial synchrony remains undetected (see
Figure I in Box 2), which together decrease clustering
below the true value. Thus, the extent to which the present
M/EEG literature on connectivity graph metrics relates to
the graph properties of the true underlying interaction
networks thus remains unclear [60]. Future methodologi-
cal advancements for eliminating spurious connections in
source-modeled M/EEG will play an important role in
improving the reliability of graph-property estimates from
M/EEG data. Furthermore, millisecond-range temporal
precision, which is one of the primary strengths of M/
EEG as compared to MRI, remains to be exploited in graph
analyses.

The challenges related to mixing effects are less aggra-
vated at the edge and vertex levels, where the network
metrics can be very useful in the extraction of physiologi-
cally significant topological information as well as in the
discovery of most important network components from
large amounts of connectivity data. Vertex centrality mea-
sures, such as degree and betweenness centrality, reveal
which nodes are most important for network integrity in
225
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terms of having many connections or being a waypoint for
many of the shortest paths in the graph, respectively.
Graph modularity or community structure estimations
(see Figure 1b) may further reveal subsets of vertices that
are more densely connected to each other than to the rest of
the graph and hence uncover functionally specific subsys-
tems.

Localization of hubs in oscillatory communication
networks
In a few M/EEG studies, vertex centrality estimates have
been used to identify those anatomical structures that are
likely to play an important role as hubs in networks of
interareal synchronization [37,49,61]. During a continuous
reading task [37], occipitotemporal and motor cortices as
well as the cerebellum were the strongest hubs in networks
of both functional and effective connectivity in the alpha
band. Vertex centrality metrics have also been estimated
for networks supporting VWM, where alpha-band synchro-
ny was observed in frontoparietal regions, synchronization
in the beta band was prominent among the visual regions,
and in the gamma band among distributed frontal, parietal
and posterior regions [49] (Figure 3a). Degree and be-
tweenness centrality analyses showed that the hubs of
alpha-, beta- and gamma-band networks were concentrat-
ed in the frontal, occipital and parietal cortices, respective-
ly (Figure 3b). The IPS, a key region mediating visual
attention [10,62], was highly central in the gamma-band
network, which is in line with the putative role for gamma
Box 3. Quantification and physiological implications of CF intera

CF phase–phase and phase–amplitude interactions may act as

mechanisms for binding and coordinating spectrally distributed

processing into coherent cognitive operations [12,22,30,82]. Phase–

phase interactions can be quantified as n:m phase synchrony [83],

where n and m are small integers that define the frequency equality

nfx = mfy of the coupled slow and fast oscillations (Figure Ia,b). A

direct phase–phase correlation between oscillations in distinct

frequency bands has two physiological implications. First, neuronal

networks generating the slow oscillation must operate with a

temporal reliability in a subcycle time scale of the fast oscillation.

Second, because the firing of neurons engaged in the slow oscillation

takes place in a specific phase of the fast cycle, n:m phase synchrony

is compatible with phase and spike time-based coding schemes [30]

similarly to the classical 1:1 within-frequency phase synchrony [24].

Considering a filtered signal x(t,f) = ax(t,f) e[iux(t,f)], where i is the

imaginary unit, ax(t,f) = jx(t,f)j denotes the amplitude and ux(t,f) =

arg(x(t,f)) the phase, the strength of n:m phase synchrony can be

estimated by quantifying the non-uniformity of the generic phase

difference vnm of signals x and y:

vn;m ¼ nux � muy

which for all signals X = [x] in a complex matrix form, Fn:m, is given by

the complex outer product:

Fn;m ¼ ðX =jX jÞn�ðY =jY jÞ�m

where the asterisk denotes the complex conjugate. The non-uniformity

of Fn:m across N samples can be evaluated, for example, with PLV =

N�1SFn:m.

Palva et al. [30] investigated CF interactions in ongoing activity with

MEG using a continuous stimulus-free parametric WM task. Transient

periods of 1:3 (left) and 1:4 (right) synchrony were visually salient in

segments of sensor data (Figure Ic) and statistically robust throughout

the frequency spectrum (Figure Id left). Phase synchrony among

226
activity in the coordination of goal-directed visual atten-
tion [18]. Importantly, however, in addition to synchroni-
zation among visual regions and the frontoparietal system
(i.e. the dorsal and ventral attention networks), the data-
driven analysis approach also revealed hubs in the cingulo-
opercular system (see Figure 3c and the purple subgraph in
Figure 1b) [27,63–65] and thus sheds light on how these
regions interact with other task-control systems in sub-
second time scales.

Taken together, centrality, coreness and modularity
analyses are important tools for grasping essential infor-
mation from the complex networks yielded by all-to-all
interaction mapping. These metrics identify the most im-
portant brain regions for communication, the key core
structures, and the putative functional divisions among
subnetworks. In essence, these three vertex characteristics
reveal which brain regions form a ‘global workspace’
[66,67] and which act as peripheral nodes in a specific
task-dependent network. Importantly, centrality analyses
can also be used to identify the brain regions that exhibit
abnormal connectivity patterns in cognitive disorders [61].

Future directions
We highlight here three directions of research for identify-
ing the systems-level mechanisms that bridge the gap from
neurophysiology and local neuronal processing to psycho-
logical- and cognitive-level phenomena (see also Box 4).
These directions are (i) acquisition of causal evidence on
the role of specific interactions, (ii) characterization of
ctions

alpha, beta and gamma oscillations was load-dependently enhanced

by the WM task (Figure Id, right).

In CF phase–amplitude interactions, or ‘nested oscillations’, the

phase of slow oscillations and the amplitude of fast oscillations are

correlated (Figure Ie). The phase difference matrix, FPA, for quantify-

ing phase–amplitude coupling can be obtained by filtering the

amplitude envelopes Ax of the faster oscillations at fx with the filter

Tfy that was used to obtain the slower oscillation [84]:

FPA ¼ ½Tfy ðAx Þ=jTfy ðAx Þj��ðY =jY jÞ�

Phase–amplitude correlation is likely to reflect a slow excitability

fluctuation in the neuronal circuitry underlying the fast oscillation

[22]. For example, amplitudes of fast (> 1 Hz) oscillations are nested in

infra-slow oscillations in the 0.01–0.1 Hz band in both sleep [84] and

awake conditions [78] (Figure If). These correlations are behaviorally

significant and reflect the slow intrinsic brain system dynamics [85,86]

(see Figure Ib).

It is important to note that the all-to-all mapping approach advocated

in this review for 1:1 phase interactions applies to CF phase interactions

as well. Anatomically distinct assemblies of slow and fast oscillations

may become directly coupled through n:m phase synchrony [30].

Conversely, a slowly oscillating network may modulate local excit-

ability and fast oscillation amplitudes selectively across the network of

interacting fast oscillations and thereby also modulate the anatomical

structure of these fast 1:1 phase interactions in a task-dependent

manner (Figure Ig). This is illustrated schematically in Figure Ig, where a

1:1 synchronized (solid lines in the graph) assembly in frequency band f

(blue) modulates the local excitability in some network nodes (dashed

lines), which is reflected both in the local amplitudes and transient 1:1

synchronization of assemblies in frequency bands 4f (red) and 6.5f

(yellow). Such network-level nested relationships coordinate the 4f and

6.5f assemblies to serve modular or functionally specialized processing

and yet operate concurrently in the global context.
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Figure I. Cross-frequency phase–phase and phase–amplitude interactions. (a) 1:1 synchrony is a special case of generic n:m–phase synchrony with n = m = 1. Re(.)

denotes the real part of a complex filtered signal and arg(.) its phase. (b) A simulated example of 1:4–phase synchrony between a fast and a slow oscillation. (c) Transient

periods of 1:3 (left) and 1:4 (right) phase synchrony are visually salient in segments of magnetoencephalography sensor data. Adapted from [30], where (d) 1:m–phase

synchrony is statistically robust throughout the frequency spectrum (d, left panel). In a working memory task, 1:m–phase synchrony among alpha, beta and gamma

oscillations is memory load-dependently enhanced (d, right panel). Adapted from [30]. (e) An example of a phase–amplitude interaction where the phase of the slow and

the amplitude of the fast oscillations are correlated. (f) The amplitudes of fast (>1 Hz) oscillations are phase–amplitude coupled, or ‘nested’, with infra-slow fluctuations

(ISF) in the 0.01–0.1 Hz band during a threshold stimulus detection task (colored lines) and the ISF phase is also correlated with the stimulus-detection performance

(black line). Modified from [78]. (g) A schematic of how phase–phase and phase–amplitude interactions may be linked. Here, a 1:1-synchronized (solid lines in the graph,

left panel) assembly in frequency band f (blue) modulates the local excitability (dashed lines in the graph) in some of the network nodes (black circles in the graph).

These modulations are reflected both in the local oscillation amplitudes and in transient 1:1 synchronization within other assemblies in frequency bands 4f (red) and 6.5f

(yellow). The time series (right panel) illustrate these phase–phase and phase–amplitude interactions.
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graph dynamics and cross-frequency (CF) interactions, and
(iii) dissociation of in-phase and out-of-phase functional
connectivity.

First, although several lines of correlative data link
synchronization and cognitive performance, and thus sup-
port the idea that synchronization in large-scale networks
may serve the coordination of scattered neuronal activity
into coherent perception and cognition, there is so far little
causal evidence to support this hypothesis. In humans,
causal-like evidence could be obtained by careful quantifi-
cation of single-trial brain dynamics and utilization of
causal interaction metrics not only to quantify the inter-
areal neuronal interactions [37,41] but also to explore
whether a specific set of interactions is necessary and
sufficient for a given behavioral outcome. To show that
there was a causal link between a neuronal interaction and
behavior, this set of interactions needs to be manipulated
selectively and the consequences in behavior observed. A
step towards this direction has been taken with rhythmic
transcranial magnetic stimulation (rTMS), which is able to
entrain spontaneous neuronal oscillations at the stimula-
tion frequency [68]. For instance, recent rTMS data have
revealed a double dissociation in the effects of 5 and 20 Hz
stimulation of the parietal cortex where 5 Hz stimulation
facilitates global and 20 Hz stimulation local perceptual
processing [69].
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Figure 3. Visual working memory (VWM) retention period is associated with distinct patterns of interareal synchronization in alpha-, beta- and gamma-frequency bands. (a)

Alpha-band synchronization is observed among frontoparietal regions, (b) beta-band correlations among the occipital and occipitotemporal regions, and (c) gamma-band

synchronization among occipital and parietal regions (left panels). Hubs, that is brain regions with high betweenness centrality (BC, right panels), of these networks are

observed in the frontal cortex (red) in the alpha band, in occipital regions (green) in the beta band, and in parietal regions (blue) in the gamma band. Adapted from [49].
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Second, although within-frequency phase synchroniza-
tion may support the binding of anatomically distributed
processing, it cannot coordinate neuronal processing dis-
tributed into distinct time windows or frequency bands.
The binding of anatomically, spectrally and temporally
distributed processing could, however, be carried out by
CF phase–amplitude interactions (i.e. nested oscillations)
or by phase–phase interactions, such as n:m phase syn-
chrony (Box 3). Invasive human [70–72] and animal [73–
75] recordings show that nested phase interactions are
228
observable in human brain dynamics and that they are
modulated by cognitive task demands. CF phase interac-
tions have also been investigated with M/EEG recordings,
which show that both n:m phase synchrony [30,76,77]
and nested oscillations [30,76,78,79] are correlated with
VWM performance and sensory awareness. Nevertheless,
source reconstruction techniques have not yet been used
with CF phase interaction analyses, which leaves the
anatomical sources and functional significance of CF phase
interactions unclear. The network analyses of CF phase



Box 4. Outstanding questions

� What are the topological, spectral and anatomical similarities of

networks supporting cognitive functions of varying scales such as

attention, working memory, perceptual awareness and decision

making?

� Are there concurrent task-positive and -negative networks of fast

phase interactions? Is network modularity and suppression of

unwanted communication achieved stochastically by uncorrelat-

edness or actively coordinated through out-of-phase correlations?

Do some of the M/EEG-observed phase correlations underlie such

out-of-phase interactions and hence reflect suppressed commu-

nication?

� What are the specific subsecond dynamics and mutual interac-

tions of the dorsal and ventral attention, cingulo-opercular, and

the default-mode systems in coordinating human cognitive

functions?

� What are the roles of phase–phase and phase–amplitude CF

interactions in human cognition and perception? Do these CF

interactions create transient superstructures that coordinate

multiple functionally specialized task-positive subnetworks?

� How are the graph, vertex and edge properties of cortical phase

interaction networks altered in brain diseases and are these

alterations epiphenomenal or causally related to the cognitive

deficits?
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interactions in source space will be of great importance in
understanding how human cognition and its disorders are
formed and caused by hierarchical CF interactions among
networks oscillating at distinct frequency bands.

Third, phase-synchrony measures quantify the presence
of a phase correlation irrespective of the phase difference
between two brain regions. Because oscillations reflect
excitability fluctuations, a specific, conduction delay-de-
pendent phase difference ensures that the input signals
arrive to the target population at the excitable phase,
which conceivably facilitates communication [18,24].
Inputs arriving in the opposite phase, however, are more
unlikely to evoke a response and hence a failure in com-
munication between these brain regions. Phase synchrony
and coherence measures used at present do not distinguish
between these two alternatives. Therefore, interareal
phase synchrony does not necessarily reflect only commu-
nication networks, but anticorrelations among brain
regions as well.
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