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1. INTRODUCTION

How did Galileo achieve his mathematical natural philosophy? How did he discover 

the times-squared law, the pendulum isochronism, the parabolic trajectory of projec-

tiles — by experiment or by mathematical reasoning? Questions like these have long 

divided scholars into two camps: the advocates of experiment and the advocates of 

geometry. Is there an alternative to the two horns of this dilemma? I am convinced 

that there is indeed a viable alternative. Before substantiating my claim, however, I 

need to sketch the essential elements characterizing the division. I will do so through 

the exemplar case which is central to my study here.

In 1604 Galileo wrote a letter to Paolo Sarpi, in which he put forward an “errone-

ous” principle from which he claimed that he could derive the times-squared law of 

fall. The principle is as follows: the ratio of the speeds of fall is the same as the ratio 

of the spaces fallen through. In referring to that “erroneous” principle, Alexandre 

Koyré argues that Galileo already knew all the details concerning the phenomenon 

of fall, such as the sameness of ratios between the spaces traversed and the squares 

of the elapsed times (on sameness of ratios more below, in Section 3).1 What Galileo 

had long wanted to discover, in Koyré’s view, was a general principle from which 

he could deduce the law of fall geometrically. In other words, Koyré continues, 

Galileo sought to fi nd the essence, i.e., the defi nition, or law, of the phenomenon 

“fall of bodies”. Why, asks Koyré, did Galileo adopt the “erroneous” principle? The 

answer, for him, is clear. The key to classical physics is the geometrization of nature, 

which implies the application of mathematical laws to the phenomena of motion. 

But, in Koyré’s words, it is much easier to “imagine in space rather than think in 

time [imaginer dans l’espace que de penser dans le temps]”; hence Galileo’s “error” 

in 1604.2 In the wake of Koyré, William Shea argued that between 1610 and 1632 

Galileo worked out “the methodology of his intellectual revolution”, especially in 

connection with his researches on hydrostatics.3 According to Shea, that methodol-

ogy basically consisted in mathematically investigating classes of phenomena, such 

as, for instance, fl oating bodies, under certain idealized conditions. Further, Shea 

suggested that the “popular notion of Galileo as the fi rst hard-headed and thorough-

going experimentalist owes much to his fi rst biographer, Vincenzo Viviani”, who, in 

Shea’s view, “seriously misinterpreted Galileo’s early interests by claiming that he 

had discovered the isochronism of the pendulum and the law of uniform acceleration 

of falling bodies by performing experiments while still a student at Pisa”.4 

Other scholars, notably Stillman Drake and Ronald Naylor, have emphasized 
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Galileo’s aptitude for experimentation. Most of them have pointed to the numer-

ous manuscript sources that expose the empirical basis of Galileo’s investigations 

concerning falling bodies, which may have led to the discovery of the times-squared 

law.5 There is now a broad consensus that the crucial period of Galileo’s experimen-

tal investigations on motion spanned his arrival in Padua, in 1592, to his departure 

eighteen years later, in 1610.6 By then Galileo had discovered the times-squared 

law, the paraboloic trajectory of projectiles, and also the correct sameness of ratios 

of speeds to times, thus abandoning the 1604 blind alley. Disagreement has by and 

large been confi ned to the details of the process by which Galileo is supposed to 

have corrected his 1604 “error”, all of which, however, boil down to the vexed ques-

tion: experience or mathematics? The basis of all these studies has mostly been the 

so-called Manuscript 72, preserved in the Galileo collection at the National Library 

in Florence. The manuscript as a whole cannot be dated with certainty, especially 

because it appears to have been compiled and re-worked by Galileo (and others) at 

different times. Further, Paolo Galluzzi reviewed the history of the interpretations 

of Galileo’s “error” and concluded that it must have been caused both by the inad-

equacy of Galileo’s diagram representing the quantities involved in the proof and by 

the inadequacy of his terminology, which would not have allowed him to distinguish 

clearly between the notions of degree of speed and average speed.7 

I believe that Koyré’s emphasis on the 1604 “error” has led historians astray. Let’s 

see how. The implication of Koyré’s argument has always, and rather uncritically, 

been taken to be that ever since Galileo discovered his “error”, allegedly some time 

before leaving Padua in 1610, he must have automatically embraced the correct ver-

sion of the sameness of ratios, a turn that would virtually have marked the pinnacle of 

achievement of his research on motion. Subsequently, the story goes, other interests 

caught his imagination, especially following his astronomical discoveries with the 

telescope, thus delaying the publication of Two new sciences (1638) until after the 

notorious condemnation of 1633. In other words, the implication has always been 

that the correct form of the sameness of ratios was somehow discovered at a precise 

point in time after the “error” of 1604. 

Thus the assumption underlying this reasoning seems to have been that truth came 

after error. In fact, documentary evidence (based on a short, but revealing writing, 

On accelerated motion [De motu accelerato], on which more in a moment) suggests 

that the regularity of uniform acceleration with respect to time had been considered 

by Galileo as a strong candidate for a general principle perhaps as early as the 1590s, 

or not long thereafter. Accordingly, I will argue that the “error” of 1604 was no more 

than a marginal, very short-lived attempt to mathematize that regularity in terms of 

Euclidean samenesses of ratios. The so-called De motu accelerato is a short writing 

that Galileo never published. Different views on its dating have arisen. However, 

I am convinced that the document is in fact to be dated to well before 1604, quite 

possibly to the late 1590s. First and foremost, the folios are bound with the same 

early manuscript material known as De motu antiquiora, or simply De motu, which 

is by general consensus attributed to the early 1590s. I see no valid reason why it 
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should be detached from this early material. In fact the only substantial reason for 

this arbitrary re-location seems to have been the very assumption that because in De 
motu accelerato Galileo proposes the “correct” defi nition of uniformly accelerated 

motion, and because a portion of it was recast in Two new sciences (1638), it must 

have been conceived well after 1604, perhaps in preparation for Two new sciences.8 

My analysis has led me to call into question the very assumption that the rectifi cation 

of the 1604 “error” came with the discovery of the “correct” sameness of ratios. As 

we shall see, Galileo soon found a counterargument to the 1604 sameness of ratios 

between speeds and spaces, which had nothing to do with the “correct” sameness of 

ratios between speeds and times. In reality, the fact until now unappreciated is that 

regardless of the form of the sameness of ratios, i.e., regardless of the diffi culty in 

mathematizing the regularity of uniform acceleration with respect to time, Galileo 

must long have felt caught in a dilemma. For the motivational dynamics driving 

his researches on the mathematization of motion (and in part causing the delay in 

publication) ultimately depended on his grappling with a paradox concerning heavy 

bodies and the continuity of motion in uniformly accelerated fall. It was the resolu-

tion of that paradox that was central to Galileo’s project of creating an entirely “new 

science of motion”. He had struggled with it ever since the 1590s. As I will suggest, 

the paradox fi nally evaporated in 1635–36. In an extraordinary cognitive process 

of “memory rewriting” Galileo convinced himself that falling bodies somehow 

become weightless. On that basis he went on to design and carry out experiments 

with pendula to test the principle that bodies of all types of matter fall at the same 

speed in the void. 

On the other hand, we are now certain that Galileo excogitated and performed 

ingenious experiments. I believe that Galileo’s engagement in a lifelong quest for 

a general principle, from which he could deduce the times-squared law of falling 

bodies, was fi rst and foremost a search for an idealization of the phenomena of falling 

bodies that could escort him safely beyond the quagmire of paradox. In other words, 

Galileo’s mathematical investigations of nature were ultimately based on idealiza-

tion processes. Their signifi cance for his methodology deserves to be studied in fi ner 

detail. Galileo’s methodology integrates numerous investigative strategies, such as 

mental models,9 analogical thinking, experimentation, cognitive autobiography, and, 

most important of all, proportional reasoning.10 Galileo’s proportional reasoning is a 

form of reasoning based on the principled manipulation of ratios and samenesses of 

ratios, according to the rules set forth in the fi fth book of Euclid’s Elements. As for 

Galileo’s use of proportional reasoning in natural philosophy, a sizable literature is 

now available, which allows us a better understanding of most of its technical aspects.11 

All of these strategies are fl exibly employed by Galileo throughout his career, but 

essentially they all serve the purpose of what I label “Galilean idealization”. In what 

follows, I will show that Galilean idealization provides an alternative to the two horns 

of the dilemma presented by Galileo historiography. Before specifying my objectives 

in further detail, however, I need to clarify my terminology. By “Galilean idealiza-

tion” I mean the process of abstraction by which phenomena observable in nature, 
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or conceivable in mind, are gradually divested by Galileo of their perceptible proper-

ties (type of matter, weight, surface corrugation, for example), in order to construct 

idealized representations of phenomena, such as, for instance, falling bodies in the 

void; hence idealized phenomenon of fall in the void. 

In this paper, I will study Galileo’s life-long construction of the idealized phenom-

enon of fall in the void. Firstly, I will show that Galileo’s quest was deeply rooted 

in his 1590s writings, especially De motu, a set of drafts and notes on motion and 

mechanics that were deeply infl uenced by Archimedes. In De motu, Galileo set out 

to investigate the “ratios of motions [proportiones motuum]” of bodies in fl uid media, 

initially hoping that Archimedean hydrostatics would afford the strategy needed to 

disprove Aristotle’s views on motion and the impossibility of the void, and eventually 

overcome the latter’s physics of the “plenum”. Secondly, I will offer a detailed read-

ing of De motu accelerato, in connection with Galileo’s ideas on the structure of the 

continuum. In contrast to received historiographical wisdom, I will argue that Galileo’s 

1604 hypothesis of the sameness of ratios of speeds and spaces is fully compatible 

with his previous analysis of accelerated motion in De motu accelerato. Thirdly, I 

will suggest that the paradox of heavy bodies and continuous motion in accelerated 

fall was the original question motivating Galileo’s work with inclined planes, both 

theoretical and experimental. Thus the times-squared law might even have been a 

serendipitous by-product of thinking and measuring with inclined planes. Fourthly, 

I will show that cognitive autobiography, in the context of a culture still infl uenced 

by orally-shaped modes of thinking, affected Galileo’s development of idealized fall 

in the void. As revealed by a hitherto little-studied document, the so-called Postils 
to Rocco,12 cognitive autobiography made Galileo realize that weight cannot be the 

cause of a body’s speed of fall, and that all bodies somehow become “weightless” 

while falling in the void. This was the breeze that fi nally allowed Galileo to sail 

beyond the doldrums of paradox. Most importantly, it emerges from my analysis 

that Galilean idealization is a progressive strategy, and that its fi nal construct, the 

idealized phenomenon, is the result of successive transformations at different levels 

of idealization. Finally, I will suggest that experiments with pendula were carried out 

by Galileo in order to decide between two competing theories of a body’s fall in the 

void, a restricted one predicting equality of degrees of speeds for bodies of the same 
matter, and a general one predicting equality of degrees of speeds for bodies of all 
types of matter. These experiments, which, in Galileo’s view, sounded the death-knell 

for the restricted theory, sealed his life-long quest for the idealized phenomenon of 

fall in the void. His pilgrimage was rewarded with a vision of order and uniformity. 

Any body whatever falls with the same degrees of speed in the void, and the ratio of 

the successive degrees of speeds is the same as the ratio of the elapsed times. I will 

conclude the paper with a brief discussion of some responses to Galileo’s law of 

fall by contemporary philosophers, which indirectly shed light on the signifi cance 

of Galileo’s achievement.
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2. THE RESTRICTED THEORY: DE PROPORTIONIBUS MOTUUM

At one point in De motu, Galileo exclaims, “As almost everything he wrote about 

local motion, even about this question [i.e., the motion of projectiles] Aristotle wrote 

the opposite of what is true”.13 De motu is mostly about ratios of motion, a subject 

not really prominent in Aristotle’s physics. However, Galileo’s “reconstruction” of 

Aristotelian natural philosophy is a refl ection of teachings and oral discussions that he 

certainly took part in when a student and later on a young professor at Pisa university. 

Thus in Galileo’s references to problems raised by Aristotle we must not look for 

precise textual correspondences with our modern editions of Aristotle’s texts. Late 

sixteenth-century Aristotelianism, as is well known, was the fruit of a long period 

of elaboration in the Latin Middle Ages and the Renaissance, which brought about 

a fl urry of questions that have long been expunged from the genuine Aristotelian 

corpus by modern scholarship.14 

Galileo claims that since natural motion depends on a mobile’s gravity or levity, 

it is necessary fi rst of all to be clear about what it means for a body to be heavier or 

lighter than another body. Thus he introduces the terminology of gravitas in specie 

[specifi c gravity]. A body is specifi cally heavier, or lighter, than another body if, their 

volumes being equal, the body is heavier or lighter than the other.15 But all motions 

appear to occur in media, Galileo notes, such as water, air, or even fi re (three of the 

traditional four elements). In what way? There was a commanding source on the 

behaviour of bodies in a fl uid medium. Archimedes’s treatise on fl oating bodies 

explains why bodies fl oat or sink in water.16

The young Galileo took a profound interest in Archimedes. A few marginal postils 

to the latter’s On the sphere and the cylinder, probably written in the late 1580s, 

strongly suggest that Galileo scrupulously studied this work. At about the same time, 

Galileo furnished a solution to the problem of Hiero’s crown different from that com-

monly related by the Archimedean tradition.17 Though published many years later 

in Two new sciences, Galileo’s theorems on centres of gravity, whose Archimedean 

inspiration is all too evident, date from the mid-1580s.18 

We fi rst of all need to understand Galileo’s initial pictorial representations of the 

idealized phenomenon of fl oating bodies. They depict solid magnitudes fl oating in 

water. These representations have antecedents in Archimedes. In Figure 1 we have 

diagrams from two Renaissance editions of Archimedes’s On fl oating bodies. The 

diagrams on the left are from Niccolò Tartaglia’s edition, those on the right from Fed-

erico Commandino’s, two works that Galileo would have consulted.19 The diagrams 

of the fi rst row represent bodies immersed in water (left portion of the hemisphere) 

and volumes of water (right portion of the hemisphere). They are located on the 

surface of a spherical shell of water covering the Earth, whose centre coincides with 

the Earth’s centre. Those of the second represent a body within water and an equal 

volume of water. 

Like Archimedes, Galileo depicts bodies fl oating on the surface of a mass of 

water at rest. However, in the fi rst draft of De motu (cf. the diagrams in Figure 2, 

left column), the water mass seems confi ned within a sort of circular sector. Most 
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importantly, Galileo always shows the raised level of water, level g, for instance, fol-

lowing immersion of the body ab (upper left diagram). In contrast to Archimedes’s 

similar fi gures, the diagrams of De motu show bodies against the background of the 

raised level of water following immersion. 

In subsequent drafts of De motu, we observe an advance in the construction of the 

phenomenon of idealized fall. Galileo abandons for good the spherical representation 

of water in favour of what (deceivingly) appear to be parallelopiped vessels (Figure 

2, right column). He never claims that this is the case, in fact. He keeps referring 

to water as if it had the mass-like nature of one of the four traditional elements, 

regardless of its possibly being enclosed in a vessel. Although the lettering of the 

diagrams suggests that Galileo might have regarded them as a representation of 

bodies immersed in a vessel, he never specifi es whether the space enclosed by the 

vertical and horizontal lines is supposed to represent a vessel. Indeed he does not 

even mention what those lines are supposed to represent. Galileo’s language refl ects 

this mass-like character of elemental water. For example, abcd (Figure 2, upper right 

diagram) is simply called the “state of water”.20 

Galileo abandons the spherical representation of water, which means that he has 

started thinking in terms of downward tendencies, or directions of motions, along 

parallel lines, no longer along lines converging to the centre of the Earth. So we 

might ask ourselves whether Galileo felt that he was justifi ed in his abstracting from 

(left) Diagrams from Niccolò Tartaglia’s edition of Archimedes’s On fl oating bodies: Archimedes, 

Opera Archimedis Syracusani philosophi et mathematici ingeniosissimi (ref. 19), 32 verso – 33 

recto; (right), diagrams from Federico Commandino’s edition of Archimedes: De iis quae vehuntur 
in aqua libri duo, a Federico Commandino Urbinate in pristinum nitorem restituti et commentariis 
illustrati (ref. 19), 2 verso – 3 verso. 

FIG. 1. 
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reality. Galileo came close to an answer. In the fi nal draft of De motu, after discuss-

ing the proportions of motions along inclined planes, he raises the objection that his 

demonstrations are based on the assumption that the lines of action of weights are 

parallel, while in reality they converge to the centre of the Earth. His answer is that 

Archimedes himself makes the same assumption in his work on the quadrature of 

the parabola. Thus we may assume that Galileo might have answered our question 

following a similar line of argument.21

Galileo’s explanatory mechanism of buoyancy is basically a balance mechanism, 

the equality of the weights [gravitates] of the fl oating body and of a volume of 

water equal to the volume of the body’s submerged portion. It was still inspired by 

Archimedes’s analysis of buoyancy on the spherical shell of water. It is by means of 

a ‘reductio’ argument based on the equilibrium of portions of water that Archimedes 

proves that the surface of any water mass at rest is spherical, and that the centre of 

the spherical surface coincides with that of the Earth. Let us consider the diagram in 

Figure 3 (upper part). If the water surface were abc, instead of the spherical  surface, 

(left) Diagrams from the fi rst draft of De motu (Galilei 1890–1909, i, 381–4); (right) diagrams 

from the subsequent drafts of De motu (Galilei 1890–1909, i, 255–6).

FIG. 2. 
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fbh, with centre k, then different masses of water, xabo and obcy, would press dif-

ferently the underlying layer of water, xop (xoy, in the fi gure, mistakenly). Thus the 

whole water could not be at rest. The diagram and the argument suggest that the 

equilibrium of the water masses could be modelled in analogy with a balance of 

equal arms. Let us now consider Galileo’s representation of a balance of equal arms 

in Figure 3 (part below).

According to Galileo, three events might occur in relation to weight e. It might 

remain at rest, move upwards, or move downwards. If it is heavier than weight o it 

will move downwards; if it is less heavy than o it will move upwards, not because it 

does not have gravity, but because o is heavier. From this, Galileo argues, it is evident 

that in the balance both upward and downward motions originate from gravity, but 

in a different way. For e’s upward motion occurs because of o’s gravity, whereas e’s 

downward motion occurs because of its own gravity.22 

The balance of equal arms perfectly models the motions of a body within fl uid 

media. The body is represented by one weight. The other weight will represent a por-

tion of the medium having the same volume as the body’s volume. The explanatory 

mechanism of buoyancy is the same as the more general explanatory mechanism 

of motion and rest. The body’s motion or rest will follow according as the body is 

heavier than, lighter than, or as heavy as a volume of the medium equal to the body’s 

own volume.23

Once the Archimedean framework is in place, Galileo goes on to reject Aristotle’s 

(above) The equilibrium condition of the spherical shell of water in Archimedes, De iis quae 
vehuntur in aqua libri duo, a Federico Commandino Urbinate in pristinum nitorem restituti et 
commentariis illustrati (ref. 19), 2 recto; (below) the balance of equal arms in De motu (Galilei 

1890–1909, i, 257).

FIG. 3. 
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claim that speed of motion is caused by the subtility [subtilitas] of the medium while 

slowness [tarditas] of motion by the thickness [crassities] of the medium.24

By the following train of thought Galileo closes in on what will eventually become 

the “restricted theory” of falling bodies in the void. According to the restricted theory, 

all bodies of the same matter will fall with the same speed in the same medium. His 

starting point is a theory of free fall that he attributes to Aristotle. All bodies of the 

same kind fall with ratios of speed that are the same as the ratios of their bulk. Thus, 

a piece of lead twice as large as another piece of lead will fall twice as fast.25 

A heavy body b moves along line ce (Figure 4). Let the line be divided at point d. 

If mobile b is divided in the same ratio as that according to which the line is divided 

by point d, then in the same time in which body b moves along the whole line, ce, its 

part will move along line cd.26 According to this theory then, all bodies of the same 

kind, i.e., of the same matter, such as wood, or lead, will fall with ratios of speeds 

that are the same as the ratios of their magnitudes.

In contrast to Aristotle, Galileo now claims that mobiles of the same kind, although 

different in volume, will move with the same speed. 

Let us thus say that mobiles of the same kind [things of the same kind are said 

to be those mobiles that are made of the same matter, such as lead, wood, etc.], 

though different in volume, will move with same speed, so that a greater stone 

will not fall faster than a smaller one.27

In my view, the realization at the root of Galileo’s entire process of idealization in the 

1590s is nested in the following observational analogy. The reason why mobiles of 

the same kind, although different in volume, fall with the same speed is the same as 

Aristotle’s view, according to Galileo: bodies of the same matter fall with ratios of speeds that are 

the same as the ratios of their magnitudes. Galilei 1890–1909, i, 263.

FIG. 4. 
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why both a chip of wood and a large wooden beam fl oat.28 After the passage where 

Galileo makes this astonishing claim, we fi nd a sequence in which four distinct stages 

of thinking can be discerned. In the fi rst two, Galileo begins by saying “... si mente 

concipieremus”, i.e., if we conceive with mind, or in mind. Then, in the third, he 

proposes a mechanical analogy (but does not use this term). Finally, the fourth he 

calls an “argument”. 

First stage. Let us consider a wooden beam and a chip of the same wood fl oating 

on water. Then imagine the specifi c weight of water decreasing so that at one point 

water will become specifi cally lighter than wood. Who could claim, Galileo asks, 

that the beam will begin to descend before or faster than the chip? The reason why 

the beam’s behaviour will be the same as the chip’s is that while descending both 

will have to raise an amount of water equal to their volumes. Thus the volumes of 

water raised will have the same ratio as that of the chip’s and the beam’s volumes. In 

consequence, the ratio of the weight of the beam to the weight of its displaced volume 

of water is the same as that of the weight of the chip to the weight of its displaced 

volume of water. With the same ease, both the chip and the beam will overcome the 

resistance of the water that has to be displaced.29

Second stage. Consider a volume of wax fl oating on water (wax is specifi cally 

lighter than water). Now imagine mixing with the wax a modicum of material specifi -

cally heavier than water, such as sand, so that the mixed body will start descending 

in water, but very, very slowly. There is no reason, Galileo claims, why a chip of 

the mixed body will descend slower than the whole mixed body itself, or even not 

descend at all.30 Here Galileo has, so to say, reversed the strategy of the fi rst stage. 

Instead of imagining the specifi c weight of the medium varying, he imagines the 

specifi c weight of the body varying.

Third stage. “And the same one can experience in the balance...”, exclaims Galileo. 

In his words,

... for if very large, equal weights are placed on each side, and then to one of 

them something heavy, but only modestly so, is added, the heavier will then 

go down, but not any more swiftly than if the weights had been small. And the 

same reasoning holds in water: for the beam corresponds to one of the weights 

of the balance, while the other weight is represented by an amount of water as 

great in size as the size of the beam: if this amount of water weighs the same as 

the beam, then the beam will not go down; if the beam is made slightly heavier 

in such a way that it goes down, it will not go down more swiftly than a small 

piece of the same wood, which weighed the same as an [equally] small part of 

the water, and then was made slightly heavier.31

Fourth stage. At this point Galileo claims that the entire reasoning can be confi rmed 

by the following argument. He assumes that if one of two mobiles moves faster than 

the other, the composite of both will move faster than the slower body yet slower than 

the faster one. Then he goes on to state that mobiles of the same kind having differ-

ent volumes will move with the same speed (Figure 5). The strategy is as follows. 
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Let a, b be the two bodies, and let a be larger than b. If possible, let a move faster 

than b. The composite will move faster than b yet slower than a. But the composite 

is larger than a, therefore a larger body will move slower than a smaller body, which 

is awkward [“quod quidem est inconveniens”].32 It is a ‘reductio’ argument, as the 

language employed by Galileo clearly suggests (“inconveniens” is virtually another 

way of saying “absurd”33).

Briefl y, all bodies of the same specifi c gravity will fall at the same speed in the 

same medium. A volume of matter (lead, for example) in different media (air, water, 

etc.) will fall with ratios of speeds that are the same as the ratios of the differences 

between the weight of the volume and the weight of an equal volume of medium 

[“idem mobile in diversis mediis descendens, eam is suorum motuum celeritate, 

servare proportione...”]. By the same token, equal volumes of different matter (wood, 

lead, etc.) will fall in the same medium (air, for example) with ratios of speed that 

are the same as the ratios of the difference between the weights of the volumes and 

the weights of equal volumes of the medium. Here it must be stressed again that 

in Galileo’s language “proportion” is to be interpreted as “sameness” of two ratios 

formed by two couples of magnitudes, or numbers.

The next level of the idealization process concerns the medium and the void. Is 

motion possible in the void? Galileo argues against the reasons given by Aristotle 

to prove the impossibility of the void. The strongest argument brought by Aristotle, 

Galileo claims, is to be found at Physics, IV, 215b (cf. Figure 6, which Galileo draws 

to illustrate Aristotle’s argument).34 

Fourth stage. What happens when a and b join together? G. Galilei, De motu, folio 70 verso; 

Galilei 1890–1909, i, 265.

FIG. 5. 

Aristotle’s argument against the void illustrated with a schema by Galileo (Galilei 1890–1909, 

i, 396).

FIG. 6. 



354  ·  PAOLO PALMIERI 

He [Aristotle] then argued as follows: Let mobile a cross medium b in time c; 

but let it cross a more subtle medium, namely d, in time e: it is manifest that, 

as the thickness of b is to the thickness of d, thus time c is to time e. Then let 

f be a void; and let mobile a, if that can happen, cross this f, not in an instant, 

but in time g; and let the thickness of medium d be to the thickness of another 

medium as time e is to time g. Now, from the things that have been established, 

mobile a will be moved through this medium that has just been found in time 

g, since medium d has the same ratio to this medium that has just been found as 

time e to time g; but, in this same time g, a is also moved through void f: hence 

a, in the same time, will be moved through two equal distances, one of which 

is a plenum, but the other a void; which assuredly is impossible. Therefore the 

mobile will not be moved through the void in time; therefore [the motion will 

take place] in an instant.35

To which Galileo, fortifi ed by the conclusions already established, replies as fol-

lows:

This is Aristotle’s demonstration: to be sure it would have concluded very much to 

the point and from necessity, if Aristotle had demonstrated the things he took for 

granted, or, if they had not been demonstrated, if they had at least been true; but he 

has been deceived in this, since the things which he took as well known axioms, 

are not only not manifest to the senses, but have never been demonstrated, and 

are further not demonstrable, because they are totally false. For he has assumed 

that the motions of the same mobile in different media observe the same ratio 

to one another, in swiftness, as that which the subtilities of the media have: that 

this is assuredly false, has been abundantly demonstrated above.36

Thus Galileo sprightly jumps to the fi nal level of idealization allowed by the 

restricted theory. He jumps from the shoulders of a mathematical giant, none other 

than Archimedes. He characterizes his own achievement with the following sum-

mary words:

... to put it briefl y, my whole intent is the following: if there is a heavy thing a, 

whose proper and natural heaviness is 1000, in any plenum whatever its heavi-

ness will be less than a thousand, and, consequently, the swiftness of its motion 

in any plenum whatever will be less than a thousand. And if we take a medium, 

such that the heaviness of a volume of it equal to the volume of a is only 1, the 

heaviness of a in this medium will be 999; thus its swiftness also will be 999: 

and the swiftness of this same a will only be a thousand in the medium where its 

heaviness is one thousand; and that will be nowhere but in the void.37

In sum, in the void all bodies of the same matter fall with the same speed, and 

the ratios of the speeds are the same as those of the specifi c weights. In a plenum 

bodies fall with speed ratios that are the same as the ratios of the differences between 

their specifi c weight and that of the medium. According to Galileo, however, these 

proportiones motuum are not confi rmed by experience. Before expanding on this 
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discrepancy, Galileo argues, the reason must be considered why natural motion 

downwards is slower at the beginning.38 So, fi rst of all, how is this progression from 

slowness to swiftness to be conceived? We fi nd an answer in De motu accelerato.

3. PARADOX AND IDEALIZATION

In De motu accelerato, Galilean idealization begins with a powerfully simple 

question. When a stone initially at rest falls from a height and I realize that new 

increments of speeds are acquired, why should I not believe that these increments 

manifest themselves according to the simplest relationship?39 The stone remains the 

same stone, the moving principle remains the same moving principle, why not all 

the other characteristics? Thus speed, too, will remain the same ... but no, not speed. 

Why, Galileo insists? Because increments of speed manifest themselves. Identity, 

uniformity, and simplicity, therefore, must be sought elsewhere, not in the stone’s 

speed, but in the increments of speed, namely, in acceleration [acceleratio].40 The 

simplest increment is that occurring successively while always remaining equal 

to itself. The mode of this special occurrence, Galileo claims, can be grasped by 

refl ecting on the affi nity between motion and time. Uniformity of motion is defi ned 

through equality of spaces and times. By the same token, uniformity of acceleration 

must be defi nable through the equality of speed increments and times. Thus, mind 

conceives uniformly accelerated motion when it grasps the uniform increments of 

speed occurring in equal particles of time [particula temporis].41 

There is, however, an unfortunate consequence. Since no time short enough can 

be assigned such that a shorter interval cannot be conceived, then, after the begin-

ning of motion downwards, no degree of speed will be so small that an even smaller 

degree of speed, or greater degree of slowness, cannot be conceived. But how might 

it be possible that a huge mobile is possessed of such a degree of slowness as not 

to traverse an inch of space in one hour, in one day, not even in one year?42 “Quod 

profecto mirum, seu potius absurdum videtur ...”, which seems paradoxical, or rather 

absurd, Galileo protests. This is the great paradox that Galileo will have to come to 

terms with over the next few decades. 

For the time being, it is observational analogy, by which a new path towards ide-

alization is opened, that makes this paradox appear less paradoxical, and the absurd 

consequence almost but evaporate.

Consider a big iron or lead weight placed on top of a pole. The pole will sink 

underneath the ground only up to a point. But if the weight strikes the pole after 

falling from on high it will make it sink deeper and deeper according as the height 

of fall increases. This additional compression can only be due to the impulse of 

percussion, which is ultimately caused by the weight’s terminal speed of fall. Thus 

we may deduce a direct relation between the pole’s sinking and its speed of fall. 

But who does not see that a fall from one or two inches will not make the pole sink 

sensibly? Then the weight may indeed acquire such insignifi cant degrees of speed 

as not to cause an appreciable sinking of the pole.43
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Analogical thinking is of the essence here. Another way of explaining the paradox 

away analogically, an example [exemplum], suggests that Galileo is working within 

the framework of the restricted theory (Figure 7).

Imagine line hl uniformly descending according to the fl owing of time. Lines 

ab, fc, dc, ec, and gc are fi xed. Now imagine line oi’s length increasing as line hl 
descends. Imagine also line mn increasing as line hl descends. Surely no line oi is so 

small that at one previous instant another line mn cannot have been equal to it. Yet 

you can imagine angle fcg so obtuse that the rate of increase of line mn is so higher 

than that of line oi as to make you almost doubt that this may be possible. Note that 

Galileo’s diagram almost conjures an optical illusion effect. For all lines, oi’s must 

be contained within lines mn’s!44 Still the argument is impeccable, geometrically. 

Thus if lines oi and mn represent degrees of speed it is not absurd that they may 

increase much quicker than each other yet both decrease till they evanesce at point 

c.45 So a lead ball may descend much quicker than a wood ball, yet both of them 

transit through all the degrees of the evanescing speed.

Degree of speed [gradus velocitatis] and particle of time [particula temporis], as 

the reader will have noticed, are at the heart of the idealization process in De motu 
accelerato. Galilean idealization, as I have suggested, gradually divests phenomena 

of their perceptible properties. Galileo’s descriptive language, accordingly, has to be 

read with respect for its nuances. With this interpretive sensitivity we may illuminate 

the fundamental question which, in my view, is at the root of the received assump-

tion that De motu accelerato was written sometime between 1604 and 1630, after 

the discovery of the “correct” sameness of ratios of degrees of speed to time.46 The 

question has to do with Galileo’s views on samenesses of ratios and on the structure 

of the continuum. I will consider them in turn.

I believe that since in De motu accelerato a defi nition is furnished of accelerated 

motion in terms of increments of speed and particles of time, Galileo scholars have 

taken for granted that De motu accelerato was the logical outcome of the discovery 

of the sameness of ratios between speeds and times.47 This belief has probably been 

framed by the retrospective illusion created by Galileo’s recasting a portion of De motu 

FIG. 7. Another example illustrates a possible solution to the paradox (Galilei 1890–1909, ii, 264).
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accelerato in Two new sciences, almost verbatim, at the beginning of the so-called 

Third Day, where the mathematical treatment of accelerated motion is introduced.48 

In fact, neither De motu accelerato nor its recast in Two new sciences revolve around 

the samenesses of ratios. Why so?

First of all, no mention of sameness of ratios is to be found in either text. In both 

of them, Galileo says, “it is by no means contrary to reason, if we assume that the 

intension of speed occurs according to the extension of time [a recta ratione absonum 
nequaquam esse videtur, si accipiamus, intensionem velocitatis fi eri iuxta temporis 
extensionem]”.49 Galileo’s mature approach to sameness of ratios is that expounded 

by Euclid in the fi fth book of the Elements.50 It has nothing to do with the much later 

representation of ratios and equalities of ratios in algebraic symbolism. Further, and 

most importantly, it has nothing to do with our modern linear functions between vari-

ables.51 It is based on the construction and comparison of all possible equal multiples 

of the four magnitudes forming the two ratios of a sameness of ratios. The Euclidean 

criterion for sameness of ratios is as follows. Two ratios are said to be the same when 

all possible equal multiples of the four magnitudes forming the two ratios are to one 

another in a certain relation.52 More specifi cally, four given magnitudes

are said to be in the same ratio, the fi rst to second, and the third to the fourth, 

when the equimultiples of the fi rst and the third, both alike equal, alike exceed, 

or alike fall short of, the equimultiples of the second and the fourth — whatever 

this multiplication may be — and those equimultiples are considered that cor-

respond to one other.53

As is clear from this defi nition, two magnitudes are not enough to form a sameness 

of ratios. Four magnitudes are required. Neither the medievals, nor Galileo, for 

instance, would have thought in terms of a single speed proportional to a single space. 

This kind of thinking always involved at least four quantities (actually two pairs of 

homogeneous quantities), as the ratio of the fi rst space to the second, so the ratio of 

the fi rst speed to the second. In Section 5 we shall see an example of how Galileo 

applied the defi nition of sameness of ratios to weights (from the 1590s De motu). 

The De motu accelerato and its partial recast in Two new sciences have been 

read misleadingly as a virtually identical prelude to the sameness of ratios between 

speeds and times. This has been an unfortunate effect of the modern habit of thinking 

samenesses of ratios in terms of linear functions of variables, so that the defi nition 

of uniformly accelerated motion in De motu accelerato has been equated with an 

implicit statement of the sameness of ratios between speeds and times. The fact is 

that it took Galileo many years and the 1604 detour in order to bring together in a 

coherent whole the Euclidean samenesses of ratios on uniformly accelerated motions 

developed during the Padua period and the earlier analysis of uniform acceleration 

of De motu accelerato. 

In fact, in the document in which Galileo derives the times-squared law from the 

“erroneous” sameness of ratios between speeds and spaces, he does not start from 

the Euclidean defi nition of sameness of ratios, whose applicative complexity was 
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almost insurmountable, but from a geometrical diagram. He represents the spaces 

fallen through and the degrees of speed as the sides of right-angled triangles, which 

he knows from the sixth book of Euclid’s Elements to be proportional magnitudes 

(Figure 8).

The underlying assumptions as to the composition of the continuum in De motu 
accelerato, though not explicitly stated, explain why in 1604 Galileo regarded the 

sameness of ratios between spaces and speeds as fully consistent with the earlier 

analysis of acceleration of De motu accelerato. The paradox Galileo sees in the 

passing of heavy bodies through “infi nitely” small degrees of speed reveals that, 

in his view, the continuum is infi nitely divisible. On the other hand, the language 

of particles of time [particula temporis] suggests that Galileo also conceives of the 

structure of the temporal continuum as “granular”, that is, he thinks of time as being 

made up of particles. Can these two apparently discordant views on the composition 

of continua be reconciled? Surprisingly, they can. 

In the Postils to Rocco, with which we shall be concerned later on, Galileo explicitly 

asserts that his apparently contradictory theses on the composition of continua are 

in fact both true. Continua are endlessly divisible yet structurally granular. They are 

composed of an infi nite number of indivisibles which have no extension. Further, 

Galileo claims, to assert that they are endlessly divisible is exactly the same as to 

assert that they are made of an infi nite number of indivisibles.54 There is a structural 

affi nity between the continua of space and time and all continua in general. Thus the 

regularity of uniform acceleration with respect to time may naturally be mathema-

tized as a Euclidean sameness of ratios, by assuming the sameness of ratios between 

The folio where Galileo derives the times-squared law from the “erroneous” principle 

communicated to Sarpi in 1604. Cf. Galilei 1600–38, folio 128 recto.

FIG. 8. 
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degrees of speed and spaces traversed on the vertical trajectory. Galileo did so by 

imagining a correspondence between the infi nite points discernable in the vertical 

trajectory and the infi nite particula discernable in the elapsed time. On this view of the 

continuum, endlessly divisible yet ultimately granular, there is no difference between 

“imagining in space” and “thinking in time”. The “error” that Koyré attributed to an 

early modern tendency to spatialization, was no more than a direct consequence of 

Galileo’s unorthodox views on the fi ne structure of continua.

Furthermore, we have another key document, a folio in Manuscript 72, possibly 

supporting my claim that Galileo’s idealization process in the De motu accelerato 

preceded his attempt to mathematize, i.e., express in terms of Euclidean samenesses 

of ratios, his defi nition of uniform accelerated motion.55 In this document, Galileo 

wishes to prove the following: “In motion from rest the moment of speed [momentum 
velocitatis] and the time of motion increase in the same ratio.”56 This statement is 

interesting in two ways. First of all, Galileo intends to prove a sameness of ratios. 

In the 1604 “erroneous” attempt to prove the times-squared law he started from the 

sameness of ratios between speeds and spaces but did not try to prove it. Secondly, 

the proof contains an assumption concerning the geometrical representation of time 

which can be illuminated by considering Galileo’s views on the structure of continua. 

Galileo represents space and time of fall with a geometrical line (Figure 9). He sup-

poses, for instance, that ac represents both the distance fallen through, from rest at 

a, and the time elapsed from a to c. 

Since he knows that motion accelerates during fall he cannot represent the time 

elapsed while the body reaches the bottom, at point b, with the same distance ab. 

This prohibition, so to say, is visually conveyed by the diagram itself, not by a pre-

judgement concerning samenesses of ratios. Since, as can be seen in the manuscript 

diagram, the length of ab is virtually twice the length of ac, the time of fall from a 

to b cannot be twice the time from a to c. To represent the time from a to b Galileo 

chooses a shorter distance, as, equal to the geometrical mean between ba and ac. 

Now chronology becomes important. If the 1604 attempt preceeded this proof, then 

Galileo represents space and time of fall from a to c with the same vertical distance, ac (Galilei 

1600–38, folio 91 verso).

FIG. 9. 
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this proof may indeed have suggested to Galileo that the 1604 sameness of ratios 

assumed between degrees of speed and spaces traversed was incorrect.57 If vice versa 

this proof predates the 1604 attempt, as I am inclined to think, then we may read it as 

a mathematization, in terms of samenesses of ratios, of the correspondence between 

the infi nite points of the vertical trajectory and the infi nite particula of the elapsed 

time. This mathematization now leads to the conclusion that a Euclidean sameness 

of ratios occurs between degrees of speed and times elapsed. On this interpretation, 

the subsequent episode of 1604 would simply be an inverse attempt at decipher-

ing the correspondence between the degrees of speed and the points of the vertical 

trajectory, by assuming the direct correspondence of points and particula of time. 

Both strategies of mathematization must have been seen as viable ones, though only 

for a short time. 

For we know that Galileo did not abandon the “wrong” sameness of ratios between 

speeds and spaces because he had discovered the “right” sameness of ratios between 

speeds and times, but because he had found a counterargument, in his eyes powerful 

and conclusive. In Two new sciences, Galileo has his mouthpiece, Salviati, admit 

that he [Galileo] had been of the erroneous opinion for some time, but then changed 

his mind when he found a counterargument, which is fully related in the subsequent 

paragraph.58 This is also proved by a letter written to Galileo in 1611 by one of his 

former pupils in Padua, who says:

I have thought about that proposition of yours: A mobile acquiring speed accord-
ing to the proportion of distances from the terminus from which it started will 
move in an instant. And since this proposition more and more seems to me to 

be true and demonstrable, I have been thinking whether a motion such as this 

might be possible....59

The proposition attributed to Galileo in the letter is exactly the claim for the counter-

argument that Galileo himself has to offer in Two new sciences. The claim is that 

if motion were uniformly accelerated according to the sameness of ratios between 

speeds and spaces, then it would have to occur in an instant, which, Galileo argues, 

is absurd.60 In addition, we note that in order to introduce the question of the relation 

between speeds and spaces, Galileo has Sagredo, the interlocutor who here voices 

Galileo’s early opinion, say that the defi nition of uniformly accelerated motion given 

by Salviati-Galileo might have been stated equally well, and perhaps more clearly, 

“without changing the concept”, in terms of the relation of speeds and spaces.61 This 

confi rms that Galileo’s early opinion, though short-lived, was originally seen not as 
alternative to, but rather as compatible with the idealization in terms of degrees of 

speed uniformly accruing in time, furnished in the early De motu accelerato.

4. PARADOX AND EXPERIMENT

But how small is the degree of speed acquired after a very modest fall? Can it be 

measured? Or even only thought of? Is it really all that small, converging to nil 

according as the height of fall diminishes to zero?
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Galileo found a way to measure that evanescing degree of speed on inclined 

planes. In effect one might say that he found a way to put a fi gure on the power of 

idealization. To understand how he measured evanescence we need to go back to 

the 1590s De motu, once again. There Galileo started out not by experimenting with 

inclined planes but by thinking with inclined planes. The question that Galileo poses 

is the same as that concerning vertically falling bodies: to fi nd the proportions of 

motion [proportiones motuum]; in this case, those of the same mobile on differently 

inclined planes.62 

Let us refer to Figure 10. Galileo resolved this puzzle with a diagram, the prin-

ciple of the balance of equal arms, and the mathematical technique of proportional 

reasoning. Consider a balance of equal arms whose fulcrum is a, and c, d are two 

equal weights at the extremities of the arms. To know the proportions of motions 

along inclines we need to know how the slope decreases the weight of the body. If 

the balance starts rotating clockwise, weight d starts descending and its weight will 

be in the fi rst point as that acting along vertical line ef. Thus at s and r the weight’s 

incipient motion will be along the inclines sh, rt. The weight of the body at d is equal 

to that of c because the arms are equal and therefore the balance is in equilibrium. 

But at s and r the distances of the body from the fulcrum, am, az, respectively, are 

smaller than ad, and therefore the equilibrium will no longer be preserved, which, 

in effect, means that the body’s gravity is decreased. And it is decreased according 

to the ratio of am, az, to ad, respectively. Thus both weight and speed of the body at 

points s, r, i.e., on the inclines sg, tr, are in the same ratio as distances za, ma. But 

as qa is to az so qs is to sz. In conclusion, weight and speed on an inclined plane are 

to weight and speed along the vertical elevation of the inclined plane as the length 

of the vertical elevation is to the length of the incline.

Along differently inclined planes the weights and speeds of a body are  reciprocally 

Here I have emphasized the fundamental elements of Galileo’s manuscript diagram accompanying 

the derivation of the inclined plane rule, the balance and two tangents at points r, s. From 

Manuscript 71 (ref. 31), folio 95 recto. 

FIG. 10. 
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as the lengths of the inclines. Therefore, on a inclined plane with fi xed vertical 

elevation the longer the incline the slower the descending body according to the 

inverse ratio of the incline to the elevation. This theory, though still not distinguish-

ing between ‘speed’, as a global quantity, and ‘degree of speed’, as a local quantity, 

would easily have guided Galileo in the search for a measure of the degree of speed 

once he had refi ned his thinking enough in terms of degrees of speed. What was 

needed was one step further. At some point, perhaps on the basis of experiments 

with pendula, Galileo convinced himself that the degree of speed acquired after a 

fall is always the same, providing that the height from which the fall begins remains 

the same.63 This means that along any inclined plane whose elevation is constant, 

the degree of speed at the foot of the plane is the same regardless of the length of 

the incline, i.e., regardless of the inclination of the plane (Figure 11). The so-called 

“double distance” rule was the calculation technique that allowed Galileo to measure 

the degree of speed (Figure 12). 

On folio 163 verso of Manuscript 72, Galileo gave a derivation of the double-

distance rule. We need not concern ourselves with the details of the proof. All we 

need to know is what it states: in the absence of external impediments, after a fall 

along an incline a body will continue to move on the horizontal plane with constant 

degree of speed, covering a distance double the length of the incline in a time equal 

to the time of the descent along the inclined plane (Figures 12 and 13).64 With this 

On different inclines weights and speeds are to one another reciprocally as the lengths of the 

inclines.

FIG. 11. 

Galileo’s manuscript diagram accompanying the derivation of the double distance rule (Galilei 

1600–38, folio 163 verso). 
FIG. 12. 
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rule Galileo could measure the degree of speed at the foot of an inclined plane. He 

presented this technique in the Dialogue concerning the two chief world systems 

(1632), where he published a solution to the paradox of the mobile passing through 

all the infi nitely small degrees of speed (Figure 13).65

A body starting from rest at D and falling along the short vertical, DB, will acquire 

a degree of speed at B equal to the degree acquired by a body starting from rest at 

D and falling along incline DA. This degree is of course smaller than that acquired 

after falling from rest at C, regardless of the path, and no doubt, Galileo claims, one 

can imagine the degrees of speed becoming smaller and smaller as D approaches B. 

Therefore the body falling along the perpendicular DB may well start from a point so 

close to B that the degree of speed aquired, measurable by the time needed to cover 

the double distance (twice DA), is evanescently small (the time needed, in this case, 

becoming longer and longer). 

Galileo’s celebrated account of the inclined plane experiment, in Two new sciences, 

has puzzled historians in more ways than one, even though ever since Thomas Settle 

repeated the experiment according to Galileo’s indications, there has seemed to be 

little doubt that the experiment was really carried out.66 It has never been satisfactorily 

explained, however, why Galileo would have done experiments with such a modestly 

inclined plane as that described, if the only purpose of his investigations had been to 

measure the progression of space according to time. The traditional explanation has 

been that only with modestly inclined planes could Galileo have slowed down the 

phenomenon enough to take accurate measurements. Of course one might wonder 

why Galileo should have set out to take those measurements in the fi rst place, given 

that he had no theoretical framework for the times-squared law. What he had was a 

framework of questions concerning degrees of speed. So, while not denying that the 

slowing down of the phenomenon may ultimately have been an important factor in 

practice, I wish to suggest that very modest inclines are exactly what was needed for 

Galileo to investigate the evanescent degrees of speed. 

Here experimentation serves the purpose of idealization. The fact that in the course 

of those investigations with inclined planes Galileo also found the times-squared law 

may just have been a fortunate incident. 

5. WEIGHTLESS BODIES: COGNITIVE AUTOBIOGRAPHY

Is weight a body’s property independent of its volume? Or does it depend on volume? 

If this is the case, according to what relation? Remember that until the mid-1630s 

FIG. 13. A body passes through all the infinitely small degrees of speed.
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Galileo thinks within the framework of the restricted theory of falling bodies in the 

void, in which ratios of speed are the same as the ratios of the specifi c weights. Already 

in the 1590s, however, Galilean idealization tends to progress further. If weight turned 

out to be related to volume then both weight and volume might be causal factors of 

fall. Weight might no longer be seen as the sole cause of fall.

In De motu, Galileo furnishes a proof that, for bodies of the same type of matter, 

the weights are to one another as the volumes. He does so by directly having recourse 

to Euclid’s criterion of sameness of ratios (Figure 14).

Let a and b be two unequal volumes [moles]. Let c and d be their weights [gravi-
tates]. Galileo sets out to prove that c has to d the same ratio that a has to b. In order 

to show that two weights of different volumes of bodies having the same specifi c 

weight are in the same ratio as their volumes, all that is needed is to construct equi-

multiples of the two weights and two volumes and prove that they satisfy a kind of 

“perpetual accord”, as given by Euclid in the defi nition sameness of ratios. Let efg 

and hk be the multiples of volumes a, b, respectively. Let nop and lm be the multiples 

of weights c and d, respectively. Here, by way of example, Galileo has chosen to 

represent triple and double multiples. If, for any choice whatever of the multiples, 

when efg greater than / equal to / less than hk is true, it follows that nop greater than 

/ equal to / less than lm is also true, then one has proved that the two weights are in 

the same ratio as their volumes, in the sense of Euclid.67 No geometry, however, could 

lead Galileo to the general theory. Further idealization was required. The decisive 

step only came many years later.

In Galileo’s Postils to Rocco, we fi nd a fascinating autobiographical analysis 

concerning the train of thought that a few decades earlier led Galileo to the restricted 

theory. Not surprisingly, Galileo’s ex post facto reconstruction tells an enriched 

story, not exactly tallying with what we recounted above on the basis of the 1590s 

De motu. 

Galileo begins by claiming that it was reason, not experience, that initially per-

suaded him that all bodies of the same specifi c gravity fall at the same speed. 

The mathematization of weight according to equal multiple sameness of ratios (Galilei, 1890–1909, 

i, 349). Note that weights are represented by lines separately from magnitudes.

FIG. 14. 
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... I formed an axiom such that nobody could ever object to. I hypothesized that 

any heavy body whatever that descends has in its motion degrees of speed so 

limited by nature and fi xed, that it would be impossible to alter them, by increas-

ing or decreasing its speed, without using violence in order to speed up, or slow 

down, its natural course. I then fi gured in my mind two bodies equal in volume 

and weight, such as, for instance, two bricks, which depart from the same height 

at the same time. These will doubtless descend with the same speed assigned to 

them by nature. If this speed has to be increased by another mobile, it is necessary 

that this mobile move more swiftly. Yet, if one imagines the two bricks joining 

together while descending, which one will double the other’s speed by adding 

impetus to it, given that speed cannot be increased by an arriving mobile if it 

does not move more swiftly?68

Galileo then asserts that “... from this fi rst discourse I moved on to another, more 

convincing proof”, which is more or less the same argument, already given in De 
motu, restricted to bodies of the same specifi c gravity. The only difference (highly 

signifi cant, however) is that in the Postils Galileo keeps referring to “degrees of 

speed”, a clear indication that he now knows very well that speed of fall increases 

according to a certain progression. In 1634 Galileo has of course long been in pos-

session of the times-squared law.

In Galileo’s view, it is one thing to talk of weight in relation to the effects on a 

balance, so that a brick put on top of another equal brick will double the latter’s 

weight, but it is quite another to generalize this model to free-falling bricks. Weight, 

Galileo claims, is but to feel burdened.69 Put your hand below a 100-pound cannon 

ball hanging by a rope, you will not feel burdened. But if the rope is severed then you 

will feel burdened when trying to keep the ball from descending. However, when you 

make your hand swiftly recede with the same speed below the free-falling ball, you 

will hardly feel burdened, because no resistance is opposed to the ball. Thus when 

two equal bricks join together upon each other, since they fall with the same speed 

neither of them will increase the weight of the other.70 

Note that in 1634 Galileo has somehow moved away from the De motu image 

of two free-falling bricks adjacent to each other and joining together (cf. Figure 5). 

His thought focuses on the image of two free-falling bricks joining upon each other, 

clearly motivated by the analogy of the hand and the cannon ball. Thus for falling 

bodies Galileo is actually claiming that if brick 1 (W1) and brick 2 (W2) fall at the 

same speed, then W1 = W1 + W2 (that is, brick W2 cannot add weight to the other 

brick, W1, which is equally fast), and analogously, W2 = W2 + W1 (that is, brick 

W1 cannot add weight to the other brick, W2, which is equally fast). Therefore it 

follows that W1 = W2 = 0. In the fi nal analysis, for the mature Galileo, a falling 

body must in some sense be regarded as weightless. A speck of dust and a cannon 

ball, light and heavy, it makes no difference. Weight is somehow “lost” during fall. 

No surprise that the cannon ball may indeed go through all the degrees of speed like 

a tiny speck of dust.

In a discussion intended to be added to future editions of Two new sciences, Galileo 
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introduces again the idea of the weightless condition of falling bodies. He relates a 

fascinating experiment devised to test the force of percussion. Consider a wooden 

beam turning around fulcrum F. On the left two buckets hang from the beam. The 

upper one is fi lled with water, the one below is empty. On the right a weight exactly 

counterbalances the buckets and the water. Galileo’s expectation was that once water 

was let fl ow from a hole in the upper bucket into the bucket below, the balance would 

turn anti-clockwise because of the added force due to percussion, the impact of water 

on the bucket below (Figure 15).

However, contrary to expectation, Galileo says, as soon as the hole was open and 

water began to fl ow downwards the balance turned the other way round, so that weight 

C started descending. Amazingly, he continues, no sooner had water impacted the 

bucket below than weight C stopped descending and inverted its motion, returning to 

the original equilibrium position, though very slowly. Since the column of descend-

ing water loses its weight while accelerating downwards, and since the balance goes 

back to equilibrium (after the transient initial dip), then the loss of weight must be 

compensated by the speed of the descending water. Thus the effect of percussion of 

the water impacting the bucket is due solely to the water’s speed, and can be measured 

by the equivalent weight of the column of descending water (if it were at rest).71

Galileo has realized that weight might not be the cause of speed after all, if a body’s 

speed of fall can only be increased by an arriving body already possessed of a greater 

speed. The Aristotelian relation between speed and weight, in his eyes, relies on the 

hidden (and fallacious) assumption that the joining together of the bricks descending 

equally fast must increase their weight, or rather the weight of the newly-joined body. 

The analogy of the hand below the cannon ball “rewrites” Galileo’s memory creatively. 

My reconstruction of the balance excogitated by Galileo to test the force of percussion . A balance 

of equal arms turns around fulcrum F. Weight C counterbalances the total weight of the two 

buckets, K, and the water inside the upper bucket. What happens when the water is let fall from 

the upper bucket into the bucket below?

FIG. 15. 
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He relates processes occurring decades earlier but the new thinking of the two bricks 

upon each other takes the place of the old thinking of the two bricks adjacent to each 

other. Galileo lived in a culture still heavily infl uenced by orally-shaped modes of 

thinking. It comes as no surprise that his memory works differently from later modes 

of recollecting information verbatim associated with written texts.

We have another example of the intriguing phenomena associated with memory, 

recollection, and memory-rewriting in Galileo. In his traditional Treatise on the 
sphere, used as a basis for lectures at the University of Padua, we fi nd a section 

entitled “That the Earth is immobile”, in which Galileo suggests that he is closely 

following chap. 7 of Ptolemy’s Almagest (where a rebuttal of the Earth’s diurnal 

rotation is furnished). However, even though Galileo’s text is presented as a quasi-

paraphrase of Ptolemy’s text, the series of arguments attributed to Ptolemy by 

Galileo does not match Almagest’s chap. 7. We fi nd in Galileo’s paraphrase traces 

of texts by Copernicus and Christoph Clavius. Galileo’s assertion that “essendo il 

moto circolare e veloce accommodato non all’ unione, ma più tosto alla divisione e 

dissipazione” is strongly reminiscent of Copernicus’s assertion in De revolutionibus 

that “[q]uae vero repentina vertigine concitantur, videntur ad collectionem prorsum 

inepta, magisque unita dispergi”. In his Commentary on the sphere Clavius presents 

an argument against the diurnal rotation of the Earth. If the Earth rotated around the 

axis of the world in twenty-four hours, “all edifi ces would be destroyed, and in no 

way could they remain fi rm”. In Galileo’s Treatise we fi nd the same argument given 

by Clavius. Indeed the section “That the Earth is immobile” of Galileo’s Treatise 

was (unconsciously?) modelled on Clavius’s discussion. This conclusion is further 

supported by the list of arguments not matching Almagest’s chap. 7 that are sum-

marized by Galileo, and which appear in Clavius’s Commentary. In particular, the 

argument involving an arrow thrown upwards vertically, which would not fall back 

in the same place, and the image of a stone falling from the mast of a moving ship, 

are discussed by Clavius immediately following the catastrophic picture of col-

lapsing buildings. Thus, Ptolemy’s, Copernicus’s, and Clavius’s texts coalesced in 

Galileo’s memory, forming a converging framework of ideas. He reorganized, so to 

speak, the intricate network of arguments and mental images related to Almagest’s 

chap. 7, which he found in relevant contemporary works.72 Galileo’s culture was 

still infl uenced by a style of approach to texts typical of oral cultures. Memorizing 

content rather than checking for the verbatim exactness of quotations was often a 

scholar’s more urgent mode of interaction with books. As Walter Ong has masterfully 

taught us, oral cultures are aggregative rather than analytic.73 Content is constantly 

re-shaped by oral memory. Memory-rewriting is just an effect that orality has on the 

workings of recollection. 

What about bodies of different matters, such as wood, lead, cork, and metals? This 

became for Galileo the crux of the matter. “Spuntar lo scoglio più duro... [overcoming 

the hardest obstacle...]”, Galileo tells us.74 What, in his words, ultimately convinced 

him that all bodies in a vacuum fall with the same innate speed (always increasing 

as the square of time,75 however) are no more than “conjectures”, since, he candidly 
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admits, experience might in this case turn out to be impossible.76

My conjecture was founded on a certain effect that can be observed concerning 

speeds of mobiles of different gravity in fl uid media. Speeds become more and 

more different according as the media become heavier and heavier. Only gold, 

the heaviest matter known to us, descends within quicksilver, in which all other 

metals fl oat. It is clear that a mixed body of gold and silver can be made so that 

it will descend within mercury very slowly. Thus gold would sink one braccio 

within mercury in, say, one pulse beat, whereas the mixed body would take no 

less than 50 or 100 beats. If we let the bodies fall to the bottom of four braccia of 

water, pure gold will not precede the mixed body one-tenth of the time required 

of the latter. But in air, from a height of 100 braccia, no difference in time of 

fall would be discernible.77

Other examples by Galileo include a sphere made of beeswax mixed with lead, a 

marble sphere, a cork sphere, and a gold sphere. The line of reasoning is always the 

same. The medium is merely responsible for the divergence in the speeds of fall. There 

was, however, a serious diffi culty in this argument. Galileo had known since the 1590s 

that the divergence of speeds could also be predicted by his restricted theory, on the 

assumption that ratios of speeds are taken “geometrically”, i.e., according as ratio is 

treated in Euclid’s theory of samenesses of ratios (cf. Table 1, for an example).78 

In the early De motu, in order not to face the complications of forming a non-

Archimedean ratio between the specifi c weight of a medium and that of the vacuum 

(equal to zero), Galileo had had recourse to the theory of “arithmetical ratio”.79 In 

this case, as Galileo explains, ratios are not defi ned directly, but a specifi c criterion of 

“sameness” for arithmetical ratios is given, according to which two ratios are the same 

ratio when the differences between the quantities forming the ratios are the same.80 

On the assumption that ratios are taken arithmetically, divergence of speed does not 

follow in the early theory (cf. Table 1, where the differences are in fact always equal 

to 20). The trick worked in De motu, but we know from early preparatory material 

on mechanics and motion, especially Manuscript 72, as well as the later Two new 
sciences, that Galileo soon realized that toying with arithmetical ratios was a blind 

Two bodies of equal volume, A, B, weighing 10 and 30, have speeds as 9, 8, 6, 2, and 29, 28, 26, 

22, when falling in media (M) of increasing specifi c weights, such as 1, 2, 4, 8. Speeds diverge 

as the specifi c weight of the medium increases. According to Euclid’s theory of samenesses of 

ratios, the ratio of 22 to 2 is much greater than the ratio of 29 to 9, but if ratios are considered 

arithmetically, the ratio of 22 to 2 is the same as the ratio of 29 to 9 (the differences between 

their quantities being equal).

TABLE 1. 

 Speeds of   Speeds of 

 Body A = 10 Body B = 30

M = 1 9 (= 10 – 1) 29 (= 30 – 1)

M = 2 8 (= 10 – 2) 28 (= 30 – 2)

M = 4 6 (= 10 – 4) 26 (= 30 – 4)

M = 8 2 (= 10 – 8) 22 (= 30 – 8)
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alley. Indeed he abandoned arithmetical ratios for good, as their complete disappear-

ance from his subsequent writings makes clear.

At one point both theories of motion in the void, the restricted and the general, 

must have competed in Galileo’s mind. Both theories predicted the divergence of 

speeds in media of increasing specifi c weight, on the assumption that ratios are con-

sidered geometrically according to Euclid’s Elements. So, how did Galileo go about 

discriminating between the two theories?

6. THE GENERAL THEORY: PENDULA EXPERIMENTS

The question still remained open of whether the divergence of speeds in fl uid media 

could be interpreted inversely, as either leading to exact equality of speeds in a 

vacuum for bodies of all types of matter, or simply leading to a convergence of speeds 

in a vacuum, still to be considered different, according to the restricted theory. The 

diagrams in Figure 16 should clarify what I mean by inverse interpretation of the 

phenomenon of divergence.

We know, Galileo asserts, that if we let two spheres of gold and cork (having the 

same volume) fall from a height of 100 braccia in air, the golden sphere will precede 

the cork one by, say, two or three braccia. However, this is due to resistance caused 

by the medium. For when the spheres are let fall from a height of one or two braccia 

the difference will disappear altogether. Thus if we could remove all the impedi-

ments caused by the medium the difference would disappear even when the spheres 

fall from a great height. That the difference must stem from the impediments of the 

medium, Galileo suggests, is indicated by the following considerations. If gold were 

faster solely in virtue of gravity then it would be reasonable to expect that once all 

the impediments due to the medium have been removed, the golden sphere’s speed 

would exceed the cork sphere’s speed with the same ratio as that of their gravities, 

even when the spheres fall from very small heights. Therefore, when these experi-

ments are conducted from very small heights, so that all the impediments due to the 

medium are kept to a minimum, if we observe that the speeds of the two spheres 

tend to become equal in media of decreasing heaviness, so that even in a very light 

medium, such as air, differences of speeds all but disappear, then, Galileo claims, we 

Two possible inverse interpretations of the phenomenon of the divergence of speeds. In both cases 

speeds converge as the medium’s specifi c gravity tends to zero (left areas of the diagrams), but in 

the restricted theory speeds remain different while in the general theory they become equal.

FIG. 16. 
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are entitled to hypothesize that in a vacuum their speeds would be identical.81 

The argumentative strategy hinges on a theory of the resistance to motion caused 

by the fl uid medium, which Galileo has expounded in the discussion leading up to 

this fi nal point.82 Briefl y, he has argued that four forms of resistance are exerted by 

fl uid media. First, the Archimedean thrust (let’s call it R1), which simply makes the 

body lighter. Second, the resistance due to the viscous property of the medium (let’s 

call it R2). Third, the resistance due to the body’s speed (let’s call it R3), so that the 

faster the body moves the greater the resistance opposed by the medium. Fourth, 

the resistance due to friction between a body’s surface and the fl uid (let’s call it R4). 

The latter is caused by the sticking of the medium particles to the asperities of the 

body’s surface. 

It should now be clear why the experimental conditions proposed by Galileo reduce 

resistance to a minimum. Since he considers two equal spheres of different materials, 

both the Archimedean thrust (R1, due to volume) and surface friction (R4, due to 

surface) are the same for both spheres. Since speeds must be compared within the 

same medium, resistance caused by viscosity is cancelled in the comparison (R2 is 

the same for both spheres). Finally, and most importantly, from very small heights 

bodies do not acquire great speeds, so that resistance due to speed is almost negligible 

(R3 tends to become zero). However, as Galileo is well aware, this resistance cannot 

be eliminated altogether. Also we may note that, in comparing the resistance due to 

friction between the surfaces of the two spheres and the fl uid, Galileo is assuming 

that the effect is the same regardless of the corrugation of the materials the spheres 

are made of. In sum, Galilean idealization here aims at abstracting from type of 

matter, weight, friction due to surface corrugation, and speed/resistance effects due 

to the medium.

If we accept his autobiographical account, this is the tortuous path that Galileo 

followed to satisfy himself that the theory of the equality of speeds for all bodies 

in the void holds true. Did Galileo really conduct the crucial experiments from 

very small heights that he mentions in his account? We do not know; I doubt it. For 

in Two new sciences, Galileo ambiguously says that the experience of two bodies 

largely different in weight falling from on high “is subject to some diffi culty [patisce 
qualche diffi coltà]”.83 Did he mean that he had tried, but unsuccesfully? Or that he 

never did? 

Be that as it may, he goes on to explain how he designed and performed experiments 

with pendula, by which, he claims, he had found a way of accumulating the effects 

of falls from very small heights, so as to eliminate interference due to resistance yet 

be able to observe differences, if there were any. He thus convinced himself that the 

general theory holds true. Since he does not mention these pendula experiments in the 

Postils we have reason to believe that they might have been excogitated by Galileo in 

his very late years, precisely in preparation for the publication of Two new sciences. 

Here is Galileo’s account in his own words. It is worth reading in its entirety since he 

adopts the autobiographical style, once again, and also because there is a revealing 

reference to the choice of modestly inclined planes.
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So I fell to thinking how one might many times repeat descents from small 

heights, and accumulate many of those minimal differences of time that might 

intervene between the arrival of the heavy body at the terminus and that of the 

light one, so that added together in this way they would make up a time not only 

observable, but easily observable. In order to make use of motions as slow as 

possible, in which resistance by the medium does less to alter the effect dependent 

upon simple heaviness, I also thought of making the movables descend along an 

inclined plane not much raised above the horizontal. On this, no less than along 

the vertical, one may observe what is done by heavy bodies differing in weight. 

Going further, I wanted to be free of any hindrance that might arise from contact 

of these movables with the said inclined plane. Ultimately, I took two balls, one 

of lead and one of cork, the former being at least a hundred times as heavy as the 

latter, and I attached them to equal thin strings four or fi ve braccia long, tied high 

above. Removed from the vertical, these were set going at the same moment, and 

falling along the circumferences of the circles described by the equal strings that 

were the radii, they passed the vertical and returned by the same path. Repeating 

the goings and comings a good hundred times by themselves, they showed by 

sense perception that the heavy one kept time with the light one so well that not 

in a hundred oscillations, nor in a thousand, does it get ahead in time even by a 

moment, but the two travel with equal pace.84

Thus Galileo claims he has found a way to measure the possible accumulation of 

even tiny discrepancies of periods of oscillation between two bodies of a different 

type of matter. The two pendula keep perfect pace, i.e., they remain synchronous and 

no accumulation of time differences can be observed. The pendula experiments also 

showed Galileo the effects of air resistance. For while oscillating, the pendula part 

company. As Galileo further explains, the cork bob is slowed down more quickly 

than the lead bob, because of the greater net damping effect due to the difference 

between air resistance and the driving force of weight. Crucially, however, Galileo 

tells us that the slowing down does not alter the synchronism of the bobs (they keep 

crossing the lowest point at the same instant). 

A tantalizing question arises, though. In 1994 David Hill argued that Galileo 

knew a great deal more about pendula than he was willing to publish. In particular, 

some manuscript folios have been interpreted by Hill as evidence of experiments and 

calculations performed by Galileo with pendula. Hill’s challenging conclusions are 

that Galileo was well aware of the non-isochronic behaviour of pendula.85 I believe 

that Hill’s conclusions are widely exaggerated. His whole argument hinges on the 

crucial assumption that by calculating times of descent through rectilinear chords 

of a circle and extrapolating the results to the arcs of the circle, Galileo must have 

realized the non-isochronism of swinging bobs. There is no evidence that Galileo 

might have allowed such an arbitrary extrapolation. However, we might legitimately 

ask whether Galileo really observed the perfect synchronism of the cork and lead 

bobs alluded to in Two new sciences. What if the bobs do not keep perfect pace? 

Might Galileo have “sanitized” results from only partially successful experiments? 
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How about the role of the air resistance unequally slowing down the swinging bobs? 

Intriguing as these questions are, we must leave them open at the present time. Further 

investigations are much needed, ultimately, I think, by replicating the experiments 

Galileo claimed to have performed.

In sum, Galileo crowned his idealization process by directly observing, or perhaps 

partially constructing, or even only imagining the beguiling synchronism of swing-

ing bobs. Be that as it may, he fi nally succeeded in cognizing the separation of the 

slowing-down effect of air resistance from the naturally constant rhythm of the two 

pendula. All bodies fall with the same uniformly accelerated speed in the void. The 

idealized phenomenon of fall in the void was achieved. The validity of the general 

theory was sealed.

7. CONCLUSION: A LOOK AT SOME RESPONSES TO GALILEO’S CLAIMS

Galileo had started out in De motu seeking ratios of speeds for bodies of different 

matters moving in different fl uid media. He concluded fi ve decades later, with the 

publication of Two new sciences, by realizing that all bodies fall with the same degrees 

of speed in the void. The initial search terminated at the ultimate level of idealization, 

namely, in the imagination of a void space populated by heavy bodies whose material 

constitution was no longer a factor in determining the rhythm of their fall. In such a 

space of undifferentiated falls no paradox undermines the belief, already infusing the 

early De motu accelerato, that the simplicity of the order of nature endows all bodies 

with the same uniform acceleration. On that level of abstraction Galileo founded the 

sequence of mathematical proofs which, in his eyes, would constitute the beginning 

of a “new science” of motion. 

Most modern commentators have argued about that perplexing and celebrated pas-

sage in Two new sciences, where Galileo dismisses the search for a causal explanation 

of acceleration as not pertinent to his project.86 Some have seen in that dismissal the 

sign of a nascent, modern scientifi c methodology unfettered by metaphysical concerns. 

I believe that it was simply the logical outcome of Galileo’s life-long search for the 

idealized phenomenon of fall in the void. The most likely candidate for the cause of 

acceleration, gravity itself, became puzzling. Heavy bodies accelerate downwards. 

We feel burdened by weight yet a body’s weight seems to disappear when the body 

is freely falling in the void. Bodies weigh differently yet fall in the void with the 

same degrees of speed. We might somehow measure the constant rhythm of speed 

increment. We can perceive the synchronicity of pendula unaffected by the damping 

effect of air resistance. But nothing in the perceptual properties of falling bodies, or 

swinging bobs, reveals the effect of gravity as a cause. Galilean idealization had, so 

to speak, overrun its course. What did Galileo’s contemporaries think of his claims 

about falling bodies? Can some light be shed on Galilean idealization by looking at 

their reactions?

 Regrettably we still know too little about the responses by seventeenth-cen-

tury natural philosophers to Galileo’s claims concerning falling bodies, and more 
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 specifi cally concerning the law of free fall. Recent research, however, has drawn 

attention to some of those responses, especially by Jesuit philosophers around the 

middle of the seventeenth century.87 I will discuss some relevant points emerging 

from these investigations in a moment. First I wish to turn to a much earlier example 

of the Aristotelian reception of Galileo’s mode of argumentation on falling bodies, 

which has so far not been studied, but which is a precious clue to the early impact 

of Galileo’s claims.

I am referring to the case of a professor of Greek at the University of Pisa who in 

1612 discussed an aspect of Galileo’s early critique of Aristotle. The professor was 

Giorgio Coresio, who refers to Aristotle’s De caelo, at 301 a–b.88 Coresio criticized not 

Galileo’s De motu — then still unpublished — but the view of another Pisa professor, 

Jacopo Mazzoni (1548–98). That view, Coresio claimed, had been shared by Galileo 

himself in the late 1580s. Coresio asserted that Mazzoni, in referring to De caelo, 

301 a–b, had argued that experience contradicts Aristotle’s contention according to 

which one could divide a heavy body as the ratio of line CE to line CD, so that if 

the whole body moved along line CE then the part would have to move along CD 

in the same time (Figure 17).

But, Coresio insists, to understand correctly this argument against the idea that 

a light body could possibly descend, we need to attribute to Aristotle’s notion of 

‘heavy’ in the context of De caelo, 301 a–b, the meaning of an idealized minimum 

of heaviness, i.e., of a heaviness that is less than any possible heaviness. If we do 

not interpret Aristotle’s passage in this way, Coresio argues, then it is possible to 

derive a contradiction, which is this. Suppose that the chosen part of the heavy body 

is such that another part can be chosen which is less heavy. Now, since it has been 

concluded that both the part and the weightless move in the same time, then it follows 

that the weightless will have to move faster than any portion smaller than the part, 

and therefore that the non-heavy will move faster than the heavy, which is against 

the initial stipulation that the heavy moves faster than the non-heavy.89 Coresio’s 

implication seems to be that Aristotle’s original argument (according to which, let us 

remember, one could divide a heavy body as the ratio of line CE to line CD, so that 

if the whole body moved along line CE then the part would move in the same time 

along CD) turns out to be correct if we assume that Aristotle intended a body whose 

heaviness is less than any possible heaviness. In this case the smallest possible speed 

Coresio’s reconstruction of Aristotle’s argument. To help the reader I have tentatively added the 

fi gures, which are not in Coresio’s text.

FIG. 17. 
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corresponds to the smallest possible heaviness, and no light body will ever descend. 

Although his argument may at fi rst sound confusing, Coresio seems implicitly will-

ing to accept that there is a sense of ‘heavy’ that is both compatible with Aristotle’s 

proportionality at De caelo, 301 a–b (regardless of what Coresio might take Aristotle 

to mean by ‘proportionality’), and according to which all heavy bodies might in the 

limit be said to fall (or rather cease to fall) at the same rate, a proposition that would 

not violate Aristotle’s fundamental dictum that no light body can descend.90 It is 

clear that in Coresio’s view, Aristotle’s line of reasoning at De caelo, 301 a–b, must 

be understood under idealized conditions, if truly absurd consequences such as the 

descent of light bodies are not to follow.

I now wish to discuss the relevance of the present research to the debate on Gali-

leo’s point-atomism, the law of free fall, and idealization.91 Let us fi rst recall very 

briefl y what Galileo’s theory of point-atoms [atomi non quanti] consisted of. Galileo’s 

theory appears to have been developed in connection with his solution to the so-called 

paradox of the Rota Aristotelis. The latter was one of the problems discussed in the 

pseudo-Aristotelian Mechanical questions. It basically reduces to the question “as 

to how it is that a greater circle when it revolves traces out a path of the same length 

as a smaller circle, if the two are concentric”.92 In Two new sciences, Galileo tackled 

the Rota Aristotelis by fi rst considering two concentric hexagons and then reasoning 

that circles are but polygons of infi nitely-many sides. He thus concluded that both 

the geometrical continuum and physical bodies are made up of infi nite point-atoms 

and infi nite point-vacua, or void interstices, interposed between the point-atoms. 

Galileo claimed that this solution allowed him to solve not only the paradox of the 

Rota Aristotelis, but also a number of natural-philosophical vexatae quaestiones, 

such as that of the condensation and rarefaction of physical bodies.93 Two scholars, 

A. Mark Smith and Carla Rita Palmerino, have hypothesized a relationship between 

the physical-mathematical point-atomism put forward by Galileo in Two new sciences 

and his application of geometry to the study of the natural world. I will briefl y review 

these contributions before pointing out how my analysis suggests a new direction of 

research in relation to the question raised by these two scholars. 

In Mark Smith’s view, Galileo’s theory of point-atoms was perfectly compatible 

with Aristotelian metaphysics. According to Mark Smith, it was Galileo’s reliance on 

Euclidean geometry that “permitted him to preserve, essentially intact, the Aristotelian 

view of the continuum”, because geometry allowed Galileo to neutralize the “prob-

lem of possible material discontinuity within the traditional world plenum”.94 It had 

been none other than Aristotle, Mark Smith claims, who infl uenced the formation of 

Euclid’s Elements, especially as far as their formal structure based on defi nition and 

deduction is concerned. But the Elements, Mark Smith continues, refl ect Aristotle’s 

view of the real world in terms of extension and process. Points, lines, and planes are 

all abstractions of reality so that the “world of Euclidean geometry can be regarded 

as a disembodied replica retaining bounds without the bounded”. However, in Mark 

Smith’s view, Aristotle did not share the conception of the Euclidean continuum. His 

conception of the continuum was instead based on his theory of prime matter, which 
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represents the unvarying substratum of qualitative change. Mark Smith suggests 

that this Aristotelian view was passed on virtually intact to the Middle Ages and the 

Renaissance, even though challenges to Aristotle’s ideas on the composition of the 

continuum were issued every now and then during the scholastic period. Galileo, 

like Aristotle, was fully certain that “the real world consisted in a material plenum”, 

so that he clung to that certitude in spite of innumerable diffi culties. Thus, Mark 

Smith claims that since Galileo treated the world as fully geometrical he needed 

to meet the “Euclidean criterion of absolute continuity”, while accepting the basic 

Aristotelian position. But, Mark Smith concludes, since Galileo was able to avail 

himself of the current of mathematical thought brought to light by the Renaissance, 

he could attempt the supreme compromise of reconciling the Euclidean vision of the 

mathematical continuum with the possibility of discontinuity in natural philosophy. 

In Mark Smith’s words, Galileo’s “notion of growing temporal increments of speeds 

in accelerated motion may have led him to seek a valid compromise, demonstrable 

by means of Euclidean geometry, that would paradoxically permit of a substantial 

discontinuity”. In sum, for Mark Smith, the mathematization of the law of free fall, 

based on the notion of gradus velocitatis, must have suggested to Galileo the pos-

sibility of developing a general theory of both the mathematical and the physical 

continua that was in fundamental agreement with the Aristotelian conception of prime 

matter as the substratum of all qualitative change.95

Along not very dissimilar lines, Carla Rita Palmerino has pointed out that in 

the seventeenth century the physical-mathematical atomism of Two new sciences 

could be seen (though not necessarily accepted) as an “infi nitist foundation” of the 

mathematization of nature, and more specifi cally of the law of free fall. She has 

noted, especially in relation to Pierre Gassendi, who rejected Galileo’s analysis of 

the Rota Aristotelis and offered an alternative theory, that both authors’ solutions 

to that paradox constituted conceptual bridges between their theories of matter and 

their theories of falling bodies. However, for Palmerino, Galileo’s point-atoms and 

Gassendi’s extended atoms were totally incompatible. Thus, according to her, when 

Gassendi tried to incorporate Galileo’s theory within his own atomistic philosophy 

he ran into a series of foundational problems that, vice versa, are not present in 

Galileo’s theory.96 Indeed, Palmerino argues, Galileo’s point-atomism was intended 

to “establish a mathematical foundation for the theory of acceleration which he [i.e., 

Galileo] discusses in the second part of the work [i.e., Two new sciences], by demon-

strating that space, time, and motion are composed of extensionless indivisibles”.97 

Palmerino’s basic argument is as follows. Galileo hypothesized that the passage 

from rest to motion cannot occur with a jump but must be the result of a continuous 

process of change. The falling body must pass through infi nite degrees of speed. In 

response to the objections to this hypothesis raised by Salviati’s interlocutors in Two 
new sciences, the latter argues that the falling body descends without remaining in any 

degree of speed for more than an instant. In the explanation of the Rota Aristotelis 

paradox, Galileo imagines that when the hexagons rotate, each of their sides stays 

fi xed for a fi nite period of time, whereas he argues that “in circles the delays of the 
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ends of their infi nitely many sides are momentary, because an instant in a fi nite time 

is a point in a line that contains infi nitely many [points]”.98 Thus both the rotating 

wheel and the falling stone pass infi nitely many points without remaining there for 

more than one instant. It is this connection between the structure of matter, time, and 

motion that, in Palmerino’s view, would constitute the conceptual bridge between 

Galileo’s point-atomism and his mathematical theory of motion. The former would 

thus afford a justifi cation of the legitimacy of the latter, and more generally of a 

mathematical natural philosophy.

In sum, while Mark Smith sees Galileo’s point-atomism as grown out of the lat-

ter’s concerns with the reconciliation of the Aristotelian physical continuum with 

the Euclidean mathematical continuum, Palmerino thinks that Galileo’s solution to 

the Rota Aristotelis paradox was intended to lay the philosophical foundation of the 

mathematization of the laws of falling bodies.

In my opinion, both arguments are unconvincing. Mark Smith’s analysis fl ies in 

the face of all Galileo’s anti-Aristotelianism, and indeed of the lack of any evidence 

supporting the view that Galileo would have shared a conception of the physical con-

tinuum based on the Aristotelian notion of prime matter. As to Palmerino’s analysis, 

it must be stressed that Galileo’s point-atomism is expounded in the First Day of 

Two new sciences, where Galileo adopted the Italian vernacular instead of the Latin 

in which he chose to present the theory of motion (Third and Fourth Days). This 

suggests to me that he did not intend to offer a rigorous foundation for the theory 

of motion, which he would have prefaced in Latin to the Third Day of Two new sci-
ences, but at most a free discussion of the problems connected with the paradox of 

the Rota Aristotelis. This interpretation would be consistent with Shea’s conclusion 

that Galileo’s interest in the constitution of matter was in fact derivative.99

I would argue that, around the middle of the seventeenth century, the interpretation 

of Galileo’s mathematization of nature, specifi cally the law of free fall, was open to 

different possibilities. Indeed, it could be interpreted in almost opposite ways. Accord-

ing to Palmerino’s analysis, Pierre Gassendi, for example, discussed Galileo’s point-

atomism as a possible foundation of the theory of falling bodies, though eventually 

rejecting the notion of point-atom.100 On the other hand, Mark Smith has argued that 

Galileo’s point-atomism may have been driven by Aristotelian preoccupations. I sug-

gest that there was a third interpretative possibility, open to Galileo’s contemporaries, 

much more concerned with the mathematical foundations of Galileo’s claims about 

falling bodies. Indeed, as we shall see in a moment, we may discern its presence, 

for instance, in Evangelista Torricelli (1608–47) and Pierre Fermat (1601–65). We 

have seen that Galileo’s idealization was to a large extent based on the possibility of 

applying Euclidean samenesses of ratios to natural philosophy. From a mathemati-

cal point of view, the technical problems connected with Galileo’s mathematization 

mostly concerned the defi nition of equimultiple sameness of ratios. In a sense, we 

might argue that, since Galileo never articulated any foundational concerns with 

the applicability of samenesses of ratios to natural philosophy, his entire enterprise 

might have been interpreted either as mathematization of nature (and as such in need 
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of some form of justifi cation) or as naturalization of mathematics. In other words, 

it is not unreasonable to expect that while some of his contemporaries would have 

stressed the need for a foundational bridge between theory of motion and theory of 

matter, others might have looked at the possibility of a mathematization in which 

nature itself was regarded as essentially mathematical, and therefore in no need of 

further justifi cation. 

I will now turn to two examples, further research on which might substantiate 

my claim. The fi rst regards Fermat’s proof of an assertion concerning free fall that 

Galileo made in Two new sciences. The second regards Torricelli’s re-formulation of 

Galileo’s theory of accelerated motion, and his expunction from it of the equimultiple 

defi nition of sameness of ratios.  

At the beginning of the Third Day of Two new sciences, Simplicio raises the 

question of natural acceleration by arguing that falling bodies descend with a speed 

which increases in relation to space [“a ragion dello spazio”]. Salviati answers claim-

ing that such a view is as impossible and false as it is that “motion should be made 

instantaneously”. Stillman Drake has discussed some aspects of the reception of the 

free fall law during the period 1632–49, especially amongst French mathematicians 

and natural philosophers.101 One principal point at issue amongst those who became 

interested in Galileo’s times-squared law was precisely his assertion on instantane-

ous motion left unproven in Two new sciences. It was, one might say, the perfect 

terrain on which different attitudes towards the mathematization of nature could 

become more explicit. In a sense, the hypothesis that falling bodies accelerate in 

relation to space instead of time lends itself to being seen in direct correlation with 

the theory of point-atoms. Indeed, if there is a connection between varying degrees 

of speed and points along the descent trajectory, then a theory of both the physical 

and geometrical continua might well constitute a foundation of the mathematization 

of motion. Yet Pierre Fermat furnished a proof of Galileo’s assertion that was not 

motivated by the perception of a lack of a physico-geometrical foundation, but was 

entirely developed within the confi nes of a purely Archimedean approach. Writing 

to Gassendi, Fermat told him that instead of wasting time in long replies to the 

Jesuit opponents of the times-squared law, with whom Gassendi had entered into a 

controversy, it was necessary to fi nd a rigorous proof of Galileo’s assertion. In the 

letter to Gassendi, Fermat presented what he claimed to be a fully Archimedean 

demonstration. We need not dwell on the details of Fermat’s long and complex 

proof.102 Briefl y, Fermat imagines a point uniformly accelerating along a line fol-

lowing the ratio of the traversed spaces. He then shows that if one considers a series 

of spaces in a continuous proportion along that line, then they will be traversed in 

the same interval of time. This part of the proof is the most complex because in its 

development Fermat follows an Archimedean method based on a double ‘reductio 

ad absurdum’. He then goes on to prove Galileo’s assertion by constructing another 

‘reductio ad absurdum’. In addition, the whole proof takes into account Galileo’s 

results on uniform motion expounded in Two new sciences. To reiterate, in Fermat’s 

view, what was most urgent was to fi nd the mathematical proof of Galileo’s assertion. 
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It thus seems that for Fermat Galileo’s mathematization of nature might have been 

further developed along purely Archimedean lines, unconstrained by concerns with 

its physico-geometric foundations.

Evangelista Torricelli was the most talented of Galileo’s pupils. In 1642, after Gali-

leo’s death, he became mathematician to the Grand Duke Ferdinand II. Torricelli was 

in Arcetri during Galileo’s terminal illness and wrote down the tract on proportions 

which Galileo dictated to him. In 1644, he published the Opera geometrica, which 

amongst other purely mathematical works contains a tract entitled De motu.103 Torri-

celli’s De motu is basically a re-construction of the Third and Fourth Days of Galileo’s 

Two new sciences, in which Torricelli furnishes new, more concise and elegant proofs 

based on the introduction of some geometrical properties of the parabolic line. The 

De motu’s complete title announced that in the treatise Torricelli would demonstrate 

the ingenuity of nature which plays with the parabolic line. This assertion should, 

in my view, be taken as a serious statement of Torricelli’s programme intended to 

develop a mathematical science de motu, i.e., a mathematization of nature, in the 

sense indicated above of an extension of the language of Euclidean samenesses of 

ratios. Even though it is true that Torricelli introduces the parabolic line, and a few 

results concerning conic sections from Apollonius, his re-construction of Galileo’s 

theory of naturally accelerated motion remains substantially faithful to Euclid’s 

language of samenesses of ratios. However, a feature immediately strikes the reader 

of Torricelli’s De motu who is also acquainted with Galileo’s Two new sciences. The 

analysis of uniform motion based on equimultiple sameness of ratios, presented by 

Galileo at the beginning of the Third Day of Two new sciences, was replaced by Tor-

ricelli with a series of geometrical theorems aimed at demonstrating a postulate left 

unproven by Galileo.104 Further, Torricelli proposed a ‘reform’ of Euclid’s theory of 

samenesses of ratios, in which the equimultiple defi nition was abandoned for good.105 

Torricelli’s attitudes towards the mathematization of nature became all too apparent 

in 1646, when he answered a letter from the French mathematician Gilles Personne 

de Roberval (1602–75). Roberval had objected in his letter to Torricelli that Galileo’s 

law of fall was incorrect, except for very short heights and for very heavy objects. 

In Roberval’s view, all falling bodies reached a fi nal uniform speed so that Galileo’s 

law appeared to contradict experience. Torricelli pointed out that Archimedes himself 

had hypothesized that projectiles moved in spiral lines and subsequently composed 

his tract on spirals. Afterwards, according to Torricelli, Archimedes realized that 

projectiles do not follow spiral lines. What, Torricelli asks, should Archimedes have 

done? Should he have abandoned his mathematical tract on spirals altogether? No, 

Torricelli answers, what was needed was simply to remove all references to physical 

projectiles and only consider generic points.106 By the same token, Torricelli sug-

gests to Roberval, we simply need to remove from Galileo’s treatise on motion all 

references to physical objects and all the physical terms such as projectiles, so that 

in essence all that remains is pure geometry — a set of abstract propositions. The 

rest, Torricelli concludes, is fable.107 Lanfranco Belloni, the editor of Italian edition 

of Torricelli’s De motu, has argued that such comments by Torricelli are a blatant 
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negation of the physical value of Galileo’s mathematization of nature.108 However, 

I wish to suggest that we need not interpret Torricelli’s view as a lack of interest in 

the legitimate search for a foundation of the relationship between mathematics and 

physics. Such a search was by no means necessarily inscribed — so to speak — in 

Galileo’s whole project of idealization. It was just one possibility way to interpret 

its meaning.

In conclusion, Galileo’s point-atomism has been considered both as an attempt to 

reconcile the Aristotelian metaphysics of the physical continuum with the Euclidean 

continuum, and as an implicit foundation of Galileo’s project on falling bodies. How-

ever, Torricelli’s re-formulation of Galileo’s de motu science, and perhaps Fermat’s 

invitation to Gassendi not to waste time in physico-mathematical disputes, are two 

examples of a radically alternative interpretation of Galileo’s idealized claims about 

falling bodies. They emphasize a naturalization of mathematics for which no meta-

physical or meta-mathematical justifi cations seem required of the sort relished by 

modern historians and philosophers of science.
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