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In 1908 the German mathematician Ernst Zermelo gave an axiomatization of 
the concept of set. His axioms remain at the core of what became to be known as 
Zermelo-Fraenkel set theory. There were two axioms that received diverse 
criticisms at the time: the axiom of choice and the axiom of separation. This 
paper centers around one question this latter axiom raised. The main purpose is 
to show how this question might be solved with the aid of another, more recent 
mathematical theory of sets which, like Zermelo’s, has numerous philosophical 
underpinnings. 
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Introduction 
 

Set theory is a field of mathematics that has the peculiar property of allowing 
the “codification” of many mathematical concepts such as those of number, 
cartesian product, function, group, ring and many others. Another branch of 
mathematics that also has this property is category theory, although its “encoding” 
is quite different from that of set theory. It is mostly this feature shared by both 
theories that makes them quite amenable to philosophical investigations. Indeed, 
the word most commonly used is not “codification” or “encoding” but foundation, 
although this latter term tends to have different meanings for different philosophers 
of mathematics. In 1964 the American mathematician F. William Lawvere 
published the first axiomatization of the concept of set within the framework of 
category theory1. In this paper I shall refer to the more fully developed version he 
published jointly with Robert Rosebrugh in 20032. For Zermelo´s axiomatization I 
will base my discussion on a paper entitled “Investigations in the foundations of 
set theory I”, which he published in 19083. The discussion is centered around one 
axiom, one that deals with relation between certain properties and the existence of 
subsets of a given set. Zermelo calls it the Axiom of separation and LR call it 
Membership representation via truth values4.  

                                                           
∗Professor, Autonomous University of the State of Morelos & Avenida University, Mexico. 
1Reprinted in Lawvere (2005). 
2Lawvere and Rosebrugh (2003). I shall refer to this axiomatization throughout the text as LR. 
3Zermelo E (1908a). Throughout the main text I will refer to this paper as Zermelo 1908a, and to 
Zermelo (1908) as Zermelo 1908. 
4Within the more general context of topos theory (an important branch of category theory), this is 
called the Subobject Classifier axiom. 
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When philosophers of mathematics discuss foundational issues concerning set 
theory, they usually have in mind what has become to be known as “Zermelo-
Fraenkel set theory” or “Zermelo-Fraenkel set theory with the axiom of choice” 
(abbreviated as ZF and ZFC, respectively). Ever since category theory entered the 
scene in discussions of foundational issues, ZF (and per force Zermelo’s own 
axiomatization) has been discredited to a large extent5. I believe that the categorical 
approach to set theory still owes something of value to Zermelo 1908a, even if 
only for reacting against it on various fronts, some of which I will present in the 
section concerning the concept of ‘function’6. So by basing my exposition on 
Zermelo 1908a, rather than on current versions of set theory like ZF, I intend this 
paper to be partly a tribute to Zermelo. Indeed, both Zermelo 1908 and Zermelo 
1908a include the axiom of choice, and so does the categorical approach. One of 
my purposes here is to show the sense in which the categorical approach includes 
part of Zermelo´s axiom of separation. But my main purpose, and now as a tribute 
to the categorical approach, is to show how the categorical version of this axiom 
solves a problem raised by its original formulation. Thus rather than discrediting 
ZF in favor of the categorical approach, I propose here to see the latter as an 
instance of conceptual progress within mathematics. 

Both theories are rich in consequences, not just mathematical but also 
philosophical. However, I shall only present those axioms, concepts, theorems and 
definitions from each theory that are necessary for the exposition or useful for 
illustrating purposes, thus keeping technical details to a minimum.  
  
 
Zermelo’s Set Theory and Properties of Sets 
 

According to Zermelo 1908a, set theory is about a certain domain of 
individuals or objects, among which are the sets. One of the functions of the 
axioms is precisely to characterize the latter ones. In the introductory part he says 
that Cantor’s 1895 original definition of a set as “any collection into a whole M of 
definite and separate objects m of our intuition or our thought” (Cantor 1955, p. 85) 
needs to be restricted, for, as it was well known, it leads to certain contradictions 
such as the Russell paradox concerning the set of all sets not belonging to 
themselves. Thus the axioms are meant to serve the function of restricting the 
notion of ‘set’ so as to prevent the theory to give rise to paradoxes such as 
Russell’s7.  

                                                           
5Ernst (2017, p. 69), e.g., talks of categorical foundations replacing set theory. 
6Lawvere (2005) describes its own contents as “a way out of the [Zermelo-Fraenkel] impasse” (p. 6) 
where the latter’s membership-theoretic definitions and results are “for a beginner bizarre” (ibid.) 
Almost forty years later the claim is that “[…] from the ongoing investigation of the ideas of sets 
and mappings, one can extract a few statements called axioms […] The use of this axiomatic method 
makes naive set theory rigorous and helps students to master the ideas without superstition.” (LR, 
pp. ix–x, emphasis in the original). Be this as it may, I am nonetheless convinced that there is much 
more of value in category theory, especially for all those interested in philosophy of mathematics. 
7See, e.g., Fraenkel et al. (1973, p. 18). However and in contrast, Gregory H. Moore has argued 
extensively in favor of the claim that Zermelo’s main motivation for axiomatizing set theory was 
instead that of defending his proof of the well-ordering theorem, which he first gave in 1904 and 
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Set theory is based on the notion of membership, which is taken as basic, not 
definable in terms of any other more basic concepts. From the seven axioms in 
Zermelo 1908a, five of them are about the formation of new sets from other sets 
previously given or assumed to exist. The exceptions to these are the axiom of the 
empty set (which postulates the existence of a set with no elements) and the axiom 
of extensionality. Except for this axiom, all the remaining axioms that postulate 
the existence of certain sets start from sets already given, not from general 
“objects” of what Zermelo calls the “domain” of set theory, that is, not from 
objects that may not be sets in the sense of the other axioms. Following most 
introductory textbooks on set theory, I will ignore this point and consider the 
universe of the theory as consisting of only sets whose elements are themselves 
sets, whose elements are also sets, and so forth. 

The symbol for the relation of membership between sets is ∈. There are 
several ways for denoting a set. Suppose that A is a set whose elements or 
members are the natural numbers from 1 to 4. We may then write A = {1, 2, 3, 4}. 
Or, if N denotes the set of all natural numbers, we may also write A = {x ∈ N | 1 ≤ 
x ≤ 4}, where the symbol ‘|’ is read as “such that” or “with the property that”. This 
notation is useful, for example, when one cannot list all the elements of a set, 
either because they are too many for it to be feasible in practice or because the set 
is infinite. The set of even numbers, for instance, is infinite, so we can denote it 
simply by writing {x ∈ N | x is even}. Now, in order to express that, for example, a 
certain number is not an element of A, we use the symbol ‘∉’. So for instance, we 
have that 5 ∉ A. 

Sometimes it is useful to picture sets by means of what are called Venn 
diagrams. For example, if A = {2, 3, 7} we may draw the following diagram 

 
 
                                      A 
                 3 
                                                        7 
                                                     
                                                   2 

 
 
 
 
 

Zermelo’s first axiom gives us a criterion for determining whether or not any 
two given sets are equal. 
 
  

                                                                                                                                                         
then later modified in Zermelo (1908). See, for instance, Moore (2013), especially Chapter 3. I tend 
to favor Moore’s view, if only because it makes Zermelo’s efforts to prove the well-ordering 
theorem—which of course include his axiomatization of set theory—more interesting from a 
mathematical, philosophical and historical perspective. 
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Axiom I (Axiom of Extensionality) 
 
Given any two sets M and N, if every element of M is also an element of N 

and vice versa, then M = N.   
One may see this axiom as saying that a set is completely determined by its 

elements or, equivalently, as saying that, for any two given sets, in order for them 
to be different, there must be at least one element belonging to one of them but no 
to the other set. One consequence of this axiom is that, for example, the sets {3, 7, 
4, 8}, {8, 3, 4, 7} and {7, 3, 8, 4} are all one and the same set. Venn diagrams may 
illustrate this more clearly8: 
 
 
 
                 3                                        8                                               7 
                      7                =                            3             =            3 
             4                                          4                                           8 
                     8                                     7                                    

4 
 
 
 
 
 
 

So the order in which the elements of a set are listed does not affect its 
identity. One might say that what gives a set its “substance” are its elements, 
regardless of the order in which one thinks of them. The categorical approach to 
sets contrasts with this way of thinking about sets; for within category theory, the 
focus is not so much on what the elements of a set are but on how it relates to other 
sets.  

In the next section we will see how one can capture the idea of order in terms 
of the membership relation. The remaining three axioms I will be considering are 
of a different nature than the axiom of extensionality since they all postulate the 
existence of certain sets. 
 
Axiom II (Axiom of Elementary Sets)  
 

There exists a set that has no elements at all. If a is a set, there exists a set {a} 
containing a as its only element. If a and b are sets, then there always exists a set 
{a, b} whose only elements are the sets a and b. 

One question immediately arises: How many sets with no elements are there? 
If we suppose there are at least two different empty sets, let us call them A and B, 
then, according to Axiom I, one of them must have at least one element that does 

                                                           
8In principle, Venn diagrams can be of any shape and size, although they are most commonly drawn 
as above or as circles. See e.g., LR, p. 1. 
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not belong to the other (empty) set. But clearly this is not possible, since by 
hypothesis neither A nor B have any elements. In this way, we have arrived at our 
first theorem: 
 
Theorem (Uniqueness of the empty set) 
There is only one empty set. 

�. 
 
Since there is just one empty set, we are justified in using a special symbol for 

it. As it is customary, I will use the symbol ∅, although it is sometimes also 
denoted as { }. 

Before presenting the axiom of separation, which is Zermelo’s Axiom III, I 
shall present one more axiom of existence which, together with Axiom II, is useful 
for illustrating the nature of the set universe as well as the special encoding set 
theory allows for defining mathematical objects such as the natural numbers. 
However, I shall retain Zermelo’s numbering for his axioms. 
 
Axiom VII (Axiom of Infinity) 
 

There is a set that has the empty set as one of its elements and it is such that 
whenever a set a belongs to it, so does the set {a}. 

With Axiom II at hand, we can prove, for example, the existence of the sets 
{∅}, {∅, {∅}} and {{∅}}. Clearly, none of these three sets is equal to the empty 
set: they all have either one or two elements. Axiom VII then postulates the 
existence of the following set 
 

{∅, {∅},{{∅}}, {{{∅}}}, …} 
 

and this is a set that can be used to encode the natural numbers. For we simply let 
the number 0 be the empty set, 1 the set {∅}, 2 the set {{∅}}, and so on. The 
usual operations of addition and multiplication can be defined for these sets and in 
such a way that the elementary properties of arithmetic (such as commutativity 
and associativity) hold. Moreover, equations such as 1+1 = 2 are theorems of the 
theory, that is to say, they can be proved within the theory (after all, they only 
involve the relation of equality between sets which in turn is given in terms of the 
membership relation). 

There are, however, other ways for encoding the set of natural numbers. 
Consider, for example, the following 
  

{∅, {∅}, {∅, {∅}}, {∅, {∅}, {{∅, {∅}}, …} 
 

In this case, we let 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {{∅, {∅}}, 
etc. Here too, one can define the operations of addition and multiplication and 
prove the usual arithmetical properties of them.  
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It is tempting to see either definition of the natural numbers as providing an 
answer to the question of what (natural) numbers are9. There are, however, strange 
well-known consequences one can draw from either one. For example, in both 
cases it is true that 0 ∈ 1 ∈ 2 ∈ 3 ∈ … And assertions such as these simply do not 
make sense outside the context of the set-theoretic encoding of numbers, neither 
are they taught as the basic properties of numbers10. This is indeed one of the 
criticisms that has been raised against set-theoretic foundations of mathematics: 
they are at odds with mathematical practice11. In fact, the categorical approach to 
sets aims at bringing set theory closer to, and useful for, the actual practice and 
development of mathematics12. But mathematics evolves and so do its practice, 
problems and tools, as I hope will illustrate the comparison I will draw between 
Zermelo’s axiom of separation and its categorical version.  

For stating the last axiom that I shall be considering, we need the following 
definition. 
 
 
Definition 
 

Let M and N be given sets. If every element of N is also an element of M, then 
we say that N is a subset or part of M, and we denote this by N ⊆ M. If N ⊆ M but 
N is different from M (that is, if there is at least one element of M that does not 
belong to N), we say that N is a proper subset of M, and write N ⊂ M13. 

For example, let M = {1,2,4,7,9} and N = {2,7}. By using Venn diagrams, we 
can picture that N ⊂ M as follows 
  

                                                           
9Benacerraf  (1965) develops a now classical argument concerning the issue of whether numbers 
can be sets or not. 
10However, within set-theoretic foundations, one can make sense of this assertion: for example, for 
the set {∅, {∅},{{∅}}, {{{∅}}}, …} one can simply define or reduce the relation “n is less than 
m” to the assertion “n ∈ m”. In this way one introduces an order among the elements of “the” set of 
natural numbers.  
11Leinster (2014), besides giving a concise introduction to the category of sets, also presents in a 
straightforward manner some of these criticisms. 
12See, e.g., McLarty (2017), especially pp. 11ff. 
13The concept of proper subset allows us to define a relation of order among the elements of the set 
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {{∅, {∅}}, …}: we say that m < n, if and only if m ⊂ n. 
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    M           1 
                                                                         4 
      
              N      2 
                                                                   7 
                                                                      9 
 
 
 
 

 
Suppose now that M is a non-empty set. Then clearly, for each x ∈M, x is an 

element of M. Hence, M ⊆ M.  Now, in order for the empty set to not be a subset 
of a given set M (whether M is empty or not), the empty set must, according to the 
above definition, have at least one element that does not belong to M. But this is 
clearly not possible: by definition, the empty set does not have any elements. So, 
we arrive at the following  
 
Theorem 
For any given set M, ∅ ⊆ M. 

�. 
As a particular case, we have the following 
 
Corollary 
∅ ⊆ ∅. 

�. 
 

Thus, any given set M distinct from the empty set has at least two different 
parts or subsets: M itself and the empty set ∅. And, if M is the empty set, then it 
has just one part: M itself. We now come to our last axiom, the axiom of 
separation or the subset axiom. In Zermelo 1908 this is phrased as follows: 
 

All elements of a set M that have a property F well-defined for every single element 
are themselves the elements of another set, MF, a “subset” of M (Zermelo 1908, p. 
183). 

 
So, this is an axiom linking the process of forming new sets with (well-

defined) properties14. For his second formulation of the axiom, Zermelo 1908a 
introduces the following definition: 
                                                           
14In Fraenkel et al. (1973), the authors assert that the axiom of separation “turned out to be 
inconsistent and therefore cannot be used as an axiom of set theory. However, since this axiom is so 
close to our intuitive concept of set we shall try to retain a considerable number of [its] instances” 
(p. 32)—where the instance the authors used for deriving a contradiction was the (non-definite!) 
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A question or assertion F is said to be definite if the fundamental relations of the 
domain, by means of axioms and the universally valid laws of logic, determine 
without arbitrariness whether it holds or not. Likewise a “propositional function” 
F(x), in which the variable x ranges over all individuals of a class R, is said to be 
definite if it is definite for each single individual x of R. Thus, the question whether a 
∈ b or not is always definite, as is the question whether M ⊂ N or not.15  

 
The second formulation of the axiom in Zermelo 1908a is then as follows: 

 
Axiom III (Axiom of Separation or Subset Axiom) 
 
Whenever the propositional function F(x) is definite for all elements of a set M, M 
possesses a subset MF containing as elements precisely those elements x of M for 
which F(x) is true (Zermelo 1908a, p. 201). 
 
Zermelo then observes 
 

[…] In the first place, sets may never be independently defined by means of this 
axiom but must always be separated as subsets from sets already given; thus 
contradictory notions such as “the set of all sets” or “the set of all ordinal numbers” 
[…] are excluded. In the second place, moreover, the defining criterion must always 
be definite in the sense of our definition […] (that is, for each single element x of M 
the fundamental relations of the domain must determine whether it holds or not), 
with the result that, from our point of view, all criteria such as ‘definable by a finite 
number of words’ hence the ‘Richard antinomy’ […] vanish.16  

 
With this axiom, Zermelo had then two aims: on the one hand, to restrict 

separation to separation within an already given set in order to exclude totalities 
such as the set of all sets that are not members of themselves (a totality that leads 
to the well-known Russell’s paradox); and, on the other hand, to exclude 
“illegitimate” properties such as “x is a number definable in a finite number of 
words in natural language” (a property that leads to the Richard’s paradox)17. 
Indeed, as a direct application of this axiom, Zermelo proves the following  
 
Theorem 
Every set M possesses at least one subset M0 that is not an element of M.  
Proof. For every element x of M it is always definite whether x∈x or not (at least 
the axioms do not exclude the possibility that there may be a set x such that x∈ x). 
The negation x ∉x is therefore also a definite propositional function. By the axiom 
of separation, the collection M0 = {x∈M | x∉x } is therefore a set. We have then 

                                                                                                                                                         
property of not being a member of itself: x ∉ x. My point is, however, that even those dismissing 
Zermelo’s notion of definiteness, they consider it essential to the concept of set itself that it is tightly 
connected with properties of its elements. 
15Zermelo (1908a, p. 201), emphasis in the original. 
16Loc.cit., emphases in the original. 
17See Ebbinghaus’ introductory note to Zermelo (1929) in Zermelo (2010, pp. 352–357). Concerning 
Richard’s paradox, see Taylor (1993, pp. 547–549). 
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that either that M0∈M0 or M0∉M0. If M0∈M0, then M0 must satisfy the 
propositional function x∉x that characterizes all the elements of M0 and this means 
that the assertion M0∉M0 is true. But this contradicts our hypothesis that M0 ∈ M0. 
We conclude then that M0 is not an element of M0. If, finally, M0 ∈ M then, then 
M0 would satisfy the condition (given by the propositional function x ∉ x) 
characterizing all the elements of M0 and would thus belong to M0, a possibility 
which we have already excluded. Therefore, M0 is a subset of M such that M0 ∉ M. 

�. 
 

Zermelo then argues that this theorem implies that not all objects of the 
domain of individuals or objects that set theory is about, can be elements of one 
and the same set. In other words, the theorem implies that this domain is not itself 
a set, so that there is no such thing as the set of all sets. With this result at hand, 
Zermelo manages to exclude the existence (as a set of the theory) of the collection 
of all sets that are not members of themselves, which is the starting point of the 
Russell paradox. As Zermelo points out, and except for the case of certain axioms 
of existence (including the three ones previously given here), “sets […] must 
always be separated as subsets from sets already given”18, and this separation is to 
be carried out by means of certain properties. 

Besides assertions of the form x ∈ y, x = y, x ∉ y and x ≠ y, we may safely 
conclude  from other applications Zermelo gives of the subset axiom, that at least 
the following are also definite propositional functions that we may use in order to 
form new sets out of previously given sets: if F(x) and G(x) are definite 
propositions, so are their corresponding negations ¬F(x) and ¬G(x), their 
conjunction F(x)∧G(x) and their disjunction F(x)∨G(x). So the property of being 
definite is closely connected to logic at a syntactical level. But it is also connected 
to logic (to classical logic, as it turns out) at a semantical level. For according to 
Zermelo an assertion is definite if “the fundamental relations of the domain, by 
means of the axioms and the universally valid laws of logic, determine without 
arbitrariness whether it holds or not”19. Thus, if F(x) is a definite propositional 
function and M is a given set then, for each element x of M, the assertion “F(x) ∨ 
¬F(x)” is always true. Or, in other words, if F(x) is a well-defined property of x, 
then either x has that property F or it does not.  

To say of these definite or well-defined properties that the laws of logic 
determine whether they hold or not, is to say at least that such properties are 
bivalent: if F expresses a property meaningful for all elements x of a given set M 
then, either the assertion F(x) is true or it is false and never both. In logic, if an 
assertion F(x) is true (or false, as the case may be) we say of F(x) that its truth 
value is the value true (or, accordingly, the truth value false).  

In Fraenkel AA, Bar-Hillel Y, Levy A (1973) the authors give a succinct 
account of what they see is the problem with Zermelo’s notion of definite 

                                                           
18Zermelo (1908a, p. 202), emphasis in the original.  
19Loc.cit., my emphases. 
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property20. They first give the following reformulation of Zermelo’s axiom of 
separation  

 
For any set a and any condition B(x) on x there exists the set that contains just those 
members of a which fulfil the condition B(x) (Fraenkel et al. 1973, p. 36). 

 
The authors then explain why, in spite of appearances to the contrary, this 

formulation is different from Zermelo’s. In the first place, they say, the notion of a 
‘condition B(x) on x’ is a well-defined notion, for they have previously defined 
what is called in logic the ‘object language’ in which these conditions on x are to 
be expressed. This language is, of course, a first-order language with equality and 
the basic notion of membership. It is a language with precise rules for forming 
“conditions on x” out of the basic membership relation with the aid of the logical 
connectives and the quantifiers and in such a way that given any finite sequence of 
symbols of the language, one can always determine whether it is well-formed or 
not, that is to say, whether it is in fact a condition on x21. Zermelo did not make a 
distinction between the object language and what is called the metalanguage 
(which is the natural language one uses for expressing or explaining axioms, 
theorems, and so forth). This is one of the reasons why he rejected solutions such 
as the one proposed by these authors, for the well-formed expressions in the object 
language are always finite sequences of symbols, and Zermelo thought that one of 
the purposes of set theory was precisely to give an account of the concept of 
(finite) number (see Zermelo 1929, pp. 359, 363). Thus, the authors continue, since 
“Zermelo did not have any particular object language in mind […] his notion of a 
statement B(x) was quite vague” (Fraenkel et al. 1973, p. 37). Once one is clear about 
the object language, according to them one can then interpret Zermelo as follows:  
 

What Zermelo meant by saying that the truth or falsity of [a statement] B is 
determined by the primitive relations of the system is […] that once the primitive 
relation of the system (namely, the membership relation) is “given” then the very 
meaning of B makes it either true or false. Using modern terminology we can say 
that B is definite if it belongs to a formal system with an interpretation which makes 
B true or false; likewise, B(x) is definite for a class R of objects of the system if B(x) 
belongs to an interpreted formal system which makes B(x) true or false for every 
member of the class R. (Loc.cit).  

 
If Zermelo did indeed not make a clear distinction between the object 

language and the metalanguage, it seems difficult to interpret him as in the above 
passage. In the final section, I will present Zermelo’s own account of the concept 
of definite property, an account which he gave in 1929 and in response to the 
criticisms his 1908a version received. Those criticisms amount basically to 
claiming that his notion of definiteness is imprecise, that it lacks in mathematical 
rigor. Let it suffice it for the moment to say that the three mentioned authors 

                                                           
20For a thorough historical account of Zermelo’s notion of definiteness, see Ebbinghaus (2003). 
21For an historical account of the relationship between logic and axiomatic set theory, see Moore 
(1980). 
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thought their version was similar to, although not identical with, Zermelo’s (1929) 
new formulation of the concept of definiteness (Loc.cit., fn. 2).  

The current situation concerning the presentation of the axiom of separation 
in introductory textbooks may be divided into two broad groups: those who simply 
leave the concept of (well-defined) property unanalyzed, and those along the lines 
proposed by the Norwegian mathematician Thoralf Skolem in 1922 (Skolem 
1922). After introducing the symbolism for three logical connectives or operations 
of negation, conjunction and disjunction together with the two quantifiers 
(existential ∃ and universal ∀), Skolem makes the following definition: 
 

By a definite proposition we now mean a finite expression constructed from 
elementary propositions of the form a ∈ b or a = b by means of the five operations 
mentioned (Op.cit., pp. 292–293, italics mine).  

  
Notice here the word ‘expression’ he uses. The focus is no longer on 

properties but on the (logical) language used to refer to them. What is usually done 
in modern textbooks of set theory, is to first introduce a first-order language and 
then define what are its (well-formed) formulas, which are always finite sequences 
of symbols of the language. In the case of set theory, this language includes the 
primitive or basic (binary) relations of equality and membership. A variable within 
a well-formed formula may be free or bounded by a quantifier. For example, in the 
formula ∀A∀ x ∈ A (y ∈ x) the variables A and x are bounded whereas the variable 
y is not, that is, the variable y is free. In this way, Zermelo´s axiom of separation 
became an axiom schema with infinitely many instances, one for each formula of 
the first-order language with equality and membership. It is customary to indicate, 
for a given formula, what its free variables are by writing them between 
parentheses. So, for the above example, we might denote the formula by ϕ(y). In 
this way, the modern version of Zermelo’s axiom of separation is usually stated as 
follows: For any given set M and any given first-order formula ϕ(x), the collection 
{x ∈ M | ϕ(x)} is a set. Although this version has many mathematical 
advantages22, it is clearly not in the semantical spirit of Zermelo’s original 
formulation, for he was concerned with truth values, and not (so much) with the 
syntax of the underlying logical language or the so-called object language. Indeed, 
in his 1929 paper he explicitly says that, 
 

What I intended to do was to derive the main theorems of set theory from the smallest 
possible number of assumptions and by means of the most restricted expedients. I 
recognized that in order to do so, the unrestricted use of “propositional functions” 
would be […], on account of certain “antinomies” […] dangerous. At the time, a 
universally acknowledged “mathematical logic” on which I could have relied did not 
exist—nor does it exist today when every foundational researcher has his own 
logistic. With my primary tasks being different, however, it hardly would have been 
appropriate for me to develop in extenso such a logistical foundation, particularly at a 
time when most mathematicians still harbored suspicions about any kind of logistic. 
But I believed that my explanation of the concept in question, and in particular its 

                                                           
22For one thing, it no longer makes any references to other axioms.  
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applications, had at least made sufficiently clear how it was meant (Zermelo 1929, p. 
359). 

 
Certainly, from the applications Zermelo 1908a gives of the axiom of 

separation, it is clear at least that “definiteness” is closed under negation, 
conjunction and disjunction. If F(x) and G(x) are any two definite propositional 
functions, then to say that the following three are also definite propositional 
functions  
 

F(x) ∧ G(x) 
¬ F(x)  

F(x) ∨  G(x) 
 
is to say that, just like F(x) and G(x), each one has one and only one of the two 
truth values for each value of x: each one is either true or false and never both (for 
each value of x). And to say the latter is to say that these three connectives are just 
being classically defined, as it is usually done by means of the so-called truth 
tables. 

What I propose here is to show that what the categorical version of the axiom 
retains from Zermelo’s semantic formulation of the axiom in terms of definite 
properties, is the idea that parts of a given set M may be separated from it by 
means of properties, where these properties are such that the elements of M always 
either have them or don’t have them (and never both!). And that as a consequence, 
any one of these special properties divides M into two disjunct parts which 
together exhaust all of M23. 
 
 
Interlude: Functions 
 

Just as Zermelo set theory has primitive notions, so does the category-theoretic 
approach to the concept of set. And just as sets are almost everywhere in 
mathematics, functions too are ubiquitous. The intuitive idea behind the notion of 
function involves three ingredients: two collections of “things” and a correlation 
between the things in one collection and those in the other one. For example, let us 
suppose we have a group of five students and we want to write down their final 
grades. The group of students is called the domain of the function which we might 
call “final grade”; we usually take as the codomain of this kind of functions the set 
of numbers from 0 to 10. The codomain is thus where the function takes its values 
for each element of the domain. The function “final grade” then associates to each 
student one and only one number between 0 and 10. The important point here is 
that each student in the domain gets assigned one but only one final grade. Notice 
that it may happen in one specific scenario that no student gets, for example, the 
number 7 as his or her final grade; in such cases we still have a function from the 
set of students to the set {0, 1, 2, …, 10}. If instead of the set of numbers between 
0 and 10, we take a larger set of numbers, say the set of all natural numbers, we 
                                                           
23See Figure 3 in the section on the categorical approach to sets. 
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can also define a function assigning final grades to students but this function 
would have a different codomain than the first one, and so it will be a different 
function, even though the “rule” for the assignment and the domain remain the 
same as in the first case. An analogous thing happens if we change the domain of 
the function; in such a case, one gets two different functions even if the codomain 
and the rule of assignment remain unchanged. So, one requirement for two given 
functions to be equal, is that they at least have the same domain and the same 
codomain. We will shortly see why this is so, but I will first give one example of a 
correlation that is not a function. 

Let us consider for the domain D of our counterexample a family consisting 
of five members: the parents, two boys and one girl. For the codomain C, let us 
take the same family together with the immediate families of each one of the 
parents. If we assign to each person in D his or her brother, the girl in the domain 
will be assigned two people in the codomain C. Thus the rule “the brother of x” is 
not, for this particular domain, a function: at least one element of the domain is 
assigned to two elements in the codomain. It could also happen that for this 
particular domain at least one of the parents does not have a brother, and this 
would be another reason for the assignment “the brother of x” not to be a function 
for these particular groups of people C and D. In sharp contrast, the assignment 
“the father of x” is indeed a function from C to D.  

Using Venn diagrams, we may picture a function f from a set A to a set B as 
in Figure 1. 
 
Figure 1. Venn Diagram of a Function from a Set A to a Set B                                                                  
         f                                    
                           A                                                                B                                                                                                                                                                                                                                                     
                 
 
 
 
 

 
 

 
 
 
And an assignment or correlation that is not a function from A to B could look 

like this 
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Figure 2. Venn Diagram of a Correlation from a Set A to a Set B that is not a 
Function   
     A                                                                          B                                                                                     
                                                           
 
 
                                                                                
                              

 
 

 
 
 
 
Figure 2 does not depict a function because there is (at least) one element in A 

that was assigned to more than one element in B, but not because there is an 
element in B that is not correlated with some element in A. The concept of function 
does not require that all elements of the codomain are correlated with some 
element of the domain. 

Another way for denoting functions together with their corresponding 
domains and codomains is the arrow notation. So if f denotes a function with 
domain A and codomain B, we may write 
           f  

f: A → B   or     A → B 
 

If x is any given element of A, the member of B that the function f assigns to x 
is denoted by f(x). Usually, when the sets involved are sets of numbers, the 
functions mathematicians are interested in are given in terms of arithmetical 
operations. So, for example, if the set A is the set of natural numbers including the 
number 0, and B is the set of natural numbers without the number 0, we can define 
the function with domain A and codomain B by simply writing 

 
f(x) = x + 1. 

 
This function has the property that for each element y in the codomain B = {1, 

2, 3, …}, there is one element x in the domain A = {0, 1, 2, 3, …} such that f(x) = 
y: 

 
1 = f(0), 2 = f(1), 3 = f(2), …, y = f(y - 1), … 

 
If we now change the codomain, and take instead of B the set A but keep the 

same domain and the same rule of assignment, the above property f  no longer 
holds, namely, that each element of the codomain {1, 2, 3, …} of  f  “comes from” 
(via f itself) one element of the domain A = {0, 1, 2, 3, …}. For in this new case 
the number 0 is an element of the codomain and there is no element x in A = {0, 1, 
2, 3, …} such that x + 1 = 0. The property that f has is called surjectivity and we 
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say of f that it is surjective. Thus when we changed the codomain but retained the 
same domain and rule of assignment, we obtained a different function, one that, 
unlike f, is not surjective. Figure 1 also illustrates a function that is not surjective. 
This distinction gets lost in the set theoretic definition of a function as we will now 
see.  

Functions in set theory are encoded or defined in terms of ordered pairs. 
With the notion of an ordered pair, denoted by (a, b), one can capture the idea that 
the element a is assigned only to the element b. If a and b are sets, then by the 
axiom of elementary sets, {{a}, {a, b}} is also set. The ordered pair (a, b) is 
defined precisely as the set {{a}, {a, b}}. It is important to notice that this latter set 
is different from the set {a, b}. The idea that “a comes first” or that the order 
matters, is expressed in the following theorem which is easy (but somewhat 
tedious) to prove with the axiom of extensionality 
 
Theorem 
For any given sets a, b, c and d, (a, b) = (c, d) if and only if a = c and b = d. 

�. 
 

We can now capture the idea that each element x of the domain of a function 
gets assigned to one and only one element of the codomain in the following terms: 
if (x, b) = (x, d), then b = d. By means of an axiom called the Union Axiom24 and 
the Power Set Axiom25, it can be proved that, if A and B are sets, then the 
collection {(x, y) | x ∈ A and y ∈ B} is a set. Thus a function, say F, is defined in 
set theory as a certain set of ordered pairs, for instance F ⊆ {(x, y) | x ∈ A and y ∈ 
B}, such that for any x ∈ A, if both (x, b) and (x, d) are elements of F, then b = d. 

We saw earlier that the function f: {0, 1, 2, …} → {1, 2, 3, …} given by f(x) 
= x + 1, is surjective, whereas the function g: {0, 1, 2, …} → {0, 1, 2, …} given 
by the same rule, that is, by g(x) = x + 1, is not. However, according to the set-
theoretic definition of function, both functions f and g are encoded in one and the 
same set, namely, the set 
 

{(0,1), (1,2,), (2, 3), …, (x, x + 1), …} 
 

So the set-theoretic account of the concept of function misses an important 
ingredient of it. As we will see, this is a point that the categorical approach 
emphasizes: every function comes equipped with both a specific domain and a 
specific codomain. We saw earlier that the empty set is a subset of any set. So, if A 
and B are given sets, ∅ ⊆ {(x, y) | x ∈ A and y ∈ B}, and the empty set vacuously 
satisfies the condition for being a function from A to B for any sets A and B. This is 
an extreme example that shows how the definition of the concept of function as a 
certain subset of ordered pairs neglects the importance of taking into account what 

                                                           
24This axiom states that for any given set M the collection of all the elements of the elements of M is 
also a set. 
25This postulate guarantees the existence, for any set M, of the set of all of the subsets of M. 
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the domain and the codomain are: the empty set is a function from any set to any 
set. 

There is another significant property a function may have. Consider the 
following two sets: 
 

A = {1, 2}  and  B = {3, 4} 
 

and let f: A → B and g: A → B be defined as follows: f(1) = f(2) = 3, g(1) = 3 and 
g(2) = 4. One difference between these two functions is that f(1) = f(2) even 
though 1 ≠ 2, whereas g(1) ≠  g(2). In other words, for all elements x and y in the 
domain A, if x ≠ y then g(x) ≠  g(y). This property is called injectivity. So the 
function f is not injective. A function that is both injective and surjective is called 
bijective. Thus the function g is bijective. Using the same sets A and B from this 
example, we can define another bijective function: let h: A → B be given by h(1) = 
4 and h(2) = 3. Figure 1 is an example of a function that is not injective. 

Bijective functions are quite useful in many ways. For instance, they allow us 
to determine, without counting, whether any two given sets have the same number 
of elements. A striking example is given by the set N of natural numbers {0,1, 2, 
…} and the set E of even numbers {0, 2. 4. …}. Let f: E → N be given by f(x) = x 
÷ 2. This is indeed an injective function (recall that all basic arithmetical operations 
are functions). Let, then, y ∈ N. In order to show that f is surjective we need to find 
an element x of E such that f(x) = y. Well, since y ∈ N, then 2y is an even number, 
and so it is an element of E. Moreover, f(2y) = 2y ÷ 2 = y. And this shows that f is 
also surjective. So, despite appearances to the contrary, there are as many natural 
numbers as there are even numbers. 

But bijective functions are also important from an epistemological point of 
view, a fact that we will use extensively when presenting the categorical version of 
the axiom of separation. It often happens, like in the above example, that the 
bijective function is given or defined in such a way that it allows to construct an 
object or element of the codomain from an element of the domain, and vice versa, 
even when these elements are not numbers but more complicated mathematical 
objects. And this in turn allows to rethink or reconceptualize a mathematical 
object, sometimes in simpler ways that are more amenable to mathematical 
calculations. In this way, one can move back and forth from two different ways of 
conceiving of some mathematical object, according to one’s needs. 

Let us consider now an arbitrary set A. We can always define a function with 
domain and codomain the set A itself, namely, the function f: A → A given by f(x) 
= x for all x ∈A26. This function is called identity on A and it is usually denoted by 
“idA”. And given any two functions where the codomain of one is the same as the 
domain of the other function 
 

f: A → B    and   g: B → C 
 

                                                           
26If the set A is empty, then this is vacuously true. 
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we can always define another function, called their composition, with domain A 
and codomain C. For suppose that x ∈ A. Therefore f(x) ∈ B and hence we can 
apply g to this element of B, g(f(x)), obtaining in this way an element of C: 
 

gf : A → C 
fg(x) = g(f(x)) ∈ C 

 
For example, let us consider again the set of natural numbers N = {0, 1, 2, 3, 

…}  and the set E of even numbers {0, 2, 4, 6, …}. Let  f: N → E and g: E → N 
be defined as follows for each x ∈ N and each y ∈ E 
 

f(x) = 2x   and   g(y) = y + 3 
 

Let us now take, say, the element 7 ∈ N. Then 
 

f(7) = 14  and hence g(f(7)) = g(14) = 14 +3 = 17. 
 

More generally, for any x ∈ N, fg(x) = 2x + 3. And this is certainly a function 
from N to N since there is no natural number x for which 2x + 3 would give us two 
different results. 

Let us again consider two arbitrary functions f: A → B and g: B → C and 
suppose we also have a third one, say h: C → D, where D is just another arbitrary 
set. Since the codomain of the composition gf : A → C is the same as the domain 
of h, we can again compose these two functions 
 

h(gf): A → D. 
 

But we can also consider the composition of just g: B → C g: B → C with h: C → 
D: 
 

hg: B → D. 
 

And we can now compose f: A → B with hg: B → D, thus obtaining another 
function from A to D:  
 

(hg)f : A → D. 
 

When the sets involved are sets of numbers and the functions are defined by 
the usual basic arithmetical operations, h(gf): A → D and (hg)f : A → D are the 
same function. However, when one takes the concept of function as primitive (as it 
is done in the categorical approach), the equality h(gf) = (hg)f must be postulated 
as an axiom. The equality h(gf) = (hg)f is called associativity of composition. 

Finally, let A, B and C be given sets, and let idB: B → B, f: A → B and g: B → 
C.  We then have the compositions 
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(idB)f : A → B  and  g(idB): B → C. 
 

Consider now an arbitrary x ∈ A and an arbitrary y ∈ B. Then, by the 
definition of identity functions, we have the following equalities 

 
(idB)f(x) = f(x) and g(idB(y)) = g(y). 

 
That the equalities (idB)f = f and g(idB) = g actually hold, is also postulated as 

an axiom in the categorical approach. Existence of composition (as long as the 
codomain of one function coincides with the domain of the other one), existence 
of identities for every set, associativity of composition, and these two last 
equalities constitute the basic axioms when the concept of function is taken as 
primitive. As we shall see in the next section, there are other axioms that 
characterize the category of sets (and thus distinguish it from other categories). But 
before presenting the categorical approach, we need to look at a few more special 
kinds of functions. 

Let us consider an arbitrary set A, a set with just one element, for example, 
the set {∅}, and a set with exactly two elements, for instance, the set {∅, {∅}}. 
Let us call ‘t’ any one of the elements of the set {∅, {∅}}. For example, we can le 
t = ∅. We can now define a function f with domain A and codomain the one-
element set {t} = {∅} by simply letting f(x) = t for all x ∈ A. Moreover, this is the 
only function from A to the set {t} since there are no other elements in {t} that we 
can assign to the elements of A. This result is in fact more general: for any one-
element set and any given set A, there is always one and only one function from A 
to the one-element set. 

Let us now consider functions from the one-element set {t} to A. We have 
that, for each x ∈ A, we can define a function fx: {t} → A by letting fx(t) = x. But 
conversely too. Each function g: {t} → A determines a unique element of A, 
namely, g(t) ∈ A. This bijective correspondence between functions from a one-
element set to A and elements of A, is the point of departure for reconceptualizing, 
in categorical terms, the notion of element, as we will see in the following section. 

Suppose now that we are given a function f from A to the two-element set {t, 
{∅}}. By Axiom III, the collection of all x ∈ A such that f(x) = t is a subset of A, 
even when there is no x ∈ A such that f(x) = t, for in this case the subset of A in 
question would be the empty set. At the other extreme, if f(x) = t for all x ∈ A, then 
the subset in question would be A itself. Intuitively, all the cases in between these 
two extremes, should give us all of the subsets of A. In other words, there is a close 
connection between all functions from A to the two-element set {t, {∅}} and 
subsets of A. Indeed, given a subset S of A, we can always define a function fS 
from A to the set {t, {∅}}: for any given x ∈ A, we simply let fS (x) = t if and only 
if x ∈ S. This (bijective!) correspondence between subsets of A and functions from 
A to a two-element set is at the heart of the categorical version of the axiom of 
separation, as we will shortly see.  

There is one more relationship we need to look at between the concept of 
function and the notion of subset. Consider any two sets A and B. If A is a subset 
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of B, we can always define a function i: A → B by simply letting i(x) = x for all x 
∈ A. And this function is clearly injective. But moreover, if we are given an 
injective function, say j: C → B, then it determines (by Axiom III) a subset of B, 
namely the set 
 

{y ∈ B | there is x ∈ C such that y = j(x)} = { j(x) ∈ B | x ∈ C }. 
 

Thus we have a correspondence between, on the one hand, subsets of a given 
set and, on the other hand, injective functions with codomain the set in question27. 
And this correspondence is bijective. It will be useful to keep in mind this 
observation when we come, in the next section, to the definition of subset in the 
categorical approach. 
 
 
The Category-theoretic Approach to Sets 
 

Category theory is a branch of mathematics that is nowadays at the forefront 
of developments in the foundations of mathematics28. It is a highly abstract theory 
so I hope this section can also serve the purpose of giving a first approximation to 
it.  

As mentioned earlier, the categorical approach starts from axiomatizing the 
concept of function or, as I will call it from now on, map. Maps always come 
“attached” to two objects29, one called its domain and the other one its codomain. 
So the concepts of domain and codomain are also primitive. Certainly, any given 
object can be the domain of one map but the codomain of another map. The point 
is that the properties of these domains and codomains will be given, not in terms of 
their elements, but in terms of maps from and to them30. As it is usual in category 
theory, either notation: 
 
                        f  

f: A → B   or     A → B 
 

stands for “f  is a map with domain A and codomain B”. 
The categorical approach to set theory starts then from what in LR are called 

abstract sets (or simply sets) and certain maps between them. The first three 
axioms capture the basic properties of functions presented in the previous section. 

 
  

                                                           
27Notice that the set { j(x) ∈ B | x ∈ C } is a subset of B, not of C, where B is the codomain of the 
injective function j: C → B. 
28The title of Landry (2017) is a good testimony to this. It also contains a wealth of references 
concerning relatively recent debates on categorical foundations for mathematics. 
29The word ‘object’ in this context is a technical term referring exclusively to the domains and 
codomains of maps or, as they are called in general, ‘morphisms’ of a category. 
30In fact, not all categories are categories of sets. For example, given any category, one can always 
form the category whose objects are the maps or, more generally, morphisms of the given category. 
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Axiom (Existence of Composition and Identity Maps) 
 
Every map has associated a set called its domain and a set (not necessarily 

distinct from the domain) called its codomain. 
For any given maps f: A → B and g: B → C, there is a map gf: A → C called 

their composition (there may of course be other maps from A to C besides the 
composition map gf). 

For any given set A, there is a map idA : A → A, called the identity map on A 
(besides this identity map, there may also be other maps from A to A). 
 
Axiom (Associativity of Composition) 
 
For any given maps f: A → B, g: B → C and h: C → D, (hg)f = h(gf). 
 
Axiom (Identities are Neutral with Respect to Composition) 
 
For any given map f: A → B, f(idA) = f and (idB)f = f. 
 
Axiom (Terminal Set) 

 
There is a set, denoted by 1, with the property that for any given set A there is 

one and only one map A → 1 from A to 1. This special map is denoted by the 
symbol !A. 

 
The set-theoretic counterparts of this set 1 are, as we saw in the previous 

section, the one-element sets. In that section we also saw that there is a bijective 
correspondence between functions from one-element sets to an arbitrary set A and 
elements of A. So we have the following  
 
Definition (Elements of Sets) 

 
Let A be an arbitrary set. Then an element of A is a map 1 → A31. 
By the definition of the set 1, there is only one map from 1 to itself, the 

special map denoted by !1; 1 → 1. But by an axiom, there is also the identity map 
id1: 1 → 1 from 1 to itself. So, the special map !1 and the identity map id1 must be 
the same. In this way we arrive at our first theorem: 
 
Theorem 
The set 1 has exactly one element. 

�. 
                                                           
31One interesting consequence of this definition, which I hope can serve as a motivation for the 
concept defined below of ‘membership in a part of a set’, is that if A and B are different, then they 
cannot have any elements in common: for if a: 1 → A is an element of A, it cannot be equal to any 
element 1 → B because the codomains of these maps are, by hypothesis, different from each 
other—recall that a necessary condition for two functions to be equal is that they at least have the 
same domain and the same codomain. 
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For the counterpart of subset in the category-theoretic approach, we need the 
following definitions: 

 
Definition (Monomappings) 

 
Let A and S be given sets and let m: S → A be a given map. Then m is a 

monomapping if the following holds: for any given set T and any given maps f1: T 
→ S and f2: T → S  
 

if mf1 = mf2 then f1 = f2.  
 

If in the above definition we take T as the set 1, we arrive at the categorical 
version of injective function. The generality of the definition is due to the fact that 
concepts in category such as that of monomapping are defined for arbitrary 
categories, so in particular for categories that may not have a terminal set or, even 
more generally, that are not about sets at all.  

In the previous section we saw that for any given set B there is a bijection 
between its subsets and injective functions with codomain B. We now make use of 
this bijection to reconceptualize in terms of maps the notion of subset. 
 
Definition (Parts of Sets) 

 
Let A be a given set. Then a part of A is a monomapping with codomain A. 
 
Since identity maps are monomappings, every set is a part of itself.  
For any given set A, maps in general with codomain A are called generalized 

elements of A and they contrast with what are called global elements of A, that is, 
maps with domain a terminal object and codomain A. The definition of 
membership in a part (like the definition of monomapping), in LR is given for 
generalized elements, partly because it is meant to apply in arbitrary categories. 
However, and for the purposes of keeping close the analogy with Zermelo’s 
axioms, I will confine the following definition to the case of maps with domain the 
terminal object 1. 
 
Definition (Global Membership in a Part) 
 

Let A and U be given sets, a: 1 → A an element of A and m: U → A a part of 
A. Then we say that a is a member of the part m of A, if there is an element of U 

 
ma: 1 → U 

 
such that the composition mma: 1 → A is equal to the map a: 1 → A.  

 
When an element a: 1 → A is a member of a part m: U → A of A, we write a 

∈A m. We could think of the above definition as saying that if the element a: 1 → 
A of A is a member of the part m: U → A of A, then there is an element me: 1 → U 
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of U that m interprets as the element a: 1 → A of A in the sense expressed by the 
equality mma = a. The map ma: 1 → U may also be thought of as a “witness” of 
the fact that a: 1 → A is indeed a member of m: U → A. 

In order to be able to incorporate Zermelo’s semantic notion of “definite 
property” within the theory, that is to say, without appealing to syntactic notions 
such as “expressions in a first-order language”, we need the following 
 
Axiom (Truth-value Set) 

There is a set, denoted by 2, with exactly two elements, t: 1 → 2 and b: 1 → 
232.  

The key idea is to now think of the elements of 2 as truth-values; that is why 
one of them (it really does not matter which one) is usually called t for “true”. 
Now, in order to capture the bivalence of Zermelo’s definite properties, we make 
the following  
 
Definition (Properties of Elements of a Set) 
 

Let A be a given set. Then a property of elements of A is a map from A to 2. 
 
Notice that what this definition implies is what Zermelo’s definite properties 

do: they divide a set into two mutually disjoint parts which together exhaust the 
whole set; one part consists of those elements of the set that are assigned the map 
or value t, that is, those that do have the property in question, and those elements 
that are assigned the other element or value b: 1 → 2 of 2, that is, those elements 
that do not have the property in question, as the following diagram illustrates 
 
Figure 3. Venn Diagram of a Property of Elements of a Set A 
 
                                A                                                                 2 
 

                                                                                  t 
                                                                                  
 
                                                                                b 
 
 
 
Given a set A, an element x: 1 → A and a property ϕ: A → 2 of elements of A, 

to say now that x has property ϕ is to say that the composition ϕx: 1 → 2 is equal 
to the element “true” t: 1 → 2 of 2. By simply being maps with codomain this 
special object with exactly two elements, it is always definite tout court whether 
any given element of the domain has or does not have the property in question. 
More precisely, the composition 

                                                           
32The formulation in LR of this axiom is different. I changed it since the original one requires more 
concepts than are necessary for the exposition. See LR, pp. 19, 27–28. 
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ϕx: 1 → 2 
 

has the same domain and the same codomain as the only two elements of the set 2. 
So the map ϕa: 1 → 2 must be equal to one and only one of these two elements of 
the set 2. In other words, it must be equal either to the truth value true or to the 
truth value false. In the first case, we will say that the element a: 1 → A of A has 
the property ϕ: A → 2, and in the other case we will say that it does not.  

As we saw in the previous section, there is a bijection between subsets of any 
given set M and functions from M to any two-element set, functions which now in 
this context correspond to properties of elements of M. We will now characterize 
this bijection in more precise terms. Consider then a part i: U → A of A and a 
property ϕ: A → 2 of elements of A. What we want to capture solely in terms of 
maps is the idea that a: 1 → A is a member of the part i: U → A if and only if a: 1 
→ A has the property ϕ: A → 2. And to say in terms of maps that a: 1 → A has the 
property ϕ: A → 2 is to say that the composition ϕa: 1 → 2 is equal to the truth 
value true t: 1 → 2. In other words, we simply say that the equality ϕa = t  holds, 
which in turn we can rephrase by saying that the statement “a has property ϕ” is 
true. The following definition is given in LR in terms of generalized elements but, 
again only for the purposes of this discussion, I give it only terms of global 
elements. The definition is the category-theoretic way of expressing that “the 
element a of A has a certain property ϕ if and only if a is a member of the part i: U 
→ A”. 
 
Definition 
 

Let A be a given set, i: U → A a part of A and ϕ  a map from A to the set 2. 
We say that ϕ: A → 2 is a characteristic function of the part i: U → A if for any 
element a: 1 → A of A, the following holds 
 

a ∈A i if and only if ϕa = t 
 

In other words, a map or property ϕ : A → 2 is a characteristic function of a 
part i: U → A of A if, for any element a: 1 → A of A, a ∈A i if and only if a has the 
property ϕ. We can now state the category-theoretic version of Zermelo’s axiom 
of separation. 
 
Axiom (Properties and Parts of Sets) 
 

Let A be a given set. Then any property ϕ : A → 2 of elements of A is the 
characteristic map of a part of A. And any part of A i: U → A has a unique 
characteristic map ϕi : A → 233.  

 
                                                           
33Given a property ϕ: A → 2, the part of A corresponding to it is sometimes denoted as {x | ϕ } (see, 
e.g., Goldblatt 1984, p. 107). 
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This axiom expresses exclusively in terms of the semantic notion of map, the 
bijection that, as we saw, exists (via the axiom of separation) within Zermelo’s set 
theory between subsets of a given set and functions from  it to a two-element set. It 
thus establishes a clear and close connection between properties of elements of a 
set with its subsets or parts, the connection I believe Zermelo intended to express 
with his notion of definite property. 

The axiom that characterizes the particular set 2 is a special case of a more 
general concept called subobject classifier which some categories have and some 
do not. I am not claiming that this concept arose with the purpose of clarifying 
Zermelo’s notion of definite property, it did not (see e.g., McLarty 1990). What I am 
claiming is that by taking seriously Zermelo’s emphasis on the semantic aspect of 
the axiom of separation, one can see the particular subobject classifier: 

 
                   t               b  

1 → 2 ← 1 
 

as removing the imprecision in Zermelo’s notion of definite property while at the 
same time keeping its semantic spirit, thus showing an instance of mathematics’ 
own process of evolution. For category theory arose almost 40 years later than 
Zermelo’s axiomatization and it was not until 1964 when the first categorical 
approach to set theory was published. Moreover, the last axiom does not, unlike 
Zermelo’s axiom of separation, make any references to a background logic nor to 
other axioms of the theory (except, of course, an implicit but necessary reference 
to the axioms characterizing the sets 1 and 2). 
 
 
Concluding Remarks 
 

As mentioned previously, it was not until 1929 that Zermelo responded to the 
proposed solutions concerning the vagueness in his concept of definiteness. 
Regarding a solution like Skolem’s, Zermelo writes: 
 

[…] It is not concerned with the proposition itself but its formation or generation […] 
It runs counter to the nature of the axiomatic method and therefore it is really, in my 
opinion, just as out of place in any axiomatics […] (Zermelo 1929, p. 363, emphasis 
in the original).  

 
What Zermelo wanted was an axiomatic characterization of the concept of 

definiteness, where ‘axiomatic’ contrasts with what he called ‘genetic’ or 
‘constructive’. Genetic accounts of the notion of definiteness are precisely those 
that are concerned with the formation of expressions of an underlying object 
language. So what he did was to give axioms characterizing the concept of 
definiteness as a system closed under the logical connectives and the quantifiers. 
Using modern notation, this system is axiomatized as follows34:  

                                                           
34I am omitting the clause concerning quantification over propositional functions since it seems 
unnecessary for the purposes of this discussion. 
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Let B be a domain and R a system of fundamental relations written as r(x, y, 
z, …), where the variables x, y, z, … range over the domain B. Then we say of a 
proposition p that it is “definite with respect to R”, and write Dp, if the following is 
the case: 
 

I. Dr(x, y, z, …) for every relation r of R and any variables x, y, z, … 
ranging over the domain B. In other words, all fundamental relations are 
definite. 

II. If Dp holds, then also D(¬p) holds. Definiteness is closed under negation. 
III. If both Dp and Dq hold, then so do D(p∧q) and D(p∨q). Definiteness is 

closed under conjunction and disjunction. 
IV. Let f(x, y, z, …) be a propositional function with free variables x, y, z, … 

ranging over the domain B. If Df(x, y, z, …) holds for all x, y, z, …, then 
so does D(∀x, y, z, … f(x, y, z, …)). Likewise, if Df(x, y, z, …) holds for 
all x, y, z, …, then so does D(∃x, y, z, … f(x, y, z, …)). Definiteness is 
closed for propositional functions under universal and existential 
quantification. 

V. If P is the system of all “definite” propositions, then it has no proper 
subsystem P1 that, on the one hand, contains all fundamental relations 
from R, while already including, on the other hand, all negations, 
conjunctions, disjunctions and quantifications of its own propositions and 
propositional functions. Thus P is the largest system containing all and 
only definite propositions. Any proposition not obtained by this inductive 
procedure would not count as definite35.  

 
It is clear that this axiomatization of a system of definite proposition is the 

semantical counterpart of the inductive characterization of a first-order formula or 
expression, for we should bear in mind that Zermelo’s “pre axiomatic” notion of 
definite proposition is still semantic, that is, even 21 years after the publication of 
his “Investigations in the foundations of set theory I”, a definite proposition is for 
him one that is either true or false and never both (and of course, what determines 
what its truth value is, are the axioms and the universally valid laws of logic). His 
thorough reluctance to place the focus on the syntax, together with his insistence 
on the truth value a definite proposition always has, makes Zermelo’s axiom of 
separation close in spirit to its categorical formulation. It is unfortunately beyond 
the scope of this paper to explain how, given two properties ϕ, ψ: A → 2 of 
elements of A, their corresponding negations, their conjunction and their 
disjunction are also properties of elements of A and hence correspond to certain 
parts of A36.  

                                                           
35Before giving this axiomatization, Zermelo briefly discusses models of axiomatic systems and 
says that definiteness is “what is decided in every single model” (Zermelo 1929, p. 361). Although 
models play no role in his axiomatic characterization of the notion of definiteness, this passage 
supports my claim that this notion remained for him thoroughly semantic. 
36Needless to say, the case of the quantifiers is even more complicated, but I believe it can be 
specialized to the category of sets and presented along the lines proposed here. 
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I suggest then that by looking at other of Zermelo’s axioms from 1908 with 
modern mathematical tools such as category theory, one may glimpse a continuum 
of ideas rather than a straightforward repudiation of some of them in favor of new 
ones. Moreover, it seems to me that this way of looking at old mathematics may 
also serve the purpose of teaching and learning new mathematical concepts and 
theories. The case of category theory is of particular importance within philosophy 
for it helps us to take a general and novel look at various parts of mathematics, 
including set theory.  
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