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1 Introduction

Most1 of the arguments usually appealed to in order to support the view that some abstraction
principles are analytic depend on ascribing to them some sort of existential parsimony or ontologi-
cal neutrality2, whereas the opposite arguments, aiming to deny this view, contend this ascription.
As a result, other virtues that these principles might have are often overlooked. Among them,
there is an epistemic virtue which I take these principles to have, when regarded in the appro-
priate settings, and which I suggest to call ‘epistemic economy’. My present purpose is to isolate
and clarify this notion. I shall also try to make clear that complying with this virtue is essentially
independent of complying with existential parsimony or ontological neutrality.

The intimate connection between the analycity of an abstraction principle and its existential
parsimony or ontological neutrality can be questioned and, in my view, the analyticity of such a
principle can be made to depend on its epistemic economy instead. Hence, distinguishing epistemic
economy from existential parsimony and/or ontological neutrality would allow one which denies
that an abstraction principle is existentially parsimonious or ontologically neutral, or keeps an
agnostic view on the matter, to nevertheless maintain that it is analytic, according to some
plausible construal of analyticity.

In my view, an abstraction principle (like any other axiom or definition) is epistemically
economic not because of its logical nature, nor because of some of its other intrinsic features, nor

1I thank Andrew Arana, Jeremy Avigad, Francesca Boccuni, Annalisa Coliva, Sorin Costreie, Michael Detlefsen,
Sébastien Gandon, Guido Gherardi, Emmylou Haffner, Bob Hale, Brice Halimi, Greeg Landini, Paolo Mancosu,
Ken Manders, Daniele Molinini, Julien Ross, Andrea Sereni, Stewart Shapiro, Giorgio Venturi, Sean Walsh, and
David Waszek for useful comments and/or suggestions.

2I am not interested, here, in discussing the relation between existential parsimony and ontological neutrality.
All I shall say of these virtues is independent of this matter.
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even because of its being immersed in certain logical systems, but rather because of its context
of use, that is, the setting and purpose in and for which it is used, when immersed in such logical
systems.

In particular, I shall limit my attention to the use of abstraction principles in formal definitional
contexts, namely to their being involved in different formal definitions of natural and real numbers
(and, incidentally, of integer and rational ones). These definitions are all complex in the sense that
they do not merely depend on a single stipulation, but rather depend on a system of stipulations of
different sorts. The abstraction principles I shall take into account are among such stipulations,
and I will take their being epistemically economic (or not) as being the same as their being
involved in definitions which are themselves epistemically economic (or not). Insofar as all these
complex definitions also include explicit definitions, I will then regard the relevant abstraction
principles being or not being epistemically economic on par with these explicit definitions being
or not being so. Broadly speaking, I take a definition, and the abstraction principles possibly
involved in it, to be epistemically economic if its understanding involves less and/or more basic
intellectual resources than other relevant definitions of the same items, or, in case the required
resources are (nearly) the same, if its understanding is more progressive than that of other relevant
definitions of the same items3.

This explanation is quite rough. In § 2, I shall try to elucidate the notion of epistemic
economy of a formal definition in general. This is a hard task, however. To achieve it, one should
explain, in general, intricate notions such as those of understanding and of intellectual resources
to be deployed to obtain understanding, as well as provide a way to compare the amounts of
the intellectual resources involved in understanding different definitions of the same items, and
their being more or less basic. It is therefore not surprising that I won’t be able to get a general,
clear-cut, unequivocal and compact characterisation of this virtue. I merely hope to make my
general idea reasonably clear, so as to open the road for further enquiries.

In the following §§, I will look at the matter more in concreto, as it were, by considering
different examples and dealing with them in comparative terms. In § 3, I will briefly take stock
of (a part of) the discussion about the analyticity of Hume’s principle (HP, in what follows), by
mainly discussing a neo-logicist argument according to which HP contrasts with Peano axioms
insofar as the latter provide an arrogant implicit definition of natural numbers, whereas the
definition provided by the former avoids arrogance. This is intended to clarify that and how
this discussion essentially focuses on existential issues. In reaction to this, in § 4, I will then
suggest another way to contrast the same definitions, by comparatively assessing their epistemic
costs, and I shall argue that Frege Arithmetic (FA, in what follows)—the neo-logicist version of
second-order arithmetic, involving HP as an axiom—supplies an epistemically economic definition
of natural numbers. In § 5, I will compare four definitions of real numbers, three of which involve

3Plausibly, epistemic economy does not only apply to definitions or parts of them. However, apart from some
short remarks on the epistemic cost of proofs in § 2, I shall not investigate this matter further here.
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abstraction principles, and I will argue that one of the latter is epistemically economic. In § 6, I
will finally offer some concluding remarks.

2 Epistemic Economy

Speaking of epistemic economy might bring to mind Mach’s idea of economy of though ([28],
§V.4, pp. 452-466, esp. §V.4.6, pp. 460-46. E. C. Banks has distinguished two doctrines con-
cerned with this idea ([1], p. 24).The first one pertains to the way in which “science structures
its laws under one another to maximise desirable features”, by grouping “the greatest number of
particular experiences under the least number of super categories and principles”. This doctrine is
“descriptive”, since, for Mach, “nature [. . . ][is] lawlike”, that is, “objective temporal and spatial
patterns exist [. . . ] in nature ready to be arranged under one another”. The second doctrine
is normative, instead, since it pertains to “the role of economy in the framing of basic laws”.
But normativity here essentially depends on our cognitive faculties, mainly memory, since “the
emergence of general concepts and laws” is explained by Mach in terms of “memory’s operation
over traces” (ibid., p. 31). This second doctrine was the target of Husserl’s allegation of psy-
chologism ([25], ch. 9). According to Husserl, when speaking of economy of though, Mach was
“ultimately” bearing on “a branch of the theory of evolution”, with the result that his “attempts
to found epistemology on an economy of thought ultimately reduce[d] to attempts to found it on
psychology” ([26], vol. I., p. 128). To these attempts, Husserl opposed a different program. He
focused on the “thought-economy which occurs in the purely mathematical discipline, when gen-
uine thought is replaced by surrogative, signitive thinking”, from which “almost without specially
directed mental labour, deductive disciplines arise having an infinitely enlarged horizon”, and
envisioned undertaking a detailed investigation of the different methods allowing this “economic
achievement” (ibid., pp. 127-128).

What I mean by epistemic economy stands between Mach’s descriptive doctrine and Husserl’s
program. On the one hand, I do not endorse the claim that objective patterns (whatever they
might be) already exist in nature “ready to be arranged under one another”, but I agree that a
scientific theory, as well as a mathematical one, results from a certain way of structuring some ap-
propriate prior material. On the other hand, I do not endorse the ideas that, in pure mathematics,
“genuine thought is replaced by surrogative signitive thinking”, and that “deductive disciplines”
require almost no “specially directed mental labor”, but I agree that formal mathematical theories
use signs, or, better, appropriate formal languages, to render a previous informal thinking.

To be more precise, I take mathematics to result from our intellectual activity and consequently
consider that achieving a mathematical task depends on deploying some intellectual resources. I
view formal theories as convenient means for expressing and controlling abstract thinking. More
precisely, I consider that the purpose of a formal theory is to re-cast a certain piece of our
informal knowledge in such a way that the different ingredients involved in this theory are so
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arranged that it becomes transparent what rests on what. Hence understanding a formal theory,
or any component of it (for example a definition, a theorem, or a proof), consists, in my view,
in recognising it as re-casting the relevant pieces of some informal knowledge in such a way that
its different ingredients—which are, in turn, to be recognised as re-casting some pieces of our
informal knowledge —obey a certain arrangement. Moreover, I take the intellectual resources
involved in this understanding to be those that are required to achieve this recognition. Thus,
a formal theory or any of its components are, in my view, epistemically economic if they are
so shaped that achieving such a recognition in the relevant case calls for less and/or more basic
intellectual resources than in the case of other theories or comparable components of them, or, if
these resources are (nearly) the same in both cases, when they come about in the former more
progressively than in the latter4. This means that the former theory (or component) re-casts
the relevant piece of our informal knowledge by also re-casting for this purpose less and/or more
basic other pieces of our informal knowledge than the latter theory, or do it by re-casting more
progressively (nearly) the same pieces of our informal knowledge.

One could go further and maintain that a formal theory, or any of its components are as epis-
temically economic as possible, or utterly epistemically economic if achieving such a recognition
relatively to them calls for as few and/or as basic intellectual resources as possible, that is, if
they re-cast the relevant piece of our informal knowledge by also re-casting for this purpose as
few and/or as basic other pieces of our informal knowledge as possible. Determining whether this
last condition occurs would require a modal appraisal that could be difficult. I therefore conform
to the former, weaker, account.

As an example (to which I shall come back in §§ 3 and 4), consider FA. It is intended to
re-cast informal arithmetic, and it appeals, for this purpose, to an appropriate re-casting of
several informal notions, like those of an object and of a first-level concept5, that of identity for
objects, that of the falling of an object under a (first-level) concept, etc. (cf. § 4, for a more
comprehensive inventory). For short, we could say—and, indeed, I shall use this way of speaking,
in what follows—that understanding FA calls for these notions. This means that understanding
FA depends on recognising it as re-casting informal arithmetic by also re-casting all these notions
according to a certain arrangement. Arguing that FA is epistemically economic is the same as
arguing that these notions are fewer and/or more basic than those on the re-casting of which
the understanding of other current formal theories (especially second-order ones), which are also
intended to re-cast informal arithmetic, depends on. This means that FA achieves this task by also

4By this, I mean that the relevant resources, or a significant part of them, come about in the former case in
agreement with an order in which some conceptually depend on others but not vice versa, whereas they come
about in the latter case all together at once.

5Here, I adopt the current neo-logicist interpretation of monadic predicate variables as ranging over first-level
concepts. Mutatis mutandis, one could go for another option and interpret such variables as ranging over properties
of objects. If first-level concepts are conceived as they are by neo-logicists, then it does not seem to me that this
would make any significants difference.
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re-casting for this purpose fewer and/or more basic informal notions than these other theories.
It appears to me that, thus conceived, the notion of epistemic economy comes close, although

in a different setting, to one of Frege’s crucial concerns.
Famously, Frege considered a truth to be analytic if, in its proof, “one only runs into logical

laws and definitions” ([14], § 3; I slightly modify the translation offered in [16]). By ‘definitions’
Frege clearly meant explicit definitions, and, for him, an explicit definition could certainly not
be used to introduce new items and, a fortiori, for positing their existence. Together with the
presently common view that a logical law can have no existential import, this could lead to the
conclusion that Frege’s pursuit of analyticity is a pursuit of existential parsimony. However, his
conception of logic6 suggests another view. He distinguished second-order logic as such, neither
from first-order, nor from propositional logic, thus failing to grasp (or avoiding to emphasise) the
essential difference (mainly in matters of ontology) we see between them. Moreover, he did not
conceive of comprehension as a specific condition to be met through the admission of specific
axioms, but rather came to results analogous to the ones we obtain by comprehension through
the apparently innocent adoption of unrestricted rules of substitution in language. Finally, he
candidly embraced the notion of a logical object. He took his logical language to be meaningful,
and included under his (quite generic) notion of a law of logic both statements written in what
is for us a purely logical language, and others involving what is for us a non-logical vocabulary.
He was then perfectly comfortable with the idea that fixing the laws of logic comes together with
ensuring (or revealing) the existence of some logical objects. Hence, restricting a proof to rely
only on logical laws and (explicit) definitions was, for Frege, less a way of pursuing existential
parsimony, than a way of limiting the tools to be used in conducting a proof. A similar concern
also appears both in his notion of aprioriness—according to which a truth is a priori if it admits
a proof that “proceeds as a whole from general laws which neither need nor admit a proof”—and
in his claim that the question of whether a truth is a priori or a posteriori, analytic or synthetic
is settled by “finding [. . . ][its] proof and tracking it back up to the original truth” (ibid.). Frege’s
main purpose was, then, that of tracking arithmetical truths back to the minimal tools required
to prove them.

This was for him a way to identify the place of these truths within the objective general
order of truths, which he was aiming to reconstruct. Once the idea that there exists such an
objective order is dismissed, and epistemology is no longer understood to be concerned with
the reconstruction of such a putative order, but rather with the activity that human subjects
perform in order to constitute a body of knowledge, and with the resources to be deployed to
this end, probative tools appear as part of these resources, and minimising the former results in
an effort to economise the latter. Moreover, once epistemology is so conceived, proofs appear less
as procedures for discovering actual truths than as arguments for obtaining conclusions starting
from some assumptions or from other previously established conclusions. Hence, assessing the

6Regarding my appraisal of Frege’s conception of logic, I refer the reader to [6].
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tools required to conduct a proof appears less as a way to estimate the objective role of a certain
truth than as a way to evaluate the epistemic cost of reaching a certain conclusion within the
relevant theory, namely the intellectual resources that are to be deployed within this theory to
fix a certain thought. When replaced in such a framework, his concern for whether a truth is a
priori or a posteriori, analytic or synthetic comes close to a concern for epistemic economy.

Still, whereas Frege’s concern seems to point to the epistemic cost of the proofs involved in
the relevant theories, that is, to the resources to be deployed to understand these proofs, I rather
focus on the epistemic cost of the definitions that make these proofs possible, that is, on the
resources to be deployed to understand these definitions, independently of the proofs they give
rise to.

3 Arrogant vs. Non-Arrogant Implicit Definitions

I begin my enquiry by considering the neo-logicist definition of natural numbers.
Even though most discussions of this definition focus on HP, there is more in the former than

the mere stipulation of the latter. For the definition to work, a previous definition of objects
and first-level concepts is required. Immersing HP in a suitable system of second-order logic
simply makes this definition available. Whether explicitly mentioned or not, objects and first-
level concepts are taken in the former definition to be implicitly defined by this system, as the
items which its individual and monadic predicate variables are supposed to respectively range
over, by admitting that the existence of the latter is ensured by comprehension. Once objects
and first-level concepts are thus defined, HP acts as the implicit definition of a function taking the
latter and giving a particular kind of the former, namely numbers of first-level concepts, that is,
cardinal numbers. To go from these numbers to natural ones, one has to extend comprehension to
formulas including the functional constant designating this function, and to rely on this extension
to state some explicit definitions, which allows to single out the natural numbers from the cardinal
ones7.

In this context, the neo-logicist thesis that HP is analytic admits two different readings.
According to one of them, that which is claimed to be analytic is HP as such, merely conceived
as providing an implicit definition of a function inputting first-level concepts and outputting
cardinal numbers. According to the other reading, that which is claimed to be analytic is the
whole system of stipulations providing the definition of natural numbers, i.e. the whole FA,

7Taking the relevant system of second-order logic to implicitly define first-level concepts (or properties of objects:
cf footnote 5, above) is not mandatory. One might merely take HP as an implicit definition of a functional constant
inputting monadic predicates and outputting terms. But in this case, adding this principle to the axioms of such a
system of logic would merely result in introducing appropriate numerals, rather than in defining cardinal numbers.
These numerals being given, defining natural numbers would then require much more than merely singling the
latter out among the former, since this selection would at most provide a family of terms.
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including the explicit definitions allowing to single out natural numbers among cardinal ones. For
brevity, let us term this thesis ‘weak neo-logicist analyticity thesis’ if it is taken under the former
reading, and ‘strong neo-logicist analyticity thesis’, if it is taken under the latter one. Insofar as
FA involves comprehension extended to formulas including the functional constant introduced by
HP, the weak thesis appears, at least at first glance, more plausible than the strong one. Still, it
is only by endorsing the strong one that it can be argued that the neo-logicist definition of natural
numbers results in a vindication of Frege’s logicist program, as neo-logicists claim. It therefore
seems that whatever the arguments for or against the analyticity of HP might be, for them to
be fully relevant for our appreciation of this program, and, more generally, for the philosophy of
arithmetic, they have to be for or against the strong thesis.

This is the case of the argument against the analyticity of HP which is most often repeated
and considered as convincing. Shortly, its point is that HP cannot be analytic since for it to hold
there must be infinitely many objects ([4], p. 306)8. But, as remarked by Boolos himself, there
is something biased in this argument, since, in Boolos’s words, “one person’s tollens is another’s
ponens, and Wright happily regards the existence of infinitely many objects, and indeed, that of
a Dedekind infinite concept, as analytic, since they are logical consequences of what he takes to
be an analytic truth” (ibid.). This is reminiscent of Frege’s view that natural numbers are logical
objects since their existence is required for some proper names to refer, and these names actually
refer since this is in turn required for some logical truths to be true.

But, one might retort, if natural numbers are logical objects or their existence analytic, then
(second-order) Peano axioms, when conceived as categorical implicit definitions of these numbers,
should be logical or analytic truths. And, if Peano axioms are so, why should appealing to HP
to define natural numbers be preferable to merely stating these axioms? The obvious answer is
that defining natural numbers though HP allows us to recognise that natural numbers are logical
objects or their existence analytic, since it is the possibility of this very definition that makes it is
so, whereas this is not the case for the definition of natural numbers appealing to Peano axioms9.

This could lead one to think that the crucial point under discussion does not concern existential
issues but rather an alleged intrinsic difference between HP and Peano axioms—namely, the
former having a virtue (apparently an epistemic one) that the latter do not have—, which does
not depend on their respective truth requiring or not requiring the existence of some objects, that
is, on their having or not having an ontological import for objects10. However, when one looks at

8This argument questions the strong neo-logicist thesis since it is only in presence of second-order logic with
comprehension appropriately extended, and of appropriate explicit definitions, that the existence of infinitely many
objects follows from HP (through the admission of appropriate explicit definitions).

9Of course, the existence of natural numbers being analytic is strictly not the same as their being logical objects,
as well as a truth being logical is not the same as its being analytic. These important distinctions are not relevant
for the issue under discussion and it is then not necessary to insist on them here.

10For short, I say that a stipulation, or a system of stipulations, has an ontological import for objects if the
truth of this stipulation, or these stipulations, requires the existence of some objects.
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the situation more carefully, this appearance dissipates.
To see this, consider how Hale and Wright account for the relevant difference they see between

HP and Peano axioms. Their main point is that the definition of natural numbers provided by
the latter is arrogant, while the one provided by the former is not. The point is made on different
occasions, but it receives particular emphasis in [20] and [22].

The former paper mainly focuses on implicit definitions. These are taken to include two parts:
an unsaturated “matrix” formed by “previously understood vocabulary” (or possibly only by
logical-constants and variables or schematic letters), and the defininedum or definienda to be
inserted in this matrix, so as to form a well formed sentence or system of sentences (ibid. pp. 285
and 289)11. It is then arrogant if “the antecedent meaning” of the matrix and “the syntactic type”
of the definiendum or definienda are such that the truth of the relevant sentence or sentences
“cannot justifiably be affirmed without a collateral (a posteriori) epistemic work” (ibid., p. 297).

To this general characterisation, a sufficient and a necessary condition for an implicit definition
not to be arrogant are added. If I understand it correctly, the former (generally stated at pp. 314-
315) goes as follows: let ‘f ’ designate a definiendum and let ‘S (f)’, ‘SI ’ and ‘SE’ be three
appropriate sentences or schemes of sentences, the first of which includes one or more occurrences
of ‘f ’, while the two others include no occurrence of ‘f ’ and of any constant designating another
definiendum; and the third does not “introduce [any] fresh commitments”; then, for an implicit
definition of f not to be arrogant, it suffices that it results from stipulating the truth either
of ‘SI ⇒ S (f)’, or of ‘S (f) ⇒ SE’, or of both (ibid., pp. 299 and 302). Hale and Wright
seem, here, to imply that the mere conditional form of these sentences or schemes of sentences is
enough to ensure that their truth can “justifiably be affirmed without a collateral (a posteriori)
epistemic work”. But why this is so? The necessary condition suggests a response, at least for
the case to which it applies. According to it, in order to avoid arrogance “the stipulation of the
relevant sentence as true ought not require reference for any of its ingredient terms in any way
that cannot be ensured just by their possessing a sense” (ibid., p. 314). It seems, then, that,
according to Hale and Wright, in the cases where ‘S (f)’ includes some constant terms involving
‘f ’, possibly schematic ones (that is, ‘f ’ is either an individual or a functional constant), the
conditional form of ‘SI ⇒ S (f)’ and ‘S (f)⇒ SE’ ensures that the truth of these very sentences
or of their relevant instances does not require (as a necessary condition) that these terms or their
corresponding instances refer in a way that were not possibly ensured by their acquiring a sense
thanks to the very stipulation of such a truth. This means that it is not a necessary condition for
these sentences or their relevant instances to be true that some objects exist. Hence, the relevant
“collateral (a posteriori) epistemic work” is that which would be required to ensure that these
objects exist.

11As a matter of fact, Hale and Wright only consider the case of definitions given by a single sentence including
a single definiendum, but the generalisation to the case of systems (or conjunctions) of sentences including more
definienda is as natural as it is necessary to adapt the account to the case of Peano axioms.
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This point well applies to HP and Peano axioms (perhaps too well to not generate the suspicion
that it is taken ad hoc). Suppose that ‘f ’ stands for the functional constant ‘#’, ‘S (−)’ stands
for ‘−P = −Q’, and ‘SI ’ and ‘SE’ both stand for ‘P ≈ Q’ (where ‘P ’ and ‘Q’ are schematic
monadic predicates). From the sufficient condition, it follows that stipulating the truth of HP—
namely, ‘#P = #Q ⇔ P ≈ Q’ (where ‘P ≈ Q’ abbreviates a formula of second-order logic
asserting that the objects falling under P and those falling under Q are in bijection)—provides
a non-arrogant implicit definition of the function #, since, for ‘#P = #Q⇔ P ≈ Q’ to be true,
it is not necessary that ‘#P = #Q’ be true, in turn, and, then, that the relevant instances of
‘#P ’ and ‘#Q’ refer in the required way. On the other hand, for any Peano axiom—for example
‘Suc(n) 6= 0’ (where ‘n’ is a schematic individual constant)—to be true, it is necessary that the
constant terms included in it, or their relevant instances—namely ‘0’ and the relevant instances
of ‘Suc(n)’—refer in this way. From the necessary condition, it follows, then, that stipulating the
truth of Peano axioms results in an arrogant implicit definition.

An easy reply to this argument has been suggested by MacFarlane ([27], pp. 454-455). Let
PA be the conjunction of all Peano axioms (in some appropriate form), and CPA the double
implication ‘PA⇔ ∀x (x = x)’. Clearly, CPA is as conditional as HP is, but stipulating its truth
has the very same consequences as stipulating PA’s truth. One could retort that CPA “makes
the existence of [natural] numbers conditional on a logical truth” and is then conditional in a
“Pickwickian sense”. Surely. But “HP, too, makes the existence of [natural] numbers conditional
on logical truths[, and][. . . ] that is precisely why it can serve as the basis of a kind of logicism”.
Moreover, both the left-hand sides of CPA and of HP have “ontological commitments” of which
their right-hand sides are “innocent”. Hence if defining natural numbers through HP avoids
arrogance because of the conditional form of this principle, then defining natural numbers through
CPA should avoid arrogance also.

The answer might be too easy, since the right-hand side of HP is not, as such, a logical truth;
only some of its relevant instances are so. Hence, the truth-conditions of HP do not reduce to
the truth-conditions of its left-hand side, as it is the case for CPA. This is precisely what Hale
and Wright retort to MacFarlane’s objection in [22]: any instance of HP whose right-hand side
is a logical truth “is to be viewed as part of a package of stipulations whose role is to fix the
truth-conditions of statements of numerical identity”; what matters, then, are these conditions,
namely the fact that they are “as feasible as any other purely meaning-conferring stipulations”,
which entails that “there is no need—indeed no room—for any associated stipulation of numerical
existence” ([22], p. 476).

Here, as in the argument of [20], the essential point is that HP has, a such, no ontological
import for objects, since its truth does not require that the relevant instances of ‘#P ’ and ‘#Q’
refer in a way that is not ensured by their acquiring a sense, thanks to the stipulation of this truth,
and, then, that cardinal numbers exist, whereas Peano axioms, as well as their conditionalisation
CPA have such an import, since their truth requires that ‘0’ and the relevant instance of ‘Suc(n)’
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refer in this way, and then that natural numbers exist. To complete the argument, it is then enough
to add that, once the truth of HP is stipulated, the existence of cardinal numbers is revealed by
the ascertainment of the truth of appropriate instances of ‘P ≈ Q’, and that this truth is nothing
but a logical truth (the existence of 0 is, for example, revealed by defining it as the cardinal
number # [x : x 6= x] and by deriving the truth of ‘0 = 0’ from HP and ‘[x : x 6= x] ≈ [x : x 6= x]’,
which is a logical truth).

MacFarlane’s objection does not come alone, however. It is part of a more general argument
intended to show that PA fares as well as HP in all the requirements, other than non-arrogance,
that Hale and Wright advance in [20] for an implicit definition to be acceptable as a meaning-
conferring stipulation, namely consistency, conservativeness, generality, and harmony (supposing
that the non-arrogance constraint is independent of these, which MacFarlane questions, at least
insofar as non-arrogance reduces to conditionality, and Hale and Wright claim, instead: cf. [27],
p. 455, and [22], pp. 467-468) 12. In their reply, Hale and Wright question whether this is the
case for the two last constraints ([22], pp. 466-467), but they do not insist on this point much.
In [22], they mainly insist on the non-arrogance requirement to underline the difference between
Peano axioms and HP, as alleged implicit definitions of natural numbers. They nonetheless seize
the opportunity provided by this new paper to spread more light on this requirement.

They begin by suggesting both a new general characterisation of arrogance, and a new sufficient
condition for it. Their characterisation is the following: arrogance is “the situation where the
truth of the vehicle of the stipulation is hostage to the obtaining of conditions of which it’s
reasonable to demand an independent assurance, so that the stipulation cannot justifiably be
made in a spirit of confidence, ‘for free’ ” ([22], pp. 465). And the sufficient condition is this: “a
stipulation is arrogant just if there are extant considerations to mandate doubt, or agnosticism,
about whether we are capable of bringing about truth merely by stipulation in the relevant case”
(ibid., p. 468). By conversion, this implies that non-arrogant implicit definitions “are ones where
there is no condition to which we commit ourselves in taking the vehicle to be true which we are
not justified—either entitled or in possession of sufficient evidence—to take to obtain” (ibid.).
The point is then concerned with the nature of the “independent assurance” that arrogant and
non-arrogant explicit definitions do and do not require, respectively, and/or of the reasons that
can “mandate doubt, or agnosticism” about our capability of “bringing about truth”, by merely
making the relevant stipulations.

A new argument advanced by Hale and Wright might suggest that this nature does not only
pertain to existential considerations. Leaving their motivations apart, the claim is the follow-
ing: “The stipulation of Hume[’s principle] serves to communicate a singular-thought-enabling

12As a matter of fact, MacFarlane’s paper is also concerned with Hale and Wright’s conception of numerical
definite descriptions as singular terms in relation with the sort of logic that FA actually requires (namely whether
this logic is classical or free). In [22], Hale and Wright also reply to this point, but, though somehow connected
with the question I’m discussing, this matter can be left aside here.
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conception of the sort of objects the natural numbers are and explains their essential connection
with the measure of cardinality. The stipulation of [...] Peano [axioms] communicates no such
conception, and actually adds no real conceptual information to what would be conveyed by a
stipulation of their collective Ramsey sentence” (ibid., pp. 471-472). This is highly questionable,
however, for reasons that do not directly depend on the reading of HP and of the consequent
definition of natural numbers. What Hale and Wright base this conclusion on is their view that
Peano axioms “convey no more than the collective structure of the finite cardinals—something
which since it entails those axioms, Hume[’s principle] also implicitly conveys”; a view that they
specify by claiming that these axioms convey “no conception of the sort of thing that zero and
its suite are” (ibid., p. 471). Still, consenting to this requires admitting that there is something
that natural numbers actually are, besides their forming a progression. In other words, what
Hale and Wright take here for granted is not that there is room for coding these numbers with
appropriate items having a determinate particular essence, but rather that these numbers have a
determinate particular essence. It is only after having consented to this that the discussion can
begin on whether HP conveys this essence, while Peano axioms do not. But consenting to this
is all but anodyne, and no argument for the definitional advantage of HP on Peano axioms can
require this without being biased from the very beginning.

This might be the reason for Hale and Wright’s rapid shift back to existential considerations.
They remark that there is no concern over a possible replacement of HP with its ramsification
(whatever it might be), since “there is no need to (attempt to) stipulate that a suitable function
[i. e. a function satisfying HP] exists”, provided that “the existence of such a function is [. . . ]
a consequence of something known as an effect of the stipulation, viz. Hume’s Principle itself”
(ibid, p. 473). The point here is that HP merely fixes “the truth-conditions of the canonical
statements of numerical identity in which [the operator ‘#’][. . . ] occurs” (ibid.). In other terms,
what really matters is that HP, as well as any abstraction principle suitable for working as an
implicit definition, is “tantamount to legitimate schematic stipulations of truth conditions [. . . ][,
whereas] to lay down [. . . ] Peano [axioms] as true is to stipulate, not truth-conditions, but truth
itself” (ibid., pp. 474). Hence, Hale and Wright go ahead, “as a stipulation, Hume[’s principle]
is considerably more modest than [. . . ] Peano [axioms]: the attempted stipulation of the truth
of [. . . ] Peano [axioms] is effectively a stipulation of countable infinity; whereas whether or not
Hume[’s principle] carries that consequence is a function of the character of the logic in which it
is embedded” (ibid., pp. 475).

Even though it is enriched by a number of collateral considerations, the crucial argument
seems to be the same one already advanced in [20]: what matters, concerning the definitional
advantages of HP over Peano axioms, is that the latter have an ontological import for objects,
better they entail the existence of an infinity of objects, whereas the former has no such import
(and it perfectly works, as it is required to work in FA, without requiring that the existence of
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any function be admitted)13.
For short, call this argument ‘the existential argument’. Taken as such, it seems at most able

to support the weak neo-logicist analyticity thesis, since it merely concerns HP, or better yet,
nothing but the logical form of HP. Moreover, it is just part of the argument that HP acquires
an ontological import for objects when it is embedded in an appropriate logical setting (and, I
add, it is coupled with appropriate explicit definitions). Hence, to support the strong thesis, one
should either advance an independent argument, or admit that the existential argument secures
the weak thesis and infer the strong thesis from it. For this last purpose, one could admit: i) that
a system of stipulations is analytic, even though it has an ontological import for objects, if the
objects whose existence is required by the truth of these stipulations (taken together) are such
that their existence is to be regarded as analytic, in turn; ii) that the existence of some objects
is to be regarded as analytic if it follows from logic, plus some analytic principles, an appropriate
extension of comprehension, and explicit definitions14. It would then be easy to conclude that the
whole FA is analytic, though having an ontological import for objects, since HP, taken as such, is
analytic. But both of these suppositions can be questioned. For example, one could argue that,
for (ii) to be admissible, it should involve some conditions to be met by the relevant system of
logic, so to avoid that one be licensed to take as analytic a complex definition involving a system of
logic whose innocence might be questioned. Once this is admitted, one could argue, in agreement
with Shapiro and Weir ([32], §§ II and III), that the system of second-order logic involved in FA
does not meet these conditions. This would block the derivation of the strong neo-logicist thesis
from the weak one, with the result that the existential argument could not be taken as part of a
larger argument in favour of the former thesis, even if it were regarded as suitable for supporting
the latter.

This is not all. The suitability of the existential argument for supporting the weak thesis can
be questioned, too. One could contend, for example, that from the fact that the truth of HP does
not require the truth of ‘#P = #Q’—nor the existence of references for the the relevant instances
of ‘#P ’ and ‘#Q’, i.e. of cardinal numbers—it does not follows that HP has no ontological import

13Neo-logicists have come back to this last point in different ways and in the context of different forms of
argumentation. A very compact way to make the same point is found, for example, in [37], § II.2.

14Apart for the mention of the extension of comprehension (which neo-logicists seems to consider as existentially
anodyne), condition (ii) is suggested by Wright’s following remarks ([37], pp. 307 and 310):

Analyticity, whatever exactly it is, is presumably transmissible across logical consequence. So if
second-order consequence is indeed a species of logical consequence, the analyticity of Hume’s Prin-
ciple would ensure the analyticity of arithmetic.

[. . . ] on the classical account of analyticity the analytical truths are those which follow from logic
and definitions. So if the existence of zero, one, etc. follows from logic plus Hume’s Principle, then
provided the latter has a status relevantly similar to that of a definition, it will be analytic, on the
classical account, that n exists, for each finite cardinal n.
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for objects. To this purpose, one could argue as follows. Insofar as the truth of the mere axioms
of the system of second-order logic to which this principle is added to get FA does not require the
existence of any object, the following options remain open: a) this import is distributed among
this system of second-order logic, HP taken as such, the extension of comprehension to formulas
including ‘#’, and the explicit definitions used to single out natural numbers among cardinals;
b) in the presence of this extension and of these explicit definitions, this system of second-order
logic triggers the ontological import for objects of HP, without having itself any such import;
c) vice versa, in the presence of this extension and of these explicit definitions, HP triggers the
ontological import for objects of this system of second-order logic, without having itself any such
import; d) taken together, both this system of second-order logic and HP trigger the ontological
import for objects of this extension and of these explicit definitions, without having themselves
any such import. The assessment of the ontological import of HP could provide a sound argument
in favour of the weak neo-logicist analyticity thesis only insofar as it were suitable for positively
supporting (c) or (d), or at least for discarding (a) and (b). But two problems arise. Firstly,
granting (c) or (d) would result in ascribing an ontological import for objects to this system
of second-order logic, and to this extension and these explicit definitions, respectively, and this
would be at odds with the purpose of deriving the strong thesis from the weak one along the lines
suggested above. Secondly, the existential argument is able neither to positively support (c) or
(d), nor to discard (a) and (b), since all these options are left open by acknowledging that HP
is not arrogant (insofar as its truth does not require the truth of ‘#P = #Q’), while contrasting
the arrogance of Peano axioms with HP’s avoiding arrogance is simply not relevant for choosing
among the four options.

Moreover, one could also observe that deriving the existence of natural numbers in the neo-
logicist setting hinges on the logical truth of appropriate instances of ‘P ≈ Q’ only in free logic.
Since, if logic is not free, the mere introduction of the functional constant ‘#’, via HP, and the
extension of comprehension to formulas including this constant allow one to derive any instance
of ‘#P = #P ’ from ‘∀x (x = x)’([27], p. 447; that the logic underlying FA is to be free is also
argued, among others, in [32], p. 108, and admitted by Hale and Wright in [22], p. 463-464). But
assuming that the relevant logic is free seems to be at odds with alleging that the existence of
some objects is analytic if it follows from logic plus some analytic principles, a principle being
analytic insofar as it has no ontological import for objects. Indeed, the adoption of free logic
seems to be naturally linked with the view that existence cannot be a matter of logic.

I’m far from considering these or similar remarks as knock-down objections against the suit-
ability of the existential argument for supporting the neo-logicist claim that HP is analytic, this
claim being intended either in agreement with the weak or with the strong neo-logicist analyticity
thesis. For my present purpose, it is enough to show that this argument can be questioned. This
should be enough to urge anyone regarding the neo-logicist definition of natural numbers with
interest to look for other reasons to favour it over other definitions, and, possibly, to also view
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HP, or better the whole FA, as analytic, namely reasons that are not based on the assessment
of HP’s ontological import for objects. My suggestion is that such a reason can be found in the
epistemic economy of the former definition, which I regard as being independent of HP’s having
or not having this import.

Before arguing in favour of this suggestion a disclaimer is in order. The point I want to make
is neither that the neo-logicist definition of natural numbers is definitely better than, or to be
preferred to, any other current one, because it is epistemically economic, nor that its being so
makes this definition better than, or preferable to, any other current one from an epistemic point
of view. My point is rather that its being so gives this definition a particular epistemic virtue
that other current definitions do not possess, which makes then former preferable to the latter in
appropriate circumstances and according to some aims—though I admit that other virtues, either
epistemic or not, could be differently distributed among the relevant definitions, and could bring
on other choices under different circumstances and according to different goals.

4 Comparing FA and Z2 with Respect to Epistemic Econ-

omy

Until now, I followed Hale and Wright and spoke of Peano axioms in general (in fact they often
speak of Dedekind-Peano axioms, but this makes no relevant difference, of course). To settle some
ideas, it is better to be more precise. In the present §, I shall consider Peano arithmetic under
the form of Hilbert-Bernays second-order theory Z2, in Simpson’s version ([24], suppl. IV; [34]),
and compare its epistemic cost with FA’s.

Z2’s language—let us call it ‘LZ2 ’—is two-sorted, and its two sorts of variables, ‘i’, ‘j’, ‘k’,
‘m’, ‘n’,. . . and ‘X’, ‘Y ’, ‘Z’,. . . are intended to range over natural numbers and sets of natural
numbers respectively. LZ2 also includes the identity symbol for terms and six non-logical constants
‘0’, ‘1’, ‘+’, ‘·’, ‘< ’, and ‘∈’, the first five of which are governed by eight first-order “basic
axioms”, reminiscent of Peano’s original system ([29]), and providing a minimal keystone for Peano
arithmetic15, while the sixth is governed by a second-order induction axiom and an unrestricted
comprehension axiom-scheme, namely:

∀X [[0 ∈ X ∧ ∀n (n ∈ X ⇒ n+ 1 ∈ X)]⇒ ∀n (n ∈ X)] , (Ind[Z2])

and the universal closure of [
∃X∀n

[
n ∈ X ⇔ LZ2

ϕ (n)

]]
, (CompSc[Z2])

15Adding to these axioms a first-order axiom-scheme of induction, one gets the system Z1, which provides a
convenient version of Peano first-order arithmetic ([34], pp. 7-8).
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where ‘
LZ2

ϕ (n)’ stands for any formula of LZ2 in which ‘X’ does not occur freely.
This is a very strong theory, existentially speaking. But it is also very specific. It is true

that intending its variables to range over natural numbers and sets of them does not ipso facto
restrict their range, and CompSc[Z2] is just the usual unrestricted comprehension scheme of full
second-order logic extended to the whole LZ2 . Nonetheless, Z2 is such that its models only include
items behaving as natural numbers and sets of them are ordinarily required to do, not only for
their forming a progression, but also for their being linked to each other by the order, additive
and multiplicative relations that are ordinarily required to hold for natural numbers. In other
words, Z2 is specifically about natural numbers, as bearing these relations, and about sets of them.
Understanding it involves understanding the conditions characterising both of these relations and
two sorts of items, such that the items of the first sort bear these relations to one another, while
those of the second sort are sets of items of the first sort, and calls for the appropriates notions. In
particular, understanding the conditions characterising the second sort of items calls for more than
the notion of a set of items of the first sort, since it also involves understanding how a particular
such set is fixed through a condition expressed in LZ216. All this demands a large amount of
intellectual resources. Moreover, as it is typical of structural definitions, these resources are all
required simultaneously and from the start, in order to gain epistemic access to these items and
begin to work consciously with them, since these definitions determine ex novo the relevant items
as sui generis items characterised by the relations they are required to bear.

As is well known, the existential strength of Z2 can be significantly reduced, while preserving
much of its deductive strength, by restricting the comprehension axiom-scheme to formulas of an
appropriate syntactical simplicity (cf. [34] for a comprehensive study). This results in systems
like ACA0, where comprehension is restricted to formulas containing no second-order quantifier, or
RCA0, where comprehension is restricted to Σ0

1 and Π0
1 formulas that are equivalent to one another

and Ind[Z2] is replaced by an axiom-scheme restricted to Σ0
1 or Π0

1 formulas. However, this does
not lessen the intellectual resources required to understand the definition of natural numbers in
Z2. On the contrary, one could even argue that it increases these resources, since, on the one
hand, restricting comprehension in a certain way does not result in limiting in the same way
the complexity of the formulas involved in the relevant system, from the understanding of which
depends the understanding of the system itself (to see it, remark that the universal closure of an
instance of a restricted comprehension axiom-scheme can have a greater syntactical complexity
than the formulas to which this scheme is restricted)17, and, on the other hand, understanding
restricted comprehension involves understanding the criterion that the restriction depends on,
which is, of course, not necessary to understand unrestricted comprehension. Moreover, though

16Cf. footnote (18); below.
17The most evident case is that of a comprehension axiom-scheme restricted to formulas containing no second-

order quantifier, as that involved in ACA0: whatever such formula ‘ϕ (n)’ might be, the syntactical complexity of
‘[∃X∀n [n ∈ X ⇔ ϕ (n)]]’ is greater than that of this formula.
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non-categorical (relatively both to their first and second order parts), ACA0 and RCA0 are, in
a sense, even more specific than Z2: the items they implicitly define are so specified as to be
putatively suitable for supplying the building blocks to be used in the enterprise of recovering
certain portions of “ordinary mathematics” ([34], p. 1) on the basis of set-theoretic existential
assumptions that are as weak as possible.

The situation with FA is quite different. Its language—let us call it ‘LFA’—is much poorer than
LZ2 , since it reduces to the language LL2 of an appropriate system of full second-order logic L2

including identity for terms and both monadic and dyadic predicate variables, supplemented by
the single non-logical (functional) constant ‘#’, introduced by HP[FA], which, written in extenso
and replacing schematic predicates with predicate variables, takes the following form:

∀F,G

[
#F = #G⇔ ∃R

[
[∀x (F (x)⇒ ∃!y (R (x, y) ∧G (y)))]∧

[∀y (G (y)⇒ ∃!x (R (x, y) ∧ F (x)))]

] ]
. (HP[FA])

Besides adding HP[FA] to the axioms of L2, to move from L2 to FA, one must also extend com-
prehension, both for monadic and dyadic predicates, to formulas including ‘#’, which results in
replacing the comprehension axiom-schemes of L2 with the universal closures of the following
schemes:

∃F∀x
(
F (x)⇔ LFA

ϕ (x)

)
and ∃R∀x, y

(
R (x, y)⇔ LFA

ϕ (x, y)

)
(CompSc[FA])

where ‘
LFA

ϕ (x)’ and ‘
LFA

ϕ (x, y)’ respectively stand for any formulas of LFA in which ‘F ’ and ‘R’ do
not occur freely.

This already shows that FA does not involve sets18, and, although dealing with cardinal num-
bers is not specifically about them. Indeed, L2 merely deals with objects, their properties, or

18Notice that what matters here is not merely the way in which LFA’s predicates are informally conceived, in
particular by neo-logicists, as opposed to the way in which LZ2 ’s predicates are conceived. Indeed intending the
second-order variables of Z2 to range over sets of elements of the range of the first-order ones, and the constant
‘∈’ as designating the set-theoretic relation of membership is not mandatory. One could rather intend the second-
order variables of Z2 to range over the monadic properties of the elements of the range of the first-order ones, and
consider that ‘n ∈ X’ is nothing but a typographic variant of ‘X (n)’ or ‘Xn’ (that is, merely an alternative way
to predicate the property X of the individual n). What matters is rather the way in which predicates work in FA
and Z2, respectively. Focusing on the mere definition of natural numbers, the difference is not really significant,
since what Z2’s predicates do in relation to this definition can, mutatis mutandis, also be done by FA’s monadic
predicates. The difference becomes, instead, quite significant in relation to the definition of real numbers within
these theories (which I shall consider in § 5, below). Indeed, if second-order variables of Z2 are taken to range
over monadic properties of the elements of the range of the first-order ones, rather than over sets of these same
elements, one can hardly be happy with a definition of real numbers as some particular items within the range of
the former of these variables, as that suggested by Simpson in relation to ACA0 and RCA0 (cf. § 5.1, below).
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first-level concepts, and dyadic relations among them, and HP[FA], although suitable to implic-
itly define cardinal numbers, does not allow one to prove that ∀x∃F [x = #F ], with the result
that the models of FA can be populated by objects other than cardinal numbers. A fortiori, FA
does not involve sets of natural numbers and it is not specifically about these numbers.

Natural numbers have, rather, to be explicitly defined within FA. By relying on comprehension
and HP[FA], one first defines 0 and the successor relation between cardinals:

0 =df # [n : n 6= n]

∀x, y [S(x, y)⇔ ∃F∃z (F (z) ∧ (y = #F ) ∧ (x = # [n : F (n) ∧ n 6= z]))]
. (NatNum[FA](i -ii))

Then, by relying on comprehension, again, one defines the strong ancestral S∗ of S, and defines
natural numbers as those cardinals which are either 0 or bear the relation S∗ with it:

∀x [N (x)⇔ (0 = x ∨ S∗(0, x))] , (NatNum[FA](iii))

where ‘N ’ designates the property of being a natural number, of course. It follows that in FA,
natural numbers are singled out among cardinal numbers, without exhausting the latter, since it
is clear from NatNum[FA](i -iii) that there is at least one cardinal number, namely #N , which is
not a natural number.

In many respects, this lack of specificity is not a virtue. But it is also the symptom of FA’s
epistemic weakness, since it makes clear that what FA’s definition of natural numbers does is
not fixing these very numbers and the sets of them ex novo as sui generis items, but rather
fixing, firstly, cardinal numbers within the putative range of the individual variables of LL2 , that
is, among objects in general (conceived as the inhabitants of this range), and, next, singling
out natural numbers among cardinal ones. Understanding this definition requires a considerable
amount of intellectual resources. But it seems to me that these are fewer, or at least more basic
and more progressively appealed to, than those required to understand Z2 as an implicit definition
of natural numbers. Let us explains why.

First at all, it is clear that Z2 includes, like FA, a system of second-order logic with full
comprehension, with the result that understanding Z2 involves understanding this system, just
as it happens for FA. Still, the system L2 included in FA is both distinct and differently conceived
than the one included in Z2. Understanding the former calls for: the notions of an object, of a
first-level concept (or property of an object)19, and of a first-level dyadic relation; the notions of
falling of an object under a (first-level) concept, and of a pair of objects bearing a certain (first-
level) relation to each other; the notion of identity for objects; the notions of a variable ranging
over objects, concepts, and dyadic relations, respectively; the notion of full comprehension both
for first-level concepts and first-level dyadic relations; and all the notions generically involved in

19Cf. footnote (5), above.
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understanding a system of predicative logic. The difference with the system of second-order logic
included in Z2 depends on the fact that, in this last one, concepts are replaced by sets20 and
dyadic relations are avoided. Still, the notion of a dyadic relation is required to understand the
basic axioms of Z2, and, once the notion of a second-order variable is at hand, moving from this
to the notion of a variable ranging over dyadic relations does not require too much. Hence, if
understanding L2 requires more than understanding the system of second-order logic included in
Z2, the difference does not seem to be significant.

Secondly, all HP[FA] does is appeal to a formula of LL2 to fix some items—namely, cardinal
numbers—in the putative range of its variables, by putting forward an identity condition for
them. This definition is close to a structural one, in some sense. Since the items forming the
putative range of individual variables of L2 lack a sufficient characterisation to allow one to merely
single out some of them among all of them, by merely specifying such a characterisation. Hence,
one could say that HP[FA] introduces cardinal numbers ex novo as sui generis items, like the
axioms of Z2 do for natural numbers and sets of them. Despite this, and whatever HP[FA]’s
existential import for objects might be, besides the notions mentioned above in connexion to the
understanding of L2, understanding HP[FA] merely calls for the notion of a many-one association
between concepts and objects (better, between many concepts and a single object), which is
needed to understands HP[FA]’s left-right side, plus the notion of the objects falling under a certain
(first-level) concept being in bijection with those falling under another (first-level) concept, which
is needed to understand the formula of LL2 providing HP[FA]’s right-hand side. It follows that,
apart for what pertains to the notion of a many-one association between concepts and objects,
HP[HA]’s epistemic cost is structurally analogous to (i. e. is constituted in the same way as)
the epistemic cost of any explicit definition of a sort of objects within any second-order theory21.
Indeed, to provide such an explicit definition, one writes a formula of the appropriate language
that involves a single unbounded first-order variable, then appeals to comprehension to guarantee
that there exists a property that an item belonging to the putative range of this variable has, or
a set to which such an item belongs, if and only if it satisfies this formula, and finally introduces
an appropriate monadic predicate constant to designate this property or set. Analogously, in
order to introduce a predicate constant designating the property of being a cardinal number on
the base of HP[FA], one has to rely on comprehension (extended to ‘#’), to conclude that there
exist a property that an object has if and only if it is uniquely associated to a certain concept
F in such a way that it is the same object as any object equally associated to any concept G on
condition that F and G satisfy the formula of LL2 providing the right-hand side of HP[FA]), and
then introduce such a predicate constant to designate this property.

Thirdly, though HP[FA]’s epistemic cost is minimal, understanding it allows one to have an

20Cf. footnote (18), above.
21Remark also that the notion of a many-one association between appropriate sorts of items is involved in any

definition of whatsoever functional constant.
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epistemic access to cardinal numbers, and then begin to work consciously with them. Definitions
NatNum[FA](i -iii) result from this work. The first and the second of them depend on HP[FA]
and comprehension, but are mutually independent, and also independent of any other definition,
whereas the third is, as such, independent of HP[FA], but depends on comprehension and the
two previous ones. It is just this definition that singles out natural numbers among cardinal
ones. Hence, if, once having been defined through HP[FA], cardinal numbers are taken to be
particular items, natural ones are defined within FA by coding them with appropriate such items.
It follows that the definition of natural numbers coming with FA is neither structural nor close
to a structural definition in the sense in which that of cardinal numbers via HP[FA] is so: it
does not result from defining a structure, but rather from providing a system exemplifying it and
formed by items singled out among items that one has already an epistemic access to. Moreover,
it succeeds in this without appealing to any relation, or operation on natural numbers themselves,
except for the relations S∗ and S, already defined on cardinal numbers. It follows that, besides
the notions mentioned above in connexion to the understanding of L2 and HP[FA], understanding
the definitions NatNum[FA](i -iii) merely calls for the notions of a first-level concept under which
no object falls, for that of a (first-level) concept under which falls all the objects falling under
another (first-level) concept plus a single one, and for that of the strong ancestral of a first-level
dyadic relation.

Once one has obtained an epistemic access to natural numbers as defined though HP[FA] and
NatNum[FA](i -iii), by appealing to the notions just mentioned, one can conscientiously work
on them, in turn, namely define appropriate relations and operations on them, and prove that,
under these relations and operations, they exemplify the same structure as that defined by the
axioms of Z2 (which is what is usually called ‘Frege’s theorem’). Hence, it seems to me that so
defining natural numbers is not only epistemically more economic than doing it within Z2, but also
epistemically more economic than doing it within any version of Peano second-order arithmetic,
even if this does not include axioms for addition, multiplication, and order. Indeed, any definition
coming with any version of Peano second-order arithmetic is structural, and allows one to have
access to natural numbers only insofar as at least one appropriate relation is defined on them.
Moreover, in any such definition, zero is not singled out among items one has an independent
epistemic access to, but is simply posited by fixing some conditions it has to meet. This should
be enough to conclude that the definition of natural numbers coming with FA is epistemically
economic, in my sense.
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5 Epistemic Economy and the Definitions of Real Num-

bers

The epistemic advantage of appropriate abstraction principles over other forms of definitions
become even clearer in the case of the definition of real numbers.

As is well known, there are several ways to define real numbers within second-order arithmetic.
I shall firstly consider a definition within Z2, which follows Cantor’s classical approach, and I shall
then compare it with three definitions within FA (or, strictly speaking, within appropriate exten-
sions of it). Even though the former merely depends on supplying the axioms of Z2 with some
appropriate explicit definitions, whereas the latter all depend on adding new appropriate abstrac-
tion principles to FA’s axioms, I shall argue that the epistemic cost of the former is comparable
to that of two of the latter, while the third one is epistemically (more) economic.

5.1 Defining Real Numbers within Z2

The first definition is proposed by Simpson ([34], § I.4) as a definition with ACA0, which can also
be repeated, with a minor change in its last step, within RCA0. Its purpose is showing how to
define real numbers within second-order arithmetic while considerably weakening the existential
set-theoretic assumptions that Z2 depends on. This is a crucial fact, underlying the whole program
of reverse mathematics. But, for my present purpose, it can be ignored, and the definition can
be merely taken as a definition within Z2. There is certainly room for arguing that the mere
possibility of achieving this definition within ACA0, and one close to it within RCA0, shows that
this definition actually depends on much weaker existential assumption than those that, not only
Z2, but also FA, and consequently any definition of real numbers involving this latter theory,
depend on. Still, this does not entail, in my view, that any definition of real numbers within
FA has a greater epistemic cost than Simpson’s within ACA0 and RCA0. This contrast between
the advantage of Simpson’s definitions in terms of existential parsimony and its lack of benefit
in terms of epistemic economy is just part of the point I want to make. To this end, there is no
essential difference between immersing Simpson’s definition within ACA0 or RCA0 and immersing
it within the whole Z2

22.
This definition proceeds in four steps. In the first one, the set N of natural numbers is

defined as the unique set X such that ∀n (n ∈ X), which is licensed by comprehension and by the

22Once this definition is immersed within the whole Z2, the items it defines—namely (the items re-casting) real
numbers within Z2—provably have many properties that the items it defines when it is immersed within ACA0

or RCA0—namely (the items re-casting) real numbers within ACA0or RCA0—do not provably have. The crux of
reverse mathematics (to which [34] is entirely devoted) is just which properties of the former items are preserved
once real numbers are defined within weaker sub-systems of Z2, like ACA0 or RCA0. But, of course, this is not a
matter I can consider here.
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specificity of Z2. In the second step, integer numbers are coded with elements of an appropriate
subset NZ of N and order, addition, and multiplication are defined on them. Details left aside
and supposing that ζ is whatever natural number, this results in coding the integers +ζ and −ζ
with ζ2 + ζ and ζ2, respectively. In the third step, rational numbers are coded with the elements
of another appropriate subset NQ of N and order, addition, and multiplication are defined on
them, too. Details left aside, anew, and supposing that ζ and ϑ are whatever pair of coprime
natural numbers, the second of which is positive, the rational numbers + ζ

ϑ
and − ζ

ϑ
are respectively

coded with (ζ2 + ζ + ϑ2 + ϑ)
2

+ ζ2 + ζ and (ζ2 + ϑ2 + ϑ)
2

+ ζ2. In the fourth step, sequences of
rational numbers are coded with appropriate subsets of N, namely subsets meeting an appropriate
condition, and real numbers by some of these subsets, namely those suitable for coding Cauchy
sequences of rational numbers, in agreement with Cantor’s 1872 definition ([7], pp. 123-124)23.

This short description is enough to show that, according to this definition, integer, rational
and real numbers are not introduced ex novo as sui generis objects, but rather singled out
among items previously defined—namely natural numbers, for integer and rational ones, and
sets of them, for real ones—through explicit definitions that are independent of any operation or
relation on these very numbers. Firstly, integer numbers are singled out among natural ones, by
appealing to addition, multiplication and order on the latter. Addition, multiplication and order
are then defined on integer numbers, and appealed to in order to single out rational numbers
among them24. Finally, addition, multiplication, order, and absolute value are defined on rational
numbers, and appealed to in order to single out real ones among sets of them. A definition of
addition, multiplication and order on real numbers only comes into play at this point, together
with the proof that these numbers behave with respect to them so as to comply with the required
structural conditions.

It is then clear that the intellectual resources needed to understand the whole definition
are not involved simultaneously from the start. Understanding its different steps rather involves
understanding a limited number of formulas at once, which are used to single out the relevant items
among others that one already has an epistemic access to. Still, understanding the definition of

23It is easy to see the essential difference between this fourth step and the three previous ones: whereas in these
three steps, the sets N, NZ, and NQ are explicitly defined, the subsets of N coding real numbers cannot be explicitly
defined, in turn, and it is, a fortiori, impossible to define anything working as the set of real numbers. All that
one can do is fix a condition that a subset of N has to met in order to code a single real number.

24In fact, integer numbers could be singled out among natural ones by appealing only to addition and multipli-
cation on the latter, by merely stipulating that the former numbers are coded by those of the latter ones which
are equal to ζ2 + ζ or ζ2, for some natural number ζ. In this way, no justification could be offered for this choice,
however. Analogously, rational numbers could be directly singled out among natural numbers, by only appealing,
again, to addition and multiplication on the latter, by merely stipulating that the former numbers are coded by

those of the latter ones which are equal to
(
ζ2 + ζ + ϑ2 + ϑ

)2
+ ζ2 + ζ or

(
ζ2 + ϑ2 + ϑ

)2
+ ζ2, for some pair of

coprime natural numbers ζ and ϑ, the second of which is positive. In this case also, no justification could be
offered for this choice, however.
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real numbers involves understanding the previous definitions of natural, integer and rational ones
and of the relevant operations and relations on them, and calls then for all the resources that are
needed to understand these previous definitions. Furthermore, it also involves the understanding
of the notion of a Cauchy sequence of rational numbers, and the use of sets of natural ones
(implicitly defined)25 for coding other numbers, (that is, of second-order items to code first-
order ones), and calls then for the corresponding resources. Even though this is a large amount
of resources, it does not include those which are needed to understand the definitions of any
operation and relation on real numbers themselves. These definitions come later and are not
needed to have an epistemic access to these numbers. This is enough to show that the definitions
of real number, as well as those of integer and rational ones, are not structural. If, once having
been implicitly defined through the axioms of Z2 as places in a structure, natural numbers and
sets of them are taken to be particular items, the definitions of integer, rational and real numbers
all consist in coding these numbers with some of these particular items, forming instances of other
structures.

5.2 Defining Real Numbers within FA

I now return to FA. Nothing would prevent one from rephrasing Simpson’s definition of integer
and rational numbers within this theory, so as to code them with natural numbers appropriately
singled out. Rendering Simpson’s definition of real numbers within FA would be more problematic,
since FA provides no definition of sets of natural numbers, and real ones could therefore not be
singled out among these sets. One could, at most, state a certain condition that a property of
natural numbers should meet in order either to code real numbers directly, or to belong to a range
of (second-order) variables entering an abstraction principle implicitly defining these numbers as
the values of a functional operator taking the elements of this range as its arguments. Insofar
as, in FA’s abstractionist setting, the former option would be at odds with the idea that real
numbers are objects, just like natural, integer and rational ones, the latter would certainly be
preferable. But going for it would be, in turn, more convoluted (and certainly epistemically less
economic) than taking advantage from FA’s lack of specificity and appealing to an appropriate
abstraction principle to directly fix real numbers within the putative range of FA’s individual
variables—namely among objects, and especially among other ones than cardinal numbers—,
thus replicating, mutatis mutandis, the same move already made to define cardinal numbers
through HP[FA]. This is the option chosen by the three definitions of real numbers within FA,
which I shall now consider.

To this purpose, I shall take, for short, ‘∀Φ’ and ‘∃Φ’—where ‘Φ’ stands for a monadic predicate
constant—to designate, respectively, the universal and the existential quantifiers restricted either

25Cf. footnote (23), above.
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to items that have Φ or to their properties26.

5.2.1 Shapiro’s Rephrasing of Dedekind’s Definition

The first definition is Shapiro’s rephrasing of Dedekind’s ([8]; [31], pp. 338-340) within FA. Like
Simpson’s, Shapiro’s definition includes previous definitions of integer and rational numbers, but,
unlike in Simpson’s, these numbers are not singled out among natural ones. Like real ones, they are
rather fixed within the putative range of the individual variables of LFA through two abstraction
principles, one for integer, the other for rational numbers. I suggest to call ‘FDRA’ (for ‘Frege-
Dedekind Real Arithmetic’), the extension of FA that is obtained by adding to its axioms these two
principles together with what is required to define real numbers, and by extending comprehension
to formulas including the functional constants so introduced.

The abstraction principle used to define integer numbers is the following:

∀Nx, x′, y, y′ [INT (x, y) = INT (x′, y′)⇔ x+ y′ = x′ + y] , (INT[FDRA])

where ‘INT’ is the functional constant introduced by this principle, and ‘+’ designates the addition
on natural numbers. To be more precise, this principle merely provides an implicit definition
of appropriate pairs of natural numbers; integer ones are then defined by coding them with
these pairs: if p and q are whatever pair of natural numbers, INT (p, q) is taken, within FDRA,
as an integer number. This results from explicitly defining a predicate constant—let us say
‘Z’—designating the property of being such a number. Appealing to this constant, after having
explicitly defined the multiplication on integer numbers, licenses a new abstraction principle:

∀Zx, x′, y, y′


QUOT (x, y) = QUOT (x′, y′)

⇔

[
[y = 0Z ∧ y′ = 0Z ]∨

[y 6= 0Z ∧ y′ 6= 0Z ∧ x ·Z y′ = x′ ·Z y]

]  , (QUOT[FDRA])

where ‘QUOT’ is the functional constant introduced by this principle, ‘0Z ’ abbreviates ‘INT (0, 0)’—
the integer zero—, and ‘·Z ’ designates the multiplication on integer numbers. This principle im-
plicitly defines appropriate pairs of integer numbers. Rational numbers are then defined as the
pairs whose second element is not 0Z : if u and v are a pair of integer numbers and v 6= 0Z ,
QUOT (u, v) is taken, within FDRA, as an integer number. This also results from an explicit
definition introducing a predicate constant—let us say ‘Q’—designating the property of being
an integer number. Appealing to this constant, after having explicitly defined the order relation
on rational numbers, allows on to explicitly define the (second-order) relation that a property of
rational numbers has with such a number if the latter is an upper bounded of the former:

26In other terms, I shall take ‘∀Φx [φ]’, ‘∀ΦX [φ]’, ∃Φx [φ]’, and ‘∃ΦX [φ]’ to abbreviate ‘∀x [Φ (x)⇒ φ]’,
‘∀X [∀x [X (x)⇒ Φ (x)]⇒ φ]’, ‘∃x [Φ (x) ∧ φ]’, and ‘∃X [∀x [X (x)⇒ Φ (x)] ∧ φ]’ respectively.
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∀QF∀Qx [F E x⇔ ∀Qy [F (y)⇒ y ≤Q x]] , (UpBound[FDRA])

where ‘≤Q’ designates the order relation on rational numbers. Finally comes a third abstraction
principle:

∀QF,G [CUT (F ) = CUT (G)⇔ ∀Qx (F E x⇔ G E x)] , (CUT[FDRA])

where ‘CUT’ is again a functional constant introduced by this principle. This new principle
implicitly defines cuts on properties of rational numbers. Real ones are finally defined by coding
them with appropriate such cuts: if P is a property of rational numbers, CUT (P ) is to be taken
as (coding) a real number if and only if P is instantiated and has an upper bound, that is, it is
such that ∃Qx, y [P (x) ∧ P E y]).

This definition is quite natural from the neo-logicist perspective, but it structurally differs
from Simpson’s one within Z2 only by appealing to cuts of rational numbers, rather than to
(sets of natural numbers coding) Cauchy sequences of these same numbers, and by replacing
the corresponding explicit definitions with abstraction principles working as new axioms. One
could think that this latter circumstance makes Shapiro’s definition epistemically more costly
than Simpson’s. But I do not think it is so.

Firstly, FA provides a basis for the former definition which is epistemically weaker than Z2, or
any sub-system of it, even though it remains that the mere definition of natural numbers within
FA is not enough to license the subsequent definition of integer, rational, and real ones within
this same theory, and has to be supplied by the definition of addition on natural numbers and of
multiplication and order on rational ones.

Secondly, like HP[FA], these principles appeal to a formula of LFA—appropriately extended,
in the case of QUOT[FDRA], and CUT[FDRA]—, to fix some items in the putative range of
FA’s individual variables by putting forward an identity condition for these items. Hence, un-
derstanding these principles does not call for more than understanding the explicit definition
of a sort of objects depending on the introduction of a monadic predicate constant apt to des-
ignate the property that these items are required to have, or the set they form. I have al-
ready made a similar point with respect to HP[FA] in § 4. For INT[FDRA], QUOT[FDRA], and
CUT[FDRA], the point is even clearer. To illustrate it with an example, compare Simpson’s
explicit definition of rational numbers within Z2 with INT[FDRA]. To get the former one fo-
cuses on the open formula ‘∃m [h = m2 ∨ h = m2 +m]’, relies on comprehension to conclude that
∃X∀h [h ∈ X ⇔ ∃m [h = m2 ∨ h = m2 +m]], and takes rational numbers to be the elements of
the set of natural numbers which have the property that satisfies this last condition. To define
rational numbers through INT[FDRA] within FA, one states this principle, then relies on compre-
hension appropriately extended to ‘INT’ to conclude that ∃F∀z [F (z)⇔ ∃Nx, y [z = INT (x, y)]]
and takes rational numbers to be objects that have the property that satisfies this last condition.
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Finally, like Simpson’s, Shapiro’s definition defines real numbers by providing an example of
the relevant structure, rather than defining this structure as such.

It seems, then, that the two definitions have analogous epistemic costs, or, even, that Shapiro’s
one is epistemically more economic.

5.2.2 Hale’s Rephrasing of Frege’s Definition

The second definition I shall consider results from adapting to FA Hale’s rephrasing of Frege’s
definition of domains of magnitudes and of his plan to get a definition of real numbers as ratios on
such a domain ([19], pp. 105-113; [15], part III, §§ II.55-245; [33]; [13], ch. 22; [30]). According to
Frege, real numbers originate in measuring magnitudes, and they have to be defined as ratios of
them, rather than as arithmetical items (like it happens in Cantor’s and Dedekind’s definitions,
instead). Still, though independent of natural numbers, his definition of domains of magnitudes
takes place in the same (inconsistent) system of logic in which he also defines these numbers,
and could be rephrased within L2 (appropriately strengthened). The successive definition of real
numbers as ratios on such a domain can, then, be easily achieved by appealing to natural numbers
as a useful auxiliary tool, but can also be freed from any recourse to these numbers (although
then becoming a little bit more convoluted). In the former case, the definition would depend
on an appropriate extension of FA; in the latter, it would depend on an extension of L2, both
different from, and independent of FA. In both cases, one should, however, pair the definition with
an existence proof for domains of magnitudes, which Frege merely outlines informally. His idea is
to obtain such a domain by starting from natural numbers, whose existence is taken for granted.
Formally rendering his indications results, then, quite naturally, in a construction within FA.
Faced with this situation, Hale provides an informal, algebraically shaped, definition of domains
of magnitudes appealing to natural numbers (without specifying the way they are defined), then
suggests an existence proof of these domains, deviating from Frege’s indications, but still based on
natural numbers and on the admission of their existence, and finally defines ratios of magnitudes
by appealing to natural numbers. The simplest way to adapt his definition to FA, though openly
departing from Frege’s conception, is by directly defining positive real numbers as ratios on the
specific domains of magnitudes drawn from natural numbers during the existence proof27. This
is the plan I shall follow.

Hale first defines “normal quantitative domains” as pairs 〈Q,+〉 where: Q is non-empty and
closed under +; + is associative, commutative and such that if p and q are distinct elements of Q,
there is another element r of Q for which either p = q+r or q = p+r; for any p and q in Q, there

27Hale’s domains of magnitudes, unlike Frege’s, only include, as we shall soon see, positive elements, with the
result that only positive real numbers can be defined as ratios on them. Non-positive ones are, then, to be defined
by extension.

25



is a r in Q and a positive natural number n such that q + r = np = p + p + . . .+ p︸ ︷︷ ︸
n times

. If a strict

order < is defined on Q by stipulating that p < q if and only if there in r in Q such that q = p+r,
then < is a total order on Q, and it becomes easy to show that 〈Q,+〉 meets the Archimedean
condition (and includes only positive elements). Ratios on normal quantitative domains are then
defined by an abstraction principle rephrasing definition V.5 of Euclid’s Elements, stating that,
if 〈Q,+〉 and 〈Q∗,+〉 are normal quantitative domains (non necessarily distinct), and p, q are in
Q and p∗, q∗ in Q∗, then:

RAT (p,q) = RAT (p∗,q∗)⇔ ∀NN+h, k
[
hp Q kq⇔ hp∗ Q kq∗

]
, (EUCL)

where ‘NN+’ designates the property of being a positive natural number (however defined).
Next, domains of magnitudes (which Hale rather calls ‘complete normal quantitative domains’)
are defined as normal quantitative domains that meet the fourth-proportional condition (for any
p, q and r in Q, there is a s in Q itself, such that RAT (p,q) = RAT (r, s)) and are Dedekind-
complete.

To prove that domains of magnitudes exist (i. e. that at least one such domain exists), Hale
takes, as I have said above, the existence of natural numbers for granted, and relies on them
to obtain such a domain by following a path analogous to that involved in Shapiro’s foregoing
definition. He begins by observing that positive natural numbers form, together with the addition
on them, a normal quantitative domain, let us say 〈N+,+〉. One can then define ratios on
it through EUCL, by taking Q and Q∗ to coincide with each other and with N+, and easily
verify that these ratios, together with an appropriate addition on them, form, in turn, a normal

quantitative domain meeting the fourth-proportional condition, let us say
〈
RN+

,+
〉

. This allows

to define cuts on RN+
through a new abstraction principle, which is nothing but a restriction of

Frege’s Basic Law V:

CUT (P ) = CUT (Q)⇔ ∀xRN+ [P (x)⇔ Q (x)] (CUT[RN+
])

where ‘RN+
’ designates the property of being an element of RN+

, and P and Q are whatever
properties of the elements of RN+

that are non-empty, non-total, downward closed, and upward

unbounded. These cuts form the required domain of magnitudes, let us say
〈
CRN+

,+
〉

.

The structure of domains of magnitude is categorical. Hence, any ratio on CRN+

is identical
with a ratio on any other domain of magnitudes (if any). This allows to define positive real

numbers by coding them with ratios on CRN+

, since these ratios are the same as those on any
other such domain (if any).

Like Shapiro’s, Hale’s definition of real numbers includes two stages: first some items are
defined by appealing to an appropriate abstraction principle, then these items are appealed to
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in order to define real numbers. There are, however, important differences between the two
definitions. The most evident is that the first stage of Hale’s definition is not only more laborious
than that of Shapiro’s, but it is also informal and algebraic in spirit: it requires an existence
proof and does not specify how the elements of a normal quantitative domain (and, then, also of
a domain of magnitudes) are fixed, with the result that the only connection between this proof
and the definition depends on verifying afterwards that the systems constructed meet the relevant
condition. This does not make Hale’s definition of real numbers structural. This definition does
not define positive real numbers as places in a structure defined as such. But it is no more
intended to code these numbers with the items defined in the first stage of the definition, namely
with ratios on domains of magnitudes. In agreement with Frege’s purpose, it is rather intended
to identify these numbers as such, to disclose their ultimate nature, namely that of being these
very ratios (which might be described in different ways, according to the particular domain of
magnitudes that are chosen, provided that different such domain exist: taking these ratios, and

then positive real numbers, to be ratios on CRN+

is, indeed, nothing but a convenient way to name
or describe them). This identification is, however, quite questionable, certainly more questionable
than the neo-logicist idea (also inspired by Frege) that natural numbers are just the values of the
function # singled out by NatNum[FA](iii). It is much more unquestionable to admit that ratios
on domains of magnitudes merely code positive real numbers.

Together with the possibility of defining (or describing) these ratios as ratios on CRN+

, this
suggests freeing Hale’s definition from the definition of domains of magnitudes, and immersing
it within FA. Indeed, all that matters for the definition to be appropriate, at least from a purely

mathematical point of view, is that the ratios on CRN+

provide suitable codes for real numbers,

independently of their being regarded as ratios of magnitudes. It remains, however, that CRN+

cannot be defined, as such, within FA, since this cannot but be a set, and no set can be defined
within FA. One has rather to replace it, as well as N+ and RN+

, with appropriate properties.
One firstly defines the property N+ of being a positive natural number, and rephrases Eucl, by
replacing ‘p’, ‘q’, ‘p∗’, ‘q∗’ with first-order variables bounded by ‘∀N+ ’, ‘∀NN+ ’ with ‘∀N+ ’ again,
and ‘RAT’ with ‘RATN+ ’. This allows to explicitly define the property RN+

of being a value
of the function RATN+ , and rephrase Cut[RN+

], by replacing ‘∀RN+ ’ with ‘∀RN+ ’, ‘P ’ and ‘Q’
with second-order variables bounded by ‘∀RN+ ’ again, and ‘CUT’ with ‘CUTRN+ ’. One explicitly

defines, then, the property CRN+

of being a value of the function CUTRN+ for the argument given
by a non-empty, non-total, downward closed, and upward unbounded property of the items having
the property RN+

, and rephrases Eucl, again, by replacing ‘p’, ‘q’, ‘p∗’, ‘q∗’ with first-order
variables bounded by ‘∀CRN+ ’, and ‘RAT’ with ‘RATCRN+ ’ (by assuming that addition and strict

order have been appropriately defined on the items having the property CRN+

). Finally, one codes
positive real numbers with the values of the function RATCRN+ . This results in supplementing FA
with three abstraction principles, each of which is followed by a corresponding explicit definition.
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In fact, the second rephrasing of Eucl could be avoided by directly coding positive real numbers

with the items having the property CRN+

. In both cases, a further step, involving either a new
abstraction principle, or a suitable explicit definition, is required, in order to move from positive
real numbers to real numbers tout court.

Whatever opinion one might have of Frege’s requirement that real numbers are to be defined
as ratios of magnitudes, and, consequently, of the philosophical appropriateness of Hale’s original
definition of real numbers, it is doubtless that its epistemic cost is high, since its understanding
involves the understanding of the definition of the structure of domains of magnitudes, and of

the existence proof for domains of magnitudes coming with the definition of CRN+
. But, if Hale’s

definition of real numbers is adapted to FA in the way suggested above, it becomes very close
to Shapiro’s, except for possibly involving an eliminable definition of ratios on cuts on ratios

on positive natural numbers (i. e. on items having the property CRN+

) and for obtaining non-
positive real numbers in the end, rather than defining integer numbers in the beginning. On the
one hand, the first rephrasing of Eucl replaces QUOT[FDRA], limitatively to positive natural
numbers, and comes quite close to it, in fact, since, if ‘x’, ‘x′’, ‘y’, ‘y′’ range over these numbers,
the two conditions that ∀N+h, k

[
hx Q kx′ ⇔ hy Q ky′

]
and that x ·Z y′ = x′ ·Z y are provably

equivalent within FA. On the other hand, the rephrasing of Cut[RN+
] replaces, limitatively to

positive rational numbers, both CUT[FDRA] and the restriction to cuts of instantiated and upper
bounded properties of these numbers. Hence, except for the subtle differences that one might
discern among the respective epistemic costs of these two pairs of axioms and among that of the
stipulation required to obtain non-positive real numbers and that of QUOT[FDRA], the epistemic
cost of the two definitions is the same, and then, either analogous to that of Simpson’s definition
or smaller than it.

5.2.3 Real Numbers as Bicimal Pairs

Even though it openly departs from Frege’s indication as well, the last definition I consider is
suggested by one of his ideas, namely by his outline of the existence proof of domains of magnitudes
(to which Hale does not conform, as I have said above).

Frege’s heuristic suggestion goes as follows. Look at Cauchy’s series of the form
∞∑
i=0

λi
1
2i

, where

λ0 is a natural number, and λi (i = 1, 2, . . .) are either 0 or 1, but are not constantly 0 after a
certain value of i. These series are in bijection both with positive real numbers (since any such
series converges to such a number, any such number is the limit of a such a series, and distinct
series converge to distinct numbers and vice versa), and with all the pairs 〈λ0,S〉, where S is
the (infinite) set of positive natural numbers i such that λi = 1 (since, given any such series, one
can get such a pair, and vice versa). There is thus a bijection between positive real numbers and
these pairs. Now, looking at these pairs as such, one can define an internal addition on them,
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let us say ], without any consideration of real numbers, then use it as a basis to define a family
of permutations among these pairs: to any such pair α, one associates the permutation ]α such
that, for any two other pairs β and γ, ]α (β, γ) if and only if β = α ] γ. There is then also a
bijection between these pairs and these permutations, and then between the latter and positive
real numbers. The idea is, then, to show that the value-ranges of these permutations, together
with those of their converses and of the identity permutation form a domain of magnitudes under
the operation of composition (defined on permutations, then transferred to their values-ranges).

As I have said, Frege’s purpose is to define real numbers as ratios of magnitudes. Hence, the
heuristic interest of remarking that the relevant permutations are in bijection with positive real
numbers is not that of showing that the latter can be coded with the former, or better with their
value-ranges (and non-positive real numbers with the converses of these permutations together
with the identity permutations, or with their value-ranges), but rather that of showing that there
are enough relevant permutations for their value-ranges to form a domain of magnitudes. Still,
Frege’s outline naturally suggests to define real numbers, or, at least, positive ones, by coding
them with pairs like 〈λ0,S〉, or with some appropriate alias of them. Hilbert and Bernays do
something close to this in their Grundlagen der Mathematik([24], vol. II, supplement IV, § C).
My suggestion is to render this idea within FA, by generalising it d’emblée to non-positive real
numbers. In particular, I suggest to extend FA, so as to define pairs like 〈p, P 〉—where p is
a natural number and P an infinite (that is, instantiated and upward unbounded) property of
natural numbers—, and to code real numbers with these pairs.

To this purpose, it is enough to supplement FA with a single abstraction principle and a single
explicit definition, and to extend comprehension to formulas including the constant introduced
by this principle. I suggest to call ‘FRA’, for ‘Frege Real Arithmetic’, the extension of FA that is
obtained in this way.

The abstraction principle is the following:

∀Nx, y∀NX, Y [〈x,X〉 = 〈y, Y 〉 ⇔ [x = y ∧ ∀N z [X (z)⇔ Y (z)]]] , (PAIR[FRA])

where ‘〈−,−〉’ is a dyadic functional constant introduced by this principle.
The explicit definition is required to impose that the properties entering the relevant pairs are

infinite. It is the following:

∀x [B (x)⇔ ∃Ny∃NY [x = 〈y, Y 〉 ∧ ∀N z∃Nw [S∗(z, w) ∧ Y (w)]]] . (BicPAIR[FRA])

This definition introduces the monadic predicate constant ‘B’, designating the property of being
a value of the function 〈−,−〉 when its second argument is an infinite property. I call ‘bicimal
pairs’ the items having this property, and I suggest to code real numbers with them.

PAIR[FRA] and BicPAIR[FRA] are enough to complete the definition. But in order to show
that this definition is appropriate, it is also necessary to define addition, multiplication and strict
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order on bicimal pairs, so that they behave with respect to these operation and this relation as
real numbers are required to behave. Of course, this is the case of any definition of these numbers
depending on coding them with appropriate items defined beforehand, and then also of the three
definitions I have considered above. But in this last case, the definitions of these operations and
this relation are less immediate than in the previous ones, though it should be clear that providing
these definitions would be nothing but a question of logical routine. I have no space here to detail
this routine. All I will say is how I suggest to distinguish positive from non-positive real numbers
from the very beginning, that is, by relying neither on these last definitions, nor on the definition
of the real zero.

The basic idea is as follows. Let q be any natural number, and Q and Q̃ any two properties
of natural numbers such that Q (0), ¬Q̃ (0), and Q (n) ⇔ Q̃ (n) for any positive natural number

n. According to PAIR[FRA] and BicPAIR[FRA], the pairs 〈q,Q〉 and
〈
q, Q̃

〉
are distinct to each

other, even though they correspond to the same pair 〈q,S〉, where S is such that i belongs to
it if and only if it is a positive natural number such that Q (i). Hence, bicimal pairs are not
in bijection with positive real numbers. But they are in bijection with real numbers tout court,

since, if 〈q,Q〉 is associated with the positive real ρ = q+
∞∑
i=1

λi
1
2i

, where λi = 1 if and only if Q(i),〈
q, Q̃

〉
can be associated to the non-positive real ρ−2q−1 =

∞∑
i=0

λi
1
2i
−q−1. This suggests taking

a bicimal pair 〈p, P 〉 to be positive if P is such that P (0), and to be non-positive if P is such
that ¬P (0), and coding positive and non-positive real numbers with positive and non-positive
bicimal pairs, respectively.

This is rendered by explicitly defining the two properties B+ and B0/− as follows:

∀x
[
B+ (x)⇔ [B (x) ∧ ∃Ny∃NY [x = 〈y, Y 〉 ∧ Y (0)]]

]
, (BicPAIR+[FRA])

∀x
[
B0/− (x)⇔ [B (x) ∧ ∃Ny∃NY [x = 〈y, Y 〉 ∧ ¬Y (0)]]

]
, (BicPAIR0/−[FRA])

and by coding positive and non-positive real numbers respectively with the items (belonging to
the putative range of the individual variables of LL2) that have these properties.

Once this is done, one can take the bicimal pair 〈0,N+〉 (which is clearly such that B0/− (〈0,N+〉))
to code the real zero, and define addition and strict order on bicimal pairs so that a positive real

ρ and a negative one −ρ are respectively coded with the bicimal pairs
〈
bpcρ , P

〉
and

〈
|bpc|ρ , P̃

〉
,

where: bpcρ is the greatest natural number strictly smaller than ρ; P is such that P (0) and that

P (i) if and only if
∞∑
i=1

λi
1
2i

= ρ − bpcρ is such that λi = 1; |bpc|ρ is the greatest natural number

smaller or equal to ρ; and P̃ is such that ¬P̃ (0) and that P̃ (i) if and only if
∞∑
i=0

λi
1
2i

= ρ− |bpc|ρ
is such that λi = 0.
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Defining real numbers this way allows to achieve the task without relying on any previous
definition of integer and rational numbers. Moreover, just as positive and non-positive real num-
bers are discriminated, and the real zero is identified afterwards—once all real numbers have been
defined at once and the same time by supplementing FA with PAIR[FRA] and BicPAIR[FRA]—,
integer and rational numbers can be easily defined later, by discerning among real ones. To this
purpose, it is enough to take integer numbers to be the real ones which are coded with bicimal
pairs whose second element is either N or N+, and rational numbers to be the real numbers that
are coded with bicimal pairs whose second element is a periodic property of natural numbers, that
is, a property P of these numbers such that ∃Nx, y∀N z [S∗(x, z)⇒ [P (z)⇔ P (z + y)]]. Once this
is done, it is also quite simple to discern positive from non-positive integer and rational numbers:
an integer number is positive if and only if it is coded with a bicimal pair whose second element
is N , and it is non-positive if and only if it is coded with a bicimal pair whose second element
is N+; a rational number is positive if and only if it is coded with a bicimal pair whose second
element is a periodic property of natural numbers that is enjoyed by 0, and it is non-positive if
and only if it is coded with a bicimal pair whose second element is a periodic property of natural
numbers that is not enjoyed by 0. Finally, the integer and the rational zero, simply coincide with
the real one.

It does not only follow that understanding this definition of real numbers is independent
of understanding any definition of integer and rational numbers, but also that understanding
the definition of real numbers as such (which merely consist of PAIR[FRA] and BicPAIR[FRA])
provides most of what is required to understand several other subsequent definitions, namely
that of the real zero, those of positive and negative real numbers, those of integer and rational
numbers, and, among them, of positive and non-positive such numbers, and of the integer and the
rational zero. Each of these definitions is not only quite simple, but it is also fully independent
of the definition of any operation and relation on integer, rational, and real numbers themselves.
Moreover, both the definitions of positive and non-positive real numbers and of the real zero,
and those of integer numbers, and, among them, of positive and non-positive ones, and of the
integer zero, are independent of the definition of any operation on natural numbers themselves,
as well as of any relation on them other than the two relations S(x, z) and S∗(x, z), which already
enter the definition of these last numbers. A previous definition of addition on natural numbers
is only required to define rational numbers, and, together with multiplication, to define the usual
operations and relations on real numbers (and, consequently on integer and rational ones), and
to prove that these numbers behave with respect to these operations and relations as they are
required to do28.

This makes clear that understanding this definition of real numbers, as well as all those

28This proof is quite convoluted, but combinatorial in spirit, and epistemically quite economic, since, elementary
arithmetic on natural numbers being taken for granted, it does not involve much more than propositional logic
applied to predicate (second-order) formulas.
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subsequent ones, requires only a small amount of intellectual resources. Indeed, apart from the
notions that are needed to understand the relevant system of second-order logic, and the notion of
a many-one association between pairs like 〈p, P 〉 and objects, which is needed to understand the
left-right side of PAIR[FRA], understanding the definitions of real numbers, and, among them, of
positive and non-positive such numbers, and of the real zero, merely calls for: the notions of a
natural number and of a property of natural numbers—which includes, in this setting, those of
cardinal numbers, of the successor relation between these numbers, and of its strong ancestral—;
the notions of a variable ranging over these numbers and over their properties, respectively; the
notion of the natural zero, as distinguished from any other natural number; the notions of the
identity and the strict order relation among natural numbers; the notion of a natural number
having a property; and, finally, the notions of a property of natural numbers being enjoyed or
not by a certain natural number, and being enjoyed by exactly the same natural numbers as
another such property. Besides these notions, to understand the definitions of integer numbers,
and, among them, of positive and non-positive such numbers, and of the integer zero, only the
notion of a positive natural numbers—i. e. of a natural number other than zero—is called for.
Finally, to understand, the definitions of rational numbers, and, among them, of positive and
non-positive such numbers, and of the rational zero, it is enough to add the notion of addition
on natural numbers. These resources are not only much fewer than those required to understand
the three previous definition of real numbers, but they are also very basic. Noting this seems
to me enough to conclude that the definition of real numbers coming with FRA is epistemically
economic, in my sense.

6 Conclusions

The previous comparative assessments of two definitions of natural numbers (§ 4) and four def-
initions of real ones (§ 5) were intended to show that: i) alternative formal definitions of the
same mathematical items can be discriminated according to their respective epistemic cost, and
a choice among them can be made so as to prefer the one whose epistemic cost is the smallest,
which (provided that the comparison involves a comprehensive and representative enough sample
of formal definitions of the relevant items) I suggest to qualify as epistemically economic tout
court (though, of course, other choices can be legitimately made on the basis of some other crite-
ria); ii) in the cases under consideration, i. e. in relation to (second-order) definitions of natural
and real numbers, the appeal to appropriate abstraction principles, within appropriate settings,
namely to HP[FA] and to PAIR[FRA], allows one to obtain epistemically economic definitions;
iii) this does not depend on the existential strength of these principles, and thus, a fortiori, on
their existential parsimony or ontological neutrality (that, by the way, I do not think they benefit
from), which shows that existential parsimony or ontological neutrality and epistemic economy
are independent virtues. From all this, it follows that the epistemic economy of the definitions
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of natural and real numbers respectively coming with FA and FRA provides a possible reason to
favour FA over other versions of (second-order) arithmetic, both as such, and as a base for real
analysis: a reason which is independent of FA’s existential strength.

My considerations leave, however, many related issues open. I wish to address two of them in
conclusion.

6.1 Analyticity

The first issue concerns the relation between epistemic economy and analyticity.
Famously, Dedekind opened the preface to the first edition of Was sind und was sollen die

Zahlen ([9]) by declaring that arithmetic is “the simplest science”, namely a “part of logic”, and
that it is so insofar as “the number-concept [is][. . . ] an immediate result [Ausfluss ] from the pure
laws of thought”, since “numbers are free creations of the human mind [. . . ][which] serve as a
means of apprehending more easily and more sharply the difference of things”, and “counting an
aggregate or number of things” depends on “the ability of the mind to relate things to things, to
let a thing correspond to a thing, or to represent a thing by a thing, an ability without which no
thinking is possible” ([10], p. 14, with a slight modification)29. H. Benis-Sinaceur takes this to
mean that arithmetic is a part of logic because “numbers [. . . ] are rooted in the constitution of the
mind or, as Dedekind writes to Keferstein (February 27, 1890), they are ‘subsumed under more
general notions and under activities [. . . ] of the understanding [. . . ] without which no thinking
is possible’ ” ([2], §1.3.1; [35], p. 272; [36], p. 100). The same point is also clear in this other
passage drawn from the fragment Zum Zahlbegriff (which Benis-Sinaceur quotes only partially:
[2], §1.6): “Of all the resources that the human mind [is endowed with] for relieving its life, that
is, [for fulfilling its] task, none is so effective and so inseparably connected with its inner nature
as the concept of number [. . . ], since every thinking man, even if he is not clearly aware of that,
is a number-man, an arithmetician” ([12], app. LVIII, p. 315)30.

Dedekind’s logicism then seems to consist in the thesis that the resources we use to count,
and, more generally, to deal with natural numbers, are just the same as, or part of those we
use to think tout court, and in the identification of logic with the intellectual activity exercising
these resources. Even though Dedekind and Frege have often been associated as two partisans of
logicism—generally presented as the thesis that arithmetic can be reduced to logic by adopting

29Though he generically speaks of numbers (Zahlen), Dedekind’s claims seem to be directly referred to natural
numbers. Still, he also seems to consider that his views on these numbers extend to any other sorts of numbers,
insofar as theories of the latter come from an extension of the theory of the former (or arithmetic, as usually
intended). This is made clear by the parenthesis in the following claim: “In speaking of arithmetic (algebra,
analysis) as a part of logic I mean to imply that I consider the number-concept [Zahlbegriff ] entirely independent
of the notions or intuitions of space and time, that I consider it an immediate result from the laws of thought”
([10], p. 14).

30I thanks Emmylou Haffner for drawing my attention to this passage.
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an appropriate definition of natural numbers—this point of view is quite different from Frege’s
(emphasising this difference is the main purpose of Benis-Sinaceur’s paper just mentioned; on this
matter, cf. also the Foreword of [3]). Still, one would misunderstand Frege’s point if one regarded
it as the mere affirmation that arithmetic can be recovered within his logical system. Since it
was part of this point that this system is epistemically basic, insofar as it pertains to the basic
components of any thought31 On the other side, Dedekind’s purpose was not merely to account
for the intrinsic features of arithmetic; it was also to prescribe the right definition of natural
numbers: “upon this unique and therefore absolutely indispensable foundation [. . . ] must, in my
judgement, the whole science of numbers be established”, he also writes in the mentioned preface,
just after the passage quoted above ([10], p. 14). Doubtless, Frege’s logic and thought are not
activities, and, for him, natural numbers are certainly not “free creations of the human mind”,
as for Dedekind. Still, this crucial difference should not obscure a more fundamental agreement:
that the logicality of arithmetic depends on its generality, which results, in turn, from its dealing
with the building blocks of any other possible science (be it an exercise of human reason, as for
Dedekind, or a system of truths, as for Frege); and that the definition of natural numbers has to
conform to this.

It is then tempting to associate Dedekind’s regarding the logicality of arithmetic as its involving
the (or same as the) basic resources of thinking with Frege’s view that arithmetical truths are
analytic insofar as their proof only depends on “logical laws and definitions”, and to suggest
that a definition of some mathematical items is analytic insofar as its understanding only calls for
logical resources. If this were admitted, there would also be room for assenting to Dedekind’s view
that the creative import of a definition does not preclude its being logical in nature. Exegetically
speaking, one could doubt that Dedekind’s regarding numbers as human mind’s creations amounts
to ascribing an ontological import for objects to whatsoever definition of them. Still, this would
be independent from being ready to consent to the idea that admitting that a definition of natural
numbers has such an import should not prevent one from considering that its understanding only
calls for logical resources, and that it is then analytic in the tentative sense just mentioned. Of

31Look at the two following quotes, from the Grundlagen ([14], §14 and [16], p. 21), and from a coeval paper
(“Über Formale Theorien der Arithmetik”, [17], pp. 103-111, esp. p. 103; English translation in [18] pp. 112-121,
esp. p. 112), respectively:

The basis of arithmetic lies deeper, it seems, than that of any of the empirical sciences, and even
than that of geometry. The truths of arithmetic govern all that is numerable. This is the widest
domain of all; for to it belongs not only the actual, not only the intuitable, but everything thinkable.
Should not the laws of number, then, be connected very intimately with the laws of thought.

As a matter of fact, we can count about everything that can be an object of thought: the ideal as
well as the real, concepts as well as objects, temporal as well as spatial entities, events as well as
bodies, methods as well as theorems; even numbers can in their turn be counted. What is required
is really no more than a certain sharpness of delimitation, a certain logical completeness.
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course, it would still remain to explain what it means for the understanding of a definition to
only call for logical resources. This could be difficult to do in a precise way, but the previous
considerations about the definitions of natural and real numbers coming with FA and FRA suggest
that this construal of the notion of analyticity leaves room to argue that natural numbers, and
possibly also real ones, admit an analytic definition. This would result in a vindication of Frege’s
views, although in a philosophical setting essentially different both from Frege’s himself, and from
the neo-logicist one.

To defend the strong neo-logicist analyticity thesis, one could maintain, then, that under-
standing HP[FA] and NatNum[FA](i -iii) only calls for logical resources by arguing as follows. If it
were admitted that second-order logic is logic, or, more precisely, that L2 is a genuine system of
logic, it would be natural to maintain that understanding the right-hand side of HP[FA] only calls
for logical resources. Hence, if it were also admitted that understanding the universal closure of a
double implication ‘S(f)⇔ S’, introducing the new constant ‘f ’ (non occurring in ‘S’), only calls
for logical resources if this is the case for understanding ‘S’, it would follow that understanding
the whole HP[FA] only calls for logical resources. Furthermore, if it were equally admitted that
understanding an explicit definition in LL2 + {f} only calls for logical resources if this is the case
for understanding the universal closure of ‘S(f) ⇔ S’, it would also follow that understanding
NatNum[FA](i -iii) only calls for logical resources, as well. It would then be enough to be ready to
make the three mentioned admissions to conclude that the definition of natural number coming
with FA is not only epistemically economic, as I have argued in § 4, but it is also analytic, in the
foregoing sense.

If all this were conceded, it should also be possible to go ahead in a similar vein and argue
that understanding PAIR[FRA], BicPAIR[FRA], BicPAIR+[FRA] and BicPAIR0/−[FRA] only calls
for logical resources, in turn, with the result that the definition of real numbers coming with FRA
would also be analytic. But then, why should it not be possible to fashion a similar argument
supporting the claim that this is also the case of Shapiro’s definitions of real numbers, as well as
of that expounded in § 5.2.2, deriving from adapting Hale’s one to FA? In the face of this option,
one could adopt three different attitudes.

First, one could look for reasons to block the argument in relation to these two latter defi-
nitions, while admitting it in relation to the former one, in order to conclude that, whereas the
former definition is analytic, the latter two aren’t. For this purpose, one could advance, for ex-
ample, that there is a relevant difference in the epistemic cost of the universal closure of a double
implication ‘S(f)⇔ S’ introducing the new constant ‘f ’, according to whether ‘S’ is a formula of
LL2 , or ‘S’ includes some constants that do not belong to LL2 (and this independently of whether
this universal closure is unrestricted or admits a restriction involving some predicate constants),
with the result that from admitting that understanding such a universal closure in the former
case only calls for logical resources does not entail that this is also the case for understanding it
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in the latter case32.
Second, one could question that an argument similar to the previous one, supporting the

conclusion that the definition of natural numbers coming with FA is analytic, applies to FRA, and
then maintain that neither the definition of real numbers coming with FRA, nor Shapiro’s, nor
the adaptation of Hale’s to FA are analytic. For this purpose, one could argue, for example, that
the mere fact that an abstraction principle incorporates a universal quantification restricted by
using a predicate constant entails that the understanding of this principle calls for more than only
logical resources. More radically, one could also question that understanding an explicit definition
in LL2 + {f} only calls for logical resources if this is the case for understanding the definition of
‘f ’, so as to block, in this way, also the previous argument bringing to the conclusion that the
definition of natural numbers coming with FA is analytic.

Finally, one could accept that Shapiro’s definitions of real numbers and the adaptation of
Hale’s one to FA are both analytic, after all, just like the one coming with FRA, while conceding
that distinct analytic definitions of the same items could have significantly different epistemic
costs, with the result that only one of them is epistemically economic.

6.2 Exemplarist Definitions

I now turn to the second question.
At the end of the paper where he presents his definition, Shapiro touches on Heck’s distinction

between interpreting arithmetic “in some analytically true theory” and showing that “the truths
of arithmetic, as we ordinarily understand them, are analytic”, and he wonders whether the “cuts
on bounded, instantiated properties of rational numbers [as defined by CUT[FDRA]] are the real
numbers that we all know and love?” ([31], pp. 360-361; [23], p. 596). This last question is, as
such, independent of the admission that FA, and possibly also FDRA, are analytic, and can be
repeated for any definition of some mathematical items depending on coding these items with
other ones previously defined, that is, as one could say, for short, for any exemplarist definition.
By only considering the definitions of natural and real numbers respectively coming with FA and
FRA, the question becomes: should we regard these theories as genuine theories of natural and
real numbers, as we ordinarily understand them, or, merely, as theories within which arithmetic

32To see the point, remark, firstly, that LL2 includes no predicate constant, so that a restriction in-
volving some predicate constant cannot be stated in LL2 . Remark, then, that in PAIR[FRA], the re-
stricted quantifier ‘∀N z’ can be equivalently replaced by an unrestricted one (its entering this principle
is only motivated by easiness of understanding). Finally, remark the difference between the open for-
mula ‘x = y ∧ ∀z [X (z)⇔ Y (z)]’, providing the right-hand side of PAIR[FRA], and the other open for-
mulas ‘x + y′ = x′ + y’, ‘[y = 0Z ∧ y′ = 0Z ] ∨ [y 6= 0Z ∧ y′ 6= 0Z ∧ x ·Z y′ = x′ ·Z y]’, ‘∀Qx (F E x⇔ G E x)’,
‘∀N+h, k

[
hx Q ky ⇔ hx∗ Q ky∗

]
’ and ‘∀RN+ [P (x)⇔ Q (x)]’, providing the right-hand sides of the abstraction

principles involved in Shapiro’s definitions of real numbers, and in the adaptation of Hale’s to FA: whereas the
first of these formulas is a formula of LL2 , this is so for none of the others.
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and real analysis are interpretable?
As I conceive it, the question is not whether FA and FRA truly define, respectively, natural and

real numbers, that is, if the items that, within these theories, are taken to be these numbers are
actually these very numbers. So conceived, the question makes little or no sense, it seems to me,
unless one looks at the matter from a hyper-realist ontological perspective, which I neither share,
nor believe could be adopted by default. In my view, the question is rather whether the definitions
of these numbers respectively coming with FA and FDRA have what is essential to the nature we
attribute to these numbers built into themselves. Of course, if one maintains that there is nothing
essential to this nature beside these number’s meeting the relevant structural conditions, then this
question makes little sense as well. But maintaining this is far from mandatory: there is room to
consider that what is essential to this nature also depends—or even depends only—on the place
we attribute to these numbers in our mathematical knowledge as a whole (for example, on the
mutual relations between natural and real numbers that follow from our way to conceive them),
or, more generally, in the whole system of our knowledge.

In this perspective, the relevant question with respect to FA is whether we should consider
that taking natural numbers to be trademarks of the cardinality of finite concepts reflects what
is essential to their nature. In this form, the question has been often discussed, for example
considering whether defining natural numbers through FA meets the application constraint. There
is then no need to come back to it, here. I confine myself to observe that nothing ensures, in
general, that a definition whose understanding calls for less and/or more basic resources than
others, or even an analytic definition in the foregoing sense, has what is essential in the nature
we attribute to the relevant items built into it. Hence, there is no general reason to think that
FA’s being epistemically economic goes together with its having what is essential in the nature
we attribute to natural numbers built into it. Its possibly having both virtues would then be a
supplementary epistemic advantage that this definition would have over alternative ones, since
this would make it able to show that what is essential in the nature we attribute to natural
numbers can be grasped by appealing to few and quite basic resources. Moreover, if it happened
that these resources could be considered as merely logical, this would mean that logical resources
are enough to grasp what is essential in the nature we attribute to natural numbers, which could
be taken as a proper way to state a logicist thesis for someone who, like me, merely considers
mathematics as a result of our intellectual activity.

It is then relevant to wonder whether something similar could also be said of FRA, supposing
that it be regarded as providing an epistemically economic definition of real numbers, or even an
analytic definition of them in the foregoing sense.

Against the idea that the definition of real numbers depending on FRA has all what is essential
in the nature we attribute to these numbers built into it, one could observe that the explicit
definitions making bicimal pairs behave as real numbers are guided by a previous understanding of
the relevant structure, together with the admission that real numbers exemplify this structure, and
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that this suggests that taking real numbers to be (coded with) bicimal pairs might be considered
appropriate only if these numbers are independently conceived to exemplify this structure. Now,
it is certainly not built into the definition of bicimal pairs that they exemplify this structure: this
can only be verified a posteriori with respect to the definition itself. Hence, if what is essential to
the nature we ascribe to real numbers includes their exemplifying this structure, defining these
numbers as (coded with) bicimal pairs cannot have all what is essential to this nature built into
it.

This is a plausible argument, but there are reasons to resist it. One could argue, indeed, that
what is essential to the nature we ascribe to real numbers does not include their exemplifying the
relevant structure, but only their possibly doing so, should appropriate operations and relations
be defined on them. To make an analogous point with respect to natural numbers, one could
argue that what is essential to the nature we ascribe to them is not their behaving with respect
to order, addition and multiplication as they do, but their being so that this relation and these
operations can be defined on them so that they behave in this way. Arguing that natural numbers
are essentially cardinal numbers (or numbers of concepts), rather than elements of a progression,
is, after all, a way to make this point. Could one not make an analogous point for real numbers? If
this were conceded, it would be relevant to remark that having an epistemic access to bicimal pairs
is independent of having an epistemic access to the relevant structure. Indeed, this would leave
room to maintain that the mere resources needed to understand PAIR[FRA] and BicPAIR[FRA]
are enough to grasp what is essential to the nature we attribute to real numbers. Surely. But
leaving room to maintain that this is so is still not the same as providing reasons for it. Hence
the question remains: are the resources needed to understand PAIR[FRA] and BicPAIR[FRA]
enough to grasp what is essential to the nature we attribute to real numbers? In order to argue
that this is not so, and so contest that the definition of real numbers depending on FDRA have
what is essential to this nature built into it, one could observe that it is a fact that our ordinary
understanding of real numbers does not involve bicimal pairs. The following considerations should,
however, be enough to overcome this objection and support a positive answer to the question.

Insofar as the notions of limit, convergence, continuity and cut are in no way appealed to
in the definition of real numbers depending on FRA (though proving that bicimal pair form a
complete group cannot but require appealing to some of them), this definition suggests that there
is a way to understand the key notions of real analysis—which are certainly involved in our
ordinary understanding of real numbers—that results from our acquaintance with an instance of
the structure of real numbers, rather than the other way around. Hence, one could maintain that
taking real numbers to be (coded with) bicimal pairs allows us to have an epistemic access to
these numbers in such a way that we can, then, and only then, get our ordinary understanding
of them through working on them by exploiting the possibilities embodied in the very nature of
these pairs. If it were conceded that what is essential to the nature we ascribe to real numbers
merely includes their possibly exemplifying the relevant structure if some appropriate operations
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and relations are defined on them, it would follow that this would already be implicitly built
into these numbers being coded with bicimal pairs, and it would only be a question of making it
explicit.

In the paper mentioned above, Benis-Sinaceur argues that Dedekind’s original definition of
real numbers, unlike Cantor’s, “is not based on the concepts of limit and convergence”, and that
this definition rather “shows how to derive the concept of limit, and thus the usual theorems of
real analysis, from the purely arithmetical definition of the concept of real number” ([2], §1.1).
This suggests that Dedekind’s definition already makes clear that understanding some key notions
of real analysis can result from our acquaintance with an instance of the real numbers structure,
rather that with this structure itself. Nonetheless, understanding Dedekind’s definition involves
understanding a previous definition of rational numbers and of cuts on (and then sets of) them,
which is not the case of the definition depending on FRA. Mutatis mutandis, the same also happens
for Shapiro’s definition and for the adaptation of Hale’s one to FA. Hence, if it were conceded that
the definition depending on FRA has what is essential to the nature we ascribe to real numbers
built into it, this would show that there is a way to grasp what is essential to this nature that is
epistemically more economic than the way displayed by these alternative definitions.

But there is even more. Insofar as FRA is an extension of FA, and defining real numbers through
FRA depends on defining natural numbers through FA, so defining real numbers brings forward
an idea of these last numbers as reifications of properties of cardinal numbers combinatorially
steered. This is not the idea of real numbers that Frege attached to them, and is certainly not the
idea that arises from looking at their applications in geometry and science. But it is, it seems to
me, a rather natural view of them both arithmetically speaking, and from a logicist perspective.
Were it admitted that this very idea embodies what is essential to the nature we ascribe to real
numbers—which is not only a possibility that the previous considerations leaves open, but also
a very natural admission, if it were conceded that we essentially conceive real numbers as being
numbers in the same sense as that in which natural numbers are so—, there would be no doubt
that the definition of real numbers depending on FRA has what is essential to the nature we
ascribe to these numbers built into it. And were it also admitted that this definition is analytic,
in the foregoing sense, this would result in a version of the logicist thesis also for real numbers.

Still, even if all this were admitted, and this version of logicism were endorsed, this would
not entail, in my view, that FRA provides the right or the best definition of real numbers. In my
view, philosophy of mathematics should not aim at deciding which is the best way of defining
certain mathematical items, or of structuring or founding mathematics or certain branches of it.
It should rather aim (among other things) at identifying different philosophical virtues of different
ways of defining mathematical items, and structuring or founding some branches of mathematics.
My purpose was to isolate one of these virtues, namely epistemic economy, and to show that
appealing to appropriate abstraction principles is suitable to obtain definitions that enjoy this
virtue.
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