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The identification problem of multivariable controlled autoregressive systems with measurement noise in the form of the moving
average process is considered in this paper. The key is to filter the input–output data using the data filtering technique and to
decompose the identification model into two subidentification models. By using the negative gradient search, an adaptive data
filtering-based gradient iterative (F-GI) algorithm and an F-GI with finite measurement data are proposed for identifying the
parameters of multivariable controlled autoregressive moving average systems. In the numerical example, we illustrate the
effectiveness of the proposed identification methods.

1. Introduction

Parameter estimation plays an important role in system
control [1–4], system analysis [5–8], and signal processing
[9–13]. Parameter estimation is significant in system model-
ing [14, 15]. Multi-input multi-output systems widely exist in
industrial control areas, which are also called multivari-
ate systems or multivariable systems [16–18]. They are more
complex in model structures than single-input single-output
systems and always have high dimensions and numerous
parameters, which make the parameter estimation more
difficult. In this literature, Ding et al. proposed a filtering
decomposition-based least squares iterative algorithm for
multivariate pseudolinear ARMA systems [19]. Ma et al.
studied the parameter estimation problem of multivariate
Hammerstein systems and presented a modified Kalman
filter-based recursive least squares algorithm to give the
parameter estimates [20]. Pan et al. proposed a filtering-
based multi-innovation extended stochastic gradient algo-
rithm for multivariable systems [21].

The data filtering technique is an important approach in
system identification [22] and state estimation. Chen and
Ding applied the data filtering technique to identify the
multi-input and single-output system based on themaximum
likelihood recursive least squares algorithm [23]. Mao et al.
derived an adaptive filtering-based multi-innovation stochas-
tic gradient algorithm for the input nonlinear system with
autoregressive noise [24]. They introduced a linear filter to fil-
ter the input and output signals and decomposed the identifi-
cation model into two subidentification models (i.e., a noise
model and a system filtered model), which can improve the
convergence rate and computation efficiency [25]. The
identification methods can be applied to many areas [26–29].

The gradient search is useful for identification as an opti-
mization method [30, 31]. Many gradient-based algorithms,
including the stochastic gradient algorithms [32–34] and
the gradient-based iterative algorithms, have been developed
using the multi-innovation identification theory, the maxi-
mum likelihood estimation methods [35, 36], the key-term
separation principle [37, 38], and the data filtering theory.
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For example, Ma et al. presented an iterative variational
Bayesian method to identify the Hammerstein varying sys-
tems with parameter uncertainties. Chen et al. studied the
identification problem of bilinear-in-parameter systems and
presented a gradient-based iterative algorithm by using the
hierarchical identification principle and the gradient search
[39]. Deng and Ding developed a Newton iterative identi-
fication method for an input nonlinear finite impulse
response system with moving average noise [40]. Other
methods can be referred as to the transfer function identi-
fication [41–45], linear system identification [46–51], and
nonlinear system identification [52–59].

This paper uses the hierarchical identification principle
to study the data filtering-based iterative identification
methods for a multivariable controlled autoregressive mov-
ing average (M-CARMA) system. The basic idea is to intro-
duce a linear filter to decompose the original identification
model into two subidentification models and then obtain
the parameter estimates using the negative gradient search.
The main contributions are as follows:

(i) A filtering-based gradient iterative (F-GI) algorithm
is proposed using the data filtering technique and
the gradient search.

(ii) A filtering-based gradient iterative algorithm with
finite measurement data is developed to obtain the
parameter estimates.

The layout of the remainder of this paper is as follows.
Section 2 derives the identification model for the M-
CARMA system. In Section 3, we derive a data filtering-
based gradient iterative algorithm based on the data filtering
technique. A filtering-based gradient iterative algorithm with
finite measurement data is developed to estimate the
unknown parameters in Section 4. A numerical example is
shown in Section 5 to illustrate the benefits of the proposed
methods in this paper. Finally, some concluding remarks
are given in Section 6.

2. The Problem Formulation

Some notation is introduced for convenience: θ t denotes
the estimate of θ at time t; “A≕ X” or “X ≔ A” stands for“
A is defined as X”; the symbol I (In) represents an identity
matrix of appropriate size (n × n); the symbol 1n represents
an n-dimensional column vector whose elements are 1; z
denotes a unit forward shift operator like zx t = x t + 1
and z−1x t = x t − 1 ; the superscript T symbolizes the vec-
tor/matrix transpose; and the norm of a matrix X is defined
by ∥X∥2 ≔ tr XXT .

The following multivariable controlled autoregressive
moving average system in Figure 1 is considered,

A z y t = B z u t +D z υ t , 1

where u t ∈ℝr is the system input vector, y t ∈ℝm is
the system output vector, v t ∈ℝm is a white noise vector
with zero mean, A z and B z are the matrix polynomials

in the unit backward shift operator z−1, and D z is the
polynomial in z−1.

A z ≔ I +A1z
−1 +A2z

−2 +⋯ +Ana
z−na , Ai ∈ℝm×m,

B z ≔ B1z
−1 + B2z

−2 +⋯ + Bnb
z−nb , Bi ∈ℝm×r ,

D z ≔ 1 + d1z
−1 + d2z

−2 +⋯ + dndz
−nd , di ∈ℝ

2

Assume that the orders na, nb, and nd are known, and
u t = 0, y t = 0, and v t = 0 for t ≤ 0. The intermediate
variable is defined as

w t ≔D z υ t ∈ℝm 3

The system information vector φs t , the noise informa-
tion vector ψ t , the system parameter matrix θs, and the
noise parameter vector θn are defined as

φs t ≔ −yT t − 1 , −yT t − 2 ,… , − yT t − na ,

uT t − 1 , uT t − 2 ,… , uT t − nb
T

∈ℝmna+rnb ,
ψ t ≔ υ t − 1 , υ t − 2 ,… , υ t − nd ∈ℝm×nd ,

θTs ≔ A1,A2,… ,Ana
, B1, B2,… , Bnb

∈ℝm× mna+rnb ,

θn ≔ d1, d2,… , dnd
T ∈ℝnd

4

Equations (3) and (1) can be written as

w t = 1 + d1z
−1 + d2z

−2 +⋯ + dndz
−nd υ t

= d1υ t − 1 + d2υ t − 2 +⋯ + dndυ t − nd + υ t

= ψ t θn + υ t ,

5

y t = I −A z y t + B z u t +D z υ t

= θTs φs t + w t = θTs φs t + ψ t θn + υ t
6

Equation (5) is the noise identification model. For the
M-CARMA system in (1), choose the polynomial L z ≔
1/D z as a filter. Define the filtered input vector uf t , the
filtered output vector y f t , and the filtered information
vector φf t as

u(t)

v(t)
A−1(z)D(z)

A−1(z)B(z)
y(t)

Figure 1: A multivariable controlled autoregressive moving average
system.
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uf t ≔ L z u t =
1

D z
u t ∈ℝr ,

y f t ≔ L z y t = 1
D z

y t ∈ℝm,

φf t ≔ L z φs t =
1

D z
φs t

= −yTf t − 1 , −yTf t − 2 ,… , − yTf t − na ,

uTf t − 1 , uTf t − 2 ,… , uTf t − nb
T

∈ℝmna+rnb

7

Multiplying both sides of (1) by L z obtains

A z L z y t = B z L z u t + υ t , 8

or

A z y f t = B z uf t + υ t 9

Then we have

y f t = I −A z y f t + B z uf t + υ t = θTs φf t + υ t

10

Equations (10) and (5) form the filtered identification
models of the M-CARMA system.

3. The F-GI Algorithm

In this section, a linear filter L z is applied to deal with the
moving average noise. A gradient-based iterative identifica-
tion algorithm is proposed for M-CARMA systems by using
the data filtering technique [60–63].

Considering the newest p data from i = t − p + 1 to i = t,
the stacked filtered output matrix Yf p, t , the stacked fil-
tered information matrix Φf p, t , the stacked noise vector
W p, t , and the stacked noise information matrix Φn p, t
are defined as

Yf p, t ≔ y f t , y f t − 1 ,… , y f t − p + 1 ∈ℝm×p,

Φf p, t ≔ φf t , φf t − 1 ,… , φf t − p + 1 ∈ℝ mna+rnb ×p,

W p, t ≔ w t ,w t − 1 ,… ,w t − p + 1 T ∈ℝpm,

Φn p, t ≔ ψ t , ψ t − 1 ,… , ψ t − p + 1 T ∈ℝ pm ×nd

11

Define a quadratic criterion function:

J1 θs = Yf p, t − θTs Φf p, t
2
,

J2 θn = W p, t −Φn p, t θn 2
12

Let k = 1, 2, 3,… be an iterative variable. Let θs,k t and

θn,k t be the estimates of θs and θn at iteration k. Minimizing
J1 θs and J2 θn and using the negative gradient search will
give the following iterative relations for obtaining the param-
eter estimates of θs and θn:

θs,k t = θs,k−1 t −
μ1,k t

2
grad J1 θs

= θs,k−1 t + μ1,k t Φf p, t

Yf t − θTs,k−1 t Φf p, t
T
,

13

θn,k t = θn,k−1 t −
μ2,k t

2
grad J2 θn

= θn,k−1 t + μ2,k t ΦT
n p, t

W t −Φn p, t θn,k−1 t ,

14

where μ1,k t ≥ 0 and μ2,k t ≥ 0 are the iterative step size or
the convergence factor. However, the difficulty is that the
noise information matrix Φn p, t (i.e., ψ t ) contains the
unmeasured vector v t − i . So the gradient-based iterative
algorithm in (13) and (14) cannot give the parameter esti-

mate θn,k t directly. The solution is to use the hierarchical
identification principle and to replace the unknown variable
v t − i with its corresponding estimates υk−1 t − i at itera-
tion k − 1, and to define the estimate of ψ t as

ψk t ≔ υk−1 t − 1 , υk−1 t − 2 ,… , υk−1 t − nd ∈ℝm×nd

15

Using ψk t to construct the estimate ofΦn,k p, t obtains

Φn,k p, t ≔ ψk t , ψk t − 1 ,… , ψk t − p + 1 T ∈ℝ pm ×nd

16

Replacing t in (6) with t − i gives

w t − i = y t − i − θTs φs t − i 17

Replacing θs in (17) with θs,k−1 t obtains the estimate of
w t − i at iteration k:

ŵk t − i = y t − i − θTs,k−1 t φs t − i 18

From (6), we have

υ t − i = y t − i − θTs φs t − i − ψ t − i θn 19

Replacing θs, θn, and ψ t − i with θs,k t , θn,k t ,
and ψk t − i obtains the iterative estimate of v t − i at
iteration k:

υk t − i = y t − i − θTs,k t φs t − i − ψk t − i θn,k t 20

Then, using ŵk t to construct the iterative estimate of
W p, t at iteration k gives

Ŵk p, t = ŵk t , ŵk t − 1 ,… , ŵk t − p + 1 T ∈ℝpm

21

Use θn,k t = d̂1,k t , d̂2,k t ,… , d̂nd ,k t
T

to construct
the estimate of D t, z as
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D̂k t, z = 1 + d̂1,k t z−1 + d̂2,k t z−2 +⋯ + d̂nd ,k t z−nd

22

Using D̂k t, z to filter y t and u t gives the filtered esti-
mates ŷ f ,k t and ûf ,k t of y f t and uf t :

ûf ,k t = u t − d̂1,k t ûf ,k t − 1 − d̂2,k t ûf ,k t − 2
−⋯− d̂nd ,k t ûf ,k t − nd ,

ŷ f ,k t = y t − d̂1,k t ŷ f ,k t − 1 − d̂2,k t ŷ f ,k t − 2
−⋯− d̂nd,k t ŷ f ,k t − nd

23
Furthermore, we use ŷ f ,k t to construct the estimate of

Yf p, t , use ŷ f ,k t and ûf ,k t to construct the estimate of
φf t , and use φf ,k t to construct the estimate of Φf p, t
at iteration k:

Ŷf ,k p, t ≔ ŷ f ,k t , ŷ f ,k t − 1 ,… , ŷ f ,k t − p + 1 ∈ℝm×p,

φf ,k t ≔ −ŷTf ,k t − 1 ,… , − ŷTf ,k t − na ,
ûTf ,k t − 1 ,… , ûTf ,k t − nb

T ∈ℝmna+rnb ,

Φf ,k p, k ≔ φf ,k t , φf ,k t − 1 ,… , φf ,k t − p + 1

∈ℝ mna+rnb ×p

24
From the above derivation, we can summarize a filtering-

based multi-innovation gradient iterative identification
algorithm:

θs,k t = θs,k−1 t + μ1,k t Φf ,k t

Ŷf ,k t − θTs,k−1 t Φf ,k t
T
,

25

Ŷf ,k p, t = ŷ f ,k t , ŷ f ,k t − 1 ,… , ŷ f ,k t − p + 1 , 26

Φf ,k p, t = φf ,k t , φf ,k t − 1 ,… , φf ,k t − p + 1 , 27

θn,k t = θn,k−1 t + μ2,k t ΦT
n,k t

Ŵk t −Φn,k t θn,k t ,
28

Ŵk p, t = ŵk t , ŵk t − 1 ,… , ŵk t − p + 1 T, 29

Φn,k p, t = ψk t , ψk t − 1 ,… , ψk t − p + 1 T, 30

φf ,k t = −ŷTf ,k t − 1 ,… , − ŷTf ,k t − na ,

ûTf ,k t − 1 ,… , ûTf ,k t − nb
T,

31

ψk t = υk−1 t − 1 , υk−1 t − 2 ,… , υk−1 t − nd , 32

φs t = −yT t − 1 ,… , − yT t − na ,
uT t − 1 ,… , uT t − nb

T,
33

ûf ,k t = u t − d̂1,k t ûf ,k t − 1 − d̂2,k t ûf ,k t − 2 ,
−⋯− d̂nd,k t ûf ,k t − nd ,

34

ŷ f ,k t = y t − d̂1,k t ŷ f ,k t − 1 − d̂2,k t ŷ f ,k t − 2 ,
−⋯− d̂nd ,k t ŷ f ,k t − nd ,

35

ŵk t − i = y t − i − θTs,k−1 t φs t − i , 36

υk t − i = y t − i − θTs,k t φs t − i − ψk t − i θn,k t , 37

θn,k t = d̂1,k t , d̂2,k t ,… , d̂nd ,k t
T
, 38

μ1,k t ≤ 2 Φf ,k t
2 −1

, 39

μ2,k t ≤ 2 Φn,k t
2 −1

40

The identification steps of the algorithm in (25), (26),
(27), (28), (29), (30), (31), (32), (33), (34), (35), (36), (37),

(38), (39), and (40) to compute θs,k t and θn,k t are listed
as follows:

(1) Set the initial values: let t = 1, give the data length
p, and give a small positive number ε. Set the ini-

tial values θs 0 = 1 mna+rnb ×m/p0, θn 0 = 1nd /p0,
p0 = 106.

(2) Collect the input–output data u t and y t and
construct φs t using (33).

(3) Let k = 1 and set the initial values ŵ0 t − i = 1m/
po, υ0 t − i = 1m/p0, ŷ f ,0 t − i = 1m/p0,,ûf ,0 t − i =
1r/p0, i = 1, 2,… , max na, nb, nd

(4) Construct ψk t and φf ,k t using (31) and (32).

(5) Compute ŵk t using (36) and form the stacked
noise vector Ŵk p, t using (29) and the stacked
noise matrix Φn,k p, t using (30).

(6) Choose μ2,k t using (40) and update the noise

parameter estimates θn,k t using (28).

(7) Read d̂i,k t from θn,k t in (38). Compute ûf ,k t
and ŷ f ,k t using (34) and (35).

(8) Construct Φf ,k p, t using (27) and Ŷf ,k p, t using
(26).

(9) Choose μ1,k t using (39) and update the system

parameter estimates θs,k t using (25).

(10) Compute υk t − i using (37).

(11) Compare θs,k t with θs,k−1 t and compare θn,k t

with θn,k−1 t : if ∥θs,k t − θs,k−1 t ∥>ε and ∥θn,k t

− θn,k−1 t ∥>ε, increase k by 1 and turn to Step 4;
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otherwise, obtain k and the parameter estimate

vector θs,k t and θn,k t , let θs,0 t + 1 ≔ θs,k t ,

θn,0 t + 1 ≔ θn,k t , increase t by 1 and turn to
Step 2.

The flowchart of computing θs,k t and θn,k t from the
F-GI algorithm is shown in Figure 2.

4. The F-GI Algorithm with Finite
Measurement Data

Consider the data from t = 1 to t = L and define the
stacked filtered output matrix Yf L , the stacked filtered
information matrix Φf L , the stacked noise vector W L ,
and the stacked noise information matrix Φn L as

Yf L ≔ y f L , y f L − 1 ,… , y f 1 ∈ℝm×L,

Φf L ≔ φf L , φf L − 1 ,… , φf 1 ∈ℝ mna+rnb ×L,

W L ≔ w L ,w L − 1 ,… ,w 1 T ∈ℝLm,

Φn L ≔ ψ L , ψ L − 1 ,… , ψ 1 T ∈ℝ Lm ×nd

41

Note that Yf L andΦf L contain all the measured data
u t , y t : t = 1, 2,… , L .

Start

Initialize: t = 1

Collect u(t) and y(t)

Initialize: k = 1

Construct ψ
k
(t) and ϕf,k(t) and compute ω(t)

Construct W
k
(p,t) and 𝜱n,k(p,t)

k: = k + 1

t: = t + 1

Update 𝜭n,k(t)

Compute uf,k(t) and yf,k(t) and construct 𝜱f,k(p,t)

Update 𝜭s,k(t) and compute v
k
(t−i)

||𝜭s,k(t)−𝜭s,k−1(t)|| > ε?
||𝜭n,k(t)−𝜭n,k−1(t)|| > ε?

No

Yes

Obtain k, 𝜭s,k(t), and 𝜭n,k(t)

ˆ ˆ ˆ
ˆ ˆ

ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ ˆ

Figure 2: The flowchart of computing the F-GI parameter
estimates.

Start

Collect {u(t), y(t):
t = 1, 2, ⋯ , L}

Initialize: k = 1

Construct ϕ
k (t) and ϕf,k (t)

Compute w 
k
(t), construct W

k
(L) and 𝜱n,k(L)

Choose 𝜇2,k(t) and update 𝜭n,k

Choose 𝜇1,k(t), update 𝜭s,k, and compute v
k
(t)

Compute uf,k(t) and yf,k(t) and construct 𝜱f,k (L) and Yf,k (L)

ˆ ˆ

ˆ ˆ

ˆ

ˆ

ˆ ˆ ˆ ˆ

ˆˆ

||𝜭s,k(t)−𝜭s,k−1(t)|| > ε?
||𝜭n,k(t)−𝜭n,k−1(t)|| > ε?

ˆ

ˆ ˆ

ˆ
ˆ ˆ

Obtain k, 𝜭s,k, and 𝜭n,k

End

No

Yes

k := k + 1

Figure 3: The flowchart of computing the F-GI parameter estimates
with finite measurement data.

The two gradient criterion functions are defined as

J3 θs ≔ Yf L − θTs Φf L
2
,

J4 θn ≔ W L −Φn L θn 2
42

Similarly, minimizing J3 θs and J4 θn , we can derive a
filtering-based gradient iterative (F-GI) algorithm with the
data length L for the M-CARMA system:

θs,k = θs,k−1 + μ1,k t Φf ,k L

Ŷf ,k L − θTs,k−1Φf ,k L
T
,

43

Ŷf ,k L = ŷ f ,k L , ŷ f ,k L − 1 ,… , ŷ f ,k 1 , 44

Φf ,k L = φf ,k L , φf ,k L − 1 ,… , φf ,k 1 , 45

θn,k = θn,k−1 + μ2,k t ΦT
n,k L

Ŵk L −Φn,k L θn,k−1 ,
46

Ŵk L = ŵk L , ŵk L − 1 ,… , ŵk 1 T, 47
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Φn,k L = ψk L , ψk L − 1 ,… , ψk 1 T, 48

φf ,k t = −ŷTf ,k t − 1 ,… , − ŷTf ,k t − na ,
ûTf,k t − 1 ,… , ûTf ,k t − nb

T,
49

ψk t = υk−1 t − 1 , υk−1 t − 2 ,… , υk−1 t − nd , 50

φs t = −yT t − 1 ,… , − yT t − na ,
uT t − 1 ,… , uT t − nb

T,
51

ûf ,k t = u t − d̂1,k t ûf ,k t − 1 − d̂2,k t ûf ,k t − 2
−⋯− d̂nd ,k t ûf ,k t − nd ,

52

ŷ f ,k t = y t − d̂1,k t ŷ f ,k t − 1 − d̂2,k t ŷ f ,k t − 2
−⋯− d̂nd ,k t ŷ f ,k t − nd ,

53

ŵk t = y t − θTs,k−1φs t , 54

υk t = y t − θTs,kφs t − ψk t θn,k, 55

θn,k = d̂1,k t , d̂2,k t ,… , d̂n,d ,k t
T
, 56

μ1,k t ≤ 2 Φf ,k L 2 −1
, 57

μ2,k t ≤ 2 Φn,k L 2 −1
58

The identification steps of the F-GI algorithm with finite
measurement data in (43), (44), (45), (46), (47), (48), (49),
(50), (51), (52), (53), (54), (55), (56), (57), and (58) to com-

pute θs,k and θn,k are listed as follows.

(1) Collect the input–output data u t , y t , t = 1,
2,… , L and give a small positive number ε. Con-
struct φs t using (51).

(2) Let k = 1 and set the initial values θs,0 =
1 mna+rnb ×m/p0, θn,0 = 1nd /p0, ŵ0 t = 1m/p0, υ0 t =
1m/p0, ŷ f ,0 t = 1m/p0, ûf ,0 t = 1r/p0, p0 = 106

(3) Construct ψk t and φf ,k t using (49) and (50).

(4) Compute ŵk t using (54), construct Ŵk L using
(47), and construct Φn,k L using (48).

(5) Choose μ2,k t using (58) and update θn,k using (46).

(6) Read d̂i,k t from θn,k in (56) and compute ûf ,k t
and ŷ f ,k t using (52) and (53).

(7) Construct Φf ,k L using (45) and construct Ŷf ,k L
using (44).

(8) Choose μ1,k t using (57) and update θs,k using (43).

(9) Compute υk t using (55).

(10) Compare θs,k with θs,k−1 and compare θn,k with

θn,k−1: if ∥θs,k − θs,k−1∥>ε and ∥θn,k − θn,k−1∥>ε,
increase k by 1 and turn to Step 3; otherwise, obtain

k and the parameter estimate vector θs,k and θn,k.

Table 1: The F-GI parameter estimates and errors (L = 1000).

σ2 k a11 a12 b11 b12 a21 a22 b21 b22 d1 δ %
0 52 1 0.14294 0.09843 0.00868 0.00915 0.00296 0.08637 0.00937 −0.00661 −0.27864 86.50364

10 0.42310 0.34081 0.15604 0.12072 −0.02498 0.29864 0.20824 −0.15361 −0.70856 56.91872

50 0.63701 0.59049 0.44414 0.30015 −0.21622 0.83432 0.36331 −0.32901 −0.77686 16.06327

200 0.65476 0.60674 0.46465 0.31821 −0.31707 1.02684 0.38855 −0.39407 −0.56444 3.58517

500 0.65477 0.60673 0.46466 0.31824 −0.31710 1.02689 0.38857 −0.39418 −0.56441 3.58655

1 22 1 0.14514 0.09935 0.00228 0.00199 0.00410 0.08912 0.00243 −0.00127 −0.28184 86.71589

10 0.52198 0.41436 0.13005 0.04549 −0.05221 0.40777 0.16182 −0.15682 −0.91038 54.85474

50 0.65005 0.60460 0.37591 0.17468 −0.29039 0.97368 0.33485 −0.29105 −0.60764 13.34916

200 0.65652 0.60385 0.46751 0.25681 −0.31942 1.02762 0.38992 −0.36323 −0.56348 6.73257

500 0.65706 0.60351 0.48224 0.27468 −0.31970 1.02832 0.39775 −0.37791 −0.56279 5.95620

True values 0.65000 0.60000 0.45000 0.35000 −0.30000 1.00000 0.38000 −0.40000 −0.60000
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Figure 4: The CARMA-FGI estimation errors δ with different noise
variances L = 1000
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The flowchart of computing θs,k and θn,k from the F-GI
algorithm with finite measurement data is shown in Figure 3.

The algorithm in (43), (44), (45), (46), (47), (48), (49),
(50), (51), (52), (53), (54), (55), (56), (57), and (58) for mul-
tivariable CARMA systems is based on the filtering technique
and the gradient search and can be extended to more com-
plex multivariable systems with cooled noises.

5. Numerical Example

Consider a two-input two-output CARMA system:

A z y t = B z u t +D z υ t , 59

where

y t =
y1 t

y2 t
,

u t =
u1 t

u2 t
,

υ t =
υ1 t

υ2 t
,

A z = I +A1z
−1 =

1 0

0 1
+

a11 a12

a21 a22
z−1

=
1 + 0 65z−1 0 60z−1

−0 30z−1 1 + 1 00z−1
,

B z = B1z
−1 =

b11 b12

b21 b22
z−1 =

0 45z−1 0 35z−1

0 38z−1 −0 40z−1
,

D z = 1 + d1z
−1 = 1 − 0 60z−1,

θTs = A1, B1 ,

θn = d1
60

In simulation, u1 t and u2 t are taken as two per-
sistent excitation signal sequences with zero mean and unit
variance, and v1 t and v2 t as two white noise
sequences with σ21 = σ22. Take the data length L = 1000 and
L = 2000 and apply the F-GI algorithm with finite measure-
ment data in (43), (44), (45), (46), (47), (48), (49), (50),
(51), (52), (53), (54), (55), (56), (57), and (58) to estimate
the parameters of this M-CARMA system. The parameter
estimates and errors are shown in Table 1 with L = 1000,
σ2
1 = σ2

2 = 0 52, and σ2
1 = σ2

2 = 1 22, and the parameter estima-
tion errors versus t are shown in Figure 4. For comparison
with the different data length L = 2000, the simulation results
are shown in Table 2 and Figure 5.

From Tables 1–3 and Figures 4 and 5, we can draw the
following conclusions.

(1) The parameter estimation errors obtained by the pre-
sented algorithms gradually become smaller with the
iterative variable k increasing. Thus, the proposed
algorithms for M-CARMA systems are effective.

(2) The system parameter estimates converge to their
true values with the increasing of the data length.

(3) Under the same data length, a smaller noise variance
leads to higher parameter estimation accuracy and a
faster convergence rate.

Table 2: The F-GI parameter estimates and errors (L = 2000).

σ2 k a11 a12 b11 b12 a21 a22 b21 b22 d1 δ %
0 52 1 0.14346 0.09808 0.01067 0.00762 0.00511 0.08406 0.01113 −0.00704 −0.27896 86.56006

10 0.39890 0.32288 0.22390 0.15247 −0.01745 0.27349 0.21267 −0.15857 −0.68297 57.02995

50 0.63521 0.59550 0.44755 0.31132 −0.21207 0.82865 0.34932 −0.32757 −0.77919 16.41676

200 0.65416 0.60726 0.45998 0.33687 −0.31265 1.01818 0.37903 −0.40383 −0.58336 1.98279

500 0.65417 0.60725 0.45998 0.33691 −0.31269 1.01824 0.37904 −0.40396 −0.58332 1.98657

1 22 1 0.14560 0.09899 0.00315 0.00157 0.00466 0.08794 0.00329 −0.00156 −0.28174 86.73735

10 0.51092 0.41373 0.17192 0.06708 −0.05673 0.42188 0.14417 −0.12991 −0.91458 53.92889

50 0.64851 0.60875 0.38838 0.20796 −0.28513 0.96729 0.30507 −0.28172 −0.62099 12.59343

200 0.65613 0.60516 0.46036 0.30206 −0.31371 1.01919 0.36807 −0.38499 −0.58216 3.60147

500 0.65684 0.60452 0.47158 0.31970 −0.31423 1.02001 0.37658 −0.40343 −0.58126 2.91324

True values 0.65000 0.60000 0.45000 0.35000 −0.30000 1.00000 0.38000 −0.40000 −0.60000

𝜎2 = 1.22

𝜎2 = 0.52
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Figure 5: The CARMA-FGI estimation errors δ with different noise
variances L = 2000 .
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(4) A longer data length L leads to a smaller estimation
error under the same noise level.

6. Conclusions

An F-GI algorithm and an F-GI algorithm with finite mea-
surement data are proposed for identifying the multivariable
controlled autoregressive system with measurement noise in
this paper. The linear filter is introduced to filter the input–
output data, and the hierarchical identification principle is
applied to decompose the identification model into two
subidentification models. The simulation results show that
the proposed algorithms can generate accurate estimates.
The proposed approaches in the paper can combine other
mathematical tools [64–69] and statistical strategies [70–75]
to study the performances of some parameter estimation
algorithms and can be applied to other multivariable systems
with different structures and disturbance noises and other
literature [76–86] such as system identification [87–92].
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