
Research Article
A Novel Graphical Technique for Combinational Logic
Representation and Optimization

Vedhas Pandit1 and Björn Schuller1,2

1Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
2Group on Language, Audio & Music (GLAM), Imperial College London, London, UK

Correspondence should be addressed to Vedhas Pandit; vedhas@gmail.com

Received 5 June 2017; Revised 11 October 2017; Accepted 14 November 2017; Published 31 December 2017

Academic Editor: Michele Scarpiniti

Copyright © 2017 Vedhas Pandit and Björn Schuller. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We present a new technique for defining, analysing, and simplifying digital functions, through hand-calculations, easily
demonstrable therefore in the classrooms. It can be extended to represent discrete systems beyond the Boolean logic. The method
is graphical in nature and provides complete “implementation-free” description of the logical functions, similar to binary decision
diagrams (BDDs) and Karnaugh-maps (K-maps). Transforming a function into the proposed representations (also the inverse) is
a very intuitive process, easy enough that a person can hand-calculate these transformations. The algorithmic nature allows for
its computing-based implementations. Because the proposed technique effectively transforms a function into a scatter plot, it is
possible to represent multiple functions simultaneously. Usability of the method, therefore, is constrained neither by the number of
inputs of the function nor by its outputs in theory. This, being a new paradigm, offers a lot of scope for further research. Here, we
put forward a few of the strategies invented so far for using the proposed representation for simplifying the logic functions. Finally,
we present extensions of the method: one that extends its applicability to multivalued discrete systems beyond Boolean functions
and the other that represents the variants in terms of the coordinate system in use.

1. Introduction and Literature Overview

Combinational logic optimization is one of the first steps
when designing any digital circuit. This practice helps chip
designer save on number of transistors, chip area, and helps
reduce logic delays and power requirements. It is no surprise
therefore that many efforts have been made to develop
fully functional, interactive programs for the industry even
in the 80s, such as MIS [1] and SOCRATES [2] and the
field has only grown ever since with the advent of many
companies competing in this domain. In this section, we
discuss various logic optimization methods. Advantages and
drawbacks associated with each of these popular methods,
especially the ones that offer graphical representation of a
function or are simple enough for humans to hand-calculate,
is the primary focus of this section. In view of the listed

advantages and drawbacks, characteristic features of an ideal
methodology are then presented.

A Karnaugh-map (K-map) [3, 4] is a graphical technique
for combinational logic optimization, which offers a very
intuitive way to hand-calculate the proposed graphical rep-
resentation of a Boolean function and its reduction. Using
different colour schemes,multiple output functions involving
the same inputs can be represented on a single K-map.
However, it is only ideal for a function where the number of
inputs is less than five. To represent functions involving more
than four variables, one of the proposed implementations
splits the graph into subgraphs—each subgraph representing
only four variables at a time [5]. Another extension of the K-
maps does not require splitting the graph into smaller units to
represent functions with more than four variables, but some
of the variable inversions can no longer remain adjacent to
each other [6]—like in the case of K-maps for four inputs.

Hindawi
Complexity
Volume 2017, Article ID 9696342, 12 pages
https://doi.org/10.1155/2017/9696342

https://doi.org/10.1155/2017/9696342

2 Complexity

A binary decision diagram (BDD) [7–10] is also a graphi-
cal method that is easy enough to implement and visualise.
BDDs are often put to use as a data structure to both
represent the Boolean functions and to perform the oper-
ations efficiently. Unlike K-maps, usability of this approach
is not constrained by the number of inputs. Optimization
is primarily about choosing the correct ordering of input
variables and about reducing the number of “nodes” by
merging equivalent nodes and by removing redundant ones.
Diagram complexity depends a lot on the ordering of the
input variables and the respectively applied decomposition
type [7, 11], and it is not always easy to devise the correct order
bymere visual inspection.This however, to a limited extent, is
also a downside of the graphical approaches presented in this
paper. As for BDDs, moreover, one cannot translate a given
graphical representation back to its Boolean expression just
by a quick visual skimming through—it is imperative to trace
the entire paths starting from the output nodes back to the
first input in order.

Typed decision graphs (TDGs) [12] offer reduction of
BDDs into a graph with a lot fewer nodes and connections.
The advantages and drawbacks of the method are therefore
mostly similar to those of BDDs, including dependence of
the size/complexity of the representation on the ordering
of the variables. Also closely related to BDDs are graphical
techniques called “implicit graph based method” [13–15] and
signal transition graphs (STGs) [16].

The Quine–McCluskey algorithm [17–19] (or method
of prime implicants) is functionally identical to Karnaugh
mapping and is a deterministic way to check that theminimal
form of a Boolean function has been reached. The tabular
form makes it more efficient for use in computer algorithms,
but, not being graphical, it is not as simple or as intuitive
as Karnaugh-maps for use by the designer himself/herself.
Petrick’s method (the branch-and-bound method) [20] is
a technique for determining all minimum sum-of-products
solutions from a prime implicant chart and could be looked
upon as an extension to the Quine–McCluskey algorithm.
The process gets tedious for a human for a large number of
inputs and does not scale well on computers likewise. The
Espresso algorithm [21] uses a radically different approach
by applying heuristics, manipulating the “cubes” represent-
ing the product terms in the ON-, DC-, and OFF-covers
iteratively, instead of expanding the minterms. Recently, a
new paradigm has been proposed called “Majority-Inverter
Graph” [22], which is a directed acyclic graph consisting of
three-input majority nodes and direct/negated edges.

Keeping classroom education of Boolean functions at
the focus, several methodologies [23–27] that are mostly
nongraphical and can best be demonstrated with systems
with only a limited number of inputs have been proposed,
in addition to more generalised software implementations
[28–32] not directly useful for demonstrating the concepts
through easy hand-calculations. Karnaugh-maps—due to the
method’s graphical nature—continue to be used as the first
method to explain the optimization process in the switching
theory textbooks [33] still today.

In the context of the comparison of the methods noted so
far, we propose that the following are the desired characteris-
tics of an ideal logic representation methodology:

(i) It is not constrained by the number of inputs or
outputs and can in theory handle an infinite number
of inputs and outputs. That is to say, multiple output
functions can be represented simultaneously.

(ii) The optimization process should be intuitive; ideally
visual inspection should be enough to establish input-
output relationship. Or it should be based on a
paradigm that is intuitive enough for a human to
simply hand-calculate. Graphical methods like K-
maps do offer that advantage.

(iii) If it is graphical, an equivalent numerical method
should exist, which can effectively be used as a data
structure to optimally represent combinational logic
through conventional programming.

(iv) Translating a Boolean equation into the graphical
representation (or vice versa) is a simple process.

(v) Ordering of variables should play no role in the
complexity of the representation.

The proposed technique satisfies all of the desired character-
istics listed, except the very last one. Ordering of variables
contributes to the ease with which a human can optimize a
function without using any computing resources.

2. Definitions

(i) The logical operators/symbols “¬”, “+”, “⋅”, “⊕”, and
“⊙” denote the logical negation, OR, AND, XOR, and
XNOR operations, respectively.

(ii) The symbols “∏” and “∑” denote the logical AND
and OR operations of the variables in iteration,
respectively.

(iii) {𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑖, . . . , 𝑎𝑛} is a set of inputs to the
combinational logic block under consideration.

(iv) 𝜙 denotes an empty set.
(v) SOP = sum of products.
(vi) POS = product of sums.

3. Proposed Technique (Pandit-Plot)

Every Boolean equation is represented by a scatter plot in two
dimensions. In effect, in its simplest version, corresponding
to four quadrants, four Boolean expressions can simulta-
neously be represented and optimized on a single plane.
By using different markers, one for each function, multiple
logic functions may be represented in a single plane and
subsequently reduced.

3.1. Coordinate System and Input Correspondence. Every
integer coordinate “𝑝” corresponds to an input combination𝑎𝑖1 , 𝑎𝑖2 , . . . , 𝑎𝑖𝑚 such that

󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨 =
𝑚∑
𝑘=1

2𝑖𝑘 (𝑝 ∈ Z, 𝑖𝑘 ∈ N) . (1)

Complexity 3

Y

X

a2a1a0 7

a2a1 6

a2a0 5

a2 4

a1a0 3

a1 2

a0 1

(0, 0) 7
a2a1a0

6
a2a1

5
a2a0

4
a2

3
a1a0

2
a1

1
a0

Figure 1: Pandit-Plot (for 𝑛 = 3) with redundant data-points.

One axis (say 𝑥-axis) represents a condition where the
designated inputs are all True (T) (also called High (H) or
logic level 1), while the other represents a case where those
inputs are all False (F) (also called Low (L) or logic level0). There is, therefore, a one-to-one correspondence between
the set of all of combinations of the inputs and the set of
points on the plane with integer coordinates. With such
a representation system in place, every point on the plot
with integer coordinates signifies a single product (in a SOP
representation) or a single sum (in a POS representation). As
an example, for a system with three inputs (𝑎0, 𝑎1, and 𝑎2),
the template of the plot that is restricted to the first quadrant
(𝑝 ≥ 0) will be as shown in Figure 1.

Throughout the discussion henceforth, we only consider
the template in the first quadrant. The templates in four
quadrants are symmetric to each other, with 𝑥- and 𝑦-axes
and the “𝑥 = 𝑦” and “𝑥 = −𝑦” lines as the axes of symmetry.
Weobserve that, in the scatter plot fromFigure 1, certain data-
points have been marked distinctively using the filled circles.
These will be called “redundant” input combinations—for the
reasons that will be explained in Section 3.3.

3.2. Representing an Input Combination. Representation of
the combinational function “𝑓” in graphical form may be
done for “𝑓” either in POS or in SOP form; the choice lies
with the logic designer/user of the plot.

To represent a function in SOP form, every constituent
product term is separated into two products, one containing
exclusively the direct inputs and the other only the negated
inputs. The overall product is represented by a point (𝑥, 𝑦),
where, for example, the 𝑥-coordinate corresponds to the
set of input combinations coming only from the direct
inputs, while the 𝑦-coordinate corresponds to the set of input
combinations from only the negated inputs, using (1). The
absence of inputs implies that the corresponding coordinate
is 0.

a2a1a0 7

a2a1 6

a2a0 5

a2 4

a1a0 3

a1 2

a0 1

(0, 0) 7
a2a1a0

6
a2a1

5
a2a0

4
a2

3
a1a0

2
a1

1
a0

Figure 2: Pandit-Plot for 𝑓 = 𝑎0𝑎1 + 𝑎0¬𝑎1𝑎2.

As an example, let us consider the following sum of
products:

𝑓 = 𝑎0𝑎1 + 𝑎0¬𝑎1𝑎2, (2)

represented by points (3, 0) and (5, 2), shown in Figure 2.

(i) For the first product “𝑎0𝑎1” to be True, both 𝑎0 and 𝑎1
need to be True. Therefore, the 𝑥-coordinate = 20 +21 = 3, as per (1). Because there are no negated inputs
in the first product, no 𝑎𝑘 needs to be False for 𝑓 to
be True.Therefore, the 𝑦-coordinate is 0.The product
“𝑎0𝑎1” is, therefore, represented by point (3, 0).

(ii) Similarly, for the product “𝑎0¬𝑎1𝑎2” to be True, both𝑎0 and 𝑎2 need to be True.Therefore, the 𝑥-coordinate
= 20 + 22 = 5, as per (1). Also, 𝑎1 needs to be False
for function𝑓 to be True.Therefore, the 𝑦-coordinate= 21 = 2. The product “𝑎0¬𝑎1𝑎2” is, therefore,
represented by point (5, 2).

Points (3, 0) and (5, 2) will be called “data-points” as they
summarise the function by transforming it into numerical
data, corresponding to the chosen coordinate system.

Similarly, for a POS-based representation, we look for
False (0/F/L) logic outputs to mark the points transforming
every sum in the expression.

Every Boolean function can therefore be represented
by only two parameters alone in this way, namely, the
coordinates of the representative points, irrespective of the
number of inputs. This is a huge data compression in itself,
where instead of storing the entire truth table, or even all
of the combinations for which the output is either T or F
(whichever count is less), we can simply represent a function
with a few data-points. The system can further be optimized
to remove extraneous information as will be explained in
Sections 3.3, 3.5, and 3.6.

4 Complexity

(1) procedure GENERATE1(𝑛) ⊳ 𝑛 = number of inputs(2) 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑆𝑒𝑡 = 𝜙(3) for 𝑥 ← 0, 2𝑛 − 1 do ⊳ Represents direct inputs(4) for 𝑦 ← 0, 2𝑛 − 1 do ⊳ Represents negated inputs(5) 𝑥𝑏𝑖𝑛𝑎𝑟𝑦 ← (𝑥)2(6) 𝑦𝑏𝑖𝑛𝑎𝑟𝑦 ← (𝑦)2(7) 𝐷 ← 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒(𝑥𝑏𝑖𝑛𝑎𝑟𝑦 ∧ 𝑦𝑏𝑖𝑛𝑎𝑟𝑦)(8) if 𝑎𝑛𝑦(𝐷) = 1 then(9) 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑆𝑒𝑡 = 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑆𝑒𝑡 ∪ (𝑥, 𝑦)(10) end if(11) end for(12) end for(13) end procedure

Algorithm 1: Redundant set generation for Pandit-Plot.

3.3. Existence of Redundant Data-Points. It can easily be
observed that there exist points on the plot with integer
coordinates that correspond to a Boolean product or a
Boolean sum that can never occur in a reduced SOP or a
reduced POS expression, respectively.

As an example, point (1, 1) corresponds to the (𝑎0¬𝑎0)
product in SOP which evaluates to 0/F, and the same
point corresponds to the (𝑎0 + ¬𝑎0) sum in POS which
evaluates to 1/T. These input combinations do not have
any effect on the final expression evaluation, as the output
corresponding to these input combinations is preknown and
therefore redundant to be included as part of any Boolean
expression (e.g., 𝑓 + 𝑎0¬𝑎0 = 𝑓). We therefore discard
such input cases and term these as “redundant points” in
the discussions below, while the rest will be called “valid”
points, except the origin, which falls into neither of the two
categories, representing simply the trivial case of the output
being independent of the inputs.

3.4. Generation of the Template. To translate any logic func-
tion to this plot, the first step is to build the necessary template
or the canvas with all the input redundancies indicated
(Figure 1). Such a template may be generated by exploiting
patterns for which the redundancies appear (Algorithm 1).

For example, we note the following for a system with 𝑛
inputs:

(i) The 𝑥- and 𝑦-axes extend from 0 to 2𝑛 − 1.
(ii) The points on the line 𝑥 = 𝑦 are redundant points.
(iii) All of the upper diagonal elements are redundant

points.
(iv) Redundant points because of the 𝑎0 input’s logic level

extend along both the 𝑥 and 𝑦 directions skipping
every other point, that is, skipping the odd integer
coordinates. The redundant points associated with 𝑎0
input are therefore of the form (2𝑖 + 1, 2𝑗 + 1), where𝑖, 𝑗 are integers.

(v) Alternatively, the template may be generated using
cellular automata rules on a brick-wall-like automata
template as devised in Figure 3 (in contrast to the

Rule
Pattern

PatternRule

X− 1, y X, Y − 1

X, Y

X − 1, Y X, Y − 1

X, Y

X − 1, YX, Y − 1

X, Y

X − 1, Y X, Y − 1

X, Y

0,0

1,0 0,1
2,0 1,1 1,2

3,0 2,1 1,2 0,3

4,0 3,1 2,2 1,3 0,4

5,0 4,1 3,2 2,3 1,4 0,5

6,0 5,1 4,2 3,3 2,4 1,5 0,6

0,71,62,54,3 3,45,26,17,0

8,0 7,1 6,2 5,3 4,4 3,5 2,6 1,7 0,8

Figure 3: Template generation from 2 different kinds of rules,
signifying its relation to the Sierpinski triangle/fractals and the
cellular automata.

typical cellular automata template as used inConway’s
game of life [34, 35]—where the borders of the indi-
vidual cells coincide). This gives rise to the Sierpinski
triangle [36, 37] pattern, as desired. The captions for
the individual blocks indicate the (𝑥, 𝑦) coordinates
of the points that the blocks represent.

3.5. Logic Laws. The logic optimization process is visual,
intuitive, and simple—just as for Karnaugh-maps. It may
alternatively be easily implemented using a computer pro-
gram by understanding the strategies in place numerically.
The basic idea of optimization is to get rid of excess of

Complexity 5

information by inspecting the scatter plot and bring the data-
points as close to the axes as possible.There exist patterns that
need to be utilised to effectively carry out this “reduction.”
These patterns need to be formulated into a compilation of
“logic laws.” A few examples of a logic law or an optimization
strategy follow.

Theorem 1 (√2-integer-multiple hypotenuse rule). If two of
the data-points are vertices of an upright right angled isosceles
triangle with its equal sides having length = 2𝑘 (𝑘 ∈ N) and
if the third vertex is not to the right of any of those two data-
points, then the two data-points could effectively be represented
by that third vertex alone, so long as the third vertex is not a
redundant point.

Proof. Let data-points be 𝐴(𝑥1, 𝑦1) and 𝐵(𝑥2, 𝑦2), such that𝑥1 > 𝑥2 and 𝑦1 < 𝑦2 and (𝑥1 − 𝑥2) = (𝑦2 − 𝑦1) = 2𝑘, 𝑘 ∈ N,
without loss of generalisation.

Because none of the three points,𝐴(𝑥1, 𝑦1),𝐵(𝑥2, 𝑦2), and𝐶(𝑥2, 𝑦1), is a redundant point and because 𝑥1 + 2𝑘 = 𝑥2, it
follows that

𝑥1 = ∑
𝑖=ind(𝑥1)

2𝑖 = 2𝑘 + ∑
𝑖=ind(𝑥2)

2𝑖, (3)

where ind(𝑝) is set of suffixes corresponding to inputs
associated with coordinate “𝑝.”

Similarly, it follows that

𝑦2 = ∑
𝑖=ind(𝑦2)

2𝑖 = 2𝑘 + ∑
𝑖=ind(𝑦1)

2𝑖. (4)

Therefore, the point 𝐵(𝑥2, 𝑦2) represents both the direct
and negated inputs corresponding to the point 𝐶(𝑥1, 𝑦2),
along with the input ¬𝑎𝑘. Similarly, the point 𝐴(𝑥1, 𝑦1)
represents both the direct and negated inputs corresponding
to the point 𝐶(𝑥1, 𝑦2), along with the input 𝑎𝑘. The two
points, 𝐴 and 𝐵, therefore, effectively represent the inputs
corresponding to the point 𝐶 and, in addition, either the
direct or the negated version of the input 𝑎𝑘.

Therefore, in SOP form,

𝑓 fl 𝑓𝐴 + 𝑓𝐵 = (𝑎𝑘) 𝑓𝐶 + (¬𝑎𝑘) 𝑓𝐶 = 𝑓𝐶, (5)

and, in POS form,

𝑓 fl 𝑓𝐴𝑓𝐵 = (𝑎𝑘 + 𝑓𝐶) (¬𝑎𝑘 + 𝑓𝐶) = 𝑓𝐶, (6)

where 𝑓𝐺 fl function associated with point 𝐺.
Thus, as per (5) and (6), this rule is simply amanifestation

of the two well-known equalities (1) 𝑃(𝑞) + 𝑃(¬𝑞) = 𝑃
and (2) (𝑆 + 𝑞)(𝑆 + ¬𝑞) = 𝑆 for the template we present
here—where 𝑃 and 𝑆 are, respectively, the product terms and
the summation terms consisting of variables excluding 𝑞.

As an illustration, if the plot in Figure 4 represents a
Boolean function 𝑓 in SOP form with the points 𝐴 and 𝐵 as
its “data-points,” then per the definitions earlier

𝑓 = 𝑎0¬𝑎1𝑎2 + 𝑎0¬𝑎1¬𝑎2. (7)

(0, 0)

a2a1a0

a2a1

a2a0

a2

a1a0

a1

a0

B

AC

7

6

5

4

3

2

1

7654321
a2a1a0a2a1a2a0a2a1a0a1a0

Figure 4: Diagonal optimization for SOP.

This is because point 𝐴(5, 2) translates to “𝑎0¬𝑎1𝑎2,” while
point 𝐵(1, 6) represents “𝑎0¬𝑎1¬𝑎2.”

Per the law proposed, points 𝐴 and 𝐵 are represented
together by point𝐶(1, 2) alone, since the right angled triangle𝐴𝐵𝐶 is an isosceles triangle with its congruent sides having
length 2𝑘, 𝑘 ∈ N(𝑙(𝐶𝐴) = 𝑙(𝐶𝐵) = 4).

We find here that the hypothesis is true, since

𝑓 = 𝑎0¬𝑎1𝑎2 + 𝑎0¬𝑎1¬𝑎2 = (𝑎0¬𝑎1) (𝑎2 + ¬𝑎2)
= 𝑎0¬𝑎1 󳨐⇒ 𝐶 (1, 2) . (8)

If the scatter plot in Figure 4 were to correspond to a POS
representation, then the plot would have been represented as

𝑓 = (𝑎0 + ¬𝑎1 + 𝑎2) (𝑎0 + ¬𝑎1 + ¬𝑎2) . (9)

Effectively,

𝑓 = (𝑎0 + ¬𝑎1) + (𝑎0 + ¬𝑎1) (𝑎2 + ¬𝑎2) + (𝑎2) (¬𝑎2)
= (𝑎0 + ¬𝑎1) 󳨐⇒ 𝐶 (1, 2) . (10)

In either case, points 𝐴(5, 2) and 𝐵(1, 6) are together
represented by 𝐶(1, 2) alone.
Theorem 2 (symmetry about “𝑥 = 𝑦” line). Two “valid”
points symmetric about the “𝑥 = 𝑦” line in an SOP plot can
be effectively represented by a newly defined logical operation
represented by operator ⋆, where
{𝑎𝑖} ⋆ {𝑎𝑗} = (∏𝑎𝑖) ⋅ (∏¬𝑎𝑗) + (∏¬𝑎𝑖) ⋅ (∏𝑎𝑗)

such that {𝑎𝑖} ∩ {𝑎𝑗} = 𝜙. (11)

6 Complexity

Two “valid” points symmetric about the “𝑥 = 𝑦” line in a POS
plot can be effectively represented by a newly defined logical
operation represented by operator ⋆̃, where
{𝑎𝑖} ⋆̃ {𝑎𝑗} = (∑𝑎𝑖 +∑¬𝑎𝑗) ⋅ (∑¬𝑎𝑖 +∑𝑎𝑗)

such that {𝑎𝑖} ∩ {𝑎𝑗} = 𝜙. (12)

Proof. Two points symmetric about the “𝑥 = 𝑦” line will be
of the forms 𝐴(𝑥0, 𝑦0) and 𝐵(𝑦0, 𝑥0). It follows that the set
of direct inputs corresponding to the point 𝐴 (fl {𝑎𝑖}) is the
same as the set of negated inputs that are represented by point𝐵 and vice versa (fl {𝑎𝑗}).

Because points 𝐴 and 𝐵 are not redundant points, it
follows that {𝑎𝑖} ∩ {𝑎𝑗} = 𝜙.

Therefore, for SOP,

∵ 𝑓𝐴 = (∏𝑎𝑖) ⋅ (∏¬𝑎𝑗) ,
∴ 𝑓𝐵 = (∏¬𝑎𝑖) ⋅ (∏𝑎𝑗) ,

such that {𝑎𝑖} ∩ {𝑎𝑗} = 𝜙,
⇓

𝑓 = 𝑓𝐴 + 𝐹𝐵
= (∏𝑎𝑖) ⋅ (∏¬𝑎𝑗) + (∏¬𝑎𝑖) ⋅ (∏𝑎𝑗) .

(13)

Similarly, for POS,

∵ 𝑓𝐴 = (∑𝑎𝑖 +∑¬𝑎𝑗) ,
∴ 𝑓𝐵 = (∑¬𝑎𝑖 +∑𝑎𝑗) ,

such that {𝑎𝑖} ∩ {𝑎𝑗} = 𝜙,
⇓

𝑓 = 𝑓𝐴 ⋅ 𝐹𝐵 = (∑𝑎𝑖 +∑¬𝑎𝑗) ⋅ (∑¬𝑎𝑖 +∑𝑎𝑗) .

(14)

For a system with just two inputs, the “⋆” operator repre-
sents simply an “XOR” (⊕) operation, while the “⋆̃” operator
represents an “XNOR” (⊙) operation. The “NAND-only”
implementation of “⋆/⋆̃” operation is shown in Figure 5.This
newly defined logic gate can then be optimized for given fan-
in and fan-out values as necessary to be used as a building
block in the subsequent logic design.

3.6. Process of Optimization. While there is much scope
for further research in this area for effective algorithm
development in terms of logic optimization, including the
ones targeted to novel topologies such as the ones involving
IMPLY (¬𝐴+𝐵) gates alone, for example (instead of SOP/POS
forms presented here, effectively implemented using “NAND
alone” and “NOR alone” topologies, resp.), one of the most
likely logic flows for such optimization is presented next.

Steps involved in this example algorithm are as follows:

ai0 ai1 ai aj0 aj1 ajn

{aj}{ai}

{ai} {aj} {ai} ̃ {aj}⋆ ⋆

Figure 5: “NAND-only” implementation of the newly defined
logical operations “⋆ and ⋆̃” that are essentially ⊕ (XOR) and ⊙
(XNOR) operations, respectively, for a two-input system.

(i) “Generate” the template and plot the function.
(ii) “Expand” the expression to include every possible

product in SOP form (every possible sum for a POS
form).

(iii) “Reduce” the expression using logic laws.
(iv) “Repeat” the above two steps in iteration until no

further reduction is possible, as illustrated in Figure 6.

As an example, let 𝑓 = (¬𝑎1 + 𝑎0𝑎1𝑎2), and let the represen-
tation form chosen be SOP-based as well. 𝑓 ultimately gets
reduced to 𝑓 = ¬𝑎1 + 𝑎0𝑎2 as shown in Figure 6.

(1) Generate: plot the product terms (Figure 6(a)).
(2) Expand: plot points relevant to each of the current

data-points (Figure 6(b)). Here, ¬𝑎1 is expanded to
include points wherever ¬𝑎1 = 1 󳨐⇒ 𝑓 = 1.

(3) Reduce: reduce the expression using logic laws. If a
new data-point, replacing one or some of the original
data-points, is obtained through this process and if
this data point cannot be further reduced, then it is
noted and kept for the next iteration. (We note an
example of such data-point with a label “NEW” in
Figure 6(c).)

(4) Repeat: repeat steps (2) and (3) until no new replace-
ment data-point closer to the origin can be obtained
(Figure 6(d)).

Similar to the Karnaugh-maps, the “do not care” input
combinations could be exploited for logic reduction [3, 38].

Complexity 7

(0, 0)

a2a1a0

a2a1

a2a0

a2

a1a0

a1

a0

7

6

5

4

3

2

1

7654321
a2a1a0a2a1a2a0a2a1a0a1a0

(a) “Generate” step illustrated for 𝑓 = (¬𝑎1) + (𝑎0)(𝑎1)(𝑎2)

a2a1a0

a2a1

a2a0

a2

a1a0

a1

a0

7

6

5

4

3

2

1

(0, 0) 7654321
a2a1a0a2a1a2a0a2a1a0a1a0

(b) “Expand” step illustrated for the product “(¬𝑎1)”

a2a1a0

a2a1

a2a0

a2

a1a0

a1

a0

7

6

5

4

3

2

1

(0, 0) 7654321
a2a1a0a2a1a2a0a2a1a0a1a0

NEW

(c) “Reduction” using the “√2-integer-multiple hypotenuse rule”

a2a1a0

a2a1

a2a0

a2

a1a0

a1

a0

7

6

5

4

3

2

1

(0, 0) 7654321
a2a1a0a2a1a2a0a2a1a0a1a0

(d) The final optimized expression; 𝑓 = (¬𝑎1) + (𝑎0)(𝑎2)

Figure 6: Process of optimization; the steps in order are illustrated.

3.7. As a Data Structure. Because the individual Boolean
terms are represented by only two coordinates (irrespective
of the number of inputs), any combinational logic may be
represented by two parameters alone. This can be viewed
as a conversion of a graphical scheme to an equivalent
nongraphical numerical scheme, to be handled by computing
systems efficiently. The two coordinates may be stored in the
memory as a single unit.

Because one can represent any logic expression through
a set of coordinates alone, we now investigate the number
of bits required to store each of the numbered coordinates.
While a proposed template for 𝑛 inputs consists of 4𝑛 points
(including the origin), the number of valid coordinates is only

3𝑛 − 1. This is because a variable can manifest itself in an
input combination in its original form (𝑎𝑘) or as a negated
version (¬𝑎𝑘) or it could simply be absent. Thus, there are
three possibilities for every input 𝑎𝑘. The number of valid
points is, therefore, 3𝑛 − 1 (excluding the origin indicative
of a trivial case where the output is independent of all of the
inputs under consideration). Both the total number of points
(𝜏 = 4𝑛 − 1) in a template and the number of valid points
(𝜐 = 3𝑛 − 1) grow exponentially with 𝑛. The ratio of the
number of bits thus required (with and without considering
the redundant points) = ceil(log2(3𝑛 − 1))/ceil(log2(4𝑛 − 1))
which varies between 0.75 and 0.85 and eventually converges
to 0.8 for large 𝑛. As an example, for 𝑛 = 3, 𝜐 = 26, and

8 Complexity

𝜏 = 63, while, for 𝑛 = 6, 𝜐 = 728, and 𝜏 = 4095. Memory
savings, thus, grow with 𝑛 if we effectively take into account
the redundancies in the template.

However, in comparison to K-maps (= 2𝑛 cells for an 𝑛-
input system), our proposed method requires a much higher
number of points (= 3𝑛−1, if we consider only the valid input
combinations, excluding the origin). This is because the K-
maps do not take into account all of the input combinations,
but only the ones where each of the inputs manifests itself
by its presence in its original or in its negated form (thus, 2𝑛
possibilities). In the proposed method, we explicitly take into
account also the reduced input combinations where some of
the inputs are absent.

3.8. Possible Extensions and Further Research Scope

(i) Beyond SOP/POS paradigms: more patterns and the
resulting optimization strategies need to be investi-
gated in different logic gate methodologies, for exam-
ple, SOP (“AND-OR”, which is “NAND-only”), POS
(“OR-AND”, which is “NOR-only”), and “IMPLY-
only” realisations.

(ii) Multilevel logic: the concept could be extended to
three dimensions to represent a ternary logic system,
where both inputs and outputs can have three possible
logic levels (0, 1, 2). The resulting representation is,
thus, in the form of a “logic lattice” instead of
the two-dimensional grid presented here, where the
third dimension would serve a dual purpose. First,
it represents a condition where all the inputs are
logical level “2” (just as 𝑍 and 𝑌 represented states
“1” and “0,” resp.). Secondly, the 𝑧-axis may also
represent an output logic level within such a “logic
slice.” As an example, output level-1 may correspond
to a point with integer (𝑋, 𝑌, 𝑍) coordinates, level-0
may correspond to a point just beneath this point, and
level-2 just above (Figure 7).

(iii) Alternate coordinate systems: every data-point sym-
bolises a huge degree of information, but with only
two or three parameters (coordinates). Because this
information need not necessarily come about using
a Cartesian coordinate system alone, one can choose
to alternatively employ some other coordinate system
and look for patterns and laws for optimizationwithin
such schemes. For example, a 2D polar system may
be used, where the (𝑥, 𝑦) to (𝑟, 𝜃) transformation is
governed by the equations 𝑟 = 𝑥, 𝜃 = 2𝜋𝑦/(2𝑛 − 1),
and 𝑥, 𝑦 ∈ [0, 2𝑛 − 1]. Note that 𝜃 remains in the
range [0, 2𝜋] irrespective of the number of inputs
(Figure 8).The logic laws for such alternate coordinate
systems—where every coordinate of interest𝜓 follows
the equation𝜓 = 𝑓(∑𝑚𝑘=1 2𝑖𝑘), 𝑖𝑘 ∈ N—can be devised
by recognising the inherent patterns, which remains
an open problem with further scope for research.

3.9. Implications to Other Fields of Study. One can use the
template to establish three algebraic equalities, as will be
discussed in detail in this section. The method, in general,

z-axis

x-axis
y-axis

(inputs = 2)

(inputs = 0)
(inputs = 1)

Δz < 1

z = z0
planez = z0

+ dz
plane

(x
0 , y

0 , z
0 + Δz)

(x
0 , y

0 , z
0 − Δz)

(x
0 , y

0 , z
0)

z = z −
dz

plane
= 2

Output

= 1

Output

= 0

Output

Figure 7: Ternary logic representation (𝑥0, 𝑦0, 𝑧0 ∈ N). The point(𝑥0, 𝑦0, 𝑧0±Δ𝑧 or 𝑧0) represents the input condition, where all inputs
corresponding to 𝑥-coordinate = 1, all inputs corresponding to 𝑦-
coordinate = 0, and all inputs corresponding to 𝑧-coordinate = 2.

Figure 8: Cartesian (𝑥, 𝑦) coordinate system converted into polar(𝑟, 𝜃) system, where 𝑟 = 𝑥, 𝜃 = 2𝜋𝑦/(2𝑛 − 1), and 𝑥, 𝑦 ∈ [0, 2𝑛 − 1].
Filled circles indicate the “redundant points.”

is useful for alternative representation and processing of
data whenever there is representation of information (i.e.,
encoding or decoding) in the form of distinct or discrete
states. The basic representation strategy can therefore be
extended to represent and optimize operations on qubits [39]
or to represent codon tables [40, 41] or design digital synthetic
gene circuits [42]. Using the template used in the method
proposed, we have derived the following three equalities in
relation to (4𝑛 − 3𝑛). The method gives practical evidence of
the equalities invented and presented next.

Complexity 9

Theorem 3.

3𝑛 + [𝑛−2∑
𝑖=0

3𝑛−2−𝑖2𝑖 (2𝑖+1 − 1)] + (2𝑛 − 1) 2𝑛−1 = 4𝑛,
∀𝑛 ∈ N, 𝑛 ≥ 2,

(15)

or, in other words,

3𝑛 + [𝑛−2∑
𝑖=0

3𝑛−2−𝑖(2𝑖+12)] + (
2𝑛
2) = 4𝑛,

∀𝑛 ∈ N, 𝑛 ≥ 2.
(16)

Theorem 4.

3𝑛 + [𝑛−1∑
𝑖=0

3𝑖4(𝑛−1−𝑖)] = 4𝑛, ∀𝑛 ∈ N, 𝑛 ≥ 2. (17)

Theorem 5. As a consequence,

[𝑛−1∑
𝑖=0

3𝑖4(𝑛−1−𝑖)] = [𝑛−2∑
𝑖=0

3𝑛−2−𝑖(2𝑖+12)] + (
2𝑛
2)

∀𝑛 ∈ N, 𝑛 ≥ 2
∵ Equations (16) and (17) .

(18)

Let us first establish that the equalities being discussed are true,
using induction.

Proof. For Theorem 3, we observe that the equalities pre-
sented in (15) or (16) are true for 𝑛 = 2 and 𝑛 = 3.

For 𝑛 = 2,
L.H.S. = 32 + [0∑

𝑖=0

30−𝑖 (2𝑖+1 − 1) 2𝑖] + (22 − 1) 21
= 9 + [(1 (2 − 1) 1)] + (4 − 1) 2 = 9 + 1 + 6
= 16 = 42 = R.H.S.

(19)

For 𝑛 = 3,
L.H.S. = 33 + [1∑

𝑖=0

(31−𝑖 (2𝑖+1 − 1) 2𝑖)] + (23 − 1) 22
= 27 + [(31 (21 − 1) 20) + (30 (22 − 1) 21)]
+ (7) 4 = 27 + [3 (1) (1) + 1 (3) (2)] + (7) 4

= 27 + 9 + 28 = 64 = 43 = R.H.S.

(20)

Now, say, for some 𝑛 = 𝑚 ≥ 2,
3𝑚 + [𝑚−2∑

𝑖=0

(3𝑚−2−𝑖 (2𝑖+1 − 1) 2𝑖)] + (2𝑚 − 1) 2𝑚−1
= 22𝑚 = 4𝑚.

(21)

Therefore,

3𝑚 + (3𝑚−2 (21 − 1) 20 + 3𝑚−3 (22 − 1) 21 + ⋅ ⋅ ⋅
+ 31 (2𝑚−2 − 1) 2𝑚−3 + 30 (2𝑚−1 − 1) 2𝑚−2)
+ (2𝑚 − 1) 2𝑚−1

= 22𝑚.
(22)

For 𝑛 = 𝑚 + 1 ≥ 2, therefore,
L.H.S. = 3𝑚+1 + [𝑚−1∑

𝑖=0

(3𝑚−1−𝑖 (2𝑖+1 − 1) 2𝑖)]
+ (2𝑚+1 − 1) 2𝑚

= 3𝑚+1 + (3𝑚−1 (21 − 1) 20 + 3𝑚−2 (22 − 1) 21 + ⋅ ⋅ ⋅
+ 31 (2𝑚−1 − 1) 2𝑚−2 + 30 (2𝑚 − 1) 2𝑚−1)
+ (2𝑚+1 − 1) 2𝑚

= 3 (3𝑚 + (3𝑚−2 (21 − 1) 20 + 3𝑚−1 (22 − 1) 21 + ⋅ ⋅ ⋅
+ 30 (2𝑚−1 − 1) 2𝑚−2)) + (2𝑚 − 1) 2𝑚−1
+ (2𝑚+1 − 1) 2𝑚

= (2 + 1) × (22𝑚 − (2𝑚 − 1) 2𝑚−1) + (2𝑚 − 1) 2𝑚−1
+ (2𝑚+1 − 1) 2𝑚 (∵ Equation (22))

= (22𝑚+1 − 22𝑚 + 2𝑚) + (22𝑚 − 22𝑚−1 + 2𝑚−1)
+ (22𝑚−1 − 2𝑚−1 + 22𝑚+1 − 2𝑚)

= 22𝑚+2 = 4𝑚+1 = R.H.S.

(23)

Therefore, if the statement is true for 𝑛 = 𝑚, then the
statement is true for 𝑛 = 𝑚 + 1 (𝑛,𝑚 ∈ N). Because the
statement is true for 𝑛 = 2 and 3, it is true for every 𝑛 ∈ N

and 𝑛 ≥ 2.
Proof. For Theorem 4 similarly, we observe that the equality
presented in (17) is true for 𝑛 = 2:

L.H.S. = 32 + [1∑
𝑖=0

3𝑖4(2−1−𝑖)] = 32 + [3041 + 3140]
= 16 = 42 = R.H.S.

(24)

Now, say, for some 𝑛 = 𝑚 ≥ 2,
3𝑚 + [𝑚−1∑

𝑖=0

3𝑖4(𝑚−1−𝑖)] = 4𝑚. (25)

10 Complexity

For 𝑛 = 𝑚 + 1 ≥ 2, therefore,
L.H.S. = 3𝑚+1 + [𝑚∑

𝑖=0

3𝑖4(𝑚−𝑖)]

= 3𝑚+1 + 4 × [𝑚−1∑
𝑖=0

3𝑖4(𝑚−1−𝑖)] + 3𝑚40

= 3𝑚+1 + 4 × [4𝑚 − 3𝑚] + 3𝑚40
= 3𝑚+1 + 4𝑚+1 − (3 + 1) × 3𝑚 + 3𝑚 = 4𝑚+1
= R.H.S.

(26)

Because the statement is true for 𝑛 = 2, it is true for every𝑛 ∈ N and 𝑛 ≥ 2.
In the context of the template for the method proposed,

the two theorems can be proven graphically by simply
counting the number of valid and redundant points, via
different formulations. If 3𝑛 + 𝑓(𝑛) = 4𝑛 for all 𝑛 ∈ N, we
know the following:

(i) 4𝑛 = 2𝑛2𝑛 = (axis range)2 = total number of points.

(ii) 3𝑛 = total number of “valid” data-points, including
the origin.

(∵ Every input 𝑎𝑖 can manifest itself in the input
combination represented by (𝑋,𝑌), either in its orig-
inal form (input combination represented by th 𝑋-
coordinate) or as a negated input (input combination
represented by the𝑌-coordinate) ormay notmanifest
itself at all.)

(iii) 𝑓(𝑛) = total number of redundant points.

(∵ Total number of points = total number of “valid”
points including the origin + total number of “redun-
dant” points).

Proof. To establish equality presented in the Theorem 3, we
use the formulation of 𝑓(𝑛) as presented in Figure 9. From
Figure 9, it is evident that

∵ 𝑘∑
𝑙=1

𝑙 = 𝑘 (𝑘 + 1)2 ∀𝑘 ∈ N,
𝑘 = 2𝑗 ∀𝑗 ∈ N, 0 ≤ 𝑗 < 𝑛,

∴ 𝑓 (𝑛) = [𝑛−2∑
𝑖=0

3𝑛−2−𝑖2𝑖 (2𝑖+1 − 1)] + (2𝑛 − 1) 2𝑛−1.
(27)

The exponent of 3 translates to a multiplier that represents
the frequency of occurrence of the constituent triangle of that
specific size in the template.

1

1

2

2
2

3

4

568

7

32(2n−3 − 1)(2n−4)
31(2n−2 − 1)(2n−3)

30(2n−1 − 1)(2n−2)

(2n − 1)(2n−1)

3 points
2 points
1 point

2n − 1 points

30

31

3 2

∑

Figure 9: Total number of “redundant points”/the points in the
darkened region, by counting the number of points in constituent
triangles separately.

Proof. Alternately,Theorem4 can be proven using a recursive
formula for 𝑓(𝑛), as obtained from Figure 10.

∵ 𝑓 (𝑛) = 3𝑓 (𝑛 − 1) + 4𝑛−1
∴ 𝑓 (𝑛) = 3 [3𝑓 (𝑛 − 2) + 4𝑛−2] + 4𝑛−1

= 32𝑓 (𝑛 − 2) + 3 × 4𝑛−2 + 4𝑛−1
= [3𝑛−1𝑓 (1) + 𝑛−2∑

𝑖=0

3𝑖 (4(𝑛−1−𝑖))]

= [𝑛−1∑
𝑖=0

3𝑖4(𝑛−1−𝑖)] ∵ 𝑓 (1) = 1.

(28)

This method can be used in classrooms to quickly hand-
calculate an optimized formof the logic function using a ruler
and a compass alone (Figure 11).

4. Conclusion

A novel graphical technique for digital logic representation
and optimization has been proposed, which makes optimiza-
tion algorithm much more instinctive and easy. Multiple
equations can be optimized simultaneously using the tem-
plate presented. One can, theoretically, therefore optimize
simultaneously multiple combinational logic circuits with
any number of inputs or outputs.We propose a data structure
transformation that can compress a truth table into a few
parameters.The approach and the fundamentals involved are
likely to generate many novel solutions applicable to other
disciplines. A new paradigm is being proposed, which opens
up new avenues for research in terms of new methodologies
and pattern identification towards better logic reduction

Complexity 11

f(n − 1)

f(n − 1) f(n − 1)

2n−1 points in X
2n

−
1

po
in

ts
in

Y

Figure 10: Total number of “redundant points”/the points in the
darkened region, by deriving a recursive formula for 𝑓(𝑛). Thus,𝑓(𝑛) = 3 × 𝑓(𝑛 − 1) + (2𝑛−1)2.

0 1 2 4 8 16

Figure 11: A compass and a ruler (marked with 2𝑛 units) can
be effectively used to quickly find the points that can be merged
together to generate amore optimized logic representation using the
logic laws proposed earlier (Section 3.5).

tailored to different implementation topologies such as
SOP (“AND-OR”/“NAND-only”), POS (“OR-AND”/“NOR-
only”), and “IMPLY-only” realisations or the newer method-
ologies such as “reconfigurable asynchronous logic automata
(RALA)” [43] and the search formost suited template for each
in terms of the coordinate system of choice and the template
generation rules.

Our proposed technique currently establishes a one-to-
one mapping between all of the possible variable combina-
tions and the corresponding output states—representing the
absence and presence of every variable (in its original and
the negated form) for each of the variable combinations. One
possible future research direction is to investigate the rela-
tionship between the proposed technique herein and other
representation techniques—such as QMDDs which, too, rely
on quadrants and one-to-one mappings and which rather
extend way beyond the proposed technique to represent
transformation matrices featuring complex entries useful for
logic involving qubits. Further research may also be targeted
towards multilevel discrete systems beyond Boolean algebra
and reversible [44, 45] and hazard-free logic synthesis [9].

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.
R. Wang, “MIS: A Multiple-Level Logic Optimization System,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 6, no. 6, pp. 1062–1081, 1987.

[2] A. J. De Geus and W. Cohen, “A Rule-Based System for Opti-
mizing Combinational Logic,” IEEE Design Test of Computers,
vol. 2, no. 4, pp. 22–32, 1985.

[3] M. Karnaugh, “Themapmethod for synthesis of combinational
logic circuits,”Transactions of the American Institute of Electrical
Engineers, Part I: Communication and Electronics, vol. 72, no. 5,
pp. 593–599, 1953.

[4] M. E. Holder, “A modified karnaugh map technique,” IEEE
Transactions on Education, vol. 48, no. 1, pp. 206-207, 2005.

[5] J. Cavanagh, Computer Arithmetic and Verilog HDL Fundamen-
tals, CRC Press, 2009.

[6] Z. Kohavi and N. K. Jha, Switching and finite automata theory,
Cambridge University Press, 2009.

[7] C. Y. Lee, “Representation of switching circuits by binary-
decision programs,”Bell Labs Technical Journal, vol. 38, pp. 985–
999, 1959.

[8] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on
Computers, vol. 27, no. 6, pp. 509–516, 1978.

[9] B. Lin and S. Devadas, “Synthesis of Hazard-Free Multilevel
Logic Under Multiple-Input Changes from Binary Decision
Diagrams,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 14, no. 8, pp. 974–985, 1995.

[10] C. Yang and M. Ciesielski, “BDS: A BDD-based logic optimiza-
tion system,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 7, pp. 866–876, 2002.

[11] R. E. Bryant, “Graph-based algorithms for boolean function
manipulation,” IEEE Transactions on Computers, vol. C-35, no.
8, pp. 677–691, 1986.

[12] L. Mauborgne, “Abstract interpretation using typed decision
graphs,” Science of Computer Programming, vol. 31, no. 1, pp. 91–
112, 1998.

[13] O. Coudert and J. C. Madre, “A new implicit graph-based prime
and essential prime computation technique,” in Proceedings of
the Proc. International Symp. Information Sciences, Fukuoka,
Japan, 1992.

[14] O. Coudert and J. C. Madre, “A New Graph Based Prime
Computation Technique,” in Logic Synthesis and Optimization,
pp. 33–57, Springer, Boston, MA, USA, 1993.

[15] O. Coudert, J. C. Madre, H. Fraisse, and H. Touati, “Implicit
prime cover computation: An overview,” in Proceedings of the
in Proc. Synthesis and Simulation Meeting and International
Interchange (SASIMI), Nara, Japan, 1993.

[16] J. Gu and R. Puri, “Asynchronous circuit synthesis with Boolean
satisfiability,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 14, no. 8, pp. 961–973, 1995.

[17] W. V. Quine, “The problem of simplifying truth functions,”The
American Mathematical Monthly, vol. 59, pp. 521–531, 1952.

[18] W. V. Quine, “A way to simplify truth functions,”The American
Mathematical Monthly, vol. 62, pp. 627–631, 1955.

12 Complexity

[19] J. McCluskey, “Minimization of Boolean functions,” Bell Labs
Technical Journal, vol. 35, pp. 1417–1444, 1956.

[20] S. Petrick, “A direct determination of the irredundant forms of a
boolean function from the set of prime implicants,” Tech. Rep.,
Air Force Cambridge Research Center, 1956.

[21] R. L. Rudell, “Multiple-Valued Logic Minimization for PLA
Synthesis,” Defense Technical Information Center, 1986.

[22] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-
Inverter Graph: ANewParadigm for LogicOptimization,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 5, pp. 806–819, 2016.

[23] D. C. Fielder, “Classroom Reduction of Boolean Functions,”
IEEE Transactions on Education, vol. 9, no. 4, pp. 202–205, 1966.

[24] B. C. H. Turton, “Extending Quine-McCluskey for exclusive-or
logic synthesis,” IEEE Transactions on Education, vol. 39, no. 1,
pp. 81–85, 1996.

[25] R. Benzer and V. Rozga, “The Design and Application of a
Minority Logic Gate-A Senior Project,” IEEE Transactions on
Education, vol. 10, no. 3, pp. 141–146, 1967.

[26] N. R. Bell, “AMapMethod for the Teaching of the Fundamental
Concepts of Compound-Input Logic Circuits,” IEEE Transac-
tions on Education, vol. 11, no. 3, pp. 173–177, 1968.

[27] R. F. Tinder, “Multilevel LogicMinimizationUsingK-mapXOR
Patterns,” IEEE Transactions on Education, vol. 38, no. 4, pp.
370–375, 1995.

[28] B. D. Carroll and I. Chen, “ABAL—A Language for Boolean
Function Representation andManipulation,” IEEE Transactions
on Education, vol. 20, no. 1, pp. 70–72, 1977.

[29] C. E. Klock, F. R. Schneider, M. V. N. Gomes, D. S. Moura,
R. P. Ribas, and A. I. Reis, “KARMA: A didactic tool for two-
level logic synthesis,” in Proceedings of theMSE 2007: 2007 IEEE
International Conference on Microelectronic Systems Education:
Educating Systems Designers for the Global Economy and a
Secure World, pp. 59-60, San Diego, CA, USA, June 2007.

[30] V. P. Correia and A. I. Reis, “A tutorial tool for switch logic,” in
Proceedings of the International Conference on Microelectronic
Systems Education, MSE 2001, pp. 28-29, Las Vegas, NV, USA,
June 2001.

[31] Z. Stanisavljevic, V. Pavlovic, B. Nikolic, and J. Djordjevic,
“SDLDS-system for digital logic design and simulation,” IEEE
Transactions on Education, vol. 56, no. 2, pp. 235–245, 2013.

[32] P. Corsini and L. Rizzo, “SSCSSC: A Tool for the Teaching of
Digital Circuits,” IEEE Transactions on Education, vol. 34, no. 1,
pp. 70–75, 1991.

[33] G. J. Klir and M. A. Marin, “New considerations in teaching
switching theory,” IEEE Transactions on Education, vol. 12, no.
4, pp. 257–261, 1969.

[34] M. Gardner, “Mathematical games: The fantastic combinations
of John Conway’s new solitaire game “life”,” Scientific American,
vol. 223, no. 4, pp. 120–123, 1970.

[35] S. Wolfram, “Cellular automata as models of complexity,”
Nature, vol. 311, no. 5985, pp. 419–424, 1984.

[36] M. Sierpinski, “Sur une courbe dont tout point est un point
de ramification,” Compte Rendus hebdomadaires des séance de
lÁcadémie des Science de Paris, vol. 160, pp. 302–305, 1915.

[37] J.-P. Allouche and J. Shallit, Automatic Sequences:Theory, Appli-
cations, Generalizations, Cambridge University Press, 2003.

[38] K. A. Bartlett, R. K. Brayton, G. D. Hachtel et al., “Multilevel
Logic Minimization Using Implicit Don’t Cares,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 7, no. 6, pp. 723–740, 1988.

[39] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R.
Drechsler, “QMDDs: Efficient Quantum Function Representa-
tion and Manipulation,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 1, pp. 86–
99, 2016.

[40] D. Searls andM.Noordewier, “Pattern-matching search ofDNA
sequences using logic grammars,” in Proceedings of the Seventh
IEEE Conference on Artificial Intelligence Application, pp. 3–9,
Miami Beach, FL, USA, 1991.

[41] C. R. Woese, “Order in the genetic code.,” Proceedings of the
National Acadamy of Sciences of the United States of America,
vol. 54, no. 1, pp. 71–75, 1965.

[42] M. A. Marchisio and J. Stelling, “Automatic design of digital
synthetic gene circuits,” PLoS Computational Biology, vol. 7, no.
2, Article ID e1001083, 2011.

[43] N. Gershenfeld, D. Dalrymple, K. Chen et al., “Reconfigurable
asynchronous logic automata: (RALA),” in Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL’10, vol. 45, pp. 1–6, Madrid,
Spain, January 2010.

[44] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
“Synthesis of reversible logic circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
22, no. 6, pp. 710–722, 2003.

[45] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis
of reversible logic circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no. 11,
pp. 2317–2329, 2006.

Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

