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Abstract

Following Marr’s famous three-level distinction between explanations in cognitive
science, it is often accepted that focus on modeling cognitive tasks should be on
the computational level rather than the algorithmic level. When it comes to math-
ematical problem solving, this approach suggests that the complexity of the task
of solving a problem can be characterized by the computational complexity of that
problem. In this paper, I argue that human cognizers use heuristic and didactic tools
and thus engage in cognitive processes that make their problem solving algorithms
computationally suboptimal, in contrast with the optimal algorithms studied in the
computational approach. Therefore, in order to accurately model the human cogni-
tive tasks involved in mathematical problem solving, we need to expand our meth-
odology to also include aspects relevant to the algorithmic level. This allows us
to study algorithms that are cognitively optimal for human problem solvers. Since
problem solving methods are not universal, I propose that they should be studied in
the framework of enculturation, which can explain the expected cultural variance in
the humanly optimal algorithms. While mathematical problem solving is used as the
case study, the considerations in this paper concern modeling of cognitive tasks in
general.

1 Introduction

This paper addresses a question of great theoretical interest in philosophy, psychol-
ogy and cognitive science: how should we assess the complexity of cognitive tasks?
Although the analysis carried out in this paper is applicable to cognitive tasks in
general, here I am particularly interested in mathematical problem solving as a case
study. In addition to the theoretical aspect, although not usually framed in these
terms, this is also a practical question that mathematics educators face constantly. In
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designing exams, for example, the teacher has to use some kind of (perhaps implicit)
measure for evaluating problems in terms of the complexity of the cognitive task of
solving them. The required cognitive tasks cannot be too complex, but they should
be complex enough in order to assess the knowledge and skills relevant to the math-
ematical concepts.

So how can the complexity of the cognitive task of problem solving be assessed?
In mathematics education, this is often a question tested in practice. Low perfor-
mance by students in a particular problem is easy to interpret as showing high cog-
nitive complexity of the task of solving it. However, from a theoretical perspec-
tive, this practical approach is unsatisfactory, as it does not necessarily distinguish
between the cognitive processes involved. From the perspective of cognitive science,
we are primarily interested in identifying those processes, after which we can assess
their complexity.

One common method for this is modeling the cognitive tasks computationally,
i.e., identifying a mathematical function that models the particular cognitive task.
To assess the complexity of the task, we then assess the computational resources
it takes for an algorithm to compute the function. When it comes to mathematical
problem solving, this approach gives rise to a clear research paradigm. In theoreti-
cal computer science, the complexity of mathematical problems is studied in terms
of their complexity, which is characterized by the resources (time or space) required
for running algorithms that solve the problems. It is thus understandable to char-
acterize the complexity of the cognitive task of solving a mathematical problem in
terms of the complexity of that problem. In this paper, however, I will show that this
approach is flawed and we need distinct concepts of cognitive complexity and com-
putational complexity.

In particular, I will study the question of cognitive complexity from two direc-
tions. In the first part of the paper, I will study what we can achieve with the com-
putational complexity approach to cognitive complexity. I will show that this is an
important research paradigm because we can establish explicit complexity meas-
ures in it, which we can then use to discuss the possible characteristics of cognitive
processes. However, I will also argue that this approach alone is not sufficient for
studying cognitive complexity. In the second part of the paper, I will show that the
reason for this is that it fails to take into consideration the plurality of processes used
by human cognizers when solving a mathematical problem. The method of assess-
ing the computational complexity of mathematical problems is closely related to the
idea of optimal algorithms, i.e., algorithms requiring a minimum of computational
resources for solving the problem. Here I will argue, however, that human cognizers
use problem solving algorithms that may in fact be computationally suboptimal.!
I will show, among other examples, that diagrams and other heuristic and didactic
tools play an important role in mathematical problem solving, yet they add to the
complexity of the problem solving algorithm. On these grounds, I will argue that we

! These algorithms can be either conscious or unconscious, as will be seen in the examples presented in
Sect. 6.
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should distinguish between computationally optimal and what I will call humanly
optimal algorithms.?

The first part of this paper (Sects. 2—5) studies the approach based on compu-
tational complexity. In the first section, I will present the modern computational-
level paradigm for studying cognitive complexity, which will then be given a more
detailed treatment in Sect. 3. In Sects. 4 and 5, I will present the possibilities and
the limits of this paradigm in explaining cognitive phenomena. In the second part
of the paper (Sects. 6, 7), I expand the methodology beyond the computational com-
plexity approach. In Sect. 6, I aim to show how the human problem solving algo-
rithms may be different from the optimal algorithms studied in the computational
complexity approach. Finally, in Sect. 7, I discuss the notion of humanly optimal
algorithm, concluding that rather than looking for a uniform notion of mathematical
competence, we should expect both cross-cultural and intra-cultural variation in the
problem solving methods.

While my focus is on mathematical problem solving, the approach applies also
to other domains of cognitive modeling. This paper targets mathematical cogni-
tion partly because it works as a case study of modeling cognitive tasks. However,
an important reason for the focus on mathematical problem solving is that there is
a well-established paradigm in place for characterizing mathematical problems in
terms of their computational complexity. Finally, given the importance of mathe-
matics in our culture, I believe that there is a great need to treat mathematical prob-
lem solving explicitly when it comes to modeling cognitive capacities. This should
include philosophical questions concerning that research.

2 What is Cognitive Complexity?

Cognitive complexity as a scientific term does not have a fixed cross-disciplinary
meaning. If we take the dictionary definition of “cognitive” as referring to con-
scious or conscious mental processes such as remembering, reasoning and knowing
(among others), cognitive complexity can be understood as the measure of simplic-
ity of such activity. However, both the relevant activity and its simplicity can be
understood in different ways.

Let us start by establishing a general sense in which one cognitive process can be
more complex than another. Think of two people reasoning about the weather. The
sky is red during sunrise and John remembers the saying “Red sky at morning, sail-
ors take warning”, thus concluding that he should not go boating. Mary, on the other
hand, reasons that since the sun is in the eastern horizon, the red color must mean
that there is clear sky in the east which allows sunlight to color the clouds in the
west. Since winds in that particular region (e.g., the Atlantic) tend to be from west to
east, Mary concludes that more clouds and perhaps storms are coming and thus it is

2 We will later get a definition of algorithm, but for now it is enough to think of algorithms as step-by-
step procedures, such as computer programs.
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better to stay ashore. This way, both John and Mary make the same observation and
end up with the same action, yet it is clear that Mary’s reasoning is more complex.

Even though there is quite some variation in how cognitive complexity is under-
stood in psychology, the account of John and Mary can be seen as representative
of the traditional psychological understanding of the term. Importantly, cognitive
complexity is seen as a property of the process of the individual cognizing subject
(Bieri 1955; van Hiel and Mervielde 2003). But of course this approach to cognitive
complexity is not limited to determining individual differences in cognitive process-
ing. We can also ask more general questions about cognitive tasks. Even with indi-
vidual differences, it is clear that human beings have great inter-individual similarity
in their cognitive processes, which makes it feasible to study the complexity of those
tasks, rather than individual cognitive processes.

In the cognitive task of mathematical problem solving, we can see the usefulness
of both approaches clearly. Let us think of a simple mathematical problem, such as
finding a solution to the equation n*> = 2 when n € N. Or equivalently, to frame it
as a decision problem (i.e., yes/no-problem), In(n> = 2) when n € N. Let’s call this
proposition p. Clearly p is false, but the way two people establish this falsehood may
be quite different, even if both were valid. This way, the cognitive task of John con-
cluding that p is false can be less complex than Mary’s cognitive task of establishing
that p is false. But now it is natural to ask what would be the least complex process
of establishing the truth-value of p. This approach is taken in theoretical computer
science: complexity is understood to be a computational property of a problem,
measuring the simplest possible way of correctly solving a decision problem.’

With this brief account, we have arrived at three different aspects of cognitive
complexity: the complexity of individual cognitive processes, the complexity of
general cognitive tasks, and the complexity of problems. There is an intuitive way
in which the three aspects are connected: the more complex the problem, the more
complex the cognitive tasks required, and thus the more complex the individual
cognitive processes. Equally intuitively, the converse chain of implications from the
individual cognitive processes to the problem does not necessarily hold. It is pos-
sible for a problem to be simple and yet for the individual human processing of it
to be highly complex. This way, to study the complexity of mathematical problem
solving, it would seem that we need to work on all three aspects.

In cognitive science, however, that has not been seen as a satisfactory state of
affairs. Since cognitive scientists are interested in the general features of human cog-
nition, they have understandably largely disregarded the kind of different cognitive

3 In this paper, we will work in the paradigm of decision problems. In computer science, many other
types of problems are also studied, such as counting, search, function and optimization problems (Gol-
dreich 2008). The focus on decision problems is not meant to suggest that other types of problems are not
relevant for computational complexity. Algorithms for solving optimization problems, for example, may
well provide better models for some human cognitive tasks. There are two main reasons for focusing on
decision problems. First, research on decision problems is the most developed field in complexity theory.
Second, the discussion in cognitive science and its philosophy has focused mostly on decision problems
when it comes to computational modeling. It should also be noted that these distinctions between prob-
lems are somewhat arbitrary, as many problems can be framed in different ways.
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styles that make humans use needlessly complex cognitive processes. Chomsky
(1965) presented a fundamental distinction in linguistics (in particular syntax)
between competence and performance, which has later been widely transferred to
the study of cognitive phenomena. In studying the nature of cognitive tasks, we
are not primarily interested in the actual performance of the cognizers. Rather, we
want to study an idealized version of his/her cognitive abilities, i.e., what we would
expect from a fully competent user of that cognitive capacity.

This approach leaves us with two aspects: the complexity of cognitive tasks in
general and the complexity of problems. Intriguingly, as we will see, in the subject of
mathematical problem solving these two levels can come to be equated when focus-
ing on the computational level of explanation in cognitive science. The complexity
of decision problems is a widely researched topic in theoretical computer science
and in recent times, it has also become influential in the discussion on modeling
cognitive tasks in cognitive science (see, e.g., Frixione 2001; van Rooij 2008). In
what is called the computational level of explanation, cognitive tasks are understood
as employing cognitive capacities to transfer input states (e.g., perceptions) into out-
put states (e.g., decisions) (Cummins 2000). In the widely-used distinction by Marr
(1977, 1982), three levels of explanation of cognitive tasks are identified: the com-
putational level, the algorithmic level, and the implementation level (Table 1). In the
context of mathematical problems, the three levels can be understood, respectively,
as the computational characterization of the problem, the algorithm used to solve
the problem, and the neuronal action involved in solving it. Marr’s distinction has
become widely accepted as the basic framework for studying cognitive capacities
(see, e.g., Newell 1982; Pylyshyn 1984; Horgan and Tienson 1996; Frixione 2001;
van Rooij 2008).

Marr (1982) argued that for maximal progress in cognitive science, the focus
should be on the computational level. His view (p. 27) was that by studying the
computational level, we also get a better understanding of the algorithmic and
implementational levels. According to the Principle of Rationality, as presented
by Newell (1982), agents choose actions they know to lead to their goals. Follow-
ing that, Anderson (1990) has argued that through the evolutionary process human
competence in cognitive tasks has been optimized, thus explaining why studying the
computational level will also provide explanations on the algorithmic and imple-
mentational levels. The evolutionary process and rationality are thought to ensure
that human cognitive acts are generally optimized for the task and thus the focus can
be on the computational level of explanation. As cognitive scientists have developed
the computational modeling of cognitive tasks, the focus has indeed moved to the
computational level more than to the algorithmic and implementation levels (see,
e.g., Isaac et al. 2014; Szymanik 2016; for a recent example, see Piantadosi et al.
2016).*

* This is not to suggest that researchers working in cognitive modeling are ignorant of, or uninterested
in, the algorithmic and implementational levels, only that computational-level explanations currently
form the most important area in computational modeling of cognitive tasks.
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In this paper, I call the approach that combines computational-level explana-
tions with results from computational complexity theory the computational com-
plexity approach to cognitive complexity. In many ways, it is an understandable
development. First, it is a practical fact that computational-level modeling is a
field in which great progress has been made. We know much less about the actual
algorithms used in cognitive tasks, let alone the neuronal activity that correlates
with them. Second, the results from computational complexity are often easily
applicable to the study of cognitive complexity. As we will see, there are classes
of problems which have been shown to take prohibitive time to solve. When
applied to cognitive complexity, such results immediately rule out many algo-
rithms as explanations of cognitive tasks. Third, in focusing on the computational
level, there is a natural line of development in terms of abstraction. When mak-
ing the Chomskyan move from performance to competence, the purpose is to get
rid of the inter-individual variations in order to establish the general nature of a
cognitive ability. In applying the results from the mathematical study of compu-
tational complexity, we are taking one abstraction step further and talk about the
computational properties of the mathematical functions we believe to model cog-
nitive tasks. This way, if we model a cognitive task accurately, we can determine
its complexity objectively. Perhaps the human performance on algorithmic and
implementational levels is less than optimal, but the focus should be on modeling
the cognitive task itself, not the full variety of its practical implementations.

We can thus see the computational level as representing competence whereas
the algorithmic and implementational levels are associated with performance.
This was also how Marr viewed the matter when presenting his three-level
distinction:

Chomsky’s (1965) theory of transformational grammar is a true computational
theory [...] It is concerned solely with specifying what the syntactic decompo-
sition of an English sentence should be, and not at all with how that decom-
position should be achieved. Chomsky himself was very clear about this - it is
roughly his distinction between competence and performance (Marr 1982, p.
28)

When it comes to mathematical problem solving, the corresponding view means
specifying what the solution to a problem should be, and not how that solution
should be achieved. The advantages of this approach are immediately visible. Let
us think of a simple mathematical decision problem, such as whether 27 4+ 38 = 65
is true. People may apply different algorithms for solving it, but it would be quite

Table 1 Marr’s three levels of explanation in cognitive science

Marr’s level Level of explanation Characterization

1 Computation What the cognitive task is functionally, i.e., in terms of its input and
output

2 Algorithmic How the task is performed, i.e., how the output is calculated for each
input

3 Implementation How the algorithm is implemented on the physical level
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strange to claim that all the algorithms are equally representative of human compe-
tence. From all the possible algorithms for solving the problem, there must be one
(or perhaps more) that is optimal in that it requires the least amount of cognitive
processing. As will be seen in the next section, this closely mirrors the computa-
tional complexity approach. In studying computational complexity, we are interested
in finding optimal algorithms for solving a problem. If we accept the idea that cogni-
tive abilities are (evolutionarily or otherwise) optimized for their tasks, it is under-
standable to equate the human competence in mathematical problem solving with a
computationally optimal problem solving algorithm.

Indeed, in the cognitive domain of mathematical problem solving, I agree that this
is how Marr’s focus on the computational level should be interpreted. As explained
by Frixione (2001), the computational-level approach allows us to focus on the char-
acteristics of the functions that are proposed as models of particular cognitive tasks:

The relation existing between a computational theory and the algorithmic
level can be regarded as the relation between a function (in a mathematical
sense) that is computable and a specific algorithm for calculating its values.
The aim of a computational theory is to single out a function that models the
cognitive phenomenon to be studied. Within the framework of a computational
approach, such a function must be effectively computable. However, at the
level of the computational theory, no assumption is made about the nature of
the algorithms and their implementation. (Frixione 2001, p. 381)

This way, once the function is identified, we can focus on the properties of that func-
tion and leave aside considerations on algorithms and their implementation. But
when we consider mathematical problems, we are already working within the para-
digm of such functions. If we dismiss the algorithmic and implementational levels,
we are left with explaining the task of taking a mathematical decision problem as the
input and providing the correct answer (yes or no; true or false) as the output. When
studying the complexity of this cognitive task, it is understandable to characterize
it in terms of the computational complexity of the problem in question. This way,
the number of computational steps required to reach a solution is seen as character-
izing the complexity of the cognitive task. In the cognitive science literature, this is
called problem complexity and it is often considered to be the central variable in the
research on mathematical cognition (Ashcraft 1992, 1995; LeFevre et al. 2005).
Generally speaking, this approach is fruitful and reliable. To give an idea why that
is the case, let us think of a simple example. It is easy to agree that the task of solv-
ing whether 27 4+ 38 = 65 is true is cognitively less complex than 645 + 472 = 1117,
even without conducting any experiments. Since the latter sum involves more com-
putational steps—as seen, for example, when calculating the sums with the stand-
ard method learned in school—it must be more complex. From the point of view
of computational complexity theory, however, the two problems here are in fact
instances of the same computational problem; namely, the addition of integers. In
complexity theory, as will be seen in the next section, we can study differences in
complexity between general mathematical problems. So, for example, we can know
that the general problem of finding the best strategy for the game reversi (Othello)
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is less complex than that of chess (Iwata and Kasai 1994; Fraenkel and Lichtenstein
1981).

Importantly, this result can be established without basing it on any experiments
on reversi and chess players. Although there is obviously a great deal of details con-
cerning the neuronal activity and the actual algorithms that are manifested in solv-
ing such problems, the computational-level explanations are informative without
involving the other two levels. This way, focusing on the computational-level has a
great practical advantage: whereas the algorithmic and implementational levels may
be extremely difficult to study, research on computational complexity has an estab-
lished and highly fruitful methodology when it comes to mathematical (as well as
many other) problems.

However, this is not to suggest that the computational level is preferred merely
due to pragmatic considerations. Marr (1982) and Anderson (1990) have stressed
that there is greater explanatory power in understanding the computational charac-
teristics of a particular cognitive task than in explaining the algorithmic and physi-
cal manifestations of the task. Indeed, Marr argued that the computational level of
explanation is in fact crucial when we try to explain cognitive tasks on the algorith-
mic and implementational levels:

an algorithm is likely to be understood more readily by understanding the
nature of the problem being solved than by examining the mechanism (and the
hardware) in which it is embodied. (Marr 1982, p. 27)

Seen in our present mathematical context, the implications of this approach are
clear. If we want to examine the way human beings solve mathematical problems,
we should focus on understanding the computational nature of those problems. This
way, the computational complexity approach to studying mathematical problems
can be explicitly formulated as the primary route to explaining human mathematical
problem solving competence.

In the first part of this paper, I will evaluate the computational complexity
approach to the cognitive complexity of mathematical problem solving. In the next
two sections, we will see how useful it can be in limiting the space of possible func-
tions that can work as characterizations of human cognitive capacities. In addition,
much of the information we can gather from the research on computational com-
plexity of mathematical problems can be used to assess the complexity of the cogni-
tive tasks involved in solving them. Overall, there is nothing necessarily wrong with
the general guideline that the more complex a problem is computationally, the more
complex it is for humans to solve it.

However, there is no compelling argument why this should always be the case.
The evolutionary argument for the optimization of cognitive tasks, for example,
while perhaps appealing in many cases, seems to be a bad fit for mathematical prob-
lem solving. On an evolutionary scale, the emergence of mathematics appears to
be too recent an event to allow for the optimization of problem solving strategies
(Fabry 2019). While an accurate timing of the emergence of the first finger count-
ing and other body part systems is impossible, the earliest known written systems
of numerals are from around 3000-2000 BC (Ifrah 1998). Of course mathematical
cognition may apply cognitive patterns that have been evolutionarily developed for
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other purposes, but with this relatively recent history it seems quite plausible that
our mathematical problem solving ability can include aspects that are suboptimal.
Indeed, in Sect. 6 I will argue that such suboptimal algorithms play an important
role in actual human problem solving processes.

3 Computational Complexity

Before we consider the limitations of the computational complexity approach to
explaining cognitive complexity of human mathematical problem solving, we
should first establish what explanations based on computational complexity can
achieve. Let us think of a simple cognitive task, such as finding the largest number
out of a small set of numbers. For a set of two numbers, the task consists of tak-
ing the numbers a, b as the input and then giving as output the correct answer f(x),
where x € {a, b}. Thus we have three components: the input (the domain), the out-
put (the image) and the function modeling the cognitive phenomenon of finding the
largest number. On the computational level, it is then a straight-forward matter to
analyze the complexity of the task of finding the largest of two distinct numbers. We
can move the pursuit to the mathematical study of computability and determine how
much resources the task requires.

As a naive initial description, we can calculate the steps it takes to get the correct
answer. Given the input a, b, we go through the process characterized by the follow-
ing algorithm:

(1) Isa < b?1If yes, move to (2). If no, move to (3)
(2) Output a.
(3) Output b.

Although actual human problem solvers may use a variety of algorithms for solv-
ing the problem, this three-line pseudo program appears to characterize the prob-
lem solving task. In standard mathematical notation, the computational model of the
cognitive task is thus the function f(a, b) = max(a, b).

For a set of three distinct numbers a, b, ¢ we get the following algorithm:

(1) Isa < b?1If yes, move to (3). If no, move to (2)
(2) Isa < c?If yes, move to (6). If no, move to (4)
3) Isb < c?If yes, move to (6). If no, move to (5)
(4) Output a.
(5) Output b.
(6) Output c.

From these simple examples, it is already easy to see the potential fruitfulness of the
computational complexity approach. Clearly the case of three numbers appears to be a
cognitively more complex problem, as seen from the fact that the pseudo program for
solving it consists of six lines, compared to the three lines of the two-number problem.
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We have not given any consideration to the algorithmic level, i.e., how human reason-
ers actually compute the output of a given input. Yet the way we found that character-
izing the complexities of the two problems seems to be apt from the cognitive perspec-
tive, as well. As an important upshot, we can now study the question of complexity
of the two cognitive tasks by studying the complexity of the two functions modeling
it computationally, i.e., f(a,b) = max(a,b) and f(a,b,c) = max(a,b,c). Since an
algorithm computing the latter function takes up more resources than the former, we
can state with confidence that the cognitive task of solving the latter problem is more
complex than the former. It is of course possible that for some individual, the latter
problem is easier to solve than the former. But with the focus on competence, such
cases are seen as anomalies that do not need to be taken into consideration when we
are studying the general cognitive task. In essence, we have eliminated possible inter-
individual variation from the explanations, thus moving from studying performance to
studying competence, as Marr and Chomsky intended.

But just what do we mean when we talk about the complexity of mathematical
problems? In the above case, we characterized it in terms of the length of the algo-
rithm that solves the problem. However, clearly there are many algorithms of differ-
ent lengths that could solve a particular problem. What we are interested in is not
just any algorithm that gives the correct solution, but the one that demands the least
resources. The most popular paradigm for determining this is studying complexity
in terms of Turing machines. Turing (1936) presented the machine as a way to study
computation theoretically. In a nutshell, a Turing machine takes as its input symbols
on a tape, one at a time. The Turing machine is always in some inner state and based
on the input symbol and the state, the machine is given instructions to read and write
symbols on the tape, move the tape, and change to a new inner state (or remain in the
same state). The set of these instructions is called an algorithm, giving us an explicit
definition of the concept. Since the Turing machine is a theoretical construct, no
limits are made to the size of the tape. Most importantly, according to the generally
accepted Church-Turing thesis, if there is a mechanical procedure for solving a prob-
lem, then there is a Turing machine that can solve it (Turing 1936; Church 1936).

The Turing machine has become the established paradigm for studying algorith-
mic, mechanical procedures. In the study of complexity in theoretical computer sci-
ence, researchers are not interested in the computing capacities of particular com-
puters. Instead, they want to study the inherent complexities of different tasks free
from the limitations of physical computers. Under this approach, the complexity of a
mathematical problem can be characterized by the complexity of the least complex
Turing machine (i.e., the algorithm run by a Turing machine that takes a minimum
of resources) that solves the problem. Such an algorithm is called optimal.’

5 Here it should be noted that for practical purposes, optimality may include considerations of various
aspects, such as stability, verifiability, simplicity of coding, etc. The context of Turing machines here is
a purely theoretical one in which such matters are ignored, important as they are in practice. It should
also be noted that optimal algorithms are not unique. In theoretical computer science, an algorithm is
called (asymptotically) optimal if it never performs more than a constant factor worse than the best pos-
sible algorithm. There can thus many (even an infinite number of) optimal algorithms. Finally, although
the method of characterizing complexity of a problem in terms of an optimal algorithm for solving it is
commonplace, we know from Blum’s speedup theorem (Blum 1967) that it is not possible in all cases
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The Turing machine is closely connected to the computational-level approach in
cognitive science. It can be seen as providing a theoretical framework that connects
the study of computational complexity and computational-level explanations in cog-
nitive science. Marr’s work on the computational level was influenced by Newell
and Simon (1976, 1980, 1982), who argued that cognitive science should focus on
functional explanations of what they called physical symbol systems, i.e., general
classes of systems capable of manipulating symbols. Marr then developed this idea
into the computational level of explanation. For Newell and Simon, the concept of
physical symbol system is specified as an “instance of a universal [Turing] machine”
(Newell and Simon 1976, p. 117). This way, the computational level of explanation
has been from the very beginning in close relation to Turing machines and therefore
also the study of computational complexity.

When it comes to Turing machines, there are two main ways of measuring the
complexity of algorithms: the time and the space it takes to run an algorithm. Since
the Turing machine is an abstract model, time and space are not measured in sec-
onds or bits. Instead, they are measured as a function of the size of the input. This
has proven to be a highly fruitful approach and as perhaps the most important result,
we can divide computational problems into complexity classes.

Taking time as the measure, one of the most important complexity classes is
called P and it is defined as the class of decision problems that can be solved by a
deterministic Turing machine in polynomial time (Cobham 1964; Edmonds 1965).
An algorithm (i.e., a Turing machine) is said to run for polynomial time if its run-
ning time has an upper bound of a polynomial function of the size of the input for
the algorithm. This means that if the size of the input is n, the running time has an
upper bound of some function n* for some constant k.

Another important complexity class is called EXP (or EXPTIME) and it is the
class of decision problems that are solvable by a deterministic Turing machine in
exponential time. An algorithm runs for exponential time if its running time has a
lower bound of some exponential function of the size of the input, i.e., for input size
of n, the running time has a lower bound of some function 2°™ where p(n) is some
polynomial function of n.

P and EXP form an important pair of complexity classes for two reasons. First,
according to the widely accepted Cobham’s (or Cobham-Edmonds) thesis, P is gen-
erally seen as the class of problems that can be feasibly solved by a computer. Sec-
ond, it has been proven that the complexity class EXP is strictly greater than P.
Algorithms for solving problems in P are called efficient, or tractable. Algorithms
for solving problems in EXP (that are not in P), on the other hand, are inefficient
or intractable. As we will see, this distinction is very important when we consider
the computational complexity of functions that model cognitive tasks. For com-
puter science, the distinction is crucial. A simple example of an efficient algorithm

Footnote 5 (continued)
to define the computational complexity of functions in terms of optimal algorithms for solving them (I
thank an anonymous reviewer for bringing up this point).
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is multiplying integers, which takes roughly n? steps of computation for two n-digit
integers with the standard algorithm that computers use. The operation of factoring
integers into primes, on the other hand, is a good example of an inefficient algo-
rithm. An n-digit integer takes about 2"]/3computational steps (Pomerance 1996).

On first glance, this may look like a terribly useless characterization of efficient
and inefficient algorithms. We can have an algorithm that runs for 579999999999999999999
computational steps, which is sure to take longer than the 2"1/3c0mputational steps
for prime factoring for any feasible input size n. Yet according to Cobham’s thesis,
it is the former algorithm that counts as efficient. There are also rates of growth that
are neither polynomial nor exponential, such as n'°2”. So why do computer scientists
use such a theoretically flawed distinction? The short answer is that in most cases it
works. Based on empirical evidence of computation, polynomial time came to be a
good characterization for what was considered efficient in practice and exponential
time for what was considered in practice inefficient (Aaronson 2012).°

However, the distinction between P and EXP is not the only interesting differ-
ence in complexity classes. For our purposes, a particularly interesting case is the
complexity class NP, which is defined as the class of decision problems that can
be solved by a non-deterministic Turing machine in polynomial time.” It is easy to
see that P is a subclass of NP, but it has proven to be difficult to show whether it
is a proper subclass of it, i.e., whether P = NP. Although this is perhaps the most
famous unsolved problem in theoretical computer science, it is a generally accepted
conjecture that the class NP is strictly greater than P. This conjecture plays an
important role because it is related to the important concept of a computationally
hard problem. Hard (or NP-hard) problems are understood to be those problems that
are at least as hard to solve as the hardest problems in NP (i.e., those that are not in
P). A problem is said to be NP-complete if it is both NP-hard and in NP.

All this is important for us for two reasons. First, since the conjecture P # NP is
generally accepted, the complexity class NP is de facto the lowest complexity class
of problems which are thought to be computationally intractable. Second, the class
of NP-complete problems includes many famous mathematical problems, such as
graph coloring and the traveling salesman problem (in its decision version). It also
includes many familiar games, such as Rubik’s cube (finding an optimal solution)
and Sudoku (generalized). In short, many of the kind of problem solving tasks that
human beings engage themselves in are NP-complete.

If it were the case that P = NP, we would know that all those problems would
in fact be included in the complexity class P, and thus be solvable by efficient algo-
rithms. There would still of course remain complexity classes strictly greater than
P (for example, the above-mentioned EXP), but computational problems currently
seen as computable only by inefficient algorithms would no longer be considered

5 A well-known example of this practice is the use of cryptography in computers, which is based on the
widely-shared, but unproven, conjecture by computer scientists that multiplying integers is efficient while
factoring them is inefficient.

7 Whereas a deterministic Turing machine is programmed to have at most one action for each situation, a
non-deterministic Turing machine can choose the action from several options.
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intractable. Here, however, we follow the consensus and accept the conjecture that P
= NP is indeed false. Thus we get the following basic distinction: problems belong-
ing to P are efficiently solvable, whereas problems that are NP-complete (or harder)
are not. Although strictly speaking at many points in this paper we need to appeal
to the conjecture that P # NP, this will not be explicitly mentioned. As we will see,
this conjecture that the complexity class P can be identified with solvable problems
has had great influence in computational modeling of cognitive tasks.®

4 Tractable Cognition Thesis

In computer science, an algorithm refers generally to a finitely describable well-
defined procedure which takes an input and after a finite number of steps produces
some output and halts. From a modern perspective, the Turing machine gave a
highly intuitive characterization of algorithms: essentially, they are the kind of
procedures that can be run by digital computers. In this paper, we are interested in
algorithms from two perspectives. First, in computational complexity theory, we are
interested in optimal algorithms for solving a mathematical problem. Second, from
the cognitive perspective, we are interested in algorithms that model human cogni-
tive capacities. As was characterized in Sect. 2, in the computational complexity
approach to modeling cognitive tasks those two approaches are merged.

In short, we want to study algorithms for computing functions that work as mod-
els of human cognitive capacities. We can define that A is an algorithm for comput-
ing a function f : I — O if and only if A is an algorithm, and for any inputi € I it is
the case that A produces output A(i) € O such that A(i) = F(i). When we talk about
mathematical problems in this paper, we are in fact interested in algorithms for solv-
ing problems. Thus, solving a problem P means to correctly determine the output
of function fp for all inputs in its domain. In this manner, problems and functions
are treated here essentially as synonyms and considerations on the complexity of a
problem should be understood as dealing with the computational complexity of a
problem in terms of an optimal algorithm for solving it, i.e., computing the output of
the function for all the inputs in the domain.

Now the question is: what kind of functions can feasibly model human cognitive
capacities? In mathematical problem solving, the complexity classes give us a highly
fruitful framework for studying this question. For example, to say that a problem P
is NP-hard means that computing the solution for every input in the domain of P is
not bounded by a polynomial function of the size of the input. This means that an
algorithm A for computing the function f, : I — O for all i € I takes nonpolynomial
time. Because of this prohibitive amount of time that non-polynomial algorithms
take to run, they are called computationally intractable. Consequently, f, cannot fea-
sibly model the problem solving capacity of solving P. This way, computationally

8 For the current state of the art in the rapidly advancing field of complexity classes, the reader is
referred to Scott Aaronson’s excellent website “Complexity Zoo” (https://complexityzoo.uwaterloo.ca/
Complexity_Zo00).
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intractable algorithms in general are not considered to be feasible Marr’s algorith-
mic-level explanations for cognitive processes (Frixione 2001).

It should be noted that there are some differing voices on this matter. NP-hard
functions have been suggested as models at least for visual search (Tsotsos 1990)
and analogical reasoning (Thagard 2000). In addition, some researchers have sug-
gested that humans are able to solve the NP-hard Euclidean Traveling Salesperson
Problem near-optimally in a short time (Graham et al. 2000; Dry et al. 2012). How-
ever, we should not confuse the actual use of NP-hard functions as models with
them being accurate models by the strict criteria applied here. Neither should we
believe that near-optimal performance in NP-hard tasks implies that the cognitive
processing can only be modeled with NP-complete functions. It is conceivable that
in many problems we can reach very good solutions with an approximate algorithm,
but these should not be confused with proper exact solutions. In addition, the results
presented in Ormerod and Chronicle (1999) suggest that human performance is
often not even nearly optimal in the Euclidean Traveling Salesperson Problem.

This way, even though there may not be full consensus over the issue, it is gener-
ally accepted that computationally intractable algorithms cannot accurately model
human cognitive tasks. This has become known as the tractable cognition thesis in
the literature (van Rooij 2008; Isaac et al. 2014). According to the thesis, when we
are looking for functions that model cognitive capacities, we should limit ourselves
to those functions that can be computed by tractable algorithms. Standardly, based
on Cobham’s thesis, this has been understood as the P-cognition thesis, stating that
we should limit our considerations to functions that compute problems in the com-
plexity class P (Arora and Barak 2007).’

From this perspective, it may seem strange that many of the problems accepted
to be NP-complete are actively studied and strategies for solutions are presented
(Markman and Gentner 2000; Chater et al. 2006). How is this possible if the
required algorithms are conjectured to be intractable? The answer can be found
in heuristic procedures (Garey and Johnson 1979; Ausiello et al. 1999). The idea
behind them is that while a heuristic procedure H is known to not compute a func-
tion f exactly, there is some close relation between the function f and the function f,
which is computed exactly by H. This relation cannot be equality, so it must be the
case that for some i € I, f(i) # fy(i). Normally, the purpose of heuristic algorithms
is to render NP-hard problems solvable in polynomial time (i.e., make them P-hard)
by using an approximative function the relative error of which we can determine
to be under some threshold “not too far from the optimum” (Papadimitriou 1994).
Such “quick-and-dirty” algorithms are commonly used in many practical applica-
tions, in particular optimization tasks.

° 1t should be noted that there has been criticism against the P-cognition thesis as the appropriate formu-
lation of the tractable cognition thesis. van Rooij (2008) argues that with suitable parameters concerning
the size of input (see Downey and Fellows 1999 for more), also super-polynomial time computation can
be feasible in modeling cognitive tasks. van Rooij calls this the “FPT-cognition thesis”, for fixed-param-
eter tractable.
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Do such heuristic algorithms offer us tools to go beyond tractable cognition?
Although this may be seen as a feasible way to handle intractable algorithms, as van
Roojj et al. (2012) have argued, there are fundamental problems involved in such
claims if we consider the matter from a philosophical rather than a practical per-
spective. First, the introduction of H makes the computational and algorithm-level
explanations inconsistent. Since for some i € I it must be the case that f(i) # f (),
we can confirm fy as the algorithm-level solution to a problem only if fis discon-
firmed as the computational level solution to the problem, and vice versa. Second,
H must fail as a cognitive explanation of solving f, because the cognizer with the
procedure H does not compute the function f, but rather fy;, which is by definition
another problem.

All this should of course not be confused with thinking that human cognizers do
not use heuristic procedures, nor that they are irrelevant for the study of cognitive
complexity. Instead, what van Rooij et al. (2012) argued was that if we appeal to
heuristic procedures as ways out of intractable algorithms, we are subtly—or indeed
often not so subtly—moving the goalposts. Van Rooij and her colleagues go through
many proposed counter arguments (such as heuristic procedures providing partial
explanations, optimism from many successful cases where f(i) = fy(i), and per-
haps most strongly, approximations), but their argument seems to be left unharmed.
Heuristic procedures do not give us a way to make intractable algorithms tractable,
regardless of their great usefulness in achieving just that in the kind of approxima-
tive manner sufficient for many practical purposes.

From the considerations above, it becomes clear that heuristic algorithms do not
allow us to drop the P-cognition thesis. We may discuss the details, but it seems that
we should adopt some form of the tractable cognition thesis. Based on the physi-
ological limitations of our brains (as well as our computing tools), algorithms above
some complexity level cannot be feasibly implemented by us. Consequently, there
must be some level of complexity after which problems are no longer computable
for us. This is an extremely important point and the way we can analyze it in terms
of complexity classes shows the great fruitfulness of the computational complexity
approach to modeling cognitive tasks. A vast class of functions can be feasibly dis-
missed as potential models of human cognitive tasks due to their prohibitive com-
plexity. Equally importantly, considering the topic of this paper, a vast class of math-
ematical problems can be deemed to be unfeasible for humans to solve efficiently.

Throughout these considerations, we should keep in mind the pragmatic charac-
ter of the complexity classes. For small inputs, NP or EXP-hard problems can be
perfectly solvable for human beings, whereas P-hard problems are unsolvable for
large enough inputs. The complexity classes, as well as the tractable cognition thesis
based on them, should be seen more as guidelines for evaluating complexity than
strict results. Thus the P-cognition thesis should not be understood to claim that NP-
hard functions, for example, cannot be used to model cognitive capacities. Rather,
the thesis implies that for each such model, ultimately—perhaps for larger input—
there must be a P-hard function that models the capacity more accurately.

But this pragmatic nature of the complexity classes notwithstanding, the accept-
ance of the tractable cognition thesis has very strong implications for philosophy
of mathematics and beyond. Indeed, if mathematical problems beyond a certain
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complexity are thought to be unsolvable, this is a strong conclusion generally for
philosophy of mind and epistemology. It imposes explicit limits on what our cogni-
tive capacities can achieve, as well on the class of problems whose truth-values we
can know.

5 Complexity Within P and the Computational Paradigm

As fruitful as the computational approach to both cognitive modeling and mathe-
matical problem solving has proven to be, it is clear that the limits it imposes are in
practice rather weak. Even by accepting the P-cognition thesis we are left with an
enormous class of functions that can potentially model human cognitive capacities,
namely all functions computable in polynomial time. Finding the greatest common
divisor (GCD) of two integers, for example, is known (in its decision form) to be in
the complexity class P, yet a sequential solution for it can take a prohibitive amount
of time. It could be the case that the GCD could be solved faster by parallel process-
ing, yet there is no known way of parallelizing the computation effectively.!” The
algorithm for solving GCD may thus be seen as unfeasible as a model of human
cognitive capacities.

Although the case of GCD is not clear, it reminds us of an important point: we
should not treat all mathematical problems in the complexity class P as being the
same in terms of complexity. Crucially, even if a problem were solvable in poly-
nomial time, it could be in practice beyond the human capacity to solve it. All the
P-cognition thesis gives us is an upper bound for human problem solving capac-
ity. But within P there are problems with very different computational complexities.
When studying the complexity of human mathematical problem solving ability, we
should be interested in those differences. If it is possible to identify within P com-
plexity measures that characterize mathematical problems in a more fine-grained
manner, we would get important information also for identifying the cognitive tasks
involved in the problem solving process.

There are many ways to expand our approach in order to be able to study com-
plexity within P. We can, for example, stay within the prevalent paradigm of study-
ing complexity in terms of the time or space needed to solve a problem. We simply
need to look for complexity measures within P. In addition to the complexity class
NC mentioned above, one interesting complexity class is L, the class of problems
decidable in logarithmic memory. It is known that both NC and L are subsets of P,
but it is not known whether NC = P or L. = P. These problems may turn out to be as
difficult as the problem P = NP, but it is conceivable that results from the study of

10 More technically, although it is known that there are parallel algorithms faster than the standard
sequential Euclidean algorithm (Chor and Goldreich 1990), it is not known whether GCD is in the com-
plexity class NC (“Nick’s Class”), which is the class of problems decidable in polylogarithmic time with
a polynomial number of parallel processors. Furthermore, it is not known whether NC = P (Arora and
Barak 2007).
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complexity of classes provides us with more tools to distinguish between complexity
classes within P.!!

However, it could also turn out that in order to have maximally useful compu-
tational characterizations of mathematical problems for the study of cognitive
complexity, we need to introduce more fine-grained measures of complexity than
provided by complexity classes like NC, L, P, NP and EXP. This can be done by
studying the functions that are upper bounds for the running time of an algorithm
that solves a problem. Or in a pragmatic approach, we can measure the actual run-
ning times of algorithms on physical computers. Finally, we could also introduce
another notion of complexity, such as Kolmogorov complexity, to work as the rel-
evant unit of measure.'? Alternatively, complexity for particular cases can also be
measured in terms of computational steps, as in the example in the beginning of
Sect. 3 of this paper. All these approaches have their difficulties, but a wider research
paradigm with a plurality of measures of complexity can give us tools to introduce
more informative distinctions between the complexity of mathematical problems.

What all such approaches have in common, however, is that they do not focus on
the human aspect of mathematical problem solving. As we have seen, we can do a
great deal of important work purely theoretically in the computational approach to
cognitive modeling. But obviously there are limits to this: at some point we need to
study the actual human cognitive capacities in order to find out which functions can
model them. To assess the computational complexity of different cognitive tasks,
we obviously first need to model those cognitive tasks as mathematical functions.
The interesting thing about mathematical problem solving, however, is that we often
seem to be able assess the complexity in a purely a priori manner. By studying the
two simple problems presented in Sect. 3, for example, it is quite understandable
to deem the three-number case as cognitively more complex than the two-number
case, without ever conducting empirical research on how human reasoners in prac-
tice solve the problems.

It should be noted that while it may seem that cognitive complexity of mathemat-
ical problem solving can be studied independently of all empirical data, the matter
may not be that simple. It is certainly true that the complexity of the cognitive task
of solving a problem is often assessed based on the computational complexity of the
problem, which can give the impression that the assessment is purely a priori. How-
ever, it seems feasible that this methodology would not be used if it were in conflict
with empirical data. There are at least two ways in which the seemingly a priori

! There are complexity classes that are known to be strictly smaller than P, such as AC, a class of cir-
cuit complexity. But these classes are generally very weak and thus of little use in distinguishing between
mathematical problems. ACY, for example, does not even contain integer multiplication (Vollmer 1999).
12 Kolmogorov complexity refers to the length of the shortest computer program that has an
informative object, such as a string of symbols, as its output. For example, the string of symbols
“aaaaaaaaaaaaaaaaaaaa” has a lower Kolmogorov complexity than the string of symbols “keehfydo38d-
krislero29s”. Both strings are 20 symbols long, but whereas the second string cannot be described with
a shorter string, the former can. For instance, the English description “20 times a” is 10 symbols long.
However, Kolmogorov complexity is not without problems. While it may seem like a straight-forward
concept, it has turned out that determining the Kolmogorov complexity of even short strings of symbols
is a highly difficult task (Soler-Toscano et al. 2014).
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assessment of cognitive complexity can in fact be based on empirical results. First,
all the data we have about cognitive capacities in general can be used to justify the
assessment of the complexity of mathematical tasks. The limits of working memory,
for example, impose limits on our problem solving capacity, as do physical limita-
tions in using external tools. We do not need to empirically study each mathemati-
cal problem if we can establish that a certain class of problems puts more demands
on working memory than another class. Second, the general method of using com-
putational complexity to characterize the complexity of the problem solving tasks
only works because in many cases we know the human competence to be modeled
reasonably well by computationally optimal algorithms. Empirical data on the com-
petence in the addition of (small) natural numbers, for example, implies that an opti-
mal algorithm can be used to characterize the complexity of the human cognitive
task (Fuson 1992).

This way, what may seem like a priori assessment of cognitive abilities may in
fact be at least partly based on empirical considerations. Although the empirical data
may not be explicitly acknowledged, using computational complexity to explain the
complexity of cognitive tasks may be empirically justified. This empirical aspect
notwithstanding, however, in practice the exclusive focus on the computational level
of explanation can make the approach largely a priori. In a purely computational-
level approach it is natural to assume that human competence can be modeled by
optimal algorithms for solving mathematical problems, rather than studying empiri-
cally what kind of problem solving algorithms actual human reasoners use.

While this computational-level approach has clear advantages, I submit that there
should be limits to how strong and wide the application of the a priori computational
methodology should be. As fruitful as the computational complexity paradigm may
be, we should not dismiss the possibility that human competence in mathemati-
cal problem solving may indeed differ in important and systematic ways from the
optimal algorithms studied in the computational complexity approach. In the rest of
this paper, I will argue that by including considerations on the algorithmic level, we
can get a more informative framework for studying the actual human problem solv-
ing capacity. Furthermore, I will show that the algorithmic-level approach does not
move the discussion from competence to performance. Instead, we get a theoretical
framework that is better-equipped for explaining human competence by including
considerations of the algorithms that are cognitively optimal for human reasoners. '

13 In this way, the approach here resembles that of Peacocke (1986), who proposed amending the Marr
classification by adding a level “1.5” of cognitive explanation (1 being the computational level and 2
the algorithmic). He argued that the purely extensional computational approach corresponds neither to
Chomsky’s competence nor even to the scientific practice that Marr intended. If we are concerned only
with the output and the input, we are left with a multitude of characterizations of the functions involved.
For example, if we think of functions simply as Cartesian sets of ordered pairs (i.e. purely extensionally),
we learn nothing about the intensional intricacies of the function. But surely such purely syntactic pair-
ing of inputs with outputs (with, e.g., a look-up table) is a inferior characterization (cognitively) than a
description of a function that implies how it is cognitively computed. In this way, the characterization of
the function may already point us toward the algorithms used in cognitive processing.
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6 Humanly Optimal Algorithms

When we study human mathematical problem solving abilities, it is quite obvious
that we will encounter a great deal of suboptimal performance. Humans make errors
and even when correct, they may use algorithms that are less than optimal. In the
tradition of Chomsky and Marr, such use of suboptimal algorithms is deemed to be
variation in performance and as such irrelevant for studying competence. Since that
paradigm aims to explain general human competence when it comes to mathemati-
cal problem solving, in that respect it is not important that people do not always
reach the full competence, nor that even competent problem-solvers are not always
completely error-free and optimal.

However, when seen in the current setting of the computational complexity
approach to modeling cognitive processes in mathematical problem solving, there
is a potentially serious difficulty involved. In the study of computational complex-
ity we are (in this regard) mostly interested in optimal algorithms. If we character-
ize the complexity of the cognitive task of solving a mathematical problem through
the complexity of the problem, we are implicitly assuming that the competence of
human reasoners can be characterized by a computationally optimal algorithm.

This approach seems to be unproblematic when it comes to some mathematical
problems. Human competence in the addition of integers, for example, seems to use
an optimal algorithm, and there is also evidence that this is the case in certain logi-
cal tasks (Szymanik 2016, Section 5). However, in what follows, I will argue that
there is no reason to believe that this is generally the case. In fact, I will argue that
there are several ways in which the human problem solving cognitive capacity dif-
fers essentially from the optimal algorithms for solving mathematical problems.'*

There have been some arguments (e.g., Penrose 1989) to the effect that human
mathematical ability could actually rise above the power of any algorithms, by a
special intuition or mathematical insight. I consider those arguments to be dubious
and will not focus on them here. I believe that mathematical intuition and insight
are important subjects and they no doubt play an important role in mathematical
problem solving. However, based on the definition of optimal algorithms, I cannot
see how they could lead to super-optimal solutions to mathematical problems. If
they did, we would presumably be able to model this “insightful” solution, which
would then turn out to be an optimal solution.'® Under the computational complex-
ity approach—when possible—the complexity of mathematical problems is char-
acterized by optimal algorithms. Such algorithms do not need to be unique, but
by definition, every other algorithm for solving the problem takes equally long or
longer to run than an optimal algorithm (or performs at best a constant factor bet-
ter).'® With human insight, we may be able to provide feasible hypotheses, partial

14" An upshot of this approach is that we can also better understand why human competence sometimes
can be modeled by an optimal algorithm and sometimes not.

15 Of course this argument fails if we believe that human insight cannot be even in principle computa-
tionally modeled, as Penrose does.

16 Or it requires as much as or more space, or it has equal or higher Kolmogorov complexity, etc.
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Fig. 1 An optimal algorithm A
takes time 7 to get the solution S S

or approximate solutions, or structures and strategies for solutions—and this process
may take less time than an optimal algorithm. But we cannot have full step-by-step
solutions that are faster than an optimal solution.

However, this does not mean that special human cognitive characteristics (what
we might call “insight”) do not play an important role in mathematical problem
solving. Here I want to distinguish between optimal algorithms and humanly opti-
mal algorithms. The key idea is that the solution that is most easily accessible to
human cognizers may not always be a computationally optimal one.

Let us say that an algorithm A is optimal for reaching the solution S to the prob-
lem P and it takes time # to run it (Fig. 1). Now by studying human performance in
solving P, we may find out that even if the solution § is correct, the actual algorithm
A* may have been different from the optimal algorithm A (or an equivalent other
optimal algorithm) and by definition the time taken #*> ¢ (Fig. 2).

In the computational-level approach of Chomsky and Marr, such a result would
be dismissed due to it concerning performance rather than competence. But what if
we acquired extensive data and found out that humans generally use a suboptimal
algorithm like A* to solve the problem? In that case there would clearly be a unique
algorithm to describe the human competence, yet it would not correspond to an opti-
mal algorithm. Such an example would show, contra Marr, that the explanation can-
not focus mainly on the computational level. As we have seen, in the computational
complexity approach optimal algorithms are used to model human cognitive compe-
tence. But if human performance generally follows a suboptimal algorithm, how can
we retain this approach?

In the rest of this paper I will argue that indeed we cannot, and we must take into
account also Marr’s Level 2, the algorithmic level of explanation.!” We will start by
looking at three cases in which the humanly optimal algorithms for mathematical

17 To be clear, I am not claiming that researchers in the cognitive sciences generally dismiss the impor-
tance of algorithmic-level explanations. Often considerations on the algorithmic and implementational
levels of processing can also influence computational-level explanations, the Marrian focus on computa-
tional level of explanation notwithstanding.
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Fig.2 If the human algorithm
A* is not optimal, the time taken S
x>t
A *

problem solving are not the same as the algorithms with the lowest complexity, and
assess the computational approach in each of them.

Before that, however, we need to ask how we should understand a “human”
problem solver and what exactly is meant by “humanly optimal algorithm”. Clearly
human mathematical problem solving is in most cases aided by some tools, rang-
ing from fingers to pens and paper to computer programs. Indeed, anything we can
achieve with the help of computers is human endeavor and thus it could be argued
that all mathematical problem solving is ultimately human problem solving. Perhaps
we could limit human problem solving to mental operations carried out in the work-
ing memory without any external aids, but that would seem to be needlessly limiting
given the importance of external tools for mathematical practice in all its levels. In
the face of this, it may seem that any characterization of “human” problem solving is
largely arbitrary. Moreover, many problem solving processes include several human
beings. Should we limit the approach to individual problem solvers? But then how
should we assess the cultural input of other people on that individual?

Similar questions may be asked about “humanly optimal” algorithms. Should we
consider the tools used in problem solving processes? If so, how should we account
for the differences in tools that different cultures have? For example, there can be
different cultural emphasis how pen-and-paper methods and tools like abacus are
used for solving arithmetical problems. Indeed, problem solving strategies in mental
arithmetic also differ culturally—partly due to the different tools used—and this can
be seen as differences in the brain region activation associated with mental arith-
metic (Tang et al. 2006). How is it possible, from this background, to characterize a
problem solving algorithm as “humanly optimal”?

These are all relevant questions and a full treatment of them is unfortunately not
possible. We treat these issues in detail in (Fabry and Pantsar 2019). However, it
should be pointed out here that while I do not want to suggest a particular limi-
tations, I believe that even in the face of such questions, there can be meaningful
characterizations of “human” problem solving and they can be explanatorily useful.
What such characterizations should do, at the minimum, is pick out problem solving
processes which are used generally enough, and in which the cognitive process is
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essential to reaching the solution. Importantly for the purposes of this paper, under
such a characterization, simply typing an input to a computer program and reading
an output does not count as a human problem solving process.

Similarly, I want to introduce the term “humanly optimal algorithm” as a charac-
terization that we can use as a tool in modeling the problem solving strategies that
human cognizers use, rather than something that could be universally defined for
particular mathematical problems. As will be discussed in Sect. 7, what is humanly
optimal depends on how our problem solving processes are culturally determined.
As such, the general use of the term “humanly optimal algorithm” should be under-
stood as a tool that can be used to introduce a new approach to modeling human
problem solving processes and characterizing their complexity. The important idea
is that humanly optimal algorithms are not necessarily computationally optimal, but
cognitively optimal for human cognitive agents with specific learning trajectories.
I will argue that this approach allows for more accurate characterizations than the
computational-level approach focusing on computational complexity. In the final
section of this paper, we will see in more detail how the concept of humanly optimal
algorithm can be used in pursuing more accurate models of human problem solving
processes, and therefore also more accurate characterizations of their cognitive com-
plexity. But first, let us take a look at some examples of the ways in which human
problem solving processes can be computationally suboptimal.

Example 1: Fast computer algorithms

In many cases, it is understandable that computer algorithms for solving mathemati-
cal problems are modeled after the algorithms we have learned in school. In the case
of addition, for example, the most common human algorithm would also appear to
be an optimal one. Also for multiplication, there would seem to be nothing wrong
with using the standard schoolbook algorithm. Multiplying integers with the stand-
ard method we have learned in school takes roughly n? steps for two n-digit inte-
gers, thus making it a relatively low-complex problem in P. However, Schonhage
and Strassen (1971) have shown that there are also more advanced algorithms for
multiplying large integers, ones that have lower upper bounds for the running time.
The so-called Fast Fourier transforms are another algorithmic method that greatly
reduces the complexity of computing discrete Fourier transforms of sequences.
Yet another example can be found in matrix multiplication, in which the Strassen
algorithm is quicker for large matrices than the standard method we learn in school.
Multiplying two matrices of the size 2 X 2 with the standard method learned requires
8 multiplications. The Strassen algorithm, however, manages to reduce this to 7
multiplications by adding new addition and subtraction operations. In this way, the
algorithm is actually more complex in that it requires more steps, but since multipli-
cations take more time than addition and subtraction, for large matrices the Strassen
algorithm becomes faster than the standard algorithm. Even faster algorithms for
matrix multiplication have been invented, thus making the standard method increas-
ingly less optimal in terms of time-complexity (Skiena 2008).

Due to limits in space, it is not possible to present the details of these algo-
rithms, but in all three cases, human problem solvers do not generally use the faster
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algorithm to solve the task. Thus all three examples appear to give us clear cases
where algorithms with lower time-complexities are not used by human problem
solvers. This would seem to go against the basic paradigm of the computational
complexity approach to mathematical problem solving: for some mathematical
problems, the lowest-complexity algorithms cannot feasibly characterize the cogni-
tive processes of human problem solvers.

However, it could be that all three cases are relevant in a limited manner, since
the advantage of the fast algorithms only starts to show with operations that involve
very large numbers. The Karatsuba algorithm, for example—which used to be the
fastest multiplication algorithm before the Schonhage-Strassen algorithm—only
starts to outperform the standard algorithm when the integers are hundreds of bits
long (Karatsuba and Ofman 1962). It is unfeasible that a human problem solver (as
characterized above) would ever perform this kind of multiplication, and it could
thus still be the case that for all the relevant multiplications—those that human
beings could in principle engage in—the standard algorithm is also a computation-
ally optimal one, and not merely humanly optimal. Thus we should perhaps look
elsewhere for more widely relevant humanly optimal algorithms which are not com-
putationally optimal.

Example 2: Diagrams

Based on the above considerations, it is unlikely that these kinds of simple mechani-
cal operations are where we can find the kinds of humanly optimal algorithms we
are after. For that, we should look at more complex mathematical tasks, in which the
human cognitive task could differ importantly from an optimal computational solu-
tion. Unfortunately, however, the more complex a mathematical task is, the more
problematic it becomes to study the cognitive processes that are involved in solving
it. Still, mathematical practice gives us reason to believe that mathematical problem
solving generally is not a case of applying an optimal algorithm. Instead of merely
constructing step-by-step solutions, in mathematics a wide array of different cogni-
tive resources are used. As analyzed by, e.g., Schoenfeld (1985), it is clear that prob-
lem solving is not a straight-forward process where different algorithms are tested
until the correct one is iteratively hit upon. In Schoenfeld’s analysis, mathematical
problem solving draws from four factors: resources, heuristics, control and belief
systems. While control (i.e., resource management) and belief systems (i.e., math-
ematical world view) form interesting research questions, here I am more interested
in the first two. How do human cognizers typically use their body of knowledge
about mathematics to solve a particular problem? And crucially to the matter at
hand, can analyzing human problem solving from this perspective provide insight
into cognitive complexity that goes beyond the computational complexity approach?

One strategy that humans constantly use in mathematical problem solving are
different types of heuristic, or didactic, processes. These should not be confused
with the heuristic algorithms we discussed earlier. Whereas heuristic algorithms in
computer science provide partial or approximate solutions, humans use heuristic
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processes also in processes that lead to exact solutions.'® Among these heuristic
and didactic processes, drawing diagrams is probably the most prevalent. Ever since
Polya’s How to solve it (1945) and Hadamard’s The Psychology of Invention In The
Mathematical Field (1954) were first published, the study of heuristics and didactic
methods of mathematical problem solving has been an important topic in mathemat-
ics education. Starting from perhaps Polya’s most commonly applied rule “If you
are having difficulty understanding a problem, try drawing a picture”, some didac-
tic rules have become the standard way in which mathematics is taught. The great
usefulness of pictures and diagrams has been confirmed in an enormous number of
studies (see, e.g., Jamnik 2001; Uesaka et al. 2007; Diezmann and English 2001).
Yet applying already that simple rule of Polya takes us away from the computational
complexity approach to characterizing human problem solving. Generally speaking,
computers do not benefit from visualizing problems and adding this sort of didactic
process to a problem solving computer program makes it less optimal, thus (from
the computational perspective) needlessly increasing the complexity of the solu-
tion.!” For human problem solvers, however, the matter is quite different. The com-
putationally superfluous pictures, analogues and such can be absolutely crucial for
finding the solution.

Let us consider a simple theorem from analysis, Bolzano’s theorem, stating that
if a continuous function gets both negative and positive values inside an interval,
it must have a root in that interval. Most students of mathematics are familiar with
some diagram explaining the idea of the theorem (Fig. 3). Furthermore, for most stu-
dents, this kind of diagram helps grasp the content of the theorem (Zachariades et al.
2007). Yet it is clear that in the mathematical community, drawing this kind of a dia-
gram would not be considered to be an acceptable solution to a problem. Instead, the
diagram works as a didactic tool that helps us better understand the formal theorem.

18 Of course in addition to the many applications humans have for heuristic processes that do not lead to
exact solutions.

19 Assuming that the computer is required to provide the solution to the problem in the initial mode
of representation. Perhaps there could be an exception in highly complex computer programs, but it is
enough for present purposes to note that changing the domain of representation is generally likely to add
to the complexity of the algorithm.
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Fig.4 An algorithm A’ that
employs diagrams adds to the S
complexity of the solution

A A
P
Fig.5 A purely didactic algo-
rithm A’ does not advance the S
formal solution
A 1 A
P

But from the computational point of view, drawing the diagram only makes the
algorithm human cognizers use more complex than an optimal algorithm (Fig. 4).
Since A’ introduces a parallel process, it must be the case that the time used by it is
more than the time used by an optimal algorithm, i.e., t’> t.

In fact, in many cases, the diagram does not advance the formal solution at all.
In such cases, the function of the diagram is purely didactic (Fig. 5). What the
diagram does in such cases is assist us in finding the formal solution. For a prob-
lem solving computer program, this would mean that the initial representation
of a mathematical problem is changed into another mode of representation, but
ultimately the solution must be presented in terms of the initial representation.
The solution via this process is generally computationally more complex than an
optimal algorithm for solving the problem. In the case of Bolzano’s theorem, for
example, it seems clear that a theorem-proving computer program would not ben-
efit from changing into a visual representation.

It is of course possible that diagrams and other didactic methods are not indis-
pensable for all humans in solving any particular mathematical problem. Even
if diagrams were generally useful, it is possible that all mathematical problems
could be solved by some human reasoners without them. In that case we could
in principle find for any problem a solution in which the human cognizer uses
a computationally optimal algorithm. Indispensability, however, is too strong a
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condition for the current purpose. What we want to know is whether there are
problems in which human reasoners generally benefit from diagrams or other
didactic and heuristic tools. With many problems, it seems highly probable that
this is the case. If we are looking to establish what the human competence in cer-
tain problem solving task is, as indeed is the purpose in the paradigm established
by Chomsky and Marr, it seems clear that we should be interested in this general
trait, rather than possible outliers.

If our aim is to model human cognitive tasks accurately, we must include consid-
erations on didactic processes such as constructing and interpreting diagrams. The
problem is that such matters can be hard to study. The cognitive processes involved
in solving even a moderately difficult mathematical problem are not easy to identify
with brain scanning methods, thus making explanations on the implementational
level problematic. On the algorithmic level, we can measure problem solving time
for simple problems, and thus compare the cognitive efficiency of different algo-
rithms used to reach the solution. For more difficult problems of the type that math-
ematicians actually deal with, however, also this method can be tricky. As the prob-
lems become more complex, it becomes increasingly difficult to trace all the parts of
the algorithm that the problem solver uses. Often we have to rely either on observing
mathematical practice or the testimony of the mathematicians. Both of these meth-
ods have significant drawbacks. Observing mathematical practice is likely to include
many stages of thought process which are difficult, if not impossible, to detect.
Questionnaires and interviews of mathematicians are also potentially problematic.
Not only are there the usual problems with unreliability of introspective inquiry, but
the kind of didactic, heuristic and intuitive aspects of mathematical thinking that we
would wish to identify are often likely to be unconscious and difficult to get reliable
data on.

That practical difficulty notwithstanding, however, heuristic and didactic pro-
cesses like diagrams seem to give us a clear case in which the humanly optimal
algorithms may differ from the optimal algorithms, as studied in a purely computa-
tional approach to mathematical problems. Consequently, heuristic and didactic pro-
cesses are also a clear case in point that we should not work exclusively on Marr’s
computational level. In the computational complexity approach to mathematical
problem solving on the computational level, such computationally suboptimal tools
are by definition ignored. But given the great use that human problem solvers have
for such cognitive tools, it becomes obvious that we should also be interested in the
actual algorithms that human cognizers use. Indeed, to understand the human prob-
lem solving capacity as well as possible, it is the humanly optimal algorithms that
we should be looking for—as suboptimal as they may be computationally.

It should be noted here that taking didactic processes into consideration does not
in any way imply that the cognitive task of mathematical problem solving could not
be computationally modeled. Rather, the argument here is that instead of focusing
only on the input (the problem) and the output (the solution), we must be prepared to
take into account all the relevant cognitive processes involved in mathematical prob-
lem solving. Some of these processes concern individual performance and should
not be included in accounts of mathematical competence. But some processes, like
those including diagrammatic reasoning, are likely to be generally applied by human
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problem solvers (at least those with a shared cultural background) and cannot be
dismissed as dealing with performance. When it comes to modeling mathematical
competence computationally, we need to identify these latter processes before we
can know what we are modeling.

Example 3: The Distance effect

Above I have argued that diagrams and other heuristic and didactic methods con-
tribute to humanly optimal algorithms. But there are also ways in which we use sub-
optimal algorithms which actually make solving problems unnecessarily hard for
us. Diagrams concern a relatively sophisticated level of mathematical thinking, but
we can see computationally suboptimal algorithms in use already on the very basic,
unconscious level of treating mathematical concepts.

Consider the simple task of determining which of the following numbers is
bigger:

4 5
Compare this now to the task of determining which of these numbers is bigger:
4 9

One would expect that the task is so simple that in both cases it takes equally long
to get the answer. However, the data shows that even for adult subjects, the (4 5)
pairing takes considerably longer than (4 9). This is called the distance effect: the
greater the numerical distance between the two numbers, the quicker we are in solv-
ing the problem. The distance effect is usually explained in terms of our automatic
tendency to process numerical symbols as quantities. When we process quantities
we use the so-called approximate number system which is an estimation system that
becomes less accurate as the distance between numbers becomes smaller (and the
magnitude of numbers becomes larger) (Dehaene 1997/2011, pp. 62—-64).2°
Interestingly, we cannot get rid of the distance effect even if we are trained to
solve these types of problems. The effect is also a remarkably strong one, as seen
from the following example. Let us have the same task with the these numbers:

71 65
And these numbers:

79 65
Now we would certainly expect the solution to take an equally long time. After all,
we can clearly grasp an optimal algorithm for solving the problem, which would
be to first compare whether there is a difference in the first digit and only consider
the second digit if no such difference exists. Yet also in this case there is a clear

20 This connection between the distance effect and the approximate number system is widely accepted,
but not universally so. Tzelgov and Ganor-Stern (2005), for example, argue that the distance effect could
be due to lexical factors of how we have acquired number words. My argumentation in this paper, how-
ever, does not rely on the particular explanation of the distance effect.
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difference, the pair (71 65) takes more time than the pair (79 65) (Hinrichs et al.
1981; Pinel et al. 2001).

In fact the distance effect can also be detected when asked whether two numbers
are the same. When given numbers:

2 9
We are faster in determining that the numbers are not the same as with:

2 5
This is also the case when numerals were use instead of number symbols (TWO
NINE takes shorter than TWO THREE) (Dehaene and Akhavein 1995). For some
reason, we cannot treat number symbols or numerals without thinking of them as
quantities and reverting to the approximate number system.

The distance effect has important consequences for the topic at hand. The kind of
problems we have been dealing with in this example may not be particularly inter-
esting as mathematical problems, but they show how we automatically assign mean-
ing to number symbols and words.2! Sometimes this may be beneficial. For exam-
ple, we may be quick to establish that 23 4+ 56 = 15 is false because the approximate
sum is so far away from the suggested answer. But we cannot help associating this
approximate quantity with number symbols even in cases in which it only adds to
the complexity of the problem.

It is not the fact that we have different connotations for different number symbols
that is important here. When we think about a mathematical problem, many of the
connections we make—and thus much of the neural activity in our brain—can in
fact be irrelevant for solving the problem. When solving whether 27 + 38 = 65, 1
might for example make notice of the fact that I was born on the twenty-seventh,
which does nothing to advance the solution. Another example are people who asso-
ciate numbers with colors. This digit-color synesthesia makes it harder to identify
numbers when they do not correspond to the synesthetic experience (Kadosh and
Henik 2006). Of course it is just such incidental connections that we try to get rid
of by moving from performance to competence. While our performance in the addi-
tion of integers may involve task-unrelated associations, our competence does not.
From the point of view of the computational approach, we treat integers independent
of their conceptual connections. If our actual algorithms for doing addition some-
times involves detours like birth-dates and colors, this does not need to be taken into
consideration.

However, the empirical data strongly suggests that whenever human cognizers
see number symbols, they automatically process them as magnitudes, and the effect
is present in everyone familiar with number symbols. With this type of general cog-
nitive tendency, we can longer dismiss the suboptimal algorithm as dealing with
performance. Instead, our cognitive competence with integers includes the distance
effect, and if we want to model the cognitive capacity accurately, also the distance
effect must be included in the model.

2! Provided of course that we are familiar with the meanings of those symbols and words.
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Certainly there is nothing in the distance effect that suggests that it could not be
computationally modeled, and such models have indeed been proposed (starting
from Dehaene and Changeux 1993). But the modeling of it goes against much of
what we would expect from an algorithm that takes numerical distance into account.
For a computer algorithm to count the distance between two numbers, we should
expect the reverse of the distance effect: the smaller the difference, the faster it is to
compute. Thus the suboptimal problem solving algorithms due to the distance effect
seem to be a genuinely human (and possibly animal)’> phenomenon whose mod-
eling requires moving beyond the computational-level approach and including the
algorithmic level of explanation.

It could of course turn out to be the case that the distance effect does not play
a role in human arithmetical calculations. It could merely be “noise” that disturbs
arithmetical calculations by making us process numerical symbols as magnitudes.
The arithmetical calculations themselves could follow algorithms that are computa-
tionally optimal. This is a possibility that should be empirically pursued. What we
do know is that even for mathematically highly educated subjects, the total cognitive
process of being presented with an arithmetical problem and solving it is not algo-
rithmically optimal. When we study the human competence in solving arithmetical
problems, this needs to be taken into account.

7 How to Study Humanly Optimal Algorithms

Above we have arrived at an important conclusion: the computational complexity of
a mathematical problem cannot be equated with the complexity of a humanly opti-
mal algorithm for solving it. As a direct consequence, the complexity of the cog-
nitive task of solving a mathematical problem is not necessarily the same as the
computational complexity of the problem. In Sect. 2, Marr’s computational level of
explanation was characterized in terms of identifying a function that models a cog-
nitive capacity in terms of its input and output. Due to the considerations above, we
have established that such modeling does not always give the best characterization
of the cognitive capacity in question. We should also consider the algorithms that
human cognizers use to compute the values of the function.

Therefore, in the Marrian three-level distinction between explanations in cogni-
tive science, at least some cognitive tasks are not best characterized purely in terms
of the computational-level approach. Moreover, the entire distinction between
the computational and algorithmic levels becomes problematic: without includ-
ing the algorithmic level we cannot identify the phenomena we aim to model on

22 The distance effect itself is a general characteristic of the approximate number system and it has been
detected in various nonhuman animals, including rats, pigeons, dolphins and apes (Dehaene 19972011,
p. 16). However, most nonhuman animals cannot grasp symbolic representations of quantities, so it is
difficult to see the distance effect as causing suboptimal problem solving strategies. Recently there have
been experiments on monkeys that suggest an ability to make addition of symbolically represented mag-
nitudes (Livingstone et al. 2014). In such case, it would not be unfeasible to think that the distance effect
can cause the monkey to use a suboptimal problem solving algorithm.
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the computational level. In principle, there is of course nothing to prevent deter-
mining the complexity of the algorithms that human beings use in their cognitive
tasks purely computationally. However, with too much focus on the computational
approach, how can we find out what the human algorithms are? If the algorithms
that most accurately model the problem solving strategies of human cognizers are
not necessarily computationally optimal ones, we should already include consid-
erations on algorithms—and possibly also their implementations—in the initial
research question.

In fact this approach can already be seen in the actual computational modeling
of human cognitive capacities. Sun (2008), for example, has noted that the distinc-
tion between Marr’s three levels is relatively insignificant in modern computational
modeling:

One cannot specify algorithms without at least some considerations of pos-
sible implementations, and what is to be considered “computation” (i.e., what
can be computed) relies on algorithms, especially the notion of algorithmic
complexity, and so on. Therefore, one often has to consider computation, algo-
rithms, and implementation together somehow (especially in relation to cogni-
tion). (Sun 2008, p. 15)

This developing modern paradigm fits well with the theoretical considerations of
this paper. As we have seen, the computational approach can be needlessly limiting
and may preclude finding important data about the algorithms used by human cog-
nizers. Without including the algorithmic level, we may not be able to identify the
cognitive phenomena we want to model in the first place. This way, dismissing the
algorithmic level leads to problems also on the computational level.??

However, acknowledging the need for a wider methodological paradigm is
only the first step. As important as expanding the study of cognitive complexity to
include algorithmic aspects is, there are many understandable difficulties involved.
Most importantly, the characteristics of advanced mathematical cognition can be
very difficult to study. This is the case especially on the level of implementation, but
also in terms of identifying the algorithms that humans use in problem solving (see,
e.g., Tall 2002; Dowker 2016). Perhaps in their minds the test subjects make cogni-
tive moves that do not show up as behavioral patterns, nor are the test subjects able
to identify them introspectively (Peters and Bjalkebring 2015). The design of perti-
nent experiments is an enormous challenge and even with ideal circumstances for
testing we cannot be entirely sure that we have accurately identified the algorithmic
procedures. While that does not mean that we cannot gather reliable data at all, it
does bring in the kind of inexactness that is a bad fit with the exact notions involved
in the study of computational complexity (see, e.g., Carruthers and Stege 2013).

These practical difficulties of studying mathematical cognition should not be
downplayed, yet at the same time they should not be thought of as an argument
against engaging in the algorithmic level of explanation. From the perspective of

23 In this, the present approach is similar to that of Varma (2014) who argues that restricting focus to one
of Marr’s levels of explanation can be detrimental for progress in cognitive science.
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computational complexity, it may be asked why we should be interested in mod-
eling suboptimal algorithms in the first place, whether they concern diagrams and
other didactic and heuristic tools, or unconscious processes like those underlying
the distance effect. After all, the computational complexity approach has an estab-
lished fruitful methodology, and including algorithmic considerations only makes
the problems more complicated and difficult to study. However, the fruitfulness and
established methodology of the computational complexity approach should not lead
to a streetlight effect in which the ease of explanation becomes a determining factor
in establishing the research paradigm.?*

However, aside from such practical worries, there is also a potentially important
theoretical problem in algorithmic-level explanations. In the previous section, I pro-
posed that we can consider an algorithm humanly optimal if it is generally beneficial
for human problem solvers. But as was also mentioned in that section, there is no
reason to believe that there are unique humanly optimal algorithms for mathemati-
cal problems. Indeed, since mathematical practices (including symbols, tools, etc.)
vary in different cultures, it seems clear that we should be looking for optimal algo-
rithms in culturally specific contexts. For example, let us consider the “Japanese”
visual multiplication method (Fig. 6), in which orthogonal lines are drawn for ones,
tens and hundreds, etc. and the result is reached by counting the intersections of the
lines.”

Whereas that method may be heuristically less complex for children acquainted
with it—at least with numbers where the digits are small like in Fig. 6—for children
not acquainted with such visual methods this is usually not the case. In addition to
such cultural differences, there are also individual differences in how helpful we find
different heuristic methods. More visually inclined students, for example, are likely
to find diagrams and other visual methods more helpful, and students with diverse
learning abilities generally benefit from different heuristic and didactic tools (van
Garderen et al. 2013).2°

In this way, many mathematical practices are enculturated. Enculturation refers to
the transformative process in which interactions with the surrounding culture influ-
ence the way cognitive practices develop (Menary 2015; Fabry 2018). Through the
mechanism Menary (2014) calls “learning driven plasticity”, new cognitive capaci-
ties can be acquired due to the neural plasticity of the human brain, which allows
for both structural and functional changes (Dehaene 2009; Ansari 2012; Ander-
son 2014). In learning mathematics, the methods and practices of the surrounding
culture thus play an important role in how the cognitive mathematical capacities

24 The name “streetlight effect” comes from the old joke in which a drunk looks for his keys in the better
visibility of a streetlight, instead of the place where he lost them.

25 The origin of the name for this method, which has recently received a lot of attention on the Internet,
is unknown, but most often it is referred to as the Japanese multiplication method. This use also seems to
adopted in academic contexts. See, e.g., http://www.cemc.uwaterloo.ca/events/mathcircles/2013-14/Fall/
Junior6_Multiplication_Nov5.pdf.

26 The usefulness of visual heuristic methods can also be present without actual visual input, as seen in
the “mental abacus” used in many especially Asian cultures for calculations (Frank and Barner 2012).

@ Springer


http://www.cemc.uwaterloo.ca/events/mathcircles/2013-14/Fall/Junior6_Multiplication_Nov5.pdf
http://www.cemc.uwaterloo.ca/events/mathcircles/2013-14/Fall/Junior6_Multiplication_Nov5.pdf

992 M. Pantsar

Fig.6 The “Japanese” visual
multiplication method

23x12=

develop. This theoretical framework can help explain the different methods that
human problem solvers use (Pantsar 2018, 2019).

The computational complexity approach to mathematical problem solving, and
computational-level explanation based on it, is unable to account for the encultur-
ated nature of problem solving processes. This is where the present approach has
an advantage. By including the algorithmic level in the explanations, we can study
which problem solving methods are cognitively beneficial for human problem solv-
ers within a particular culture. We can also study how these methods vary inter-
culturally. Perhaps for many mathematical problems there is relatively little cultural
variation. With some problems, it may make sense to speak of universal, humanly
optimal problem solving algorithms. In some cases, these may also coincide with
computational optimal algorithms. However, we should not assume that this is gen-
erally the case. That is why humanly optimal algorithms must be considered con-
ceptually separate from computationally optimal algorithms. For the same reason,
cognitive complexity should be considered to be conceptually separate from com-
putational complexity. Because of the expected cultural variation, humanly opti-
mal algorithms—and hence cognitive complexity of mathematical problem solv-
ing—should be considered in cultural contexts. With these conceptual differences
in place, our approach can account for the enculturated nature of mathematical
practices.?’

At this point, one might ask whether this cultural and individual variation is not
about performance while we are interested in competence? But based on all the con-
siderations we have been through in this paper, it is impossible to retain this distinc-
tion in the sense that there is one human competence in mathematical problem solv-
ing. Mathematical problem solving is an ability with great cultural and individual
variation and a single notion of mathematical competence seems thus misplaced.
The distinction between performance and competence is important to make, but
instead of having a uniform notion of an optimal algorithm (and one corresponding
notion of competence) we should look for general patterns in performance in order
to establish a wider, more fine-grained conception of enculturated competence. With

27 See Fabry and Pantsar (2019) for a detailed treatment of this topic.
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the focus on enculturated competence, we can have a theoretical framework that is
more sensitive to particular culturally determined mathematical practices, such as
constructing and interpreting diagrams.

In studying enculturated mathematical competence, it is clear that we should use
as much information about the computational complexity of mathematical problems
as we can. While the cultural and individual differences are important, much of the
complexity of the cognitive task of solving a mathematical problem can indeed be
traced to the computational complexity of that problem. In this way, the approach
here is not meant to question the value of the established fruitful methods of study-
ing complexity. Instead, I want to suggest that the established methodology can be
augmented by including considerations of the actual, sometimes suboptimal, encul-
turated algorithms that human problem solvers use.

It should also be noted that mathematical competence is a much wider phenome-
non than simple problem solving. Throughout this paper the focus has been on prob-
lem solving, and even that only in a very limited paradigm set by Turing machines,
i.e., step-by-step algorithmic solutions. Actual mathematical problem solving is
of course a much more complicated phenomenon in which there are many impor-
tant socially and culturally determined aspects, such as clarity of expressions and
proof structures. In addition, there are numerous epistemic considerations involved
in mathematical cognition, whereas in this paper we have only focused on problem
solving. From verifying the solutions to communicating and explaining them, encul-
turated mathematical competence includes various dimensions which have not been
analyzed here. This is not an oversight, as I believe that research of mathematical
practice is crucial in determining what enculturated mathematical competences are
on higher levels of mathematics. Rather than dismissing the importance of such con-
siderations, my purpose in this paper has been to show that we need a notion of
humanly optimal algorithms and enculturated competence already when we seek to
explain mathematical cognition in the limited paradigm of problem solving algo-
rithms. In order for us to be able to study mathematics as a human phenomenon in
all its richness, we may need to expand the paradigm even more.

One important aspect of developing this notion of enculturated competence is
that we should also consider the question of human-computer interaction in mathe-
matical problem solving. To present just one example, as computer-assisted problem
solving becomes more prevalent, it makes sense to move the focus to the cognitive
and computational complexity involved in the computer-assisted process. It is easy
to predict that if mathematics relies increasingly on problem solving (or solution-
checking) computer programs, many of the human heuristic and didactic tools, such
as diagrams, may no longer play the same kind of role as they currently do. How-
ever, in this scenario we get new interesting questions concerning cognitive com-
plexity, including considerations on the understandability of computer programs.
Increasing human-computer interaction will undoubtedly change the way mathemat-
ics is practiced and learned, but it seems unrealistic to assume that the heuristic and
didactic elements important for human understanding will disappear. In this way,
although the study of cognitive complexity may evolve into new directions, there is
no reason to believe that the cognitive complexity of human mathematical problem
solving will become completely reducible to the computational complexity of the
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problems. Instead, what will emerge is a new enculturated notion of mathematical
competence, one involving algorithms with their own particular characteristics. In
that scenario, it is important to have a research paradigm that does not focus only on
computational complexity and the computational level of explanation.
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