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Abstract

Mathematical modeling can ground communication and reciprocal enrichment among fields

of knowledge whose domains are very different. We propose a new mathematical Framework

applicable in biology, specified into ecology and evolutionary biology, and in cultural trans-

mission studies, considered as a branch of economics. Main inspiration for the model are

some biological concepts we call “eco-phenotypic” such as development, plasticity, reaction

norm, phenotypic heritability, epigenetics, and niche construction. “Physiology” is a core

concept we introduce and translate differently in the biological and cultural domains. The

model is ecological in that it aims at describing and studying organisms and populations that

perform living, intended as a thermodynamic, matter-energy process concerning resources

gathering, usage, and depletion in a spatiotemporal context with given characteristics, as

well as with multiplication and space occupation. The model also supports evolution, in-
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tended as a dynamics including cumulative change in the features of unique organisms that

are connected into breeding populations. The model is then applicable to the economics

of cultural transmission in which individuals form their attitudes and patterns of behavior

under a complex system of influences derived from their “cultural parents”, other members of

the society, and the environment. On the side of biology, an innovative goal is to integrate in

a single model all the eco-phenotypic concepts as well as both evolution and ecology. On the

side of cultural transmission, eco-phenotypic modeling seems more appropriate in capturing

some aspects of cultural systems which are modeled away in the earlier framework based on

Mendelian population genetics.

1 Introduction

Mathematical modeling can ground communication and reciprocal enrichment among fields

of knowledge whose domains are very different. We propose a Framework of formal

relations general enough to be applicable in biology and in cultural transmission studies,

where the former is further specified into ecology and evolutionary biology, and the latter is

considered as a branch of economics. The idea of connecting biology and economics is, of

course, not new. On the contrary, cultural transmission studies stemmed from the idea of

applying the mathematics of population genetics to cultural traits treated as genetic alleles:

Cavalli-Sforza and Feldman [Cavalli-Sforza 81] inaugurated a way of building unified models

of the genetics and culture of ancient human populations, and familiarity between economics

and biology has been consolidated by decades of this kind of modeling [Bisin 10]. While

acknowledging such debt, our Framework lies outside the fundamental tradition of cultural

transmission studies inspired to population genetics. We are indeed interested in model-

ing some biological concepts we will call “eco-phenotypic concepts”1 such as development,

plasticity, reaction norm, phenotypic heritability, epigenetics, and niche construction.

In evolutionary biology, after a period of marginalization [Pigliucci 07], eco-phenotypic

concepts are now fully integrated in theory, and central both in empirical research and

modeling, but available modeling frameworks are either too complicated or too reductive for

our purpose. On the complicated side, we have quantitative genetics [Via 85] which, despite

some criticisms [Pigliucci 06], contains the most advanced mathematical tools to specify a

1 We adopt here a term that was in use since the 1980s, in particular in aquatic invertebrate paleontology

[Loden 80, Miller 82, Reyment 88, Scrutton 96, Burton 07, Harper 07, Werderlin 07, Zieritz 09, Wilk 09,

Dynowski 10, Schneider 10, Whelan 12], but also more recently in mammals [Piras 10, Colangelo 12]. It

will become clear in the Framework that, differently from this literature, we do not oppose eco-phenotypic

variation and evolution.
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phenotype as a multidimensional set of traits, and to study their co-variance, their heritability

and plasticity, and their dynamics, releasing transmission (inheritance) from the necessity of

a detailed allelic/particulate mechanism [Borenstein 06, Chevin 10, Engen 11]. Quantitative

genetics models, devised for elaborating empirical data, are a promising ground for modeling,

but our Framework doesn’t build on them. On the reductive side, we have population genetics

models that do not allow a proper consideration of eco-phenotypic concepts. This is true (and

more puzzling) also in the population genetics literature on niche construction [Laland 01]

that, despite many manifestos about organisms that are active in the ecological world, treat

phenotypes as nothing but combinations of alleles, and model evolution as a dynamics of

changing shares of alleles in the population [Donohue 05].

Eco-phenotypic concepts are familiar in ecological modeling [Miner 05], where, in our

view, these concepts seem very promising for an integration with evolution. Interpreted

as ecological, our Framework aims at describing and studying organisms and populations

that perform living, where life is intended as a thermodynamic, matter-energy process. Life

concerns resource gathering, usage, and depletion in a spatiotemporal context with given

characteristics, as well as multiplication and space occupation. The conjunction of ecology

and evolution into the same model cannot be taken for granted. In the literature, evolutionary

ecological models are not easily built and do not have a consolidated tradition [Pelletier 09,

Smallegange 12]. Our Framework also supports evolution, intended as a dynamics which has

to do not only with multiplication and space occupation, nor only with the fluctuation of

frequencies of basic types of organisms, but also with the cumulative change in the features

of unique organisms that are connected into inbreeding populations.

The Framework also applies in the economics of cultural transmission, in which indi-

viduals form their attitudes and patterns of behavior under a complex system of influences

derived from their “cultural parents” and from other members of the society, as well as

from the environment. Eco-phenotypic concepts seem to capture some aspects of cultural

transmission and economics that are modeled away by a population genetic approach. Some

ideas similar to eco-phenotypic concepts have already been developed, without full conscious-

ness of their links with biological issues. In particular, in part of the economic literature,

cultural traits have ecological relevance, thereby modifying the environment through some

economic or production activity, with a biological counterpart in niche construction; traits

may change depending on environmental stimuli and the possible choices of the individuals,

creating a link with the ideas of phenotypic plasticity, reaction norms and rationality; and

traits reproduction crucially depends on the environmental feedback received. An ad hoc

kind of modelization is necessary and, at the same time, complementary to the established
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one based on population genetics.

2 The Framework

The various elements of the Framework are connected to each other and can be differently

interpreted in biology and in economics or cultural transmission. The Framework is agent-

based. If the model is interpreted biologically, agents will be organisms in an ecological

world, and they will be constrained to each other by means of ecological interactions as well

as genetic sharing. Within a cultural transmission interpretation, instead, agents will be

inhabitants of a cultural context, producers of culture, and they will be under each others’

influence through cultural contact as well as the sharing of cultural rules. We first present the

key concept of physiology and its role; we then define the environment and how resources are

extracted by each individual. We then move to the dynamic part by showing how resources

regenerate and can be subject to niche construction, and we define how agents reproduce

and how physiologies evolve.

Physiology

Consider a population that, at each point in time, is composed of a number Nt of agents,

located in a world endowed with a quantity Rt ∈ <+ of resources. Each agent is characterized

by a physiology P̄ i
t : an algorithm that defines the resource management behavior of the agent.

In particular, a physiology determines how an agent would get resources and how many

resources it would extract from the environment. Each physiology, thus, provides information

about the resources needed by the agent for the basic survival M̃ i; about the efficiency

is the resource extraction αi and the efficiency of their use βi; given these information

a physiology also defines the agent’s resource intake target Gi
t, that defines the maximal

amount of resources the agent is willing to extract and use for its survival and for offspring

production. We can then define

P̄ i
t = (M̃ i

t , α
i, βi, Gi

t) (1)

We want our agents to be ecological: an agent will be a living process consisting in an orga-

nized circulation of resources. Conversely, resources are such with respect to the living pro-

cess. Resources circulate in a particular pattern we call the agent’s physiology [Thurman 10].

An agent in ecology – an organism – consists in an organized circulation of matter, energy,

chemical compounds. The existence of an organism commits a part of the matter and energy

that would otherwise be ‘free’ in the environment, or better, committed into other processes.
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Ecological modelers like Kylafis and Loreau [Kylafis 08] treat plants in an ecosystem as a

“compartment”, whose environment is the “soil nutrient pool”, i.e. the stocks of a nutrient in

inorganic form in the soil. Although the plants compartment does not have an endogenous

target similar to our G, the realized uptake can have an exogenous limit in the competition

for other factors (e.g., water, light, space), being not exclusively dependent on the plants’

nutrient uptake ability. Kylafis and Loreau’s uptake ability can be compared to our α. Our β

concerns the effect upon the agent of extracted resources, therefore quantities, such as health

and size, that the ecologists subsume as limiting factors to the growth of the compartment.

The soil can be fertile or infertile compared with plants requirements, and the study of the

plant-soil dynamical system allows for the discovery of the conditions of plant persistence or

extinction.

Cultural studies are much less familiar with seeing an agent as an organized circulation

of resources. Interpreting the concept of a physiology-endowed ecological agent in a cultural

environment, we are forced to think to cases where the agent’s existence consumes resources

and commits them in a particular pattern. One example of cultural physiology could be

working cultures.

Environment

We define environment as all the elements of the world and of the population that are not

part of the agent. In this sense the environment is not objectively determined but has to be

defined with respect to each agent. We then call the environment Ei
t . Using this definition,

the environment is composed of different elements. First of all, the environment consists

of the resources Rt that are available to the population. Note that these resources are a

common quantity among all individuals if we assume that all agents have access to the same

pool of resources. However, for each agent, the environment is also composed of all the other

components of the population, and their features. Thus the environment consists also of Nt

and of the vector of all the other agents’ physiologies P̄−i
t . We can then define

Ēi
t = (Rt, Nt, P̄

−i
t ) (2)

As we shall see, we want our agents to be developmentally plastic: they achieve their life-long

identity (i.e., in the Framework, their physiology) through a maturation stage or function

in which multiple cues bias the final, ‘grownup’ outcome. An agent doesn’t develop by

facing a private environment in complete isolation from all the other agents in the popula-

tion. On the contrary, its physiology will be influenced by the abundance of other agents

(density-dependent) and by the physiologies they exhibit. This looks like a good way to
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model cultural agents, who learn fundamentally from parents, authoritative figures, and

peers [Sinha 05, Taborsky 12], and we shall see that our Framework doesn’t impose that the

agents-to-agent influence be in terms of copying others’ physiologies. But also in biology

conspecifics’ physiologies are fundamental developmental cues. As an example, in a recent

study [Sadeh 11], fire salamander larvae have been shown to respond early in ontogeny to

dried conspecifics as a cue for future desiccation of the ephemeral pools where they live.2

More straightforward influence may take place in plants, where, for example, a plant’s phys-

iology will be biased in a crowded environment and/or in a population where many plants

have very demanding physiologies.3

Resource extraction

At each period, each individual in the population is supposed to extract resources in order to

survive and to produce offspring. The way in which each individual determines the amount of

resources is clearly constrained by the total amount of resources available to the population

so that
∑

iR
i
t ≤ Rt. Moreover, the amount of resources each agent finally gets, Ri

t, crucially

depends on its own resource intake target Gi
t, but also on the others’ resource intake targets

G−i
t and on the population-wide vector of all extraction efficiencies ᾱ. We can then define

R̄i
t = (Rt, G

i
t, G

−i
t , ᾱ) (3)

Notice that the way in which the final resource extraction is determined can be simple, in

the case in which each individual extracts resources individually with no interaction with

other members of the society, or it can be very complex, as for complex societies (ants or

humans) in which resources are extracted through a division of labour and rules for resource

distribution hold. Notice that if Ri
t < M̃ i, then the agent dies.

This is the agent-centered version of a phenomenon which is well represented in ecological

modeling. Kylafis and Loreau’s plants compartment shrinks and eventually gets extinct in

presence of an infertile soil, but in nature, population reduction seems to be a plausible

and straightforward way for a population to cope with a resource-poor environment. More

generally, in some ecological models there is a “carrying capacity” of the ecosystem that sets

2 The response is a costly acceleration of the developmental process towards metamorphosis. The modifi-

cation thus concerns the timing of development itself, not the final physiology, and this makes things more

complicated. Moreover, later in ontogeny, developing salamanders can fully compensate for this response

in case of contradictory more reliable cues. Finally, this example is not appropriate because actually larvae

respond to chemicals released in the decomposition of dead conspecifics (!).
3 Kylafis and Loreau, as we have seen, do not treat individual plants as agents, but they model their

reciprocal regulation in growth through the k parameter, i.e. “competition for other resources”.
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a limit to the population size. However, it is already evident from what we presented so far,

that our Framework allows for a multiplicity of solutions. Instead of a change in population

size, scarcity of resources might be matched with different physiologies, less demanding or

more efficient, as well as with different patterns of labour division and resource distribution in

the population. Changes may also concern reproduction strategies that, in our Framework,

are formalized as follows.

Matching function and reproduction

Once each individual gets Ri
t, sexual reproduction takes place in order to produce a new

generation of individuals. In order to set up the mating process, we need to assume the

presence of a matching function that matches each male of the community with one female.

This matching function can be totally random, individuals being blind in the search process,

or can be very complex. It may take into account some phenotypic features we do not

have in the model or, more interestingly, it can consider the resources extracted. Then we

can observe assortative matching, with agents extracting many resources being mated with

similar agents, or the reverse, depending on the specific problem we study.

Assume that each male with physiology i, who extracted Ri
t, is matched with a female of

physiology j who extracted Rj
t . Given the matching, each agent decides how many resources

to take for its own subsistence, and how much to devote to offspring production. Call

γijt (Ri
t, R

j
t )

the share of Ri
t that an agent of physiology i in a ij matching devotes to own subsistence

and (1−γijt ) the share devoted for offspring production. Notice that γjit is the same quantity

of i’s partner: γjit is then couple-specific, and it may be referred to as allocation coefficient.

Since γjit depends on the partners’ physiologies, and since these may in turn depend on

resources as will be clear in (6), the Framework allows for a change in allocation strategies

when resources in the environment change. Wing-dimorphic insects, for example, exhibit a

migration dimorphism with a volant morph and a flightless, sedentary morph. The volant

morph enjoys the obvious benefits of long-range migration, while the sedentary morph has a

higher reproductive output. The trade-off in the allocation of resources between migratory

ability and reproduction depends on ecological conditions [King 10]. Call

Oi
t = (1− γijt )Ri

t

The same happens for the partner so that Oj
t = (1 − γjit )Rj

t .
4 Given the total resources

devoted to offspring, an offspring production function can be identified assessing N ij
t+1, being

4 In some cases the resources for own subsistence and for offspring are determined inside the couple taking
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the number of new generation individuals that are born from the couple ij. Then

N ij
t+1(O

i
t, O

j
t ) (4)

Matching and offspring production functions are necessary because agents are specially ex-

posed to their parents, not only by experiencing the family environment, i.e. a subset of the

environment populated by the parents’ physiologies, but also by inheritance. As we shall

see, parents transmit to offspring a “reaction norm”, i.e. a rule for achieving a physiology,

and a mixture of cues to which the reaction norm can be sensitive. This is vertical trans-

mission, and does not exclude oblique influences (from other adults of the population), to

which the reaction norm can be sensitive as well. If the population starts with different

physiologies, even in presence of a single population-wide reaction norm, the “rule and cues”

vertical inheritance system allows for evolutionary processes like natural selection and drift.

The possibility for evolution through sorting among the agents is an innovation with re-

spect to ecological models, that usually don’t chase vertical streams of inheritance. In Kylafis

and Loreau’s ecological model, evolution is a series of point events that happen at ecological

equilibria and that consist in the horizontal replacement of a perfectly homogeneous popu-

lation with another, slightly different, perfectly homogeneous population.5 Inter-individual

diversity within the population is, instead, the fuel of population genetics models, which are

the standard evolutionary models: here we have genetic variants that are vertically transmit-

ted, and compete, and reach equilibria throughout generations of mating and reproduction.

Evolutionary and ecological models carry the same idea of inheritance: phenotypic traits

are inherited, and evolution is cumulative change in what is inherited.6 In our Framework,

evolution still is a change in what is inherited, inheritance is a more complex matter, and

phenotypic traits are not inherited but produced.

It is important to notice here that the Framework can be used to build either analytic

into account the aggregate resources extracted by the couple.
5 Evolution is a process of successive invasions of the population by mutants. At any time, the population

is homogeneous for traits like nutrient uptake ability (u) or an environment-modifying trait (c), and the

assumption (from the theory of adaptive dynamics [Geritz 97]) is that evolution takes place when the plant-

nutrient system is at an ecological equilibrium. The mutant is an individual with a combination of traits (u,

c) not much different from the majority. A dynamic model calculates which mutant may break the ecological

equilibrium and push the system towards a new one, taking also into account the costs of the new traits

compared to the standing ones.
6 Evolutionary models have finer resolution on traits than ecological ones, and they allow for continuous

change whereas ecological models are “invasional” (although the mutants are forcefully kept not too different

from the others). Evolutionary models formalize in terms of differentially inherited genes the relationship

between generations, and in particular between parents and offspring. Ecological models need not to.
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or probabilistic models. Probabilistic models don’t trace individual agents, but rather they

calculate the whole new generation from the whole previous generation by deriving probabil-

ity distributions. Therefore, in probabilistic models, agents will be disconnected from their

parents. However, probabilities in a probabilistic model will incorporate knowledge of the

configuration of vertical and oblique influences on an agent’s physiology we just described.

Niche construction and resource regeneration

After the resources are extracted at time t, left resources have time to regenerate so that

Rt+1 = (Rt−
∑

iR
i
t)(1 +λ). The regeneration rate λ, however, can be exogenous or endoge-

nous. In particular, if individuals resource extraction and physiologies are niche constructing

then λt(R̄t) so that

Rt+1 = (Rt −
∑
i

Ri
t)(1 + λt(R̄t)) (5)

In Kylafis and Loreau’s model, the soil nutrient pool is replenished by a constant input of

inorganic nutrient through precipitation or dry deposit. While plants take up quantities of

nutrient from the soil, plant litter decomposes, being in part recycled to the soil nutrient

pool and, in another part, lost from the ecosystem or made unavailable to plants. Kylafis

and Loreau then incorporate the ability of plants to add an amount of nutrient to the

system through their niche constructing activities. In terrestrial ecosystems, plants can alter

various soil properties (e.g. humidity, temperature, fertility), and thus influence nutrient

cycling. In particular, plants can modify nutrient mineralization, either through their litter

quality or even by creating favourable abiotic conditions for decomposers under their canopy.

They can also modify nutrient inputs in their local soil environment. For example, they

can enrich the soil with nitrogen via symbiotic or non-symbiotic nitrogen fixation, or with

other nutrients via uplift from previously inaccessible soil resources using deep roots. Some

tree species are very efficient at retaining dry atmospheric inputs due to their large surface

area and aerodynamic resistance. Some shrub species alter airflow dynamics, and thereby

accumulate mineral-rich clay materials under their canopy. Only a fraction of the nutrient

made available by niche construction directly benefits plants and is incorporated into their

biomass. The remaining fraction of the nutrient coming from niche construction is added

to the soil inorganic nutrient pool. In Kylafis and Loreau’s model, as niche construction

increases plants’ biomass, the ability to perform further niche construction becomes limited,

also in order to avoid the possibility of a boundless autocatalytic process leading to unlimited

growth of nutrient stocks.
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Reaction norms and the new generation’s physiology

Once the new generation is born, newborn agents have to achieve their own physiology

through maturation. This is done according to a reaction norm that dictates how to use or

not use information from the environment and from parental physiologies as cues to form a

new physiology. The reaction norm X i
t+1 thus may accept, as an input, the resources faced

by the new generation Rt+1, the parental physiologies P i
t and P j

t , and the physiologies agents

in new generation meet during their formation process P̄t. We can then state that:

P i
t+1 = X i

t+1(Rt, P
i
t , P

j
t , P̄t) (6)

If we think again to Kylafis and Loreau’s model of plants in an ecosystem, we will find a single

and rather autarchic reaction norm: P is fixed by X, i.e., each individual plant develops a

physiology without taking into account the available resources, nor any existing physiology.

And since the achieved physiologies have no intake target, relation (3) becomes: R̄i
t = (Rt, ᾱ):

the competition for resources affects directly population size, and, in determining which

physiologies survive, any supposed difference in efficiency α will matter, or – in case of

evenness – it will just be a matter of chance. In fire salamander larvae, instead, we have a

reaction norm that takes into account the physiologies in the population P̄t, although with no

special importance of parents, and uses them as a proxy for water resources: P i
t+1 = X i

t+1(P̄t).

A reaction norm that specifically accepts parental physiologies (P i
t , P

j
t ) may be used to model

not only phenomena that have to do with direct copy, such as learning from parents, but

also many others. For example, parents may bias offspring’s physiologies by passing to them

some extra-genes that do not determine the reaction norm, but to which the reaction norm is

sensitive, genes that have perhaps biased their physiologies in the past. Through generations,

there can be evolution in these extra-genes – an aspect very important to those authors who

identify evolution with genetic change. In our Framework, such evolution of the extra-genes

appears as a shifting parental bias on offsprings’ physiologies. Other known parental biases

on offsprings’ phenotypes pass through epigenetics, i.e. inheritable non-genetic modifications

of gene expressions, and through parental care and active phenotype determination.

All imaginable kinds of reaction norms are possible in the Framework. The reaction norm

comes from one parent. In particular, the new individual born from matching ij will take

i’s reaction norm with probability pijt :

X i
t+1 = X i

t

With probability 1− pijt , the agent will instead take j’s reaction norm:

X i
t+1 = Xj

t
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Developmentally plastic agents differ from agent-copying agents that are found in the ma-

jority of models in the literature [Bisin 10]: developmentally plastic agents do not copy how

other agents are, or look like; they copy, or somehow receive, the rule that drives other

agents to become what they are. Motivations to modeling rule-copying instead of agent-

copying come both from evolutionary biology and economics.

Biology distinguishes between genotype and phenotype. Biologists talk about a reaction

norm to indicate how, in presence of a constant genotype, the phenotype (dependent variable)

changes as a function of the environment. The phenotype is thus conceptualized as a reaction

of a genotype to the environment. The genotype – what is transmitted, inherited – does

not have a phenotype ‘attached’ to it, but rather it features a reaction norm that governs

the making of the phenotype. In evolutionary biology, several theorists are arguing that

developmental plasticity is non-negligible, not only because it is widespread, but also because

it contributes to evolutionary outcomes, e.g. by buffering or facilitating genetic change

[West-Eberhard 89, Pigliucci 01, West-Eberhard 03, Crispo 08, Pigliucci 10].

In the established field of cultural transmission modeling, cultural transmission is for-

malized as a passing of preferences or behaviors, thus analog to genetic transmission with

no plasticity. But intergenerational studies show that cultural transmission concerns the

rationale behind preferences rather than preferences themselves (refs.). Modeling develop-

mentally plastic agents has several advantages. First, it allows environmental conditions to

intervene in the agent’s maturation. Other agents are obviously important – they are both

reaction norm transmitters and phenotype exhibitors – but they are not the only source of

the individual agent’s phenotype. Second, and partly as a consequence, this modeling allows

for the appearance of unobserved and unprecedented agents. That is very important for

researching innovation that goes beyond the recombination of a limited number of already

existing traits [West-Eberhard 08, Müller 10].

Evolution

Eco-phenotypic concepts require, in our view, an explicit modelization of phenotypes and

their evolution. Simple population-genetic-style models cannot do the job, and the multi-

variate approach of quantitative genetics is very promising but also very complicated. We

then proposed a Framework as a fresh start.

To summarize, evolution in our Framework minimally consists in the cumulative change

of the physiologies of the agents that compose the population, as well as in fluctuations in

their number. At each generation, physiologies develop according to a reaction norm that

may or may not take into account resources in the environment and the physiologies of all
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the agents in the previous generation, with possible specific importance of parental physiolo-

gies. Parents are part of a generation that, like any generation, features differential matings

and reproductive outputs, and they bias their offspring’s physiologies in a particular way

that includes extra-genes, epigenetic modifications, parental care and phenotypic induction.

Additionally, evolution may simultaneously consist in the differential diffusion of alternative

reaction norms in the population. In any case, the population extracts and uses resources

from the environment, and it can also niche-construct, i.e. top-up onto the automatic regen-

eration of resources so that an additional, positive feedback is established between resources

in the environment and the evolving population that exploits them and react to them in a

plastic way.7

3 Discussion

In perspective, we should build specified models inspired to problems in evolution, ecology,

and cultural transmission, with the aim of analyzing general features of the models built in

our Framework. The models will be be either probabilistic or agent-based. One difference we

have seen above is that in probabilistic models agents are disconnected from their parents.

In both cases, however, the patterns of heritability (i.e. the difference in influence between

parents and other agents) will have to be specified in detail.

It will surely be interesting to study the outcomes of different characteristic reaction

norms. Our Framework does not force reaction norms to be “adaptive”, i.e., norms that tune

physiologies for a longer survival of the population over environmental change. In case of

adaptive reaction norms, how much forward-looking do we expect them to be? For example,

will they economize resource consumption with a 1-, 2-, 3- generations foresight? What are

the short- and long-term effects of different reaction norms on the population’s environment?

How much plasticity is present in successful populations? What are the features of reaction

norms that have more effect on the dynamics? And are there mandatory characteristics any

7 There are many things our Framework doesn’t allow to model. For example, in evolutionary biology,

phenotypic plasticity is important for its biogeographical implications. Fiddler crab species [Thurman 10]

whose osmoregulation is more plastic are more able to tolerate different salt concentrations: the osmotic

toleration of individuals varies as a result of habitat acclimation. This affects geographical range, and

ultimately evolution: in presence of global warming and sea level rise, the plastic species is less likely to run

out extinct. Our model cannot account for these dynamics, since it is not spatially explicit and does not

introduce changes in the environment. Under these respects, we see the spatiotemporal scale of our model as

more circumscribed. The model also neglects spatial environmental heterogeneity, so all individuals in the

population are assumed to experience the same physical environment at any given time.
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reaction norm should have?

In every model, not all the elements of the Framework will be equally in focus: some of

them will be set as parameters with trivial values (e.g., matching function or niche construc-

tion effect). One of the simplifications that can surely be made is to perform studies of a

population that is homogeneous with respect to reaction norm, and see what are their per-

formances and outcomes in terms of survival/extinction, population size fluctuations, stable

or unstable dynamics of recurring physiologies, and similar issues. The Framework allows

for a much more complex dynamics, where multiple reaction norms are present and differ-

entially transmitted in the population, so that their fate can be followed together with that

of the population and its environment. While, in a situation of reaction norm homogeneity,

probabilistic models are largely sufficient, in presence of different RN agent-based models

can provide additional information such as variance and clustering whose relationship with

different trajectories and outcomes can be studied.
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of Adaptation and Evolutionary Branching. Physical Review Letters,

vol. 78, no. 10, pages 2024–2027, 1997.

[Harper 07] Charles W. Harper, John C. Tipper & Victor G. Walmsley. Ecopheno-

typic strategies of dalmanellid brachiopods. Lethaia, vol. 15, no. 1, pages

31–40, October 2007.

[King 10] Elizabeth G King & Derek a Roff. Modeling the evolution of pheno-

typic plasticity in resource allocation in wing-dimorphic insects. The

American naturalist, vol. 175, no. 6, pages 702–16, June 2010.

[Kylafis 08] Grigoris Kylafis & Michel Loreau. Ecological and evolutionary conse-

quences of niche construction for its agent. Ecology letters, vol. 11,

no. 10, pages 1072–81, October 2008.



3 Discussion 15

[Laland 01] Kevin N. Laland, J. Odling-Smee & M.W. Feldman. Niche construction,

biological evolution, and cultural change. Behavioral and brain sciences,

vol. 23, no. 01, pages 131–146, 2001.

[Loden 80] M.S. Loden & W.J. Harman. Ecophenotypic Variation in Setae of Nai-

didae (Oligochaeta). Aquatic Oligochaete Biology, pages 33–39, 1980.

[Miller 82] A. A. L. Miller, D. B. Scott & F. S. Medioli. Elphidium excavatum

(Terquem); ecophenotypic versus subspecific variation. The Journal of

Foraminiferal Research, vol. 12, no. 2, pages 116–144, April 1982.

[Miner 05] Benjamin G Miner, Sonia E Sultan, Steven G Morgan, Dianna K

Padilla & Rick a Relyea. Ecological consequences of phenotypic plas-

ticity. Trends in ecology & evolution, vol. 20, no. 12, pages 685–92,

December 2005.

[Müller 10] Gerd B. Müller. Epigenetic Innovation. In Massimo Pigliucci & Gerd B.

Müller, editeurs, Evolution: The Extended Synthesis, pages 307–332.

Cambridge, MA: MIT Press, 2010.

[Pelletier 09] F Pelletier, D Garant & a P Hendry. Eco-evolutionary dynamics. Philo-

sophical transactions of the Royal Society of London. Series B, Biological

sciences, vol. 364, no. 1523, pages 1483–9, June 2009.

[Pigliucci 01] Massimo Pigliucci. Phenotypic plasticity: Beyond nature and nurture.

Baltimore: Johns Hopkins University Press, 2001.

[Pigliucci 06] Massimo Pigliucci. Genetic Variance–covariance Matrices: A Critique

of the Evolutionary Quantitative Genetics Research Program. Biology

& Philosophy, vol. 21, no. 1, pages 1–23, January 2006.

[Pigliucci 07] Massimo Pigliucci. Do we need an extended evolutionary synthesis?

Evolution; international journal of organic evolution, vol. 61, no. 12,

pages 2743–9, December 2007.

[Pigliucci 10] Massimo Pigliucci. Phenotypic plasticity. In Massimo Pigliucci &

Gerd B. Müller, editeurs, Evolution: The Extended Synthesis, pages

355–378. Cambridge, MA: MIT Press, 2010.



3 Discussion 16

[Piras 10] Paolo Piras, Federica Marcolini, Pasquale Raia, Mariateresa Curcio &

Tassos Kotsakis. Ecophenotypic variation and phylogenetic inheritance

in first lower molar shape of extant Italian populations of Microtus

(Terricola) savii (Rodentia). Biological Journal of the Linnean Soci-

ety, vol. 99, no. 3, pages 632–647, February 2010.

[Reyment 88] R. a. Reyment, F. L. Bookstein, K. G. McKENZIE & S. Majoran.

Ecophenotypic variation in Mutilus pumilus (Ostracoda) from Australia,

studied by canonical variate analysis and tensor biometrics. Journal of

Micropalaeontology, vol. 7, no. 1, pages 11–20, May 1988.

[Sadeh 11] Asaf Sadeh, Noa Truskanov, Marc Mangel & Leon Blaustein. Compen-

satory development and costs of plasticity: larval responses to desiccated

conspecifics. PloS one, vol. 6, no. 1, page e15602, January 2011.

[Schneider 10] Simon Schneider, Franz T. Fürsich, Tanja Schulz-Mirbach & Win-
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