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Abstract
One main challenge of non-platonist philosophy of mathematics is to account for the apparent objectivity of mathemati-
cal knowledge. Cole and Feferman have proposed accounts that aim to explain objectivity through the intersubjectivity of 
mathematical knowledge. In this paper, focusing on arithmetic, I will argue that these accounts as such cannot explain the 
apparent objectivity of mathematical knowledge. However, with support from recent progress in the empirical study of 
the development of arithmetical cognition, a stronger argument can be provided. I will show that since the development of 
arithmetic is (partly) determined by biologically evolved proto-arithmetical abilities, arithmetical knowledge can be under-
stood as maximally intersubjective. This maximal intersubjectivity, I argue, can lead to the experience of objectivity, thus 
providing a solution to the problem of reconciling non-platonist philosophy of mathematics with the (apparent) objectivity 
of mathematical knowledge.
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1 Introduction

Platonism in the traditional sense is widely seen as problem-
atic in modern philosophy of mathematics (see, e.g., Shapiro 
(2005) for an overview). Although the reasons for this are 
not uniform, one common source can be traced to Benacer-
raf’s (1973) epistemological problem, which asked how we 
as physical subjects can gain knowledge of abstract—i.e., 
non-temporal, non-spatial and causally inactive—mathe-
matical objects. The rejection of platonism in mathematics 
comes, however, with important challenges. Mathematical 
knowledge in the platonist tradition is associated with a 
particular set of characteristics, most importantly objectiv-
ity, apriority, necessity and universalness (Shapiro 1997; 
Linnebo 2018a). Platonism in its many formulations has an 
explanation for those characteristics. Whether the platon-
ist ontology is specified in terms of ideal abstract objects 
(Plato 1992), ante rem structures (Shapiro 1997), or thin 

or trivial objects (Rayo 2015; Linnebo 2018b), assuming 
the existence of mind-independent timeless subject matter 
for mathematics can explain the traditional characteristics 
associated with mathematics. Without that assumption, all 
four characteristics listed above pose bona fide philosophical 
challenges, ones that have not proven to be easy to tackle.

Yet we must tackle those problems if we want to keep 
associating mathematical knowledge with the traditional 
characteristics, unless we are to ignore Benacerraf’s prob-
lem. While I don’t intend to suggest that Benacerraf pro-
vided a conclusive refutation of platonism, I believe that the 
current platonist literature fails to offer satisfactory solution 
to the epistemological problem. At the same time, a great 
deal of progress has been made in developing non-platonist 
accounts of mathematics. However, that progress has not 
come only from within philosophy. Indeed, I will argue in 
this paper, it is from the domain of empirical research that 
we have recently received the most important support for 
non-platonist epistemology.

In this paper, I focus on explaining the apparent objec-
tivity of arithmetical knowledge. As we will see, we should 
carefully consider what is understood by mathematical 
objectivity, but based on practices and applications, there 
is at least a strong impression of mathematical knowledge 
being objective (Pantsar 2021a). While this may explain 
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the appeal of platonism, here I argue that also non-platonist 
epistemology of arithmetic can feasibly explain the appar-
ent objectivity. I show that based on empirical evidence, 
arithmetic is a cultural development based (partly) on bio-
logically evolved proto-arithmetical abilities for observing 
quantities. Evidence strongly suggests that arithmetic, if 
developed by cultures, develops in convergent ways at least 
when it comes to basic operations (addition, multiplication, 
etc.) on finite numbers. Furthermore, in learning and devel-
oping arithmetic, we employ our proto-arithmetical abilities, 
which ensure that we acquire similar number concepts and 
grasp arithmetical operations in a similar way. This explains 
why arithmetic is strongly intersubjective. In fact, I will con-
clude, it is intersubjective in a strong enough sense to be 
experienced as objectivity.

2  Intersubjectivity and Objectivity

The problem at hand can be spelled out as a simple dilemma. 
As a human endeavour, mathematics is generally thought to 
be strongly intersubjective. Indeed, it is often seen as objec-
tive. Mathematicians may disagree on some matters—for 
example, whether the axiom of choice should be included 
in set theory or whether the continuum hypothesis should 
be accepted—but the field of agreement is overwhelm-
ingly greater. But why is there such strong intersubjectivity 
and, indeed, a common experience of objectivity (Pantsar 
2021a)? Plato’s (1992) answer would be that this is due to 
mathematics being about an objective, abstract domain. 
However, such platonist views have become to be seen 
as increasingly problematic, and some philosophers have 
argued that mathematics is entirely a human creation (see, 
e.g., Field 1980; Wittgenstein 1976). But if mathematics is 
a human creation, do we not lose objectivity in any strong 
sense of the word?

To keep things manageable, in this paper I will focus only 
on the arithmetic of positive integers, generally considered 
to be one of the most basic—if not the most basic—areas 
of mathematics. Arithmetic is not a field without disagree-
ment (concerning, e.g., whether it should be axiomatized in 
first or second-order logic) but there is no disagreement over 
basic arithmetical operations. Indeed, such disagreement is 
seen as so unlikely that divergent statements have played 
key roles in famous works of fiction as exceptional beliefs. 
In Dostoevsky’s (1864) novel Notes from Underground, a 
character implies that believing that 2 + 2 = 5 is a mark of 
human freedom from the oppression of logic and reason. In 
Orwell’s (1961) novel Nineteen Eighty-Four, turning the set-
ting around, the statement 2 + 2 = 5 is turned into a vehicle 
of oppression when the protagonist is faced with a political 
system’s power to distort even arithmetic.

Why do the examples of Dostoevsky and Orwell reso-
nate with readers? I believe the reason is the shared view of 
the inherent impossibility of 2 + 2 = 5 . The novelists could 
count on this being a striking example since few would actu-
ally entertain the thought that arithmetical equations could 
be changed either by personal conviction or political decree. 
However, this wide intersubjectivity of arithmetical beliefs 
does not by itself imply that 2 + 2 = 4 is an objective truth. 
It could well be a convention by either implicit or explicit 
human agreement, but one that is so ingrained that we are 
unable to conceive of disagreeing with it.

This kind of position was suggested by Cole (2009), who 
argued that “mathematical entities are pure constitutive 
social constructs constituted by mathematical activities” (p. 
599, emphases original). As the results of such activities, 
Cole argued, “all socially acceptable mathematical axioms 
are objectively true” (p. 604). Predictably, this social con-
structivist view was criticized for not being able to account 
for the objectivity and necessity of mathematics. Dieterle 
(2010), for example, pointed out that the kind of “epistemic 
objectivity” that Cole presents in support of social con-
structivism is too weak and cannot account for the kind of 
objectivity that is associated with mathematics. In his sub-
sequent work, Cole (2013, 2015) has presented a stronger 
account, based on Searle’s (1997, 2010) theory of construc-
tion of social reality. According to this theory, humans can 
impose functions onto reality. A piece of paper, for example, 
becomes currency through such imposition. The important 
point is that impositions like money are institutional in that 
they depend on there being constitutive rules for their exist-
ence. Laws, rules of games, and other such impositions are 
recognized collectively by populations, and thus get their 
intersubjective character. Cole (2013, 2015) argues that 
mathematical domains are such institutional entities.

But if mathematical objects are social constructs, how 
can we account for the apparent objectivity of truths like 
2 + 2 = 4 , which seems to be stronger than that of rules of 
chess? In his revised view, Cole argues that there are vari-
ous institutional entities whose “function is to facilitate our 
abilities to represent, analyze, reason about, discover truths 
concerning, etc. facets of reality that are not the entities in 
question.” (Cole 2013 pp. 13–14). In Cole’s account, num-
bers and other mathematical objects are institutional entities 
that play this kind of representational function (RF) (p. 14):

[T]he primary reason why we introduce facets of real-
ity to serve RFs is to allow us to represent the world 
using intentional states that structure it into entities 
with features, for, as a result of the cognitive constitu-
tion of human beings at this evolutionary stage, we 
find it much easier to engage in the aforementioned 
types of activities using such states. (Cole 2013, p. 14)
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Therefore we introduce entities with RFs, such as natural 
numbers, because it is cognitively advantageous for us to 
handle a representation of reality in terms of numbers. This 
representation in terms of abstract objects like numbers 
emerges both from basic arithmetical principles and “spatio-
temporal entities that we find around us” (Cole 2013, p. 34). 
In this institutional account of socially constructed objects, 
arithmetical facts are “fairly robustly objective” because 
“truths, such as 7 + 5 = 12, could not be any different from 
how they are and the natural numbers still serve their RFs” 
(Cole 2013, p. 34, emphasis original). An important part 
of Cole’s (2015) account is that there are different levels 
of objectivity, and they are strongly connected to the ques-
tion of different levels of constraint on social constructs. In 
the case of numbers, their representative function provides 
strong constraints, since they can only be numbers if they 
serve their representative function.

Rytilä (2021) has criticized Cole’s account for not being 
able to explain the objectivity and applicability of math-
ematics. Both of these are bona fide problems, but in the rest 
of this paper I focus on the question of objectivity. I want to 
start the analysis from the basic assumption mentioned by 
Cole in the above quotation, i.e., “as a result of the cognitive 
constitution of human beings at this evolutionary stage, we 
find it much easier to engage in the aforementioned types 
of activities”. Granting that entities with representational 
functions help us in cognitive activities, we must ask why 
this is the case with numbers. What are the features of the 
world that make the RFs of natural numbers beneficial for 
us, and how do they account for the apparent objectivity of 
arithmetical truths?

To set the topic up more clearly in a wider context, let 
us move on to another account of mathematical objectivity, 
proposed by Feferman (2009). He argues that “mathematics 
emerges from humanly constructed, intersubjectively estab-
lished, basic structural conceptions” and presents a list of ten 
theses of how this happens (Feferman 2009, p. 1). For the 
present purposes, two are particularly important:

The basic objects of mathematical thought exist only 
as mental conceptions, though the source of these con-
ceptions lies in everyday experience in manifold ways, 
in the processes of counting, ordering, matching, com-
bining, separating, and locating in space and time. […]
The basic conceptions of mathematics are of certain 
kinds of relatively simple ideal-world pictures which 
are not of objects in isolation but of structures, i.e. 
coherently conceived groups of objects interconnected 
by a few simple relations and operations. They are 
communicated and understood prior to any axiomatics, 
indeed prior to any systematic logical development. 
(Feferman 2009, p. 3)

Accounts consistent with the first point, rooting math-
ematics in everyday experience, have been developed by 
Kitcher (1983), Mac Lane (1985) and Lakoff and Núñez 
(2000). Those accounts are also consistent with the other 
point (Feferman’s third thesis, to be exact), according to 
which basic conceptions of mathematics are ideal-world 
pictures emerging from the everyday experiences. Unfortu-
nately there is no space here to go into the details, but it is 
easy to see how Feferman can argue for strong intersubjec-
tivity of mathematics based on this account. If we share our 
everyday experiences and form similar ideal-world pictures, 
it is understandable that we end up sharing mathematical 
notions. This can add strength also to Cole’s account, since 
it suggests why some rules and concepts are institutional-
ized as social constructs, while others are not. But, again, 
the question is why we share everyday experiences and form 
similar ideal-world pictures.

Indeed, that is the main question I tackle in the rest of this 
paper, and it pertains to both Cole’s and Feferman’s account: 
why are some rules and concepts institutionalized? If this is 
because we as humans engage in similar experiences, why 
is that the case? Why do we observe the world in similar 
ways and end up having similar ideal representations of it? 
As I see it, the strength of accounts like those of Cole and 
Feferman depends on how well we can answer these ques-
tions, i.e., how well we can justify strong intersubjectivity 
of mathematics, and whether this can explain the (apparent) 
objectivity of mathematics.

3  What is Objectivity?

Before we continue, the meaning of terms like “intersub-
jective” and “objective” needs to be made more specific. 
The meaning of intersubjectivity is in the present context a 
simpler question, although at least seven different definitions 
of the term seem to be in use in social psychology (Gillespie 
and Cornish 2010). In philosophy, intersubjectivity is often 
associated with the phenomenology of Husserl (1913), but 
here I proceed with a general definition according to which 
intersubjectivity refers to two or more persons sharing a 
subjective cognitive state or experience. How this can be 
established is a traditional problem in philosophy, but for 
the task at hand we can safely assume that intersubjective 
experiences exist and concepts can be shared in an intersub-
jective manner. We will later see how this intersubjectivity 
can be explained in the context of arithmetical cognition, 
but for now it is enough to assume that intersubjectivity can 
generally take place.

However, the relation between intersubjectivity and 
objectivity is a more problematic issue. Feferman (2009), 
for example, presents his view as supporting “intersubjective 
objectivity” and writes (p. 2) about “objective subjectivity”. 
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What could this mean? At first glance, the term seems to be 
self-contradictory: however we define objectivity and sub-
jectivity in relation to each other, surely there cannot be such 
a thing as objective subjectivity? While Feferman’s account 
ultimately avoids this problem, I believe that the termino-
logical problem remains. Indeed, I contend that at best we 
can explain the apparent objectivity of mathematics based 
on intersubjectivity. If our epistemology of mathematics is 
based on subjective experiences, I will argue, we cannot save 
objectivity in the platonist sense. However, this should not 
worry us, because platonist objectivity should not be our 
target phenomenon in philosophy of mathematics. What we 
should aim to do is to explain how the apparent objectivity 
be explained in strong enough sense to account for math-
ematics as a human phenomenon, and then see whether a 
platonist explanation is still needed. I will argue that at least 
in the case of arithmetic it is not.

Thus my initial focus is on explaining the apparent objec-
tivity of mathematics, rather than robust, platonist objec-
tivity. In order to achieve that, however, we need to have 
a clearer idea of what is meant by objectivity, apparent or 
robust. Here I will follow the influential criteria presented 
by Wright (1992) and used by Shapiro (2007) in his treat-
ment of the objectivity of mathematical discourse. The three 
criteria I will focus on are epistemic constraint, cognitive 
command, and wider cosmological role.1 The criterion of 
epistemic constraint states that non-objective matters are 
always knowable, meaning that in non-objective discourse 
it is always the case that:  P ↔ (Pmay be known) (Wright 
1992, p. 75). In objective discourse, however, there can be 
true propositions whose truth cannot be known (Shapiro 
2007, p. 339). The criterion of cognitive command means 
that in objective discourse we can a priori rule out the pos-
sibility of what Shapiro (2007 p. 356) calls “blameless” disa-
greements: i.e., disagreements that cannot be explained by a 
reason such as divergent information or different conditions 
(Wright 1992, p. 92). The criterion of wider cosmological 
role states that for a discourse to be objective, it must feature 
also in explanations that are not exclusive to the domain of 
the discourse (Wright 1992, p. 198).

What do these criteria entail in the case of mathematical 
discourse? For one thing, they appear to establish objectiv-
ity in stronger sense than suggested by Feferman and Cole. 
For example, Feferman and Cole both discuss chess in terms 
of Searle’s (1997) idea of objectivity of social constructs 
(Feferman 2009; Cole 2015). Yet discourse on chess does 
not fulfil Wright’s criteria for objectivity. In particular, the 

criterion of wider cosmological role is not fulfilled since 
discourse on chess is essentially exclusive to the domain of 
chess. Of course chess can be discussed in a variety of ways 
regarding, e.g., its place in society or the arts, and analogies 
using chess may be used in other domains. But ultimately, 
aside from analogies, discourse on chess as a game does 
not feature in non-chess explanations. The fact mentioned 
by Feferman (2009, p. 4) as being objective, namely that 
it is not possible to force a checkmate with a king and two 
knights against a king, is a good example of this. It follows 
from the rules of chess and is thus in this weak sense objec-
tive. However, like any other fact about chess endgames, it is 
a fact that only features in the discourse of chess. If the rules 
of chess were changed by common agreement, the change 
would only directly pertain to chess itself.

With mathematics, this is different due to the wide exist-
ence of mathematical applications in science, as well as in 
everyday life. If the rules of arithmetic were changed so 
that basic operations would get different results, our finan-
cial system, for example, would be immediately thrown off 
the rails. If rules of calculus, complex analysis, probability 
theory, and other areas of mathematics were substantially 
changed, all science as we know it would be altered.2 Math-
ematical discourse clearly has a wider cosmological role. 
In mathematics, we can also rule out blameless disagree-
ments, at least to a significant part. While there may be disa-
greement over, for example, whether the axiom of choice 
should be included in set theory, there are no such poten-
tially blameless disagreements over arithmetical operations.3

Finally, also the criterion of epistemic constraint appears 
to make mathematical discourse objective. There are sev-
eral reasons to believe that there can be unknowable math-
ematical truths. First, there are mathematical problems that 
are generally considered to be too complex computation-
ally to be solved for sufficiently large inputs (Arora and 
Barak 2007; Pantsar 2021b). Second, Gödel (1931) proved 
that no consistent formal system strong enough to express 
arithmetic can be complete, i.e., prove all true sentences in 
the system. If we accept that proof from axioms is our way 
of knowing things in mathematics, this alone implies that 
there are unknowable truths in our mathematical systems.4 

1 In Shapiro’s analysis of Wright’s work, he also includes the crite-
ria of response dependency and judgment dependency. In the present 
context, however, I don’t believe they add anything substantial to the 
criterion of cognitive command.

2 This discussion is often carried out in terms of whether mathemat-
ics is indispensable to scientific explanations (e.g., Field 1980; Coly-
van 2001). However, I believe the question of wider cosmological 
role is relevant even if we didn’t consider mathematics to be indispen-
sable for science, as long as the mathematical explanations are useful 
and fruitful (for more, see Pantsar 2018a, b).
3 If Dostoevsky’s character would genuinely insist that 2 + 2 = 5, we 
would not hesitate to say that he is wrong with blame.
4 It is important to note that it does not follow that any particular 
mathematical truth would be unknowable, since the unprovable sen-
tences depend on the particular axiomatizations and encodings. See 
(Pantsar 2009) for more.
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Third, mathematical languages are not limited to particular 
lengths of expression. Both formal and informal mathemati-
cal languages can be complex enough to make the prospect 
of knowing every truth expressible in them unfeasible.

Thus mathematical discourse appears to fulfil Wright’s 
criteria for objectivity, as argued by Shapiro (2007). How-
ever, I am not ready to agree with Shapiro that consequently 
mathematical discourse indeed is objective. What we have 
established is the weaker position that mathematical dis-
course is apparently objective, which does not necessarily 
imply robust objectivity. Appearances can be deceiving. 
Perhaps mathematics is not objective after all, but it con-
sists of extremely widely accepted and deeply ingrained 
conventions, as suggested by, e.g., Warren (2020). If that 
were the case, could we distinguish between a convention 
and an objective truth? Let me present one example to show 
why this could be difficult. Is the statement 4 ∗ 4 = 16 more 
objective than the statement (−4) ∗ (−4) = 16 ? The first 
impression would seem to be that both are equally objective. 
However, as pointed out by Stewart (2006) and others, the 
algebraic fact that multiplying two negative numbers gives a 
positive number is ultimately a convention. There are good 
mathematical reasons for accepting it, but what could be an 
extra-mathematical interpretation of “negative times nega-
tive”? But if that objective-appearing fact is in fact a con-
vention, should we be worried that much—perhaps all—of 
mathematics consists of deeply ingrained conventions like 
that? I think that this is a genuine worry for accounts of 
mathematical objectivity and something more is needed, a 
more “bottom-up” approach that can establish why math-
ematics appears to be objective to us, as well as explain 
what this reason for the apparent objectivity amounts to in 
the question of real objectivity.

4  The Origins of Intersubjective Arithmetic

Recall Cole’s (2013) view that numbers are “institutional 
entities” that serve representational functions that allow us 
to engage in representing the world in an easier manner, 
based on our cognitive constitution. Now the question is, 
what exactly is the connection between numbers as insti-
tutional entities and our cognitive constitution? Indeed, in 
order to evaluate the general feasibility of Cole’s account, 
the first question to ask is whether such a connection exists. 
If not, then numbers as institutional entities could be arbi-
trary conventions, in which case the problems of objectivity 
and applicability, as mentioned in (Rytilä 2021), could be 
devastating for Cole’s account. After all, why would arbi-
trary conventions have any success in representing the world 
in a way that can be used in scientific applications?

The way I think such questions should be approached 
is through first explaining how and why mathematical 

cognition is intersubjective. As established in Sect. 2, the 
strength of Cole’s (2013, 2015) and Feferman’s (2009) 
accounts depends on how we can justify strong intersubjec-
tivity of mathematical knowledge. In order to evaluate that 
justification, we must have a proper understanding of what 
mathematical knowledge is like. Unlike traditionally in phi-
losophy of mathematics, I don’t see how such understanding 
can be formed without empirical study of the development 
of mathematical cognition. Fortunately, when it comes to 
the development of arithmetical cognition, a great deal of 
progress has been made in the cognitive sciences. Recently, 
this progress has also lead to an improved philosophical 
understanding of the character of arithmetical knowledge.

I will first present what I deem to be the most plausi-
ble hypothesis of how arithmetical knowledge has devel-
oped. Then I will assess the consequences of accepting this 
hypothesis for the epistemology of arithmetic. Due to con-
siderations of space, there will not be an opportunity for 
detailed comparison of the hypothesis to others presented in 
the literature. For details regarding that and other aspects of 
the discussion, I prompt the reader to (Pantsar 2014, 2015, 
2018b, 2019, 2020, 2021c).

In a nutshell, I believe that arithmetical cognition in indi-
vidual ontogeny is the result of an enculturated development 
based on evolutionarily ancient proto-arithmetical abilities. 
In cultural history and phylogeny, the development of arith-
metical knowledge is made possible by cumulative cultural 
evolution based on the biologically evolved proto-arithmet-
ical capacities. Let me start explaining this by focusing first 
on the ontogenetic aspect.

In the field of research called numerical cognition, it is 
generally believed that human are endowed with numerical 
abilities already in infancy, and they are shared with many 
non-human animals (for overviews, see, e.g., Dehaene and 
Brannon 2011; Cohen Kadosh and Dowker 2015). Some 
argue that there are innate number concepts (Gallistel 2017), 
others support innate “number modules” (Butterworth 
1999), and yet others postulate an innate “number sense” 
(Dehaene 2011). As explained elsewhere (Pantsar 2014, 
2019), I believe this terminology to be highly misleading. 
The infant and non-human animal abilities themselves are 
not in doubt, as they are based on solid empirical evidence. 
The problem is in calling such abilities numerical. Even 
more worryingly, some authors have written about infant 
and (non-human) animal arithmetic (Wynn 1992; Rugani 
et al. 2009).

It is important to note that the abilities in question have 
very different characteristics from arithmetical abilities. 
The infant and non-human abilities are approximate and/
or limited, and do not involve exact number concepts, 
whereas arithmetical abilities are general and concern exact 
number concepts. I have previously labelled the evolution-
ary ancient abilities that infants and non-human animals 
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possess proto-arithmetical and to concern numerosities, 
while reserving the term numbers for properly arithmetical 
abilities (Pantsar 2014). However, while I think it is crucial 
to distinguish between the two kinds of abilities, as the term 
already suggests, I believe that proto-arithmetical abilities 
form a (partial) cognitive basis for arithmetical abilities.

It is commonplace now to accept the existence of two 
proto-arithmetical abilities, both associated with a particular 
“core cognitive” system. Core cognition refers to evolution-
arily ancient, innate independent cognitive systems (Carey 
2009).5 The first ability is subitizing and it is associated with 
the object tracking system (OTS) (Trick and Pylyshyn 1994). 
Subitizing refers to the ability to determine the amount of 
objects in our field of vision without counting and it has 
been shown to be present both in neonate humans and many 
non-human animals (Starkey and Cooper 1980; Dehaene 
2011). The subitizing ability is exact but it stops working 
when the amount of objects is higher than three or four, 
which is thought to be the limit of the OTS (Carey 2009; 
Knops 2020). The second ability is estimating and it is asso-
ciated with the approximate number system (ANS). Unlike 
subitizing, the ANS-based estimating ability is not limited 
to small numerosities, but it is increasingly inaccurate as the 
numerosity of the observed objects becomes larger (Dehaene 
2011; Knops 2020).

The subitizing and estimating abilities have been estab-
lished to be present also in members of non-arithmetical cul-
tures, like the Amazonian cultures of Pirahã and Munduruku 
(Gordon 2004; Pica et al. 2004). Therefore, proto-arithmet-
ical abilities are shared intersubjectively so widely that they 
can be feasibly considered to be universal for neurotypical 
humans. If arithmetical abilities were similarly universal, 
we would have a solid explanation for the objectivity and 
applicability of arithmetic. If some ability is shared by all 
neurotypical humans, surely knowledge associated with this 
ability would be objective in a strong sense. Similarly, if all 
neurotypical humans cognized in a similar way about quan-
titative information, it should be expected that knowledge 
associated with these cognitive abilities would find its way 
to scientific quantifying applications.6

The problem, however, is that proto-arithmetical abilities 
are not arithmetical abilities. Thus, any objectivity associ-
ated with proto-arithmetical abilities does not imply the 
objectivity of arithmetical knowledge. Indeed, there are clear 
differences in intersubjectivity between proto-arithmetical 
and arithmetical abilities. As mentioned above, there are 

completely non-arithmetical cultures that possess neither 
number concepts nor numeral words (e.g., the Pirahã and 
the Munduruku). People in such cultures share the same 
proto-arithmetical abilities as people in arithmetical cul-
tures, yet simple arithmetic like 2 + 2 = 4 is not included in 
their abilities. Therefore, even if proto-arithmetical abilities 
can be feasibly considered to be universally intersubjective 
(in neurotypical cases), the intersubjectivity of arithmeti-
cal abilities is—at best—limited to members of arithmetical 
cultures.7

However, the topic at hand is not whether arithmetical 
abilities are universal, it is whether arithmetical knowledge 
can feasibly be seen as objective. Clearly it is possible for 
knowledge to be objective even though it is not univer-
sally possessed by humans. Thus the key question becomes 
whether arithmetical knowledge based on proto-arithmetical 
abilities, can be considered objective. But since arithmeti-
cal knowledge is clearly culturally developed (more on how 
this happens later), in order to answer this question, we need 
to be sensitive to cultural factors. In relation to ontogeny, 
we therefore need to answer how cultural factors enable the 
learning of culturally developed knowledge and skills, while 
applying also the core cognitive proto-arithmetical systems.

A highly promising theoretical framework for such 
answers is provided by the enculturation account, as pro-
posed by Menary (2015) and others (Fabry 2020; Jones 
2020). Enculturation refers to the transformative process 
in which interactions with the surrounding culture shape 
the acquisition and development of cognitive abilities and 
practices (Menary 2015; Fabry 2018). The central idea 
behind enculturation is that the neural plasticity of the brain 
enables both structural and functional variations, which 
make it possible to acquire new cognitive capacities in a 
specific cultural context (Dehaene 2009; Anderson 2015). 
For example, when learning to read, the plasticity of the 
brain allows acquiring a new cognitive capacity by recycling 
or reusing neural resources developed originally for other 
purposes, e.g., visual processing and language comprehen-
sion (Dehaene 2009; Menary 2014; Fabry 2018). Recently, 
philosophical accounts have been developed according to 
which acquiring and developing arithmetical cognition also 
happens through a process of enculturation (Menary 2015; 
Pantsar 2019; Fabry 2020; Jones 2020). These accounts are 

5 It should be noted that the term “innate” is itself problematic and 
can refer to several different views (Griffiths 2001). Here “innate” is 
used in a sense that an innate capacity is possessed independently of 
cultural contribution.
6 See (Pantsar 2021c) for a detailed argument to this effect.

7 This is where my account differs from that presented by Ferreirós, 
who writes that: “I dare to suggest the idea that mathematics, in its 
most elementary strata, may be the best expression of that which we 
humans have in common, merely in virtue of being human.” (Fer-
reirós 2016, p. 188). I do not think that mathematics expresses some-
thing that all humans have in common. Even in its most elementary 
strata, mathematics—unlike proto-mathematical abilities—expresses 
also cultural developments, which do not apply universally to 
humans.
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based on cultural learning transforming neural resources 
associated with proto-arithmetical capacities by using them 
for culturally specific arithmetical learning.8 This does not 
mean, however, that proto-arithmetical abilities are lost in 
the process of enculturation. Instead, arithmetical abilities 
develop as parallel capacities to proto-arithmetical abilities, 
thus giving people in arithmetical cultures two systems for 
treating quantities (Dehaene 2011).

There is a great deal of empirical evidence to support 
this account. From experiments on monkeys and humans, 
it is known that (partly) the same brain regions activate in 
proto-arithmetical processing of quantities as with numeri-
cal and arithmetical processing (Nieder 2006; Cantlon and 
Brannon 2007; Piazza et al. 2007). Researchers disagree 
over which proto-arithmetical ability, and thus which core 
cognitive system, plays a more important role in this devel-
opment. Some argue for OTS as the primary system (Carey 
2009; Beck 2017), while others see ANS as the key system 
(Halberda and Feigenson 2008; Dehaene 2011). Yet oth-
ers argue for hybrid accounts in which both core cognitive 
systems play an integral role (Spelke 2011; vanMarle et al. 
2018; Pantsar 2021c). The details of the accounts differ, but 
there is increasing consensus over the general position that 
number concepts and arithmetical abilities are acquired and 
developed based on proto-arithmetical abilities. But given 
that this development is only possible in culturally specific 
contexts, in which cultural practices like counting and lin-
guistic tools like numeral words are in place, the account 
also needs to include cultural influences. Thus the encultura-
tion framework should be applied in explaining the ontogeny 
of arithmetical abilities.9

However, the required enculturation process can only 
take place if the cultural setting already includes the needed 
cultural practices, linguistic tools, and other factors. This 
prompts the question how such cultural developments can 
initially take place. To answer this, we need to move the 
focus from ontogeny to phylogeny and cultural history. The 
phylogeny of proto-arithmetical abilities, given that it takes 
place in the frame of biological evolution, must be explained 
through processes of natural selection that (mainly) drive 
evolution. Here I don’t want to speculate on the character 
of such processes, but it is plausible that proto-arithmetical 
abilities are evolutionarily advantageous. From keeping track 
of geographical features (e.g., nest being in the fourth hole) 
to keeping track of offspring and avoiding predators (e.g., 
three wolves posing a different threat than two wolves), there 

are various ways in which keeping track of numerosity—as 
opposed to other magnitudes—can be helpful for survival. 
While the origin and development of proto-arithmetical abil-
ities is an important topic, here I will say nothing more about 
it. Instead, I will focus on the question how humans have 
culturally developed arithmetic based on proto-arithmetical 
abilities, starting from acquiring number concepts.

There is a fundamental difficulty in explaining how 
humans possess number concepts. Nativist accounts over 
number concepts are not supported by any empirical data 
(for details, see (Pantsar 2021c)), but if not innate, humans 
must acquire number concepts in ontogeny. The encultura-
tion framework has great potential in explaining this, but 
such cultural learning is possible only when the culture 
already possesses number concepts. However, as pointed 
out, among others, by Pelland (2020), there must have been 
a stage when humans moved from only possessing proto-
arithmetical abilities to having number concepts. How can 
this be explained in the enculturation framework?

Given the lack of numeral words in non-numerical cul-
tures like the Pirahã and the Munduruku, one is tempted to 
hypothesize that the introduction of numeral words was cru-
cial in the development of number concepts. However, this 
poses another dilemma: how could numeral words develop 
if there were no number concepts for them to refer to? I 
believe that we should look for answers to this dilemma in 
the enculturated development based on proto-arithmetical 
abilities. In modern arithmetical cultures, an important part 
of acquiring number concepts is learning an ordered count-
ing list of numeral words (Carey 2009; Beck 2017). But 
counting is itself an advanced process that requires explain-
ing. Thus the challenge starts from the early origins of the 
history of number concepts.

It is not possible to accurately trace the origins of num-
ber concepts in numerical cultures, since there is no his-
torical record of spoken numeral words. However, both 
from pre-historical and historical material record, as well 
as anthropological data on other cultures, some light can 
be shed on the matter. Based on this evidence, it is likely 
that counting procedures with numeral words and later 
symbols have emerged from a combination of application 
of proto-arithmetical abilities and material engagement with 
objects. Proto-arithmetical abilities can explain why humans 
discriminate collections of items in terms of quantity in the 
first place (see, e.g., Zahidi (2021)). Material engagement 
can explain how the practice of one-to-one matching and 
the notion of one-to-one correspondence can emerge.10 

8 According to Menary’s (2015) account, the neural circuits associ-
ated with proto-arithmetical abilities are recycled for culturally devel-
oped, arithmetical purposes. Fabry (2020) and Jones (2020) argue for 
a similar view, but based on a different, more general, type of reuse of 
neural resources (Anderson 2015).
9 For a detailed argument, see Pantsar (2021c, 2019).

10 Zahidi (2021) argues that placing items in one-to-one correspond-
ence could be the result of applying proto-arithmetical abilities. How-
ever, it has been reported that the Pirahã cannot do one-to-one match-
ing for collections of items larger than three (Gordon 2004; Everett 
and Madora 2012). This suggests that one-to-one matching is an 
ability that also needs cultural input, e.g., the application of marking 
tools (see (Pantsar 2021a) for more).
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Practices of tallying and finger counting, for example, can 
emerge from the introduction of the practice of marking, 
say, one observed animal with one notch. At this point, no 
number concepts are needed: simply by comparing amounts 
of notches, it is possible to establish which group of animals 
is more numerous. Such practices, whether due to tallying 
or finger counting, can lead to developing properties of 
counting sequences, such as their linear order (Bender and 
Beller 2012; Overmann 2018). In this kind of development, 
words for body parts can gradually evolve new meanings as 
numeral words and tallying marks can evolve new uses as 
numeral symbols (Ifrah 1998).

Anthropological studies strongly suggest that this kind of 
transfer of meaning of words and symbols takes place. Many 
cases have been established in which words originally not 
used to signify quantity have acquired numerical purposes. 
The Hup language word for two, for example, means “eyes” 
and the word for three is also the word for a three-chambered 
rubber plant seed (Epps 2006). This is evidence that number 
concepts and numeral words have thus co-evolved culturally 
from practices of material engagement, such as tallying and 
body-part counting (Wiese 2007; dos Santos 2021). With 
numeral words in place, it is possible to associate num-
ber concepts with further material practices. By grouping 
objects such as pebbles, it is possible to derive norms about 
the “plus one” operation and addition in general (Overmann 
2018). By applying these practices to financial transactions, 
for example, they can then be associated with new forms of 
material engagement and acquire a wider status within cul-
tures. There is strong evidence that this is what happened in 
Mesopotamia, where clay tokens were used for accounting 
since the Neolithic era (8300–4500 BC) (Schmandt-Besserat 
1992; Overmann 2018). Groupings of clay tokens of units 
of different sizes started to be associated with different 
numerical values; and with the introduction of cuneiform 
writing systems these relations between different units and 
their groupings could be transferred into numerical symbols 
(Nissen et al. 1994; Overmann 2018).

Thus we arrive at an answer to the question of origins 
above. We don’t need a nativist account of number concepts, 
because number concepts and numeral words developed 
concurrently through practices of material engagement. This 
is compatible with the theoretical framework of cumulative 
cultural evolution, according to which knowledge and skills 
are developed in small increments and transmitted across 
generations (Tomasello 1999; Boyd and Richerson 2005; 
Heyes 2018). Of course not all cultures need to develop 
knowledge and skills independently. Cultures that have regu-
lar interactions with other cultures can acquire new cultural 
practices, which they can then develop further. This can 
account for the long line of cultural development of num-
ber concepts and arithmetic, in which numeral words and 

symbols, physical artifacts, and other factors have played 
crucial roles (Everett 2017; Pantsar 2019).

How does all this relate to the intersubjectivity of arith-
metic? Could it not be the case that cultures start developing 
arithmetic in divergent ways? Indeed, to some degree, this 
is evident when comparing different cultures that developed 
arithmetic independently. The Mayans, for example, were 
expert calculators but, as far as we know, did not engage in 
proofs of arithmetical theorems, which became central in 
the Mesopotamian/Greek line of development (Merzbach 
and Boyer 2011). However, in no known cases where cul-
tures have developed arithmetic is there divergence in basic 
operations on finite numbers. 2 + 2 = 4 is equally much an 
arithmetical truth for us as it was for the Mayans and the 
ancient Chinese.

How can we account for this apparently universal con-
vergence of basic arithmetical operations toward the same 
results in independently developed arithmetical cultures? I 
propose that the above considerations on ontogeny, phylog-
eny and cultural history of number concepts and arithme-
tic suggest the answer. Since our proto-arithmetical abili-
ties determine how we engage with quantities, we cannot 
develop “deviant” systems of arithmetic that clash with 
them. Cultures do not necessarily develop number con-
cepts, but when they do, it happens through the application 
of proto-arithmetical abilities. Therefore the linear, discrete 
number concepts that we have for arithmetic are, at least for 
the part concerning basic finite operations, equivalent with 
the number concepts that the Mayans possessed. In ontog-
eny, then, members of an arithmetical culture are taught the 
same number concepts and arithmetical rules, in a process 
in which they apply their biologically evolved proto-arith-
metical abilities. That is the reason why number concepts 
and arithmetic are intersubjective, both within and across 
cultures.

5  From Intersubjectivity to Objectivity

In the previous section, I have presented an argument why 
arithmetical knowledge and skills are intersubjective. How-
ever, since arithmetical abilities are not universal, this 
intersubjectivity is not as strong as that of the biologically 
evolved proto-arithmetical abilities. As a consequence, it 
could be argued that arithmetic is not objective, or at least 
not as objective as proto-arithmetical abilities. But this kind 
of reasoning would be misleading. After all, we do not gen-
erally judge the objectivity of a discourse based on how 
many people or cultures engage in it. Instead, the objectiv-
ity is decided by the status of the subject matter. In this case, 
the subject matter is arithmetical knowledge which, as was 
established at the end of the previous section, is (partly) 
determined by proto-arithmetical abilities. Hence, while 
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there are differences in the ways different cultures develop 
arithmetic, these differences do not concern divergent paths 
when it comes to results of basic arithmetical operations. 
Arithmetic, if developed, develops along similar lines, due 
to our universally shared proto-arithmetical abilities. I have 
argued that this kind of intersubjectivity is so strong that 
arithmetical knowledge should be called maximally inter-
subjective (Pantsar 2014).

I call the intersubjectivity “maximal” for a good reason. 
While individuals may share experiences and concepts inter-
subjectively within cultures, with proto-arithmetical abilities 
this intersubjectivity spans cultures. Evidence from differ-
ent cultures implies that humans share proto-mathematical 
abilities as widely as any other cognitive or physical abili-
ties. Proto-arithmetical abilities have evolved as evolution-
ary adaptations, which implies that—in addition to being 
useful—they are constantly exercised. Thus humans share a 
wealth of experience exercising proto-arithmetical abilities, 
which are not dependent on languages or culturally devel-
oped practices. If it is true that arithmetical knowledge and 
skills are fundamentally determined by proto-arithmetical 
abilities, it is to be expected that many would accept such 
maximally intersubjective knowledge as being objective. 
Whether maximal intersubjectivity should indeed count as 
objectivity is something I cannot take a stand on here. How-
ever, if something is maximally intersubjective, we may not 
be able to distinguish it from being objective.11

Now we also have an answer to the problem that Cole 
(2013, 2015) faced. Since he did not provide an explana-
tion why mathematical objects like numbers can perform a 
representative function, there remained the possibility that 
mathematical knowledge is merely a matter of institutional 
conventions, like the rules of chess and other games. How-
ever, now we can explain why this is not the case. While we 
could change the rules of chess by a common agreement, 
we could not change the laws or arithmetic so that it would 
be the case that 2 + 2 = 5 . The reason for this is that such 
deviant arithmetic would clash with our proto-arithmetical 
abilities. Dostoevsky’s character and Orwell’s oppressive 
regime could not convince us that 2 + 2 = 5 . This is not 
because 2 + 2 = 4 is such a firmly entrenched convention. 
It is because developing an arithmetical theory in which 
2 + 2 = 5 goes against our cognitive architecture, as it has 
evolved through millions of years. In this way, the maximal 

intersubjectivity of arithmetical knowledge can explain why 
it is experienced as being objective.12
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