
Research Article
The Computational Complexity of Tissue P Systems with
Evolutional Symport/Antiport Rules

Linqiang Pan ,1,2 Bosheng Song ,1 Luis Valencia-Cabrera,3 and Mario J. Pérez-Jiménez3

1Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Automation,
Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
2School of Electric and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
3Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, University of Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Correspondence should be addressed to Bosheng Song; boshengsong@hust.edu.cn

Received 29 May 2017; Accepted 18 December 2017; Published 23 April 2018

Academic Editor: Sigurdur F. Hafstein

Copyright © 2018 Linqiang Pan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tissue P systems with evolutional communication (symport/antiport) rules are computational models inspired by biochemical
systems consisting of multiple individuals living and cooperating in a certain environment, where objects can be modified when
moving from one region to another region. In this work, cell separation, inspired from membrane fission process, is introduced in
the framework of tissue P systems with evolutional communication rules. The computational complexity of this kind of P systems
is investigated. It is proved that only problems in class P can be efficiently solved by tissue P systems with cell separation with
evolutional communication rules of length at most (𝑛, 1), for each natural number 𝑛 ≥ 1. In the case where that length is upper
bounded by (3, 2), a polynomial time solution to the SAT problem is provided, hence, assuming that P ̸= NP a new boundary
between tractability and NP-hardness on the basis of the length of evolutional communication rules is provided. Finally, a new
simulator for tissue P systems with evolutional communication rules is designed and is used to check the correctness of the solution
to the SAT problem.

1. Introduction

A cell is the basic unit of biological organization that con-
stitutes all living organisms. There are many different types
of biological cells, which have different specialized functions
that maintain an organism working properly. Inspired by the
structure and functioning of living cells, Păun proposed a
computing paradigm in 2000 [1], called membrane comput-
ing, which has become an active research area (for other
research domains of natural computing, one can refer to
[2, 3]). A large number of theoretical models were proposed
[4–6] and they have been used to solve various real problems
[7–10]. These distributed and parallel computation models
investigated in membrane computing are called P systems.
In general, there exist two main families of P systems: cell-
like P systems [1], which have a hierarchical arrangement of
membranes described by a rooted tree (corresponding to cell-
like membrane structure), and tissue-like P systems [11] or

neural-like P systems [12], which have a net of cells or neurons
described by a directed graph. An overview of membrane
computing can be found in [13]. The present work deals with
tissue-like P systems.
Inspired by the biological phenomenon of trans-mem-

brane transport of couples of chemicals, communication
P systems with symport/antiport rules were proposed in
[14], where symport rules move objects (without evolution)
between two regions in one direction, and antiport rules
move objects (without evolution) between two regions in
opposite directions. Later, symport/antiport rules were con-
sidered in tissue-like P systems [11], where cells are placed
in nodes of a directed graph, and an arc between two
nodes corresponds to a communication channel between
cells placed in these nodes.
Since the notion of tissue P systems was proposed,

numerous research topics have been arisen [15–18], and
various ingredients (energy, catalyst, mitosis, etc.) from other

Hindawi
Complexity
Volume 2018, Article ID 3745210, 21 pages
https://doi.org/10.1155/2018/3745210

http://orcid.org/0000-0002-4554-455X
http://orcid.org/0000-0002-1479-5399
https://doi.org/10.1155/2018/3745210

2 Complexity

computational models were considered in the context of
tissue P systems. In [19], tissue P systems with channel
states controlling the communication between two regions
were proposed, and several Turing universality results were
achieved, where the systems work in a maximally parallel
way with sequential behavior on channels. In [20], a general
model of tissue P systems with channel states that allow us to
model hybrid cooperating grammar systems was considered,
where the results were established for strings and arrays.
Tissue P systems have been used to find polynomial

time solutions to NP-complete problems. In [21], membrane
division rules used in P systems with active membranes
have been introduced into tissue P systems yielding tissue P
systems with cell division, and a polynomial time uniform
solution to the SAT problem was shown. Since then, tissue
P systems with cell division were also considered to solve
other NP-complete problems: bin packing [22], subset sum
[23], vertex cover [24], and so on. Cell division rules have
a replication functioning; that is, two new created cells by
a division rule have exactly the same objects except for at
most a pair of different objects. Inspired from membrane
fission process, cell separation rules are another way to obtain
an exponential workspace in polynomial time, but they do
not have the duplication functioning; that is, when a cell
is separated, the objects in the cell are distributed in each
of the newly created cells. Tissue P systems with cell sepa-
ration have also been used to solve NP-complete problems
in polynomial time; one can refer to [25, 26] for these
investigations.
Computational complexity theory in the framework of

tissue P systems was introduced in [21] and it has been
studied in [27–30]. It was shown that in the framework of
tissue P systems with cell division, only tractable problems
can be efficiently solved by using communication rules with
length at most one [31] (the length of such a rule is the total
number of objects involved in it), but a uniform polynomial
time solution to the HAM-CYCLE problem by a family of
such P systems using communication rules with length at
most two has been given [30]. On the other hand, in the
framework of tissue P systems with cell separation, by using
communication rules with length at most two, only tractable
problems can be efficiently solved, but the SAT problem can
be solved by this kind of P systems using communication
rules with length at most three [26]. Moreover, frontiers
between efficiency and nonefficiency in terms of the length
of symport/antiport rules in the framework of cell-like P
systems have been investigated in [32].
Tissue-like P systems with evolutional symport/antiport

rules (TESA P systems, for short) were proposed in [33],
where objects are moved from one region to another region
and may be evolved during this process. In [33], the com-
putational efficiency of TESA P systems with cell division
(TESAD P systems, for short) was investigated. It is shown
that a limit on the efficiency of TESAD P systems is provided
with evolutional communication rules of length at most 2.
However, when using evolutional communication rules of
length at most 4, the SAT problem can be solved by TESAD
P systems. However, it is still an open problem as formulated
in [33] related to the role of evolutional communication rules

in tissue P systems with cell separation from a computational
complexity point of view.
During those computational complexity studies for new

variants of P systems, the solutions designed for NP-complete
problems are frequently difficult to follow, and requerying
makes sure that the evolution of the systems is exactly as
expected. In this context, the aid of computer tools to assist
in both the design and verification tasks may be crucial,
producing much more reliable solutions. In this sense, the
development of P-Lingua [34–36] implied a significant
progress. This open source framework includes a standard
language aiming to specify the elements of different types
of P systems using a notation very close to the researchers
in membrane computing community. Besides, it contains
simulation engines for a number of P system types. On top
of that, MeCoSim [37, 38] provides an additional layer of
abstraction with a visual application where researchers can
explore at a higher level the evolution of their solutions based
on P systems.
In this work, we investigate tissue P systems with evolu-

tional symport/antiport rules and cell separation (TESAS P
systems, for short) from a computational complexity point of
view.
Contributions of the present work are summarized as

follows:

(a) A variant of tissue P systems with evolutional sym-
port/antiport rules, called tissue P systems with evo-
lutional symport/antiport rules and cell separation
(TESAS P systems, for short), and the corresponding
recognizer version are proposed. In TESAS P systems,
the length of an evolutional symport/antiport rule
𝑟 is defined as an ordered pair whose first com-
ponent is the total number of objects involved in
the left hand side (LHS) of the rule and the second
component is the total number of objects involved
in the right hand side (RHS) of the rule; that is,
length(𝑟) = (length(LHS(𝑟)), length(RHS(𝑟))). The
set of all recognizer TESASP systemswith evolutional
communication rules of length at most (𝑘1, 𝑘2) is
denoted by TSEC(𝑘1, 𝑘2).

(b) The computation efficiency of recognizer TESAS P
systems is investigated in terms of the length of
evolutional communication rules. It is shown that
only tractable problems can be efficiently solved
by families of systems from TSEC(𝑛, 1) or from
TSEC(1, 𝑛), for each natural number 𝑛 ≥ 1. We
further show that the SAT problem can be solved
in polynomial time by a family of systems from
TSEC(3, 2), hence, assuming that P ̸= NP, a new
boundary between tractability and NP-hardness on
the basis of the length of evolutional communication
rules, is provided.

(c) A new simulator MeCoSim is designed in order to
check the correctness of the solution to the SAT prob-
lem. By using the software MeCoSim, we can analyse
the designed P systems, then run the simulation, and
obtain the computation results.

Complexity 3

2. Tissue P Systems with Evolutional
Symport/Antiport Rules and Cell Separation

Let us start this section by recalling somenotions from formal
language theory used in this work; the reader can find details
in [39].
An alphabet Γ is a nonempty set. Any sequence 𝑢 of

elements from Γ is called a string over Γ. The length of 𝑢,
denoted by |𝑢|, is the number of occurrences in 𝑢 of symbols
from Γ.
A multiset over an alphabet Γ is a function 𝑚 from Γ to

the set of natural numbers N. The multiplicity of a symbol
𝑎 ∈ Γ in the multiset 𝑚 is 𝑚(𝑎). The support of 𝑚 is the set
of symbols 𝑎 such that 𝑚(𝑎) > 0. A multiset is finite and
its support is a finite set. The set of all finite multisets over
Γ is denoted by𝑀𝑓(Γ), and by𝑀+𝑓(Γ) we denote the set of all
nonempty finite multisets over an alphabet Γ, and the empty
multiset is denoted by 0. The cardinal of a finite multiset 𝑚,
denoted by |𝑚|, is the sum of all multiplicities of elements in
the support of 𝑚. If 𝑚1 and 𝑚2 are multisets over Γ, then we
define the union of𝑚1 and𝑚2, denoted by𝑚1+𝑚2, as follows:
(𝑚1 + 𝑚2)(𝑎) = 𝑚1(𝑎) + 𝑚2(𝑎), for each 𝑎 ∈ Γ.

Definition 1. A tissue P system with evolutional symport/
antiport rules and cell separation of degree 𝑞 ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1,E,M1, . . . ,M𝑞,R, 𝑖out) , (1)

where

(i) Γ and E are finite alphabets such thatE ⊆ Γ;
(ii) Γ0, Γ1 are nonempty sets such that Γ0 ∪ Γ1 = Γ and

Γ0 ∩ Γ1 = 0;
(iii)M1, . . . ,M𝑞 are multisets over Γ;
(iv) R is a finite set of rules of the following forms:

(1) evolutional communication rules:
(a) [𝑢]𝑖[]𝑗 → []𝑖[𝑢󸀠]𝑗, where 0 ≤ 𝑖, 𝑗 ≤ 𝑞,

𝑖 ̸= 𝑗, 𝑢 ∈ 𝑀+𝑓(Γ), 𝑢󸀠 ∈ 𝑀𝑓(Γ) (evolutional
symport rules);

(b) [𝑢]𝑖[V]𝑗 → [V󸀠]𝑖[𝑢󸀠]𝑗, where 0 ≤ 𝑖, 𝑗 ≤ 𝑞, 𝑖 ̸=
𝑗, 𝑢, V ∈ 𝑀+𝑓(Γ), 𝑢󸀠, V󸀠 ∈ 𝑀𝑓(Γ) (evolutional
antiport rules);

(2) separation rules:
(a) [𝑎]𝑖 → [Γ0]𝑖[Γ1]𝑖, where 𝑖 ∈ {1, . . . , 𝑞}, 𝑖 ̸=

𝑖out, 𝑎 ∈ Γ;

(v) 𝑖out ∈ {0, 1, . . . , 𝑞}.

A tissue P systemwith evolutional symport/antiport rules
and cell separation of degree 𝑞 ≥ 1, Π = (Γ, Γ0, Γ1,E,
M1, . . . ,M𝑞,R, 𝑖out), can be viewed as a set of 𝑞 cells, labelled
by 1, . . . , 𝑞 such that (a)M1, . . . ,M𝑞 represent the multisets
of objects initially placed in the 𝑞 cells of the system; (b) E
is the set of objects initially located in the environment of
the system, all of them available in an arbitrary number of
copies; and (c) 𝑖out represents a distinguished region which

will encode the output of the system. We use the term region
𝑖 (0 ≤ 𝑖 ≤ 𝑞) to refer to cell 𝑖 in the case 1 ≤ 𝑖 ≤ 𝑞 and to refer
to the environment in the case 𝑖 = 0.
A configuration at any instant of a TESAS P system is

described by multisets of objects in each cell and the multiset
of objects over Γ \E in the environment at that moment.The
initial configuration ofΠ = (Γ, Γ0, Γ1,E,M1, . . . ,M𝑞,R, 𝑖out)
is (M1, . . . ,M𝑞, 0).
An evolutional symport rule [𝑢]𝑖[]𝑗 → []𝑖[𝑢󸀠]𝑗 is

enabled at a configuration C𝑡 at an instant 𝑡 if there is a
region 𝑖 from C𝑡 which contains multiset 𝑢. By applying an
evolutional symport rule, the multiset of objects 𝑢 in region
𝑖 from C𝑡 is consumed and the multiset of objects 𝑢󸀠 is
generated in region 𝑗 fromC𝑡+1. An evolutional antiport rule
[𝑢]𝑖[V]𝑗 → [V󸀠]𝑖[𝑢󸀠]𝑗 is enabled at a configuration C𝑡 at an
instant 𝑡 if there is a region 𝑖 fromC𝑡 which contains multiset
of objects 𝑢 and a region 𝑗 from C𝑡 which contains multiset
of objects V. By applying an evolutional antiport rule, (a) the
multiset of objects 𝑢 in region 𝑖 from C𝑡 and the multiset of
objects V in region 𝑗 from C𝑡 are consumed; (b) the multiset
of objects 𝑢󸀠 is generated in region 𝑗 from configuration
C𝑡+1; and (c) the multiset of objects V

󸀠 is generated in region
𝑖 from configuration C𝑡+1. The length of an evolutional
symport/antiport rule 𝑟 is an ordered pair of natural numbers:
length(𝑟) = (length(LHS(𝑟)), length(RHS(𝑟))).
A separation rule [𝑎]𝑖 → [Γ0]𝑖[Γ1]𝑖 is enabled at a

configuration C𝑡 at an instant 𝑡 if there is a cell 𝑖 from C𝑡
which contains object 𝑎 and 𝑖 ̸= 𝑖out. By applying a separation
rule to a such a cell 𝑖, (a) object 𝑎 is consumed from such cell;
(b) two new cells with label 𝑖 are generated at configuration
C𝑡+1; (c) in the original cell 𝑖, the objects from Γ0 are placed
in one of the new cells, while the other objects from Γ1 are
placed in another one.
The rules of a TESAS P system are applied in a maximally

parallel manner, and we have the restriction that when a cell
𝑖 is separated at one transition step, no other rules can be
applied for that cell 𝑖 at that step.
A transition from a configuration C𝑡 to another config-

uration C𝑡+1 is obtained by applying rules in a maximally
parallel manner following the previous remarks. A com-
putation of the system is a (finite or infinite) sequence of
transitions starting from the initial configuration, where any
term of the sequence other than the first is obtained from the
previous configuration in one transition step. If the sequence
is finite (called halting computation) then the last term of the
sequence is a halting configuration, that is, a configuration
where no rule is applicable to it. A computation gives a result
only when an halting configuration is reached, and that result
is encoded by the multiset of objects present in the output
region 𝑖out.
A natural framework to solve decision problems is to use

recognizer P systems; one can refer to [21, 29] for further
details.

Definition 2. A recognizer tissue P system with evolutional
symport/antiport rules and cell separation of degree 𝑞 ≥ 1 is
a tuple

Π = (Γ, Γ0, Γ1,E, Σ,M1, . . . ,M𝑞,R, 𝑖in, 𝑖out) , (2)

4 Complexity

where

(i) the tuple (Γ, Γ0, Γ1,E,M1, . . . ,M𝑞,R, 𝑖out) is a TESAS
P system of degree 𝑞 ≥ 1, where Γ strictly contains an
(input) alphabet Σ and two distinguished objects yes,
no, andM𝑖 (1 ≤ 𝑖 ≤ 𝑞) are multisets over Γ \ Σ;

(ii) 𝑖in ∈ {1, . . . , 𝑞} is the input cell and 𝑖out is the label of
the environment;

(iii) for each multiset 𝑚 over the input alphabet Σ, any
computation of the system Π with input 𝑚 starts
from the configuration of the form (M1, . . . ,M𝑖in +
𝑚, . . . ,M𝑞; 0) and always halts and either object yes
or object no (but not both) must appear in the
environment at the last step.

It is worth pointing out that, in any recognizer TESAS P
systems, all computations halt. Then, any symport rule of the
type [𝑢]0[]𝑗 → []0[𝑢󸀠]𝑗must verify the following condition:
multiset 𝑢 contains some object from Γ \ E.
For each ordered pair of natural numbers (𝑘1, 𝑘2) greater

than or equal to 1, the class of recognizer TESAS P systems
with cell separation and with evolutional communication
rules of length at most (𝑘1, 𝑘2) is denoted by TSEC(𝑘1, 𝑘2).
This means that the LHS (resp., RHS) of any evolutional
communication rule in a system from TSEC(𝑘1, 𝑘2) involves
at most 𝑘1 objects (resp., 𝑘2 objects).
Next, we define the concept of solving a problem in a

uniformway and in polynomial time by a family of recognizer
TESAS P systems (see [40] for details).

Definition 3. A decision problem 𝑋 = (𝐼𝑋, 𝜃𝑋) is solvable
in a uniform way and in polynomial time by a family Π =
(Π(𝑛))𝑛∈N of recognizer TESAS P systems if the following
conditions hold:

(i) the family Π is polynomially uniform by Turing
machines;

(ii) there exists a polynomial encoding (cod, 𝑠) of 𝐼𝑋 inΠ
such that (a) for each instance 𝑢 ∈ 𝐼𝑋, 𝑠(𝑢) is a natural
number and cod(𝑢) is an input multiset of the system
Π(𝑠(𝑢)); (b) for each 𝑛 ∈ N, 𝑠−1(𝑛) is a finite set; and
(c) the familyΠ is polynomially bounded, sound, and
complete with regard to (𝑋, cod, 𝑠).

The set of all decision problems that can be solved by
recognizer TESAS P systems with evolutional communica-
tion rules of length at most (𝑘1, 𝑘2) in a uniform way and
polynomial time is denoted by PMCTSEC(𝑘1 ,𝑘2).

3. The Computational Complexity of
Tissue P Systems with Evolutional
Symport/Antiport Rules

3.1. The Limitation on the Efficiency of TSEC(2, 1). In this
subsection, we use tissue P systems with cell separation and
evolutional communication rules of length at most (2, 1) to
provide a new characterization of the classical complexity
class P.

The proof uses a similar technique as in [32]. Firstly, some
representations of TESAS P systems Π = (Γ, Γ0, Γ1,E, Σ,
M1, . . . ,M𝑞,R, 𝑖in, 𝑖out) from TSEC(2, 1) are given. By R𝐶
(resp.,R𝑆) we denote the set of communication rules (resp.,
separation rules) of Π. We will fix a total order inR𝐶 and a
total order in R𝑆. Because several cells with the same label
are generated by using separation rules, in order to identify
the different cells with the same label, the following recursive
definition is used to modify the labels of the new generated
cells:

(i) We denote the label of a cell as a pair (𝑖, 𝜎), where 1 ≤
𝑖 ≤ 𝑞 and 𝜎 ∈ {0, 1} is a binary string.

(ii) If a separation rule is applied to a cell with label (𝑖, 𝜎),
then the new created two cells will be labelled by
(𝑖, 𝜎0) and (𝑖, 𝜎1), respectively. We mention that, for
the system during any computation, we consider a
lexicographical order over the set of labels of cells.

Note that if communication rules occur in two cells, then
the labels of these two cells do not change.
A configuration at an instant 𝑡 of a tissue P system from

TSEC(2, 1) is described by the multisets of objects over Γ
contained in each cell and the multiset of objects over Γ \
E in the environment. Hence, a configuration of Π can be
described as follows:

{(𝑎, 𝑖, 𝜎) | 𝑎 ∈ Γ ∪ {𝜆} , 1 ≤ 𝑖 ≤ 𝑞, 𝜎 ∈ {0, 1}∗}
∪ {(𝑎, 0) | 𝑎 ∈ Γ \ E} .

(3)

Let 𝑟 = [𝑎𝑏]𝑖[]𝑗 → []𝑖[𝑐]𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑞, be an
evolutional symport rule of Π and 𝑛 ∈ N. We denote by 𝑛 ⋅
LHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) the multiset of objects (𝑎, 𝑖, 𝜎𝑖)𝑛(𝑏, 𝑖, 𝜎𝑖)𝑛
and the corresponding 𝑛 ⋅ RHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) the multiset
of objects (𝑐, 𝑗, 𝜎𝑗)𝑛. In a similar way, 𝑛 ⋅ LHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗))
and 𝑛 ⋅RHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) are defined when 𝑟 is of the form
[𝑎]𝑖[]𝑗 → []𝑖[𝑐]𝑗.
Let 𝑟 = [𝑎𝑏]𝑖[]𝑗 → []𝑖[𝜆]𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑞, be

an evolutional symport rule of Π and 𝑛 ∈ N. We de-
note by 𝑛 ⋅ LHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) the multiset of objects
(𝑎, 𝑖, 𝜎𝑖)𝑛(𝑏, 𝑖, 𝜎𝑖)𝑛, and the corresponding 𝑛 ⋅ RHS(𝑟, (𝑖, 𝜎𝑖),
(𝑗, 𝜎𝑗)) is 0. In a similar way, 𝑛 ⋅ LHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) and
𝑛 ⋅ RHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) are defined when 𝑟 is of the form
[𝑎]𝑖[]𝑗 → []𝑖[𝜆]𝑗.
Let 𝑟 = [𝑎𝑏]0[]𝑗 → []0[𝑐]𝑗, 1 ≤ 𝑗 ≤ 𝑞, be an evolutional

symport rule ofΠ and 𝑛 ∈ N.Wedenote by 𝑛⋅LHS(𝑟, (𝑗, 𝜎𝑗), 0)
the multiset of objects

(𝑎, 0)𝑛 (𝑏, 0)𝑛 , if 𝑎, 𝑏 ∈ Γ \ E;
(𝑎, 0)𝑛 , if 𝑎 ∈ Γ \ E, 𝑏 ∈ E;
(𝑏, 0)𝑛 , if 𝑏 ∈ Γ \ E, 𝑎 ∈ E;

0, otherwise;

(4)

and we denote by the corresponding 𝑛 ⋅ RHS(𝑟, (𝑗, 𝜎𝑗), 0)
the multiset of objects (𝑐, 𝑗, 𝜎𝑗)𝑛. In a similar way, 𝑛 ⋅
LHS(𝑟, (𝑗, 𝜎𝑗), 0) and 𝑛 ⋅ RHS(𝑟, (𝑗, 𝜎𝑗), 0) are defined when
𝑟 is of the form [𝑎]0[]𝑗 → []0[𝜆]𝑗.

Complexity 5

Let 𝑟 = [𝑎𝑏]0[]𝑗 → []0[𝜆]𝑗, 1 ≤ 𝑗 ≤ 𝑞, be an evolutional
symport rule ofΠ and 𝑛 ∈ N.Wedenote by 𝑛⋅LHS(𝑟, (𝑗, 𝜎𝑗), 0)
the multiset of objects

(𝑎, 0)𝑛 (𝑏, 0)𝑛 , if 𝑎, 𝑏 ∈ Γ \ E;
(𝑎, 0)𝑛 , if 𝑎 ∈ Γ \ E, 𝑏 ∈ E;
(𝑏, 0)𝑛 , if 𝑏 ∈ Γ \ E, 𝑎 ∈ E;

0, otherwise.

(5)

The corresponding 𝑛 ⋅ RHS(𝑟, (𝑗, 𝜎𝑗), 0) is 0. In a similar way,
𝑛 ⋅LHS(𝑟, (𝑗, 𝜎𝑗), 0) and 𝑛 ⋅RHS(𝑟, (𝑗, 𝜎𝑗), 0) are defined when
𝑟 is of the form [𝑎]0[]𝑗 → []0[𝜆]𝑗.
Let 𝑟 = [𝑎]𝑖[𝑏]𝑗 → [𝑐]𝑖[𝜆]𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑞, be

an evolutional antiport rule of Π and 𝑛 ∈ N. We de-
note by 𝑛 ⋅ LHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) the multiset of objects
(𝑎, 𝑖, 𝜎𝑖)𝑛(𝑏, 𝑗, 𝜎𝑗)𝑛 and the corresponding 𝑛 ⋅ RHS(𝑟, (𝑖, 𝜎𝑖),
(𝑗, 𝜎𝑗)) the multiset of objects (𝑐, 𝑖, 𝜎𝑖)𝑛. In a similar way, 𝑛 ⋅
LHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) and 𝑛 ⋅RHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) are defined
when 𝑟 is of the form [𝑎]𝑖[𝑏]𝑗 → [𝜆]𝑖[𝑐]𝑗.
Let 𝑟 = [𝑎]𝑖[𝑏]𝑗 → [𝜆]𝑖[𝜆]𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑞, be an

evolutional antiport rule of Π and 𝑛 ∈ N. We de-
note by 𝑛 ⋅ LHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) the multiset of objects
(𝑎, 𝑖, 𝜎𝑖)𝑛(𝑏, 𝑗, 𝜎𝑗)𝑛, and the corresponding 𝑛 ⋅ RHS(𝑟, (𝑖, 𝜎𝑖),
(𝑗, 𝜎𝑗)) is 0.
Let 𝑟 = [𝑎]0[𝑏]𝑗 → [𝑐]0[𝜆]𝑗, 1 ≤ 𝑗 ≤ 𝑞, be an evolutional

antiport rule ofΠ and 𝑛 ∈ N.We denote by 𝑛⋅LHS(𝑟, (𝑗, 𝜎𝑗), 0)
the multiset of objects

(𝑎, 0)𝑛 (𝑏, 𝑗)𝑛 , if 𝑎 ∈ Γ \ E;

(𝑏, 𝑗)𝑛 , otherwise;
(6)

and we denote by the corresponding 𝑛 ⋅ RHS(𝑟, (𝑗, 𝜎𝑗), 0) the
multiset of objects

(𝑐, 0)𝑛 , if 𝑐 ∈ Γ \ E;
0, otherwise.

(7)

Let 𝑟 = [𝑎]0[𝑏]𝑗 → [𝜆]0[𝑐]𝑗, 1 ≤ 𝑗 ≤ 𝑞, be an evolutional
antiport rule ofΠ and 𝑛 ∈ N.We denote by 𝑛⋅LHS(𝑟, (𝑗, 𝜎𝑗), 0)
the multiset of objects

(𝑎, 0)𝑛 (𝑏, 𝑗)𝑛 , if 𝑎 ∈ Γ \ E;

(𝑏, 𝑗)𝑛 , otherwise;
(8)

and we denote by the corresponding 𝑛 ⋅ RHS(𝑟, (𝑗, 𝜎𝑗), 0) the
multiset of objects (𝑐, 𝑗, 𝜎𝑗)𝑛.
Let 𝑟 = [𝑎]0[𝑏]𝑗 → [𝜆]0[𝜆]𝑗, 1 ≤ 𝑗 ≤ 𝑞, be an evolutional

antiport rule ofΠ and 𝑛 ∈ N.We denote by 𝑛⋅LHS(𝑟, (𝑗, 𝜎𝑗), 0)
the multiset of objects

(𝑎, 0)𝑛 (𝑏, 𝑗)𝑛 , if 𝑎 ∈ Γ \ E;

(𝑏, 𝑗)𝑛 , otherwise.
(9)

The corresponding 𝑛 ⋅ RHS(𝑟, (𝑗, 𝜎𝑗), 0) is 0.

If C𝑡 is a configuration of Π, then the multiset obtained
by replacing in C𝑡 every occurrence of (𝑥, 𝑖, 𝜎) by (𝑥, 𝑖, 𝜎󸀠) is
denoted byC𝑡+{(𝑥, 𝑖, 𝜎)/𝜎󸀠}. Moreover, we denote byC𝑡+𝑚
(resp.,C𝑡 \𝑚) a multiset𝑚 of labelled objects added to (resp.,
removed from) the configurationC𝑡.
Next, we show that TESASP systems fromTSEC(2, 1) can

only solve tractable problems.
If C = {C𝑡}𝑡<𝑟+1 of Π (𝑟 ∈ N) is a halting computation,

then we denote by |C| = 𝑟 the length ofC. For each 𝑖 (1 ≤ 𝑖 ≤
𝑞), the multiset of objects over Γ contained in all cells labelled
by 𝑖 at configuration C𝑡 is denoted by C𝑡(𝑖). We denote by
C𝑡(0) the multiset of objects over Γ \ E contained in the
environment at configuration C𝑡. Finally, the finite multiset
C𝑡(0) + C𝑡(1) + ⋅ ⋅ ⋅ + C𝑡(𝑞) is denoted byC∗𝑡 .
Lemma 4. Let Π = (Γ, Γ0, Γ1,E, Σ,M1, . . . ,M𝑞,R, 𝑖𝑖𝑛, 𝑖𝑜𝑢𝑡)
be a recognizer tissue P system of degree 𝑞 ≥ 1 fromTSEC(2, 1).
Let 𝑀 = |M1 + ⋅ ⋅ ⋅ + M𝑞| and let C = {C0, . . . ,C𝑟} be a
computation of Π. Then, one has

(1) |C∗0 | = 𝑀, and for each 𝑡, 0 ≤ 𝑡 < 𝑟, |C∗𝑡+1| ≤ |C∗𝑡 |;
(2) for each 𝑡, 0 ≤ 𝑡 ≤ 𝑟, |C∗𝑡 | ≤ 𝑀;
(3) the number of created cells along the computation C

by the application of cell separation rules is bounded by
2𝑀.

Proof. (1) Let us notice that
󵄨󵄨󵄨󵄨C∗0

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨C0 (0) + C0 (1) + ⋅ ⋅ ⋅ + C0 (𝑞)󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨M1 + ⋅ ⋅ ⋅ + M𝑞
󵄨󵄨󵄨󵄨󵄨 = 𝑀. (10)

Let Π be a recognizer tissue P system from TSEC(2, 1) and
let R be the set of rules associated with Π, which contains
the following types of evolutional communication rules:

(a) [𝑎𝑏]𝑖[]𝑗 → []𝑖[𝑐]𝑗, (𝑖 = 0 ∧ {𝑎, 𝑏} ̸⊆ E) or (𝑖 ̸= 0 ∧
{𝑎, 𝑏} ⊆ Γ);

(b) [𝑎𝑏]𝑖[]𝑗 → []𝑖[𝜆]𝑗, (𝑖 = 0 ∧ {𝑎, 𝑏} ̸⊆ E) or (𝑖 ̸= 0 ∧
{𝑎, 𝑏} ⊆ Γ);

(c) [𝑎]𝑖[𝑏]𝑗 → [𝑐]𝑖[𝜆]𝑗, {𝑎, 𝑏} ⊆ Γ;
(d) [𝑎]𝑖[𝑏]𝑗 → [𝜆]𝑖[𝑐]𝑗, {𝑎, 𝑏} ⊆ Γ;
(e) [𝑎]𝑖[𝑏]𝑗 → [𝜆]𝑖[𝜆]𝑗, {𝑎, 𝑏} ⊆ Γ;
(f) [𝑎]𝑖[]𝑗 → []𝑖[𝑏]𝑗, (𝑖 = 0∧𝑎 ∈ Γ\E) or (𝑖 ̸= 0∧𝑎 ∈ Γ);
(g) [𝑎]𝑖[]𝑗 → []𝑖[𝜆]𝑗, (𝑖 = 0∧𝑎 ∈ Γ\E) or (𝑖 ̸= 0∧𝑎 ∈ Γ).

For each 𝑡, 0 ≤ 𝑡 < 𝑟, in the transition from configurationC𝑡
to configurationC𝑡+1, by using any rules of types from (a) to
(g), at least one object fromC𝑡 is consumed and at most one
object is produced in C𝑡+1. Hence, in any transition step the
number of objects in the system is not increased.
(2) By induction on 𝑡, let us start analyzing the basic case

𝑡 = 0. The result is trivial because of |C∗0 | = 𝑀. By induction
hypothesis, let us suppose the result holds for 𝑡, 0 ≤ 𝑡 < 𝑟.
Then,

󵄨󵄨󵄨󵄨C∗𝑡+1
󵄨󵄨󵄨󵄨
(1)≤ 󵄨󵄨󵄨󵄨C∗𝑡

󵄨󵄨󵄨󵄨
h.i.≤ 𝑀. (11)

Hence, the result is also true for 𝑡 + 1.

6 Complexity

Input: A P system Π from TSEC(2, 1) and an input multiset 𝑚
Initialization phase:C0 is the initial configuration of Π + 𝑚
𝑡 ← 0
while C𝑡 is a non-halting configuration do

Selection phase: Input C𝑡,Output (C󸀠𝑡, 𝐴)
Execution phase: Input (C󸀠𝑡, 𝐴), Output C𝑡+1
𝑡 ← 𝑡 + 1

end while
Output: Yes if Π + 𝑚 has an accepting computation, No otherwise

Pseudocode 1

(3) According to the fact that the application of a cell
separation rule consumes an object and produces two new
cells, result (3) can be obtained from (2) easily.

Next, a deterministic algorithmAworking in polynomial
time is presented, which receives as input a P system Π from
TSEC(2, 1) and an inputmultiset𝑚 ofΠ, in suchmanner that
algorithm A reproduces the behaviour of a computation of
Π+𝑚. If the systemΠ is confluent, then the algorithmAwill
provide the same answer of Π. We give Pseudocode 1 of the
algorithmA to describe the simulation process.
The algorithmA receives a recognizer tissue P system

Π = (Γ, Γ0, Γ1,E, Σ,M1, . . . ,M𝑞,R, 𝑖in, 𝑖out) (12)

from TSEC(2, 1) and an input multiset 𝑚. Let 𝑀 = |M1 +
⋅ ⋅ ⋅ + M𝑞|. Let any computation of Π perform at most 𝑝 (𝑝
is a natural number) transition steps. Hence, from Lemma 4,
the number of cells in the system along any computation is
bounded by 2𝑀 + 𝑞.
A transition of a recognizer tissue P system Π + 𝑚

is performed in two phases: selection phase and execution
phase (see Algorithms 1 and 2). For the detailed information
of a transition of such P system, one can refer to [32].
It is easy to check that Algorithm 1 is deterministic and

the running time of this algorithm is polynomial in the size
ofΠ because the number of cycles of the first main loop for is
of order 𝑂(|R| ⋅ 𝑀2 ⋅ 𝑞2); the number of cycles of the second
main loop for is of order 𝑂(|R| ⋅ 𝑀 ⋅ 𝑞); and the number of
cycles of the third main loop for is of order𝑂(|R| ⋅𝑀⋅𝑞 ⋅ |Γ|).
Algorithm 2 is deterministic and the running time of this

algorithm is polynomial in the size of Π because the number
of cycles of the first main loop for is of order𝑂(|R| ⋅𝑀2 ⋅ 𝑞2);
the number of cycles of the second main loop for is of order
𝑂(|R| ⋅ 𝑀 ⋅ 𝑞); and the number of cycles of the third main
loop for is of order 𝑂(|R| ⋅ 𝑀 ⋅ 𝑞 ⋅ |Γ|).

Theorem 5. One has P = PMCTSEC(2,1).

Proof. BecausePMCTSEC(2,1) is closed under polynomial time
reduction and nonempty, hence P ⊆ PMCTSEC(2,1). In what
follows, we show that CTSEC(2,1) ⊆ P. Let 𝑋 ∈ PMCTSEC(2,1)
and let Π = {Π(𝑛) | 𝑛 ∈ N} be a family of recognizer tissue P
systems fromTSEC(2, 1) solving𝑋 according toDefinition 3.
Let (cod, 𝑠) be a polynomial encoding associated with that
solution. If 𝑢 ∈ 𝐼𝑋 is an instance of the problem𝑋, then 𝑢will

be processed by the systemΠ(𝑠(𝑢))+cod(𝑢). We consider the
deterministic algorithmA󸀠 as shown in Algorithm 3.
The algorithm A󸀠 receives an instance 𝑢 of the decision

problem 𝑋 = (𝐼𝑋, 𝜃𝑋), working in a polynomial time. The
following three assertions are equivalent:

(i) 𝜃𝑋(𝑢) = 1; that is, the answer of problem𝑋 to instance
𝑢 is affirmative.

(ii) Every computation ofΠ(𝑠(𝑢))+cod(𝑢) is an accepting
computation.

(iii) The output of the algorithmA󸀠 with input 𝑢 is Yes.
Hence,𝑋 ∈ P.

Corollary 6. For each 𝑛 ∈ N, 𝑛 ≥ 1, one has PMCTSEC(𝑛,1) =
P.

Proof. Indeed, it suffices to notice that, at any transition step,
the application of each rule consumes at least one object from
Γ \ E and produces at most one object from Γ. Thus, along
any computation of the system, the total number in it is not
increased.

Theorem7. For each 𝑛 ∈ N, 𝑛 ≥ 1, one hasPMCTSEC(1,𝑛) = P.

Proof. In [31], it was shown that the class of decision problems
solvable in polynomial time by means of families of tissue
P systems with cell division and symport rules with length
1 is equal to class P. Bearing in mind that systems from
TSEC(1, 𝑛) are noncooperative ones, the dependency graph
technique used in the cited paper can be used to obtain the
result, in a similar way.

3.2. An Efficient Solution to the SAT Problem by P Systems in
TSEC(3, 2). The SAT problem is a well-knownNP-complete
problem; here we give an efficient solution to the SAT
problem by a family of tissue P systems with evolutional
communication rules of length at most (3, 2).

Theorem 8. One has SAT ∈ PMCTSEC(3,2).

Proof. We provide a polynomial time uniform solution to the
SAT problem [41] by a family of recognizer tissue P systems
Π = {Π(𝑡) | 𝑡 ∈ N} from TSEC(3, 2). Each system Π(𝑡) (𝑡 =
⟨𝑛,𝑚⟩ = ((𝑛 + 𝑚)(𝑛 + 𝑚 + 1)/2) + 𝑛) can process all Boolean
formula 𝜑 in conjunctive normal formwith 𝑛 variables and𝑚
clauses.

Complexity 7

Input: A configuration C𝑡 of Π + 𝑚 at instant 𝑡
C󸀠𝑡 ← C𝑡; 𝐴 ← 0; 𝐵 ← 0
for 𝑟 = [𝑢]𝑖[V]𝑗 → [V󸀠]𝑖[𝑢󸀠]𝑗 ∈ R𝐶, according to the order

chosen do
for each pair of cells (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗) of C󸀠𝑡 according to the

lexicographical order do
𝑛𝑟 ← maximum number of times that 𝑟 is applicable to (𝑖, 𝜎𝑖),

(𝑗, 𝜎𝑗)
if 𝑛𝑟 > 0 then
C󸀠𝑡 ← C󸀠𝑡 − 𝑛𝑟 ⋅ LHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗))
𝐴 ← 𝐴 ∪ {(𝑟, 𝑛𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗))}
𝐵 ← 𝐵 ∪ {(𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)}

end if
end for

end for
for 𝑟 = [𝑢]𝑖[V]0 → [V󸀠]𝑖[𝑢󸀠]0 ∈ R𝐶 according to the order

chosen do
for each cell (𝑖, 𝜎𝑖) of C󸀠𝑡 according to the lexicographical

order do
𝑛𝑟 ← maximum number of times that 𝑟 is applicable to (𝑖, 𝜎𝑖)
if 𝑛𝑟 > 0 then
C󸀠𝑡 ← C󸀠𝑡 − 𝑛𝑟 ⋅ LHS(𝑟, (𝑖, 𝜎𝑖), 0)
𝐴 ← 𝐴 ∪ {(𝑟, 𝑛𝑟, (𝑖, 𝜎𝑖), 0)}
𝐵 ← 𝐵 ∪ {(𝑖, 𝜎𝑖)}

end if
end for

end for
for 𝑟 = [𝑎]𝑖 → [Γ0]𝑖[Γ1]𝑖 ∈ R𝑆 according to the

order chosen do
for each (𝑎, 𝑖, 𝜎𝑖) ∈ C󸀠𝑡 according to the lexicographical

order,and such that (𝑖, 𝜎𝑖) ∉ 𝐵 do
C󸀠𝑡 ← C󸀠𝑡 \ {(𝑎, 𝑖, 𝜎𝑖)}
𝐴 ← 𝐴 ∪ {(𝑟, 1, (𝑖, 𝜎𝑖))}

end for
end for

Algorithm 1: Selection phase.

For each 𝑛,𝑚 ∈ N, we consider the recognizer tissue P
system

Π (⟨𝑛,𝑚⟩)
= (Γ, Γ0, Γ1,E, Σ,M1,M2,M3,R, 𝑖in, 𝑖out) ,

(13)

where
Γ = Σ ∪ E ∪ {𝐴 𝑖, 𝐴󸀠𝑖, 𝐴𝑖, 𝐴

󸀠

𝑖 , 𝐴 𝑖, 𝐴󸀠𝑖, 𝐵𝑖, 𝐵󸀠𝑖 , 𝐵𝑖, 𝐵
󸀠

𝑖 , 𝐵𝑖, 𝐵󸀠𝑖 , 𝐶𝑖,

𝑇𝑖, 𝑇𝑖, 𝑇󸀠𝑖 , 𝐹𝑖, 𝐹𝑖, 𝐹󸀠𝑖 , 𝑎𝑖, 𝑎󸀠𝑖 , 𝑏𝑖, 𝑏󸀠𝑖 , 𝑐𝑖, 𝑡𝑖, 𝑓𝑖, ℎ𝑖, 𝑦𝑖, 𝑠𝑖, V𝑖, 𝑤𝑖, 𝑧𝑖 | 1

≤ 𝑖 ≤ 𝑛} ∪ {𝐷𝑖,𝑗, 𝑞𝑖,𝑗, 𝑟𝑖,𝑗, 𝑢𝑖,𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑛}

∪ {𝐷𝑖,𝑛+1 | 1 ≤ 𝑖 ≤ 𝑛 + 1} ∪ {𝑔𝑖,𝑗,𝑘, 𝑔𝑖,𝑗,𝑘 | 1 ≤ 𝑖, 𝑘

≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝐸𝑖,𝑗, 𝐸𝑖,𝑗, 𝑒𝑖,𝑗, 𝑒𝑖,𝑗, 𝑙𝑗,𝑖 | 1 ≤ 𝑖 ≤ 𝑛,

1 ≤ 𝑗 ≤ 𝑚} ∪ {𝑙𝑗, 𝑙𝑗, 𝑙𝑗,0, 𝐸𝑗 | 1 ≤ 𝑗 ≤ 𝑚} ∪ {𝐴𝑛+1,

𝐴𝑛+1, 𝐴󸀠𝑛+1, 𝐵𝑛+1, 𝐵𝑛+1, 𝐵󸀠𝑛+1, 𝐶𝑛+1, 𝐸𝑚+1, 𝑆, 𝑝, yes, no} ,

Γ1 = {𝑇󸀠𝑖 , 𝐹󸀠𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝐴󸀠𝑖, 𝐵󸀠𝑖 | 2 ≤ 𝑖 ≤ 𝑛 + 1} ,

Γ0 = Γ \ Γ1,

Σ = {𝑥𝑖,𝑗, 𝑥𝑖,𝑗 | 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} ,

E = {𝐴 𝑖, 𝐵𝑖, 𝑎𝑖, 𝑎𝑖, 𝑏𝑖, 𝑏̃𝑖, 𝑐𝑖, 𝑐𝑖, 𝑑𝑖, 𝑓𝑖, 𝑠𝑖, 𝑡𝑖, V𝑖, Ṽ𝑖,𝑛+1, 𝑤𝑖, 𝑦𝑖, 𝑦𝑖,

𝑧̃𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑟𝑖,𝑗, 𝑟𝑖,𝑗, 𝑢̃𝑖,𝑗, Ṽ𝑖,𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑛}

∪ {𝑔󸀠𝑖,𝑗,𝑘, 𝑔󸀠𝑖,𝑗,𝑘 | 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑘 ≤ 𝑛}

∪ {𝑙𝑗,𝑘 | 1 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑘 ≤ 𝑛} ∪ {𝛼𝑖 | 0 ≤ 𝑖 ≤ 4𝑛

+ 3𝑚 + 4} ∪ {𝐸0} ,
M1 = {𝐴1, 𝐵1} ,

M2 = {𝐴1, 𝐵1, 𝐶1, 𝐷1,1} ,

M3 = {𝑙1,0, . . . , 𝑙𝑚,0, 𝛼0, 𝑝} ,
𝑖in = 3 is the input cell,
𝑖out = 0 is the output region,

(14)

8 Complexity

Input: The output (C󸀠𝑡, 𝐴) of the selection phase

for each (𝑟, 𝑛𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗)) ∈ 𝐴 do
C󸀠𝑡 ← C󸀠𝑡 + 𝑛𝑟 ⋅ RHS(𝑟, (𝑖, 𝜎𝑖), (𝑗, 𝜎𝑗))

end for
for each (𝑟, 𝑛𝑟, (𝑖, 𝜎𝑖), 0) ∈ 𝐴 do

C󸀠𝑡 ← C󸀠𝑡 + 𝑛𝑟 ⋅ RHS(𝑟, (𝑖, 𝜎𝑖), 0)
end for
for each (𝑟, 1, (𝑖, 𝜎𝑖)) ∈ 𝐴 do

C󸀠𝑡 ← C󸀠𝑡 + {(𝜆, 𝑖, 𝜎𝑖)/𝜎𝑖0}
C󸀠𝑡 ← C󸀠𝑡 + {(𝜆, 𝑖, 𝜎𝑖1)}
for each (𝑥, 𝑖, 𝜎𝑖) ∈ C󸀠𝑡 according to the lexicographical

order do
if 𝑥 ∈ Γ0 then
C󸀠𝑡 ← C󸀠𝑡 + {(𝑥, 𝑖, 𝜎𝑖)/𝜎𝑖0}

else
C󸀠𝑡 ← C󸀠𝑡 + {(𝑥, 𝑖, 𝜎𝑖)/𝜎𝑖1}

end if
end for

end for
C𝑡+1 ← C󸀠𝑡

Algorithm 2: Execution phase.

Input: an instance 𝑢 of the problem 𝑋
Construct the system Π(𝑠(𝑢)) + cod(𝑢)
Run algorithm A with input Π(𝑠(𝑢)) + cod(𝑢)
Output: Yes if Π(𝑠(𝑢)) + cod(𝑢) has an accepting computation

No otherwise

Algorithm 3

and the setR of rules consists of the following rules:

𝑟1,𝑖 ≡ [𝐴 𝑖]1 [𝐴𝑖]2 󳨀→ [𝐴𝑖]1 [𝐴 𝑖]2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟2,𝑖 ≡ [𝐴󸀠𝑖]1 [𝐴𝑖]2 󳨀→ [𝐴󸀠𝑖]1 [𝐴
󸀠
𝑖]2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟3,𝑖 ≡ [𝐵𝑖]1 [𝐵𝑖]2 󳨀→ [𝐵𝑖]1 [𝐵𝑖]2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟4,𝑖 ≡ [𝐵󸀠𝑖]1 [𝐵𝑖]2 󳨀→ [𝐵󸀠𝑖]1 [𝐵
󸀠
𝑖]2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟5,𝑖 ≡ [𝐶𝑖]2 [V𝑖]0 󳨀→ [V𝑖]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟6,𝑖,𝑗 ≡ [𝐷𝑖,𝑗]2 [Ṽ𝑖,𝑗]0 󳨀→ [𝑞𝑖,𝑗]2 []0 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

𝑟7,𝑖 ≡ [𝑇𝑖]1 [𝑡𝑖]2 󳨀→ [𝑡𝑖]1 []2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟8,𝑖 ≡ [𝑇󸀠𝑖]1 [𝑡𝑖]2 󳨀→ [𝑡𝑖]1 []2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟9,𝑖 ≡ [𝐹𝑖]1 [𝑓𝑖]2 󳨀→ [𝑓𝑖]1 []2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟10,𝑖 ≡ [𝐹󸀠𝑖]1 [𝑓𝑖]2 󳨀→ [𝑓𝑖]1 []2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟11,𝑖 ≡ [𝐴𝑖]1 [𝐴 𝑖]0 󳨀→ [𝑎𝑖𝑎󸀠𝑖]1 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟12,𝑖 ≡ [𝐴󸀠𝑖]1 [𝐴 𝑖]0 󳨀→ [𝑎𝑖𝑎󸀠𝑖]1 []0 , 2 ≤ 𝑖 ≤ 𝑛,

𝑟13,𝑖 ≡ [𝐵𝑖]1 [𝐵𝑖]0 󳨀→ [𝑏𝑖𝑏󸀠𝑖]1 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟14,𝑖 ≡ [𝐵󸀠𝑖]1 [𝐵𝑖]0 󳨀→ [𝑏𝑖𝑏󸀠𝑖]1 []0 , 2 ≤ 𝑖 ≤ 𝑛,

𝑟15,𝑖 ≡ [𝐴 𝑖]2 [𝐴 𝑖]0 󳨀→ [𝐴 𝑖]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟16,𝑖 ≡ [𝐴󸀠𝑖]2 [𝐴 𝑖]0 󳨀→ [𝐴󸀠𝑖]2 []0 , 2 ≤ 𝑖 ≤ 𝑛,

𝑟17,𝑖 ≡ [𝐵𝑖]2 [𝐵𝑖]0 󳨀→ [𝐵𝑖]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟18,𝑖 ≡ [𝐵󸀠𝑖]2 [𝐵𝑖]0 󳨀→ [𝐵󸀠𝑖]2 []0 , 2 ≤ 𝑖 ≤ 𝑛,

𝑟19,𝑖 ≡ [V𝑖]2 [𝑦𝑖]0 󳨀→ [𝑦2𝑖]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟20 ≡ [𝑞1,1]2 [𝑟1,1]0 󳨀→ [𝑟1,1]2 []0 ,

𝑟21,𝑖,𝑗 ≡ [𝑞𝑖,𝑗]2 [𝑟𝑖,𝑗]0 󳨀→ [𝑟2𝑖,𝑗]2 []0 ,
1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑛,

𝑟22,𝑖 ≡ [𝑡𝑖]1 [𝑡𝑖]0 󳨀→ [𝑇𝑖𝑇󸀠𝑖]1 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟23,𝑖 ≡ [𝑓𝑖]1 [𝑓𝑖]0 󳨀→ [𝐹𝑖𝐹󸀠𝑖]1 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟24,𝑖 ≡ [𝐴 𝑖]2 [𝑐𝑖]0 󳨀→ [𝑐𝑖]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟25,𝑖 ≡ [𝐴󸀠𝑖]2 [𝑐𝑖]0 󳨀→ [𝑐𝑖]2 []0 , 2 ≤ 𝑖 ≤ 𝑛,

Complexity 9

𝑟26,𝑖 ≡ [𝐵𝑖]2 [𝑐𝑖]0 󳨀→ [𝑐𝑖]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟27,𝑖 ≡ [𝐵󸀠𝑖]2 [𝑐𝑖]0 󳨀→ [𝑐𝑖]2 []0 , 2 ≤ 𝑖 ≤ 𝑛,

𝑟28,𝑖 ≡ [𝑎𝑖]1 [𝑎𝑖]0 󳨀→ [𝑇𝑖𝐴 𝑖+1]1 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟29,𝑖 ≡ [𝑎󸀠𝑖]1 [𝑎𝑖]0 󳨀→ [𝐹󸀠𝑖𝐴󸀠𝑖+1]1 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟30,𝑖 ≡ [𝑏𝑖]1 [𝑏𝑖]0 󳨀→ [𝐵𝑖+1𝑆]1 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟31,𝑖 ≡ [𝑏󸀠𝑖]1 [𝑏̃𝑖]0 󳨀→ [𝐵󸀠𝑖+1]1 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟32,𝑖 ≡ [𝑦𝑖]2 [𝑦𝑖]0 󳨀→ [𝑧𝑖𝑤𝑖]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟33,𝑖,𝑗 ≡ [𝑟𝑖,𝑗]2 [𝑟𝑖,𝑗]0 󳨀→ [𝑠𝑖𝑢𝑖,𝑗]2 []0 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

𝑟34,𝑖 ≡ [𝑤𝑖]2 [𝑤𝑖]0 󳨀→ [𝐴𝑖+1]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟35,𝑖 ≡ [𝑐𝑖]2 [𝑑𝑖]0 󳨀→ [𝐵𝑖+1]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟36,𝑖 ≡ [𝑧𝑖]2 [𝑧̃𝑖]0 󳨀→ [𝐶𝑖+1]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟37,𝑖 ≡ [𝑠𝑖]2 [𝑠𝑖]0 󳨀→ [𝑡𝑖𝑓𝑖]2 []0 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟38,𝑗 ≡ [𝑢1,𝑗]2 [𝑢̃1,𝑗]0 󳨀→ [𝐷1,𝑗+1𝐷2,𝑗+1]2 []0 ,

1 ≤ 𝑗 ≤ 𝑛,

𝑟39,𝑖,𝑗 ≡ [𝑢𝑖,𝑗]2 [𝑢̃𝑖,𝑗]0 󳨀→ [𝐷𝑖+1,𝑗+1]2 []0 ,

2 ≤ 𝑖, 𝑗 ≤ 𝑛,
𝑟40 ≡ [𝑆]1 󳨀→ [Γ0]1 [Γ1]1 ,

𝑟41,𝑖 ≡ [𝐷𝑖,𝑛+1]2 [Ṽ𝑖,𝑛+1]0 󳨀→ [ℎ2𝑖]2 []0 ,

1 ≤ 𝑖 ≤ 𝑛,

𝑟42 ≡ [𝐴𝑛+1]1 [𝐴𝑛+1]2 󳨀→ [𝐸1]1 []2 ,

𝑟43 ≡ [𝐴󸀠𝑛+1]1 [𝐵𝑛+1]2 󳨀→ [𝐸1]1 []2 ,

𝑟44,𝑖 ≡ [𝑇𝑖𝑇󸀠𝑖]1 [ℎ𝑖]2 󳨀→ [𝑇𝑖]1 []2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟45,𝑖 ≡ [𝐹𝑖𝐹󸀠𝑖]1 [ℎ𝑖]2 󳨀→ [𝐹𝑖]1 []2 , 1 ≤ 𝑖 ≤ 𝑛,

𝑟46,𝑖,𝑗 ≡ [𝑥𝑖,𝑗]3 [𝑔
󸀠
𝑖,𝑗,0]0 󳨀→ [𝑔2𝑖,𝑗,1]3 []0 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟47,𝑖,𝑗 ≡ [𝑥𝑖,𝑗]3 [𝑔
󸀠
𝑖,𝑗,0]0 󳨀→ [𝑔2𝑖,𝑗,1]3 []0 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟48,𝑖,𝑗,𝑘 ≡ [𝑔𝑖,𝑗,𝑘]3 [𝑔
󸀠
𝑖,𝑗,𝑘]0 󳨀→ [𝑔2𝑖,𝑗,𝑘+1]3 []0 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛 − 1,
𝑟49,𝑖,𝑗,𝑘 ≡ [𝑔𝑖,𝑗,𝑘]3 [𝑔

󸀠
𝑖,𝑗,𝑘]0 󳨀→ [𝑔2𝑖,𝑗,𝑘+1]3 []0 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛 − 1,

𝑟50,𝑖,𝑗 ≡ [𝑔𝑖,𝑗,𝑛]3 [𝑔
󸀠
𝑖,𝑗,𝑛]0 󳨀→ [𝑒𝑖,𝑗]3 []0 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟51,𝑖,𝑗 ≡ [𝑔𝑖,𝑗,𝑛]3 [𝑔
󸀠
𝑖,𝑗,𝑛]0 󳨀→ [𝑒𝑖,𝑗]3 []0 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟52,𝑗,𝑘 ≡ [𝑙𝑗,𝑘]3 [𝑙𝑗,𝑘]0 󳨀→ [𝑙2𝑗,𝑘+1]3 []0 ,

1 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑘 ≤ 𝑛 − 1,

𝑟53,𝑗 ≡ [𝑙𝑗,𝑛]3 [𝑙𝑗,𝑛]0 󳨀→ [𝑙𝑗]3 []0 , 1 ≤ 𝑗 ≤ 𝑚,

𝑟54,𝑖,𝑗 ≡ [𝑇𝑖𝐸𝑗]1 [𝑒𝑖,𝑗]3 󳨀→ [𝐸𝑖,𝑗]1 []3 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟55,𝑖,𝑗 ≡ [𝐹𝑖𝐸𝑗]1 [𝑒𝑖,𝑗]3 󳨀→ [𝐸𝑖,𝑗]1 []3 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟56,𝑖,𝑗 ≡ [𝐸𝑖,𝑗]1 [𝑙𝑗]3 󳨀→ [𝑙𝑖,𝑗]1 [𝐸𝑖,𝑗]3 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟57,𝑖,𝑗 ≡ [𝐸𝑖,𝑗]1 [𝑙𝑗]3 󳨀→ [𝑙𝑖,𝑗]1 [𝐸𝑖,𝑗]3 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟58,𝑖,𝑗 ≡ [𝑙𝑖,𝑗]1 [𝐸𝑖,𝑗]3 󳨀→ [𝑇𝑖𝐸𝑗+1]1 []3 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

𝑟59,𝑖,𝑗 ≡ [𝑙𝑖,𝑗]1 [𝐸𝑖,𝑗]3 󳨀→ [𝐹𝑖𝐸𝑗+1]1 []3 ,

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,
𝑟60,𝑖 ≡ [𝛼𝑖]3 [𝛼𝑖]0 󳨀→ [𝛼𝑖+1]3 []0 ,

0 ≤ 𝑖 ≤ 4𝑛 + 3𝑚 + 3,
𝑟61 ≡ [𝐸𝑚+1]1 [𝑝]3 󳨀→ []1 [yes]3 ,
𝑟62 ≡ [yes]3 []0 󳨀→ []3 [yes]0 ,
𝑟63 ≡ [𝛼4𝑛+3𝑚+4𝑝]3 []0 󳨀→ []3 [no]0 .

(15)

We consider a propositional formula 𝜑 = 𝐶1 ∧ ⋅ ⋅ ⋅ ∧ 𝐶𝑚,
which contains 𝑚 (𝑚 ≥ 1) clauses, 𝐶𝑖 = 𝑦𝑖,1 ∨ ⋅ ⋅ ⋅ ∨ 𝑦𝑖,𝑝𝑖 , for𝑝𝑖 ≥ 1, and 𝑦𝑖,𝑗 ∈ {𝑥𝑘, ¬𝑥𝑘 | 1 ≤ 𝑘 ≤ 𝑛}, for 1 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑗 ≤ 𝑝𝑖.
Let (cod, 𝑠) be a polynomial encoding of instances from

SAT in Π, where 𝑠(𝜑) = ⟨𝑛,𝑚⟩ and cod(𝜑) = {𝑥𝑖,𝑗 | 𝑥𝑖 ∈
𝐶𝑗} ∪ {𝑥𝑖,𝑗 | ¬𝑥𝑖 ∈ 𝐶𝑗}. So the propositional formula 𝜑 will be
processed by the system Π(𝑠(𝜑)) + cod(𝜑).
An instance of the SAT problem is solved by the system

Π(𝑠(𝜑)) + cod(𝜑), which can be separated into three phases:
generation phase, checking phase, and output phase.

10 Complexity

Generation Phase. In this phase, by using separation rules
in cell with label 1, all truth assignments for the variables
associated with the Boolean formula 𝜑(𝑥1, . . . , 𝑥𝑛) will be
generated. When this phase completes, there are 2𝑛 copies of
cell with label 1 such that each of them encodes a different
truth assignment of variables {𝑥1, . . . , 𝑥𝑛}.
The generation phase takes 4𝑛 + 3 steps, which has two

parallel processes. On the one hand, 𝑛 loops are executed, and
each loop takes four steps. When the loops are completed,
three additional steps are executed. On the other hand, there
is a counter object 𝛼 in cell 3 that evolves from 𝛼0 to 𝛼4𝑛+3𝑚+3,
and objects (cod(𝜑))2𝑛𝑒 , (𝑙𝑗)2

𝑛

(1 ≤ 𝑗 ≤ 𝑚) are produced in cell
3 after 𝑛 + 1 steps at this phase.
In the initial configuration, we have objects 𝐴1, 𝐵1 in cell

1, objects 𝐴1, 𝐵1, 𝐶1,𝐷1,1 in cell 2, and objects 𝑙1,0, . . . , 𝑙𝑚,0, 𝑝,
𝛼0, cod(𝜑) in cell 3.
In what follows, we first analyze the computation process

that takes place in cells 1 and 2; then we explain the
computation process that takes place in cell 3.
At the first step of the 𝑖th (3 ≤ 𝑖 ≤ 𝑛) loop involving cells

1 and 2, by using rules 𝑟1,𝑖–𝑟4,𝑖, objects 𝐴 𝑖, 𝐴󸀠𝑖, 𝐵𝑖, 𝐵󸀠𝑖 in cell 1
are sent to cell 2 and evolved to 𝐴 𝑖, 𝐴󸀠𝑖, 𝐵𝑖, 𝐵󸀠𝑖 , respectively;
simultaneously, objects 𝐴𝑖, 𝐴𝑖, 𝐵𝑖, 𝐵𝑖 in cell 2 are sent to
cell 1 and evolved to 𝐴𝑖, 𝐴

󸀠

𝑖 , 𝐵𝑖, 𝐵
󸀠

𝑖 , respectively. By applying
rule 𝑟5,𝑖, object 𝐶𝑖 in cell 2 is consumed, and object V𝑖 in the
environment is sent into cell 2 and evolved to V𝑖. By using
rule 𝑟6,𝑖,𝑗, object Ṽ𝑖,𝑗 in the environment is sent into cell 2
and evolved to 𝑞𝑖,𝑗, and object 𝐷𝑖,𝑗 in cell 2 is consumed. By
using rules 𝑟7,𝑖–𝑟10,𝑖, objects 𝑡𝑖, 𝑡𝑖, 𝑓𝑖, 𝑓𝑖 in cell 2 are sent to the
corresponding cell 1, respectively; simultaneously, objects 𝑇𝑖,
𝑇󸀠𝑖 , 𝐹𝑖, 𝐹󸀠𝑖 in cell 1 are consumed.
Note that at the first step of the 1st loop involving cells 1

and 2, only rules 𝑟1,1, 𝑟3,1, 𝑟5,1, 𝑟6,1 are applied; at the first step
of the 2nd loop involving cells 1 and 2, only rules 𝑟1,2, 𝑟2,2, 𝑟3,2,
𝑟4,2, 𝑟5,2, 𝑟6,2, 𝑟7,2, 𝑟10,2 are applied.
At the second step of the 𝑖th (2 ≤ 𝑖 ≤ 𝑛) loop involving

cells 1 and 2, by using rules 𝑟11,𝑖–𝑟14,𝑖, objects 𝐴𝑖, 𝐴
󸀠

𝑖 , 𝐵𝑖, 𝐵
󸀠

𝑖

in cell 1 are exchanged with objects 𝐴 𝑖, 𝐴 𝑖, 𝐵𝑖, 𝐵𝑖 in the
environment, and objects 𝑎𝑖𝑎󸀠𝑖 , 𝑎𝑖𝑎󸀠𝑖 , 𝑏𝑖𝑏󸀠𝑖 , 𝑏𝑖𝑏󸀠𝑖 are produced
in cell 1, respectively. By applying rules 𝑟15,𝑖–𝑟18,𝑖, objects 𝐴 𝑖,
𝐴󸀠𝑖, 𝐵𝑖, 𝐵󸀠𝑖 are produced in corresponding cell 2, respectively.
Object V𝑖 in cell 2 is exchanged with object 𝑦𝑖 in the
environment by using rule 𝑟19,𝑖, and two copies of object 𝑦𝑖
are produced in cell 2. By applying rule 𝑟21,𝑖,𝑗, two copies of
object 𝑟𝑖,𝑗 are produced in cell 2. By applying rules 𝑟22,𝑖, 𝑟23,𝑖,
objects 𝑡𝑖, 𝑓𝑖 in the environment are sent into corresponding
cell 1 and evolved to 𝑇𝑖𝑇󸀠𝑖 , 𝐹𝑖𝐹󸀠𝑖 , respectively.
Note that at the second step of the 1st loop involving cells

1 and 2, only rules 𝑟11,1, 𝑟13,1, 𝑟15,1, 𝑟17,1, 𝑟19,1, 𝑟20 are applied.
At the third step of the 𝑖th (2 ≤ 𝑖 ≤ 𝑛) loop involving cells

1 and 2, by using rules 𝑟24,𝑖–𝑟27,𝑖, objects 𝐴 𝑖, 𝐴󸀠𝑖, 𝐵𝑖, 𝐵󸀠𝑖 in cell
2 are exchanged with objects 𝑐𝑖, 𝑐𝑖, 𝑐𝑖, 𝑐𝑖 in the environment,
respectively; objects𝐴 𝑖,𝐴󸀠𝑖,𝐵𝑖,𝐵󸀠𝑖 are sent to the environment
and consumed, and objects 𝑐𝑖, 𝑐𝑖, 𝑐𝑖, 𝑐𝑖 are sent into cell 2
and evolved to 𝑐𝑖. By applying rules 𝑟28,𝑖–𝑟31,𝑖, objects 𝑇𝑖𝐴 𝑖+1,
𝐹󸀠𝑖𝐴󸀠𝑖+1, 𝐵𝑖+1𝑆, 𝐵󸀠𝑖+1 are produced in corresponding cell 1,

respectively. By using rule 𝑟32,𝑖, object 𝑦𝑖 in cell 2 is sent to the
environment and consumed; simultaneously, object 𝑦𝑖 in the
environment is sent into cell 2 and evolved to 𝑧𝑖𝑤𝑖. By using
rule 𝑟33,𝑖,𝑗, object 𝑟𝑖,𝑗 in cell 2 is sent to the environment and
consumed; simultaneously, object 𝑟𝑖,𝑗 in the environment is
sent into cell 2 and evolved to 𝑠𝑖𝑢𝑖,𝑗.
Note that at the third step of the 1st loop involving cells 1

and 2, only rules 𝑟24,1, 𝑟26,1, 𝑟28,1, 𝑟29,1, 𝑟30,1, 𝑟31,1, 𝑟32,1, 𝑟33,1,1
are applied.
At the fourth step of the 𝑖th (2 ≤ 𝑖 ≤ 𝑛) loop involving

cells 1 and 2, by using rule 𝑟40, object 𝑆 is consumed, and the
objects from Γ0 already existing in cell 1 are placed in the first
cell, while those from Γ1 are placed in the second cell. By using
rules 𝑟34,𝑖–𝑟39,𝑖,𝑗, objects 𝑤𝑖, 𝑐𝑖, 𝑧𝑖, 𝑠𝑖, 𝑢1,𝑗, 𝑢𝑖,𝑗 in cell 2 are sent
to the environment and consumed; simultaneously, objects
𝑤𝑖, 𝑑𝑖, 𝑧̃𝑖, 𝑠𝑖, 𝑢̃1,𝑗, 𝑢̃𝑖,𝑗 in the environment are sent into cell
2 and evolved to 𝐴𝑖+1, 𝐵𝑖+1, 𝐶𝑖+1, 𝑡𝑖𝑓𝑖, 𝐷1,𝑗+1𝐷2,𝑗+1, 𝐷𝑖+1,𝑗+1,
respectively.
Note that at the fourth step of the 1st loop involving cells

1 and 2, only rules 𝑟34,1, 𝑟35,1, 𝑟36,1, 𝑟37,1, 𝑟38,1, 𝑟40 are applied.
At step 4𝑛 + 1, rules 𝑟7,𝑖–𝑟10,𝑖, 𝑟41,𝑖–𝑟43 are enabled. By

applying rules 𝑟7,𝑖–𝑟10,𝑖, objects 𝑇𝑖, 𝑇󸀠𝑖 , 𝐹𝑖, 𝐹󸀠𝑖 in each cell 1
are changed to objects 𝑡𝑖, 𝑡𝑖, 𝑓𝑖, 𝑓𝑖, respectively. By using
rule 𝑟41,𝑖, object 𝐷𝑖,𝑛+1 in cell 2 is sent to the environment;
simultaneously, object Ṽ𝑖,𝑛+1 in the environment is sent into
cell 2 and evolved to two copies of object ℎ𝑖. By applying rules
𝑟42, 𝑟43, each cell with label 1 will produce an object 𝐸1.
At step 4𝑛 + 2, by using rules 𝑟22,𝑖, 𝑟23,𝑖, objects 𝑡𝑖, 𝑓𝑖

in each cell 1 are changed to objects 𝑇𝑖𝑇󸀠𝑖 , 𝐹𝑖𝐹󸀠𝑖 , respective-
ly.
At step 4𝑛 + 3, rules 𝑟44,𝑖, 𝑟45,𝑖 are enabled and applied,

and objects 𝑇𝑖𝑇󸀠𝑖 , 𝐹𝑖𝐹󸀠𝑖 in each cell 1 are changed to 𝑇𝑖, 𝐹𝑖,
respectively.
At the first 𝑛 + 1 steps of the generation phase, by using

rules 𝑟46,𝑖,𝑗–𝑟53,𝑗, 2𝑛 copies of objects (cod(𝜑))𝑒, 𝑙𝑗 (1 ≤ 𝑗 ≤ 𝑚)
are produced in cell 3.

Checking Phase. This phase takes 3𝑚 steps and consists of a
loop with𝑚 iterations, where each iteration takes three steps.
At the first step of the 𝑗th loop (1 ≤ 𝑗 ≤ 𝑚), objects 𝑇𝑖,

𝐸𝑗 (resp., 𝐹𝑖, 𝐸𝑗) in cell 1 are exchanged with object 𝑒𝑖,𝑗 (resp.,
𝑒𝑖,𝑗) in cell 3 by using rule 𝑟54,𝑖,𝑗 (resp., 𝑟55,𝑖,𝑗), in case cell 1
encodes a truth assignment making clauses 𝐶1, . . . , 𝐶𝑗 true.
Note that if a cell with label 1 contains a truth assignment that
does notmake the clause𝐶𝑗 true, the computationwill stop in
that cell when rule 𝑟54,𝑖,𝑗 or rule 𝑟55,𝑖,𝑗 is applied. When using
rule 𝑟54,𝑖,𝑗 (resp., 𝑟55,𝑖,𝑗), object 𝑒𝑖,𝑗 (resp., 𝑒𝑖,𝑗) is sent into cell
1 and evolved to 𝐸𝑖,𝑗 (resp., 𝐸𝑖,𝑗); simultaneously, objects 𝑇𝑖,
𝐸𝑗 (resp., 𝐹𝑖, 𝐸𝑗) in cell 1 are sent to cell 3 and consumed. In
addition, counter object 𝛼 in cell 3 is evolved.
At the second step of the 𝑗th loop (1 ≤ 𝑗 ≤ 𝑚), if a cell

with label 1 contains object 𝐸𝑖,𝑗 (resp., 𝐸𝑖,𝑗), then rule 𝑟56,𝑖,𝑗
(resp., 𝑟57,𝑖,𝑗) is enabled and applied, and object𝐸𝑖,𝑗 (resp.,𝐸𝑖,𝑗)
in cell 1 is sent to cell 3; simultaneously, object 𝑙𝑗 in cell 3 is
sent to the corresponding cell 1 and evolved to 𝑙𝑖,𝑗 (resp., 𝑙𝑖,𝑗).
Moreover, counter object 𝛼 in cell 3 is evolved.

Complexity 11

At the third step of the 𝑗th loop (1 ≤ 𝑗 ≤ 𝑚), rule
𝑟58,𝑖,𝑗 (resp., 𝑟59,𝑖,𝑗) is enabled in cell 1 in case object 𝑙𝑖,𝑗 (resp.,
𝑙𝑖,𝑗) appears in that cell. By using rule 𝑟58,𝑖,𝑗 (resp., 𝑟59,𝑖,𝑗),
object 𝑙𝑖,𝑗 (resp., 𝑙𝑖,𝑗) in cell 1 is sent to cell 3 and consumed;
simultaneously, object 𝐸𝑖,𝑗 (resp., 𝐸𝑖,𝑗) in cell 3 is sent into
corresponding cell 1 and evolved to 𝑇𝑖, 𝐸𝑗+1 (resp., 𝐹𝑖, 𝐸𝑗+1).
In addition, counter object 𝛼 increases its subscript.

Output Phase. In this phase, the system sends the right answer
into the environment according to the result of the previous
phase.
If the input formula 𝜑 is satisfiable, then there exists at

least one cell with label 1 that contains object 𝐸𝑚+1 after 4𝑛 +
3𝑚 + 3 steps. In this case, at step 4𝑛 + 3𝑚 + 4, by using rule
𝑟60,𝑖, object 𝛼4𝑛+3𝑚+4 will present in cell 3; simultaneously, rule
𝑟61 is enabled and applied; object 𝑝 in cell 3 is sent into the
corresponding cell 1 and consumed; object 𝐸𝑚+1 in cell 1 is
sent into cell 3 and evolved to yes, which will be sent to the
environment at the next step by using rule 𝑟62, and the system
halts, and the answer of the system is affirmative.
If the input formula 𝜑 is not satisfiable, then there is no

cell with label 1 that contains object 𝐸𝑚+1 after 4𝑛 + 3𝑚 + 3
steps. In this case, at step 4𝑛+3𝑚+4, only rule 𝑟60,𝑖 is enabled
and applied, and object 𝛼4𝑛+3𝑚+4 will appear in cell 3. At step
4𝑛+3𝑚+5, if object𝑝 appears in cell 3, then rule 𝑟63 is applied,
objects𝛼4𝑛+3𝑚+4,𝑝 are sent to the environment and evolved to
no, the system halts, and the answer of the system is negative.
From the computation process, we can check that rules of

a systemΠ(⟨𝑛,𝑚⟩) of the family are defined recursively from
values 𝑛 and𝑚, and the necessary resources to build each such
system are as follows:

(i) size of the alphabet: 4𝑛2𝑚+8𝑛2+10𝑛𝑚+55𝑛+8𝑚+19 ∈
𝑂(𝑛2𝑚);

(ii) initial number of cells: 3 ∈ 𝑂(1);
(iii) initial number of objects:𝑚 + 8 ∈ 𝑂(𝑚);
(iv) number of rules: 2𝑛2𝑚 + 4𝑛2 + 9𝑛𝑚 + 39𝑛 + 4𝑚 + 5 ∈

𝑂(𝑛2𝑚);
(v) maximum length of a rule (the total number of objects
involved in a rule): 4 ∈ 𝑂(1).

Hence, there exists a deterministic Turing machine that
builds the systemΠ(⟨𝑚, 𝑛⟩) in a polynomial timewith respect
to 𝑚 and 𝑛. So the family Π = {Π(⟨𝑚, 𝑛⟩) | 𝑚, 𝑛 ∈ N} is
polynomially uniform by Turing machines.
The tissue P systemΠ(⟨𝑛,𝑚⟩) with input multiset cod(𝜑)

always halts and sends object yes or no to the environment
at the last step, that is, at step 4𝑛 + 3𝑚 + 5. Hence the family
Π = {Π(⟨𝑚, 𝑛⟩) | 𝑚, 𝑛 ∈ N} is polynomially bounded.
According to Definition 3, the family Π of recognizer

tissue P systems fromTSEC(3, 2) solve SAT problem in linear
time. Hence, the theorem holds.

Corollary 9. One has NP ∪ co − NP ⊆ PMCTSEC(3,2).

Proof. The theorem holds because the SAT problem is NP-
complete, SAT ∈ PMCTSEC(3,2), and the class PMCTSEC(3,2) is

9
?

?

?

?

?

?

?

?

8

7

6

5

4

3

2

1

RH
S

LHS
1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Summary of the results and open problems.

closed under polynomial time reduction and under comple-
ment.

Corollary 10. For each natural number 𝑛 ≥ 3, one has NP ∪
co − NP ⊆ PMCTSEC(𝑛,2).

Proof. It suffices to notice that for each natural number 𝑛 ≥ 3
the following holds: PMCTSEC(3,2) ⊆ PMCTSEC(𝑛,2).

Figure 1 illustrates the results obtained in this paper as
well as some open problems. The point (𝑝, 𝑞) represents the
complexity class PMCTSEC(𝑝,𝑞). The green circles correspond
to class P, the red circles correspond to a class containing
NP ∪ co − NP, and the black circles correspond to open
problems.

4. A Software Tool to Aid in Formal Validation

The solution to the SAT problem by TESAS P systems is
very complicated (see Theorem 8), not obviously a trivial
solution, easy to follow and check. In order to evaluate the
correctness of the solution to the SAT problem by TESAS P
systems, a visual application was provided (see Algorithm 4
for extensive details). With this software, P systems designers
could analyse carefully the design proposed; in addition,
end users were able to introduce their propositional formu-
las visually, then run the simulations, and finally get the
results.
As described in Algorithm 4 mentioned, the new tool

extends the framework provided by P-Lingua and MeCoSim
in terms of language accepted, simulation engines, and
custom apps provided. We present all the aspects of the
simulation in detail in Algorithm 4, but let us highlight the
main features included at these different levels.

New Elements in P-Lingua Framework. Taking the existing
P-Lingua syntax for P systems introduced in [25] as a
starting point, some extensions in the syntax of the language
had to be included for tissue P systems with evolutional
symport/antiport rules. We can mention some of them:

12 Complexity

@model<tsec>

def main()

{
call init membrane structure();

call init first alphabet(m,n);

call init second alphabet(m,n);

call init environment(m,n);

call init multisets(m);

call init rules(m,n);

call define input();

}

def init membrane structure()

{
@mu = [[]'1 []'2 []'3]'0;

}

/* @ms1 is %*$\Gamma 0 = \Gamma\setminus\Gamma 1$*), including %*$\Sigma\cup\mathcal{ E }$*) */

/* Some special symbols as a bar, tilde, hat or prime are replaced in

P-Lingua plain text file with suffixes b (bar), t (tilde), h (hat) or

p (prime), respectively. Thus, %*$\hat{ A }'$*) is written as Ahp ("A hat prime").*/

def init first alphabet(m,n)

{
@ms1 += A{ i },Ab{ i },Abp{ i },Ah{ i },Ahp{ i },B{ i },Bb{ i },Bbp{ i },

Bh{ i },Bhp{ i },Cb{ i },T{ i },Tb{ i },F{ i },Fb{ i },a{ i },
ap{ i },b{ i },bp{ i },c{ i },t{ i },f{ i },h{ i },y{ i },s{ i },
v{ i },w{ i },z{ i } : 1<=i<=n;

@ms1 += Db{ i,j },q{ i,j },r{ i,j },u{ i,j } : 1<=j<=n,1<=i<=n;
@ms1 += Db{ i,n+1 } : 1<=i<=n+1;
@ms1 += g{ i,j,k },gb{ i,j,k } : 1<=k<=n,1<=j<=m,1<=i<=n;
@ms1 += E{ i,j },Eb{ i,j },e{ i,j },eb{ i,j },l{ j,i } : 1<=j<=m,1<=i<=n;
@ms1 += l{ j },lb{ j },l{ j,0 },E{ j } : 1<= j <= m;

@ms1 += A{ n+1 },Ab{ n+1 },B{ n+1 },Bb{ n+1 },Cb{ n+1 },E{ m+1 },
S,p,yes,no;

/* Input alphabet %*Σ*) */

@ms1 += x{ i,j },nx{ i,j } : 1<=j<=m,1<=i<=n;

/* Environment alphabet %*$\mathcal{ E }$*) */

@ms1 += At{ i },Bt{ i },ab{ i },at{ i },bb{ i },bt{ i },cb{ i },ct{ i },dt{ i },
tb{ i },fb{ i },st{ i },vb{ i },vt{ i,n+1 },wt{ i },yb{ i },yt{ i },
zt{ i } : 1<=i<=n;

@ms1 += rb{ i,j },rt{ i,j },ut{ i,j },vt{ i,j } : 1<=j<=n,1<=i<=n;
@ms1 += gp{ i,j,k },gbp{ i,j,k } : 0<=k<=n,1<=j<=m,1<=i<=n;
@ms1 += lb{ j,k } : 0<=k<=n,1<=j<=m;
@ms1 += al{ i },alb{ i } : 0<=i<=4*n+3*m+4;
@ms1 += E{ 0 };

}

def init second alphabet(m,n)

{
@ms2 += Tp{ i },Fp{ i } : 1<=i<=n;
@ms2 += Ap{ i },Bp{ i } : 2<=i<=n+1;

}

def init environment(m,n)

{
@ms(0) += At{ i },Bt{ i },ab{ i },at{ i },bb{ i },bt{ i },cb{ i },ct{ i },

dt{ i },tb{ i },fb{ i },st{ i },vb{ i },vt{ i,n+1 },wt{ i },
yb{ i },yt{ i },zt{ i } : 1<=i<=n;

@ms(0) += rb{ i,j },rt{ i,j },ut{ i,j },vt{ i,j } : 1<=j<=n,1<=i<=n;
@ms(0) += gp{ i,j,k },gbp{ i,j,k } : 0<=k<=n,1<=j<=m,1<=i<=n;

Algorithm 4: Continued.

Complexity 13

@ms(0) += lb{ j,k } : 0<=k<=n,1<=j<=m;
@ms(0) += al{ i },alb{ i } : 0<=i<=4*n+3*m+4;
@ms(0) += E{ 0 };

}

def init multisets(m)

{
@ms(1) = A{ 1 },B{ 1 };
@ms(2) = Ab{ 1 },Bb{ 1 },Cb{ 1 },Db{ 1,1 };
@ms(3) = p,al{ 0 };
@ms(3) += l{ i,0 } : 1<=i<=m;

}

def init rules(m,n)

{
{

/* r { 1,i } */ [A{ i }]'1 [Ab{ i }]'2 --> [Ab{ i }]'1 [Ah{ i }]'2;
/* r { 2,i } */ [Ap{ i }]'1 [Ab{ i }]'2 --> [Abp{ i }]'1 [Ahp{ i }]'2;
/* r { 3,i } */ [B{ i }]'1 [Bb{ i }]'2 --> [Bb{ i }]'1 [Bh{ i }]'2;
/* r { 4,i } */ [Bp{ i }]'1 [Bb{ i }]'2 --> [Bbp{ i }]'1 [Bhp{ i }]'2;
/* r { 5,i } */ [Cb{ i }]'2 [vb{ i }]'0 --> [v{ i }]'2 []'0;

/* r { 6,i,j } */ [Db{ i,j }]'2 [vt{ i,j }]'0 --> [q{ i,j }]'2 []'0 :1<=j<=n;
/* r { 7,i } */ [T{ i }]'1 [t{ i }]'2 --> [t{ i }]'1 []'2;

/* r { 8,i } */ [Tp{ i }]'1 [t{ i }]'2 --> [t{ i }]'1 []'2;

/* r { 9,i } */ [F{ i }]'1 [f{ i }]'2 --> [f{ i }]'1 []'2;

/* r { 10,i } */ [Fp{ i }]'1 [f{ i }]'2 --> [f{ i }]'1 []'2;

} : 1<=i<=n;
/* r { 11,i } */ [Ab{ i }]'1 [At{ i }]'0 --> [a{ i },ap{ i }]'1 []'0 : 1<=i<=n;
/* r { 12,i } */ [Abp{ i }]'1 [At{ i }]'0 --> [a{ i },ap{ i }]'1 []'0 :2<=i<=n;
/* r { 13,i } */ [Bb{ i }]'1 [Bt{ i }]'0 --> [b{ i },bp{ i }]'1 []'0 : 1<=i<=n;
/* r { 14,i } */ [Bbp{ i }]'1 [Bt{ i }]'0 --> [b{ i },bp{ i }]'1 []'0 :2<=i<=n;

/* r { 15,i } */ [Ah{ i }]'2 [At{ i }]'0 --> [A{ i }]'2 []'0 : 1<=i<=n;
/* r { 16,i } */ [Ahp{ i }]'2 [At{ i }]'0 --> [Ap{ i }]'2 []'0 : 2<=i<=n;
/* r { 17,i } */ [Bh{ i }]'2 [Bt{ i }]'0 --> [B{ i }]'2 []'0 : 1<=i<=n;
/* r { 18,i } */ [Bhp{ i }]'2 [Bt{ i }]'0 --> [Bp{ i }]'2 []'0 : 2<=i<=n;
/* r { 19,i } */ [v{ i }]'2 [yb{ i }]'0 --> [y{ i }*2]'2 []'0 : 1<=i<=n;
/* r { 20 } */ [q{ 1,1 }]'2 [rb{ 1,1 }]'0 --> [r{ 1,1 }]'2 []'0;

/* r { 21,i,j } */ [q{ i,j }]'2 [rb{ i,j }]'0 --> [r{ i,j }*2]'2 []'0

: 2<=j<=n, 1<=i<=n;

{
/* r { 22,i } */ [t{ i }]'1 [tb{ i }]'0 --> [T{ i },Tp{ i }]'1 []'0;

/* r { 23,i } */ [f{ i }]'1 [fb{ i }]'0 --> [F{ i },Fp{ i }]'1 []'0;

} : 1<=i<=n;

/* r { 24,i } */ [A{ i }]'2 [cb{ i }]'0 --> [c{ i }]'2 []'0 : 1<=i<=n;
/* r { 25,i } */ [Ap{ i }]'2 [ct{ i }]'0 --> [c{ i }]'2 []'0 : 2<=i<=n;
/* r { 26,i } */ [B{ i }]'2 [cb{ i }]'0 --> [c{ i }]'2 []'0 : 1<=i<=n;
/* r { 27,i } */ [Bp{ i }]'2 [ct{ i }]'0 --> [c{ i }]'2 []'0 : 2<=i<=n;

/* r { 28,i } */ [a{ i }]'1 [ab{ i }]'0 --> [T{ i },A{ i+1 }]'1 []'0 : 1<=i<=n;
/* r { 29,i } */ [ap{ i }]'1 [at{ i }]'0 --> [Fp{ i },Ap{ i+1 }]'1 []'0

: 1<=i<=n;

{
/* r { 30,i } */ [b{ i }]'1 [bb{ i }]'0 --> [B{ i+1 },S]'1 []'0;

/* r { 31,i } */ [bp{ i }]'1 [bt{ i }]'0 --> [Bp{ i+1 }]'1 []'0;

/* r { 32,i } */ [y{ i }]'2 [yt{ i }]'0 --> [z{ i },w{ i }]'2 []'0;

/* r { 33,i,j } */ [r{ i,j }]'2 [rt{ i,j }]'0 --> [s{ i },u{ i,j }]'2 []'0

: 1<=j<=n;
/* r { 34,i } */ [w{ i }]'2 [wt{ i }]'0 --> [Ab{ i+1 }]'2 []'0;

/* r { 35,i } */ [c{ i }]'2 [dt{ i }]'0 --> [Bb{ i+1 }]'2 []'0;

Algorithm 4: Continued.

14 Complexity

/* r { 36,i } */ [z{ i }]'2 [zt{ i }]'0 --> [Cb{ i+1 }]'2 []'0;

/* r { 37,i } */ [s{ i }]'2 [st{ i }]'0 --> [t{ i },f{ i }]'2 []'0;

} : 1<=i<=n;
/* r { 38,j } */ [u{ 1,j }]'2 [ut{ 1,j }]'0 --> [Db{ 1,j+1 },Db{ 2,j+1 }]'2 []'0

: 1<=j<=n;
/* r { 39,i,j } */ [u{ i,j }]'2 [ut{ i,j }]'0 --> [Db{ i+1,j+1 }]'2 []'0

: 2<=j<=n, 2<=i<=n;

/* r { 40 } */ [S]'1 --> []'1 []'1;

/* r { 41,i } */ [Db{ i,n+1 }]'2 [vt{ i,n+1 }]'0 --> [h{ i }*2]'2 []'0

: 1<=i<=n;

/* r { 42 } */ [A{ n+1 }]'1 [Ab{ n+1 }]'2 --> [E{ 1 }]'1 []'2;

/* r { 43 } */ [Ap{ n+1 }]'1 [Bb{ n+1 }]'2 --> [E{ 1 }]'1 []'2;

{
/* r { 44,i } */ [T{ i },Tp{ i }]'1 [h{ i }]'2 --> [Tb{ i }]'1 []'2;

/* r { 45,i } */ [F{ i },Fp{ i }]'1 [h{ i }]'2 --> [Fb{ i }]'1 []'2;

} : 1<=i<=n;

{
/* r { 46,i,j } */ [x{ i,j }]'3 [gp{ i,j,0 }]'0 --> [g{ i,j,1 }*2]'3 []'0;

/* r { 47,i,j } */ [xb{ i,j }]'3 [gbp{ i,j,0 }]'0 --> [gb{ i,j,1 }*2]'3 []'0;

{
/*r { 48,i,j,k }*/ [g{ i,j,k }]'3 [gp{ i,j,k }]'0 --> [g{ i,j,k+1 }*2]'3 []'0;

/*r { 49,i,j,k }*/ [gb{ i,j,k }]'3 [gbp{ i,j,k }]'0-->[gb{ i,j,k+1 }*2]'3 []'0;

} : 1<=k<=n-1;
/* r { 50,i,j } */ [g{ i,j,n }]'3 [gp{ i,j,n }]'0 --> [e{ i,j }]'3 []'0;

/* r { 51,i,j } */ [gb{ i,j,n }]'3 [gbp{ i,j,n }]'0 --> [eb{ i,j }]'3 []'0;

} : 1<=j<=m, 1<=i<=n;
/* r { 52,j,k } */ [l{ j,k }]'3 [lb{ j,k }]'0 --> [l{ j,k+1 }*2]'3 []'0

: 0<=k<=n-1, 1<=j<=m;
/* r { 53,j } */ [l{ j,n }]'3 [lb{ j,n }]'0 --> [l{ j }]'3 []'0 : 1<=j<=m;

{
/* r { 54,i,j } */ [Tb{ i },E{ j }]'1 [e{ i,j }]'3 --> [E{ i,j }]'1 []'3;

/* r { 55,i,j } */ [Fb{ i },E{ j }]'1 [eb{ i,j }]'3 --> [Eb{ i,j }]'1 []'3;

/* r { 56,i,j } */ [E{ i,j }]'1 [l{ j }]'3 --> [l{ i,j }]'1 [E{ i,j }]'3;
/* r { 57,i,j } */ [Eb{ i,j }]'1 [l{ j }]'3 --> [lb{ i,j }]'1 [Eb{ i,j }]'3;
/* r { 58,i,j } */ [l{ i,j }]'1 [E{ i,j }]'3 --> [Tb{ i },E{ j+1 }]'1 []'3;

/* r { 59,i,j } */ [lb{ i,j }]'1 [Eb{ i,j }]'3 --> [Fb{ i },E{ j+1 }]'1 []'3;

} : 1<=j<=m, 1<=i<=n;

/*r { 60,i }*/ [al{ i }]'3 [alb{ i }]'0-->[al{ i+1 }]'3 []'0 : 0<=i<=4*n+3*m+3;

/* r { 61 } */ [E{ m+1 }]'1 [p]'3 --> []'1 [yes]'3;

/* r { 62 } */ [yes]'3 []'0 --> []'3 [yes]'0;

/* r { 63 } */ [al{ 4*n+3*m+4 },p]'3 []'0 --> []'3 [no]'0;

}

/* Input cell: 3 */

def define input()

{
@ms(3) += xb{ variable{ i },clause{ i } }*valn{ i },

x{ variable{ i },clause{ i } }*val{ i } : 1<=i<=nvals;
}

Algorithm 4: P-Lingua translation for SAT solution.

Complexity 15

(i) New model type, tsec:
@model<tsec>

(ii) Communication rules with two cells in the right hand
of the rule, as:
[Eb{ i,j }]'1 [l{ j }]'3 --> [lb{ i,j }]'1
[Eb{ i,j }]'3 : 1<=j<=m, 1<=i<=n;
[al{ 4*n+3*m+4 },p]'3 []'0 --> []'3 [no]'0;

Custom App Based on MeCoSim. A new visual app has
been customised using MeCoSim for the solution of SAT
with TESAS P systems, including a series of relevant ele-
ments:

(i) Input tables to introduce the propositional formulas.
The data introduced in these tables are then converted
into parameters for the model that can be used to
generate the corresponding cod(𝜑).

(ii) Use of existing SAT plugin to provide end users with
a more natural way of introducing the formulas that
are then converted to the format of the previous
tables.

(iii) Definition of the output showing in different formats
if the formula is satisfiable or not, generated from the
objects of the computation.

New Simulators for Tissue P Systems with Evolutional Rules. In
the proof of Theorem 5, a deterministic algorithm was given
to reproduce the behaviour of a computation of Π + 𝑚, with
𝑚 an input multiset coding the input of the system. Tomimic
the algorithm described, several simulators were developed
to compute P systems in TSEC. These simulators present
subtle differences to select the rules to be applied, all of them
compliant with the semantics defined for these systems (more
details in Algorithm4).Themain differences among them are
the following:

(i) Nondeterministic simulator: this simulator distin-
guishes two states (first communication rules are
selected and later separation rules if no communica-
tion rules can be selected over a cell); this simulator
visits cell by cell, according to its order of appearance
in P-Lingua file; for each cell, the set of rules is
shuffled and then applied as many times as possible,
to guarantee maximality.

(ii) Deterministic by cell: the selection phase keeps the
same two states of the previous simulator, but the
cells are visited according to the lexicographical order
of their labels. The set of rules inside each cell is
not shuffled, but visited according to P-Lingua file
order.

(iii) Deterministic by rule: this simulator is more similar
to the deterministic algorithm described in the proof
of Theorem 5. Thus, its selection phase, instead of
going cell by cell (as the previous simulators), starts
visiting at the most external level each rule. As
described in Section 3, the rules are visited in the

following order: direct communication between cells,
then communication with environment, and finally
separation, if possible; for each type of rules of the
same type, it selects the rules following the order in
the P-Lingua file.

(iv) Deterministic by rule, lexicographically: it performs
the computations as described in the proof of The-
orem 5. In addition to the most external visit of the
different set of rules, in the same order of the previous
simulator, inside a specific type of rules, the cells
are visited according to the lexicographical order of
their labels, thus meeting the structure defined in the
referred section.

Computer-Aided Design and Validation of Tissue P Systems
with Evolutional Symport/Antiport Rules. The tools described
played a significant role in the design, simulation, and vali-
dation of the solution for the SAT problem described in The-
orem 8. Handling these complex solutions is hard and error-
prone, and here the availability of the software tools helped
significantly in the checking of the model and its properties,
as detailed in the Appendix. Additionally, the development of
the tools implied revisiting the general algorithms proposed
for the model, thus paying attention to subtle details, given
the need of reproducing every detail specified in the formal
definition of the model, so these development tasks emerged
as enriching complementaryworks to enhance the robustness
of the computingmodels and their corresponding theoretical
definitions.

5. Conclusions and Further Works

The computational complexity of tissue P systems with cell
separation was first investigated in [29], where using com-
munication rules with the length of at most 1, only tractable
problems can be efficiently solved; and using communication
rules with length at most 8, the SAT problem can be solved.
In [42], it is shown that only tractable problems can be
efficiently solved by tissue P systems with cell separation
using communication rules with length at most 2; and the
SAT problem can be solved by this kind of P systems using
communication rules with length at most 3 [26]. In [33],
tissue P systems with evolutional symport/antiport rules and
cell division (TESAD P systems, for short) were proposed,
where objects are moved from one region to another region
and may be evolved during this process. It is shown that
a limit on the efficiency of TESAD P systems is provided
with evolutional communication rules of length at most 2;
and when using evolutional communication rules of length
at most 4, the SAT problem can be solved by TESAD P
systems.
In this work, membrane fission as a mechanism to

generate an exponential workspace (expressed in terms of
number of membranes and number of objects) has been
considered instead of membrane division, in the framework
of tissue P systems with evolutional symport/antiport rules.
The computational efficiency of this kind of tissue P systems
has been investigated. In this context, the main contributions

16 Complexity

of the paper are the following: (a) only problems in class
P can be efficiently solved by means of families of tissue P
systems with cell separation and evolutional communication
rules of length at most (𝑛, 1) (or rules of length at most (1, 𝑛)),
for each natural number 𝑛 ≥ 1; (b) computationally hard
problems can be solved in polynomial time by recognizer
TESAS P systems when using evolutional communication
rules of length at most (𝑛, 2), for each natural number
𝑛 ≥ 3; and (c) a new MeCoSim based simulator has been
designed to check the correctness of the solution to the SAT
problem.
As future works, we propose the following:

(1) In Section 3, a polynomial time solution to the SAT
problem by means of a family of tissue P systems
from TSEC(3, 2) has been provided. It remains open
whether NP-complete problems can be efficiently
solved by tissue P systems from TSEC(2, 2). What
about the computational efficiency of TSEC(2, 𝑛), for
each natural number 𝑛 ≥ 2?Moreover, the solution to
the SAT problem in Theorem 8 has both evolutional
symport rules and evolutional antiport rules. It is
of interest to investigate the computational power of
tissue P systems with cell separation that use only
either evolutional symport or evolutional antiport
rules.

(2) In the framework of tissue P systems, the environment
is a singular region since the objects initially placed in
it have an arbitrary large number of copies. Tissue P
systemswith cell separation andwithout environment
(the alphabet of the environment is empty) were
considered in [43]. It would be interesting to analyze
the computational efficiency of recognizer TESAS P
systems when the alphabet of the environment is an
empty set.

(3) Besides much investigated maximal parallelism, sev-
eral ways of using rules were also considered inmem-
brane computing, such as flat maximal parallelism
[44, 45]. It remains openwhat the computation power
of recognizer TESAS P systems working in a flat
maximally parallel manner is.

(4) In [33], recognizer TESA P systems with cell division
were introduced and the length of an evolutional
communication rule was defined as the total num-
ber of objects involved in it. The computational
efficiency of TDEC(4), the class of all recognizer
TESA P systems with cell division using evolu-
tional communication rules with length at most 4,
was provided. We propose to analyze the efficiency
of recognizer TESA P systems with cell division
with respect to the length of evolutional commu-
nication rules given in this paper: length(𝑟) =
(length(LHS(𝑟)), length(RHS(𝑟))). In fact, the solu-
tion to SAT problem provided in the cited paper
corresponds to a family from TDEC(3, 2). What
about the computational efficiency of TDEC(2, 𝑛), for
each natural number 𝑛 ≥ 2?

Appendix

A Software Aid for Validation:
Details and Remarks

The solution to the SAT problem by TESAS P systems
is very complicated (see Theorem 8); it is not obviously
a trivial solution, easy to follow and check. In order to
check whether the solution to the SAT problem by TESAS
P systems is correct, a custom visual application based on
MeCoSim (http://www.p-lingua.org/mecosim/) was
provided (see [25] for further study). With this software
application, P systems designers could analyse carefully their
design; in addition, end users were able to introduce their
propositional formulas visually, then run the simulations, and
finally get the results.
In what follows, we will develop a new simulator

MeCoSim to check the correctness of the solution to the SAT
problems.
Taking the existing P-Lingua syntax for P systems intro-

duced in [25] as a starting point, we will introduce the syntax
for tissue P systems with evolutional symport/antiport rules
(that we will abbreviate referring to the class as TSEC),
along the following subsections.Then, we will provide a brief
description about the simulators developed to run this kind
of systems.

New Elements in P-Lingua Framework. P-Lingua framework
includes up to now a significant number of P systems
supported; however, it cannot obviously include elements
not conceived so far. Therefore, if we want to simulate a new
model, some elements might be necessary. The following
types of rules were available for classical symport/antiport
rules:

(i) (1, 𝑇1/𝑡1, 2);
(ii) (3, 𝐸3/𝜆, 0).

The P-Lingua syntax for these classical types of commu-
nication rules was the following:

[T{1}]’1 <--> [t{1}]’2;
/∗ antiport rule $(1, T 1/t i, 2))$ ∗/
[E{3}]’3 <--> []’0.
/∗ symport rule $(3, E 3/\lambda, 0))$ ∗/

Thus, the syntax tried tomimic the theoretical description
of the computing model. This kind of rules might also be
present in P systems in TSEC. However, in this new model,
additional types of rules appear, and the previous ingredients
are not enough, so P-Lingua language had to be extended to
include the possibility of rules with two cells in the left hand
side of the rule, as the ones described along the paper:

(i) [𝐸𝑖,𝑗]1 [𝑙𝑗]3 → [𝑙𝑖,𝑗]1[𝐸𝑖,𝑗]3, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚;
(ii) [𝛼4𝑛+3𝑚+4𝑝]3[]0 → []3[no]0.

Complexity 17

Model Specification. Any P-Lingua file defining a P system in
TSEC must set tsec as its model, thus beginning such file
with the sentence:

@model<tsec>
The rest of the file will then define the main elements

describing the P system, typically consisting of

Π = (Γ, Γ0, Γ1,E, Σ,M1, . . . ,M𝑞,R, 𝑖in, 𝑖out) . (A.1)

These elements are described in detail in the following
subsections. The sets of rules will include the new elements
introduced by this work, and other subsections, without
significant changes with respect to other existing models, are
included here to make the work self-contained.

Cells Structure. Before starting with the translation of the
elements explicitly written in Π, let us pay attention to
the structure of the system. While the structure of cells
is implicit in the definition above, which is deduced from
M1, . . . ,M𝑞, in P-Lingua, the structure of cells must be
explicitly described. For instance, the structure of a tissue P
system in TSEC with 𝑞 = 3 should be defined as follows:

@mu = [[]’1 []’2 []’3]’0;

As it can be seen, an external structure labelled by 0 is
included, representing the environment containing the three
cells.

Alphabets. The first element appearing in the definition of a
P system is Γ, with partition divided into Γ0 and Γ1. These
alphabets are described in P-Lingua in the following way:

@ms1 = a, b, c;
/∗ Describe $\Gamma 0$), containing the set
$\{a, b, c\})$ ∗/
@ms2 = d, e, f;
/∗ Describe $\Gamma 1$), containing the set
$\{d, e, f\})$ ∗/

The alphabet of the environment E is specified through
the assignment of an initial set of elements to the environ-
ment, in the usual way to specify multisets in P-Lingua,
but in this case with the target region 0 representing the
environment. For instance, let us consider an alphabet of the
environment as

E = {𝐸0} ∪ {𝛼𝑖 | 0 ≤ 𝑖 ≤ 4𝑛 + 3𝑚 + 4} . (A.2)

It would be written in P-Lingua as

@ms(0) = E{0};
@ms(0) += al{i} : 0<=i<=4∗n+3∗m+4;
/∗ αi is written as al{i} ∗/

Note that while a simple set can be assigned by the symbol
=, the incremental inclusion of new elements requires the use
of symbol +=. Otherwise, the previous assignment is replaced
by the new one, not only between the first instruction and

the second, but also for each iteration of the loop involving
variable i.
No explicit definition of Σ is given in P-Lingua. On the

contrary, the corresponding symbols are introduced in Γ0 or
Γ1, thus being part of Γ, and their use as elements of the input
alphabet will be given by its inclusion in the input cell, which
is also not explicitly given.

Definition of Initial Multisets. When defining P systems
in TSEC, a relevant element to include is the multiset of
objects initially present inside each cell,M1, . . . ,M𝑞. This is
performed through the assignment of themultiset to the label
of the corresponding cell. Thus, givenM1 = {𝐴1, 𝐵1}, it can
be specified in P-Lingua as follows:

@ms(1) = A{1}, B{1};

Definition of Rules. The main focus of this work was on the
study of the computational complexity of tissue P systems
with evolutional symport/antiport rules. More specifically,
relevant results regarding frontiers of the efficiency of P
systems in TSEC were provided, and in this kind of systems
the role of the evolutional rules was crucial. It is not therefore
surprising that the most relevant ingredients included in P-
Lingua framework as part of this work were the evolutional
communication rules needed as part of the definition of the
sets 𝑅𝑖 described below.

(i) [𝐸𝑖,𝑗]1[𝑙𝑗]3 → [𝑙𝑖,𝑗]1[𝐸𝑖,𝑗]3, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,
(ii) [𝛼4𝑛+3𝑚+4𝑝]3[]0 → []3[no]0
The grammar designed in P-Lingua for tsec includes

the required elements, so that these rules can be specified as
shown:

[Eb{ i,j }]'1 [l{ j }]'3 --> [lb{ i,j }]'1
[Eb{ i,j }]'3 : 1<=j<=m, 1<=i<=n;
[al{ 4*n+3*m+4 },p]'3 []'0 --> []'3 [no]'0;

Note that the suffix b in some objects stands for bar, given
the impossibility to express the top bars over the letters in
plain text files. Apart from that, the design of the language
tried to preserve the syntax as close as possible of that for
defining the P systems throughout the paper. Thus, the first
rule is an evolutional antiport rule involving cells 1 and 3, and
the second one is an evolutional symport rule.

Input and Output Region. The last syntactic elements in the
definition of P systems in TSEC are the input and the output
region. There is no explicit definition of these elements in P-
Lingua. Instead, some elements can be defined in MeCoSim
website in relation with that input/output. Regarding the
input, MeCoSim provides most user-oriented layer of the
framework, allowing the customization of input tables in the
user interface. The data introduced in these tables are then
converted into parameters for the model that can be used to
generate the corresponding cod(𝜑).
Let us illustrate this with the solution for the SAT problem

given in the previous section and whose P-Lingua file is given
in Algorithm 4. A MeCoSim custom app has been defined,

18 Complexity

Figure 2: MeCoSim input table.

including an input table whose rows represent tuples (clause,
variable, and value), so that, for each variable appearing in a
clause and input formula, the value can be 1 if the variable
appears in the clause in positive form and −1 if it is negated
(see Figure 2). For each row i, the configuration given in
MeCoSim defines parameters for variable{i}, clause{i},
and value{n}; this last parameter is converted to other two
parameters, val and valn, each one being 1 if the value is 1
(resp., −1), and 0 otherwise.
In the given solution, the input cell is 3, so the input

multiset cod(𝜑) is finally generated, from an input given by
the input and automatically converted into parameters, with
the following sentence in P-Lingua:

def define input ()
{
@ms(3) += xb{variable{i}, clause{i}}∗valn{i},
x{variable{i}, clause{i}}∗val{i} : 1<=i<=nvals;
}

As it can be seen, the assignment of objects to the
input cell iterates over each pair ⟨variable, clause⟩ (note that
nvals is another parameter corresponding with the number
of rows in the input table, that is, the number of pairs
⟨variable, clause⟩). Thus, if row 1 of the input table states
that variable 2 appears in clause 1 in negated form (resp., in
affirmed form), then an object xb{ 2,1 } (resp., x{ 2,1 }) is
added to the input multiset, as expected by the definition of
the input given in the previous subsection, where objects 𝑥𝑖,𝑗
(resp., 𝑥𝑖,𝑗) were described. It is worth noting at this point
that the end user was provided with an additional aid to
introduce their formulas, through aMeCoSim plugin for SAT
that generates the information for the tables from a more
user-friendly input format, as shown in Figure 3.
Regarding the output cell, again there is no explicit

definition in P-Lingua, but the whole system will follow a
computation; when a halting configuration is reached, one
can interpret the output in many different ways. However,
anothermechanism inMeCoSim allows the customization of
outputs to focus on the regions, objects, or results expected
by the user. Thus, for SAT problem, a P system designer can

Figure 3: MeCoSim SAT plugin.

Figure 4: MeCoSim output for P systems designer.

pay attention to every object appearing inside each cell or in
the environment, as shown in Figure 4; however, an end user
interested in SAT problem itself will only focus on the final
answer, given internally by the presence of object 𝑦𝑒𝑠 or 𝑛𝑜
in the environment in the last step of the computation and
abstracted to the user by tables or charts as shown in Figure 5.

New Simulators for Tissue P Systems with Evolutional Rules.
The main elements of the language designed for the speci-
fication of P systems in TSEC within the framework of P-
Lingua have been described. In addition, some features have
been shown concerning the interaction layer provided by
MeCoSim, the introduction of inputs, and the visualization of
results. However, nothing has been said about what happens
with the specification of the P system given in P-Lingua and
the input given by the end user, before the result actually
appears. Obviously, the answer is clear: we need something
able to generate the initial configuration of the P system
and perform its computation until a halting configuration is
reached.
In the proof of Theorem 5, a deterministic algorithm

was given to reproduce the behaviour of a computation of
Π + 𝑚, with 𝑚 an input multiset coding the input of the
system. We will see that a simulator has been developed
to mimic the algorithm described, but before that other
alternative approaches have been followed to complement
it. Thus, several simulators have been developed within the

Complexity 19

Figure 5: MeCoSim output for end user.

engine of P-Lingua, in order to perform the computations of P
systems in TSEC. All the simulators follow a general schema:

(1) Initialization
(2) For each computation step, while some rules are
applicable:

(a) Selection of rules
(b) Execution of rules

The initialization phase will set the initial structures
needed by the algorithm, and the details aremainly technical,
not considered very relevant for scientific purposes.Then, the
main loop will run until a halting configuration is reached,
that is, until no rule is applicable at a given computation step.
The selection phase will check which rules can be applied.

The simulators developed present subtle differences in this
phase, but all of them meet the semantics defined for this
kind of newly defined systems. Thus, the maximality is
guaranteed, and the applicability of the rules is the same in
all the cases: the multisets present in the left hand side of
the rules must be present in order to make a rule applicable.
Besides, at most one selection rule can be performed over
the same cell in a computation step, and the simultaneous
execution of separation and communication rules in the
same step affecting the same cell is not allowed. In addition,
the simulators developed prioritize the selection of evolu-
tional symport/antiport rules (abbreviated as communication
rules), so that selection rules will only be applied to a cell if no
evolutional symport/antiport rules can be selected affecting
the cell.Themain differences in the four simulators developed
are the following:

(i) Nondeterministic simulator: this simulator distin-
guishes two states (first communication rules are
selected and later separation rules if no communica-
tion rules can be selected over a cell); this simulator
visits cell by cell, according to its order of appearance
in P-Lingua file; for each cell, the set of rules is
shuffled and then applied as many times as possible,
to guarantee maximality.

(ii) Deterministic by cell: the selection phase keeps the
same two states of the previous simulator, but the cells
are visited according to the lexicographical order of
their labels. The set of rules inside each cell is not
shuffled but visited according to P-Lingua file order.

(iii) Deterministic by rule: this simulator is more similar
to the deterministic algorithm described in the proof
of Theorem 5. Thus, its selection phase, instead of
going cell by cell (as the previous simulators), starts
visiting at the most external level each rule. As
described in that section, the rules are visited in the
following order: direct communication between cells,
then communication with environment, and finally
separation, if possible; for each type of rules of the
same type, it selects the rules following the order in
the P-Lingua file.

(iv) Deterministic by rule, lexicographically: it performs
the computations as described in the proof of The-
orem 5. In addition to the most external visit of the
different set of rules, in the same order of the previous
simulator, inside a specific type of rules, the cells
are visited according to the lexicographical order of
their labels, thus meeting the structure defined in the
referred section.

As a result of this selection phase, a set of rules will have
been selected, verifying that every membrane with applicable
rules has selected exactly one.
Then, the execution phase applies the change in the

configuration, passing fromC𝑡 toC𝑡+1, removing the objects
consumed by the selected rules, and adding the objects
produced by the rules to the corresponding target indicators.

Computer-Aided Design and Validation of Tissue P Systems
with Evolutional Symport/Antiport Rules. The tools described
in the previous subsections have played a significant role in
the design, simulation, and validation of the solution for the
SAT problem described in Theorem 8. As mentioned at the
beginning of the present section, handling complex solutions
as the one presented here is not an easy task, frequently
tedious end error-prone. Therefore, the availability of the
software tools developed has provided a significant help in
the checking of the model and its properties.
First of all, these tools include parsers to detect possible

errors in P-Lingua files that could be translation errors or
due to inaccuracies from the solution, maybe not meeting
some features required by the computing model.Throughout
the debugging process, we are informed about the rules that
are being generated for the system, so that we can check
that the expected sets of rules are actually available for the
computation of the system, as shown in Figure 6. If some
errors are detected, we are informed in Errors tab. Other
possible alerts are given in Warnings tab.
In addition, parsing tab will show at the end the initial

configuration of the system, thus allowing the P systems
designer to contrast if the expected multisets were produced.
Once the solution has been proved correct after the

debugging process, we can be interested in checking that the
system evolves according to our manual traces; to do so, we
can follow the computation step by step, informing about the
rules applied for each step and the objects contained inside
each region of every configuration, as shown in Figure 7.
In addition, several visual aids are available to ease the

checking of information concerning alphabets, structure, or

20 Complexity

Figure 6: Debugging process.

Figure 7: Step by step simulation process.

Figure 8: An example of simulation information in a computation.

multisets inside each region. These aids can be visualized in
any moment of the computation. An example of this kind of
viewers is given in Figure 8.
Additionally, along with the checking of the specific

solution, the development of this type of tools shows itself as
a good way of revisiting the general algorithms proposed for
themodel, paying attention to subtle details, given the need of
reproducing every detail specified in the formal definition of
the model, so these development tasks emerge as enriching
complementary tasks for the robustness of the computing
models and their corresponding theoretical definitions.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

The work of Linqiang Pan and Bosheng Song was supported
by National Natural Science Foundation of China (61602192,
61772214, 61320106005, and 61033003), China Postdoctoral
Science Foundation (2016M600592, 2017T100554), and the
Innovation Scientists and Technicians Troop Construction
Projects of Henan Province (154200510012).

References

[1] Gh. Păun, “Computing with membranes,” Journal of Computer
and System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[2] M. Amos, A. Gibbons, and P. E. Dunne, “Toward feasible and
efficient DNA computation,” Complexity, vol. 4, no. 1, pp. 20–
24, 1998.

[3] C. S. Calude and Gh. Păun, “Computing with cells and atoms in
a nutshell,” Complexity, vol. 6, no. 1, pp. 38–48 (2001), 2000.

[4] B. Aman, P. Battyányi, G. Ciobanu, and G. Vaszil, “Simulating
P systems with membrane dissolution in a chemical calculus,”
Natural Computing, vol. 15, no. 4, pp. 521–532, 2016.

[5] M. Ionescu, Gh. Păun, and T. Yokomori, “Spiking neural P
systems with an exhaustive use of rules,” International Journal
of Unconventional Computing, vol. 3, no. 2, pp. 135–156, 2007.

[6] S. N. Krishna and Gh. Păun, “P systems with mobile mem-
branes,” Natural Computing, vol. 4, no. 3, pp. 255–274, 2005.

[7] V. Manca and L. Marchetti, “Solving dynamical inverse prob-
lems bymeans of Metabolic P systems,” BioSystems, vol. 109, no.
1, pp. 78–86, 2012.

[8] H. Peng, J. Wang, M. J. Pérez-Jiménez, and A. Riscos-Núñez,
“An unsupervised learning algorithm for membrane comput-
ing,” Information Sciences, vol. 304, pp. 80–91, 2015.

[9] H. Peng, J. Wang, P. Shi, M. J. Pérez-Jiménez, and A. Riscos-
Núñez, “An extendedmembrane systemwith activemembranes
to solve automatic fuzzy clustering problems,” International
Journal of Neural Systems, vol. 26, no. 3, pp. 1–17, 2016.

[10] G. Zhang, H. Rong, F. Neri, and M. J. Pérez-Jiménez, “An
optimization spiking neural P system for approximately solving
combinatorial optimization problems,” International Journal of
Neural Systems, vol. 24, no. 5, 2014.

[11] C. Mart́ın-Vide, J. Pazos, Gh. Păun, and A. Rodŕıguez-Patón,
“Tissue P systems,”Theoretical Computer Science, vol. 296, no.
2, pp. 295–326, 2003.

[12] M. Ionescu, Gh. Păun, and T. Yokomori, “Spiking neural P sys-
tems,” Fundamenta Informaticae, vol. 71, no. 2-3, pp. 279–308,
2006.

[13] Gh. Păun, G. Rozenberg, and A. Salomaa, Eds., The Oxford
Handbook of Membrane Computing, Oxford University Press,
New York, NY, USA, 2010.

[14] A. Păun and Gh. Păun, “The power of communication: P
systems with symport/antiport,” New Generation Computing,
vol. 20, no. 3, pp. 295–305, 2002.

[15] A. Alhazov, R. Freund, and M. Oswald, “Cell/symbol complex-
ity of tissue P systems with symport/antiport rules,” Interna-
tional Journal of Foundations of Computer Science, vol. 17, no.
1, pp. 3–25, 2006.

[16] S. N. Krishna, K. Lakshmanan, and R. Rama, “Tissue P systems
with contextual and rewriting rules,” Lecture Notes in Computer
Science, vol. 2597, pp. 339–351, 2003.

[17] A. Păun, Gh. Păun, and G. Rozenberg, “Computing by com-
munication in networks of membranes,” International Journal

Complexity 21

of Foundations of Computer Science, vol. 13, no. 6, pp. 779–798,
2002.

[18] B. Song, T. Song, and L. Pan, “A time-free uniform solution
to subset sum problem by tissue P systems with cell division,”
Mathematical Structures in Computer Science, vol. 27, no. 1, pp.
17–32, 2017.

[19] R. Freund, Gh. Păun, and M. J. Pérez-Jiménez, “Tissue P sys-
tems with channel states,” Theoretical Computer Science, vol.
330, no. 1, pp. 101–116, 2005.

[20] R. Freund and M. Oswald, “Modelling grammar systems by
tissue P systems working in the sequential mode,” Fundamenta
Informaticae, vol. 76, no. 3, pp. 305–323, 2007.

[21] Gh. Păun, M. J. Pérez-Jiménez, and A. Riscos-Núñez, “Tissue P
systems with cell division,” International Journal of Computers,
Communications & Control, vol. 3, no. 3, pp. 295–303, 2008.

[22] B. Aman and G. Ciobanu, “Efficiently solving the bin packing
problem through bio-inspired mobility,” Acta Informatica, vol.
54, no. 4, pp. 435–445, 2017.

[23] D. Dı́az-Pernil, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez,
and A. Riscos-Núñez, “Solving subset sum in linear time by
using tissue P systems with cell division,” Lecture Notes in
Computer Science, vol. 4527, no. 1, pp. 170–179, 2007.

[24] D. Dı́az-Pernil, M. J. Pérez-Jiménez, A. Riscos-Núñez, and Á.
Romero-Jiménez, “Computational efficiency of cellular division
in tissue-like membrane systems,” Romanian Journal of Infor-
mation, Science and Technology, vol. 11, no. 3, pp. 229–241, 2008.

[25] I. Pérez-Hurtado, L. Valencia-Cabrera, J. M. Chacón, A. Riscos-
Núñez, and M. J. Pérez-Jiménez, “A P-Lingua based simulator
for tissue P systems with cell separation,” Romanian Journal of
Information Science and Technology, vol. 17, no. 1, pp. 89–102,
2014.

[26] M. J. Pérez-Jiménez and P. Sośık, “An optimal frontier of the
efficiency of tissue P systems with cell separation,” Fundamenta
Informaticae, vol. 138, no. 1-2, pp. 45–60, 2015.

[27] A. Alhazov, A. Leporati, G. Mauri, A. E. Porreca, and C. Zan-
dron, “Space complexity equivalence of P systems with active
membranes and Turing machines,” Theoretical Computer Sci-
ence, vol. 529, pp. 69–81, 2014.

[28] A. Leporati, L. Manzoni, G. Mauri, A. E. Porreca, and C. Zan-
dron, “Membrane division, oracles, and the counting hierarchy,”
Fundamenta Informaticae, vol. 138, no. 1-2, pp. 97–111, 2015.

[29] L. Pan and M. J. Pérez-Jiménez, “Computational complexity of
tissue-like P systems,” Journal of Complexity, vol. 26, no. 3, pp.
296–315, 2010.

[30] A. E. Porreca, N. Murphy, andM. J. Pérez-Jiménez, “An optimal
frontier of the efficiency of tissue P systems with cell division,”
in Proceedings of the Tenth Brainstorming Week on Membrane
Computing, pp. 141–166, Seville, Spain, 2012.

[31] R. Gutiérrez-Escudero, M. J. Pérez-Jiménez, and M. Rius-Font,
“Characterizing tractability by tissue-like P systems,” Lecture
Notes in Computer Science, vol. 5957, pp. 289–300, 2009.

[32] L. F. Maćıas-Ramos, B. Song, L. Valencia-Cabrera, L. Pan,
and M. J. Pérez-Jiménez, “Membrane fission: a computational
complexity perspective,” Complexity, vol. 21, no. 6, pp. 321–334,
2016.

[33] B. Song, C. Zhang, and L. Pan, “Tissue-like P systems with evo-
lutional symport/antiport rules,” Information Sciences, vol. 378,
pp. 177–193, 2017.

[34] D. Dı́az-Pernil, I. Pérez-Hurtado, M. J. Pérez-Jiménez, and
A. Riscos-Núñez, “A P-lingua programming environment for
membrane computing,” Lecture Notes in Computer Science, vol.
5391, pp. 187–203, 2009.

[35] M. Garca-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hur-
tado, M. J. Pérez-Jiménez, and A. Riscos-Núñez, “An overview
of P-Lingua 2.0,” Lecture Notes in Computer Science, vol. 5957,
pp. 264–288, 2010.

[36] P-Lingua, http://www.p-lingua.org/.
[37] I. Pérez-Hurtado, L. Valencia-Cabrera, M. J. Pérez-Jiménez,

M. A. Colomer, and A. Riscos-Núñez, “MeCoSim: A general
purpose software tool for simulating biological phenomena
by means of P systems,” in Proceedings of the 2010 IEEE 5th
International Conference on Bio-Inspired Computing: Theories
and Applications, BIC-TA 2010, K. Li, Z. Tang, R. Li, A. K.
Nagar, and R. Thamburaj, Eds., vol. 1, pp. 637–643, IEEE Press,
Changsha, China, September 2010.

[38] MeCoSim, http://www.p-lingua.org/mecosim/.
[39] G. Rozenberg and A. Salomaa, Eds., Handbook of Formal Lan-

guages, vol. 3, Springer, Berlin, Germany, 1997.
[40] M. J. Pérez Jiménez, A. Romero, and F. Caparrini, “Complexity

classes in models of cellular computing with membranes,”
Natural Computing, vol. 2, no. 3, pp. 265–285, 2003.

[41] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, Ed.,
San Francisco, Calif, USA, 1979.

[42] L. Pan, M. J. Pérez-Jiménez, A. Riscos-Núñez, and M. Rius-
Font, “New frontiers of the efficiency in tissue P systems,” in
Proceedings of the Asian Conference on Membrane Computing,
pp. 61–73, Wuhan, China, 2012.

[43] L. F. Maćıas-Ramos, M. J. Pérez-Jiménez, A. Riscos-Núñez, M.
Rius-Font, and L. Valencia-Cabrera, “The efficiency of tissue P
systems with cell separation relies on the environment,” Lecture
Notes in Computer Science, vol. 7762, pp. 243–256, 2013.

[44] L. Pan, Gh. Păun, and B. Song, “Flat maximal parallelism in P
systemswith promoters,”Theoretical Computer Science, vol. 623,
pp. 83–91, 2016.

[45] B. Song, M. J. Pérez-Jimenez, Gh. Păun, and L. Pan, “Tissue
P systems with channel states working in the flat maximally
parallel way,” IEEE Transactions on NanoBioscience, vol. 15, no.
7, pp. 645–656, 2016.

http://www.p-lingua.org/
http://www.p-lingua.org/mecosim/

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

