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The basic human ability to treat quantitative information can be divided into two parts. 
With proto-arithmetical ability, based on the core cognitive abilities for subitizing and 
estimation, numerosities can be treated in a limited and/or approximate manner. With 
arithmetical ability, numerosities are processed (counted, operated on) systematically in 
a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation 
as presented by Menary (2015) as a possible explanation of how we make the move from 
the proto-arithmetical ability to arithmetic proper. I argue that enculturation based on 
neural reuse provides a theoretically sound and fruitful framework for explaining this 
development. However, I show that a comprehensive explanation must be based on valid 
theoretical distinctions and involve several stages in the development of arithmetical 
knowledge. I provide an account that meets these challenges and thus leads to a better 
understanding of the subject of enculturation.

Keywords: enculturated cognition, arithmetical cognition, proto-arithmetic, philosophy of mathematics, 
cumulative cultural evolution

INTRODUCTION

In this paper, I  focus on a particular stage in the development of mathematical cognition that 
is of high general scientific and philosophical importance. There is a growing amount of data 
suggesting that our first ability to treat observations in terms of quantities comes from core 
cognitive systems we  already possess as infants and share with many nonhuman animals (see, 
e.g., Dehaene, 1997/2011 and Kadosh and Dowker, 2015 for overviews). According to a widely 
accepted paradigm, these core cognitive abilities are later developed into systematic ways of 
processing discrete quantities (Dehaene, 1997/2011; Butterworth, 1999; Spelke, 2000; Halberda 
and Feigenson, 2008; Carey, 2009). Unlike the emergence of the core cognitive abilities, this 
step does not occur universally, but most cultures develop some system of numerals to deal 
at least with small quantities (Ifrah, 1998; Everett, 2017). I  call the ability up to and including 
this point proto-arithmetic. Some cultures also develop the treatment of quantities beyond the 
proto-arithmetical ability. They create recursive number systems which can be  used without 
expressive limits, as well as operations (addition, multiplication, etc.) in these systems. Such 
number systems I  call arithmetic proper. The main question here concerns the development 
from the core cognitive abilities to acquiring proper arithmetical knowledge and skills.

I approach this question both from the ontogenetic and the phylogenetic angle on the basis 
of Menary’s (2015) theory of enculturation, which refers to the way cognitive processes develop, 
determined by surrounding cultural input. I  will show that the move from proto-arithmetic 
to arithmetic poses a key question in explaining mathematical cognition, and the enculturation 
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account provides a fruitful framework for analyzing it. In section 
“What Is Arithmetic?” I  start by establishing the difference 
between proto-arithmetical and arithmetical ability. In section 
“From Proto-Arithmetic to Arithmetic” I clarify what is involved 
in the move from proto-arithmetic to arithmetic. This is then 
analyzed in section “Enculturation as the Answer?” through 
the enculturation account on the level of physiological and 
cultural manifestations. In section “Whither Enculturation?” 
I  conclude that while enculturation provides a theoretically 
and empirically sound and fruitful platform for studying the 
development of arithmetical knowledge, we  are currently only 
at the very beginning of that journey. I  also outline how to 
relate the enculturation framework to existing and future 
empirical research in fields like mathematics education.

What Is Arithmetic?
When we want to clarify the nature and the origin of arithmetical 
knowledge, the first order of business is to determine what 
we  mean by “arithmetic.” In the mathematical, philosophical, 
and empirical literature, there are several meanings of the word, 
which can be  problematic when we  want to construct 
mathematically valid and empirically informed philosophical 
accounts of mathematics. Unfortunately, in the literature on 
what is usually called “numerical cognition” or “number 
cognition,” there is a tendency to conflate the meaning of 
several key concepts. “Number,” “natural number,” “numerosity,” 
and “quantity” are often used interchangeably in different 
contexts. In the same discussion, “number” may be  used to 
refer to a term of formal arithmetic, as well as to an infant 
or animal ability for treating quantities. Thus, when scientists 
write about “arithmetic,” it is sometimes impossible to determine 
what is meant. The research direction established by Wynn 
(1992), for example, is often referred to as “infant arithmetic.” 
Similarly, empirical scientists have written about “arithmetic 
in newborn chicks” (Rugani et  al., 2009) and “numerical and 
arithmetical abilities in non-primate species” (Agrillo, 2014).

Were this merely a case of different standards of terminology, 
the problem would be  less serious. However, describing infant 
and nonhuman animal abilities as “arithmetic” can cause crucial 
misinterpretations of data. For example, Wynn’s massively 
influential 1992 paper was called “Addition and subtraction 
by human infants.” In the abstract of the paper, Wynn writes:

Here I show that 5-month-old infants can calculate the 
results of simple arithmetical operations on small 
numbers of items. This indicates that infants possess 
true numerical concepts, and suggests that humans  
are innately endowed with arithmetical abilities  
(Wynn, 1992).

Did the data show that? By reacting to the unnatural situation 
in which one and one doll equals one doll (the other doll 
having been removed clandestinely), Wynn argues that the 
infants showed arithmetical ability by calculating the results 
of arithmetical operations. However, we can equally well explain 
the infant behavior by assuming that they only kept track of 
one quantity, perhaps by a totally different type of cognitive 

or perceptual mechanism1. In a similar manner, there does 
not seem to be  any reason to assume that the infants possess 
“true numerical concepts.” What the experiment – later replicated 
many times – did show was that infants have the ability to 
individuate objects and that they react to unnatural changes 
in the numerosity of objects. This can be  explained without 
ascribing numerical concepts to the infants. It is therefore 
important to establish the difference between the fact that 
we  can characterize behavior in arithmetical terms and that 
behavior being truly based on arithmetical ability. Referring 
to the infants’ surprise to the “addition” 1  +  1  =  1 may be  an 
illuminating way to describe their behavior. But it should not 
be confused with thinking that infants did the addition 1 + 1 = 2 
and were surprised when the result did not match their 
observations. Thus, the terminological issue becomes an 
important one for the postulates made in a theory. In the 
worst case, the use of arithmetical terminology may determine 
what kind of abilities we  assume subjects (such as infants and 
nonhuman animals) to possess.

For this reason, before we  start explaining what kind of 
cognitive and cultural aspects are involved in the development 
of arithmetical knowledge, we  must make clear what we  are 
explaining. This is not a straight-forward matter, since even 
in the developed mathematical sense there are different meanings 
for the term “arithmetic” in the literature. In the philosophy 
of mathematics, arithmetic is often understood in terms of 
formal systems like first-order Peano arithmetic. From an 
empirically informed perspective, however, that appears to be 
a needlessly limited interpretation. When we  want to explain 
the development of arithmetical knowledge, the introduction 
of formal axiomatic systems is a very late development that 
was preceded by a long history of successful use of arithmetical 
operations as well as explicit arithmetical proofs. We  certainly 
do not want to confuse arithmetic with the primitive ability 
with quantities that infants and nonhuman animals have, but 
it is equally important not to give too strict criteria for arithmetic 
and end up accepting only modern formal systems as suitable 
referents of the term in philosophical contexts.

Therefore, I  suggest here a definition of arithmetic as a 
sufficiently rich discrete linear system of explicit number words 
or symbols with specified rules of operations. What counts as 
sufficiently rich cannot be  defined uniformly and it depends 
on the numeral system. The key idea here is that for a system 
to count as arithmetical, it has to follow the standard ordering 
of the set of natural numbers (the omega progression) sufficiently 
closely to allow grasping the essential structure of that progression. 
If, for example, a child is able to add and multiply numbers 
larger than 100, it seems likely that she has grasped something 
essential about the natural numbers. Such ability cannot 
be achieved through rote memorization of multiplication tables, 
which might involve little understanding of the structure of 
the natural number system. Put more precisely, in arithmetical 
systems, numerals (or number symbols) need to follow a distinct 

1 See Uller et  al. (1999) for one such account. They argue that the infants’ 
representations are based on object files rather than integer representations. 
See section “Proto-Arithmetical Ability” for more on this.
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recursive structure, which is grasped by competent users of 
the systems. In the simplest case, a recursive numeral system 
can contain only one symbol. If N denoted the numerosity 
“one,” simply by adding Ns, we  can get a recursive numeral 
system. NN denotes “two,” NNN “three,” and so on. Such 
numeral systems are cumbersome and difficult to communicate 
verbally, so all numeral systems in natural languages have more 
words. Thus, they start showing recursivity later on in the 
numeral sequence. Numerals in the English language, for 
example, start showing recursive structure after 12. Up to that 
point, the numeral names must simply be memorized individually. 
In the Hindu-Arabic number symbol system, the recursive 
structure starts showing at 10. When a child grasps the recursivity 
of the number symbol system, she understands that the same 
system can be used to denote larger and larger numbers. Usually 
at this stage of grasping the recursive character of the number 
system, children realize that the same operations work for 
numbers however large they become, and they often also 
develop an early understanding of the concept of infinity 
(Tirosh, 1999; Monaghan, 2001). However, a notion of infinity 
is not necessary for a system to count as arithmetical. The 
Mayans, for example, had great ability with calculations of 
natural numbers, and thus, we  should understand their system 
as arithmetical. Yet they did not seem to develop an explicit 
notion of infinity (Ifrah, 1998).

To sum up, “arithmetic” refers to recursive verbal or symbolic 
systems with sufficiently extensive linear structure of discrete 
quantities, as well as operations (e.g., addition, multiplication) 
on them. Any treatment of quantities developmentally prior 
to that should be  called proto-arithmetic. The term “natural 
numbers” (or just “numbers”) refers to the objects of arithmetic. 
The quantity concepts used to describe proto-arithmetical ability 
should be called numerosities2. Under this definition, the infant 
and animal abilities refer to numerosities and are thus proto-
arithmetical, but that is also the case with cultures who have 
only limited systems of numeral words or number symbols. 
With these conceptual clarifications in place, we  can now get 
an explicit theoretical framework in which to study the 
development of arithmetical knowledge.

FROM PROTO-ARITHMETIC TO 
ARITHMETIC

Proto-Arithmetical Ability
In the research of numerical cognition, it is standardly accepted 
that the acquisition of arithmetical knowledge is a cognitive 
process that is dependent on the proto-arithmetical abilities 
(see, e.g., Dehaene, 1997/2011; Spelke, 2000; Carey, 2009). 
I  will discuss the justification of this assumption later, but 
for now let us accept the consensus view and see what it 
implies. With the conceptual clarifications presented in the 

2 A similar distinction can be  found in De Cruz et  al. (2010). Based on the 
same type of consideration, Núñez (2017) suggests that instead of “numerical” 
ability, it would be  better to talk about “quintical” ability when it comes to 
the proto-arithmetical treatment of quantities.

previous section, we can identify the key stages in the acquisition 
of arithmetical knowledge and skills. The first stage is the 
acquisition of the proto-arithmetical abilities, which includes 
the core cognitive abilities but is not limited to them. The 
second key stage is moving from proto-arithmetical processing 
of numerosities to proper arithmetical cognition. Crucially, 
this requires acquiring the knowledge that natural numbers 
form a discrete and linear progression that continues indefinitely, 
often called either the exact number system (e.g., Izard et  al., 
2008; Castronovo and Göbel, 2012) or the discrete number 
system (e.g., Cantrell and Smith, 2013; Menary, 2015) in the 
literature. Finally, at the third key stage, we  can acquire a 
formal understanding of arithmetic and treat arithmetic as a 
subject of mathematics in its generality, proving theorems 
about all natural numbers. The move from the second stage 
(arithmetical knowledge) to the third stage (what I call formal 
arithmetical knowledge) is an important topic, as it distinguishes 
between the ability to carry out arithmetical operations and 
understanding formal arithmetical structures. We  will return 
to this topic in the final section of this paper, but for now 
our main interest concerns the move from proto-arithmetic 
to arithmetic.

Although the details are still a matter of debate, it is generally 
accepted that human infants and many nonhuman animals 
process observations of objects and organisms in their 
environment in terms of quantities. This ability is thought to 
be a genetically determined adaptation and universal to humans 
(Dehaene, 1997/2011). It is not known whether the ability is 
present at birth, so a common characterization of it as innate 
is somewhat problematic, as are indeed many uses of that 
word for human cognitive capacities (Bateson, 1991; Griffiths 
et  al., 2009). It should also be  noted that like with many 
abilities described as universal, due to the possibility of 
developmental dysfunctions, we cannot assume the quantitative 
ability to be  present in every individual. While such details 
are highly important for many purposes, the important point 
in the present context is that at least part of the proto-arithmetical 
ability is present early in the ontogeny and is thus thought 
to emerge independently of linguistic or other culturally 
dependent instruction.

According to the most commonly accepted theory, this 
non-symbolic treatment of quantities is based on the so-called 
cognitive core systems (Spelke, 2000). In the literature, two such 
systems have been identified. First of these is a system for 
parallel individuation (PIS) (or object tracking, OTS) that allows 
determining the amount of objects in the field of vision without 
counting (Starkey and Cooper, 1980; Spelke, 2000). This ability 
is called subitizing. The second system allows estimating the 
numerosity of a group of objects and determining differences 
in group sizes. It is referred to as either the approximate number 
system (ANS), the analogue magnitude system, or number sense 
(Dehaene, 1997/2011). Both abilities are used to treat 
numerosities, but they have important limitations, which make 
them proto-arithmetical rather than arithmetical. Subitizing 
deals with discrete numerosities, but it only works for small 
quantities, usually up to three or four objects. The ANS works 
for larger groups, but it is an estimation system that becomes 

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Pantsar The Enculturated Move to Arithmetic

Frontiers in Psychology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 1454

increasingly inaccurate as the collections become larger, and 
is thus generally not considered to be  discrete.

Based on many experiments, it is commonplace to accept 
that subitizing and ANS-based estimating are indeed two 
separate abilities for treating quantities, arising from separate 
cognitive core systems (Feigenson et  al., 2004; Agrillo, 2015)3. 
Some scientists postulate that the ANS is key to the development 
of number concepts and arithmetic (e.g. Dehaene, 1997/2011; 
Halberda and Feigenson, 2008), while others see subitizing 
and parallel individuation as the prevalent core cognitive abilities 
in that development (e.g., Izard et  al., 2008; Sarnecka and 
Carey, 2008; Carey, 2009; Carey et  al., 2017; Cheung and Le 
Corre, 2018). In my previous work (Pantsar, 2014, 2015, 2016, 
2018), I  have argued that both abilities can be  considered to 
be  proto-arithmetical, i.e., there is a relevant sense in which 
both abilities contribute to the development of arithmetical 
cognition. Further empirical evidence of this can be  found in, 
e.g., VanMarle et  al. (2018), whose experiments imply that 
measures of both the PIS and the ANS predict knowledge 
levels of numbers. For the present purpose, however, the 
particular theory of how proto-arithmetical abilities develop 
from cognitive core systems is not crucial. The important part 
is to establish that there indeed are proto-arithmetical abilities 
that are not culturally determined.

The evidence for this is strong. It is perhaps not surprising 
that our close evolutionary relatives, such as primates, show 
similar proto-arithmetical ability as humans (Hauser et  al., 
2000). More surprising is the finding that the abilities are 
remarkably similar also in rats, birds, and even fish. For example, 
robins in New Zealand have shown that they can discriminate 
between one, two, three, and four objects, but after four they 
can only consistently distinguish quantities when the ratio is 
at least 1:2 (Hunt et  al., 2008). The remarkable similarity in 
the results in infant and animal studies suggests that both the 
subitizing ability and the ANS are either comparatively early 
development in the evolutionary genealogy of animal species 
or such useful cognitive mechanisms that they have developed 
several times independently. However, currently this question 
concerning the animal and early human ability with numerosities 
can only be  speculated on. We  simply do not know for sure 
when and how the core cognitive proto-arithmetical ability 
has developed during phylogeny.

Neither do we know for what purpose it developed, although 
there are plausible hypotheses for this. Being able to estimate 
the size of collections is clearly a useful ability in many situations. 
Going for the larger pile of food and many similar cases, 
however, can be  explained without evoking any ability to 
distinguish between discrete quantities. So why can many animals 
also exactly discriminate between small numerosities? In nature, 
there are many situations where it is indeed the discrete 
quantity – rather than, say, the total visible size – which is 
important. If an animal is able to distinguish between three 
and four predators, this ability to establish the quantity of the 
animals is likely to be  more useful than the mere ability to 

3 However, there are some researchers who claim that a single estimation 
mechanism is enough to explain the data, see, e.g., Beran et  al. (2006).

determine the total size that it has observed. After all, four 
foxes pose a different threat than one wolf, even if the total 
observed size (e.g., visible surface area) was the same. Similarly, 
keeping track of one’s offspring, or being able to determine 
the right hole in a burrow, for example, provide clear cases 
where rough estimation is an inferior strategy compared to 
discriminating the discrete quantity of objects or other 
living beings.

Regardless of the details of such explanations, however, 
we  can be  confident that there is a level of proto-arithmetical 
treatment of quantities also in human cognizers that is genetically 
determined and not culturally learned. In this paper, I  want 
to study the question what the conditions are that allow 
developing the proto-arithmetical abilities into arithmetic 
proper, starting from the core cognitive quantitative ability. 
While we  appear to share much of the primitive systems for 
treating quantities with many nonhuman animals, somehow 
humans (although not all humans) use these foundations to 
develop arithmetic. This is often seen as one of the most 
important challenges in explaining the move from proto-
arithmetic to arithmetic (see, e.g., Brannon and Park, 2015): 
What are the key cognitive and conceptual leaps that we make 
in turning the primitive ability into something exact and 
conceptually coherent?

Developing Arithmetic
The conceptual leaps involved in developing numerical cognition 
beyond core cognitive abilities are particularly interesting because 
they are not universal to all humans and not even totally 
exclusive to humans. While animals generally possess only 
primitive proto-arithmetical ability, through extensive training, 
animals such as chimpanzees and parrots have shown that 
they can learn numerical skills, such as simple addition, beyond 
those given by the core cognitive systems (by first learning 
human language labels for numerosities; see, e.g., Pepperberg, 
2012). On the other hand, there are human cultures, such as 
the Amazonian tribes of Pirahã and Munduruku, whose skills 
with quantities have not developed considerably beyond the 
primitive systems shared with many nonhuman animals (Gordon, 
2004; Pica et  al., 2004; Dehaene et  al., 2008). It seems thus 
likely that there are important cultural factors involved in 
developing and refining the primitive abilities toward an exact 
treatment of quantities. Whereas some level of proto-arithmetical 
ability is universal, arithmetical cognition is culturally specific. 
Thus, having proto-arithmetical ability is clearly not a sufficient 
condition for developing arithmetic. Indeed, while the Pirahã 
and the Munduruku give us much discussed examples of 
non-arithmetical cultures because they do not have even 
rudimentary numeral systems in their languages, the development 
of arithmetical systems has been quite a rare occurrence in 
the history of mankind.

Neither can we categorically state that the proto-arithmetical 
ability is a necessary condition for developing arithmetical 
cognition. There are at least two feasible scenarios in which 
arithmetical cognition can develop without recourse to the 
proto-arithmetical ability. First is the case of artificial intelligence. 
Although the technological details may turn out to be  highly 
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difficult, it is possible to simulate human arithmetical ability 
with computer programs. Yet there would seem to be  little 
motivation for programming computers to first treat quantities 
in a proto-arithmetical manner in order to simulate the 
development of human arithmetical ability. More interesting 
than this scenario, however, is the possibility that a human 
cognizer could learn arithmetic without employing the cognitive 
scaffolding provided by the proto-arithmetical ability. While 
the evidence strongly suggests all human beings have genetically 
determined proto-arithmetical ability to treat quantities, it does 
not necessarily follow that all humans actually use that ability 
in learning arithmetic. Therefore, we  should also consider the 
possibility that one can learn arithmetic in a manner that is 
conceptually independent of the proto-arithmetical ability. 
Indeed, without further evidence, we  cannot rule out the 
possibility that this is actually how most – or perhaps even 
all – humans learn arithmetic.

While we cannot dismiss this possible discontinuity between 
proto-arithmetic and arithmetic, there is empirical evidence 
against this happening regularly. We  cannot currently 
conclusively establish the role that proto-arithmetic plays in 
the development of arithmetical cognition, but there is a lot 
of data suggesting at least a strong correlation between the 
two. Nieder et al. (2006), for example, conducted an experiment 
in which monkeys were presented objects one by one to 
simulate a non-verbal account of counting. As expected, the 
activated brain areas were partly different than when the 
objects were presented all at once, i.e., when only the subitizing 
and ANS-based estimation abilities were used. However, the 
experiment revealed that a large part of the activated neurons 
were in fact the same in the two settings, suggesting that 
when counting, the monkeys were dealing with (partly) the 
same representations for numerosities as when subitizing or 
estimating with ANS. The experiment was conducted on 
monkeys, which could make its applicability to human cognition 
questionable, but Piazza et  al. (2007) have shown that when 
observing numerosities, the same areas of brain (in the 
intraparietal cortex) are activated in humans as in monkeys. 
Indeed, Cantlon and Brannon (2006) have shown that college 
students show similar patterns to monkeys and rats when it 
comes to solving number-ordering and quantity estimation 
tasks. Finally, research on non-arithmetical tribes shows that 
education in verbal numerical processing enhances the acuity 
of the ANS, thus showing that the connection between linguistic 
numbers systems and the core cognitive ability also goes the 
other way (Piazza et  al., 2013).

Of course none of this evidence manages to show unassailably 
that humans need to use their core cognitive abilities for 
treating quantities when learning arithmetic. There remains at 
least a theoretical possibility that the systems are not connected. 
What the data do suggest quite strongly, however, is that such 
developmental independence from the proto-arithmetical origins 
is unlikely. The hypothesis that gets most support from the 
empirical studies is that the connections between core cognitive 
proto-arithmetical and arithmetical ability are due to the latter 
ability developing (at least partly) on the basis of the former (e.g., 
Dehaene, 1997/2011; Butterworth, 1999; Feigenson et al., 2004; 

Izard et  al., 2008; Sarnecka and Carey, 2008; Carey, 2009; 
Nieder and Dehaene, 2009; Brannon and Merritt, 2011;  
Spelke, 2011; Castronovo and Göbel, 2012; Piazza et  al., 2013; 
Nieder, 2016, 2017; Carey et  al., 2017; Núñez, 2017). On an 
organizational level of the brain, this hypothesis makes sense. 
If there is an existing system in place for treating quantities, 
due to considerations of metabolic costs and efficiency, we should 
expect new quantitative knowledge to develop in connection 
to this system, rather than starting from scratch.

Language
Based on the above considerations, it is unlikely that humans 
generally learn arithmetic independently of the core cognitive 
proto-arithmetical abilities. But what are the factors that need 
to be present in that development? The first obvious requirement 
is that the language must have enough expressive power for 
arithmetic. The Pirahã numeral system, for example, which 
includes words roughly only for “one,” “two,” and “many” 
(Gordon, 2004), is clearly detrimental for the development 
of  arithmetic4.

That, however, is only the most extreme example of a language 
that does not allow for the development of arithmetic. Indeed, 
it would appear that any language that does not have a recursive 
numeral system is detrimental to arithmetical cognition, since 
the meaning of each numeral has to be  grasped separately. 
When it comes to human languages in general, Hauser et  al. 
(2002) have argued that recursion, i.e., the lack of upper bounds 
in the length of syntactical constructions, is a (even the) main 
characteristic. Yet, as Everett (2005) has argued, it is not clear 
that the Pirahã language, for example, has this characteristic. 
It is natural to hypothesize that this connection between the 
putative non-recursive character of the Pirahã language and 
their lack of arithmetical ability is not coincidental.

However, it is not obvious that such a hypothesis is warranted. 
While many researchers (e.g., Bloom, 2000; Maddy, 2014) hold 
that the recursive structure of our language is indeed key to 
grasping the natural number structure, this is not universally 
accepted. Gelman and Butterworth (2005), for example, have 
argued for the position that we  can have non-linguistic 
representations of natural numbers. Their argument is based 
on the Oksapmin people of New Guinea, whose indigenous 
language does not have number words, but rather use body 
positions to signify different quantities. However, when they 
entered plantations to work, the Oksapmin were quick to learn 
counting rules and the numeral vocabulary. Gelman and 
Butterworth argue that this could not have been possible without 
a prior non-linguistic representation of natural numbers. 
Obviously, there are limits to how far such non-linguistic 
representation of quantities can go, but the existence of  
an even somewhat extensive collection of non-linguistic 
representations provides interesting questions about the role 
of language in grasping the concept of natural number.  

4 Even those words are not used in a consistent manner, which has led some 
authors, most notably Frank et  al. (2008), to interpret the Pirahã language as 
not having numeral words at all.
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Indeed, could we  plausibly have a pre-linguistic conception of 
exact quantity that goes beyond the proto-arithmetical origins?

This hypothesis may be  possible to make on the basis of 
the Oksapmin ability, but we can also understand the Oksapmin 
ability with quantities – if their learning curve indeed is 
exceptional – by other means. Gestures with body parts have 
often been seen as a crucial part in learning language (see, 
e.g., Goldin-Meadow and Alibali, 2013). While the validity of 
this hypothesis remains to be decided, there have been important 
results connecting gestures and language. Xu et  al. (2009), for 
example, showed that symbolic gestures and (spoken) language 
employ a common neural system. With such results, it is 
perhaps more relevant to consider the position that takes 
language as a broader concept that includes sensory motor 
aspects (Hauser et  al., 2002). Thus, under the broad concept, 
the Oksapmin ability would not count as non-linguistic 
representation of quantities, as the body part for, say, “six” 
may in fact function much like a numeral word or a 
number symbol.

However, it is not easy to make the choice between a broad 
and a narrow conception of language in any general manner. 
When it comes to the importance of language for the development 
of arithmetic, it would seem to be  quite useful to focus on 
the narrow conception of language that includes only verbal 
representations of quantities – or perhaps an even narrower 
conception that only includes languages that have recursive 
numeral systems. As defined in this paper, arithmetic requires 
a sufficiently rich discrete linear system of numerals or number 
symbols. This might be  seen as implying that arithmetical 
cultures require languages that have recursive numeral systems. 
Yet arithmetic can also be practiced by a simple tallying (stroke 
notation) system in which the number of strokes determines 
the quantity. A culture can have such a system without having 
a recursive numeral system in their language. Thus, while 
undoubtedly beneficial, having a recursive numeral system 
in  their natural language is not a necessary condition for 
developing  arithmetic5.

The above considerations suggest that we  should not be  too 
hasty in making connections between the characteristics of the 
language of a culture and its conduciveness for developing 
arithmetic. Indeed, we should also refrain from making a choice 
between the narrow and wide conceptions of language. For 
different stages in the development of arithmetical cognition, 
we  can employ different conceptions of language. On the one 
hand, we  can be  interested in verbal languages when studying, 
for example, the way numeral systems influence our cognitive 
processes. On the other hand, when examining the first ways 
of representing and communicating quantities, we  should not 

5 Here, it is important to make the distinction between a language being recursive 
and it including a recursive numeral system. It is often argued (e.g., Hauser 
et  al., 2002) that all natural languages are recursive. Everett (2005) argues that 
the Pirahã language is not, and the debate is still going on (see, e.g., Watumull 
et  al., 2014). However, it is quite clear that not all natural languages have 
recursive numeral systems. Another important question is how recursivity has 
evolved. Pinker and Jackendoff (2005) have famously argued that recursivity 
must have preceded recursive languages, but this point has also been contested 
(see, e.g., Coolidge et  al., 2011).

necessarily dismiss systems of body positions as non-linguistic. 
Such a system can have distinct representations for a considerably 
large amount of quantities as well as allow operations (such as 
addition) on them. However, there is a limited range of intelligible 
gestures so expressing large numbers becomes cumbersome, 
time-consuming, and error-prone. It is therefore clear that verbal 
and symbolic numeral systems generally carry an advantage 
over body position systems. But this advantage is not always 
manifested. The body position system of the Oksapmin, for 
example, is richer than the verbal system of the Pirahã.

It may not always be  clear what conclusions one should 
draw from the above considerations, but it becomes evident 
that the role of linguistic systems in the development of 
arithmetical cognition provides us with many difficult questions. 
It has been established, for example, that many Western children 
3–5  years of age – who are familiar with number words – are 
more successful in referring to small quantities with hand 
gestures rather than words (Gunderson et  al., 2015). This 
suggests that manual representations such as extending fingers 
can be  the primary way of representing quantities, and it can 
take children longer to grasp the linguistic connection between 
the number words and quantities. Such a hypothesis also gets 
support from the data indicating that after children first learn 
the sequence of numerals (starting from the age of two), it 
takes them some time (usually until the age of four) before 
they are able to match the number words successfully to 
quantities (Fuson, 1988; Wynn, 1990; Davidson et  al., 2012). 
Overall, it appears that learning the necessary expressions and 
linguistic content to represent quantities is not sufficient. In 
addition, children need to learn the so-called cardinality principle 
(Wynn, 1990; Sarnecka and Carey, 2008), i.e., the knowledge 
that in the counting process the last uttered numeral signifies 
the quantity of the collection. This is often seen as a key stage 
in children’s general learning that each numeral refers to one, 
and only one, exact discrete quantity (Sarnecka and Carey, 2008; 
Carey, 2009; Beck, 2017).

It is undoubtedly the case that the characteristics of a 
particular language can be beneficial or detrimental for developing 
numeral systems suitable for arithmetical cognition. The 
recursivity of our contemporary numeral systems clearly provides 
a better platform for developing arithmetic than one that does 
not show any recursive structure. However, it is possible that 
numeral systems that show recursivity were the consequence 
of rather than the cause for developing arithmetic. It could 
be  that using primitive symbolic systems of treating quantities, 
such as tallying, necessitated developing a recursive numeral 
system. In this case, as well as studying the effect of languages 
on arithmetical cognition, we should also look for other cultural 
factors that may have influenced the path our treatment of 
quantities has taken. Perhaps the Oksapmin, for example, have 
had some extra-linguistic cultural reason which made it more 
useful to keep track of and communicate quantities – some 
reason that the Pirahã did not have.

Beyond Language
The above considerations bring us to the basic problem when 
explaining the development of arithmetical cognition. If we study, 
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as I have argued we should, arithmetic as a wider phenomenon 
than our contemporary systems, we face an interesting situation. 
Unlike the alphabet, for example, which is often thought to 
have developed only once during the course of known human 
history (see, e.g., Sampson, 1985), arithmetic is known to have 
developed several times independently (Ifrah, 1998). While 
the particular systems of arithmetic have had different 
characteristics, they also show great similarity in both counting 
and operations like addition and multiplication. For almost 
all children growing up in arithmetical cultures, basic arithmetic 
is easy to learn. Most known indigenous languages do have 
some kind of a numeral system, and many of these systems 
show recursivity in some numeral base (Ifrah, 1998). It is also 
often recognized in the modern literature how important the 
development of number systems can be  for people. Everett, 
for example, argues that “spoken numbers and written numerals 
were pivotal to radical transformations in a variety of cultures 
millennia ago” (Everett, 2017, 238).

Yet at the same time, unlike language, arithmetic even in 
early forms is far from being a universal ability. Most cultures 
have not developed anything resembling arithmetic as 
characterized in section “What is Arithmetic?” Why is this 
the case? If the universal abilities of subitizing and the ANS 
determine (at least partly) the content of our arithmetic, how 
is it possible that so many cultures have not made the step 
from proto-arithmetic to arithmetic that seems so obvious to 
us? The numerically limited languages of Munduruku and 
Pirahã are in this sense only the tip of the iceberg. They have 
received a lot of attention due to their lack of numerals beyond 
the first few, but in this they are exceptions (Everett, 2017). 
Most cultures do have some kind of a numeral system, yet 
it is often not developed systematically into arithmetic. The 
numerals may only reach four, ten, or some other relatively 
small numeral, and even simple operations like addition are 
not used.

This implies an intriguing mismatch. On the one hand, 
numerical systems and their applications are seen as great 
advantages for a culture, causing “radical transformations.” On 
the other hand, many cultures have not developed even basic 
arithmetic, and some do not even have numeral words. Looking 
at the great facility with which young children in arithmetical 
cultures learn to count and calculate, it seems quite odd that 
cultures can exist for thousands of years without referring 
systematically to quantities larger than two, let alone grasping 
the general idea that natural numbers form a progression that 
goes on and on. Perhaps not grasping the abstract idea of 
infinity, or the explicit idea of an indefinitely continuing 
succession, is understandable, but not using discrete quantities 
for objects in their environment seems to have clear 
practical disadvantages.

This mismatch requires us to reconsider the importance of 
arithmetic. Because of the very fact that many cultures have 
not innovated arithmetic, we  should be  careful in making 
general claims about the practical conditions and advantages 
of developing arithmetical systems. Many aspects of modern 
Western arithmetic, such as the focus on proofs concerning 
all numbers, are not necessarily the kind of practical advantages 

that motivate developing a system of discrete numbers and 
their operations. Instead, it is likely that the motivating factors 
have had direct applications, which are facilitated by the ability 
to understand and communicate discrete quantities. Traditionally, 
at least four such factors for mathematics have been emphasized 
in the literature: agriculture, trade (and other commerce), 
navigation, and astronomy/astrology (Boyer, 1991). It is 
understandable to presume that differences in the importance 
of these pursuits have a lot of influence on how mathematics 
develops. Trade, for example, would usually be  something in 
which developing arithmetic proves useful, whereas focus 
on  navigation, for example, could explain preference for 
developing  geometry6.

The different circumstances may also give us insight into 
the question why people like the Pirahã and the Munduruku 
have developed such limited systems and applications for 
numerosities. There is nothing to suggest that they have some 
innate cognitive disadvantage in developing mathematics. It 
could simply be  that in their cultures there was not the 
same kind of incentive to develop a numeral system, and 
thus, people growing up in those cultures were not offered 
the kind of cognitive tools that enable children in other 
cultures to learn arithmetic7. For example, even though the 
Pirahã do practice trade, no record is kept about it. As 
hunter-gatherers, they do not practice agriculture or store 
food (Everett, 2017).

Considering the vastly different cultural practices, it becomes 
less surprising that not all cultures have developed extensive 
numeral systems, let alone arithmetic. To further elucidate the 
vast difference between the Pirahã and modern Western cultures, 
it is interesting to note that the Pirahã also cannot draw even 
familiar shapes like trees, animals, or people (Gordon, 2004). 
On the other hand, the Pirahã have sophisticated knowledge 
and skills in acquiring food in a difficult environment 
(Everett, 2017).

This way, it is easy to be  blind to the innovativeness of 
ideas that are familiar in one’s own culture. There have been 
intellectually highly developed cultures, such as the Incas, who 
never invented the wheel. The Incas would most probably 
have found the invention useful, but for some reason it never 
occurred to them, nor did they communicate with other cultures 
who had developed the wheel. Similarly, extensive numeral 
systems and arithmetic would have been useful also for many 
cultures that never developed them. For some reason, either 
the creative process necessary for extensive numeral systems 
did not occur, or the numeral systems failed to establish a 
sufficiently important status in the particular cultures.

Considering these two options, there is an interesting potential 
difference when it comes to inventions such as the wheel and 
numeral systems. The wide existence of numeral systems in 

6 It should be  noted that there are examples of cultures who are proficient in 
navigation without developing geometry (Hutchins, 1995; Menary, 2018). The 
role of geometry in developing navigation thus seems quite different from that 
of arithmetic in developing trade.
7 This has received support from the success of bi-lingual (Pirahã and Portuguese 
speaking) children in learning to count (Gelman and Butterworth, 2005).
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indigenous languages all over the world is sometimes seen as 
evidence that they were an early feature of human languages 
(see, e.g., Everett, 2017). This is hard to establish, since the 
competing hypothesis that numerals were a late invention also 
gets support, for instance, from the great variety that the 
numeral systems have (Ifrah, 1998). But for the sake of the 
argument, let us accept that numerals were present early on 
in human languages. This would suggest that ancestors of 
cultures like Pirahã and Munduruku (both relatively young 
cultures on the scale of the Homo sapiens era) at some point 
in fact had numerals in their languages, but for some reason 
they later disappeared. In this case, the usefulness of numerals 
must have been limited. This is impossible to confirm, but it 
becomes quite understandable based on the above considerations 
that the abilities that come so easily even to young children 
in many cultures are in fact made possible by the specific 
circumstances and practices in these cultures, which are due 
to a particular line of cultural heritage of ideas and artifacts 
(Henrich, 2015). Any discussion on cognitive abilities must 
take these factors into account. The possession of the ability 
to add, for example, has been made possible by a wide range 
of cultural and practical factors, which have enabled the 
development and communication of the necessary conceptual 
tools, as well as providing the motivation and opportunities 
to develop the ability. Thus, the move from proto-arithmetic 
to arithmetic requires studying the question in a perspective 
that takes into account the cultural influences in all their varieties.

At the same time, there is also much about arithmetical 
cognition that is constant in different cultures. Not only have 
different cultures developed equivalent systems of numbers and 
their operations, but as we  will see in the next section, the 
same areas of the brain are used in arithmetical cognition. 
While the development of arithmetical knowledge and skills 
seems to be  in important ways determined by our cultural 
circumstances, as seen in section “Developing Arithmetic,” there 
are extensive data suggesting that it is based on core cognitive 
abilities that are culture-independent. Thus, the challenge becomes 
assimilating these two approaches, i.e., explaining the 
development of arithmetic in a way that is based on its core 
cognitive origins, but also includes the culturally dependent 
aspects. In the first two sections, we  have established the 
necessary conceptual distinctions in explaining the cognitive 
basis of arithmetical knowledge. We have also seen that cultural 
factors play a key role in determining how abilities with 
quantities develop. In the rest of this paper, we  will study a 
framework that has been proposed as a solution to the problem 
of combining these aspects into an empirically and philosophically 
plausible theory.

ENCULTURATION AS THE ANSWER?

Enculturation and Neuronal Recycling
Based on the great cultural variation in numerical ability, it 
is clear that all ontogenetic and phylogenetic accounts of the 
development of arithmetical knowledge need to look beyond 
the cognitive core systems. The considerations in the last section 

show that linguistic factors play an important role both in 
the phylogeny and ontogeny, but a comprehensive explanation 
must include cultural aspects also beyond them. Thus in the 
philosophy of mathematics, in addition to accounts of phylogeny – 
to which we  return to in the next subsection – we  should 
look for frameworks of ontogenetic development that allow 
for a multitude of cultural influences. That fits well with the 
framework of Menary (2015) in which he presents mathematical 
cognition as a case of enculturation. Enculturation refers to 
the transformative process in which interactions with the 
surrounding culture determine the way cognitive practices 
develop (Menary, 2015; Fabry, 2018a). Through the mechanism 
Menary (2014) calls “learning driven plasticity,” new cognitive 
capacities can be  acquired due to the neural plasticity of the 
human brain, which allows for both structural and functional 
changes (Dehaene, 2009; Ansari, 2012; Anderson, 2015).

This setting is important for the philosophy of mathematics 
as it distinguishes Menary’s position from conventionalist 
philosophy of mathematics (e.g., Wittgenstein, 1956/1978; Field, 
1980). Whereas the stronger conventionalist position holds our 
cultural influences to be  either entirely or at least mostly 
responsible for the development of mathematics, Menary’s 
(2007) model assumes that mathematics both in phylogeny 
and ontogeny is made possible by the cognitive integration of 
“multiple cognitive layers where neural, bodily, and environmental 
processes all conspire to complete cognitive tasks” (Menary, 
2015, 2). Following the niche constructionist theory (e.g., Laland 
et  al., 2000), Menary argues that the phylogeny of human 
cognition develops by “active embodiment in a socially 
constructed niche” (Menary, 2015, 3). In the ontogenetic 
development, children develop their skills and knowledge in 
the shared cognitive niche, which includes representation systems, 
tools, and practices (Clark, 2006; Stotz, 2010; Menary, 2014). 
Menary’s framework is therefore not social constructivism in 
a radical, conventionalist sense. Rather, his position is 
characterized as the dynamics of integrated cognitive systems 
being “jointly orchestrated by biological and cultural functions” 
(Menary, 2015, 3).

Therefore, Menary’s framework of enculturation appears to 
be  a good fit with the considerations in the previous two 
sections. If we accept that the proto-arithmetical core cognitive 
ability (partly) determines the developmental path of arithmetic, 
our theoretical framework must include biological functions 
as both ontogenetically and phylogenetically active components 
in the formation of arithmetical cognition. But we  have also 
established that the core cognitive ability underdetermines the 
content of arithmetic, and in many cultures, it is not developed 
into proper arithmetic at all. Thus, the cultural functions in 
the formation of arithmetical cognition must be  included in 
a feasible theoretical framework. In the present context, the 
first key insight into Menary’s argumentation is that when it 
comes to abstract symbolic thought – like arithmetic – cognitive 
integration does not take our cognitive abilities to be  innate. 
This is based on a sound evolutionary argument. On an 
evolutionary scale, there simply has not been enough time for 
arithmetic to have had enough impact on the structure and 
function of the brain. While it is widely accepted that arithmetic 
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is partly based on an innate proto-arithmetical ability with 
numerosities, this can only explain part of the development 
of arithmetical cognition. Instead of there being some kind 
of innate functional disposition for arithmetical ability, it is 
the plasticity of our brain that plays a key role: old neural 
circuits are redeployed to new functions in a process called 
neuronal recycling (Dehaene, 2009; Menary, 2014).

This redeployment is a specification of what Anderson calls 
neural reuse (Anderson, 2010, 2015; Fabry, 2018a; Jones 2018). 
Neural reuse refers to the general process of “circuits (continuing) 
to acquire new uses after an initial or original function is 
established” (Anderson, 2010, 245). The neuronally recycled 
functions, Menary (2014) argues, are culturally specific. Although 
its details can differ considerably based on the particular 
formulation, the theory of neuronal recycling provides a feasible 
platform for explaining how enculturated mathematical 
knowledge can manifest itself in the brain. In addition to the 
theoretical suitability, neural reuse can be  plausibly used to 
explain many empirical data (Anderson, 2015, 2016). Research 
on nonhuman primates shows conclusively that neural reuse 
happens on the level of single neurons. Work with animals 
with simple neuronal systems (such as the soil-dwelling 
roundworm Caenorhabditis elegans) shows that the synaptic 
structure between individuals can be  largely identical, yet there 
can be  vast functional differences in the neurons, to the point 
that they are even associated with completely opposite tasks 
(Cisek and Kalaska, 2010; Varshney et al., 2011; Anderson, 2015).

Importantly, together with the proto-arithmetical processing 
of quantities, enculturation and neuronal recycling can also 
explain why there is little inter-personal variance in the brain 
regions that are employed for mathematical processing. 
Butterworth (1999) has argued – based on the existence of 
core cognitive numerical abilities – that there is an innate 
cognitive module for treating numerosities. His argument is 
set in the framework of Fodor’s (1983) theory of the modularity 
of the mind. Butterworth focuses on one particular aspect in 
Fodor’s theory: the distinction between functionally specific 
input modules and non-modular central processes. In Fodor’s 
characterization, “input systems function to get information 
into the central processors” (Fodor, 1983, 42). Butterworth 
describes central processes as such that “we can choose whether 
to operate them or not; we  are not born with brain circuits 
specialized to do them; and they need learning” (Butterworth, 
1999, 5). Furthermore, he  contends that Fodor (1983) is 
committed to arithmetic being such as central process. But 
since empirical data show that numerical ability develops on 
the basis of the input module for processing numerosities, 
Butterworth argues that arithmetic cannot be a central process. 
Since there are in fact brain circuits specialized for treating 
numerosities, the argument goes, every brain is “hardwired” 
for arithmetic.

However, this line of argumentation is questionable. At 
first, arithmetical ability might seem to be  an empirically  
good fit with the modularity theory, since data show little 
inter-individual variation in the brain regions – belonging  
to the parietal, frontal, and temporal lobes, in particular  
the intraparietal sulci – used in numerical processing 

(Dehaene, 1997/2011; Ansari, 2008). This inter-individual 
consistency in the brain regions may seem to support the 
idea of functional modularity, which could be  seen as being 
in conflict with the theory of neuronal recycling. But the 
assumption of modularity is problematic when we  keep in 
mind that arithmetical cognition is much too late a phylogenetic 
phenomenon to have feasibly caused the development of a 
functionally specific module in the mind (Fabry, 2019). The 
evolutionary emergence of an “arithmetic module” would take 
periods on a totally different time-scale from the approximately 
5,000  years ago that first symbolic number systems have been 
found (Schmandt-Besserat, 1996).

Therefore, we should look for other answers than modularity 
for the small inter-individual variation in the brain regions 
used for arithmetical cognition. Fortunately, enculturation 
framework can provide such an answer, once it is recognized 
that mathematical ability is not purely culturally determined. 
For this reason, it is crucial for the enculturation and neuronal 
recycling framework that we  can establish that arithmetic 
indeed develops on the basis of the proto-arithmetical ability. 
With this connection, it is to be  expected that the neural 
circuits used for arithmetic are similar between individuals, 
given that there is a genetically determined propensity to use 
certain brain areas for the processing of quantitative information. 
This falls under what Anderson (2015) calls the functional 
bias of brain areas. Indeed, there is solid empirical evidence 
that this is the case. The intraparietal sulcus, for example, is 
used for both the core cognitive and arithmetical treatment 
of quantities (Dehaene and Cohen, 2007). One empirically 
supported hypothesis that helps explain the lack of variation 
in the brain areas used for arithmetical processing is that 
already on the core cognitive level particular neurons are 
associated with numerosities. Research shows that distinct 
groups of neurons in the parietal and frontal lobes appear to 
be  associated with different numerosities. The firing of these 
neurons is independent of modality so the same group activates 
regardless of whether we  see two objects or hear two tones 
(Nieder et  al., 2002; Nieder and Miller, 2003; Nieder and 
Dehaene, 2009; Nieder, 2012, 2013, 2016). Studies also show 
that there is a two-way connection between our proto-
arithmetical ability and acuity with number concepts. For 
example, higher mathematical skills correlate with better 
performance in estimation tasks (Cantlon and Brannon 2006; 
Brannon and Merritt, 2011). Data also show that developmental 
dyscalculia and damage to the proto-arithmetically important 
areas in the brain are connected to lower mathematical skill 
levels (Dehaene, 1999; Butterworth, 2010).

Thus, the theory of enculturation based on neuronal recycling 
fits well with the research on proto-arithmetical treatment of 
quantities. Brain areas for numerical treatment are not established 
randomly. Rather, the existing ability for quantitative processing 
of observations determines (among other, such as language-
related, factors) which neural circuits are used in the enculturated 
learning of mathematical concepts. The brain regions used for 
numerical processing change – for example, as exact number 
concepts are acquired, the neural activity moves increasingly 
from the right intraparietal sulcus to the left one – but this 
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change is generally similar between individuals (Emerson and 
Cantlon, 2015).8 In this field, rapid progress is being made, 
and hopefully in the near future, we  will have a much better 
understanding of the different cognitive processes in the 
development of arithmetical cognition. From what has already 
been established, however, enculturation and neuronal recycling 
seem to get solid support from the empirical data and provide 
a plausible mechanism for the emergence of arithmetic. It is 
only in this way – combining the core cognitive systems and 
neuronal recycling – that the idea that brain is “hardwired” 
for arithmetic makes sense. Any stronger conception of a 
hardwired numerosity module is unsupported by evidence.

Cultural Evolution
As important as the above considerations on the neuronal 
basis of arithmetic are, they only form one part of explaining 
the emergence of enculturated arithmetical knowledge. What 
needs to be  clarified next is how arithmetic developed into 
its current state. As was argued in section “From Proto-Arithmetic 
to Arithmetic,” it is easy to accept that having an extensive 
system of discrete quantities, for example, is beneficiary for 
many practical purposes, such as trade and agriculture. Yet it 
is by no means obvious how cultures have managed to develop 
their knowledge and skills with numbers from the modest 
core cognitive origins to the modern discipline. Neuronal 
recycling provides a plausible mechanism to explain how 
enculturation works on the level of the brain. But in order 
to make sense of the phylogeny and history of arithmetic, 
we  also need to identify how enculturation works on the level 
of cultural practices. How and why do some cultural practices 
endure and develop, while others are forgotten?

This question is particularly interesting in the case of 
mathematics because of the immense cultural differences, 
including cultures with little or no mathematics. As was argued 
in section “Beyond Language,” one potential explanation for 
not developing mathematics is the general lack of applications 
for mathematical knowledge. Alternatively, it is possible that 
in some cultures advancements in mathematics (or toward 
mathematics) were for some reason not widely learned and 
may have been consequently lost, perhaps because the culture 
divided into separate populations9. But in cultures where 
mathematics exists, it is clearly the product of a long development. 
This is consistent with Henrich’s (2015) theory of cumulative 
cultural evolution as the way human cultures develop their 
knowledge and skill sets. Helpful inventions are improved upon 
in small generational increments, and in large enough 
societies – or ones with extensive interactions with other 
societies – this process can establish a status of knowledge and 
skills where it is no longer tied to a small group of individuals. 

8 This is perhaps due to the left lateralization of neural circuitry associated with 
language processing in right-handed people. I thank Regina Fabry for this suggestion.
9 This is not in contradiction with Tomasello’s (1999) theory that cultural evolution 
works through a “ratchet effect” which enable populations acquire and maintain 
new innovations. Changes in populations may cause innovations to be  lost. 
Indeed, Tennie et  al. (2009) acknowledge that even in steady populations the 
ratchet effect is not always persisting but is rather characterized through 
“relatively little loss or backward slippage” (p.  2405).

Arithmetic, for example, developed into such a skill in many 
cultures. It is taught to young children with a highly developed 
methodology, thus facilitating the learning process for 
each individual.

Cumulative cultural evolution is a trans-generational process 
that can help explain how cultural transmission happens in 
the enculturation account. We can thus construct a biologically 
and culturally determined model of the development of 
arithmetical knowledge in the enculturation account. Arithmetical 
ability is partly determined by the core cognitive ability with 
quantities that we  already possess as infants. Due to cultural 
transmission, in most cultures, this ability is extended to include 
a system of numerals to refer to small discrete numerosities. 
At this – still proto-arithmetical – level, people are able to 
keep track of small quantities and have applications for them. 
On some occasions, cultures develop their numeral systems 
to have a recursive base, which allows for the unrestricted 
construction of new numerals as well as extending the operations 
for this domain. At this stage, we  can speak of arithmetical 
knowledge and skills. Arithmetic can then be  developed to 
include general proofs, and it can be  presented as axiomatic 
systems in formal languages. It is important to note that 
throughout this development, having the suitable linguistic 
tools is crucial to reaching new stages in arithmetical knowledge, 
consistent with my treatment of the topic in section “Language.” 
But equally importantly, there are also factors beyond language, 
making the framework compatible with a multitude of cultural 
factors, as specified in section “Beyond Language.”

If the above theory of the enculturated character of arithmetical 
knowledge is accepted, what should we  expect from the 
development of arithmetic in different cultures? There are at 
least three characteristics we  would expect to be  present. First, 
if the hypothesis of enculturated arithmetic were true, we would 
not expect arithmetical ability to be  universal and essentially 
unchanged between cultures. If it were, it is possible that 
enculturation is not essential to the development of arithmetical 
cognition. There would likely be enculturated aspects, as well – 
concerning at least notation and practice – but Menary’s (2015) 
argument is that enculturation is a more robust, an essential 
characteristic of arithmetical cognition.

The second expected characteristic is that, while not always 
actualized, the potential for arithmetical cognition would need 
to be  universal. An important part of the enculturation theory 
is that arithmetical cognition is possible by redeploying neural 
circuits evolutionarily developed originally for different purposes. 
Arithmetic is too young a development to be  the product of 
biological evolution, but the potential for redeploying the 
necessary areas of the brain has to be  present universally 
in humans.

Finally, a third expected characteristic of the enculturation 
account is that we  should expect to see a certain degree of 
variance in the arithmetical systems that different cultures have 
developed. If all arithmetical cultures developed the theory of 
natural number essentially similarly, it could count as evidence 
against the enculturation thesis. In such a case, the enculturated 
aspects would appear to be  of minor importance, whereas the 
essence of arithmetic would be  better seen as something 
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universal, culture-independent – perhaps determined by the 
proto-arithmetical core cognitive ability.

The first expected characteristic – arithmetic not being 
universal – is clearly fulfilled, as there are several non-arithmetical 
cultures. The Pirahã and the Munduruku are the most famous 
cases in the literature, but there is still a number of other 
cultures without developed arithmetic, for example, in Papua 
New Guinea (see, e.g., Matang and Owens, 2014). As it becomes 
increasingly difficult to live in isolation from wider cultural 
influences, this is quickly changing. Historically, however, the 
development of arithmetic is much more an exception rather 
than the rule. From the vast amount of cultures in the 
pre-Columbian Americas, for example, in addition to the well-
known Olmec-Mayan arithmetic, to the best of our knowledge, 
only few other cultures developed even rudimentary ability 
with numbers (Everett, 2017). There are many explanations 
for this, ranging from the lack of any kind of symbolic language 
to the fact that the vast majority of pre-Columbian cultures 
were hunter-gatherers. Since the most popular hypothesis 
currently is that the Native American people came from a 
relatively small group of ancestors, the differences are unlikely 
to be  due to any genetic reasons. Thus, the importance of 
culture for the development of numerical thinking is evident.

There is equally strong evidence for the second expected 
characteristic, the universal potential for arithmetical cognition. 
As we  have seen, the core cognitive abilities with numerosities 
are universal. Even if one rejects the hypothesis of the proto-
arithmetical core cognitive abilities being (at least a partial) 
foundation for the development of arithmetical cognition, the 
evidence for the universal potential remains strong. It is obvious 
that people from a wide variety of ethnic and cultural backgrounds 
learn arithmetic. In this, people like the Pirahã are the exceptions 
resulting from the kind of isolation that most modern cultures 
do not live in. The vast majority of people in the Americas 
nowadays learn at least basic arithmetic regardless of their 
ethnic background. This is of course not peculiar to the Americas 
as, to the best of my knowledge, there are no reports of people 
lacking the cognitive abilities to learn arithmetic due to some 
genetic reason.

There is very strong evidence also supporting the third 
characteristic, the expected cultural variation. The Mayans, 
for example, had an arithmetical system that allowed calculation 
with numbers up to billions. On the one hand, when it comes 
to calculations and many of their applications – such as 
astronomy – their arithmetic was highly similar to ours (Ifrah, 
1998). On the other hand, it had essential differences in its 
character. For example, the Mayan arithmetic did not include 
proving theorems and other aspects central to our arithmetic. 
This cultural variation is even more pronounced with less 
developed arithmetical (or proto-arithmetical) systems. Some 
of the numerosity systems, like the Inca quipu system of 
knots, show how versatile numerical notation can be. The 
variation in notations, methods, applications, sophistication, 
and significance of arithmetical systems is enormous, as expected 
in the enculturation model. One of the most striking differences 
concerns the number system applied. Early notations in different 
cultures for natural numbers share a striking similarity, showing 

a general tendency for tallying as the first form of keeping 
track of quantities. But how the tallying system of stroke 
notation is used and developed varies a great deal. Our decimal 
number system, while possibly the most common base in 
history, has by no means been the only one. The Mayans, 
Aztecs, and Celts had a vigesimal base-20 number system, 
whereas Sumerians and Babylonians had a base-60 system 
(Ifrah, 1998, xxi). Another feature central to our number 
system, the rule of position, has only been developed – to 
the best of our knowledge – on four occasions in history 
(Ifrah, 1998, xxiv). It is unlikely to be  a coincidence that all 
of the four cultures (Babylonians, Chinese, Indians and Mayans) 
who had the rule of position – meaning that a number symbol 
refers to a different magnitude based on its position in the 
number sequence – developed sophisticated systems 
of arithmetic.

When considering individuals instead of whole cultures, 
the most important aspect seems to be  simply having the 
cultural circumstances that provide the opportunity to develop 
arithmetical cognition. In this, arithmetic is no different from 
other cognitive abilities. From the enfant sauvage cases, it is 
known how difficult it is for even basic human cognitive abilities 
to develop without proper cultural nurturing (Candland, 1993). 
In the case of arithmetic, the importance of getting a suitable 
cultural opportunity at the right age is crucial. Regardless of 
their origin of birth, other than in cases of developmental 
disorders, children growing up in arithmetical cultures learn 
basic arithmetic with relative facility. This is the case also with 
the Pirahã children who have been raised in outside cultures 
(Everett, 2017).

In this way, the move from proto-arithmetic to arithmetic 
fits well with the theory of enculturation, having all three 
expected characteristics. The more we  find out about the 
development of numerical ability, the more it points to a 
multitude of contributing factors, some of them genetically 
determined (subitizing, ANS) and some culturally specific 
(language, applications, cognitive tools, status). The structure 
of language, often thought to be the key to arithmetical cognition, 
would appear to be  included in both.

WHITHER ENCULTURATION?

Paradigm for Future Research
Enculturation as a general framework for explaining mathematical 
cognition fits well with the kind of plurality of influences 
described in the previous section. But the real challenge is in 
moving from the general idea that mathematical cognition is 
enculturated to satisfactory explanations of how this actually 
happens. This is already the case on the physiological level 
of neuronal recycling. Menary (2015) points out as evidence 
for enculturation data (e.g. Dehaene, 2009) in support of the 
idea that brains literally change structure and function when 
we  learn arithmetic. Indeed, this appears to be  a key point 
for enculturation. The whole premise of the framework is that 
the “mathematical brain” is not due to evolution as such, but 
to re-employing universal neural circuits for creating new circuits. 
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However, enculturation is not the only framework that can 
account for such changes in the brain. With every piece of 
new information, our brain changes – that much is trivially 
true. The interesting question is how neural circuits are 
re-deployed.

There is thus a danger to treat enculturation as too wide 
a concept to be fruitful for explaining the character of arithmetical 
knowledge. Given the large cultural variation in how the core 
cognitive abilities develop into numeral systems and basic 
arithmetic – and further into sophisticated mathematical 
theories – it is easy to agree with the general culture-specific 
character of arithmetical conventions. However, enculturation 
needs to achieve more than that in order to provide a viable 
framework in explaining the development of arithmetic. In 
particular, it needs to provide a plausible account of what is 
specific to the development of arithmetical knowledge and 
how it connects to related enculturated cognitive developments, 
such as the development of written language.

In this pursuit, the kind of conceptual considerations I have 
made in this paper is crucial, starting from the distinction 
between proto-arithmetic and arithmetic. The enculturated 
character of arithmetical knowledge would be  beyond our 
grasp if we  do not have a clear idea what arithmetic is. As 
it happens, we  can develop our core cognitive abilities with 
numerosities, as well: it is possible to become a better subitizer 
and estimator by training (Piazza et al., 2013). This improvement 
also changes the structure of the brain in an enculturated 
setting based on quantity-specific tasks, yet it does not make 
the abilities any more arithmetical. Thus, there is a clear sense 
in which enculturated factors influence our ability with 
numerosities. But in explaining arithmetical cognition, we  are 
not interested in the general way of becoming better with 
quantities. Instead, the important part for us is the move 
from early proto-arithmetic to arithmetic and the following 
stages of development in arithmetical knowledge.

So far in this paper, we  have focused on the initial stages 
in the development of arithmetic. However, that is only the 
beginning of a long project. The development of arithmetical 
thinking has been historically a slow and complicated process, 
and there is no reason to assume that the psychological processes 
carried out by individuals are straight-forward, either. After 
the move from proto-arithmetic to arithmetic, the next big 
developmental chasm is between simple counting and addition 
on the one hand and more developed arithmetical manipulations 
on the other. The former can be  done before learning to write 
while, as Menary (2015) and Fabry (2018b) emphasize, the 
latter appear generally to be  tied to manipulating symbols on 
paper (or perhaps board or screen).

From the point of view of enculturation, explaining these 
two stages of arithmetical development must be  treated as 
two separate – although closely related – questions. Indeed, 
Menary stresses that the manipulations on paper are not 
scaffolding that can later be  discarded. Their very essence is 
tied to the use of physical tools, which is a cultural aspect 
of its own. This embodied dimension has a crucial effect on 
our ability to understand mathematics. The experiments 
conducted by Landy and Goldstone (2007), for example, show 

that variation in spacing and grouping of symbols in 
mathematical formulas – while supposedly irrelevant to 
understanding the formulas – play an important role in 
correctly grasping operator precedence. In one experiment 
(Landy and Goldstone, 2009), test subjects solved algebraic 
equations by moving numbers to the other side of the equals 
sign while the background was moving. When the background 
moved incongruently to the correct moving of the symbols, 
subjects made more mistakes. Curiously, mathematically 
advanced students made more mistakes than beginners. This 
suggests how deep the importance of the sensorimotor 
processing can go in understanding mathematics. Even for 
advanced students, the physical presentation of mathematical 
formulas has great influence on understanding their formal 
content. Indeed, their processing of the formal content seems 
to be  tied more into the particular, enculturated, procedures 
(see Fabry and Pantsar (2019) for more).

Stages of Development
To make sense of what is needed in explaining the development 
of arithmetic, we  can formulate a model of different stages 
in the development of arithmetic. At the first stage, from the 
core cognitive origins and a multitude of cultural factors, 
we develop a rough understanding of a discrete natural number. 
At the next stage, we move to counting and simple arithmetical 
operations with small numbers, employing new cultural inputs 
(such as the use of body parts, as well as numerals and number 
symbols). When moving to more complicated arithmetical 
operations, we introduce yet other cultural factors, both physical 
artifacts and educational innovations. This makes arithmetical 
operations possible for larger numbers. Ultimately and ideally, 
in this development, there comes the stage at which we  are 
able to understand, construct, and communicate formal proofs 
of arithmetical theorems.

To apply the enculturation account in empirical studies, all 
these levels of the development of arithmetic need to be included, 
and that process involves a wide range of problems. To see 
why, let us consider the range of culturally dependent factors 
involved in learning arithmetic in Western culture. A child 
born into our culture shares the cognitive core systems for 
treating quantities with children from other cultures, but after 
that the surrounding culture is strongly present in every stage 
of the development. When she learns to count, it is made 
possible by her native language having a suitable numeral 
system. But there are also other cultural factors in play. From 
the educational methods to the very idea that counting is 
something important for young children to learn, these factors 
are important to acknowledge. It is not enough for a child 
to be, in Piaget’s (1970, 1977) terminology, in the appropriate 
stage of cognitive development. She also needs to receive the 
kind of instruction that is conducive to grasping natural number 
concepts (see, e.g., Ojose, 2008). Methods and contents of 
instruction are culturally situated inventions that determine 
how new knowledge is acquired, already starting from simple 
cases such as finger counting (Bender and Beller, 2012). This 
is a topic widely discussed in educational research. The 
sociocultural theory of Vygotsky and his followers has been 
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used to study the early stages of mathematics education (see, 
e.g., Vygotsky, 1978; Case, 1987; Sfard, 2008).

Continuing to learning arithmetical operations, the cultural 
influence retains its central role. It is often argued that the 
Hindu-Arabic number symbols, for example, facilitate 
multiplication in comparison to, say, the Roman number symbols, 
thus changing the status of multiplication in the culture (Wilensky 
and Papert, 2010). In our culture, almost every child learns 
multiplication with the Hindu-Arabic number symbols. This 
is of course not only a question of number symbols but also 
of multiplication algorithms and the educational context for 
learning them. Saxe (2015), for example, has showed that there 
are important difference between the arithmetic used by child 
candy sellers in Brazil and that of school-educated children. 
Our cognitive development is determined by not only the 
languages and symbols systems that we  use but also the other 
aspects of the cultural context. With the development of artifacts 
such as the abacus, the slide rule, or the electronic calculator, 
the education and practice of arithmetic are once more changed, 
as different cognitive tools are being employed in different 
cultural settings (Hutchins, 1995; Malafouris, 2013).

Assuming that the child progresses in mathematics when 
she grows up, she may continue to study it on a higher level. 
Now she will learn what kind of proofs are acceptable. She 
will be  taught a whole new way of thinking about arithmetic. 
Whereas before her arithmetical efforts have involved carrying 
out arithmetical operations with particular numbers, now she 
learns how to prove theorems concerning all numbers. She 
will learn about formal mathematics: axiomatic systems, proof 
methods, etc. Equally importantly, she will also learn about 
mathematical practice: how to construct mathematical proofs 
and communicate them to other mathematicians (see, e.g., 
Avigad, 2008). And if she does not become a mathematician, 
she could become an engineer, an architect, or work in any 
of the multitude of professions in our culture that apply 
mathematics. All through this development, from learning to 
count to becoming a proficient (if not necessarily professional) 
mathematician, her brain will continue to recycle neural circuits 
to new functions, determined by the instruction and influences 
she receives from the surrounding culture.

Explaining this development in a comprehensive manner is 
a complex project when we  remember that enculturation can 
be  a different process for different stages of the development 

of arithmetic. Indeed, it can conceivably be  in different cultures 
a different process also for the same stage. Even if our conception 
of, say, addition was essentially equivalent to that of the Mayans, 
there is no guarantee that the enculturated process leading to 
it was similar in the two cultures. It is this vastness of arithmetic 
as a human phenomenon in all its aspects – both within cultures 
and inter-culturally – that makes explaining the development 
of arithmetical cognition a wider project than traditionally 
thought. If we want to get an empirically informed and conceptually 
sound explanation of arithmetical cognition, the only possibility 
is to break the wider phenomenon into smaller pieces. In this 
paper, I  have presented an enculturated account of how to do 
this in the move from proto-arithmetic to arithmetic.
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