Skip to main content
Log in

Environmental Risks of Pesticides Versus Genetic Engineering for Agricultural Pest Control

  • Published:
Journal of Agricultural and Environmental Ethics Aims and scope Submit manuscript

Abstract

Despite the application of 2.5 million tons ofpesticides worldwide, more than 40% of all potentialfood production is lost to insect, weed, and plantpathogen pests prior to harvest. After harvest, anadditional 20% of food is lost to another group ofpests. The use of pesticides for pest control resultsin an estimated 26 million human poisonings, with220,000 fatalities, annually worldwide. In the UnitedStates, the environmental and public health costs forthe recommended use of pesticides total approximately$9 billion/yr. Thus, there is a need for alternativenon-chemical pest controls, and genetic engineering(biotechnology) might help with this need. Diseaseand insect pest resistance to various pests has beenslowly bred into crops for the past 12,000 years;current techniques in biotechnology now offeropportunities to further and more rapidly improve thenon-chemical control of disease and insect pests ofcrops. However, relying on a single factor, like theBacillus thuringiensis toxin that has beeninserted into corn and a few other crops for insectcontrol, leads to various environmental problems,including insect resistance and, in some cases, athreat to beneficial biological control insects andendangered insect species. A major environmental andeconomic cost associated with genetic engineeringapplications in agriculture relates to the use ofherbicide resistant crops (HRC). In general, HRCtechnology results in increased herbicide use but noincrease in crop yields. The heavy use of herbicidesin HRC technology pollutes the environment and canlead to weed control costs for farmers that may be2-fold greater than standard weed control costs. Therefore, pest control with both pesticides andbiotechnology can be improved for effective, safe,economical pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Abd Alla, M. H. and S. A. Omar, “Herbicides Effects on Nodulation, Growth, and Nitrogen yield of faba bean Introduced by Indigenous Rhizobium Leguminosarum,” Zentralblatt fur Mikrobiologie 148(8) (1993), 593-597.

    Google Scholar 

  • Alexander, M., “Ecological Consequences of Reducing the Uncertainties,” Issues in Science and Technology 1(3) (1985), 57-68.

    Google Scholar 

  • Al Khatib, K., R. Parker, and E. P. Fuerst, “Sweet Cherry Response to Simulated Drift from Selected Herbicides,” Proceedings Western Society of Weed Society, Vol. 45 (Salt Lake City, Utah, 1992), pp. 2-27.

    Google Scholar 

  • Altieri, M. A., “The Environmental Risks of Transgenic Crops: An Agroecological Assessment,” Fifth Annual ESSD Conference Proceedings (World Bank, Washington DC, 1998).

    Google Scholar 

  • Bartlett, A. C., “Resistance of the Pink Bollworm to BT Transgenic Cotton,” in D. A. Richter and J. Amour (eds.), Proceedings Beltwide Cotton Conference, National Cotton Council of America (National Cotton Council of America, Memphis, TN, 1995), p. 766.

    Google Scholar 

  • Benbrook, C., Evidence of the Magnitude and Consequences of the Roundup Ready Soybean Yield Drag from University-based Varietal Trials in 1998 (Ag BioTech InfoNet Technical Paper Number 1, July 13, 1999), http://www.biotech-info.net/ RR_yield_drag_98.pdf

  • Benedict, J. H., D. R. Ring, E. S. Sachs, D. W. Altman, R. R. DeSpain, T. B. Stone, and J. R. Sims, “Influence of Transgenic BT Cottons on Tobacco Budworm and Bollworm Behavior Survival, and Plant Injury,” in J. Herber and D. A. Richter (eds.), Proceedings Beltwide Cotton Council (National Cotton Council, Memphis, TN, 1992), pp. 891-895.

    Google Scholar 

  • Berlan J. P. and R. C. Lewontin, “La menace du complexe genetico-industriel,” Le Monde Diplomatique (22 Dec., 1998).

  • Blew, J. H., “Breeding Bird Census 92 Conventional Cash Crops Farm,” Journal of Field Ornithology 61(suppl.) (1990), 80-81.

    Google Scholar 

  • BSTID (Board on Science and Technology for International Development), Lost Crops of Africa, Vol. 1 (National Academic Press, Washington DC, 1996), pp. 1-383.

    Google Scholar 

  • Bommineni, V. R., P. P. Jauhar, and T. S. Peterson, “Transgenic Durum Wheat by Microprojectile Bombardment of Isolated Scutella,” Journal of Heredity 88(6) (1997), 474-481.

    Google Scholar 

  • Boudry, P., K. Broomberg, P. Saumitou-Laprade, M. Morchen, J. Cuegen, and H. Van Dijk, “Gene Escape in Transgenic Sugar Beet: What Can be Learned from Molecular Studies of Weed Beet Populations?” Proceedings of the 3rd International Symposium on the Biosafety Results of Field Tests of Genetically-Modified Plants and Microorganisms, Monterey, California, November 13-16 (The University of California, Division of Agriculture and Natural Resources, Oakland, CA, 1994), pp. 75-83.

    Google Scholar 

  • Boutin, V., G. Pannenbecker, W. Ecke, G. Schewe, P. Saumitou-Laprade, R. Jean, P. Vernet, and G. Michealis, “Cytoplasmic Male Sterility and Nuclear Restorer Genes in a Natural Population of Beta Maritima: Genetical and Molecular Aspects,” Theor. Appl. Genet. 73 (1987), 625-629.

    Google Scholar 

  • Brown, J. and A. P. Brown, “Gene Transfer Between Canola (Brassica napus and B. campestris) and Related Weed Species,” Annals of Applied Biology 129(3) (1996), 513-522.

    Google Scholar 

  • Buhl, K. J., S. J. Hamilton, and J. C. Schmulbach, “Chronic Toxicity of Bromoxynil Formulation Buctril to Daphnia Magna Exposed Continuously and Intermittently,” Archives Env. Cont. And Toxicology 25(2) (1993), 152-159.

    Google Scholar 

  • Chen, C., “Flavoring Against Fowl,” Cornell Countryman (April/May, 1995), 24.

  • Cox, C., “Glyphosate, Part 1: Toxicology,” Journal of Pesticide Reform 15(3) (1995a), 14-20.

    Google Scholar 

  • Cox, C., “Glyphosate, Part 2: Toxicology,” Journal of Pesticide Reform 15(4) (1995b), 14-20.

    Google Scholar 

  • Cox, C., “Herbicide Factsheet: Glufosinate,” Journal of Pesticide Reform 16(4) (1996), 15-19.

    Google Scholar 

  • Croft, B. A., Arthropod Biological Control Agents and Pesticides (J. Wiley & Sons, New York, 1990).

    Google Scholar 

  • Cuguen, B., R. Wattier, L. Saumitou, D. Forcioli, M. Morchen, H. Van Dilk, and P. Vernet, “Gynodiecy and Mitochondrial DNA Polymorphism in Natural Populations of Beta vulgaris ssp. maritima,” Geneti. Sci. Evol. 26 (1994), 87-101.

    Google Scholar 

  • de Zoeten, G. A., “Risk Assessment: DoWe Let History Repeat Itself,” Phytopathology 81 (1991), 585-586.

    Google Scholar 

  • Dobbins, J., “Resources Damage Assessment of the T/V Puerto Rican Oil Spill Incident,” Report to NOAA (Sanctuary Program Division, Washington, DC, 1986).

    Google Scholar 

  • Ecobichon, D. J., J. E. Davies, J. Doull, M. Ehrlich, R. Joy, D. McMillan, R. MacPhail, L. W. Reiter, W. Slikker, and H. Tilson, “Neurotoxic Effects of Pesticides,” in C. F. Wilkinson and S. R. Baker (eds.), The Effect of Pesticides on Human Health (Princeton Scientific, Princeton, NJ, 1990), pp. 131-199.

    Google Scholar 

  • Elton, C. S., The Ecology of Invasions by Animals and Plants (Methuen, London, 1958).

    Google Scholar 

  • El-Zarkouny, S. A., M. A. Ayoub, M. H. G. Ishak, F. D. El Nouty, G. A. Hassan, R. Abo El Ezz Zahraa, and M. H. Salem, “Effect of Carbosulfan Pesticide and Selenium on Some Semen Characteristics and Serum Testosterone in Male Rabbits,” International Journal of Environmental Health Research 9(2) (1999), 117-124.

    Google Scholar 

  • EPA, Carbofuran: A Special Review Technical Support Document (US Environmental Protection Agency, Office of Pesticides and Toxic Substances, Washington, DC, 1989).

    Google Scholar 

  • Fernandez-Cuartero, B., J. Burgyan, M. A. Aranda, K. Salanki, E. Moriones, and F. Garcia-Arenal, “Increase of the Relative Fitness of a Plant Virus RNA Associated with Its Recombinant Nature,” Virology 203 (1994), 373-377.

    Google Scholar 

  • Fisch, H. and E. T. Goluboff, “Geographic Variations in Sperm Counts: A Potential Cause of Bias in Studies of Sperm Quality,” Fertility and Sterility 65(5) (1996), 1044-1046.

    Google Scholar 

  • Flickinger, E. L., K. A. King, W. F. Stout, and M. M. Mohn, “Wildlife Hazards from Furadan 3G Application to Rice in Texas,” Journal of Wildlife Management 44 (1980), 190-197.

    Google Scholar 

  • Flickinger, E. L., G. Juenger, T. J. Roffe, M. R. Smith, and R. J. Irwin, “Poisoning of Canada Geese in Texas by Parathion Sprayed for Control of Russian Wheat Aphid,” Journal of Wildlife Diseases 27 (1991), 265-268.

    Google Scholar 

  • Forschler, R. T., J. N. All, and W. A. Gardner, “Steinermafeltiae Activity and Infectivity in Response to Herbicide Exposure in Aqueous and Soil Environments,” J. Invertebrate Pathology 55(3) (1990), 375-379.

    Google Scholar 

  • Fox, J. L., “Farmers Say Monsanto' Engineered Cotton Drops Bolls,” Nature BioTechnology15 (1997), 1233.

    Google Scholar 

  • Gene Exchange (Union of Concerned Scientists, Washington, DC, Fall 1997), pp. 6-8.

  • Gene Exchange (UCS [Union of Concerned Scientists], Summer 1998), www.ucsusa.org

  • Goldburg, R., J. Rissler, H. Shand, and C. Hassebrook, Biotechnology' Bitter Harvest. A Report of the Biotechnology Working Group (1990).

  • Goldburg, R., “Pause at the Amber Light,” Ceres 153 (1995), 21-26.

    Google Scholar 

  • Goldburg, R. J. and G. Tjaden, “Are B.T.K. Plants Really Safe to Eat?” BioTechnology 8 (1990), 1011-1015.

    Google Scholar 

  • Gonsalves, D., M. Fuchs, F. Klas, and P. Tennant, “Field Assessment of RisksWhen Using Transgenic Papayas, Cucurbits, and Tomatoes Expressing Viral Coat Protein Genes,” Proceedings of the 3rd International Symposium on the Biosafety Results of Field Tests of Genetically-Modified Plants and Microorganisms, Monterey, California, November 13-16 (The University of California, Division of Agriculture and Natural Resources, Oakland, CA, 1994), pp. 117-127.

    Google Scholar 

  • Greene, A. E. and R. F. Allison, “Recombination Between Viral RNA and Transgenic Plant Transcript,” Science 263 (1994), 1423-1425.

    Google Scholar 

  • Greef, W. De, R. Delon, M. de Block, J. Leemans, and J. Botterman, “Evaluation of Herbicide Resistance in Transgenic Crops under Field Conditions,” Bio/Technology 7(1) (1989), 61-64.

    Google Scholar 

  • Gressel J., Genetically-Engineered Herbicide Resistant Crop - A Moral Imperative for World Food Production (Agro-Food Industry. Hi Tech, Jonpaper, 1992), p. 15.

  • Hayenga, M. L., C. Thompson, C. Chase, and S. Kaaria, “Economic and Environmental Implications of Herbicide-Tolerant Corn and Processing Tomatoes,” Journal of Soil and Water Conservation 47 (1992), 411-417.

    Google Scholar 

  • Hammond, B. G., J. L. Vicini, G. F. Hartnell, M.W. Naylor, C. D. Knight, E. H. Robinson, R. L. Fuchs, and S. R. Padgette, “The Feeding Value of Soybeans Fed to Rats, Chickens, Catfish, and Dairy Cattle Is Not Altered by Genetic Incorporation of Glyphosphate Tolerance,” Journal of Nutrition 126(3) (1996), 717-727.

    Google Scholar 

  • Hammond B. G. and R. L. Fuchs, “Safety Evaluation for New Varieties of Food Crops Developed Through Biotechnology,” in J. A. Thomas (ed.), Biotechnology and Safety Assessment (Taylor & Francis, Washington DC, 1997), pp. 61-79.

    Google Scholar 

  • Head, R. B., “Cotton Insect Losses,” Proceedings of the National Cotton Council of America, 1991-1993, Vol. 2 (Memphis, TN, 1991), pp. 655-660.

    Google Scholar 

  • Heath, M. C., B. Valent, R. J. Howard, and F. G. Chumley, “Correlations Between Cytological Detected Plant-Fungal Interactions and Pathogenicity of Magnaporthe Grisea Toward Weeping Lovegrass,” Phytopathology 80(12) (1990), 1382-1386.

    Google Scholar 

  • Henry, C. J., K. F. Higgins, and K. J. Buhl, “Acute Toxicity and Hazard Assessment of Rodeo, Spreader, and Chem-Trol to Aquatic Invertebrates,” Activities of Environmental Contamination and Toxicology 27(3) (1994), 392-399.

    Google Scholar 

  • Hilbeck, A., M. Baumgartner, M. Fried-Padrout, and F. Bigler, “Effects of Transgenic Bacillus Thuringiensis Corn-Fed Prey on Mortality and Development time of immature Chrysoperla carnea,” Environmental Entomology 27 (1998), 480-487.

    Google Scholar 

  • Hull, R., “The Use and Misuse of Viruses in Cloning and Expression in Plants,” in R. S. S. Frazer (ed.), Recognition and Response in Plant-Virus Interactions, NATO ASI, Vol.H41 (Springer-Verlag, Berlin and Heidelberg, 1990), pp. 443-457.

    Google Scholar 

  • James C., “Global Review of Commercialized Transgenic Crops,” ISAAA Briefs (Cornell University, 8/1998).

  • James, P. C., “Internalizing Externalities: Granular Carbofuran Use on Rapeseed in Canada,” Ecology and Economics 13 (1995), 181-184.

    Google Scholar 

  • Jepson, P. C., B. C. Croft, and G. E. Pratt, “Test Systems to Determine the Ecological Risks Posed by Toxin Release from Bacillus thuringiensis Genes in Crop Plants,” Molecular Ecology 3 (1994), 81-89.

    Google Scholar 

  • Joel, D., M. Kleifeld, Y. Losner-Goshen, G. Hezlinger, and J. Gessler, “Transgenic Crops Against Parasites,” Nature 374 (1995), 220-221.

    Google Scholar 

  • Koyama, K., K. Koyama, and K. Goto, “Cardiovascular Effects of a Herbicide Containing Glufosinate and a Surfectant: In Vitro and In Vivo Analyses in Rats,” Toxicology and Applied Pharmacology 145(2) (1997), 409-414.

    Google Scholar 

  • Krattinger, A. F. and A. Rosemarin, Biosafety for Sustainable Agriculture: Sharing Biotechnology Regulatory Experiences of the Western Hemisphere (ISAAA, Ithaca, NY, 1994).

    Google Scholar 

  • Krimsky, S. and R. P. Wrubel, Agricultural Biotechnology and the Environment (Univ. Illinois Press, Urbana, IL, 1996), 294 pp.

    Google Scholar 

  • LeBaron H. M. and J. E. McFarland, “Resistance to Herbicides,” Chemtech 20 (1990), 508-511.

    Google Scholar 

  • Lindgren, P. B., N. J. Panopoulos, B. J. Staskawicz, and D. Dahlbeck, “Genes Required for Pathogenicity and Hypersensitivity Are Conserved and Interchangeable Among Pathovars of Peudomanas syringae,” Molecular & General Genetics 211(3) (1988), 499-506.

    Google Scholar 

  • Lindow, S. E., “Methods of Preventing Frost Injury Caused by Epiphytic Ice-Nucleation-Active Bacteria,” Plant Disease 67 (1983), 327-333.

    Google Scholar 

  • Losey, J., L. S. Rayor, and M. E. Carter, “Transgenic Pollen Harms Monarch Larvae,” Nature 399 (1999), 214.

    Google Scholar 

  • Mastrota, F. N. and J. A. Mench, “Evaluation of Taste Repellents with Northern Bobwhites for Deterring Ingestion of Granular Pesticides,” Environmental Toxicology and Chemistry 14 (1995), 631-638.

    Google Scholar 

  • McCullum C., Pimentel D., and M. G. Paoletti, “Genetic Engineering in Agriculture and the Environment: Risks and Benefits,” in J.A. Thomas (ed.), Biotechnology and Safety Assessment (Taylor & Francis, Washington, DC, 1998), pp. 177-217.

    Google Scholar 

  • Mikkelsen, T. R., B. Anderson, and R. B. Jorgensen, “The Risk of Crop Transgene Spread,” Nature 380 (1996), 31.

    Google Scholar 

  • Miller, J. J., B. C., Hill, C. Chang, and C.W. Lindwall, “Canadian Journal of Soil,” Science 75(3) (1995), 349-356.

    Google Scholar 

  • Mineau, P., “AvianMortality in Agroecosystems. I. The Case Against Granular Insecticides in Canada,” in M. P. Greaves, B. D. Smith, and P. W. Greig-smith (eds.), Field Methods for the Study of Environmental Effects of Pesticides. London: British Crop Protection Council, Monograph 40, Thornton Heath, London, 1988), pp. 3-12.

    Google Scholar 

  • Mohamed, A.-I., G.-A. Nair, H.-H. Kassem, and M.-Nuruzzaman, “Impacts of Pesticides on the Survival and Body Mass of the Earthworm Aporrectodea caliginosa (Annelida: Oligochaeta),” Acta Zoologica Fennicica 196 (1995), 344-347.

    Google Scholar 

  • Moff, A. S., “Toting up the Early Harvest of Transgenic Plants,” Science 282 (1998), 2176-2178.

    Google Scholar 

  • NAS, Introduction of Recombinant DNA-Engineered Organisms into the Environment: Key Issues (National Academy of Sciences, Washington, DC, 1987).

    Google Scholar 

  • Oerke, E. C., H. W. Dehne, F. Schonbeck, and A. Weber, Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops (Elsevier, Amsterdam, 1994).

    Google Scholar 

  • Olsen, G. W., K. M. Bodner, J. M. Ramlow, C. E. Ross, and L. I. Lipshultz, “Have Sperm Counts been Reduced 50 Percent in 50 Years? A Statistical Model Revisited', Fertility and Sterility 63(4), 887-893.

  • Paoletti, M. G. and D. Pimentel, “The Environmental and Economic Costs of Herbicide Resistance and Host-Plant Resistance and Host-Plant Resistance to Plant Pathogens and Insects,” Technological Forecasting and Social Change 50 (1995), 9-23.

    Google Scholar 

  • Paoletti, M. G. and D. Pimentel, “Genetic Engineering in Agriculture and the Environment,” BioScience 46(9) (1996), 665-673.

    Google Scholar 

  • Palukaitis, P., “Virus-Mediated Genetic Transfer in Plants,” in M. Levin and H. Strauss (eds.), Risk Assessment in Genetic Engineering (McGraw-Hill, New York, NY, 1991), pp. 140-162.

    Google Scholar 

  • Parga V. M. and F. X. Flores, “Variedades Mexicanas de Papa en la Produccion de Alimentos Preservando el Ambiente,” in CONPAPA. Memorias del VI Congreso Nacional de Productores de Papa (Confederacion Nacional de productores de Papa, Saltillo, Mexico, 1995), pp. 65-69.

    Google Scholar 

  • Person, C., “Gene-for-Gene Relationships in Host-Parasite Systems,” Canadian Journal of Botany 37 (1959), 1101-1130.

    Google Scholar 

  • Pimentel, D., “Habitat Factors in New Pest Invasions,” in K. C. Kim and B. A. McPheron (eds.), Evolution of Insects - Patterns of Variation (J. Wiley & Sons, New York, 1993).

    Google Scholar 

  • Pimentel, D., Techniques for Reducing Pesticide Use. Economic and Environmental Benefits (J. Wiley & Sons, New York, 1997).

    Google Scholar 

  • Pimentel, D. and H. Lehman (eds.), The Pesticide Question: Environment, Economics, and Ethics (Chapman & Hall, New York, 1993).

    Google Scholar 

  • Pimentel, D. and M. S. Ali, “An Economic and Environmental Assessment of Herbicide-Resistant and Insect/Pest Resistant Crops,” Indian Journal of Applied Economics 7(2) (1998), 241-252.

    Google Scholar 

  • Pimentel, D. and A. Greiner, “Environmental and Socio-Economic Costs of Pesticide Use,” in D. Pimentel (ed.), Techniques for Reducing Pesticide Use: Environmental and Economic Benefits (J. Wiley & Sons, Chichester, UK, 1997), pp. 51-78.

    Google Scholar 

  • Pimentel, D. and K. Hart, “Ethical, Environmental, and Public Health Implications of Pesticide Use,” Chapter in New Perspectives in Bioethics (Johns Hopkins University Press, 1999), in press.

  • Pimentel, D., A. Greiner, and T. Bashore, “Economic and Environmental Costs of Pesticide Use,” in J. Rose (ed.), Environmental Toxicology: Current Developments (Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 1998), pp. 121-150.

    Google Scholar 

  • Pimentel, D., H. Acquay, M. Biltonen, P. Rice, M. Silva, J. Nelson, V. Lipner, S. Giordano, A. Horowitz, and M. D'Amore, “Assessment of Environmental and Economic Impacts of Pesticide Use,” in D. Pimentel and H. Lehman (eds.), The Pesticide Question: Environment, Economics, and Ethics (Chapman & Hall, New York, 1993), pp. 47-83.

    Google Scholar 

  • Quaim, M., “Transgenic Virus Resistant Potatoes in Mexico: Potential Socioeconomic Implications of North-South Biotechnology Transfer” ISAAA Briefs (Cornell University, 7/1998).

  • Reanova, V., V. Tuma, and K. Ondokova, “Effect of the Herbicide Roundup on Earthworms of the Family Lumbricidae in the Mountainous Meadow Ecosystems,” Zootechnicka Rada, Ceske Budejovice 13(2) (1996), 63-70.

    Google Scholar 

  • Rice, M. E. and C. D. Pilcher, “Potential Benefits and Limitations of Transgenic Bt Corn for management of the European Corn Borer (Lepidoptera: Crambidae),” American Entomologist (Summer 1998), 75-78.

  • Rissler, J. and M. Mellon, Perils Amidst the Promise: Ecological Risks of Transgenic Crops in a Global Market (Union for Concerned Scientists, Cambridg, MA, 1993).

    Google Scholar 

  • Rogers, H. J. and H. C. Parkes, “Transgenic Plants and the Environment,” J. Exp. Bot. 46 (1995), 467-488.

    Google Scholar 

  • Roush, R. T. and J. A. McKenzie, “Ecological Genetics of Insecticide and Acaride Resistance,” Annu. Rev. Entomol. 32 (1987), 361-380.

    Google Scholar 

  • Samsoe-Peterson, L., “Effects of 67 Herbicides and Plant Growth Regulators on the Rove Beetle Aleochara bilineata (Col. Staphylinidae) in the Laboratory,” Entomophaga 40 (1995), 95-104.

    Google Scholar 

  • Santoni, S. and A. Berville, “Characterization of the Nuclear Ribosomal DNA Units and Phylogeny of Beta L. Wild Forms and Cultivated Beets,” Theor. Appl. Genet. 83 (1992), 533-542.

    Google Scholar 

  • Smith, B. D., The Emergence of Agriculture (Scientific American Library, Washington, DC, 1995).

    Google Scholar 

  • Smith, C. M., Plant Resistance to Insects. A Fundamental Approach (J. Wiley & Sons, New York, 1989).

    Google Scholar 

  • Smith, J. R. and S. A. Leong, “Mapping of a Magnaporthe grisea Locus Affecting Rice (Orysa sativa) Cultivar Specificity,” Theoretical and Applied Genetics 88(8) (1994), 901-908.

    Google Scholar 

  • Springett, J. A. and R. A. J. Gray, “Effect of Repeated Low Doses of Biocides on the Earthworm Apporectodea caliginosa in Laboratory Culture,” Soil Biology and Biochemistry24(12) (1992), 1739-1744.

    Google Scholar 

  • Steffey, K. L., “Crops, Genetic Technology, and Insect Management: Let' Talk,” American Entomologist 41(4) (1995), 205-206.

    Google Scholar 

  • Stone, W. B. and P. B. Gradoni, “Wildlife Mortality Related to the Use of the Pesticide Diazonin,” Northeastern Environmental Science 4 (1985), 30-38.

    Google Scholar 

  • Strizhov, N., M. Keller, J. Mathur, Z. Konz-Lalman, D. Bosch, E. Prudovsky, J. Schell, B. Sneh, C. Koncz, and A. Zilberstein, Proceedings of the National Academy of Sciences93(26) (1996), 15012-15017.

    Google Scholar 

  • Swan, S. H., E. P. Elkin, and L. Fenster, “Have Sperm Densities Declined? A Re-Analysis of Global Trend Data,” Environmental Health Perspectives 105(11) (1997), 1228-1232.

    Google Scholar 

  • Tabashnik, B. E., “Resistance Risk Management: Realized Heritability of Resistance to Bacillus thuringiensis in Diamond Back Moth (Lepidoptera: Pluetellidae), Tobacco Budworm (Lepidoptera: Noctuidae), and Colorado Potato Beetle (Coleoptera: Chrysomelidae),” Journal of Economic Entomology 85 (1992), 1551-1559.

    Google Scholar 

  • Tepfer, M., “Viral Genes and Transgenic Plants,” Bio/Technology 11 (1993), 1125-1129.

    Google Scholar 

  • Tepfer, M., F. Vilaine, M. Carneiro, V. Pautot, C. Charbonnier, M. Rossignol, G. Vansuyt, E. Prinsen, H. Van-Onckelen, V. Legue, G. Perbal, C. Besnard, M. Noin, A. Guivarc'h, and D. Chriqui, “Physiological and Morphological Consequences of Expression of the rolA Gene in Transgenic Tobacco Plants,” Acta Botanica Gallica 140(6), 685-691

  • Tinney, R. T., The Oil Drilling Prohibitions at the Channel Islands and Pt. Reyes-Fallallon Island National Marine Sanctuaries: Some Costs and Benefits (Report to Center for Environmental Educations, Washington, DC, 1982).

    Google Scholar 

  • UNEP, Global Environmental Outlook (United Nation Environmental Programme, Nairobi, Kenya, 1997).

    Google Scholar 

  • USFWS, 1985 Survey of Fishing, Hunting, and Wildlife Associated Recreation. U.S. Fish and Wildlife Service (U.S. Department of the Interior, Washington, DC, 1988).

    Google Scholar 

  • Verderio, A., M. Bressan, M. Bertolini, S. Pino, G. Mazzinelli, and G. Sartori, “Risultati delle varieti transgeniche di mais resistenti a piralide o tolleranti a glufosinateammonio,” L'Informatore Agrario 12(98) (1998), 61-70.

    Google Scholar 

  • Waite, D. T., R. Grover, N. D. Westcott, D. G. Irvine, L. A. Kerr, and H. Sommerstad, “Atmospheric Deposition of Pesticides in a Small Southern Saskatchewan Watershed,” Environmental Toxicology and Chemistry 14(7) (1995), 1171-1175.

    Google Scholar 

  • Walgenbach, F. E., Economic damage Assessment of Flora and Fauna Resulting from Unlawful Environmental Degradation (Manuscript, California Department of Fish and Game, Sacramento, CA, 1979).

    Google Scholar 

  • Watanabe, T. and T. Iwase, “Developmental and Dysmorphongenic Effects of Glufosinate Ammonium on Mouse Embryos in Culture,” Tetratogenesis, Carcinogenesis and Mutagenesis 16(6) (1996), 287-299.

    Google Scholar 

  • Wellings, C. R. and R. A. McIntosh, “Puccina straiiformis F sp tririci in Australia: Pathogenic Changes During First 10 Years,” Plant Pathology (London) 39(2) (1990), 316-325.

    Google Scholar 

  • White, D. H., C. A. Mitchell, L. D. Wynn, E. L. Flickinger, and E. J. Kolbe, “Organophosphate Insecticide Poisoning of Canada Geese in the Texas Panhandle,” Journal of Field Ornithology 53 (1982), 22-27.

    Google Scholar 

  • Wilkinson, C. F., “Introduction and Overview,” in S.R. Baker and C.F. Wilkinson (eds.), The Effects of Pesticides on Human Health, Proceedings of a Workshop May 9-11, 1988, Keystone, Colorado (Princeton Scientific Publishing, Princeton, 1990), pp. 5-33.

    Google Scholar 

  • WHO (World Health Organization), Glyphosate (WHO, Geneva, Switzerland, 1994).

    Google Scholar 

  • Wrubel, R. P. and J. Gressel, “Are Herbicide Mixtures Useful for Delaying the Rapid Evolution of Resistance? A Case Study,” Weed Technology 8 (1994), 635-648

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paoletti, M.G., Pimentel, D. Environmental Risks of Pesticides Versus Genetic Engineering for Agricultural Pest Control. Journal of Agricultural and Environmental Ethics 12, 279–303 (2000). https://doi.org/10.1023/A:1009571131089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009571131089

Navigation