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FOCUSED DISCUSSION INVITED PAPER

An Instrument for What?
Digital Computers, Simulation and Scientific Practice∗

Wendy S. Parker†

As a device used by scientists in the course of performing research,
the digital computer might be considered a scientific instrument.
But if so, what is it an instrument for? This paper explores a number
of answers to this question, focusing on the use of computers in a
simulating mode.

If devices used by scientists in the course of performing research
qualify as scientific instruments, then it seems clear that a new and
particularly important scientific instrument arrived on the scene in the
second half of the twentieth century: the digital computer. Indeed,
this instrument has proven to be transformative, significantly changing
how science is done in many fields. But what sort of instrument is
the digital computer? That is, what is it an instrument for? Some
scientific instruments–like optical telescopes–serve to enhance our natural
perceptual abilities. Other scientific instruments help us carry out desired
interventions; we might use a “gene gun” to insert genetic material into
plant cells. Still other instruments are for measuring, as in the case
of thermometers and Geiger counters. When we consider the digital
computer, however, specifying what it is an instrument for is more
complicated.1

One option is to characterize the digital computer as an instrument
for computation. In some sense, this is surely right. As Paul Humphreys
suggests in the opening pages of Extending Ourselves, we can view the
digital computer as an instrument that enhances our natural computational
abilities, much like the optical telescope enhances our natural perceptual
abilities (Humphreys 2004, 3-5). With the help of today’s computers, we
can carry out mathematical operations too complex or lengthy to perform
in our heads, and at speeds tremendously faster than we could ever hope

∗ Received 3 June 2010.
† Wendy S. Parker is Assistant Professor of Philosophy at Ohio University. Her research

focuses on the epistemology of computer simulation, especially weather and climate
simulation.

1 Though I speak of “the” digital computer, I mean this to include both personal computers
(PCs) and more powerful supercomputers of the last several decades.
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to achieve using pencil and paper. Yet simply characterizing the digital
computer as an instrument for computation seems unsatisfying, given the
variety of uses to which it is put in science. Humphreys himself calls
attention to this variety, including the use of computers to assist traditional
observation, to estimate solutions to intractable sets of mathematical
equations, and as simulating devices (see Humphreys 2004, 49-51 and
chapter 4). So perhaps it also would be appropriate to say that the
computer is an instrument for these sorts of purposes as well.

But why stop there? Consider the use of computers as simulating
devices, i.e. for modeling the evolution of real or imagined systems.
When used in this way, computers are claimed by philosophers and
scientists alike to serve various epistemic and cognitive purposes. If so,
then perhaps we can characterize the digital computer as an especially
flexible instrument, useful for a broad range of purposes in the course of
scientific research–a sort of Swiss Army knife of scientific instruments,
with computation at its core. In this case, there may be quite a few
answers to the question, what is the digital computer an instrument for?
In what follows, I survey several common answers, limiting my analysis
to computers in a simulating mode. I aim to illustrate the breadth of
uncontroversial answers that have already been given and to call attention
to a more contentious one that encourages reflection on the limits of what
computer simulation models (and digital computers) can do.2

Exploring models. Sometimes computers are used in a simulating
mode as a means of exploring the characteristics of models. For instance,
we might propose to model the evolution of a real-world system with a
set of differential equations that we cannot solve analytically for initial and
boundary conditions of interest, leaving it unclear whether their solutions fit
with the observed behavior of the system in expected or hoped-for ways. A
computer might be used to repeatedly estimate solutions using numerical
methods, producing a simulation whose results can be displayed on the
computer’s screen. What we see happening in the simulation may allow
us to answer questions of interest about the modeling equations that
we originally specified, e.g. whether their solutions do have expected or
desired characteristics. Care must be taken when making such inferences
from computer simulation results to modeling equations, however, since
solutions estimated numerically using a finite-precision computer will differ
a least a little bit from the corresponding exact solutions (see also Parker
2009).3

2 For each of the answers presented below, much more could be said; my emphasis is
influenced by my past experience and is not intended to imply that work not discussed
is unimportant.

3 These complications are avoided when the original model specifies equations that are
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Developing explanations. Computers are also used in a simulating
mode for the purpose of developing explanations of observed phenomena.
What we see happening in a simulation–available for visual inspection on
a computer screen–may suggest a possible explanation of a phenomenon,
or may help us to fill in gaps in an explanation that we have already started
to sketch. In many cases, when computer simulation models are employed
with such explanatory goals in mind, simulation results in effect serve as
surrogate observational data, standing in for observational data that we
have not been able to collect. For instance, it is difficult to observe in
fine detail the evolution of conditions inside severe thunderstorms, but we
can examine the results of high-resolution simulations to see what they
suggest about that evolution; in practice, such simulations have played an
important role in developing explanations of features of storm behavior
(see Houze 1994, 294-95; Wilhelmson et al. 1990; Winsberg 1999).4

Forecasting. In addition, computer simulation models are used to
forecast the behavior of real-world systems. Sometimes simulation results
are interpreted directly as forecasts, while in other cases results go
through some further processing. Perhaps the most familiar example of
this use of computer simulation models is in forecasting the weather. A
computer simulation model is initialized with an estimate of the state of
the atmosphere at some recent time–typically that estimate is reached in
a complicated way using both observational data and previous forecasts;
the evolution of atmospheric conditions over a time period of interest is
then simulated by running the model, producing results that subsequently
undergo further adjustment in light of errors in previous simulations, before
being offered as forecasts of the weather.

Designing and interpreting experiments. In high-energy physics,
computer simulation models play an important role as instruments for
experimental design and data interpretation. They are used to simulate
what will happen when subatomic particles are made to collide at very high
speeds in a detector; the collisions and the trajectories of their products,
as well as the behavior of the detector, are simulated to reveal what data
we can expect to collect in an experiment if our models of subatomic
structure are correct. Decisions about which data channels to record in the
experiment, and with what frequency, are made in light of such simulation
results. Moreover, the raw data that are then collected in the experiment

discrete in time and can be solved exactly, as in the case of some agent-based models
of social systems that specify rules for updating agent characteristics at each time step
in light of the characteristics of nearby agents.

4 Likewise, Bechtel and Abrahamsen (in press) provide an excellent discussion of how
computational modeling can facilitate the development of mechanistic explanations of
biological and cognitive phenomena.
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are interpreted using the simulated data as reference. As one physicist
put it, “The simulation package is an intrinsic part of any high-energy
experiment in as much as the detectors themselves; it is a mandatory
component of any experiment from the design stage to the final result”
(Perret-Gallix 2002, 488).

Measuring. Some philosophers suggest that computer simulation
models can be instruments for measuring, too. Weaker and stronger
versions of this view can be articulated. A weaker version says that
some computer simulation models are able to serve the same function
as measuring devices, i.e. they can reliably deliver information about
real-world target systems that we might otherwise seek using traditional
measuring devices. A stronger and more controversial version says
that some computer simulation models are measuring instruments–their
results constitute measurements of the properties of real-world target
systems.

The latter view was defended recently by Margaret Morrison (2009),
who sees important similarities between some computer simulation results
and traditional measurements: both are model-dependent in various ways,
and both involve causal contact with the real-world systems about which
information is sought.5 The causal contact may be less straightforward
in the case of computer simulation–grounded in the way simulated
objects or processes stand in for particular real-world counterparts–but
the differences do not prevent the classification of some simulation results
as measurements. Morrison specifically has in mind the results of certain
kinds of molecular dynamics simulations that use particle models, where
“the particles in the simulation model can be directly identified with physical
objects (via the theoretical model of the system)” (Morrison 2009, 45); the
same type of theoretical model would be relied upon in carrying out more
traditional measurements, e.g. in constructing the measuring apparatus
and/or interpreting its readings.

There are various reasons why we might resist the view that computer
simulation results can be measurements of the properties of real-world
target systems. For instance, we might doubt that computer simulation
studies (including the sort that Morrison discusses) really do involve the
right sort of causal contact with the target system: if the measurement
of a property had by a system at time t must involve causal contact with
the system at or after t, then it seems that computer simulation studies

5 Something like the stronger view also seems to be advocated by Stephen Norton
and Fred Suppe (2001), who argue that simulation models “provide an alternative
technology for probing real-world phenomena” (99) and thus can be “another source
of empirical data” (87).

Spontaneous Generations 4:1(2010) 42



W. S. Parker An Instrument for What?

generally do not qualify.6,7 But I will not attempt to resolve the matter here.
What is clear is that Morrison’s discussion prompts us not only to consider
the limits of what computer simulation models (and digital computers) can
be instruments for but also to think more deeply about what is essential
to genuine measurement, if anything. Doing so may lead us to a better
understanding of both computer simulation and measurement.

To sum up, then, it seems we can give an impressive array of
answers to the question, what is the digital computer an instrument
for? When used in a simulating mode, the computer can be (at least)
an instrument for exploring models, for developing explanations, for
forecasting, for designing and interpreting experiments, and–some would
argue–for measuring target system properties.

WENDY S. PARKER
Department of Philosophy
Ohio University
parkerw@ohio.edu
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