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Abstract. We examine a case in which non-computable behaviar
model is revealed by computer simulation. Thigdssible due to differing
notions of computability for sets in a continuopase. The argument originally
given for the validity of the simulation involvessempler simulatiorof the
simulation still further simulations thereof, and a univditgaonjecture. There
are difficulties with that argument, but there atleer, heuristic arguments
supporting the qualitative results. It is urgesing this example, that absolute
validation, while highly desirable, is overvalueSimulations also provide
valuable insights that we cannot yet (if ever) grov

If we could take as the finest allegory of simwalatihne Borges tale where
the cartographers of the Empire draw up a map daibdsl that it ends up
exactly covering the territory..., this fable woutén have come full
circle for us, and now has nothing but the disctarm of second-order
simulacra.

—Jean BaudrillardSimulacra and Simulation
1. Introduction

The absurd map of Borges and Casares ([1946] 169@hich Baudrillard

alludes should be well known among those who sindgleling and simulation. The



short parable that describes it is even titled R@jor in Science” (“Del Rigor en la
Ciencia”). Rigor, it thus suggests, can be exgessiewis Carroll describes a similar
map, which is never unfurled due to socioeconorbgtacles ([1893] 2005). "[W]e now
use the country itself, as its own map,” a charagtelains, “and | assure you it does
nearly as well.” The joke, of course, is that thepwould have done nearly aadly. A
useful representation is not a perfect replicajust be somehow more manageable than
its object.

One valuable kind of manageability today is redility on a digital computer.
This is not always feasible; a system may be taoptex to usefully simulate “in silico.”
If a computer simulation is attempted, we woule: likvalidateit, that is, to show that
the simulation results must hold as well for thegass simulated. But this too might
prove impossible, or merely unattainable in practic

Here we examine a case of simulation (Sommeredan#l996) that is
remarkable in several respects. Firstly, it seenshow that the long-term behavior of a
certain simple, deterministic physical system iy non-computable; no program can
reliably decide whether the state of the systerhtesild toward one set of states or
another. This is interesting in itself, especiailyce in this case not onlygsiantitative
prediction undermined by inevitableeasurement errpbut even theualitative

behavior of the system (in particular, which attoatit approaches) is unpredictable for

! Here, ‘attractor’ is used in a sense similar @t tf Milnor (1985): essentially, it is a
set whose basin of attraction has positive measlinebasin of attractiorof a setA is the union
of all orbits that asymptotically approash Under other definitions of attractor, all poinesar
an attractor must lie in its basin, so the compiadled” basins discussed here are ruled out.
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computationareasons. But secondly, how is this non-computgit@stablished? Why,
by computer simulation of course—computing the nmgotable! We will see how this
is possible. Thirdly, the scientists argue for vha&dity of their simulations—of a
continuous-time dynamical system—by referencesompler, andliscretetime,
simulationof the simulatior(hence my alternate title). In fact, this secemdulation is
in turn studied by means tfird- andfourth-order simulationd. This illustrates the
already appreciated variety of hats that modelssamdlations wear: among other
things, they can act in chains to supply analystéssupport of one another. (Cf. Gelfert
2006.)

Those are just preliminary remarks. My main claans four:

(i) Sommerer and Ott’s validation argument ultinhafails. It appeals to an
absolute “universality” conjecture: that all systeof a particular kind exhibit a certain
“power-law scaling” phenomenon. However, thisas tnue in any sense that would
support their argument, and the appeal to it agpeabe circular. Morton claims that
“the core of any systematic modeling along theseslicharting the attractors of
simplified models] has to be some very general erattical treatment of
‘universality’...” (1993, 666). But no rigoroustitment of universality succeeds here.

(i) Nonetheless, the second-order simulations idegtrong evidence, by means

% These last three simulations are not run on a atenpthey are abstract processes
studied analytically. Nonetheless they precessesn which a model imitates the time
evolution of another system. Hence they fit Hartnig definition of simulation (1996), except
that they perhaps do not imitate “real” systembeylalso have another important feature of
scientific simulations: their behavior is not siligted directly, but unfolds from a model or
procedure. Weiscovertheir behavior, rather than imposing it.
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of analogy, insight into mechanisms, atdictural stability the insensitivity of certain
properties to small modifications of the system.

(iii) Strict validation, i.e.proof that the results of a simulation hold for the targe
system, is of course desirable, but should notydvie demanded. Chaitin (1993)
argues that one of the great values of computegrérpnts is that they yield insights that
we cannotprove without adopting new axioms. Even if tsisot strictly true,
simulations can at least indicate facts that weehratyetbeen able to prove, and
perhapsnever will. Strict validation would render a silation essentially deductive, so
if we insist on it, we deprive ourselves of a valigacomplement to deduction.

(iv) Models and simulations need not representgarticular real system to be
valuable. This is hardly a new insight; highly raimysical models have long been used
in the study of nonlinear dynamics, for exampl¥et most simulations discussed in the
philosophical literature represent specific acfuakesses (e.g., Morton 1993; Hartmann
1996; Winsberg 2001, 2003), and Hartmann’s definibf simulation requires an
instantiated target system. Sommerer and Ott'sllsitions only imitate an abstract
model that itself takes Morgan and Morrison’s (19@itonomy” to extremes: it
appeals tao specific dynamical theory describing particulamgesses or forces, nor to
any particular systems in the actual world. Iresents a purely hypothetical system that
only makes incidental use of very general concipta mechanics (potential, force,
friction). Certainly it is intended to deliver serphysicainsight, but not into any

antecedently targeted system. Rather it illussrgenerapossibilities and in so doing,

® Thanks to a referee for this point.
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reveals what strange behavior and epistemologicallcitrance can be expected from
manydifferentphysical systems. This further supports poin}. (iiVhile “questions of
trustworthiness” (Morton 1993) are critical whemgicting the specific states of actual
systems, not so for more general purposes. Simontatan teach and explain without
any certification, by suggesting inductive hypotseand informing our expectations—by
revealing general features of how thirogsild go.

These last two claims will be illustrated by Someneand Ott’s investigations,

and then argued more explicitly in Section 7.

2. Sommerer and Ott’s continuous system

Sommerer and Ott (1996) describe their systempasra particle moving in a
two-dimensional potential, periodically “kicked” lan additional force. The motion is
governed by a second-order differential equatiom¢ivwe omit) in two real variables,
andy. The equation has terms representing (1) frict{@ha certain potentid defined
by a polynomial inx andy (Figure 1(a)), and (3) a periodically oscillatirggde in thex-
direction. The space of possible states fordistem has five dimensiong; y, their
time derivatives, and since the periodic forcensetdependent, time itself.

Sommerer and Ott’s equation is not designed teesgmt any particular, actual
physical system. While the authors speak of agbarin a potential, it is plain that their

study is meant to be more general. In Ott and Seren1994 they suggest that riddled

basins might occur in some chemical reaction-diffusystems, and Heagey et al. (1994)

had already observed similar behavior in an elecircuit. The equation is built on the
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two-well Duffing equation, which has been used twdel the vibration of beams, but no
such practical purpose is know for the 1996 variddther, the potenti&l seems to
have been contrived specifically to exemplify ataer strange kind of behaviour.

To gain a sense of the mechanisms governing Soetrand Ott’s system,
imagine a marble rolling around on the curved siafa(Figure 1). Now, to represent
the periodic force, picture this surface rockinggstily to the left and right. Due to
friction, the marble will tend to settle into onktbe two dips in the potential, but due to
the periodic force it will continue to roll left drright (very erratically in fact) within that
dip, approximately along theaxis. While friction drags it toward theaxis, the bump
between the dips contributes an element of instgbilf our marble rolls up onto the
bump, it will tend to fall away from theaxis. This can occur no matter how closely the
marble has settled in near thaxis, as long as it does not relactlyalong that axis
from the outset.

Importantly, the subspage= dy/dt = O of the state space, where our marble does
roll exactly along the-axis, is aninvariant manifold orbits within it stay in it. This is
because Sommerer and Ott’s differential equati@ymsmetric iny. Orbits on this
invariant manifold form a closed subsystem goveimgthe two-well Duffing equation,
with three important properties: (1) It has twtvattorswithin the invariant manifold

(2) motion on these attractors appears to be ahaatid (3) embedded in the larger

* The important sort of “chaos” here is mere ergivgifor we wish to use a theorem that
requires just that. Some regard ergodicity asfiicgent for true chaos (see Berkovitz et al. 2006;
thanks to a referee for this). Sommerer and @®6) provide no evidence that the Duffing
system is ergodic, and | do not know whether itlheen proven elsewhere. Ku and Sun (1990)



Figure 1. Sommerer and Ott’s potential. Behavior of the system resembles that of a marble
rolling on this surface as the latter rocks lefd aight. Graph (a) shows the poten¥alinaltered
(except for the flattening at the top of the graphich is an artifact of the graphing software).
Graphs (b) and (c) show close-ups of the potewiital rocking.

provide a range of computer generated images stiggeensitive dependence on initial
conditions and intuitive irregularity, as well asther references.



(@) (b)

(c) (d)

Figure 2. Orbits of Sommerer and Ott’s system Position coordinatex@ndy) of two

different orbits (one black, one grey) with venarigy initial conditions are shown. The length of
the bar at the bottom of each graph indicates &lapsed since the initial states. (a) The two
orbits are so similar that the grey orbit concéladsblack completely. (b) The orbits soon
diverge. (c) Both orbits soon settle down veryselto thex-axis, as shown by the straight black
line there. (d) After a long time, one orbit be@merratic and escapes to the other attractor,
where it will probably stay. Thus two nearly iniiguishable initial states result in orbits
approaching different attractors.

system, these attractors have negative transvgegguhov exponentsthat is, if an orbit
on one of these attractors for the submanifolceisysbed off the submanifold, it will
tend to a return. It follows from these properti®g a theorem of Alexander et al.

(1991), that the two attractors for the subsystesmaéso attractors for the larger original

® Lyapunov exponents are numbers that characténizaverage exponential rate at
which orbits close to a given orbit diverge frore thtter (if an exponent is positive) or converge
toward it (if negative). Sommerer and Ott showlially that the exponents for motion
orthogonal to the invariant manifold are negative.
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system, so that many orbits within the full fiverdinsional state space are drawn to the
attractors within the invariant manifold. Hencemany cases our marble will get stuck

in one dip forever.

3. Computing the uncomputable

Sommerer and Ott run simulations like those shawigure 2 for every initial
state in a large two-dimensional grid, represerdirstice through the state space. Each
initial state in the grid is associated with a pixea graph, which is colored black if the
associated orbit eventually gets very close toaitractor, and white if it gets very close
to the other. Thus the authors generate graptiedfvo basins (shown in 1996 and
Parker 2003 and 2005), which suggest that the §asentermingled every tiny
neighborhood contains positive-measure portiorisotli basins. Since the basins are
disjoint, they are alsoddled: in any neighborhood, the complement of a baas h
positive measure.

The non-computability argument then proceeds dsvist due to intermingling,
any procedure to determine in which basin a stasawould have to make full use of the
exactinitial conditions. But this cannot be done bywing machine, for it would
require reading an infinite string of digits inifmtime. Ergo, the basins are non-
computable.

However, it turns out that neardyl sets of reah-tuples—all except the null set
andR"—are undecidable in a strict and very natural sefSee, e.g., Weihrauch 2000.)

Without special clarification, undecidability clasnm the continuous context are trivial.
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But Sommerer and Ott’'s argument is not; what ilyesnows is that if the basins are
intermingled, then they are ndécidable up to measure zenyd.m.z.(Parker 2005,
2006; callegu-decidabilityin Parker 2003). A set is d.m.z. if some decigicvcedure
gives the correct output for all possible inpxfs R" except possiblthose inputs in
some set with zereolume. In particular, no riddled set with posgtimeasure is d.m.z.
(Parker 2003, 2005). Every decision proceduretich a riddled, positive-measure set
will fail in a significant portionof cases. If the volume of a set of states refldee
probability that a state in that set will occur, then any sieai procedure for a non-d.m.z.
set will have a significarchanceof failing.

Interestingly, Sommerer and Ott’'s non-computabgitgument is itself founded
on computer simulations. They address this pugZhet informally, in effect arguing
that their basins amecursivelyapproximable® orr.a. (Ko 1991): there is a decision
procedure that will succeed with as smatlosm-zeroerror rate as you like. (If supplied a
whole-number parameter the decision procedure must give the correctuduty any
input point except perhaps those in some set wihsure less than2 And unlike
d.m.z., r.a. requires that the procedure always falf this holds, it is possible to
generate a graph of the basins that is arbitradburate with respect to measure (Parker
2005), revealing measure-theoretic properties asaiddling.

Sommerer and Ott do not use the term ‘r.a.’ orrge$iuch a concept, but their

argument suggests it. They wish to validate tgephs, which are generated by

® Sommerer and Ott do not use this term or defick suconcept, but their argument
suggests it.
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simulating an orbit until it comegery closgo an attractor. Hence they need to justify
the inference from finite-time behavior to limitighavior. To do so, they refer to a
two-dimensional discrete-time dynamical systemimifoder construction but with

similarly complex dynamics. They write,

[W]e note that previous results [Ott et al. 199394] on how the measure of a
riddled basin scales with distance from the basittisctor allow us to estimate
the probability of making an error in drawing tharguter pictures....(1996)

That is, in those simpler systems, the basin ofadtractor dwindles in volume near
another attractor. Near one attractor, they $agyirttersection of a line segment with the
basin of thear attractor has total length proportionaldt whered is the distance from
the line segment to the near attractor, gnsla constant (determined by a Lyapunov

exponent).

Thus, the closer one gets to the attractor, thatgrehe probability that one is in
its basin. Therefore, when one carries out a nisaesimulation, one can
guantify the confidence in an initial condition deging to the riddled basin if its
long-time image lies very close to the attract@pid.)

Hence they argue that there is a procedure to eas&mbership in the basins with as

" Their argument concerns, not how accurately tmilsitions represent the tréieite-
time behavior of the model, but how to extrapolate ftbis toinfinite-time behavior. Even if we
could compute the exact finite-time behavior, firigblem would remain.

The accuracy of finite-time simulations is usuasured bghadowing theoremsvhich
imply that each simulated trajectory is very classometrue trajectory. For Sommerer and
Ott’s purposes, it is important that the simulasi@ane also measure-theoretically representative.
But a basic theorem of differential equations stétat the true finite-time behavior is continuous
with respect to initial conditions. Hence eactcklar white pixel in Sommerer and Ott's graphs
corresponds to an opgpsitive-measureet of initial conditions whose orbits come velgse to
one attractor.
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much statistical accuracy as one likes, short 6f@€rcent. This is the central feature of
recursive approximability.

This argument makes it plausible that the grapbsecurate, but it is far from a
proof. It mentions no reason to expect similatisgebehavior in the continuous system
except that both systems seem to have riddled ©a8int this is circular; the evidence
that the continuous system exhibits riddling aisaprecisely what they are trying to
validate. One might try to save the argument losgher specifying the universality class.
If the scaling (and existence) of riddled basinseneiform for some class of systems
clearly including both the 1994 and 1996 systeims,might suffice. Sadly, no such law
holds, at least not of the kind that Sommerer attchéed. As we will see, riddled basins

can scale as fast or slow as you like.

4. The 1994 discrete system

We now examine a slight generalization of one efdlscrete systems from Ott et
al. 1994, the one most similar to the 1996 contisusystem. Our version consists of
iterations of a non-invertible magp on the rectangl® = [0, 1] % [-1, 1] with the

following general properties:
(i) It takesy-values toward 1 or —1, depending»on
(i) Its effect onx-coordinates is a stretch-and-fold operation simdahe

Bernoulli shift¢(x) = 2x mod 1.

Due to (ii), motion in thex-direction is random in a sense to be explaineadceSmotion
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in they-direction depends on thecoordinate, it will be random too, but in a diet
sense. Despite this random motion, the top anmimoédges of the rectangle—Ilet us call
themA, andA-—turn out to be attractors.

To be more concrete, choose a cutwea(y) that divides the rectangle into left
and right sections, withr(1) < %2 <a(-1). (See Figure 3(a).) For now, assume with
Sommerer and Ott that near the edggeandA-, this curve is straight and vertical. Next,
choose a bijectiorf: [-1, 1] - [-1, 1] such that'(y) — 1 andf *(y) - -1 asi — .8
Now consider any horizontal line segment across thamgte at heighy. Our mapg
translates the portion left @fy) downward to height *(y) and stretches it across the
rectangle (Figure 3(b)). Similarly, it maps thetmm right of a(y) up to heighf(y) and

stretches it across. Thus, xf,(y,) denotesp"(xo, Yo) then

Xola(yn) if xp<a(yn),
X1 = X, —a(yy)

otherwise,
1- a(yn)

and

_J 7Y i xe<ayn),
Yna = .
f(yn) otherwise.

We call the sequenceX{, y»)} an orbit.

We wish to see how these orthehave, and this is where ttidrd-order

8 This is the generalized part; Ott et al. specipagticular function in place déf but this
is immaterial where riddling is concerned.
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Figure 3. A discrete-time dynamical system with itermingled basins. Based on Ott et al.
1994. Part (a) shows the domain of the mapith schematics of the functiomsandf from
which @ is constructed. Part (b) shows the operatiog ofi a horizontal line segment: the left
portion is stretched and lowered while the righdtietched and raised.

simulacrum enters: following Sommerer and Ott,madel ¢ as a (spatially
inhomogeneou$ random walk (The fourth-order simulacrum is the diffusion
approximation that Sommerer and Ott use to stuedyahdom walk; we will not discuss
it here.) For given initial conditiongy Yo), each X, y») will fall on some horizontal at
=f'(yo) with i an integer. Such horizontals form a ladder wifinitely many rungs
betweenA_ andA.. Define a probability measure on each of thesgbiotal rungs

identical to Lebesgue measure, so that the prabaagsociated with a subset of a

° This means that the probability of a step in @gidirection varies from one position to
the next.
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horizontal is just the total length of that subs@n this probability measure, it turns out
that motion in thex-direction is random in the sense that the “pro&abhlue ofx, is
independent of its history{; <, with regard to whether or n&t< a(y;) for each
(Parker 2005). Hence the truth values of the pjpms X < a(yo)', ‘X1 < a(y1)’, ‘X2 <
a(y»)’, etc., are as random as coin tosses (with tirelmased by the valug(y;) at each
toss). The same “coin tosses”, then, determinglhvenehey-coordinate will step up or
down at a given time, so the sequencg-wvhlues forms aandom walkover the values
'(yo). (If we then map these values onto the integeeshave a spatially inhomogeneous
random walk over the integers.)

Using known results about random wallked the provisional assumption that
is constant near Aand A, Ott et al. show thah, and A are attractors, and near them,
their basins scale in a very regular way. The nneasf the basin oA- on any horizontal
y =f'(0) close toA. turns out to b&[a./(1 - a.)]', for some constar (1994)°. For Ott
et al.’s particular choice df this equalsB[d /(2—d)]7+, whered = 1 -y (the distance
fromytoA.), and7, is a constant determined by the Lyapunov exponevtdice that
this isnot simply a power law as promised; it is not proporél to d

If in addition f anda are computable functions (in the sense of Grzeyckc

1955), the basins of attraction are recursively@agmable, and a procedure to

accurately graph them exists (Parker 2005). Terdene with high confidence in which

9 The result there is garbled by a typographicairebsut is not too difficult to
reconstruct.
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basin a point lies, we need only approximate itstamtil it comes sufficiently close to
one of the attractors. In fact, the basins areprdable in just about every sense from the
literature of computable analysgceptd.m.z. {bid.). They are not d.m.z. because they
are intermingled. Due to the stretching and fajdaction ofg, the initial conditions that
result in approaching a given attractor are scadtéirough every tiny region of the

rectangleipid.).

5. Universality?

Sommerer and Ott’s validation argument appeals‘tmiersality” conjecture,
the hypothesis that a certain feature is commanaoy systems. All systems in some
class including those of 1994 and 1996 are supptosechle according to a power law.
That is, the densities of the basins are suppasetay a formula of the forfad’, where
B ands are constants ardlis a distance in state space.

But exactly what conjecture is intended or needetbt obvious. For what class
of systems is it supposed to hold? Dynamical systeith riddled basins? This is too
obviously circular if it is supposed to validate thery simulations that indicate riddling.
Ott et al. (1994) are more specific, conjecturingt power-law scaling is universal for
systems “near the riddling transition”. (In thes®ms they consider, some attractor will
suddenly acquire a riddled basin as one of theficaadts in the equations is varied, and
they mainly study systems near that transitionu} tBis still presupposes riddling.

Furthermore, power-law scaling is not enough fer\thlidation argument. If for

eachsystem in some class including those of 1994 &%6 1the scaling of basins
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approachesomepower law, then the basins are r.a., and it & $ense possible “in
principle” to validate Sommerer and Ott’s grapkg could do so if we knew thspecific
scaling law:* But for concrete validation, we would have todiée to say, for example,
‘The orbit has come within I®units of this attractor, so | am now 99.75% st tt
will tend toward that attractor indefinitely.’ ik not enough if the scaling approaches
some law of a general form near the attractorsmust knowwhich law, howclose is
close enough, antdbw muchconfidence a close approach should give us. hhersal
scaling law must be quite specific.

But it cannot be. Recall the formula that Ott asdociates derive for the scaling
of basins in the discrete syste®{d /(2—d)]7+. As they point out, the constaBt
depends on the particular choice of the functipso it is not universal. Furthermore,
this formula holds only nedk., wherea is constant. Once we relax the provisional
assumption thatr is constant near the attractors, the scaling taltesr forms, even
though, as we will see, riddling persists. In fécth oura andf were chosen quite
freely; we only specified thdt(y) - 1, not how fast. Consequently we can make the
basins scale as slowly or quickly as we like bydheice of those functions. Moreover,
Ott et al. themselves obtain scaling laws of sonswlifferent form for different riddled
systems (1994).

These difficulties with the universality argumégdd us to consider other criteria

for drawing inferences from one system to anotimetuding the very criteria that

' A referee suggested remarks along these lines.
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motivated the universality conjecture in the fpkice, namely the qualitatiwtructural

properties that seem to result in riddling.

6. Structural similarity and structural stability

I will not try to define a precise notion of strucal similarity. | only want to
illustrate a few things: how much our assumptiaibgut the discrete system can be
relaxed while maintaining riddling, what importdaatures the continuous and the
discrete system here have in common, and thatitlusiple transference of results
between these systems depends on the robustrggsefresults in the face of small
changes to the systems.

The results that we have seen for the discretesyate very general. We have
made only very broad assumptions about our funsfianda. Even the assumption that
a is constant near the attractors can now be relaXbdugh this alters the scaling
behavior of the basins, it does not upset the ptigseof intermingling, non-d.m.z., nor
r.a. Suppose first thatis computable, and neat it is constant with valuer. close to
%. As noted we can determine, with arbitrary f@ligy, in which basin a point lies, by
simulating its orbit until it comes sufficientlyage to an attractor. Now suppose we
replacea with a functiona’ that is not constant neAx but is less thaw. there (Figure
4). This can only mean that an orbit ndais evenlesslikely to recede. Hence we can
use the same decision procedure and it will bthalimore efficient. Our new map with
a' in place ofa is therefore r.a. Yet, provided has a non-zero minimum, there will

still be a positive probability of escaping theattorA., so the basin will still be riddled



19
and non-d.m.z. Hence these results holcdifgrcomputable functiomr’, provided only
thata'(1l) <% <a'(-1), and for aly, 0 <a'(y) < 1.

We have also assumed that, in each iterafdasiretches both the left and right
portion of a horizontal all the way across theaagteX. This too can be relaxed. As
long asg effects some stretching, so that every smalldegment is eventually stretched
enough to include portions of both basins, we kéille intermingled basins. In fact, the
particular form of the motion in thedirection does not matter much, so long as almost
all orbits spend some time in regions that are dreoward a given attractor [suchyas
a(y)] and some in regions that are pushed away4(y)].

In these respects, Sommerer and Ott's continuastersyis very much like the
discrete system. The two attractors have stalgiems (the dips in the potential) and
unstable regions (the central hump), and motiom theattractors is chaotic, spending

some time in both the stable and unstable regitirteerefore seems very plausible that,
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Figure 4. Generalizing the discrete systemlf we replacenr with another computable function
a':[-1, 1] -» (0, 1) such thatr’ < a, fory > y*, the basins are still intermingled, non-d.m.nda
recursively approximable. This holds even dewery close to 1/2 angr very close to 1, sor'
may be any computable function with(1) < 1/2 and (by a parallel argument) 1/2r<-1).

like those of the discrete system, the basinsettntinuous system are indeed
intermingled, non-d.m.z., and yet r.a. Sommerer@tt may have leaned too hard on the
universal scaling conjecture, but it also seendyikhat for any sufficiently regular
system with attractors, there will Bemerule to the effect that most orbits near an
attractor tend toward it, so that the basins walkla.

Ott and his collaborators (1994; Alexander et 881 discuss the important
structural features in detail. The systems in Whiey find riddling always have an
invariant manifold induced by a symmetry in the ayncs (like they-symmetry in the

1996 equations). Within this there is an attrafdothe subsystemvithin the invariant
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manifold, and motion on this attractor is chaotiurthermore, the invariant manifold has
regions where nearby orbits move away from theriaméa manifold and regions where
orbits are drawn closer (like the attracting dipd eepelling hump in the potentidll).
Orbits within the manifold spend time in both raggo If they typically spend more time
in the attracting region, or more generally, if tret effect is attraction on the average
(negative transverse Lyapunov exponents), theatthactor for the manifold becomes an
attractor for the larger space. Yet due to theloanmotion of orbits through attracting
and repelling regions, there is always a non-zhemce that a particular orbit will be
repelled. Consequently, the basin are riddleds tlie recognition of these mechanisms
and structural features that leads Ott et al. tgemure universality in the first place: the
conjecture is “[blased on our understanding ofeéhesults as arising from fluctuation of
the perpendicular Lyapunov exponent.”

Similar structural considerations support the ccioje that riddling is not rare.
We can illustrate this by considering how feasiblgould be to manufacture a riddled or

approximately riddletf system like Sommerer and Ott's. This does segiegable

121t may be that real physical systems exhibit @pproximate riddling. True riddling
requires thaarbitrarily small neighborhoods in the state space contain positi#asure portions
of the basin’s complement. Being non-d.m.z. sirjildepends on arbitrarily small details, so if
riddling is to be the basis of such undecidabilitynust go “all the way down”. The plausibility
of this in real-world systems is limited by two sidterations.

First, Ott et al. suggest that any noise will distthose orbits that would otherwise settle
down to an attractor (1994, 392). There would k&lanappearanceof riddled basins, but they
would not really be basins of attraction, as thveoelld be no true attractors. Rather, almost all
orbits would forever wander from one pseudo-attnatti the other. Heagy et al. observe
evidence of this in their circuit.

Second, models like Sommerer and Ott’s do not atelyrdescribe real systems on
guantum scales. In particular, quantum stateg@rerned by the linear Schrodinger equation,
and riddled basins seem to require non-lineartclassical model with riddled basins may very
accurately approximate a real system, but will pneebly fail where very small differences of
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because the riddling &ructurally stable it survives small changes in the parameters of
the system. More precisely, a property is stradlystable ak, relative to a parameter
if there is a neighborhodd of sy such that the property holds for aih U. The relevant
parameters here include the amount of “frictioh& frequency and amplitude of the
periodic force, and perhaps most significantly, ¢befficients determining the shape of
the surface, or the potenthl If we wished to manufacture a rocking two-weltish
that would reproduce the erratic behavior of Sonemand Ott’s model, the shape of the
dish would not have to be exact, for the same taiale dynamics persist over a range of
different potentials. Ott et al. (1994) explicitigport this for potentials qualitatively
different fromV, and Kan (1993) analytically proves an analogessilt for certain
discrete-time systems on the thickened tdfus [0, 1]. We have also seen in intuitive
terms that the riddled basins in the discrete ayste1994 persist under many broad
variations. Sommerer and Ott (1996) suggest besame holds for their continuous
1996 system, and a handful of simulations condugyetthe present autheeem to
confirm this.

Intuitively, some insensitivity to the shape of htential is to be expected, since
the riddling results from just a couple of its g¥dsatures: the two dips, which tend to
draw orbits in if friction is present, and the gahtiump, which tends to destabilize orbits

that run near the invariant manifold. Sommerer @ttctemphasize the importance of

initial conditions are concerned. Hence it is clear how riddling can go “all the way down”.
Quantum mechanics also puts determinism in doobt,is not clear what significance the notion
of non-computable behavior could have. Nonethelgddled and non-d.m.z. sets might arise
elsewhere in the quantum formalism, for exampleoinnection with the decision problem for
entanglement. (Cf. Myrvold 1997.)
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maintaining the/-symmetry in Equations 1 and 2 in order to maintadling, and of
similar symmetries in other riddled systems. Tyrarmmetry guarantees the existence of
an invariant manifold, a critical part of the arg$yby Sommerer and Ott and by
Alexander et al. (1992). However, even this symynetight not be strictly necessary;
the important thing is not the symmefrgr sebut having a chaotic attractor in an
invariant manifold. And perhagven an attractor that mot strictly contained in a
smooth invariant manifold could generate riddlitiggt remains to be seen.

Nor would the rocking of our surface have to bectlyaas prescribed by
Sommerer and Ott’s equation in order to generdtied basins. The important thing
there is that it should keep the marble movingdefd right chaotically. Just about any
oscillating force withapproximatelythe right direction, amplitude, and frequency
suffices.

All of this shows how plausible it is that the peovqualitative results for the
discrete system transfer to continuous systemssintilar features. The epistemological
route this suggests is not from the discrete systena universal scaling law, to
validation of the simulations, and finally to ridadj and intermingling, as Sommerer and
Ott indicate. Rather it is a more direct routarirthe riddling and intermingling of the
discrete systems to that of structurally similantamuous systems, supported
independently by the suggestive results of the sitimns. Prima facie, at least, the
thorough mixing of black and white pixels in Someresind Ott’s graphs is epistemically

more likely if riddled basins are present thanaf.nHence, by Bayes’s theorem, the
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graphs incrementally confirm riddlin$®

7. Showing the unshowable

| have argued theses (i) and (ii) above: that Seremand Ott’s validation
argument fails, and that their simulations nonetblprovide compelling but fallible
evidence of riddling and non-computability, maibly structural analogy. Thesis (iii) is
that simulations can be valuable without validatiimn they can suggest and confirm
truths that we may never succeed in proving. Toale validation would be in effect to
demand proof, and thus to deprive ourselves of sgghts.

| do not insist that there are absolutely unpréeatuths. In one sense this is
clearly false: any self-consistent statement avable in a theory that takes it as an
axiom. Whether there are absolutely unprovabléasrinany significant sense is a
subject of ongoing discussion (e.g., Godel [19®295 Franzen 1987; Feferman 2006;
Koellner 2006). Chaitin only argues that compebgueriments can illustrate facts not
provablefrom accepted axion(4993). Presumably, whatever axioms of mathematic

can reasonably be considered accepted form a reewet and imply Peano arithmetic,

'3 One other method may (only they can say) haveeplayrole in Sommerer and Ott’s
actual research: a kind of inductive bootstrappifigey assume that if a simulated orbit closely
approaches an attractor, it is probably in thagetbr's basin. They use this to graph the basins.
The graphs show the basins scaling in a certainngay the attractors, and this scaling, in turn,
supports the original assumption that close apraaticates likely membership in the basin.
Thus the simulations seem to support their owrditgli To examine the formal structure and the
legitimacy of such reasoning would be interesteagd(Hughes notes a similar issue; 1999, 113),
but tangential to our main concerns. For lackpafce we can only note that, without further
justification, it too remains heuristic and falihland in any case it is not explicitly cited in
Sommerer and Ott’s validity argument.
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so by Godel’s theorem, they are not sufficientrimvp or disprove every proposition of
arithmetic (if consistent). Hence there shouldrbéhs of mathematics that cannot be
proved from the accepted axioms. Of course,deisatable whether the notion of
mathematical truth makes any sense independensetfaf axioms. But even within a
given theory there are at least vagrd proofs. Most are too long and complex to
achieve in the near future, and unless the hunmameweolves to unbounded degrees of
sophistication, most will never be proved.

What Sommerer and Ott would like to prove is thatlhasins of their system are
riddled. It is not known whether this particulactis provable, in any sense. In general,
though, riddling is not decidable from a formuldidieg a dynamical system. As a
trivial consequence of the undecidability of fissder logic,no non-trivial property of
functions (on the real numbers or any domain) @di#ble from their first-order
expressions. Functions can be defined conditipsallas to depend on arbitrary
sentences. To determine the nature of all funstgmndefined would require deciding the
truth of all sentences. Hence, in particularhéd set of “accepted axioms” is recursive
and consistent, it cannot prove which dynamicab#iquas result in riddled basins and
which do not. Of course, by the same token, thisoit a special fact about riddling, and
it depends on permitting some rather unnatural &gqus”. It would be interesting to
see which properties are decidable among a matrécted class of “ordinary” equations,
capturing those studied in dynamics.

But what is more important here is that Sommeredr@tt’'s basins have nbeen

proven riddled, and this despite an apparent deside so. Sommerer and Ott do as
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much as they can analytically, and they attempatmate their simulations by appeal to
general principles. If they could have proved liigl they surely would have. The main
point of their simulations is precisely to displaiiat they cannot yet prove.

What is unprovable or unproven can nonethelesvigenced by simulations.
Infinitary propositions, i.e., those involving unbaled quantification, are often difficult
or perhaps impossible to prove. The existencafofiiely many pairs of “twin” primes
(p, p + 2) cannot be proved or refuted by any finite bemof cases, yet the many
instances found (as well as heuristic reasoningns® confirm the conjecture.
Similarly, the presence of riddled basins involuabounded quantification (over time)
and is not settled by finite simulations of orblisf as argued above, the latter do lend
confirmation.

Some think that simulations cannot display whavien practically and
temporarily unprovable, for they are merely deduwtithemselves. Usually, though, a
simulation is not a perfect representation of {stesn it simulates, even if, as in
Sommerer and Ott’s case, that system is a simgigaah model.Simulations often
involve numericabpproximationmethods, and their relation to their objects impltex
and “motley” (Winsberg 2001). The computationtod approximations is itself
deductive in a sense: the workings of a machireairying out a simulation could
arguably be interpreted as a proof of the simutetesults. But what these results tell us
about the target systeis not deductive unless we can add to the sinarata proof of
validity.

When the lessons of simulatiare deductive, they do not servedomplement
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deductive results. This point is independent efdhestion of strict unprovability. At
the very least, numerical experiments help us édaets noyetproved. If we demand
rigorous validation before acknowledging such ihtsgwe limit our vision to what is not
only provable, but provable within the practicalibds of time, space, and cleverness.
As long as the intermingling of Sommerer and didsins remains unproven and their
simulations not rigorously validated, those simolag provide information that is in
practice deductively unavailable. For this reasimulations that have not been
successfully validated may be the most valuable.

Of course, this is less so if the results are fdlsethat worry is less urgent when
simulations serve general, theoretical purposkwe lare using simulations to design a
bridge or put someone safely on the moon, we woeilthinly like the strongest possible
validation of our simulations. But as claim (i\gsarts, such specific applications are not
the only functions of simulations. Sommerer antisQGimulations are not aimed at any
particular real-world system, but serve to inforar generalexpectations by revealing
qualitative features gfossiblesystems? Like Lorenz’s famous weather simulations
(1963), they reveal behavior qualitatively outsidexpectations. Even if we were to
discover that Sommerer and Ott’'s 1996 basinsmatetermingled, the cat would already
be out of the bag. The simulations would alreaglyehopened our eyes to the prima facie

possibility of such behavior in simple continuoysmamical systems, and barring reasons

14 Again, this use of simulations is not news, big itot often acknowledged in
philosophy. Gelfert (2006) does remark on the #rgaalitative use of models, quoting a related
point by Hughes (1999), but for Hughes, like Mortord Sommerer and Ott, the value of such
models rests on a strict—and in Hughes’s casejggrend quantitative—universality hypothesis.
The importantnformal use of models and simulations is not highlighted.
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to the contrary, they would still lend plausibility the existence of intermingled basins in
other such systems. To ignore such insights withtiict validation would be unduly
skeptical. Of course, | do not claim that we sddlieveeverything that simulations
suggest, only that they can have heuristic andeevidry value without validation, and

for that matter, even if they aveong!

8. Conclusions

Sommerer and Ott’s validity argument is problemattcappeals to a conjectured
absolute, a universality, which one might hope dde&d to a validityproof—but this
fails. There may be some universal scaling law noti one specific enough to validate
the simulation. Yet there are other argumentsa&en Riddling is due to certain general
structuralfeatures, and the finer details do not make muiférence for the qualitative
properties of the basins. Models that have thesetaral features in common should
behave similarly, and simulation can serve to ecanthis, rather than prove it.

Such arguments from analogy are fallible and tivei Perhaps they can be made
more rigorous, but science must always rest somghiven informal reasoning. Where
problems are unsolvable, intractable, or just pleird, we do our best, and computer
simulations help a great deal. If we insist onwidigte validation, then we have the
opposite problem from that of the Borges-Casargsgaphers: our maps will be too
limited. They will show only the deductive tramatks, much more extensively than
before, to be sure, but revealing nothing of thielevness between, or (if that is too

Platonistic) of the rough trails where future trackight be laid.
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Lastly, Sommerer and Ott's “map” is not intendededpresent any specific
territory, but a possible one, which may welkembleactual lands. It simulates an
abstract model, freely invented, far from antecélgemown actual systems, and not
strongly guided by any particular force-specifyghmamical theory. If this model
mediates between theories and the world (MortorB1®®rgan and Morrison 1999), it
does so long-distance. It has physical signifieabat mainly as an example of what
kinds of behavior arpossiblein relatively simple systems. Like much reseanchon-
linear dynamics, its main function is to inform @axpectations and our broader world

view.
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