
Finite information logic

Rohit Parikh∗and Jouko Väänänen†

January 1, 2003

Abstract: we introduce a generalization of Independence Friendly (IF)
logic in which Eloise is restricted to a �nite amount of information about
Abelard's moves. This Logic is shown to be equivalent to a sublogic ∃∀ of
�rst order logic, has the �nite model property, and is decidable. Moreover,
it gives an exponential compression relative to ∃∀ logic.

Partial information logic is a generalization of both �rst order logic and
Hintikka-Sandu [3] IF-logic. We motivate this logic by means of an example.
Suppose we have a model M on some domain D and some formula A =
(∀x)(∀y)(∃z)R(x, y, z) where R is atomic. Then to this formula corresponds a
game between two players Abelard and Eloise. Abelard chooses two elements
a, b from D. Then Eloise chooses a third element c from D. If the formula
R(a, b, c) holds in M then Eloise has won, else Abelard has. Now it can be
shown that the formula A is true inM i� Eloise has a winning strategy.

The game as we have just desribed tells us how classical �rst order logic
works. To look at IF-logic we consider a slight variant. Let B be the variant
of A obtained by writing B = (∀x)(∀y)(∃z/x)R(x, y, z). Now the game
proceeds as before with Abelard choosing a, b and Eloise choosing c, but
now, the choice of c has to be independent of a because the quanti�er ∃z has
now been marked by a /x, indicating independence of x, or as we might say,
ignorance of x.

But we could just as easily say that Eloise's knowledge is restricted to the
value of y, i.e. to b. Instead of concentrating on what Eloise does not know
we concentrate on what she does. Similar restrictions might of course apply
to Abelard in case he too has a move which follows the move of Eloise.
∗City University of New York
†University of Helsinki
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Now we introduce an innovation which will turn out to be interesting.
IF-logic allows Eloise to know the value of x, or of y or of both or neither.
Could we consider other possibilities? E.g. suppose x, y are integers. We
might restrict Eloise to know the value of their sum. Or for another example,
suppose you meet on the airplane an attractive woman who tells you only
her �rst name (until she knows you better). Now if x is the name variable
whose value is Eloise Dzhugashvili and she only tells you `Eloise', then you
do not know x but neither are you ignorant of it. You know it in part.

This opens up the possibility of more general kinds of knowledge of the
values of variables than allowed by IF-logic and we will see that it leads to
interesting possibilities.

As usual we have variables, predicate symbols, certain special function
symbols. Atomic formulas are de�ned as usual. Literals are atomic formulas
or their negations. For simplicity we will apply negation only to atoms.

De�nition 1 1 Literals are formulas of PI.

2a If ϕ(
→
x, y) is a formula of PI and f is one of the special function symbols,

then (∃y//
f(
→
x )

)ϕ(
→
x, y) is a formula of PI.

2b If ϕ(
→
x, y) is a formula of PI and f is one of the special function symbols,

then (∀y//
f(
→
x )

)ϕ(
→
x, y) is a formula of PI.

3a If ϕ(
→
x), θ(

→
x) are formulas of PI then ϕ(

→
x)∨//

f(
→
x )
θ(
→
x) is a formula of PI.

3b If ϕ(
→
x), θ(

→
x) are formulas of PI then ϕ(

→
x) ∧//

f(
→
x )
θ(
→
x) is a formula of

PI.

Intuitively, the ∃y in (∃y//
f(
→
x )

)ϕ(
→
x, y) is Eloise's move but because of the

restriction //
f(
→
x )

she only knows f(
→
x) when she makes her move. We may,

more generally, allow her also to know the values of two or more functions f, g

of
→
x so that in the extreme case she could know all the projection functions

and hence know
→
x precisely. That case corresponds to our usual �rst order

logic. In an intermediate case, she could know some of the projection func-
tions on

→
x, i.e. some but not all of the variables in

→
x. That case corresponds

to IF-logic.
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In (∀y//
f(
→
x )

)ϕ(
→
x, y) the move is Abelard's and he too is restricted in a

similar way.
Let us consider ϕ(

→
x) ∨//

f(
→
x )
θ(
→
x). Since we have a disjunction here, it is

for Eloise to choose which of the two formulas ϕ, θ to play. But when she
chooses, she only knows the value f(

→
x) or perhaps more than one such value,

but her knowledge of
→
x might not be complete.

On the other hand, in ϕ(
→
x) ∧//

f(
→
x )
θ(
→
x) the move is Abelard's but the

restrictions are similar to those in 3a above.
Compositional sematics can be de�ned for PI in just the same way as they

have been de�ned for IF-logic by Hodges [4, 5], Väänänen [10], etc. Moreover
PI-logic can be interpreted into second order logic in the same way.

Now we come to a special kind of PI-logic where the special functions f
allow only a �nite amount of information about the arguments. Thus if a, b
are integers and Eloise has to make a choice based on them, she might be
allowed only to know whether a < b or whether a + b is odd, or whatever.
Knowing the precise value of a, b or even of a+ b is out of the question.

Why consider such a restricted case? We have two reasons. One is that
this special case of PI-logic which we shall call FI-logic, or �nite information
logic has very elegant logical properties. The other is that since quanti�ers
correspond to moves in games, the games which FI-logic represents arise all
the time in social algorithms and are deeply related to how social human
interations work.

For example a passport o�cial at an airport only wants to know whether
you have a valid visa or not. If you do, she lets you in, if not, she sends
you back on the next �ight. Or perhaps she classi�es you among four classes,
those who are citizens, those who come from friendly countries whose citizens
do not require a visa, those who have a visa, and the remaining who are the
ones sent back. In any case she only wants a �nite amount of information
about the variable, namely you.

Or a young man looking for a date might want to know if the prospective
date is blonde or brunette. If she is, he is not interested, he wants to date
brown hair only. If she does have brown hair, he wants to know if she is tall.
If not, he is again not interested. So he seeks a �nite amount of information
about the prospective date. Naturally she may have similar questions about
him. But each will seek only a �nite amount of information.

We repeat the de�nitions which we had above for formulas of PI-logic,
indicating where the di�erence arises between PI-logic in general and its
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special case, FI. Since only a �nite amount of information is available at each
step, it could easily be represented by one or more booleans, i.e. by formulas.
Thus our special functions f drop out. Our main result is Theorem 8 which
says that every consistent FI-sentence has a �nite model. We use a strong
form of this result to show that FI is exactly the existential-universal fragment
of �rst order logic, if considered as a classical logic. However, FI is actually
a non-classical logic with a rich many-valued semantics (this aspect will not
be pursued in this paper). The reduction to �rst order logic is non-trivial
in the sense that there is a trade-o�: the �rst order expression seems to be
exponentially longer than its FI representation.

In this section we de�ne the �nite information logic FI and discuss its
semantics. It turns out that it makes sense to pay attention to what kind of
θ we allow in //θ, as the following informal result demonstrates:

Lemma 2 The following conditions are intuitively equivalent in any model
A with at least two elements, whatever sentence θ is:

1. A |= (∀x)(∃y//(x=c∨θ))(y 6= x).

2. A |= ¬θ

Proof. Suppose θ is true and ∃ knows it. Then the information that
(x = c ∨ θ) is true tells ∃ nothing about x. Also the information that
(x = c ∨ θ) is false tells nothing because this information is impossible, i.e.
never given in this case. Thus in this case ∃ cannot possibly have a winning
strategy for choosing y 6= x. On the other hand, suppose θ is false and
∃ knows it. Then she can make the following inference: If I am told that
(x = c ∨ θ) is true, I know that it is true because x = c, and then I know
what x is. If I am told that (x = c ∨ θ) is false, I know it is because x 6= c,
and I can choose y = c. �

In the proof we used the assumption that although the information that
∃ has is limited as to the values of the variables, ∃ knows �generally known�
things. For example, it follows that if ∃ has a winning strategy, she knows
what it is. Also, if it is known that ¬θ (in a given model), then ∃ knows it
too.

Lemma 2 shows that if we allow θ in //θ, we are committed to have also
the negation of θ. On the other hand, games of imperfect information may
very well be non-determined. Therefore we should be cautious with negation.
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In social software it seems that the information we use in decisions is
often atomic (�man�, �woman�) or existential (�has a ticket�, �has a visa,
which is valid�) or boolean combinations of such (�is retired or has exactly
three children�). Accordingly we start by allowing θ in //θ to be any boolean
combination of existential formulas.

De�nition 3 The set of formulas of FI is de�ned as follows:

(1) Atomic and negated formulas are FI-formulas.

(2) If ϕ(~x) and ψ(~x) are FI- formulas and θ(~x) is a boolean combination of
existential formulas, then

ϕ(~x) ∧//θ(~x)ψ(~x)

and
ϕ(~x) ∨//θ(~x)ψ(~x)

are FI-formulas.

(3) If ϕ(~x, y) is an FI-formula and θ(~x) is a boolean combination of existen-
tial formulas, then

(∀y//θ(~x))ϕ(~x, y)

and
(∃y//θ(~x))ϕ(~x, y)

are FI-formulas.

We now de�ne semantics for FI. Suppose A is a model and X is a set of
functions s such that

(1) dom(s) is a �nite set of variables

(2) s, s′ ∈ X =⇒ dom(s) = dom(s′)

(3) ran(s) ⊆ A.

Intuitively X is a set of plays i.e. assignments of values to variables. To
incorporate partial information we have to consider sets of plays rather than
mere individual plays. A partition X = X0 ∪ X1 is θ(~x)-homogeneous,
where θ(~x) is �rst-order, if for all s, s′ ∈ X

(A |=s θ(~x)⇐⇒ A |=s′ θ(~x)) =⇒ (s ∈ X0 ⇐⇒ s′ ∈ X0).
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Let

X[a : y] = {(s\{〈y, b〉 : b ∈ A}) ∪ {〈y, a〉} : s ∈ X}
X[A : y] = {s ∪ {〈y, a〉} : s ∈ X, a ∈ A}.

We de�ne the concept
A |=X ϕ

for ϕ ∈ FI as follows:

(S1) A |=X ϕ i� A |=s ϕ for all s ∈ X, if ϕ is atomic or negated atomic.

(S2) A |=X ϕ(~x) ∧//θ(~x)ψ(~x) i� A |=X ϕ(~x) and A |=X ψ(~x). (θ(~x) plays no
role)

(S3) A |=X ϕ(~x) ∨//θ(~x)ψ(~x) i� there is a θ(~x)-homogeneous partition X =
X0 ∪X, such that A |=X0 ϕ(~x) and A |=X1 ψ(~x).

(S4) A |=X (∃y//θ(~x))ϕ(~x, y) i� there is a θ(~x)-homogeneous partition X =
X0∪X, and y1, y2 such that A |=X0[y1:y] ϕ(~x, y) and A |=X1[y2:y] ϕ(~x, y).

(S5) A |=X (∀y//θ(~x)))ϕ(~x, y) i�

A |=X[A:y] ϕ(~x, y)

(θ(~x) plays no role).

There is an asymmetry between ∧//θ(~x) and ∨//θ(~x) on one hand and be-
tween (∀y//θ(~x)) and (∃y//θ(~x)) on the other hand. This is because in this paper
we consider truth from the point of view of ∃ only, i.e. �classically�. Thus we
are concerned about the knowledge that ∃ has. As ∃ has to be prepared to
play against all strategies of ∀, ∃ has to consider also the case that ∀ plays
"accidentally" with perfect information. If we considered FI �non-classically�
the symmetry would be preserved.

Suppose A |={∅} ϕ. Now ∃ has a winning strategy in the obvious semantic
game, namely, while ∃ plays she keeps A |=X ϕ and the play ∈ X true. More
exactly:

(G1) Suppose we are at an atomic or negated atomic formula ϕ. Since
A |=X ϕ and the play is in X, ∃ wins by (S1).

6



(G2) We are at ϕ(~x) ∧//θ(~x)ψ(~x). Now ∀ plays choosing, say, ϕ(~x). We use
(S2) to conclude A |=X ϕ(~x).

(G3) We are at ϕ(~x) ∨//θ(~x)ψ(~x). We can by (S3) divide X = X0 ∪X1 in a
θ(~x)-homogeneous way and A |=X0 ϕ(~x) and A |=X1 ψ(~x). The play is
in X so it is in one of X0 and X1, but ∃ does not know in which. We
let ∃ make the choice on the basis of the following inference. If θ(~x) is
true and some ~x ′ in X0 satis�es θ(~x ′), then she chooses X0. In this
case homogeneity gives ~x ′ ∈ X0 and we also have A |=X0 ϕ(~x). If θ(~x)
is true and some ~x ′ in X1 satis�es θ(~x ′), then she chooses X1. Again
homogeneity gives ~x ′ ∈ X1 and we also have A |=X1 ϕ(~x). Similarly,
if θ(~x) is false and some ~x ′ in X0 satis�es θ(~x ′), then she chooses X1,
otherwise X0.

(G4) We are at (∀y//θ(~x)))ϕ(~x, y). ∃ knows A |=X[A:y] ϕ(~x, y) and the play
so far is in X. Whatever ∀ plays, the play is in X[A : y].

(G5) We are at (∃y//θ(~x))ϕ(~x, y). There is a θ(~x)-homogeneous partition X =
X0∪X, and y1, y2 such that A |=X0[y1:y] ϕ(~x, y) and A |=X1[y2:y] ϕ(~x, y).
As in the case of disjunction, player ∃ chooses y1 or y2 according to
whether some ~x ′ in X0 satis�es θ(~x ′) or not. �

Examples 4 1◦ (∀x//)(∃y//P (x))(x = y) says that both P and its complement
have at most one element

2◦ (∀x//)(∃y//P (x))(x 6= y) says that both P and its complement are non-
empty.

Lemma 5 If A |=X ϕ and X0 ⊆ X, then A |=X0 ϕ.

Proof. Trivial. �

Lemma 6 Every FI-sentence is �rst order de�nable.

Proof. Suppose φ ∈ FI. Let n be the length of φ. It su�ces to show that
truth of φ is preserved by n-equivalence. Suppose therefore that M and M ′

are models and ∅ 6= I0 ⊆ I1 ⊆ ... ⊆ In is a sequence with the back-and-forth
property. Suppose X is a set as above. For s ∈ X let s′ be the result of
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applying the back-and-forth sequence to s. Let X ′ be the set of all s′ where
s ∈ X. It su�ces to prove the equivalence of

M |=X φ (1)
M ′ |=X′ φ (2)

for all FI-formulas φ. This is an easy induction on φ. �

A �rst order formula is existential-universal ∃∀ if it is of the form

(∃x1) . . . (∃xn)(∀y1) . . . (∀ym)ϕ

where ϕ is quanti�er-free. A formula is ∆2 if it is equivalent to an ∃∀-formula
and its negation is too. An example of a ∆2 formula is

(∃x1)(∃x2)(x1 6= x2) ∧ (∀x1)(∀x2)(∀x3)(x1 = x2 ∨ x1 = x3 ∨ x2 = x3).

which says that there exactly three elements. Boolean combinations of exis-
tential formulas are, of course, ∆2.

Lemma 7 The following conditions are equivalent for any �rst order sen-
tence ϕ:

(1) ϕ is equivalent to an ∃∀-formula.

(2) If A |= ϕ and A is the union of a chain Aα (α < β) of models, then
there is an α < β such that Aα |= ϕ.

(3) If A |= ϕ and B ⊆ A is �nite, then there is C ⊆ A �nite such that
B ⊆ C and for all �nite D with C ⊆ D ⊆ A we have D |= ϕ.

Proof. Clearly (1) → (3) → (2). We prove (2) → (1). By (2) the sentence
¬ϕ is closed under unions of chains of models. By the �o±-Suszko lemma,
¬ϕ is universal-existential, whence ϕ is equivalent to an ∃∀ formula. �

Theorem 8 Every FI-sentence has the �nite model property.

Proof. We prove condition (3) of Lemma 7. We use induction on ϕ to prove:
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(?) If A |=X ϕ, A0 ⊆ A is �nite and ∀s ∈ X (ran(s) ⊆ A0), then there is a
�nite A1, s.t. A0 ⊆ A1 ⊆ A and for all A2 ⊆ A with A1 ⊆ A2 ⊆ A we
have A2 |=X ϕ.

(S1) ϕ is atomic or negated atomic. We can choose A1 = A0.

(S2) Conjunction: Again we choose A1 = A0.

(S3) Disjunction: Suppose A |=X ϕ(~x) ∨//θ(~x) ψ(~x) and ∀s ∈ X (ran(s) ⊆
A0). Let X = X0 ∪ X1 such that A |=X0 ϕ(~x), A |=X1 ψ(~x) and the
partition is θ(~x)-homogeneous. Remember that θ(~x) is ∆2. Let A∗1 be
�nite such that A0 ⊆ A∗1 ⊆ A and A∗1 ⊆ A2 ⊆ A implies for all s ∈ X

A2 |=s θ(~x) ⇐⇒ A |=s θ(~x).

By induction hypothesis we have A0
1 for X0 and ϕ(~x), and A1

1 for X1

and ψ(~x). Let A1 = A0
1 ∪ A1

1 ∪ A∗1. If A2 ⊆ A with A1 ⊆ A2 ⊆ A,
then A2 |=X0 ϕ and A2 |=X1 ψ, whence A2 |=X ϕ(~x) ∨//θ(~x) ψ(~x). Why?
Because X = X0 ∪ X1 is θ(~x)-homogeneous in A2 [If A2 |=s θ(~x),
A2 |=s′ θ(~x), where s, s′ ∈ X, then A |=s θ(~x) and A |=s′ θ(~x) whence
s ∈ X0 ⇐⇒ s′ ∈ X0].

(S4) Universal quanti�cation: A |=X (∀y)ϕ(~x, y) and ∀s ∈ X (ran(s) ⊆
A0). Thus A |=X[A:y] ϕ(~x, y). Choose A1 = A0. Suppose A2 ⊆ A with
A1 ⊆ A2 ⊆ A. Then X[A2 : y] ⊆ X[A : y], whence A2 |=X[A2:y] ϕ(~x, y).
Now A2 |=X (∀y)ϕ(~x, y) follows.

(S5) Existential quanti�cation: A |=X (∃y//θ(~x))ϕ(~x, y) and ∀s ∈ X (ran(s) ⊆
A0). Let X = X0 ∪ X1 be θ(~x)-homogeneous and y1, y2 such that
A |=X0[y1:y] ϕ(~x, y) and A |=X1[y2:y] ϕ(~x, y). Remember that θ(~x) is ∆2.
Let A∗1 be �nite such that A0 ⊆ A∗1 ⊆ A and A∗1 ⊆ A2 ⊆ A implies for
all s ∈ X

A2 |=s θ(~x) ⇐⇒ A |=s θ(~x).

Let A1 be such that A∗1 ∪ {y1, y2} ⊆ A1 ⊆ A and A1 ⊆ A2 ⊆ A implies
A2 |=X0[y1:y] ϕ(~x, y) and A2 |=X1[y2:y] ϕ(~x, y). Now A1 ⊆ A2 ⊆ A

implies A2 |= (∃y//θ(~x))ϕ(~x, y). Why? Because X = X0 ∪ X1 is θ(~x)-
homogeneous in A2 [If A2 |=s θ(~x), A2 |=s′ θ(~x), where s, s′ ∈ X,
then A |=s θ(~x) and A |=s′ θ(~x) whence s ∈ X0 ⇐⇒ s′ ∈ X0.] and
A2 |=X0[y1:y] ϕ(~x, y), A2 |=X1[y2:y] ϕ(~x, y).
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The above theorem has an alternative proof using the concept of a D-
structure (see [6, 7, 8, 9], which build on [1]).

Example 9 The sentence

(∀x//)(∃y//x=x)(x ≤ y)

says that the linear order ≤ has a last element. It has no negation in FI as
the negation does not have the �nite model property.

The �nite model property would be true even if we allowed any ∆2 formula
θ to occur in //θ. However, allowing ∃∀-formulas θ leads us to new avenues:
Let FI(∃∀) be this generalization.

Theorem 10 FI(∃∀) does not have the �nite model property.

Proof. Let ϕ be the sentence

(∀x//)(∃y//ψ(x))(y 6= x)

where ψ(x) is the ∃∀-formula

x = 0 ∨ (∃u)(∀v)(v ≤ u).

The vocabulary consists of ≤ and the constant 0. Let ϕ′ be the conjunction
of ϕ and the universal (hence FI) axioms of linear order.
Claim 1 〈ω,≤, 0〉 |= ϕ′. The task of ∃ is choose y 6= x knowing only whether
ψ(x) is true or not. She argues as follows: If I am told ψ(x) is true, I know
it is because x = 0, so I choose y = 1. If, on the other hand, I am told that
ψ(x) is not true, I know x 6= 0, so I choose y = 0.
Claim 2 ϕ′ has no �nite models. Suppose A = 〈A,≤, 0〉 were one. Now
ψ(x) is true independently of x. So ∃ has no way of choosing y 6= x on the
basis of whether ψ(x) is true or not. More formally, suppose A |=X ϕ′, where
X = {∅}. Then A |=X[A:x] (∃y//ψ(x))(y 6= x). Let X[A : x] = X0 ∪ X1 be a
ψ(x)- homogeneous partition and y0, y1 ∈ A such that A |=X0[y0:y] y 6= x and
A |=X1[y1:y] y 6= x. Since ψ(x) is always true, X0 = ∅ or X1 = ∅. Say X1 = ∅.
Thus 〈x, y0〉 ∈ X0, whence A |=X0[y0:y] y = x, a contradiction. �
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Let FI(FO) denote the extension of FI where any �rst-order θ is allowed
to occur in //θ. Lemma 2 implies that FI(FO) contains all of �rst-order logic.
Let FI(IF ) denote the extension of FI where any θ from IF-logic is allowed
to occur in //θ. We know that non-well-foundedness can be expressed in the
IF-logic. Lemma 2 implies that FI(IF ) can express also well-foundedness.
Thus FI(IF ) is not included in IF-logic.

The FI as we have de�ned it turns out to be translatable into �rst-order
logic:

Theorem 11 Every FI-sentence is equivalent to an ∃∀-sentence, and vice
versa, every ∃∀-sentence is equivalent to an FI-sentence.

Proof. One direction follows from Theorem 8. For the converse implica-
tion it su�ces to notice that following are equivalent:

A |= (∃x1) . . . (∃xn)(∀y1) . . . (∀ym)ϕ

A |={∅} (∃x1//) · · · (∃xn//)(∀y1//) . . . (∀ym//)ϕ′,

where ϕ is obtained from ϕ by replacing each disjunction θ(~x) ∨ ψ(~x) by
θ(~x) ∨ //θ(~x),ψ(~x)ψ(~x). Note that φ is quanti�er-free, so its subformulas can
occur in connection with //. We assume that ∃ knows her own strategy. �

Theorem 12 FI has an exponential compression relative to �rst order ∃∀
logic.

Proof. Consider the structure A whose domain consists of all binary nu-
merals. The predicate C(x, y) means that y = x + 1 mod 2n. Of course
0 ≤ y < 2n. The predicate Pi(x) for i ≤ n means that the i-th digit of x from
the right is 1. Consider the formula θ = (∀x)(∃y//P1(x), ..., Pn(x))C(x, y).
The formula says that ∃ can choose y knowing only the truth values of
Pi(x) : i ≤ n. θ is true in A, and remains true if we only take integers
< 2n. But it is not true in any sub-structure of size < 2n. Thus any ∃∀
formula which was equivalent to θ would have to have at least 2n quanti�ers.
�

However, note that if we use full �rst order logic to express θ we do not
need exponential growth. For the formula φ = (∀x)(∃y)(∀z)([

∧
i≤n Pi(x) ↔
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Pi(z)]→ C(z, y)) is equivalent to θ. If ∀ is allowed to change his move after
∃ has played hers then she is in e�ect restricted to what she could have done
had she known only the values of the booleans.

We now show that every model of a FI-formula has a �nite submodel of
at most exponential size.

Theorem 13 Let A |= ϕ where the logical complexity of ϕ is n. Then A has
a submodel B of ϕ of size at most n2n.

Proof.: Assume that ϕ is written so that all negations apply only to atoms,
so that ϕ is constructed from literals using ∃,∀,∨,∧ only. Eloise has a
winning strategy for the game corresponding to ϕ. For each move ∃y of
Eloise, consider the moves ∀x//P (x) in whose scope y lies. There are at most
n of such predicates P (x) and the value of y is determined by the truth
values of these P (x). (y may be determined also by previous moves y′ of
Eloise, but these are also determined by these booleans P and therefore by
all booleans, whether y is in their scope or not.) So consider the set V of
all boolean vectors governing any move of Eloise. The cardinality of V is at
most 2n. For each move ∃yi of Eloise, her strategy gives a function fi from
V into A, the domain of A. Since Eloise has at most n moves, there are at
most n functions, and the range of all these functions gives us a subset of A
of size at most n2n. Let this subset be B.

Consider the modi�ed game where Abelard is allowed to move in A but
Eloise is restricted to move in B. Clearly Eloise is free to use her former
winning strategy and wins. Consider now a further restriction where Abelard
is also restricted to B. Surely this does not harm Eloise and she still wins.
But that means that if B is the submodel corresponding to B, its size is at
most n2n and B |= ϕ. �

This result does not imply an exponential translation of FI logic into ∃∀
logic, but makes it highly likely. Consider an arbitrary formula θ∨∃x∀y(y =
x). Assuming that θ is consistent, consider any of its models M . Then M
is also a model of θ ∨ ∃x∀y(y = x). Now if we take any 1-element submodel
of M , it is a model of θ ∨ ∃x∀y(y = x), but we would not thereby expect
θ ∨ ∃x∀y(y = x) to have a translation into an ∃∀ formula.

Theorem 14 FI(FO) = FO.

12



References

[1] A. Ehrenfeucht, J. Geiser, C. E. Gordon and D. H. J. de Jongh. A
semantics for non iterated local observation. Preprint 1971

[2] Andrzej Ehrenfeucht "Logic without Iterations" Proceedings of the
Tarski Symposium (1974) pp. 265-268.

[3] Jaakko Hintikka and Gabriel Sandu. Informational independence as a
semantical phenomenon. In Logic, methodology and philosophy of sci-
ence, VIII (Moscow, 1987) , pages 571�589. North-Holland, Amsterdam,
1989.

[4] Wilfrid Hodges. Compositional semantics for a language of imperfect
information. Log. J. IGPL, 5(4):539�563 (electronic), 1997.

[5] Wilfrid Hodges. Some strange quanti�ers, Structures in logic and com-
puter science, 51�65, Springer, Berlin, 1997.

[6] Rohit Parikh, D-Structures and their Semantics, Notices of the AMS
19, A329, 1972.

[7] Rohit Parikh and J. Mayberry, D-structures and *-structures, Notices
of the AMS 19, A454, 1972.

[8] D. de Jongh, N. Goodman and Rohit Parikh, On Regular *-structures
with Classical Theories, J. Symb. Logic 37, 777, 1972.

[9] Rohit Parikh, D-Structures and their semantics, appeared in a volume
dedicated to Johan van Benthem, University of Amsterdam, August
1999.

[10] Jouko Väänänen, On the semantics of informational independence, Jour-
nal of the IGPL, 2002.

13


