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Abstract

We can have credences in an infinite number of propositions—that is, our opinion set

can be infinite. Accuracy-first epistemologists have devoted themselves to evaluat-

ing credal states with the help of the concept of ‘accuracy’. Unfortunately, the infinite

opinion sets, under several innocuous assumptions, yield several undesirable results,

some of which are even fatal, to accuracy-first epistemologists. Moreover, accuracy-

first epistemologists cannot circumvent these difficulties in any standard way. In this

regard, we will suggest a non-standard approach, called a relativistic approach, to

accuracy-first epistemology and show that such an approach can successfully circum-

vent undesirable results while having some advantages over the standard approach.

Keywords: Infinite Opinion Sets; Local and Global Accuracy Measure; Accuracy; Relative

Accuracy; Accuracy-first Epistemology; Probabilism

1 Introduction

Sometimes one can have opinions on a finite number of propositions. For instance, sup-

pose that an agent, called John, is told that his friend, called Paul, has a favorite French

movie that was made in 2021. Then it is possible for him to have credences in each of the

propositions Paul’s favorite French movie of 2021 is x, for all French movies xwhich was

made in 2021. In this case, John’s opinion set can be finite. Let us call a set of propositions

in which an agent has a credence her opinion set. Can an agent’s opinion set be infinite?

Considering our cognitive limitations, one may think that opinion sets should be only fi-

nite. Sometimes, however, we can have credences in an infinite number of propositions.

To illustrate, suppose that John is told that Paul has a favorite natural number. Then it is

possible for him to have credences in each of the propositions, Paul’s favorite number is

*We are very grateful to Alan Hájek, Joshua Thong, and an anonymous referee for this journal for very
helpful comments and suggestions, and to an audience at a workshop on Analytic Philosophy at Seoul Na-
tional University for valuable discussions around this topic.
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n, for all finite natural numbers n. In this case, John’s opinion set can be infinite.1

Then how do we epistemically evaluate an agent’s credal state whose opinion set can

be either finite or infinite? Recently, many philosophers have devoted themselves to eval-

uating credal states with the help of the concept of accuracy. Such philosophers are often

called accuracy-first epistemologists (accuracy-firsters for short). They think that accuracy

plays a central role in epistemically evaluating the credal states. According to them, the

higher your credences in truths and the lower your credences in falsehoods, the better

off you are all epistemic things considered. It is noteworthy that many accuracy-firsters

have restricted their attention to credence functions whose opinion sets are finite.2 Un-

der such a restriction, they have provided several interesting accuracy-based arguments

that, many think, vindicate various epistemic principles quite successfully.3 In particular,

accuracy-firsters seem to succeed in vindicating Probabilism, which says that all and only

probabilistically coherent credence functions are epistemically rational.

However, as pointed out above, an agent’s opinion set can be infinite. Then, do such

arguments also work for credence functions that are defined on an infinite opinion set? In

particular, can we vindicate Probabilism for credence functions on an infinite opinion set?

Unfortunately, it seems not. As will be evident, the infinite opinion sets yield several un-

desirable results, some of which are even fatal, to accuracy-first Probabilists. For example,

we will argue in what follows that, contrary to what accuracy-firsters expect, they cannot

help failing to expel all and only probabilistically incoherent functions from the class of ra-

tional credence functions when the credence functions are defined on an infinite opinion

set.4

These difficulties, we think, have to do crucially with ways of epistemically comparing

one credence function with another. Accuracy-firsters have so far explored various ways

of measuring accuracy and comparatively evaluating credence functions. All of them, as

far as we know, measure separately the accuracies of two different credence functions and

then determine the epistemic betterness between them on the basis of the accuracies so

measured. Wewill call this the standard approach to accuracy-first epistemology. Aswill be

shown, the standard approach fails to circumvent the aforementioned difficulties unless

some innocuous assumptions are rejected.

We will proceed as follows. In Section 2, we introduce a few constraints on accuracy

measures and two principles to rank various credence functions. In Section 3, we show

1This example is from Pettigrew (2016).
2For example, see Carr (2015), Greaves and Wallace (2006), Joyce (1998), Joyce (2009), Leitgeb and

Pettigrew (2010a,b), Pettigrew (2016), Pettigrew (2018), Predd et al. (2009), andTalbot (2019). Admittedly,
there are some accuracy-firsters’ works dealingwith credence functionswhose opinion sets are infinite. See
Easwaran (2013), Huttegger (2013), and Kelley (forthcoming), for example. Among these works, we will
mainly consider Kelley (forthcoming) in more detail, below.

3For example, on the assumption of a finite opinion set, Pettigrew (2016) attempts to justify Probabilism,
Plan Conditionalization, the Principal Principle, and the Principle of Indifference.

4It is noteworthy that Kelley (forthcoming) provides a generalized argument for Probabilism. However,
Kelley’s argument is based on different assumptions from ours. We will consider this point in Section 5.
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that, given an infinite opinion set, the constraints and principles (described in Section 2)

entail several undesirable results for accuracy-firsters. In Section 4, we consider some

possible standard ways out and conclude that none of them are plausible. In Section 5,

we suggest our non-standard approach to accuracy-first epistemology and show how our

approach circumvents the undesirable results in a plausible way.

Before we proceed further, some preliminary remarks about credence functions are in

order. Throughout, credence functions, which are regarded as representing credal states,

will be denoted by c, c∗, ci , etc. Credence functions are assumed to assign a real number

in [0,1] to each proposition in a given opinion set F . In this paper, a proposition is iden-

tified with a finite or infinite subset of a set of all possible worldsW . We assumeW to be

infinite, and so propositions are also infinitely many. Our discussion mainly focuses on a

credence function whose opinion set is countably infinite. Such a credence function can

be identified with a sequence. Thus, a credence function c on a countably infinite opinion

set F = {A1, A2, · · · } can be represented as an infinite sequence (c1, c2, · · · ). When there

is no danger of confusion, ‘ci’ will be used to refer to a credence that a credence function c

assigns to a propositionAi—that is, c(Ai) = ci.

Some credence functions are probabilistically coherent, while some are not.5 The co-

herence is usually regarded as a characteristic of credence functions defined on a partic-

ular kind of opinion set. That is to say, when we say that a credence function is coherent,

its opinion set is often assumed to be a σ-algebra—i.e., the set is closed under a (count-

able) truth-functional combination. Admittedly, this definition can be extended to cre-

dence functions whose opinion set is not a σ-algebra, as follows.

Coherence. A credence function c on F , which is a subset of the power set of W is co-

herent if and only if there is a credence function c+ on F+ such that:

1. F ⊆ F+, and F+ is a σ-algebra;

2. c+(A) ∈ [0, 1] for anyA ∈ F+, and c+(W) = 1;

3. c+(A) = c(A) for anyA ∈ F ; and

4. (Countable Sum) c+(
∨

Ai∈A Ai) =
∑

Ai∈A c+(Ai) for any countable setA ⊆ F+

whose members are (pairwise) disjoint.

This definition can be applied to a credence function whose opinion set is countably infi-

nite, but is not a σ-algebra.

2 Accuracy Measures and Epistemic Betterness

Let us begin with making some notes about accuracy-first epistemology. Following ac-

curacy firsters, we will accept what they call Alethic Vindication (or Alethic Principle).
5In what follows, we will omit the modifier ‘probabilistical(ly)’ if there is no danger of confusion.
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According to the principle, the ideal credence function, to which a credence function at a

given world should strive to be as close as possible, is the truth function at that world. In

this paper, an ideal credence function on F , i.e., a truth function, at a world w will be de-

noted by ‘vw’, which assigns 1 toAi ∈ F whenAi is true atw, and assigns 0 toAi otherwise.

They can also be represented by a countable sequence (vw1 , v
w
2 , · · · ) such that vw(Ai) = vwi

for anyAi ∈ F . It is noteworthy that the truth-functions are all coherent.

On the other hand, accuracy-firsters often introduce two kinds of accuracy measures:

local and global measures. A local accuracy measure, which will be denoted by ‘s’, gives

us the accuracy of a single credence at a given world. In particular, ‘s(1, ci)’ and ‘s(0, ci)’,

respectively, refer to the accuracy of a credence ci at the world whereAi is true, and at the

world where Ai is false. A global accuracy measure is devised in order to formulate the

accuracy of an overall credal state, i.e., a credence function. In what follows, such a global

accuracy measure, which will be denoted by ‘G’ or ‘R’, is assumed to be generated from a

local accuracy measure in some particular ways, which will be explained in detail later.6

Accuracy-firsters have suggested several constraints on accuracy measures, and then

narrowed the class of legitimate measures down. Moreover, they formulate some prin-

ciples governing our comparative evaluations among credence functions using the legiti-

mate measures. In what follows, we will put forward such constraints and principles.

2.1 Constraints on Accuracy Measures

Let us start with some innocuous constraints on a legitimate local accuracy measure s.

Here are two constraints:

Continuity. If s is a legitimate local accuracy measure of a credence x, then s(1, x) and

s(0, x) are all continuous of x ∈ [0, 1].

Monotonicity. If s is a legitimate local accuracy measure of a credence x, then s(1, x) is a

strictly increasing function of x ∈ [0, 1], and s(0, x) is a strictly decreasing function

of x ∈ [0, 1].

Keeping it in mind that accuracy-firsters want to measure the accuracy on the basis of

closeness to the truth, we may easily find these two constraints are uncontroversial.

The above constraints say nothing about the maximum and minimum values of the

local accuracy. We can strengthen Monotonicity as follows:

Monotonicity+. If s is a legitimate local accuracy measure of a credence of x, then it

holds, in addition to Monotonicity, that

s(0, 1) < 0 < s(0, 0) and s(0, 1) < 0 < s(1, 1).
6In this paper, we will introduce two kinds of global accuracy measure: the non-relativistic global mea-

sure and the relativistic global measure. The former will be denoted by ‘G’, and the latter by ‘R’. The differ-
ence between them will be explained in Section 5.
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This requires, unlike Monotonicity, that the maximum value (and the minimum value)

should be positive (and negative). Someonemay think that these requirements are a mat-

ter of stipulation. In the next sections, however, we will see that Monotonicity+ leads to a

serious problem for accuracy-firsters, considering credence functions on an infinite opin-

ion set.

Monotonicity+ just says that the maximum and minimum values should be positive

and negative, respectively. They say nothing about the upper and lower bounds of the

local accuracy. For the sake of our discussions, we will assume that:

Finiteness. If s is a legitimate local accuracy measure of a credence x, then s(1, x) ∈
(−∞,∞) and s(0, x) ∈ (−∞,∞) for any x ∈ [0, 1].

This constraint says that any local accuracy of a credence has a finite lower and upper

bound. Some local measures in themarket satisfy it, some do not. For example, Finiteness

holds for the local versionof theBrier score, but not for the local versionof the Logarithmic

measure. Is there any reason to deny this constraint? As of now, we will not address this

question. Rather, we just assume it here, and will reconsider it in Section 4.7

Heretofore, we have taken a look at some constraints imposed on the local accuracy

measures. As stated, accuracy can be assigned to a credence function. In order to mea-

sure the global accuracy, some accuracy-firsters formulate a way of generating the global

accuracy from the local counterpart. The following is one of such ways.8

Simple Additivity. If s is a legitimate local accuracy measure, then a legitimate global

accuracy measure of a credence function c on a countable opinion set F at a world

w, i.e.,GF(c, w), is generated from s, as follows:

GF(c, w) =
∑
i

s(vwi , ci).

Here, the modifier ‘simple’ is attached to distinguish it from what we will call Relativistic

Additivity in Section 5. Simple Additivity says that the global accuracy of a credence func-

tion c onF should be given by the sumof the local accuracy of each credence in the opinion

setF .9 Are there any epistemic reasons that lead us to endorse this constraint? There are

several arguments for and against it.10 We leave this issue aside and just assume, for the

7Finiteness, which is formulated by Pettigrew (2016, 37), is about the global accuracy measure, not the
local measure, while the above Finiteness is just about the local one. In this paper, we do not assume that
the global accuracy should be finite. Note that, given Simple Additivity formulated below, the global version
of Finiteness entails the local version, but the converse does not hold. For this reason, it may be said that
our Finiteness is weaker than what is formulated by the aforementioned author.

8Many accuracy-based arguments hinge on Simple Additivity. For examples, see Kelley (forthcoming),
Leitgeb and Pettigrew (2010a,b), Predd et al. (2009) and Pettigrew (2016).

9Note that this constraint does not assume that the opinion sets are finite.
10Some critical discussionsmay be found in Carr (2015), Fallis and Lewis (2019), Talbot (2019), etc. Petti-

grew (2022) provides new arguments for accuracy-first epistemology without appealing Simple Additivity.
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sake of argument, that the constraint is one of the adequate constraints on the relationship

between the local and global accuracy measures. We will reconsider this point in section

4.

Let us now turn to the last constraint that is called (Strict) Propriety.

Simple Global Propriety. If s is a legitimate local accuracy measure,G is the legitimate

global accuracy measure generated from s, and c is a coherent credence function on

a countable opinion partitionF , then it holds that, for any credence function c∗( ̸= c)

on F , ∑
A∈F

c(A)GF(c, wA) >
∑
A∈F

c(A)GF(c∗, wA)

which is equivalent to∑
A∈F

c(A)
∑
i

s(vwA
i , ci) >

∑
A∈F

c(A)
∑
i

s(vwA
i , c∗i ),

when Simple Additivity holds for s andG.

Here, ‘wA’ refers to a world whereA is true and c∗ might be an incoherent credence func-

tion.11 The modifier ‘simple’ is attached to distinguish it from what we will call Relativis-

tic Global Propriety in Section 5. Simple Global Propriety says that each credence func-

tion should expect itself to have the uniquely maximal accuracy. As far as we know, every

accuracy-firster takes it to be an epistemically fundamental constraint on accuracy mea-

sures. This constraint is about the global accuracy. Its local counterpart can be easily

formulated as follows:

Local Propriety. If s is a legitimate local accuracymeasure of a credence x, Then, it holds

that, for any y ( ̸= x),

xs(1, x) + (1− x)s(0, x) > xs(1, y) + (1− x)s(0, y).

Local Propriety entails Simple Global Propriety when the opinion set of c is finite. Inter-

estingly, such a logical relation does not hold when the credence function has an infinite

opinion set. We will revisit this point in Section 3.

It is noteworthy that Pettigrew’s new arguments are restricted in credence functions on a finite opinion set.
Simple Additivitywithout such a restriction is given in Kelley (forthcoming). A critical discussion about such
a version can be found in Easwaran (2013, 125).

11Note that the above formulation is restricted in the credence functions on a countable opinion partition.
Accuracy-firsters, of course, do not make such a restriction. However, this restriction does not undermine
our main points.
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2.2 Epistemic Betterness

Theaccuracy-firsters,with the abovenuts andbolts inhand, attempt to rankvarious credal

states, i.e., credence functions. That is, they provide a few epistemic principles that govern

the epistemic betterness between two credence functions. The following is one of such

principles.

Truth-directedness. Suppose thatF is the opinion set of c and of c∗, and s is a legitimate

local measure. Then, c ≺w c∗ if

a. s(vwi , ci) ≤ s(vwi , c
∗
i ) for allAi ∈ F , and

b. s(vwi , ci) < s(vwi , c
∗
i ) for some Ai ∈ F .

Here, ‘c ≺w c∗’ means that c∗ is epistemically better than c at a world w.12 This principle

seems to be an almost-constitutive part of accuracy-first epistemology. Nevertheless, it is

easy to find a casewhere Truth-directedness is silent on the epistemic betterness between

two credence functions.

Of course, using the global accuracy measures, we can easily formulate another prin-

ciple that renders the relation of epistemic betterness to be more complete. Here is such

a principle.

Simple Global Betterness. Suppose that F is the opinion set of c and c∗. Suppose also

that s is a legitimate local accuracy measure and that G is the legitimate global ac-

curacy measure generated from s. Then, c ⪯w c∗ if

GF(c, w) ≤ GF(c∗, w)

which is equivalent to ∑
i

s(vwi , ci) ≤
∑
i

s(vwi , c
∗
i ),

when Simple Additivity holds for s andG.

Here, ‘c ⪯w c∗’ means that c∗ is at least as epistemically good as c at aworldw.13 When the

opinion set F is finite, Simple Global Betterness, with Monotonicity (or Monotonicity+),

entails Truth-directedness. However, such an entailment does not hold when the opinion

set F is infinite. In the next section, we will discuss this point in detail.

12In this paper, the credal state is individuated by a credence function and an opinion set. Thus, it is more
exact to say that c∗ on F is epistemically better than c on F at a world w. Note also that the epistemic
betterness is relative to what a local accuracy measure is given. Thus, it is even more exact to say that c∗

on F is epistemically better than c on F at a world w relative to a local accuracy measure s, which may be
symbolized as ‘cF ≺s

w c∗F ’. For the notational simplicity, however, we will omit the subscript ‘s’ and the
subscript ‘F ’ if there is no danger of confusion.

13According to Simple Global Betterness, when GF (c, w) = GF (c∗, w), it holds that c ⪯w c∗ and
c∗ ⪯w c—or, simply c ∼w c∗. In words, this means that c* is as epistemically good as c at a world w. When
GF (c, w) < GF (c∗, w), Simple Global Betterness entails that c ⪯w c∗ and c ≁w c∗—or, simply c ≺w c∗.
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3 Countably Infinite Opinion Sets

Given countably infinite opinion sets, the above-considered constraints and principles en-

tail many undesirable results, some of which are even fatal, to accuracy-firsters.

Let us start with considering the following proposition.14

Proposition 3.1. Let F = {A1, A2, A3, · · · } be a countably infinite opinion partition.

Suppose that s is a legitimate local accuracymeasure that satisfies Continuity,Monotonicity+,

and Finiteness. Suppose also that G is the legitimate global accuracy measure gen-

erated from s in accordancewith Simple Additivity. Then, all coherent credence func-

tions on F are infinitely accurate at every w.

This proposition itself is bad news for accuracy-firsters. According to Proposition 3.1, any

coherent credence functions on a countably infinite opinion partition have the same global

accuracy, i.e., infinite accuracy, to each other, regardless of how the world turns out. Then,

it should be said that the accuracy measures, which satisfy the relevant constraints, are

useless in comparatively evaluating credence functions on an infinite opinion partition.

Moreover, we can show,with the help of Proposition 3.1, that some logical relations be-

tween the constraints on accuracy measures and between the principles about epistemic

betternessmay fail to hold, depending on the cardinality of the opinion sets. Local Propri-

ety, as noted, entails Simple Global Propriety when the opinion set is finite. However, this

logical relation does not hold any longer when the opinion set is countably infinite. Sup-

pose that c and c∗ are coherent credence functions defined on a countably infinite opinion

partition. Then, according to Proposition 3.1,
∑

w c(w)GF(c∗, w) = ∞, irrespective of

whether or not a local measure fromwhichG is generated satisfies Local Propriety. Thus,

every coherent credence function on such a partition has the same expected accuracy to

each other, and so Simple Global Propriety cannot help failing for such functions. To put it

another way, we can say that Continuity, Monotonicity+, Simple Additivity, Finiteness, and

Simple Global Propriety are collectively inconsistent when the opinion set is a countably

infinite partition.

A similar thing goes with the principles about epistemic betterness. Consider two cre-

dence functions c and c∗ that have a finite opinion set in common. As stated, when Truth-

directedness evaluates c to be epistemically better than c∗, Simple Global Betterness also

reaches the same verdict. In regard to infinite opinion sets, however, this logical relation

does not hold any more. See the following example.

Example 3.2. The assumptions about the local and global accuracy measures are the

same as ones in Proposition 3.1. LetAi be the proposition that Paul’s favorite natural

number is i. Here it is assumed that his favorite natural number uniquely exists. Let

F be the set ofAis. Note that this set is a countably infinite opinion partition. Letwi

14The proofs of this proposition and others are given in Appendix.
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be aworldwhereAi ∈ F is true. Now, consider the following two coherent credence

functions c1 and c2, and a truth-function vw1 such that:

c1 = (1/21, 1/22, 1/23, 1/24, · · · );

c2 = (1/22, 1/21, 1/23, 1/24, · · · );

vw1 = (1, 0, 0, 0, · · · ).

These functions are assumed to be defined on F . According to Truth-directedness,

then, it holds that c2 ≺w1 c
1 since

s(1, c21) < s(1, c11),

s(0, c22) < s(0, c12), and

s(vw1
i , c2i ) = s(vw1

i , c1i ) for any i ≥ 3.

However, Simple Global Betterness leads us to a different verdict sinceGF(c1, w) =

GF(c2, w) = ∞ according to Proposition 3.1.

This example clearly shows that Truth-directedness and Simple Global Betterness conflict

with each other under the assumptions in Proposition 3.1.

The above results, we think, seem sufficient to jeopardize accuracy-first epistemolo-

gists. However, an evenmore fatal result can be drawn from Proposition 3.1. To illustrate,

let us first consider the following example:

Example 3.3. The same assumptions as Example 3.2 are made. Let z be a credence

such that 0 < z < 1 and s(0, z) = 0. Note that Continuity and Monotonicity+

jointly ensure the existence of such a credence. Now, consider an incoherent cre-

dence functions cz = (z, z, z, · · · ) on F . It is obvious that cz is incoherent. (Note

that
∑∞

i czi =
∑

i z = ∞ ̸= 1.) Then, it follows from Simple Additivity that, for any

i, GF(cz, wi) = s(1, z) + s(0, z) + s(0, z) + · · · = s(1, z), which is finite according

to Finiteness. So, it can be said that the credence function cz is finitely accurate at

every world.

This example shows that, when credence functions are defined on a countably infinite

opinion partition, some incoherent credence functions are finitely accurate at everyworld.

As stated, accuracy-firsters are to vindicate Probabilism, appealing to the following

decision-theoretic principle:15

15The following formulation of the dominance principle omits a condition related to dominating credence
functions. As some authors like Pettigrew (2016) have noted, the dominance principle in question should be
regarded as wrong if the dominating functions turn out to be epistemically irrational. So, such authors im-
pose a constraint on the dominating functions. For instance, Pettigrew (2016, 24) says that the dominating
credence functions should not be extremely modest in the sense that the functions should not expect itself
to be less accurate than any other functions. However, this omission does not yield any serious problem to
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Dominance. A credence function c is epistemically irrational if there is another credence

function c∗ such that c∗ strongly accuracy-dominates c relative to a legitimate global

accuracymeasure—that is, for anyw, c ≺w c∗ relative to a legitimate global accuracy

measure.

Fortunately, we can say with the help of Dominance and Proposition 3.1 that the credence

function cz in Example 3.3 is epistemically irrational, as accuracy-firsters expect.

However, not all incoherent credence functions on a countably infinite opinion parti-

tion are finitely accurate at every world. Consider the following example.

Example 3.4. The same assumptions as the above examples are made. Consider an in-

coherent credence functions c0 = (0, 0, 0, · · · ) on F . Then, it follows from Simple

Additivity that GF(c0, wi) = s(1, 0) + s(0, 0) + s(0, 0) + · · · , for any wi. Note that

Monotonicity+ and Finiteness entail that −∞ < s(1, 0) < 0 and s(0, 0) > 0 . Thus,

we have that GF(c0, wi) = ∞. So, it can be said that the credence function c0 is

infinitely accurate at every world.

Thus, Dominance and Proposition 3.1 do not entail that the incoherent credence function

c0 is epistemically irrational. As noted, one of the main projects of accuracy-firsters is to

expel all incoherent credence functions from the class of the epistemically rational cre-

dence functions. As shown in the above considerations, however, this project cannot help

facing with a fatal problem when the relevant opinion sets are countably infinite.

Some accuracy-firsters may cope with the above conclusion by saying that at least the

coherent credence functions on a countably infinite opinion partition remain epistemi-

cally rational because they are infinitely accurate, and so that Probabilism may be still

vindicated in a weak sense. However, a little consideration reveals that this response is

unsatisfactory. In particular, when we turn our attention to a countably infinite opinion

set that is not a partition, we can see that some coherent credence functions are strongly

dominated by another function. See the following example.

Example 3.5. The same assumptions as the above examples are made, except that Ai is

the proposition that Paul’s favorite natural number is not less than i. Let F∗ be the

set consisting ofAis. Note thatF∗ is countably infinite but is not a partition. Then, at

least one ofAis is true, andAi+1 ⊢ Ai for any i. It should be emphasized here that, for

anyworldw, there is a k such thatAi is truewhen i ≤ k, andAi is false otherwise. So,

the truth-function at a world w is identified with a sequence that consists of finitely

many 1s and infinitelymany 0s. For instance, when and onlywhen the value of k at a

worldw is 2, the truth-function onF∗ atw, i.e., vw, is identifiedwith (1, 1, 0, 0, 0, · · · ).
Consider the credence function cz+ = (1, z, z, · · · ), where z is a credence such that

the discussions that follow, we think. Note that the dominating credence functions appearing in this section
are all infinitely accurate at every world, and so they are not extremely modest.
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s(0, z) = 0. (Revisit Example 3.3 for this kind of credence.) It is not hard to see that

cz+ on F∗, unlike cz on F , is coherent. Let wk be a world where Ais are true when

i ≤ k, and Ais are false otherwise. Then, we obtain from Simple Additivity and the

definition of the credence z that: for any wk,

GF∗(cz+, wk) =
∑
i

s(vwk
i , z)

= s(vwk
1 , 1) +

k∑
i=2

s(vwk
i , z) +

∞∑
i=k+1

s(vwk
i , z)

= s(1, 1) +
k∑

i=2

s(1, z) +
∞∑

i=k+1

s(0, z)

= s(1, 1) + (k − 1)s(1, z).

According to Finiteness, s(1, 1) and s(1, z) are finite, and thusGF∗(cz+, wk) < ∞ for

anywk. Now, consider another coherent credence function c′ = (1, 0, 0, 0, · · · ). Note
that: for any wk,

GF∗(c′, wk) = s(1, 1) +
k∑

i=2

s(1, 0) +
∞∑

i=k+1

s(0, 0).

Finiteness says that s(1, 1) and s(1, 0) are in (−∞,∞), and Monotonicity+ entails

that s(0, 0) > 0. Thus, we have thatGF∗(c′, wk) = ∞ for any wk. As a result, it holds

thatGF∗(cz, wk) < GF∗(c′, wk) for any wk.

This example clearly shows, under the relevant assumptions, that there are some coherent

credence functions onan infinite opinion set that are strongly accuracy-dominated relative

to a legitimate global accuracy measure by another function on that opinion set.16 Hence,

we should conclude that Probabilism cannot be vindicated even in the weak sense that is

stated above, when credence functions on infinite opinion sets are considered.

4 Some Possible Ways Out

In order to avoid these difficulties, accuracy-firsters should deny that epistemically ratio-

nal agents can have an infinite opinion set, and/or deny at least one of the aforementioned
16Interestingly, there is also an incoherent credence function that strongly accuracy-dominates the cre-

dence function cz+. Consider a credence function cin = (0, 1, 0, 0, · · · ). This is obviously incoherent since
cin(A2) > cin(A1) while A2 ⊢ A1. On the other hand, it follows from Finiteness and Monotonicity+ that,
for any wk ,GF∗(cin, wk) = s(1, 1)− s(1, 0) +

∑k
i=1 s(1, 0) +

∑∞
i=k+1 s(0, 0) = ∞. As a result, we have that

GF∗(cz+, wk) < GF∗(cin, wk) for any wk . However, someone may think that it does not follow from this
result that cz+ is epistemically irrational. This is because cin should be ensured to be epistemically rational
in order for us to derive such a conclusion, but it is not clear that the incoherent function cin can be regarded
as rational. For a comment related to this, see footnote 15.
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constraints. In this section, we will consider four ways out of the undesirable results and

show that none of them are promising.17

4.1 Way out 1: Rejecting Infinite Opinion Sets

The first way out for accuracy-first epistemology is to deny that a rational agent’s opinion

set can be countably infinite. But why? If you exclude an infinite opinion set without any

explanation of why an opinion set should be limited like this, youwould do something like

what Lakatos (1976) dubs ‘monster-barring’.

4.2 Way out 2: Rejecting Finiteness

The second way out is to deny Finiteness. In this view, the minimum or maximum value

of local accuracy should be negatively or positively infinite—that is, s(0, 1) = s(1, 0) =

−∞, or s(0, 0) = s(1, 1) = ∞. In this regard, it is noteworthy that, although the other

constraints are all accepted, Proposition 3.1 cannot hold if there is no lower bound of the

local accuracy. To see this, consider a coherent credence function c = (1, 0, 0, 0, · · · ) that
is defined on a countably infinite opinion partition F . Suppose that s and G endorse the

assumptions in Proposition 3.1 except Finiteness. In particular, let’s assume that s(0, 1) =

−∞. Under such assumptions, we cannot say thatGF(c, w) = ∞ for anyw. This is because

there are worlds where the global accuracy of c is undefined.18

However, this way out is of no help to accuracy-firsters for at least two reasons. First,

there are some difficulties to which we cannot properly respond even if rejecting Finite-

ness. Reconsider Example 3.2. When the other constraints are given, we can derive, with-

out appealing to Finiteness, that GF(c1, w1) = GF(c2, w1) = ∞.19 On the other hand,

Truth-directedness says, regardless of Finiteness, that c1 is epistemically better than c2.

Thus, even though we reject Finiteness, we can still say that Simple Global Betterness and

Truth-directedness conflict with each other under the relevant assumptions.

Moreover, this way out has epistemically unacceptable implications even about finite

opinion sets when the other constraints remain intact. To illustrate, suppose that John

and Paul share a finite opinion setF = {A1, · · · , An} of n(≥ 2) propositions, which are all

true at w. John has a credence of 0 inA1 and a credence of 0.99999 in all the other propo-

sitions. Paul has a credence of 0.00001 in all propositions. Suppose that Finiteness does

not hold—in particular, s(1, 0) = −∞. (Note that this assumption and Monotonicity (or

17In what follows, we will not consider giving up on Continuity. The constraint is innocuously structural.
18For example, when vw2 = (0, 1, 0, 0, · · · ),GF (c, w2) = s(0, 1) + s(1, 0) +

∑∞
i s(0, 0) = −∞−∞+∞,

which is mathematically undefined.
19Suppose that Continuity, Monotonicity+, and Simple Additivity. Then, we have that GF (c1, w1) =∑
⟩ s(v

w1 , c1) = s(1, 1/21)− s(0, 1/21)+
∑∞

i=1 s(0, 1/2
i). On the other hand, Continuity andMonotonicity+

entail that limi→∞ s(0, 1/2i) = s(0, 0) > 0. Note that if limi→∞ ai > 0, then
∑∞

i ai = ∞. Thus, we have
thatGF (c1, w1) = ∞. Similarly, we can also derive thatGF (c2, w1) = ∞.
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Monotonicity+) entail that s(1, x) > −∞ for any x ∈ (0, 1].) Then, it follows from Simple

Additivity and SimpleGlobal Betterness that Paul’s credal state is epistemically better than

John’s, because the global accuracy of John’s credal state is negatively infinite but the global

accuracy of Paul’s credal state is not. However, this result seems to run counter to our epis-

temic intuition. It seems quite counter-intuitive that the loss of epistemic goodness due

to just one minimally accurate credence cannot be recovered no matter how many very

accurate credences are obtained.

4.3 Way out 3: Rejecting Monotonicity+

The third way out is to reject Monotonicity+. Monotonicity+, unlike Finiteness, plays an

indispensable role in deriving each result in Section 3. So, rejecting Monotonicity+ may

be said to be a better maneuver than rejecting Finiteness.20 However, this way out is also

unsatisfactory for a few reasons.

First, wewould like to emphasize thatmanyauthorsdonot cast anydoubt onMonotonicity+.21

In particular, Leitgeb and Pettigrew (2010a) and Pettigrew (2016) shows that the local

version of the Brier score and its positive linear transformations are all legitimate. (Note

that the positive linear transformations of the Brier score can endorse Monotonicity+.) In

the context related to finite opinion sets, Monotonicity+ does not lead accuracy-firsters to

be in a predicament. How about in the context related to infinite opinion sets? Is there

any epistemic rationale to think that the minimum or maximum of local accuracy should

be different depending on the cardinality of the relevant opinion set? It is quite strange

that there is such a thing.

Moreover, as rejecting Finiteness does, this way out also has epistemically unaccept-

able implications. To illustrate, suppose that John’s opinion set consists of only 100 true

propositions while Paul’s set consists of 1,000 true propositions including the 100 propo-

sitions in John’s set. Moreover, suppose that John and Paul have the same credences in

the 100 propositions, and that Paul has very high credences (say 0.999) in the remain-

ing 900 propositions. Now, let’s assume that Monotonicity+ does not hold—in particular,

assume that the maximum value of local accuracy, i.e., s(1, 1), is 0. Then, it follows from

Simple Additivity and Simple Global Betterness that John’s credal state cannot help being

epistemically better than Paul’s, because s(1, x) < 0 for any x(< 1), and so any credence

other than 1 in truths makes one’s overall credal state epistemically worse. However, it

seems intuitive that it is at least sometimes epistemically rational to have very accurate

20However, we can give another example showing that, even if Monotonicity+ is rejected, Truth-
directedness and Simple Global Betterness still conflict with each other under the relevant assumption. For
such an example, see Example 5.4.

21For example, see Carr (2015), Easwaran (2013), Leitgeb andPettigrew (2010a), Pettigrew (2016, 2018),
and Talbot (2019). In particular, Easwaran (2013), who deals with credence functions on an infinite opinion
set in a different context from us, does not require that the minimum or maximum value of local accuracy is
0.
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credences in some contingent propositions. Thus, we should say that this implication is

hard to accept. A similar reasoning, mutatis mutandis, goes with the assumption that the

minimum value of local accuracy is 0.

4.4 Way out 4: Rejecting Simple Additivity

The last way out that deserves our attention is to reject Simple Additivity (and so Simple

Global Betterness). Is there any alternativewayof generating global accuracy from its local

counterpart?22

Of course, yes. What is often called Averaging is regarded as an arch rival of Simple

Additivity. Suppose that a credence function c is defined on a finite opinion setF . Accord-

ing to Averaging, it should hold thatGF(c, w) = (1/|F|)
∑

i s(v
w
i , ci). That is, it interprets

the global accuracy as an average of local accuracies rather than a sum of them. Note that

this version of Averaging, as it stands, cannot apply to credence functions on an infinite

opinion set. Instead, it should be reformulated, for the sake of our discussions, as follows:

Infinite Averaging. If s is a legitimate local accuracy measure, then a legitimate global

accuracy measure of a credence function c on a countably infinite opinion setF at a

world w, i.e.,GF(c, w), is generated from s, as follows:

GF(c, w) = lim
n→∞

1

n

n∑
i=1

s(vwi , ci).

Then, can this way of generating the global accuracy from its local counterpart rescue

accuracy-firsters?

Unfortunately, it cannot. Reconsider Example 3.2. Even though Infinite Averaging is

given, it still holds that GF(c1, w1) = GF(c2, w1), and thus the difficulty in Example 3.2

remains intact.23 So, replacing Simple Additivitywith Averaging cannot be taken as a good

maneuver to avoid the aforementioned difficulties.

We think, though, that rejecting Simple Additivity is broadly on the right track. Then,

how do we reject it? To seek a satisfactory way of rejecting Simple Additivity, we should

pay attention to the standard approach to accuracy-first epistemology. Accuracy-firsters’

comparative evaluation between two credence functions typically takes two steps. First,

they measure separately the accuracies of two different credence functions using Simple

22There are some ways of measuring the accuracy of a credence function without appealing to Simple
Additivity. What is often called the spherical rule is a good example. Suppose that F is an opinion partition,
and that c is defined on F . Then, the rule says that GF (c, w) = cw/

√∑
i c

2
i , where cw is a credence in the

proposition that is true at w. However, we do not seriously consider this rule in this paper. This is because
the spherical rule applies to only credence functions on a partition, and so it is of little use to the accuracy-
firster’s project to vindicate Probabilism for credence functions defined on various opinion sets. See Fallis
and Lewis (2019)

23Recall that c1 = (1/21, 1/22, 1/23, 1/24, · · · ), c2 = (1/22, 1/21, 1/23, 1/24, · · · ) and vw1 =
(1, 0, 0, 0, · · · ). Suppose that the global accuracy of these credence functions are generated from its local

14



Additivity (or Averaging). Second, they determine the epistemic betterness between them

on the basis of the accuracies so measured and Simple Global Betterness. We will call

this a standard approach to accuracy-first epistemology. As many accuracy-firsters have

shown, this standard approach works well in the context related to finite opinion sets.

However, this approach faces serious difficulties when considering epistemic betterness

between two credence functions on infinite opinion sets. According to Proposition 3.1, the

accuracies of the relevant credence functions, which are separately measured, are equal

to each other, and so we cannot help reaching some undesirable verdicts like the one in

Example 3.2. Therefore, if we are to comparatively evaluate two credence functions on an

infinite opinion set by means of the accuracy, then we should refuse to take the first step

in question. How can we do this?

5 The Relativistic Approach

5.1 A Clue from a Practical Decision Theory

We get a strong clue from Colyvan (2008), which suggested an ingenious response to a

practical decision-theoretical difficulty. The decision problem devised and considered by

Colyvan is related to coin tossing in the so-called St. PetersburgGameand its nearbyneigh-

bor. A fair coin is tossed repeatedly until the first head appears. In this regard, the follow-

ing two games are offered to players.

• St. Petersburg Game: Players get $2n when the first head appears on the nth toss.

• Petrograd Game: Players get $(2n + 1)when the first head appears on the nth toss.

It is very intuitive that the Petrograd game is practically better than the St. Petersburg

game. Indeed, a practical version of the Dominance principle fits well with this intuition.

On the other hand, the Maximization of Expected Utility, which is one of the core decision

principles, runs counter to our intuition. Since the expected utilities of the two are all

infinite, the principle cannot say that the Petrograd Game is practically better than the

St. Petersburg Game. To wrap up, the difficulty of this decision problem is due to two

counterpart in accordance with Infinite Averaging. Then we have that:

GF (c1, w1) = lim
n→∞

1

n

n∑
i=1

s(vw1
i , c1i ) = lim

n→∞

1

n

[
s(1, 1/21)− s(0, 1/21) +

n∑
i=1

s(0, 1/2i)

]

= lim
n→∞

1

n

n∑
i=1

s(0, 1/2i)

= lim
n→∞

1

n

[
s(1, 1/22)− s(0, 1/22) +

n∑
i=1

s(0, 1/2i)

]
= lim

n→∞

1

n

n∑
i=1

s(vw1
i , c2i ) = GF (c2, w1).
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features. The first one is that the two core decision principles conflict with each other, and

the second one is that the conflict at hand is mainly due to the infinite expected value.

After presenting this decision problem and its difficulty, Colyvan suggests an ingenious

way out, called Relative Expectation Theory. This theory relies on the concept of the rel-

ative expected utility. Roughly speaking, the relative expected utility of one option over

another is the average of the differences in utilities between the two options. With this

kind of expected utility in hand, the theory says that, if the relative expected utility of one

option over another is greater than 0, then the former is practically better than the lat-

ter. Unlike the Maximization of Expected Utility, this approach does not run counter to

our intuition—that is, the Petrograd game can be said to be practically better than the St.

Petersburg game, since the relative expected utility of the former over the latter is greater

than 0. Moreover, it can be shown that the relative expectation theory is equivalent to the

traditional expectation theory, when the (non-relativistic) expected utilities of the rele-

vant options are finite. In this sense, Colyvan’s theory can be said to be conservative.

Let us return to our problems. Interestingly, some difficulties presented in Section 3

have striking structural similarity to the one which Colyvan presented. For instance, Ex-

ample 3.2 shows, similar to Colyvan’s decision problem, that two core principles about

epistemic betterness, i.e., Truth-directedness and Simple Global Betterness, conflict with

each other, and that the conflict is mainly due to the infinitely accurate credence functions.

This structural similarity may lead accuracy-firsters to a similar way out to Colyvan’s sug-

gestion.

Our suggestion depends on an entirely new way of evaluating epistemic betterness,

which is somewhat similar to Colyvan’s relative expectation theory. Recall what we have

called the standard approach to accuracy-first epistemology. To comparatively evaluate

the epistemic betterness between two credence functions, this standard approach appeals

to the global accuracy of each credence function measured separately from any other cre-

dence functions. However, our new approach to epistemic betterness hinges on what we

will call the relative global accuracy, which refers to the accuracy of a given credence func-

tion that is measured relative to another credence function. In this sense, our suggestion

can be called the relativistic approach to accuracy-first epistemology. 24

Before proceeding further, we should emphasize that our approach is entirely new

to accuracy-first epistemologists, but it is also conservative in at least two senses. First, as

will be shown below, our approach leads us to the same results as those obtained from the

non-relativistic approachwhen our attentions are restricted to finite opinion sets. Second,

it will also be shown that our approach can derive almost all results that are drawn from

the existing works about infinite opinion sets. In this regard, it should be noted that Kelley

(forthcoming) has recently developed a generalized accuracy-based approach related to

24In order to distinguish the standard approach from ours, we will, if necessary, add the modifier ‘non-
relativistic’ to the name of the relevant norms and principles.
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infinite opinion sets. Our approach differs from hers in that the first, not the second, can

embraceMonotonicity+—in particular, the first does not rule out that themaximum value

of local accuracy can be greater than 0 while the second heavily depends on the assump-

tion that the maximum value is equal to 0. That said, our approach can derive almost all

of what Kelley’s approach tells us, as will be explained in Section 5.3.

5.2 Relative Global Accuracy

Let us beginwith definingwhat we call the Relative Global Accuracy. This kind of accuracy

is intended to measure the degree to which a credence function c on F is globally more

accurate than another function c∗ on F at a world w. Such a relative global accuracy will

be denoted by ‘RF(c, c∗, w)’. The legitimate relative measure R could be generated from

a legitimate local measure s in a similar way to what (non-relativistic) Simple Additivity

requires of us. Here is such a way:

Relative Additivity. If s is a legitimate local accuracy measure, then a legitimate relative

global accuracy measure of a credence function c over a credence function c∗ on

a countable opinion set F at a world w, i.e., RF(c, c∗, w), is generated from s, as

follows:

RF(c, c∗, w) =
∑
i

(s(vwi , ci)− s(vwi , c
∗
i )) .

Here,F may be finite or infinite. This constraint says that the relative global accuracy of c

over c∗ atw should be given by the sum of the differences between the local accuracy of ci
and of c∗i at w.

25 At first blush, the relative global accuracy so defined appears to be noth-

ing but the difference between two non-relativistic global accuracies, and thus it seems

to make little contribution to avoiding the difficulties provided in the previous section.

However, this first impression will turn out to be incorrect.

Let us begin with formulating some relativistic versions of the constraints and princi-

ples in Section 2, as follows:

Relative Global Propriety. If s is a legitimate local accuracymeasure,R is the legitimate

relative global accuracy generated from s, and c is a coherent credence function on a

countable opinion partition F , then it holds that, for any credence function c∗( ̸= c)

on F , ∑
A∈F

c(A)RF(c, c∗, wA) > 0

which is equivalent to∑
A∈F

c(A)
∑
i

(s(vwA
i , ci)− s(vwA

i , c∗i )) > 0,

25We assume Finiteness. Thus, the relative accuracy in question can be said to be mathematically well-
defined.
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when Relative Additivity holds for s andR.

Relative Global Betterness. Suppose that F is the opinion set of c and of c∗. Suppose

also that s is a legitimate local measure and that R is the legitimate relative global

accuracy measure generated from s. Then, c ⪯w c∗ if

RF(c, c∗, w) ≤ 0

which is equivalent to ∑
i

(s(vwi , ci)− s(vwi , c
∗
i )) ≤ 0,

when Relative Additivity holds for s andR.

In what follows, we will show that these relativistic versions can successfully avoid the

aforementioned difficulties.

Before seeing this, note first that, when the opinion set is finite, the two global mea-

suresG andR are related to each other, as follows:

Proposition 5.1. Suppose thatF is a finite opinion set of c and c∗. Suppose also that s is

a legitimate local measure, and that G and R, respectively, are generated from s in

accordance with Simple Additivity and with Relative Additivity. Then, GF(c, w) ⋚
GF(c∗, w) if and only if RF(c, c∗, w) ⋚ 0.

Theproof of this proposition is very straightforward. It is also easy to see,withProposition

5.1 in hand, that Simple Global Propriety and Simple Global Betterness are, respectively,

equivalent to Relative Global Propriety and Relative Global Betterness when the opinion

set is finite.

Moreover, we can prove the following proposition:

Proposition 5.2. Suppose that s is a legitimate local accuracymeasure that satisfies Con-

tinuity, Monotonicity (or Monotonicity+), and Finiteness. Suppose also thatR is the

legitimate relative global accuracy measure generated from s in accordance with

Relative Additivity. Then, Local Propriety entails Relative Global Propriety.

As noted in Section 3, Local Propriety entails Simple Global Propriety when the opinion

set is finite, but this logical relation does not hold for the infinite opinion sets. However,

Proposition5.2 says that the logical relationbetweenLocal Propriety and its global version

still holds even for infinite sets, when the corresponding global version is formulated by

means of Relative Global Propriety.

A similar point goes with the logical relation between Relative/Simple Global Better-

ness and Truth-directedness. Revisit c1, c2, and vw1 in Example 3.2. As explained, c2 ≺
c1 according to Truth-directedness, but c2 ⊀ c1 according to Simple Global Betterness.
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That is, in this example, Simple Global Betterness conflicts with Truth-directedness. What

about Relative Global Betterness? Note that:

RF(c1, c2, w) =
∞∑
i

(s(vwi , c
1
i )− s(vwi , c

2
i ))

= (s(1/2, 1)− s(1/22, 1)) + (s(1/22, 0)− s(1/2, 0)),

which is positively finite, given Monotonicity (or Monotonicity+). Thus, Relative Global

Betterness leads us to the same verdict as one led by Truth-directedness. More generally,

we can prove the following proposition:

Proposition 5.3. Suppose that s is a legitimate local accuracymeasure that satisfies Con-

tinuity, Monotonicity (or Monotonicity+), and Finiteness. Suppose also thatR is the

legitimate relative global accuracy measure generated from s in accordance with

Relative Additivity. Then, Relative Global Betterness entails Truth-directedness.

As noted, Simple Global Betterness entails Truth-directedness when the opinion set is fi-

nite, but this logical relation does not hold for the infinite opinion sets. However, such

a logical relation holds for any opinion set when Relative Additivity and Relative Global

Betterness are accepted.

5.3 Probabilism for Credences on Infinite Opinion Sets

As stated, one of the main projects of accuracy-firsters is to expel all incoherent credence

functions from the class of rational credence functions. However, this project cannot help

failing under the constraints and principles given in Section 2, since some incoherent cre-

dence functions are infinitely accurate at everyworld, and so cannot be strongly accuracy-

dominated by any other coherent functions.

In this regard, we should pay attention to a recent accuracy-based vindication, given by

Kelley (forthcoming), of Probabilism for credence functions on infinite opinion sets. She

proves, for example, that, when F is countably infinite and c is an incoherent credence

function on F , c is strongly accuracy-dominated relative to a legitimate global accuracy

measure by a coherent function. Here, the legitimate global accuracy measure is gener-

ated from a legitimate local one in accordance with Simple Additivity—in other words,

the global accuracy measure is defined as being non-relativistic.

At first blush, her results seem to conflict with our claims in Section 3 that there is an

incoherent credence function that is not strongly accuracy-dominated relative to a legiti-

mate non-relativistic global measure by any credence function. Moreover, it could be said,

if Kelley’s arguments are sound, that our relativistic approach is of little theoretical use

since the difficulties in Section 3 can be properly avoidedwithout introducing the concept

of relative accuracy. Furthermore, someone may criticize our approach in that, contrary
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to Kelley’s approach, the relativistic approach does not vindicate Probabilism for credence

functions on infinite opinion sets. In what follows, wewill explain that suchworries about

our approach are somewhat immature.

Note first that our local accuracy measure differs, in an important way, from what Kel-

ley suggests.26 Following Predd et al. (2009), Pettigrew (2016), and so forth, Kelley formu-

lates her local accuracy measures using the so-called bounded one-dimensional Bregman

divergence.27 Wewill call such a measure a zero-based local accuracy measure.

Zero-based Local Accuracy. s0 is a zero-based local accuracy measure if

• s0(1, x) = −d(1, x); and

• s0(0, x) = −d(0, x),

where d is a bounded one-dimensional Bregman divergence.

Here, d is generated from a function φ : [0, 1] → R that is continuous, bounded, strictly

convex on [0,1], and continuously differentiable on (0,1). Moreover, when d is generated

from φ , it holds that: for any x, y ∈ [0, 1],

d(x, y) = φ(x)− φ(y)− φ′(y)(x− y).

It should be emphasized here that Kelley’s definition of local accuracy measures cannot

endorse Monotonicity+—that is, the above definition entails that s0(1, 1) = −d(1, 1) = 0

and s0(0, 0) = −d(0, 0) = 0, regardless of the generating function φ.28 This is one reason

why we dub Kelley’s local measure a zero-based one.29

As mentioned, Monotonicity+ plays an indispensable role in deriving each result in

Section 3. For this reason, Kelley’s approach may be said to rescue accuracy-based prob-

ablism at the cost of Monotonicity+. However, keeping the arguments for Monotonicity+

in Section 4 in mind, we could not say conclusively that Kelley’s approach is theoretically

better than our relativistic approach. Moreover, we have some other arguments against

Kelley’s approach, and for our relativistic approach.

First, we would like to point out that Kelley’s approach suffers from a similar problem

to the one explained in Example 3.2.

26In this paper, our discussions are given on the basis of accuracy. However, many accuracy-firsters in-
cluding Kelley provide their works using the concept of inaccuracy. This difference, we think, is not substan-
tial to our discussions. Below, we reformulate Kelley’s works using the concept of accuracy, not inaccuracy.

27More exactly, she defines the global accuracy using the bounded one-dimensional Bregman dφ that is
generated froma functionφ. Kelley assumes thatφ is boundedand so is dφ. Thus, it canbe said that herwork,
like ours, assumes Finiteness. Kelley (forthcoming, footnote 9) said that the assumption of boundedness is
made just for a technical reason.

28Suppose that d is generated from φ. Then, it holds that d(1, 1) = φ(1) − φ(1) − φ′(1)(1 − 1) = 0. A
similar thing goes with d(0, 0) = 0.

29Note that, except Monotonicity+, the zero-based local accuracy measures satisfy the other aforemen-
tioned constraints on local accuracy measures, i.e., Continuity and Finiteness.
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Example 5.4. The same assumptions as Example 3.2 aremade, except thatMonotonicity,

not Monotonicity+, holds, and that Ai is the proposition that Paul’s favorite natural

number is not greater than i. In particular, assume that the global accuracy mea-

sureG is generated from a zero-based local accuracymeasure s0 in accordancewith

Simple Additivity. Let F+ be the set consisting of Ais. Note that F+ is countably

infinite but is not a partition. Then, at least one of Ais is true, and Ai ⊢ Ai+1 for any

i. Now, consider the following two (incoherent) credence functions c1+ and c2+, and

a truth-function vw+ that are defined on F+:

c1+ = (1, 0, 0, 0, · · · );

c2+ = (1, 1, 0, 0, · · · ); and

vw
+

= (1, 1, 1, 1, · · · ).

Then, Truth-directedness entails that c1+ ≺w+ c2+ since s0(vw
+

i , c1+i ) = s0(1, 0) <

s0(1, 1) = s0(vw
+

i , c2+i ) when i = 2, and s0(vw
+

i , c1i ) = s0(vw
+

i , c2i ) otherwise. How-

ever, Simple Global Betterness entails that c1+ ⊀w+ c2+. This is because s0(1, 1) = 0

and so,

GF+(c1+, w+) = s0(1, 1) +
∞∑

s0(1, 0)

=
∞∑

s0(1, 0)

= 2s0(1, 1) +
∞∑

s0(1, 0) = GF+(c2+, w+).

This example clearly shows that Truth-directedness and Simple Global Betterness still

conflict with each other, even if we accept the zero-based measure to be a legitimate local

accuracy measure and so reject Monotonicity+.

What about our relativistic approach? Interestingly, our relativistic approach is free

from the above conflict, irrespective of whether Monotonicity+ is assumed or not. To see

this, suppose that R is a relativistic global accuracy measure generated from a local ac-

curacy measure s in accordance with Relative Additivity. In particular, let’s assume that

s endorses Continuity, Finiteness, and Monotonicity (or Monotonicity+). Then, we have

that:

RF∗(c1, c2, w+) =
∞∑(

s(vwi , c
1
i )− s(vwi , c

2
i )
)

= s(1, 0)− s(1, 1) < 0.

Hence, it follows from Relative Global Betterness that c1+ ≺w+ c2+. Unlike Simple Global
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Betterness, RelativisticGlobalBetternessdoesnot conflictwithTruth-directedness.30 This

feature of the relativistic approach must be regarded as a theoretical advantage that Kel-

ley’s approach lacks.

Some readers may argue, though, that our approach lacks another important theoret-

ical virtues that Kelley’s approach has. Note again that Kelley presents a few successful

arguments for Probabilismwhile our relativistic approach seems to have no such positive

arguments yet. Thus, if we cannot make any argument for Probabilism, then it might be

said to be theoretically better to abandon Monotonicity+ and adopt Kelley’s approach.

Fortunately, however, the relativistic approach can derive (almost) all of the results

shown in Kelley (forthcoming).31 To see this, let us define a legitimate local accuracymea-

sure that can embrace Monotonicity+, as follows:

Local Accuracy. s+ is a legitimate local accuracy measure if

• s+(1, x) = α− λd(1, x); and

• s+(0, x) = α− λd(0, x),

whereα is a non-negative real number,λ is a positive real number, and d is a bounded

one-dimensional Bregman divergence.

It is obvious that s+ satisfiesContinuity andFiniteness, anddoesnot rule outMonotonicity+.

It is worthwhile noting that s+ is a positive linear transformation of the corresponding

zero-based local measure s0—in particular, it holds that s+ = α + λs0.

With this kind of legitimate local measure in hand, we can derive a proposition about

the relationship between simple and relative global accuracy measures, as follows:

Proposition 5.5. Suppose that F is an opinion set of c and c∗. Suppose further that s0

is a zero-based local accuracy measure, and that s+ is a legitimate local accuracy

measure that is a positive linear transformation of s0. Suppose still further that G0

and R+, respectively, are generated from s0 in accordance with Simple Additivity,

and from s+ in accordance with Relative Additivity. Then, for any credence function

c and c∗, G0
F(c, w) ⋚ G0

F(c
∗, w) if and only if R+

F(c, c
∗, w) ⋚ 0, unless G0

F(c, w) and

G0
F(c

∗, w) are all negatively infinite.

Here, F may be finite or infinite. This proposition clearly says that, unless the global ac-

curacies of two credence functions are all negatively infinite, the epistemic betterness be-

tween credence functions on the basis of G0
F and Simple Global Betterness is ordinally

equivalent to the epistemic betterness on the basis ofR+
F and Relative Global Betterness.

30Indeed, we have already proved this point. See Proposition 5.3.
31Why ‘almost’? When the non-relativistic global accuracies of two credence functions are all negatively

infinite, our relativistic approachmay lead us to a verdict different fromone led byKelley’s approach. In such
a case, the verdict led by the former is more epistemically plausible than the one by the letter. See Example
5.4.
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Thus, Kelley’s non-relativistic accuracy-based arguments with G0 can be paraphrased to

our relativistic arguments with R+, and so the relativistic approach can derive, without

abandoning Monotonicity+, (almost) all of the results from Kelley’s approach.

6 Concluding Remarks

We have shown why accuracy-firsters need to epistemically evaluate our credal states in

a relativistic way rather than a (standard) non-relativistic way. Our opinion set is either

finite or infinite. Given a finite opinion set, our relativistic approach is able to do every-

thing the non-relativistic approach can do. Moreover, given an (countably) infinite opin-

ion set, our relativistic approach is able to do more things than the non-relativistic ap-

proach can do. In particular, it ensures the compatibility of twomain principles, i.e., Truth-

directedness and Global Betterness, and provides, without abandoning Monotonicity+, a

plausible way to vindicate Probabilism for credence functions on an infinite opinion set.

Appendix

A Proof of Proposition 3.1

Let c = (c1, c2, · · · ) be a coherent credence function on a countably infinite opinion parti-

tion F . Here, cis are all non-negative. So, we can rearrange, without any loss of general-

ity, the infinite sequence (c1, c2, c3, · · · ) into another infinite sequence p = (p1, p2, p3, · · · )
such that, for any i ∈ N, pi ≥ pi+1. Let Ai be a proposition in F , to which p assigns pi.

On the other hand, the world w at which Ak is true can also be represented by an infinite

sequence (vw1 , v
w
2 , v

w
3 , · · · ) such that vwi = 1when i = k, and vwi = 0 otherwise. As defined,

the sequence (p1, p2, p3, · · · ) is non-increasing. Then, only two cases are possible.

• Case 1: There is an N such that pi = 0 for any i > N .

• Case 2: pi > 0 for any pi, and the sequence converges to 0.

If neither of these cases holds, then the sequence cannot be coherent. Consider a sequence

in which pis are all positive, but limn→∞ pn > 0. Here we need to note a simple mathemat-

ical fact that
∑∞

n=1 an = ∞ if limn→∞ an = ϵ > 0. With this mathematical fact in hand,

then, we obtain that
∑∞

n=1 pn = ∞, and so that such a sequence violates the probability

axiom—in particular, Countable Sum.

Now, let us see how accurate the coherent credence functions are in each case. First,

suppose that Case 1 holds. Then, it follows from Simple Additivity that, for any w,

GF(c, w) = GF(p, w) =
∞∑
i=1

s(vwi , pi) =
N∑
i=1

s(vwi , pi) +
∞∑

i=N+1

s(vwi , 0).

23



Note that, according to Finiteness, the local accuracy of each credence is finite. Meanwhile,

only one proposition of Ais is true at each world. Thus,
∑∞

i=N+1 s(v
w
i , 0) must be infinite

for any w since s(0, 0) > 0 according to Monotonicity+. Hence, it follows GF(c, w) =∑∞
i s(vwi , ci) = ∞ for any w.

Second, let us suppose that Case 2 holds, which says that limn→∞ pn = 0. Then, Con-

tinuity and Monotonicity+ entail that limn→∞ s(pn, 0) = s(0, 0) > 0. On the other hand, it

follows from Simple Additivity that, for any w,

GF(c, w) = GF(p, w) =
∞∑
i=1

s(vwi , pi) = s(1, pw)− s(0, pw) +
∞∑
i=1

s(0, pi),

where pw is a credence that p assigns to a proposition that is true at w. Thus, GF(c, w)

must be infinite for any w, since limn→∞ s(0, pn) > 0 and so
∑∞

i s(0, pi) = ∞. □

A Proof of Proposition 5.1

As stated in the main text, the proof is straightforward. Only the following is required:

when F is finite,RF(c, c∗, w) = GF(c, w)−GF(c∗, w) for any w. □

A Proof of Proposition 5.2 and Some Relevant Remarks

Here, we will prove that, when the opinion sets are countable, Relative Global Propriety

follows from Local Propriety, but Simple Global Propriety cannot.

Suppose that c is a coherent credence function on a countable opinion partition F ,

and c∗ is a different credence function onF from c. Suppose also that a legitimate relative

global accuracymeasureR is generated from a legitimate local accuracymeasure s, which

satisfies Continuity, Monotonicity (or Monotonicity+), and Finiteness, in accordance with
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Relative Additivity.∑
A∈F

c(A)RF(c, c∗, wA)

=
∑
A∈F

c(A)
∑
A′∈F

(s(vwA(A′), c(A′))− s(vwA(A′), c∗(A′)))

=
∑
A′∈F

∑
A∈F

c(A) (s(vwA(A′), c(A′))− s(vwA(A′), c∗(A′)))

=
∑
A′∈F

[ ∑
A=A′

c(A) (s(vwA(A′), c(A′))− s(vwA(A′), c∗(A′)))

+
∑
A ̸=A′

c(A) (s(vwA(A′), c(A′))− s(vwA(A′), c∗(A′)))
]

=
∑
A′∈F

[
c(A′) (s(1, c(A′))− s(1, c∗(A′))) + c(¬A′) (s(0, c(A′))− s(0, c∗(A′)))

]
=

∑
A′∈F

[
(c(A′)s(1, c(A′)) + c(¬A′)s(0, c(A′)))− (c(A′)s(1, c∗(A′)) + c(¬A′)s(0, c∗(A′)))

]
Suppose now that Local Propriety holds—that is, for anyA′ ∈ F ,

c(A′)s(1, c(A′)) + c(¬A′)s(0, c(A′)) > c(A′)s(1, c∗(A′)) + c(¬A′)s(0, c∗(A′)).

Thus, we have that
∑

A∈F c(A)RF(c, c∗, w) > 0. So, we can conclude that Relative Global

Propriety follows from Local Propriety irrespective of whether the opinion sets are finite

or countably infinite. □
Then, what about Simple Global Propriety? As explained in the main text, it is obvi-

ous that Simple Global Propriety does not follow from Local Propriety since, when F is

a countably infinite opinion partition, GF(c, w) = ∞ for any coherent credence function

c. Moreover, we can explain this in another way. Note that we can derive Simple Global

Propriety from Local Propriety using the above equation if it holds that∑
A∈F

c(A)GF(c, wA)−
∑
A∈F

c(A)GF(c∗, wA) =
∑
A∈F

c(A)RF(c, c∗, wA)

However, this cannot hold whenGF(c, wA) andGF(c∗, wA) are infinite.

A Proof of Proposition 5.3 and Some Relevant Remarks

Let us first prove Proposition 5.3. Suppose thatF is the opinion set of c and c∗, s is a legit-

imate local measure satisfying Continuity, Monotonicity (or Monotonicity+), and Finite-

ness, and R is a legitimate relative global measure generated from s in accordance with

Relative Additivity. Suppose further that Relative Global Betterness holds. Suppose still

further that
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(a) s(vwi , ci) ≤ s(vwi , c
∗
i ) for all Ai ∈ F , and

(b) s(vwi , ci) < s(vwi , c
∗
i ) for someAi ∈ F .

In order to prove Proposition 5.3, it is sufficient to show that it follows from (a) and (b)

that: ∑
i

(s(vwi , ci)− s(vwi , c
∗
i )) < 0. (†)

This is because (†), with Relative Additivity and Relative Global Betterness, entails that

c ≺w c∗. It is very trivial that (a) and (b) jointly entail (†) irrespective of whether F is

finite or countably infinite. As a result, we conclude that Relative Global Betterness entails

Truth-directedness. □
When F is finite and G is generated from the above s with accordance with Simple

Additivity, (†) entails that G(c, w) < G(c∗, w). Thus, we can say that Simple Global Bet-

terness entails Truth-directedness when the opinion sets are finite. However, when F is

infinite, (†) cannot entail that G(c, w) < G(c∗, w) and so Simple Global Betterness does

not entail Truth-directedness, as shown in Example 3.2.

A Proof of Proposition 5.5

Suppose that F is an opinion set of c and c∗. Suppose further that s0 is a zero-based local

accuracy measure, and that s+ is a positive linear transformation of s0 such that s+ =

α + λs0. Here, α is a non-negative real number and λ is a positive real number. Suppose

still further thatG0 andR+, respectively, are generated from s0 in accordancewith Simple

Additivity, and from s+ in accordance with Relative Additivity. Lastly, let us assume that at

least one ofG0
F(c, w) andG0

F(c
∗, w) is greater than−∞.

It should be emphasized here that G0
F(c, w) and G0

F(c
∗, w) cannot be greater than 0.

This is because the maximum values of s0(1, x) and s0(0, x) are all zero. Then, only two

cases are possible: (i) G0
F(c, w) and G0

F(c
∗, w) are all non-positively finite; (ii) one of the

two is non-positively finite and the other is negatively infinite. Let us consider each case.

Case (i). Suppose that G0
F(c, w) and G0

F(c
∗, w) are all non-positively finite. Then, it ob-
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tains that:

λ
[
G0

F(c, w)−G0
F(c

∗, w)
]
= λ

[∑
F

s0(vwi , ci)−
∑
F

s0(vwi , c
∗
i )

]
=

∑
F

[
λs0(vwi , ci)− λs0(vwi , c

∗
i )
]

=
∑
F

[(
α + λs0(vwi , ci)

)
−
(
α + λs0(vwi , c

∗
i )
)]

=
∑
F

[
s+(vwi , ci)− s+(vwi , c

∗
i )
]

= R+
F(c, c

∗, w)

Note that λ has been assumed to be positive, and that s and s+ satisfy Finiteness.

Then, this equation entails thatG0
F(c, w) ⋚ G0

F(c
∗, w) if and only ifR+

F(c, c
∗, w) ⋚ 0,

as required.

Case (ii). Suppose that one of G0
F(c, w) and G0

F(c
∗, w) is negatively infinite. In partic-

ular, suppose that G0
F(c, w) is non-positively finite, but G0

F(c
∗, w) is negatively in-

finite. Thus, G0
F(c, w) > G0

F(c
∗, w). So, it is sufficient to show, for our purpose,

thatR+
F(c, c

∗, w) is positive. It is mathematically trivial that, if
∑∞

i ai = k ∈ R and∑∞
i bi = ∞, then

∑∞
i (ai + bi) = ∞. So, we easily have thatR+

F(c, c
∗, w) > 0.

From the above considerations, therefore, we obtain Proposition 5.4. □
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