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Preface

This volume of essays on neural networks and psychopathology is aimed

at an unusually diverse audience. On the one hand, we hope that the

volume will be read by psychiatrists, psychologists, and other clinicians

and researchers interested in psychopathology and its treatment. On the

other hand, we hope that it will be read by those who work in the ®elds of

cognitive science and arti®cial intelligence, and particularly those inter-

ested in neural network or connectionist models.

We believe that it is timely for clinicians and computational modellers

to be in closer contact. While recent decades have seen dramatic advances

in pharmacological and psychological treatments of psychiatric disor-

ders, clinical science often lacks an adequate theoretical framework for

integrating neurobiological and psychological data. Conversely, while

neural networks have been tremendously successful in modelling a

range of important psychological phenomena and in analysing data

from a wide range of other sciences, less work has focused on connec-

tionist models of psychopathology.

Neural network models of psychopathology have immediate theoreti-

cal and empirical appeal. They are theoretically interesting because they

seem to incorporate neurobiological and psychological data in a seamless

model of the way in which representational processes emerge from assem-

blies of neuron-like processing elements. They are empirically useful

because they have been able to allow rigorous and elegant simulations

of such uniquely human phenomena as pattern recognition, categoriza-

tion, and learning; simulations that have in turn led to new insights into

the phenomena under study.

In aiming at a diverse audience, contributors to this volume have had

to tread a ®ne line between ensuring that their chapters are not only

relevant to clinical practice and research, but also tackle basic questions
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about how the brain±mind works and about how best this can be oper-

ationalized using computational models. Any such pioneering attempt to

straddle two such different camps runs the risk of drawing criticism from

some clinicians who ®nd that computational models are too removed

from clinical experience, or from some cognitivists who ®nd clinical phe-

nomena abstruse.

However, we believe that our contributors have succeeded remarkably

in reaching out to all members of the intended audience. An introductory

chapter by Stein and Ludik introduces the concept of neural networks

and considers some of the potentials and pitfalls of using connectionist

models to investigate psychopathology. In a second background chapter,

Spitzer provides important historical context, outlining the long use of

neural networks in clinical theory. For example, in his abandoned

`Project for a scienti®c psychology', Freud drew on the neuroscience of

his day to develop an approach that is in many ways reminiscent of

current connectionism.

Other contributions in Part one of the volume show how neural net-

work models may have value in several different arenas of clinical prac-

tice and research. These range from diagnosis (Chen and Berrios) to

pharmacotherapy (Park) and psychotherapy (Caspar). Hestenes con-

cludes this part of the volume with an overview of the implications of

neural network theory for approaching the neurobiology of clinical dis-

orders.

In the second part of the volume, contributors develop models of a

range of different clinical disorders. These include examples from the

psychotic, anxiety, dissociative, and cognitive psychiatric disorders.

Speci®cally, models are provided for schizophrenia (Chen and Berrios;

Vinogradov and colleagues), obsessive±compulsive disorder (Ludik and

Stein), dissociative phenomena (Lloyd), autism (Cohen), and Alzheimer's

disease (Wallenstein and Hasselmo).

Finally, Forrest, who has long been working at the interface of neural

networks and psychiatry, provides an epilogue and a vision for the future.

We hope that this brief outline of the volume suf®ciently whets the

appetite of both clinicians and connectionists to pursue the exciting inter-

change between these ®elds more fully. Ultimately, we look forward to

the development of a strong ®eld of cognitive clinical science, in which

computational models inform clinical practice and research, and in which

clinical data provide an important impetus for work in connectionism.
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Part one

General concepts





1

Neural networks and psychopathology:
an introduction
DAN J . STEIN and JACQUES LUDIK

The recent shift in psychiatry from a predominantly psychodynamic

model towards a neurobiological paradigm has led to important

advances in our understanding and management of many mental disor-

ders. At the same time, this shift has been characterized as a move from a

brainless psychiatry to a mindless one (Lipowski, 1989). Certainly, the

continued existence of different psychiatric schools with widely divergent

approaches to psychopathology and its treatment suggests that psychia-

try continues to lack an adequate theoretical underpinning.

During the same time that psychiatry has undergone a paradigm shift,

academic psychology has also experienced a revolution ± the so-called

cognitive revolution against behaviorism (Gardner, 1985). Cognitive

science, a multidisciplinary arena encompassing cognitive psychology,

arti®cial intelligence, neuroscience, linguistics, anthropology, and philo-

sophy, and based on computational models of the mind, is now a pre-

dominant approach. Not surprisingly, clinicians have asked whether the

constructs and methods of cognitive science are also applicable to psy-

chopathology.

Indeed, a promising dialogue between clinical and cognitive science has

emerged (Stein and Young, 1992). Both cognitive±behavioral therapists

and psychodynamic researchers have increasingly drawn on cognitivist

work in their theoretical and empirical studies of psychopathology and

psychotherapy. Schema theory, for example, has been applied to a range

of clinical phenomena (Stein, 1992). Such cognitivist work is often imme-

diately attractive to the clinician insofar as it incorporates a range of

theoretical disciplines and insofar as it is based on hard empirical studies.

One of the most important developments in modern cognitive science

has been connectionism, the ®eld concerned with neural network models

(Rumelhart et al., 1986a). Whereas early work in cognitive science
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emphasized `top-down' symbolic architectures and the manipulation of

mental representations, connectionism has focused on `bottom-up' mod-

els that specify the interactions of simple processing units. In contrast to

the serial processing of traditional symbolic models, in neural networks

information processing occurs simultaneously in all units (parallel dis-

tributed processing). Increasingly, neural networks are being applied in

the clinical arena, again offering the clinician a set of constructs and

methods that seem sophisticated and robust (Hoffman, 1987; Park and

Young, 1994).

This book provides a forum for the presentation of pioneering work at

the intersection of clinical science and connectionism. This introductory

chapter details some of the de®ning features of the connectionist para-

digm, and considers some of the advantages and possible limitations of

this approach for clinical science.

Features of neural networks

Connectionist models focus on sets of processing units (idealized neu-

rons) and their interactions. Some of the earliest connectionist work was

done by Donald Hebb (1949) in his speculations about the basis of neu-

ronal functioning. He put forward the idea of cell assemblies, and pro-

posed that simultaneous activation of two cells resulted in strengthening

of their connection (Hebb's rule). Other theorists helped develop sophis-

ticated mathematical theories to describe such neuronal networks

(Grossberg, 1980; McCulloch and Pitts, 1943; Rosenblatt, 1962;

Selfridge and Neisser, 1960), and the development of modern computers

allowed ready implementation of detailed connectionist models.

Any particular neural network model can be described in terms of its

speci®c processing units, the way these are put together, and the way in

which they learn (Hanson and Burr, 1990). Like neurons, each unit has

inputs (dendrites) from other units, and outputs (axons) to other units.

Each input has a particular weight (synapse), which can be positive (exci-

tatory) or negative (inhibitory). Whether or not a unit is activated is

determined by this net input and by its current activation.

The topology of a neural network is the way in which units are joined

to one another. In a totally connected network, such as the Hop®eld

network (Hop®eld, 1982, 1984), all units are connected to one another

(Fig. 1.1). In a feedforward unit, information ¯ows in only one direction,

from input units to output units. In multilayer networks, there are also

hidden units between input and output units (Fig. 1.2).

4 Dan J. Stein and Jacques Ludik



Learning takes place in networks via modi®cation of synaptic weights.

Neural networks, for example, can be trained to associate particular

input patterns with particular output patterns. During training, input

patterns are presented and synaptic weights are changed according to a

learning rule. In a multilayer network, error can be measured across the

output units and then compensatory changes can be made at each level of

the network (back-propagation).

How are memories stored in a network? Many networks can be con-

ceptualized as constraint networks in which each unit represents a

hypothesis (i.e., a feature of the input), and in which each connection

represents constraints among the hypotheses (Rumelhart et al., 1986b). A

variation of Hebb's rule, for example, states that if features A and B often

co-exist, then the connection between the two will be positive. On the

other hand, when the two features exclude one another, then the connec-

tion will be negative. When the network runs, it settles into a locally

optimal state in which as many as possible of the constraints are satis®ed.

The information processing of a network from state to state can be

conceptualized in terms of movement over a goodness-of-®t landscape

(Rumelhart et al., 1986b). The system processes input by shifting from

state to state until it reaches a state of maximal constraint satisfaction,

that is, it climbs upward until it reaches a goodness maximum. A land-

scape can be described in terms of the set of maxima which the system can

®nd, the size of the region that feeds into each maximum, and the height

Neural networks and psychopathology 5

Fig. 1.1 A Hop®eld neural network in which all units are connected to one
another.



of the maximum itself (Fig. 1.3). The positions of the system correspond

to the possible interpretations, the peaks in the space correspond to the

best interpretations, the extent of the foothills surrounding a particular

peak determines the likelihood of ®nding the peak, and the height of the

peak corresponds to the degree that the constraints of the network are

actually met (Rumelhart et al., 1986b).

Schemas versus neural networks

Characterizing neural networks in terms of a goodness-of-®t landscape

has immediate intuitive appeal. This characterization allows neural net-

works to be compared with schemas ± cognitivist constructs that are, as

noted earlier, increasingly familiar to clinicians. A schema is a proto-

typical abstraction that develops from past experience and that guides

the organization of new information (Thorndyke and Hayes-Roth, 1979;

Stein, 1992). Schemas allow rapid processing of information, but also

result in typical biases (Winfrey and Goldfried, 1986).

Similarly, a particular neural network, prompted by a given set of data,

rapidly moves toward a previously acquired landscape. This allows rapid

information processing, but, again, may result in certain distortions

(Rumelhart et al., 1986b). This view of schemas is perhaps more ¯uid

than the conventional one; for example, schemas can be de®ned as in¯ex-

ible (narrow peaks in the goodness-of-®t landscape) or more ¯exible (with

6 Dan J. Stein and Jacques Ludik

Fig. 1.2 A multilayer neural network in which hidden units intervene between
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broad plateaus allowing for movement in the region of the maximum)

(Rumelhart et al., 1986b).

Consider, for example, a woman who has been abused in childhood.

She may develop a mistrust schema according to which others are not

easily to be trusted. She is consequently liable to bias her interpretation of

reality in particular ways, perhaps drawing false generalizations about

authority ®gures or viewing neutral situations as unsafe. Both schemas

and neural networks provide a way of explaining how such biases are

`built in', without having to rely on explicit cognitive rules.

Rumelhart et al. (1986b) conclude that the relationship between neural

network models and schema models is largely a matter of a different

degree of analysis. Whereas schema models are predominantly `top-

down' in their approach, neural network models work from the

`bottom-up'. An advantage of the neural network approach is its ability

to demonstrate in ®ne detail how cognitive phenomena emerge from

interactions of simple elements of the system.

Similarly, in the clinical situation, the neural network approach may

allow a better understanding of the microstructure of schemas. While

Neural networks and psychopathology 7
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its input by moving upward from state to state until it reaches a state of maximum
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schemas have allowed an integration of different kinds of theories, they

have been less successful at incorporating neurobiological information

than some would have hoped. For example, while a theory of mistrust

schemas does exist (Young, 1990), this is not easily able to incorporate

such clinical data as the ef®cacy of psychotropic medication in patients

with personality disorders. This kind of data might be better understood

if the cognitivist model used was a bottom-up one.

The grounding problem

Why should neural network modelers pay attention to clinical science? It

may be argued that clinical phenomena are particularly challenging inso-

far as they necessarily encompass a broad range of levels of analysis.

Thus, it may be argued that such phenomena demand a level of analysis

that extracts the maximum potential from cognitive science.

There remains, for example, a basic problem in cognitive science that

may be characterized (following Harnad, 1990) as the symbol-grounding

problem. This concerns how the meanings of the symbols in a system can

be grounded so that they have meaning independently of an external

interpreter. This problem may lie at the heart of a number of important

debates in cognitive science.

Consider, for example, Searle's (1980) well-known argument against

symbolic models of the mind. Searle notes that while a Turing computer

could conceivably implement a range of rules necessary for translating

Chinese symbols into English ones, it cannot be argued that this compu-

ter understands Chinese. For example, while it might be possible for a

person to memorize all the syntactical rules employed by such a program,

this would not necessarily mean that the person had a grasp of the

semantic meanings of Chinese.

Similarly, a range of so-called situated cognitivists argue against con-

ventional symbolic cognition (Norman, 1993). Symbolic cognitivists hold

that cognitive processing essentially involves the manipulation of sym-

bols, and that the task of cognitive science is to provide formalized

descriptions of these transformations. Situational cognitivists hold that

cognitive processes necessarily take place within a particular interactive

social context, and that the task of cognitive science is to understand how

cognitive processes are situated in experience.

A clinical example may be useful here. Consider once again the mis-

trustful patient. In a pioneering project in early arti®cial intelligence,

Colby (1981) developed a computer program, PARRY, which simulated
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paranoid thought processes. The program relied on a symbolic architec-

ture, and incorporated a number of rules that governed the manipulation

of symbols. For example, one rule stated that when self-esteem score

decreased, level of suspicion would be increased. PARRY was highly

successful insofar as experienced clinicians interacting with it were some-

times unable to tell whether they were dealing with a computer or with a

person (the Turing Test).

From Searle's perspective, however, the claim that PARRY is in fact

paranoid should not be taken seriously. PARRY is a computer program

that implements syntactic rules, but that lacks semantic understanding

and intentionality. Similarly, from the perspective of a situated cogniti-

vist, although it might be conceded that PARRY devotes attention to the

interpersonal context of paranoid behavior, its focus on the manipulation

of symbols means that it ultimately fails to come to terms fully with this

phenomenon.

Indeed, from a clinical viewpoint, although PARRY was a pioneering

contribution to the intersection between clinical and cognitive science,

and although it provided an interesting hypothesis for and test of the

cognitive processes underlying paranoia, its success was only partial. In

particular, PARRY ignored many aspects of the clinical phenomenon of

paranoid thinking, including data on the neurobiology of psychosis.

Ultimately, PARRY was unable to explain the underlying mechanisms

upon which its rules were based.

Harnad (1989) has proposed a variant of the Turing Test, the Total

Turing Test (TTT), in order to help solve the symbol-grounding pro-

blem. In addition to simulation of pen-pal (symbolic) interactions, pas-

sing the TTT demands simulation of `robotic capacity' ± all of our

sensorimotor capacity to discriminate, recognize, identify, manipulate,

and describe the world we live in. Harnad argues that a system is

grounded only when it has the symbolic and robotic capacity to pass

the TTT in a coherent way, that is when its symbolic capacity is

grounded in its robotic capacity rather than being mediated by an out-

side interpretation projected onto it.

To return to the Chinese room, the question is no longer whether the

Turing Test candidate really understands Chinese or can merely be inter-

preted as if he or she were understanding it, but rather whether the TTT

candidate (a robot with optical transducers) really sees the Chinese letters

and really writes the English version down or whether it is merely inter-

pretable as if it were doing this. If Searle now attempted to implement the

Neural networks and psychopathology 9



TTT candidate without seeing or writing (as he attempted to implement

the TT candidate without understanding), this would be impossible.

Insofar as real transduction is essential to TTT capacity, a TTT can-

didate would satisfy the demands of a situated cognitivist. This candidate

would not simply be manipulating symbols, but would in fact demon-

strate cognitive processes that were situated in experience. Such cognitive

processes could no longer be said to be independent of their physical

instantiations (as symbolic cognitivists are so fond of averring).

Similarly, from a clinical viewpoint, modeling sensory transduction is

indeed necessary if psychopathological phenomena such as paranoia are

to be fully understood. Cognitive clinical science needs to take cognizance

of the growing emphasis by cognitivists on the embodiment of cognition

(Lakoff, 1987), both in the sense of being embodied within the physicality

of the brain and in the sense of being embodied within particular social

situations. Given the increased understanding of the neurobiology under-

lying psychopathology, models that incorporate this kind of understand-

ing may well be possible.

Consider, for instance, a pioneering example of work at the intersec-

tion of connectionism and the clinic, the research of Jonathan Cohen and

David Servan-Schreiber (1992) on schizophrenia. In their model of this

disorder they model how changes in neurotransmitter function (dopa-

mine gain) result in dysfunction on neuropsychological testing. The

model therefore moves toward providing a seamless integration of the

neurobiology and psychology of this complex disorder. Although the

model only attempts to cover limited aspects of schizophrenia and

could not pass the TTT, it does not simply involve syntactic rule trans-

formation, and it provides a preliminary account of how psychopatho-

logical processes in schizophrenia are in fact embodied.

Some dif®culties

Different kinds of neural network models may be applicable to different

arenas within psychiatry. For example, there is currently work on neural

network approaches to diagnosis (see Chapter 3), neural network model-

ing of psychopharmacological data (see Chapter 4), and neural network

modeling of psychotherapeutic processes (See Chapter 5) and psychody-

namic phenomena (see Chapter 10). Nevertheless, much work follows the

pioneering lines taken by Hoffman (1987) and Cohen and Servan-

Schreiber (1992), in which `lesions' to neural network models are made

in the hope of simulating psychopathological data.

10 Dan J. Stein and Jacques Ludik



It may be argued that there remains an important disjunction between

phenomena as they are witnessed by the clinician (e.g., schizophrenic

delusions) and the kind of inputs and outputs that are processed by neural

networks (e.g., numerical patterns, results on a neuropsychological test).

Psychiatric research methodologies such as functional brain imaging are

currently allowing insights into the concrete mechanisms that underlie

speci®c clinical phenomena (e.g., basal ganglia activation in obsessions

and compulsions); in contrast, neural networks are experience distant.

This distance between clinical experience and neural network analysis

may also account for the worrying fact that particular neural networks

are used by various authors to account for a range of different psycho-

pathological phenomena. For example, Cohen and Servan-Schreiber's

network for schizophrenia has also been used to account for other

kinds of phenomena including obsessive±compulsive disorder (OCD).

Certainly, a single neurotransmitter system may in fact be involved in

several different psychiatric disorders. However, the use of a single neural

network to explain diverse clinical phenomena also appears to suggest

that it can explain everything.

To some extent, however, a similar issue arises in schema theory. Is

there anything about minds that schema theory does not explain? Given

that schemas and neural networks seem to incorporate general rules of

cognition, their application to any clinical phenomena will perhaps

always result in at least a partial ring of truth. The trick for future

researchers will be to specify the details of these applications with increas-

ing depth, so that speci®c differences in the neural networks/schemas of

different clinical phenomena become increasingly clear.

So much for the issue of phenomenology. What are the objections that

a strict neurobiological approach may have for neural network theory? It

seems clear that many processes in the brain do operate according to the

principles of parallel distributed processing. Nevertheless, neural network

models of clinical phenomena typically fail to incorporate many of the

®ne details of neurobiological knowledge, and they may even directly

contradict the ®ndings of modern neuroscience. For example, the fact

that units typically have both inhibitory and excitatory connections is at

odds with neurobiological data that most neurons are either inhibitory or

excitatory.

However, this criticism fails to take adequate account of the level of

analysis that neural network models hope to achieve. While computa-

tional models of neurophysiological and neuropathological processes are

often extremely relevant to psychiatry, neural networks that aim to model

Neural networks and psychopathology 11



clinical phenomena often aim at a higher level of analysis. Certainly, they

may aim to incorporate neurobiological data (e.g., Cohen and Servan-

Schreiber (1992) attempt to integrate basic ®ndings on dopamine), but

this may ultimately be with the goal of understanding relevant cognitive

processes (such as neuropsychological dysfunction in schizophrenia).

Nevertheless, it is true that by focusing on higher level processes,

neural networks of psychopathology may lose detail. Neural network

modelers of neurophysiological processes may ®nd more clinically

oriented neural networks too sketchy and vague. In the future, as our

understanding of the neurobiology of psychiatric disorders grows, an

attempt will need to be made to incorporate ever-more detailed neuro-

physiologically based models into our connectionist work on clinical

phenomena.

Work on the interface of two disparate disciplines is always open to

attack by both ®elds. Neural network theorists may ®nd the psychiatric

phenomena of interest to clinicians overly nebulous, while clinicians may

®nd the mathematics of neural network models somewhat esoteric. We

hope that by providing concrete examples of interesting work at this

intersection, we will be able to foster its growth and to temper this

kind of criticism. Certainly, we hope that this volume will provide an

impetus to both clinicians and cognitivitists to explore the potentially

fertile intersection between these ®elds more fully.
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2

The history of neural network research
in psychopathology
MANFRED SPITZER

Introduction

The use of neural networks for the study of psychopathological phenom-

ena is not new, but rather has a rich historical tradition. One striking

feature of this tradition is that from the very inception of the idea of the

neuron, psychiatrists have used the notion of networks and their pathol-

ogy to account for psychopathological phenomena. Moreover, many

advances in neural network research were either made by psychiatrists

or were put forward in relation to psychopathology. In other words,

neural network studies of psychopathological phenomena are by no

means a `late add on' to the mainstream of neural network research,

but have always been at the heart of the matter. Neural networks were

drawn by Freud and Exner to explain disorders of cognition, affect and

consciousness. Carl Wernicke (1906) coined the term `Sejunktion' to

denote the functional decoupling of cortical areas, which he suggested

was the cause of psychotic symptoms such as hallucinations and delu-

sions. Emil Kraepelin (1892) and his group of experimentally oriented

psychiatrists reasoned about associative networks and psychosis. Not

least, Eugen Bleuler (1911/1950) ± inspired by the experimental work

carried out by his resident Carl-Gustav Jung (1906/1979) ± saw the dis-

ruption of these networks as the hallmark of schizophrenia.

Various developments in many ®elds have contributed to the present

surge of neural network research. The historical material discussed in this

chapter is organized by time and by topic.

Present-day connectionism takes it for granted that there are neurons,

summing up action potentials coming via the connections among them,

the synapses. These fundamental ideas, however, have their history, and

are the starting point of this chapter. Some of these ideas, in turn, may be

history in the near future, which is where the discussion ends.
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From sponges to networks of neurons

The idea of a neural network is crucially dependent upon the idea of the

neuron, which was not `discovered' in a single act but rather was the result

of a scienti®c battle that lasted for almost 100 years (cf. Breidbach, 1993;

Dierig, 1993; Finger, 1994). In the 1830s, several authors (Christian

Gottfried Ehrenberg, Jan Evangelista PurkyneÂ , Gabriel Gustav

Valentin) described `ganglia-globules' (Ganglienkugeln) in various neural

tissues, including the central nervous system. These globules were found to

be enmeshed within a dense `felt' of ®bres, and the question of the exact

nature of globules and ®bres arose. A few years later, the globules were

identi®ed as ganglia cells within the framework of the newly developed

general cell theory of tissue and pathology by Rudolf Virchow. In 1844,

Robert Remak published the ®rst drawings of ganglia cells, which clearly

showed vermiform projections containing ®bres, and in a paper published

by Otto Friedrich Karl Deiters in 1865 (two years after his death), axons

and dendrites were distinguished for the ®rst time.

Paralleling the increasing anatomical detail, functional aspects of neu-

ronal tissue were also worked out. In 1846, Rudolf Wagner proposed the

®rst re¯ex arc of a sensory ®bre to the spinal cord to motor neurons.

Studies of degenerating ®bres after experimental nerve injuries clari®ed

that ®bres were dependent upon cell bodies. These observations led

Wilhelm His, in 1886, to postulate that any nerve ®bre comes from a

single cell: the neuron was born but did not yet have a name. Five years

after its birth, the nerve cell was baptized `neuron' in a highly in¯uential

paper written by the German anatomist Heinrich Wilhelm Gottfried

Waldeyer, and published in the Deutsche Medizinische Wochenschrift, a

weekly medical journal, in October 1891.

In an ironic twist of history, the man who made the most crucial

discovery in the ®eld was also the one who drew the decisively wrong

conclusions from his ensuing observations. The Italian physician Camilo

Golgi had been trying to stain the meninges. By accident, he thereby

discovered that silver stains have the peculiar feature of making only

one in about 100 neurons visible, offering unprecedented detail. Golgi

used the technique to describe nervous tissue in detail, concluding that

®bres grow into each other and thereby form direct connections.

It was the Spanish neuroanatomist Santiago RamoÂ n y Cahal who

noticed that neurons do not, as Golgi maintained, form a sponge-like

seamless structure, a syncytium, but rather are discrete entities. RamoÂ n y

Cahal noticed that there were gaps between the ends of nerve ®bres ±
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slightly thickened, button-like structures ± and the adjacent cells. Both

Golgi and RamoÂ n y Cahal received the Nobel Prize in 1906, but even at

that time they were still engaged in ®erce debates. Golgi just could not

accept the notion developed by his Spanish colleague. In particular, he

did not accept that there were gaps between neurons, which already had

been christened `Synapse' in 1897 by Sir Charles Scott Sherrington.

From associated ideas to associated neurons

The concept of the neuron was highly successful. Within a few years after

its inception and naming, it conquered the imagination of scientists and

physicians. Consider the writings of Sigmund Freud and Sigmund Exner,

prime examples in point.

Exner was a physiologist and in 1894 published a monograph, entitled

Project for Physiological Explanations of Mental Phenomena, which con-

tains an impressive number of drawings of neural networks, meant to

bring about various mental phenomena (Figs. 2.1 and 2.2). Freud worked

16 Manfred Spitzer

Fig. 2.1 Neural network drawn by Sigmund Exner (1894, p. 164). The schema is
supposed to account for the effect of selective attention on choice reaction time
experiments. Sensory input (S) is ¯owing in from the right to sensory cells (a1; a2
and a3) and relayed to motor output cells (m1;m2 and m3) on the left. The
processing of speci®c inputs can be primed, according to Exner, by additional
input from higher centres (Exner refers to them as the `organ of consciousness')
either to the sensory input layer or to the motor output layer (cells � and �).



as a neurologist in private practice and had a background in neuroanat-

omy from his work at the University of Vienna. In 1895, he was trying

very hard to incorporate the latest neuroscience research ®ndings into a

treatise on psychological functions. He sent the chapters of the book in

the form of letters to his friend Wilhelm Fliess, and these were later

published as Project for a Scienti®c Psychology. In this book Freud pro-

duced drawings of networks of neurons carrying out speci®c functions

(Fig. 2.3). The entire idea was later abandoned, possibly because Freud

felt that there was not enough neuroscienti®c evidence for such a neuro-

cognitive theory. Freud therefore rewrote his entire theory using purely

psychological terms.
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Fig. 2.2 Neural network by Exner (1894, p. 193), which was meant to explain
visual motion detection. The dot-like connections in the lower half of the drawing
closely ressemble modern recurrent networks as described by Hop®eld in 1982.



As has been pointed out by a number of authors, The Interpretation of

Dreams, Freud's ®rst major work on the foundations of psychoanalysis,

is in many respects a neurocognitive model in the disguise of psycholo-

gical theory (Pribram & Gill, 1976; Hobson and McCarley, 1977;

Sulloway, 1984).

The concept of neurons associated with each other to form larger net-

works was also highly successful. One of the reasons for this success was

that the idea fell on the highly fertile and receptive ground of association

psychology, the major scienti®c paradigm within the newly established

science of psychology during the last two decades of the 1800s. On the

shoulders of associationist ideas which had been around for centuries, the

technique of word associations had just been introduced in 1879 by

Francis Galton, who had already come very close to the concept of the

unconscious as we know it from the writings of Freud (Spitzer, 1992). It

is likely that Freud knew Galton's work on associations, although he did

not mention Galton in this respect and claims to have developed the

method of free associations by `following a dark presentiment' (Jones,

1978; p. 293). The similarities between Galton and Freud are, at any rate,

striking.

Regarding the very young discipline of academic psychology, Wilhelm

Wundt founded the world's ®rst psychological laboratory in Leipzig,

18 Manfred Spitzer

Fig. 2.3 Neural network drawn by Sigmund Freud in 1895. The arrow on the left
marks incoming energy, which is rerouted within the network to a side-chain of
associated neurons. Freud links these neurophysiological concepts with the asso-
ciations of ideas that can sidetrack to unusual contents.



Germany, in 1879. In this laboratory a great deal of research on associa-

tions was either performed or stimulated. Emil Kraepelin worked in

Wundt's laboratory, and was not only highly in¯uenced by the empirical

spirit of Wundt (Spitzer and Mundt, 1994), but also was able to use some

of the methods developed in Wundt's laboratory for purposes of experi-

mental psychopathology. It is beyond the scope of this chapter even to

summarize the enormous work on the associations of normal people done

by psychiatrists in the two decades before and after 1900 (Spitzer, 1992).

To mention just a few examples: Kraepelin studied the effects of drugs on

word associations, and his disciple, Gustav Aschaffenburg, pursued

research on the effects of fatigue. Carl-Gustav Jung performed similar

experimental studies, and applied the dual task method to research on

attentional effects on word associations.

As mentioned above, with the advent of physiology and neuroanat-

omy, the term `association' gained a new `biological' meaning: Not ideas,

but rather brain parts ± neurons ± were thought to be associated, i.e.

connected in a speci®c way. As the then leading American psychologist

William James put it, `. . . so far as association stands for a cause, it is

between processes in the brain . . .' (James, 1892/1984; p. 225 ± italics in

original). James avoided any reference to ideas but mentions the brain.

However, it is important to note that the ¯ow of ideas was the very

subject of his discussion. In his review of the actual laws of associations,

however, James nonetheless used mentalistic terms. It is therefore

obvious that his explicit `reductive' approach was merely a programme

and not a ®nding. The law of contiguity, for example, was introduced as

follows:

. . . objects once experienced together tend to become associated in the imagina-

tion, so that when any one of them is thought of, the others are likely to be

thought of also . . . the most natural way to account for it [the law] is to conceive

it as a result of the laws of habit in the nervous system; in other words, it is to

ascribe it to a physiological cause.

(James, 1890/1983; p. 529)

As can be seen, a mentalistic description of the association law is given

®rst, and then a physiological cause is stipulated. Along the same lines,

the arguments in Exner's and Freud's Projects were constructed.

Similarly, Carl Wernicke (1906) wrote his famous textbook of psychiatry,

arguing that hallucinations and delusions were the result of the severing

of connections between association areas of the human cortex (`sejunc-

tion'). These approaches remained speculative, as no one had developed a
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theoretical understanding of how associations of neurons were related to

associations of ideas. This is probably the main reason why association

psychology, in spite of the many bright minds working on it and the

many papers published, was abandoned by the second decade of the

1900s. In fact, it took the idea of neural networks to bridge the very

gap between the associated neuron and the associated idea, a gap that

became evident 100 years ago.

From energy to information

The problem of linking the association of concepts to the association of

nerve cells has been a major motivational force for the development of

neuroscience in the twentieth century. Exner, Freud, and James, as we

have already seen, could merely stipulate such links.

The ®rst attempt to bridge mind and matter on a neuronal basis was

made by McCulloch and Pitts (1943/1988). Quite strikingly, the particu-

lar assumptions about the functioning of neurons that were made by

these authors in their famous paper, `A logical calculus of the ideas

immanent in nervous activity', later turned out to be wrong. However,

McCulloch and Pitts were able to show that neurons could be conceived

of as computing devices capable of performing propositional logic. In this

view, neurons were no longer capacitors storing energy, with cables

attached to them conducting energy. Instead, they were switches that

corresponded to logical propositions, and ®bres were links between

those switches. A neural network was therefore no longer a device for

handling energy, but became a device for handling information. The

importance of this conceptual change cannot be overestimated.

It was clear to McCulloch and Pitts that this view had to have pro-

found consequences for any attempt to understand how the mind works,

including malfunction. In the very paper in which the idea of the neuron

as information-processing device was proposed, the authors commented

on psychopathological phenomena. Referring to `tinnitus paraesthesias,

hallucinations, delusions, confusions and disorientations' (p. 25), they

claim that their account of the functioning of neuronal assemblies allows

for a physiological account of psychopathology: `Certainly for the psy-

chiatrist, it is more to the point that in such systems ``Mind'' no longer

``goes more ghostly than a ghost.'' Instead, diseased mentality can be

understood without loss of scope or rigor, in the scienti®c terms of neuro-

physiology' (McCulloch & Pitts, 1943/1988, p. 25).
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From Hebbian learning to long-term potentiation

William James clearly saw the necessity for change in mental associations

and he speculated on brain processes that might account for it. Given

that the word `neuron' had not yet arrived from across the Atlantic

Ocean, he wrote about `points' within the cortex and their connections:

The amount of activity at any given point in the brain-cortex is the sum of the
tendencies of all other points to discharge into it, such tendencies being propor-
tionate (1) to the number of times the excitement of each other point may have

accompanied that of the point in question; (2) to the intensity of such excitements;
and (3) to the absence of any rival point functionally disconnected with the ®rst
point, into which the discharges might be diverted.

(James 1892/1984; p. 226)

James obviously foresaw an organizing principle of neural networks

even before he knew about neurons. If we replace `point' with `neuron,'

we get the idea that the activity of a neuron is equal to the sum of its

weighted input. James even formulated a learning rule:

When two elementary brain processes have been active together or in immediate
succession, one of them, on re-occurring, tends to propagate its excitement into

the other.

(James, 1892/1984; p. 226)

Half a century later, the Canadian physician and psychologist Donald

Hebb (1949/1988) built not only upon these ideas, but also upon the

growing body of physiological knowledge. In 1949, he published a highly

in¯uential book entitled The Organization of Behavior, in which he specu-

lated upon the workings of cell assemblies and proposed a mechanism by

means of which associations of neurons could actually be in¯uenced

through experience. He clearly saw that neurons in brains need such a

mechanism if learning is to be possible. Hebb outlined the operating

principles of the `association' of single nerve cells, the synapse, and devel-

oped a scheme of how such associations could be in¯uenced by `mean-

ingful' associations, i.e. something to be learnt:

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in ®ring it, some growth process or metabolic change
takes place in one or both cells such that A's ef®ciency, as one of the cells ®ring

B, is increased.

(Hebb, 1949/1988; S. 50)

Only seven years later, the ®rst successful computer simulation of

synaptic change in neural networks was reported (Rochester et al.,

1956/1988), which implemented a slightly modi®ed version of Hebb's
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idea. Neurons and connections were simulated, and patterns of coordi-

nated activity appeared in the simulated `cells' after learning had

occurred. The mechanisms of such synaptic changes in biological cells

were unknown at that time, however. Progress in this area was stimulated

by the psychiatrist Eric Kandel, who used a very simple organism, the sea

snail Aplysia californica, to show how learning and synaptic modi®cation

occur in parallel (for a review see Kandel, 1991). Once the connection

between learning and synaptic change was clearly established, the

mechanism of synaptic modi®cation in more complex brains became

the subject of intense study. In the early 1970s, experimental work on

the hippocampus of rats ®rst demonstrated the plasticity of synaptic

connections caused by arti®cial neural excitation. The phenomenon

was called long-term potentiation (LTP) and has since been the subject

of intensive neurobiological research (Baudry and Davis, 1997). More

recently, long-term depression (LTD) has been studied extensively and

is now seen as the mirror image of LTP. Neither LTP nor LTD is

restricted to the site where it was ®rst discovered, the hippocampus and

the cerebellum, but instead both have been shown to be much more

widespread in the brain. Hence, these mechanisms of synaptic change

are good candidates for the mechanisms needed to implement learning

and memory in biological neural networks.

From computers and concepts to computer simulations

The history of neural network research, in a strict sense, began with the

concepts just outlined and took off with the ®rst neurocomputer, the

Mark I Perceptron, developed by Frank Rosenblatt and coworkers at

the Massachusetts Institute of Technology in 1957 and 1958

(Rosenblatt, 1958/1988). In the late 1950s and 1960s, neural network

¯ourished during what is sometimes called the ®rst blossom of neural

network research (Zell, 1994). It was brought to a rather sudden end

by the publication of a book entitled Perceptrons (Minsky and Papert,

1969), in which the authors pointed out several serious limitations of the

networks then in use. As these limitations were widely believed to apply

to neural networks in general and not just to the speci®c type the percep-

tron, neural network research was thought to be a `dead end' and funding

stopped almost completely.

The ensuing 12 to 15 years are now sometimes referred to as the quiet,

or `dark age' of neural network research, although several highly impor-

tant papers were published (Anderson and Rosenfeld, 1988). In particular,
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Stephen Grossberg (1980) published a number of innovative papers

during this period.

The early phase of neural network research was done at a time when the

conventional computer, as we all know it at present, was conceived. These

digital computers not only served as tools for computing in research, but

also were soon taken as models for any `thinking machine,' including the

brain. Named after the person whose brainchild it was, the von Neumann

machine was the model for all computers. Most of the computers of the

present day still work like the machines designed 40 years ago. It is impor-

tant to discuss the main general features of these machines brie¯y, since

neural networks, biological and simulated, are very different. These dif-

ferences have driven neural networks to some extent, since it became

increasingly obvious that computers are very much unlike brains.

In a conventional digital computer, information is processed serially,

i.e. a central processing unit (CPU) handles a single `chunk' of informa-

tion at a time. To compensate for this limitation, such processing hap-

pens very quickly. Compared to the switching devices on silicon

computer chips, neurons are terribly slow: for example, the computer

used to type this chapter contains memory chips with a switching speed

of less than a tenth of a microsecond (<0.0000001 s), whereas neurons

take a few milliseconds (>0.001 s) to respond to input, i.e. to switch. If

we take reaction time data from the experiments reported above and

below as examples, i.e. reaction times as low as 500ms, we can conclude

that the neural algorithm which performs, for example, lexical decisions

cannot consist of more than about a hundred consecutive steps

(Rumelhart, 1989; p. 135). However, everyone who has some experience

with computer programming knows that a 100-step program is far too

limited to accomplish even quite simple tasks.

This directly implies that most psychological tasks cannot be per-

formed by neurons working in the same manner as a personal computer.

It is quite obvious that the rather slow neurons must work massively in

parallel to perform the many computations necessary for even simple

word-recognition or face-recognition experiments.

In addition to the argument from considerations of speed, a similar

argument in favour of a parallel design for the associations-handling

device called `brain' can be made from considerations of precision. In a

classic monograph, The Computer and the Brain, John von Neumann

(1958) pointed out that the level of precision that can be accomplished

by neurons is several orders of magnitude less than the level of precision

that computers can achieve. This implies that long programs relying on
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many steps cannot possibly be handled by such systems because an error

occurring within one such step will be easily propagated and multiplied in

subsequent steps.

Computers may fail completely upon a single faulty connection.

Brains, in striking contrast, show a more graceful degradation of function

when neurons die. In fact, it is sometimes striking that patients with very

little brain tissue left by a disease process are discovered by chance, i.e.

these patients show very little, if any, cognitive impairment notwithstand-

ing major brain defects.

For these reasons, although many psychological theories of the 1950s

and 1960s took the computer as a metaphor for the mind, the idea that

computers are very different from biological information-processing sys-

tems was gradually accepted by psychologists. However, it was not until

the 1980s that the idea of neural networks, simulated by using conven-

tional computers in a different way, became the new paradigm for

research in cognitive neuroscience. In these networks, idealized neurons,

i.e. computing devices, are supposed to be in a certain state of activity

(represented by a number), and are connected to other neurons with

connections of varying strength (also represented by a number). Hence

the name connectionism for the entire approach to the architecture of

ideal systems neurons. Because in these systems neurons work in parallel,

and because the work is done in different locations (rather than in only a

single CPU), the term parallel distributed processing (PDP) has been used

to characterize these models. As David Rumelhart, a major proponent of

the connectionist approach, has put it:

The basic strategy of the connectionist approach is to take as its fundamental

processing unit something close to an abstract neuron. We imagine that compu-

tation is carried out through simple interactions among such processing units.

Essentially the idea is that these processing elements communicate by sending

numbers along the lines that connect the processing elements. . . The operations

in our models then can best be characterized as `neurally inspired.' . . . all the

knowledge is in the connections. From conventional programmable computers we

are used to thinking of knowledge as being stored in the state of certain units in

the system. . . This is a profound difference between our approach and other

more conventional approaches, for it means that almost all knowledge is implicit

in the structure of the device that carries out the task rather than explicit in the

states of the units themselves.

(Rumelhart, 1989; pp. 135±6)

At present, neural network models and simulations of cognitive func-

tions are commonplace in psychology and neuroscience. The models vary
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a great deal in biological plausibility, complexity, speci®city, and expla-

natory power. Further, they have been used in order to capture features

of such different functions as language, attention, memory, and cognitive

development. In the next sections, examples from psychopathology will

be discussed.

From psychopathology to network dysfunction

There is hardly a psychopathological symptom or disorder for which no

network models exist. This is surprising, since the ®eld is only about ten

years old. In 1987, the Yale psychiatrist Ralph Hoffman published the

®rst major paper on neural network models of psychopathology. While

he has re®ned his models in subsequent papers (Hoffman et al., 1995), his

early work was a landmark in that it laid out how simulations and

psychopathology could be linked.

Hoffman trained recurrent networks to store input patterns. In these

networks every neuron is connected to every other neuron except itself.

These connections make the network behave such that upon the presen-

tation of an input it will settle into a certain state, which can be inter-

preted as the stored memory trace. Such recurrent networks have a

certain capacity.

The way in which recurrent networks perform can be characterized by

saying that upon the presentation of a given input, the pattern of activa-

tion of the neurons in the network converges to a speci®c output state, a

stable activation pattern of the neurons in the network called attractors.

If the sequence of states upon activation by an input is closely scrutinized,

one observes that the pattern of activation changes such that it becomes

increasingly like the stable state that most closely resembles the input

pattern. The network converges to the attractor that is closest to the

input pattern. All possible states of the network can be metaphorically

likened to a landscape of energy, where the attractors form valleys

between mountains of non-stable network states.

According to the simulations performed by Hoffman, information

overload of the networks leads to network behaviour that can be likened

to hallucinations in schizophrenic patients, in that the spontaneous acti-

vation of some stored patterns occurs. Hoffman describes how if real

biological neural networks are diminished in size and for storage capacity

by some pathological process, they can no longer handle the experiences

of the person. Eventually, information overload will lead to the deforma-

tion of the landscape, described by Hoffman as follows:
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Memory overload . . . causes distortions of energy contours of the system so that

gestalts no longer have a one-to-one correspondence with distinct, well delineated
energy minima.

(Hoffman, 1987; p. 180)

In addition to the deformation of the structure of the network, new

attractors are formed, which Hoffman called `parasitic'. Such parasitic

attractors are produced by the amalgamation of many normal attractors,

whereby particularly stable attractors, i.e. `deep valleys' in the energy

landscape, are produced. These deep valleys are therefore the end state

of the system starting out from a large number of positions. In this way,

these parasitic attractors are reached with almost any input to the system.

According to Hoffman, these attractors are the basis of voices and other

major symptoms of schizophrenia:

These parasitic states are the information processing equivalents of `black holes in

space' and can markedly disrupt the integrity of neural network functioning by
inducing `alien forces' that distort and control the ¯ow of mentation. If a similar
reorganization of the schizophrenic's memory capabilities has taken place, it

would not be at all surprising for him to report one or more schneiderian symp-
toms, namely, that he no longer has control of his thoughts, or that his mind is
possessed by alien forces.

(Hoffman, 1987; p. 180)

Hoffman and coworkers (1995) have proposed other, more detailed

models of schizophrenic hallucinations that encompass the speci®c

effects of neuronal loss in the frontal lobes and the effects of dopamine.

Nonetheless, the model just discussed led to the development of an

entire new ®eld, which may be called neurocomputational psycho-

pathology.

From network dysfunction to neuropathology

In this section, the ideas of Michael Hasselmo, from Harvard University,

on network function are taken as an example of how detailed models of

computer-simulated neural networks can be used to understand patterns

of neuropathology.

Hasselmo starts with the fact that in neural network simulations the

learning phases have often to be distinguished from the retrieval phase.

During learning, the spreading of activation through the network must be

prevented to some degree, otherwise synaptic activation and change

would spread like an avalanche through the entire network. Hasselmo

was able to show that whenever overlapping patterns have to be learned ±
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which is what happens in biological systems ± such runaway synaptic

modi®cation, as he called the phenomenon, occurs. The end result of

the process is that every input pattern activates all output neurons.

This is equivalent to a network that has not learned anything, since

learning always implies discrimination. A network that leads to the acti-

vation of all output neurons in response to an input is computationally

useless.

In most computer-simulated network models, runaway synaptic mod-

i®cation is prevented by inhibiting the spread of activation within the

network during learning, since such spread interferes with learning, as

we have just seen. Only during the process of retrieval (i.e. whenever the

network carries out what it has previously learned) does the spread of

activation through it become essential. This change in the spread of

activation within computer simulations of networks can be implied in

various ways by mathematical procedures. The question, however, is

how runaway synaptic modi®cation is prevented in biological systems

such as the human brain.

To repeat the problem, during learning, the network must be sensitive

to activation from outside, but the spread of activation via internal con-

nections must also be suppressed, whereas during recall, activation must

be able to spread through the network via internal connections. Within

this framework, recent neurobiological ®ndings on the role of acetyl-

choline in the dynamics of cortical activation are of special importance.

For a long time, acetylcholine has been related to processes of learning

and memory. The substance is produced by a small number of neurons

that are clustered together in the nucleus basalis Meynert. From there,

acetylcholine is spread out through almost the entire brain via tiny ®bres

that proceed to the cortex.

Experiments in slices of the entorhinal cortex have demonstrated that

acetylcholine selectively suppresses excitatory synaptic connections

between neurons of the same cortical region. In contrast, signals from

other cortical areas can pass through synapses unimpaired. Thus, acetyl-

choline has the very function needed in neuronal networks to prevent

runaway synaptic modi®cation such that learning of new and overlapping

patterns can occur. In order to do its work, acetylcholine must be liber-

ated during learning but not during retrieval. This in turn presupposes

the existence of a fast-acting mechanism that evaluates and detects the

novelty of an incoming stimulus pattern and sends the result of this

evaluation to the nucleus basalis Meynert. The existence of such a

mechanism in the brain is conceivable and has in fact been assumed for
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other reasons as well, even though there is no detailed view on it so far

(Hasselmo, 1994; p. 22).

For many years it has been known that in Alzheimer's disease the

amount of acetylcholine in the brain is decreased. However, before

Hasselmo's model it was not clear how the lack of this substance has an

effect on learning.Within the framework of Hasselmo's model, however, a

prediction can be made about what happens if acetylcholine is lacking in

the brain. The model explains why in Alzheimer's disease the learning of

new information is affected severely at an early stage. Furthermore, it is

known that overly active neurons using the transmitter glutamate may be

damaged by their own excessive activity. This phenomenon is referred to

as excitotoxicity and is well described for glutamatergic neurons. For

years, such excitotoxicity has been implicated in the neuronal loss

observed in Alzheimer's disease. The functional role of acetylcholine in

the prevention of runaway synaptic modi®cation explains how the lack of

the substances can lead to excitotoxicity and neuronal loss.

If acetylcholine is decreased or lacking, the number of associations that

form within neural networks increases. This causes the increased activa-

tion of neurons within the network upon the presence of any input. In

short, acetylcholine puts the brakes on cortical excitation during encod-

ing, and if this is malfunctioning, cortical excitation increases. Hence, any

new learning causes changes in desired as well as in undesired synaptic

connections, which not only interferes with learning, but also leads to the

increased activation of glutamatergic neurons. As just mentioned, this

activity can be toxic for the neurons themselves.

Hasselmo's model predicts the spatial pattern of neuropathology

observed in the brains of deceased patients with Alzheimer's disease.

Such pathology should occur in those brain areas that are highly

involved in associative learning, such as the hippocampus. The typical

pathological changes of Alzheimer's disease, most importantly the

Alzheimer tangles, become visible earliest and most frequently in the

hippocampus. Even within the hippocampus, the Alzheimer-related

pathology occurs in regions that are known to have the most easily

modi®able synaptic connections (notably those in which the process

of LTP was ®rst discovered). Hasselmo (1994; see also Chapter 12)

discusses a number of further neuropathological changes that can be

explained easily within his model, which, like other neural network

models, can put together a number of otherwise inexplicable or unre-

lated characteristics of the disorder.
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From integration to coincidence detection?

Most present-day network theories assume that information is coded in

the frequency of the action potential and that the neuron is a device that

integrates incoming signals, thereby extracting the information. Since the

speed of synaptic transmission is limited to at most 1 kHz, and since it

takes a few transmissions to detect the mean frequency of the signal ±

which is the variable that supposedly carries the information ± there is a

principal speed limit for any neural information processing of this type.

In other words, neural processes cannot work, let alone be accurate, at

the sub-millisecond level. However, this is exactly what has been observed

in some instances.

A prominent case in point is the auditory system of the barn owl. When

¯ying in the dark, the owl is able to detect the horizontal angle of an

incoming acoustic signal by measuring the difference in the time of arrival

of the signal at the two ears. Given the speed of sound in air (300m/s) and

the distance between the ears (6 cm), this difference is 0.2ms. It is

detected by a cleverly arranged set of neurons that pass the impulses

from the left and the right ear towards one another and detect where

they arrive. A difference in time is thereby translated into a point on a

spatial map. This example shows that neurons within this system are

capable of detecting the coincidence of two incoming spikes and thereby

process information much more quickly and ef®ciently than by using a

frequency code.

As this example shows that neurons can, in principle, be more ef®cient

than the standard model assumes, the question is whether such ef®ciency

is actually used in the most sophisticated of all neuronal systems, i.e. the

human cortex. One argument in favour of such a view draws upon evolu-

tionary considerations. It stipulates that, given neurons have been shown

to be capable of using highly ef®cient time codes, it does not make sense

to assume that they do so only in special cases, such as in the auditory

system of the owl and some other species. In brief, `why waste all the

hardware with such inef®cient coding?', as John Hop®eld put it on the

occasion of a conference devoted to this topic.1 While this argument is

appealing, it has been questioned by Shadlen and Newsome (1994, 1995).

A second argument in favour of precise time coding within the cortex, put

forward by Softky and Koch (1993), relies upon a careful analysis of the

temporal sequence of spikes in cortical neurons, and runs as follows.

Cortical neurons integrate hundreds, if not thousands, of highly variable

signals, and their ®ring rate therefore represents the mean of these
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signals. As the ¯uctuation of the means of a ¯uctuating variable is a

function of the number of events taken to calculate the mean, it can be

demonstrated that the statistical properties of such means are different

from what is observed, in that statistically these means should be quite

uniform (because of the large sample size) but in fact they are not (as

highly ¯uctuating activity is the rule in cortical neurons). The argument

concludes that the signal integration model of neuronal coding does not

explain the observed ®ring patterns of cortical neurons. Hence, more

precise time coding may be at work (Softky, 1995).

The debate as to whether cortical neurons are integrators or coinci-

dence detectors is far from resolved (Koch, 1997; Thomson, 1997). It is

advanced enough, however, to draw some conclusions for neural network

models of psychological and psychopathological phenomena. First, if

neurons use some form of time code, the principal assumptions of most

present-day network models are wrong. This does not imply, however,

that the discoveries made by the models must necessarily be dismissed. As

James McClelland once put it on the occasion of a conference on neural

networks and pathology (Reggia, Ruppin and Berndt, 1997),2 `all models

may be wrong, but some of the principles I discovered may be right'.

After all, we know that present-day network models are simpli®cations of

biological neurons, and in fact have to be, like all good models. As far as

these models capture some essential feature of reality, provide parsimo-

nious accounts of otherwise unrelated or incomprehensible sets of data,

and generate new hypotheses that can be put to empirical tests, they are

useful tools for cognitive neuroscience research, including the ®eld of

psychopathology.

Kohonen-networks (self-organizing feature maps) may be a case in

point. They rely on the neuron as integrator assumption and allow the

study of map formation on the basis of input regularities. Since we know

that the cortex is a map-formation device, and we know that temporal

information can be used to drive map reorganization, we may use

Kohonen-networks or variants of them to discover principles governing

the organization and reorganization of cortical representations, as long

as we are aware of the model's limitations.

Neural networks are no longer just a curiosity in the ®eld of psycho-

pathology. These neurocomputational accounts of psychobiological phe-

nomena represent the sorely needed bridge between psychopathological

and neurobiological models of disorders and no doubt have already pro-

vided important theoretical insights. In conjunction with clinical
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attentiveness and the available neurobiological tools, neural networks

will be part of the psychiatry of the near future.

Summary

A little more than 100 years ago, the neuron was found to be the func-

tional unit of the central nervous system. Shortly thereafter, a number of

people interested in physiology, including Freud and Exner, conceived of

the ¯ow of energy through `networks' of neurons, and speculative neu-

rophysiological ideas were used to explain psychopathological phenom-

ena. About 50 years later, McCullough and Pitts were the ®rst to posit

the neuron as a device that carries and processes information, rather than

energy, which set the stage for preliminary models and ideas regarding

psychopathological applications. In fact, McCullough and Pitts them-

selves explicitly placed the conundrums of psychopathology, such as hal-

lucinations and delusions, within the scope of neural network research.

The ®rst surge of interest in neural networks during the 1950s and 1960s

had little, if any, impact on psychopathology, a fact possibly caused by

the states of both ®elds during this period. After the renaissance of neural

network research, beginning in the 1980s, and after the classic paper by

Ralph Hoffman in 1987, an increasing number of network models of

forms for psychopathology have been proposed. Psychopathology is

not a late `add on' to neural network research, nor is network research

just a curiosity in psychopathology. Instead, neurocomputational models

represent the sorely needed bridge between neuropathology and psycho-

pathology.

Endnotes

1 The Role and Control of Random Events in Biological Systems: workshop
held in Sigtuna, Sweden, September 4±9, 1995.

2 Neural Modelling of Cognitive and Brain Disorders: workshop held at the
University of Maryland, USA, June 8±10, 1995.
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3

Neural network models in psychiatric
diagnosis and symptom recognition
ERIC Y. H. CHEN and
GERMAN E. BERRIOS

Matters historical

Psychiatric diagnosis has been conceptualized as either a `one-off' (`recog-

nition') type of cognitive act or as a `recursive (constructional) process'.

History teaches us that scientists choose their models not on the basis of

some `crucial empirical test' (such tests do not exist at this level of abstrac-

tion) but on the more humdrum (but rarely owned up to) dictate of fash-

ion. For example, during the eighteenth century, when the so-called

`ontological' notions of disease (as it was then based on the more botanico

tradition) (Berg, 1956; LoÂ pez-PinÄ ero, 1983), reigned supreme, there was

little problem in accepting the view that the diagnosis (recognition) of

disease happened at one fell (cognitive) swoop. This was because the

Platonic (ontological) assumption lurking behind such a notion amply

justi®ed the belief that disease was `fully bounded and out there' and,

furthermore, that inklings of its existence had been planted at birth (like

everything else) in the mind of the diagnostician. The a priori privileging of

some features of a disease (the successful strategy that LinneÂ had already

tried on plants), and the view that such features actually `signi®ed' the

disease, was just one version of the ontological approach. Indeed, a cen-

tury earlier, a similar view had governed the study of linguistics (Aarsleff,

1982). That it was fashion and Zeitgeist that sustained the popularity of

the ontological view is illustrated by the fact that a rival approach put

forward at the time by Adanson was given short shrift (Stevens, 1984).

Adanson's claim that all features have the same weight ab initio, and that

a priori privileging is unwarranted, only came to fruition as `numerical

taxonomy' more than 150 years later (Vernon 1988)!

During the nineteenth century, new notions of disease quietly

appeared, and the most popular (in terms of the physiology of the period)

was one that postulated a continuity between the `normal and the
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pathological' (Canguilhem, 1975). The need to identify thresholds

encouraged physicians to develop descriptive routines and biological

markers, which since those days have been assumed to have enough

discriminant power to determine the cut-off where normality `ends' and

disease `begins' (Faber, 1923; Riese, 1953). The arrival during the twen-

tieth century of probabilistic concepts (Gigerenzer et al., 1989) soon

showed that such cut-offs were relative and shifting notions and that

new strategies were required for the de®nition and recognition of disease.

For example, the notion of `caseness' is a late product of such conceptual

change (Ragin and Becker, 1992). The adoption ®rst of factor analysis

and then of discriminant and cluster analysis seemed to offer an oppor-

tunity to de®ne boundaries as regions of rarity. Failure to identify such

regions between the various psychoses led, in some cases, to premature

pessimism (Kendell, 1975). Most researchers, however, have soldiered on

(Mezzich and Solomon, 1980; GuimoÂ n, Mezzich and Berrios, 1988). In

this regard, resorting to neural networks is but the latest strategy (as were

Bayesian routines in the 1960s) (e.g. Hall, 1967) to map the chiaroscuro

between normality and disease.

During the 1980s, nosological fashion encouraged a return to the old

Weberian idea of `ideal types' (e.g. Schwartz and Wiggins, 1986; 1987),

and led to calls for a `scienti®c psychiatric nosology' (Kendler, 1990) and

interesting conceptual developments (Sadler, Wiggins and Schwartz,

1994). Although the future remains obscure, it can be predicted that the

relentless progress of genetics will cause once again a major shift in noso-

logical theory, and that something like a new ontological model of disease

will develop, this time divested of its old metaphysical elements (strong at

the time it was abandoned by Bichat ± see Haigh, 1984) but dependent

upon complex mathematical models (e.g. Neale and Cardon, 1992).

It is against this historical context that the current use of neural net-

works in psychiatry must be understood. It is, indeed, tempting to feel

that, by considering medical diagnosis as a typical pattern recognition

task (e.g. Ripley, 1996; p. 1), we have at long last come upon the right

solution. This is not necessarily so, although as always occurs with new

techniques, neural networks will end up modifying our thinking about

psychiatric disease, and about diagnostic clinical algorithms. This means

that, in the current climate, there may be no alternative to characterizing

medical diagnosis as a complex, multidimensional, and recursive process.

When trying to make sense of the mental symptoms and signs pre-

sented by a patient, the psychiatrist can be said to have embarked on

`pattern recognition' and `decision-making' routines. Surprisingly, few of

Psychiatric diagnosis and symptom recognition 35



these processes are well de®ned and understood, particularly from the

point of view of the new cognitive psychology. (By this is meant what, for

example, Newell (1990) and Baars (1986) have described in their work.)

One reason may be the lack of models comprehensive enough to handle

the complexity of the diagnostic process. Another, that there is still a

tendency to resort to `operational de®nitions' (Bridgman, 1927) without

realizing that this conceptual trick is based on obsolete assumptions

about science and the mind. It is thus the case that the new models should

not only have face validity, and be able to generate empirical questions,

but also show conceptual reasonableness.

Using the brain itself, rather than computers, to create analogues for

its functioning and that of the `mind', is a clever idea, and one that has

proven surprisingly fruitful. As oft-repeated in this book, neural net-

works (neurocomputational models) are conceived of as sets of proces-

sing units so richly connected that their reciprocal interactions may

generate complex patterns of activity (Rumelhart and McClelland,

1986). This property (and others to be mentioned below) make such

models attractive with regard to modelling the processes of disease diag-

nosis and symptom recognition, and also to creating models to explain

some of the symptoms and diseases themselves. Because there has been,

in general, far more work on disease diagnosis, this chapter emphasizes

the new problem of symptom recognition (on which, after all, disease

diagnosis is based). Some of the conceptual issues besetting current

views on the diagnosis or `recognition' of mental symptoms are identi®ed

®rst, and then some solutions are offered.

Conceptual issues

Psychiatric diagnosis and symptom recognition

The term `psychiatric diagnosis' is ambiguous, and its meaning varies

according to the theoretical perspective of its practitioner; for example,

it means something different to a psychoanalyst and to a biological psy-

chiatrist. A good understanding of psychiatric diagnosis, therefore, will

need to take into account its descriptive, semantic and therapeutic dimen-

sions. If so, it could be concluded that computers (and those who have

forgotten what psychiatric diagnosis is about) may not be able to imple-

ment it, because psychiatric diagnosis involves more than cognition. This

wide view of psychiatric diagnosis, popular in the good psychodynamic

days of American psychiatry ± before, that is, DSM-III (APA, 1980) ±
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has suddenly become an embarrassment, particularly to those who want

to conceive it as a cognitive act.

But the disambiguation of psychiatric diagnosis also depends upon

sound conceptualizing. Like all medical acts, it includes, as hinted

above, attitudinal components such as cognition, emotion, and volition,

and is embedded in a `pragmatics' context. When complete, psychiatric

diagnosis is also a `speech act', i.e. the mark of successful communication,

the beginning of a relationship between two human beings around the

promise of `help without harm'. It would seem, therefore, that psychiatric

diagnosis, as understood by neural network modellists, is a far cry from

this. The issue is whether it is possible to abstract the intellectual com-

ponent of psychiatric diagnosis from its Gestaltic context and still claim

that one is dealing with it.

This chapter sticks to its brief and assumes that psychiatric diagnosis

(also) involves the cognitive (intellectual) identi®cation of certain clinical

features as presented by a given patient in a given context. Such identi-

®cation becomes a psychiatric diagnosis when it is carried out according

to certain public guidelines. Such guidelines include techniques to ®t

exemplars into classes, a taxonomic theory, and professional warrants

to legitimize the cognitive act (i.e. both in folk psychology terms and in

law, a psychiatric diagnosis issued by a layman will be considered as `less

valid' than one issued by a mental health professional). In this context,

`class' refers to `disease', a concept whose usage, extension, intension,

epistemological basis, and general meaning vary a great deal in medicine.

For example, whilst diseases with known genetics are regaining what

could be called an ontological basis, those that still depend upon descrip-

tions alone (such as some in psychiatry) are dependent upon `criteria',

mental set, and cognition. Auditing the conceptual ef®ciency of these

types of disease shows marked differences. In the case of diseases de®ned

in terms of genes or known histopathology, the measurement of sensitiv-

ity and speci®city can be set against `gold standards' and `prototypes'. In

the absence of the latter, psychiatric diagnosis becomes a bootstrapping

operation primarily de®ned in terms of `clusters' of features (Katz, Cole

and Barton, 1965), and in which the clustering rules depend both on

`nature' and social authority. The lack of a biological invariant tends

to cause amongst psychiatrists yearnings for `reliability'. This and no

other is the explanation for recent attempts to operationalize diagnostic

criteria (e.g. DSM-IV, APA, 1994). Because the `operations' in terms of

which the clinical entities in question are `de®ned' are mostly intuitive

and blurred cognitive acts (very different from the measurement and
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experimental operations that Bridgman had intended), this approach

tends to trivialize psychiatric diagnosis and neglect its connection with

the republic of objects (i.e. its validity). It is assumed in this chapter that

both reliability and validity are equally important.

The diagnosis of mental symptoms (symptom recognition) has, on the

other hand, received less attention in the literature. For some reason, it

has been assumed that psychiatric diagnosis is more problematic and that

mental symptoms are easy to recognize (Berrios and Chen, 1993; see

below).

Parallel processing and algorithmic approaches

Conventional arti®cial intelligence (AI) models for decision making

involve the use of algorithmic trees in which `complex' decisions (e.g.

diagnostic processes) are broken down into component branches and

nodes (e.g. identi®cation of individual symptoms) (Berrios and Chen,

1993). In such trees, individual loci represent the status of the decisional

process at a moment in time, as it progresses in discrete steps. One well-

known problem with such algorithms is deciding on whether there is a

`natural' ordinal sequence for decisions or whether an `arbitrary' hier-

archy should be imposed. In a parallel processing system, on the other

hand, this problem is obviated because each and every individual decision

contributes towards the overall decisional process, i.e. all decisions are

taken into account at each step of the process. (Crucial to this process is a

fool-proof mechanism to save information, namely that no individual

decision is allowed to override the processing of other decisions.)

Equally important is the fact that `horizontal' interactions between dif-

ferent component decisions are also possible. The ensuing system, there-

fore, imposes very few a priori constraints. Likewise, components are

related `structurally', i.e. in terms of reciprocal connections whose

strength is modi®able in response to empirical data.

Symptom recognition in psychiatry

Mental symptoms can be de®ned as verbal and non-verbal expressions of

aberrant subjective experiences, and play a central role in all of®cial

systems for psychiatric diagnosis. Their elicitation and recognition, how-

ever, are limited in a number of ways, and research into this ®eld has just

started. Mental symptoms are usually `reported' by the patient in a

speech act whose medium is assumed to be ordinary (folk) language.
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Depending upon fashion and taste, the lexicons built into the latter have

been considered as `rich and creative' (and hence up to the task of

describing complex emotional and subjective states) or as `rudimentary,

rigid, vicarious, and second-hand' (and hence as inappropriate for such

descriptions).

Current diagnostic practice focuses on the mapping of preconceived

units of behaviour by `symptoms', and these by `diagnosis'. Some systems

have formalized this action by the generation of certain operationalized

criteria. If this approach was to be followed rigidly, then models for

diagnosis would be well represented by decision charts, ¯ow diagrams

and algorithms rather than by computational models. The shortcomings

of rigid, algorithmic approaches, however, have already been indicated

(Berrios and Chen, 1993). A crucial problem here is that the serial nature

of decision charts impedes the revision of early decisions in the light of

late ones (see below).

Neurocomputational models have been applied to many clinical situa-

tions (Cho and Reggia, 1993) including psychiatry (Davis et al., 1993;

Modai et al., 1993). In general, neural networks have been used as pat-

tern-recognition devices susceptible to training by means of empirical

diagnostic data (i.e. to map symptoms and diagnoses). Given a set of

adequately operationalized symptoms, these programmes can be imple-

mented by means of a variety of neural network architectures.

Approaches that make use simpliciter of the pattern-recognition capacity

of neural networks will not be dealt with further in this chapter.

Some problems at the descriptive level

As always, things are more complicated at the stage of data collecting.

Patients rarely `volunteer' full reports of their mental symptoms: most of

the time, symptom description and recognition result from an overt or

covert negotiation between patient and interviewer. Hence, it is disingen-

uous to see it as consisting of a simple and uncontaminated transfer of

`phenomenological' information. Mental symptoms result from `descrip-

tive contracts' whereby `basic experiences' (`primordial soups') are for-

matted in terms of personal, cultural and clinical codes (MarkovaÂ and

Berrios, 1995a), the latter being provided by the technical language of

psychopathology. (For discussion of the formation and history of the

such codes, see Berrios, 1996.)

It is conventionally claimed that mental symptoms are `private to the

patients experiencing them', and hence `unveri®able' in the sense of not
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being susceptible to public measurement by instruments calibrated

against objects in the physical world. Whereas most psychiatrists will

agree with the general drift of this claim, it is important to ask what

`private' means in this context, what aspects or components of the

mental symptom are to be considered `private' in this sense, and what

empirical and scienti®c implications are to be drawn from this claim.

The view that, as compared with our knowledge of public things at

large (where we seem to share in a common epistemological enterprise),

our knowledge of our own mind and its contents is characterized by a

special authority, has a long pedigree, and goes beyond Descartes to

Plotinus (Plotinus, 1966; pp. 1, 4, 10) and his de®nition of consciousness

as a private sanctuary. This is not the place to discuss the pros and cons

of this view (Saunders and Henze, 1967; Jones, 1971; Bailey, 1979).

Suf®ce it to say that the issue here is not so much whether such private

access should make one doubt the existence of mental states, or their

susceptibility to scienti®c treatment. The issue is what the meaning and

force of `special authority' are. Does it mean `infallibility' (i.e. that one

cannot be wrong about describing one's mental states) or `incorrigibil-

ity' (i.e. that one can be wrong but cannot be corrected by others) or

simply `self-intimation' (i.e. not only that they are directly and trans-

parently available to us but that our descriptions are neither infallible

nor incorrigible)?

But if mental symptoms are constructs, i.e. their `®nal' frame, form and

content are derived from internal and external material, then is it correct

to say that mental symptoms are only private affairs? The question we

feel should rather be which element of the mental symptom is private and

which external? Also, in what way does this affect the availability of the

mental symptom to scienti®c scrutiny? The answer to the ®rst question is

not simple, for it is unlikely that mental symptoms have the same struc-

ture (for the question of symptom heterogeneity, see MarkovaÂ and

Berrios, 1995b). Thus, whereas in the case of `hallucinations' it might

be possible to say that there is a sizeable private component (namely

the image) and that the formatting elements are not crucially important,

in the case of `formal thought disorder' or `manipulation', meaning

would seem to depend more upon the way in which it is constructed

than upon the private or subjective contribution of the patient. There

is no space here to develop this issue in any depth. Suf®ce it to say that

current philosophy of mind is, in general, far more accepting of the fact

that mental states exist (Rosenthal, 1991), that private access means self-

intimation rather than infallibility, and that the epistemological
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validation of such states revolves around both internal and external ele-

ments (Burge, 1979; Fumerton, 1988; Alston, 1989).

The view that mental symptoms result from conceptual and linguistic

sources quali®es the simplistic view that they are but morsels of informa-

tion passed on from a source to a receiver, where the source is the psy-

chopathological experience, and the receiver the cognitive system of the

clinician. But it is also true that, at another level, mental symptoms

contain information that has the power to increase or decrease the prob-

ability of a case falling into a given diagnostic category. One issue is,

therefore, what aspects of mental symptoms can be modelled by neural

networks? The ®rst step when answering this question is to consider the

factors that modulate the exchange of information between patient and

clinician.

Multidimensional representation of symptoms

Current diagnostic systems tend to regard mental symptoms as dichot-

omous variables (that is, as either present or absent). The limitations of

this approach have become obvious in relation to recent research (e.g. the

neuroimaging of mental symptoms). It is thus increasingly recognized

that multidimensional models are needed to capture more information

about the symptoms, particularly because such dimensions may contain

information that is biologically relevant. In this regard, it could be said

that neural networks are inherently appropriate to model multidimen-

sional information. The non-hierarchical representation of such dimen-

sions should also facilitate the development of relatively neutral accounts,

i.e. avoid assuming that certain features have supremacy over others.

Context dependence of pattern-recognition modules

In clinical situations, symptoms are never considered in isolation but as

part of a presentation context. Given the same set of external data about

a particular symptom, different conclusions may result, depending on

preceding and/or ongoing contextual information. Thus, during a diag-

nostic run, clinical information tends to emerge sequentially, and hence

the outcome of an earlier evaluation of symptoms (indeed, the order in

which they are picked up) may become part of the context against which

later symptom evaluations will take place (Berrios and Chen, 1993).
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Modelling issues

Basic modelling of diagnosis

The use of neural network models rede®nes the diagnostic process as

essentially a pattern-recognition task (Ripley, 1996), and fundamentally

departs from the rigid algorithmic approach. What is really taken advan-

tage of in this case is the neural network capacity for associative retrieval

of a best-®t pattern. Because a diagnostic category, for example, is con-

sidered as a permutation of symptoms, different `patterns' will be learned

of combinations of symptoms encountered in real life. Information on

symptom co-occurrence is then encoded as connection weights within the

network. In this way, a number of different symptom patterns can be

represented in the same set of units, and encoded in the same set of

connections.

Figure 3.1 shows an example of an autoassociative network in which

each processing unit is connected to all other units in the network

through weighted connections. The matrix containing information on a

combination of weights can thus be said to hold information about a co-

occurrence pattern, i.e. on which set of units will be activated together.

Weights are acquired during exposure to training patterns through learn-

ing algorithms such as the Hebb rule.
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Fig. 3.1 Structure of an autoassociative network. Processing units receive input
from junctions to their left. Their outputs are returned as input to other units
through weighted connections in the next processing cycle. The connection weight
between a unit and itself is set to zero.
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where Wij is the element in the weight matrix connecting unit i and unit j;

N is the number of units in the network, � refers to patterns to be stored

in the network (numbered from 1 to p), and � is the activity of the unit i

and j in pattern � (Amit, 1989a).

When the network encounters a new pattern, it takes on the activation

values embedded in the pattern as its initial activation state. Units within

the network then interact with one another in subsequent processing

cycles. Figure 3.2 depicts a prototypical processing unit. Input to the

unit is derived from the activation patterns in other units in the network

at the end of the preceding processing cycle (upstream units). The activa-

tion of each unit is multiplied by the respective connection weight. The

weighted activations are then summated by the current processing unit to

yield an input that is instituted into an activation function in order to

compute the current activation level of the processing unit. At the end of

this processing cycle, the activation is communicated `downstream' to the

next cycle of processing (Fig. 3.3). Processing cycles are repeated until the

state of the network becomes stable, i.e. further cycling results in the same

pattern of activity. When this occurs the network is said to have settled

into an attractor (Fig. 3.4). The ®nal stable pattern re¯ects a best-®t

solution between the presented pattern (external input) and the con-

straints written into the internal weights of the network. When this pat-

tern corresponds to a previously speci®ed pattern (presented during the

learning stage), the network is considered to have mapped a current set of

symptoms onto a known diagnostic category (Amit, 1989c).
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Fig. 3.2 A neurocomputation unit. Jij, weight of connection between units i and j;
hi, input; 	, an activation function; Ti, threshold; �, activation level (usually
binary in Hop®eld-type autoassociative networks).



44 Eric Y.H. Chen and German E. Berrios

Fig. 3.3 An autoassociative attractor network. hi�t� 1�, input at cycle t� 1;
��t� 1�, output at cycle t� 1; 	, an activation function; Ti, threshold; Jij, weight
of connection between units i and j; N, number of units.

Fig. 3.4 Evolution of states of a network. Dynamic behaviour of a network could
be visualized as in this example. A unit at any given time could be active or
inactive. Which state it is in is determined by its activation level, computed as
described earlier. This network has not yet settled into an attractor. (When this
happens, there is no change in pattern of activation with further time-steps.)



The use in this manner of an autoassociative network corresponds to a

`prototype' view of diagnostic classi®cation (Hampton, 1993). According

to this view, individual instances of a diagnostic category (combinations

of features) share a `family resemblance'. (In the sense discussed by

Wittgenstein (1958) that concept-words do not denote sharply circum-

scribed concepts, but are meant only to mark resemblance between the

things labelled and the concept.) A newly encountered instance is then

classi®ed according to the extent to which it resembles pre-existing

instances in that category. Individual features all contribute in a parallel

fashion towards the recognition process, i.e. a large number of features

are taken into consideration in every step. (It is not implied here that the

features are weighted equally; indeed, it is permissible to set weights to

zero.) Or to put it another way, no feature on its own is allowed exclu-

sively to override the processing of other features, as would be the case

when category membership is de®ned by the presence or absence of a

small number of features. The latter corresponds to what has been known

for a long time as the `privileged features' method (see above) or as the

`de®ning features' type of classi®cation (Howard, 1987). It goes without

saying that this method is at the basis of the operationalized approaches

to diagnosis.

The use of an autoassociative network to recognize diagnostic pat-

terns is a straightforward application of neural networks. It is, however,

dependent on the assumption that the arrays of clinical features are

available as a ready set prior to the onset of processing. In other

words, it is meant to depict a unidirectional, `bottom-up' mapping

from symptom to diagnosis. In view of what has been said above, it

is clear that this idealization of the diagnostic process is incorrect. For

one thing, it is not the case that in actual clinical practice issues pertain-

ing to the diagnosis of the disease are withheld until all information

pertaining to symptoms becomes available. Instead, diagnostic hypoth-

eses constitute from the start the conceptual background against which

symptom recognition takes place (Berrios and Chen, 1993). A more

realistic model will have to take into account the effect of ongoing

higher level processing (diagnostic hypothesis) as well as concurrent

processing at a lower level (e.g. symptom processing) (Fig. 3.5).

Modelling issues pertaining to `context effect'

The in¯uence of top-down processing on the dynamics of a network's

pattern recognition can be represented as information ¯owing from
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higher to lower level units. Through this ¯ow, the ongoing pattern of

activity in the higher level network (diagnosis) could be made to in¯uence

processing at a lower level, namely whether certain ambiguous features in

the set are interpreted as meaning that a particular symptom is present or

absent. For the sake of simplicity, this in¯uence has been called `priming'

(Fig. 3.5). In actual computational terms, priming is implemented by the

selective subthreshold activation of units corresponding to the primed

pattern (Berrios and Chen, 1993).

To demonstrate the effect of such in¯uence on the dynamics of the

network, it is helpful to introduce the notion of `energy landscape', which

describes the stability of different possible activity patterns in a given

network (Amit, 1989b). In a network of n units, any state of activity of

the network can be expressed as a point in a n-dimensional state space.

The change of activity pattern in the network over a period of time could

be traced as a trajectory in the n-dimensional state space. Each point in

the state space is associated with an index analogous to the notion of

potential energy in physical systems. `Energy' is a measure of how well

internal and external constraints are satis®ed in that particular pattern,

given the set of connection weights, i.e. how well the co-occurrence pat-

terns in the external input match the patterns stored in the network's

memory. Points of high degrees of correspondence are assigned low

energy levels, and vice versa. The dynamic behaviour of a network

could be envisaged as a tendency to move from states of high energy

(peaks) to states of lower energy (valleys) (Fig. 3.6).
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Fig. 3.5 Relationship between symptom and diagnosis processing. In bottom-up
processing, symptom processing (S1 etc.) precedes symptom cluster (diagnosis)
processing. In top-down processing, symptom cluster processing could affect
symptom processing.



When a network is trained to recognize certain patterns, states of the

network representing the target activity patterns develop into energy

`minima' (bottom of valleys in the energy landscape) so that patterns

in the surrounding regions in the state space are likely to evolve accord-

ing to a trajectory leading into the target pattern (leading to `retrieval'

of the pattern). The entire region in which any starting network state

will converge to the same target pattern is called the `basin of attrac-

tion' for the target pattern. In a given network, the energy landscape

consists of a number of memory patterns and their basins of attraction.

Together, they describe the path that the network behaviour is likely to

follow given a particular initial state (which corresponds to an external

input).

It can be demonstrated that priming systematically distorts the energy

landscape of a network, effectively enlarging the basin of attraction of the

primed pattern at the expense of other patterns. It is possible that given

the same set of external features, outcome might depend on whether

priming takes place (Fig. 3.6). In this sense, the context (priming from

a higher level) interacts with the ongoing input to determine which
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Fig. 3.6 Change in `energy landscape' with priming. This schematic diagram
illustrates the concept of energy landscape for a trained network. The vertical
axis represents the energy function. The horizontal plane represents a projection
of the state space onto the two-dimensional plane. In the unprimed state there are
three attractors, two with larger basins of attraction, one with a smaller basin of
attraction. When one of the attractors is primed, its basin of attraction increases.
A set of points initially lying in between the two larger basins of attractions
(therefore neutral) now falls within the basin of the primed attractor.



patterns are retrieved. This model highlights the dependence of lower

level pattern recognition on the state of higher level representations.

Construction of a multidimensional representation for symptoms

The representation of a symptom as a multidimensional structure

requires that additional information (about novel aspects of the symp-

tom) be obtained from the patient. In clinical practice, the clinician

probes for only some salient aspects of the symptom. Often, this suf®ces,

and the clinician `completes' ± from his or her internal database ± the

pro®le of the symptom. On other occasions, this may not be satisfactory

and the clinician will embark on a series of further probes until he or she

has been able to construct a ®nal representation for the symptom.

Typically, this ascertainment procedure is sequential (Fig. 3.7).

In terms of the modelling strategy, the multidimensional structure that

represents a symptom is built up in stages. Successive quanta of informa-

tion trigger revisions against a pre-existing representation that serves as the

background context. This process can bemodelled by an attractor network

to which input information is presented in `segmental codes', each covering

only a portion of the representation (Fig. 3.8). A segmental code,

48 Eric Y.H. Chen and German E. Berrios

Fig. 3.7 The symptom construction process. When a symptom is experienced by
the patient, presumably as a result of a pathological brain signal, it is ®led into the
patient's memory. The clinician strives to re-construct this experience by formu-
lation in his or her own mind of a model of the symptom, and further elaborates
different dimensions of this model by repeated clari®cation with the patient.



therefore, speci®es the pattern of activity for a subset of units in the net-

work. At each processing stage, one segment is presented to the network. A

segment corresponds clinically to a statement (or reply) made by the

patient containing quanta of information on some aspect of the symptom.

In the light of information presented as a segmental code, the network

settles according to its own internal dynamics (guided by internal weights).

The resulting network state is considered as a provisional representation of

the symptom based on the information presented thus far. As the next

segment of information arrives, the provisional representation becomes

the starting point for further processing, following which the network is

once again allowed to settle into a further provisional representation (now

revised in the light of the new segment of information). This cycle repeats

itself until all information segments have been presented.
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Fig. 3.8 Series processing of segmental codes. One segment of information addres-
sing the ®rst few units of the representation is transmitted from the source (patient
report, left) to the receiver (clinician, right) (1). When the attractor network
receives the information segment, it settles according to its internal dynamics
into a `provisional representation' (2). This provisional representation is then
exposed to the arrival of the next segment of code (3, 4). The relative weight
given to the provisional representation in relation to the incoming code is a
measure of the extent of `top-down' priming. After the arrival of the second
code segment, the network is once again allowed to settle into a further provi-
sional representation (5, 6). This cycle repeats itself until all the segmental codes
have been presented.



Tracking the ¯ow of information

One important component of symptom recognition is the monitoring and

mapping out of the process whereby information is transferred from the

patient to the clinician. In other words, an important aim for the clinician

is to reconstruct in his or her own mind a representation of the patholo-

gical experience entertained by the patient. It is of the essence, therefore,

that these processes, and the factors that affect them, are duly represented

in the neurocomputational framework.

In order to follow information ¯ow in the network, it is desirable to

derive a measure that indicates the impact of code segments upon the

provisional network representation, i.e. a re¯ection of how informative

successive messages emitted by the patient are. Information in this con-

text refers to quanta that allow the narrowing down of alternatives within

the clinical process until the clinician is in the position to select a `symp-

tom prototype' into which the patient's description ®ts best. In this

regard, Shannon's measure of entropy could be employed. According

to this concept, the amount of information contained in a message is

expressed as the amount of uncertainty in the system that is reduced

upon the arrival of that message. Entropy can be measured in bits, one

bit being the amount of information that corresponds to a binary deci-

sion. The entropy in a system (expressed as the number of bits) is there-

fore the average number of binary decisions required to reduce all

uncertainty in the system. This quantity could be calculated as the nega-

tive sum of the product of the probability of each outcome times the

logarithm of the probability to the base two:

H�A� � ÿ
X

a2A
pa log2 pa

where H�A� is entropy of the system A; a represents possible states of

system A; pa is the probability of a occurring in A.

The amount of information associated with an event (such as the

arrival of a verbal message) could thus be quanti®ed in the system as

the difference in entropy before and after the event. In the neural net-

work model, the entropy in a given provisional representation could be

measured by presenting the network with a large number of initial input

vectors, covering randomly the entire state space. The frequency with

which different prototypes are retrieved in response to such arrays of

input probes is a measure of the probability associated with that proto-

type in the provisional representation. Accordingly, the entropy of the

representation can be calculated. The difference in entropy in the
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representation before and after the event could thus be used to determine

the informational impact of a particular event (such as the arrival of a

code segment).

The effect of top-down in¯uence

With the modelling method described, it is possible to explore the way in

which the dynamics of a symptom recognition network interact with the

amount of top-down priming (Fig. 3.9). In the extreme case of there not

being any top-down in¯uence, each code segment is processed entirely

independently of previous codes, as if the network starts anew after each

step. In this case, the information pro®le re¯ects the absolute amount of

information in each code segment. On the other hand, with very high top-

down weights, the system would settle very early on into a stable pattern.
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Fig. 3.9 Effect of top-down in¯uence. The top ®gure depicts the changes in
entropy in the system with time. In a network with a high degree of top-down
priming, the entropy falls rapidly as the system quickly settles into a stable state.
With decreasing levels of top-down priming, the entropy settles less readily. When
there is no priming (top series), each code results in an entropy level indepen-
dently of preceding codes. The bottom diagram shows the retrieval probability of
the different learned patterns. A high level of priming ensures the early retrieval of
a stable pattern.



The effect of the order of presentation

A further issue is whether it makes a difference to have highly informative

segments presented earlier or later in the sequence. Simulation with this

model has provided some initial ideas (Figs. 3.10 and 3.11). If highly

informative codes are presented ®rst, the network tends to settle earlier,

even when top-down in¯uence is relatively low. In contrast, if highly

informative codes are presented late, the network tends to settle later,

and top-down in¯uence becomes important in determining the rate of

settling. The higher the in¯uence, the quicker the settling.

In situations in which there is high top-down in¯uence, outcomes are

not affected by the order of presentation, though decisions take longer to

be arrived at if the highly informative codes are presented later.

Interestingly, there is an intermediate range of top-down in¯uence in

which the outcome of processing crucially depends upon the order of

presentation. In this situation, late arrival of high informational code

segments would actually enable the network to escape from a previously

held diagnostic hypothesis.
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Fig. 3.10 Network with early reception of highly informative codes.



Summary

Neural networks are analogical representations of the way in which the

human brain is assumed to approach cognitive tasks such as pattern

recognition. This has led to the view that they are capable of multidimen-

sional representation and parallel processing. It is also assumed that in

real life clinicians tackle their diagnostic duties by making use of pattern

recognition routines. It follows from this that neural networks might

assist with clinical diagnoses. Moderate success in this enterprise has

led others to model `diagnostic reasoning' and, on occasions, to conceive

of clinicians as `embodied' neural networks. This chapter is about this

modelling, its concepts, limitations, and the in¯uence that it may have on

the mapping and collecting of clinical information and even on the diag-

nostic constructs themselves. It also contends that pattern recognition of

nosological (diagnostic) categories is crucially dependent upon the lower

level processing of individual symptoms. Thus, the diagnostic process is

conceptualized as a nest of hierarchical pattern-recognition processes

involving symptom, syndrome and disease. Consideration of the rate

and quality of information ¯ow between these levels is important in

understanding how, after all, the process of `diagnosis' actually occurs

in the mind of the clinician.
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Fig. 3.11 Network with late reception of highly informative codes.



The chapter ®rst discusses the historical evolution of the notions of

disease and symptom, and current ideas on symptom construction. Then,

ways are mentioned in which the problem of diagnosis and symptom

recognition in psychiatry might be addressed in terms of neurocomputa-

tional models. At this early stage, these models were not proposed as

quantitative descriptions of actual processes, but were considered as con-

ceptual tools that exploit the structural and processing properties of

neural networks for the implementation of basic pattern recognition

modules. Using parallel modules as building blocks, realistic vistas of

the diagnostic processes are presented, including context effects, informa-

tion ¯ow, and the recursive construction of symptom representation.

It also transpired that when studying symptom recognition, there is the

need to focus upon the cognitive system of the clinicians themselves.

Current reliance on structured interview and operational criteria for diag-

nostic assessment may have improved reliability, but only at the expense

of losing information about symptoms. On the other hand, the use of

multidimensional models requires that a great deal of information be

collected; and this effort triggers into action the cognitive processes oper-

ating in the clinician's mind. Thus, unless these are properly mapped and

modelled, there is the real danger that a rich vein of information and

construction mechanisms is left unexplored. But what is worse is that we

shall have no real method or knowledge to teach those who follow us,

and each generation of psychiatrists will be condemned to the Sisyphean

task of having to learn things all over again (i.e. they will have to format

their own clinical experiences as best they can, without bene®ting from

the richness of the past). It is proposed in this chapter that neurocompu-

tational models of symptom recognition and diagnostic processes might

provide one of the frameworks (others will have to be sought in phenom-

enology, psychodynamic models, narrative theory, etc.) for the mapping

of diagnostic skills, thereby rendering their teaching possible.
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4

Neural networks and psychopharmacology
S.B.G. PARK

Introduction

Psychopharmacological models have been developed from the two

traditions now known as arti®cial neural networks and computational

neuroscience. Arti®cial neural networks are based on primitive com-

puting elements that are arranged to provide a brain-like architecture

for information processing that contrasts with symbolic accounts of

mental function. Computational neuroscience developed from mathe-

matical models of phenomena at the level of the single neuron.

Psychopharmacological models are on a spectrum between these two

approaches, both of which have potential weaknesses. Arti®cial neural

network models may include too many simplifying assumptions

accurately to re¯ect pharmacological effects. Conversely, a model that

incorporates too much cellular detail will be too complex to be useful in

providing an explanation of network behaviour. This is re¯ected in the

functions of these two types of model. Detailed models generally aim to

replicate the causal mechanisms of a network and seek explanatory status

through simpli®cation. Arti®cial neural networks are used in a more

limited fashion as hypothesis-generating tools. Available computing

power leads to a trade-off between the size of a network and the amount

of detail included. However, increasing power is leading to a convergence

in the modelling process. The simpli®cations involved in model abstrac-

tion can be increasingly assessed against the behaviour of networks of

much more detailed and biologically realistic neurons.

Psychopharmacology lacks a theoretical framework relating events at

the level of the neuron to those at higher levels of central nervous

system organization. Despite a wealth of detail on the cellular and

behavioural effects of psychotropic drugs, the relation between the

two remains obscure. Formulations of the role of different transmitter
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types frequently overlap (e.g. compare Spoont (1992) on serotonin (5-

HT) and Callaway, Halliday and Naylor (1992) on acetylcholine) and

the language used collapses across different levels of description. Thus,

the effects of a neurotransmitter, for example, on signal to noise ratio

are frequently not distinguished between cellular and attentional levels.

Many current theories of monoamine action implicitly or explicitly

assume a modular organization in function and describe a transmitter

action in terms of a projection to a certain brain area. An example of

the dif®culties this leads to can be seen if Molliver's (1987) and

Deakin's (Deakin and Graeff, 1991) theories of serotonergic function

and mood are compared. In depression, the former theory argues for

the importance of dorsal raphe projections to the frontal cortex, the

latter for median raphe projections to the hippocampus. Neither

hypothesis is able to discuss and contrast the function of the converse

projections, i.e. dorsal raphe to the hippocampus and median raphe to

frontal cortex. The immediate signi®cance of neural network models is

that they allow an explicit examination of neurotransmitter effects at

both cellular and network levels within the same theoretical framework.

In the case of serotonin, this allows an examination of the functional

effect of the differential localization of the receptor types associated

with these two projections within the same area of cortex.

Pharmacology in neural network models

Fast synaptic transmission

Fast synaptic transmission is modelled in biologically realistic simula-

tions in terms of the speci®c receptor types. Thus, N-methyl-D-aspartate

(NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid

(AMPA), gamma-amino butyric acid receptor type A (GABA-A), and

GABA-B receptors are regularly instantiated within such simulations as

speci®c inputs to the postsynaptic cells with different time courses and

amplitudes. These simulations typically allow an examination of the con-

tribution of transmission through the different receptor types in the gen-

eration of different types of rhythmic network behaviour (e.g. Traven et

al., 1993; Pinsky and Rinzel, 1994). The level of detail in these simula-

tions can include models of the calcium-dependent link between presy-

naptic action potentials and transmitter release (Yamada and Zucker,

1992) and detailed kinetic schemes representing different conformational

states and activities of the receptors (Standley et al., 1993; Destexhe et al.,
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1994c). Interactions between transmitter types are modelled in terms of

the contributions of different conductances to the ®ring behaviour of the

target neuron (Kotter and Wickens, 1995).

Arti®cial neural networks distinguish between inhibitory and excita-

tory connections, though do not distinguish between inhibitory and exci-

tatory cell types. This may be signi®cantly unrealistic. Pyramidal cells

within a layer of cortex are able to make speci®c excitatory contacts

with other pyramidal cells, but only have inhibitory effects through inter-

neurons that also receive input from many other pyramidal cells.

Inhibitory effects are therefore much more diffuse. Inhibition within net-

work models has a number of speci®c effects on network behaviour

(Levene and Leven, 1991), as does its selective modulation as evidenced

in the more biologically realistic models (Wilson and Bower, 1992;

Liljenstrom and Hasselmo, 1993; 1995). Given that a number of neuro-

modulatory inputs have selective effects on inhibitory interneurons, this

also requires models that aim to represent this to separate inhibitory and

excitatory neuron types.

Activation (input±output) functions

The output of a neuron within neural network models ranges from a

simple on±off switch to models in which the cells are able to generate

complex spike trains. The activation function within an arti®cial neural

network represents the mathematical translation of the inputs to a neu-

ron into an output. Arti®cial neural networks typically use a sigmoid

function. In addition to the properties of baseline and ceiling ®ring

rates, their non-linear character adds to the computational power of

neural networks. They are used to re¯ect an average ®ring rate of neu-

rons. As part of the examination of neuromodulatory effects on the signal

to noise ratio behaviour of networks of neurons, alteration of this input±

output function has attracted particular interest. The part of the activa-

tion function that is altered is known as the gain; this determines the

slope of the sigmoid at the in¯ection point and hence the differential

response to inputs of varying strengths (Fig. 4.1). The baseline and ceiling

rates remain the same, but in the presence of either inhibitory or excita-

tory stimulation with increased gain, the response of the unit is greater so

that there is a decreased response to smaller inputs and an increased

output to stronger stimulation. This approach is relatively recent

(Servan-Schreiber, Printz and Cohen, 1990) but it has led to a number

of simulations encompassing the changes in information processing in
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schizophrenia, and the response to various drug challenges in normal

human volunteers. These simulations are examined in more detail later

in the chapter.

An aspect of the input±output function which has been criticized as

being absent from arti®cial network models is the adaptation and

decrease in ®ring rate of a neuron that is observed in response to pro-

longed stimulation. This is relevant to the examination of the effects of

neuromodulation given the large body of evidence that multiple neuro-

transmitters affect this property of neurons. Noradrenaline, dopamine,

acetylcholine and 5-HT have all been shown to decrease adaptation. The

dif®culty in including this property within arti®cial neural networks is the

static nature of the input±output function re¯ecting an average ®ring

rate. The change in adaptation thus occurs within a time frame that is

not included within these simulations, and hence a more detailed

approach is required. Within biologically realistic simulations, this effect

is readily represented (Barkai and Hasselmo, 1994). Among the effects of

including this component are that learning rules that include a covariance

component will show an increase in weight gain in connections with this

change in cellular behaviour; indeed, changes in the rate of adaptation

could by themselves be a limited component of the way in which mem-

ories are represented (Berner and Woody, 1991).

The time frame of simulations is also important in the generation of

complex network phenomena. It has been argued that this complexity
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provides a further dimension to information processing in the brain that

cannot be captured in simpler models (Globus, 1992). Models using sim-

pli®ed network components, with neuromodulation of these network

dynamics through alterations in the gain parameter (Wu and

Liljenstrom, 1994) and neuronal adaptation (Cartling, 1995), show a

number of effects on the information-processing properties of the net-

work. The biological signi®cance of these effects is not clear, given the

dif®culties in characterizing these complex states.

Baseline ®ring rate

A further cellular effect of neurotransmitters is on the resting membrane

potential. Within detailed simulations, the importance of this effect can

be clearly seen in the models of Destexhe on the oscillatory properties of

thalamic reticular neurons (Destexhe et al., 1994a) and networks of such

neurons (Destexhe et al., 1994b), as discussed below.

Within arti®cial neural networks, general effects on the level of neuro-

nal excitability are readily represented by altering the effect of a `bias'

unit or by more directly moving the unit input±output function sideways

(Fig. 4.2). This provides the neuron units with an activity re¯ecting a

longer time period and as such can be used to re¯ect both tonic neuro-

modulatory inputs and the level of activity of second messenger systems.
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In addition, it can be used as a point of distinction between cell types in

more detailed models (Berns and Sejnowski, 1996).

Learning

The discovery of the properties of the NMDA receptor provided an

important impetus to neural network models in that it provided a basis

for the most basic form of learning represented. Learning as represented

by changes in synaptic strength re¯ecting long-term potentiation (LTP),

with the extent of the changes being dependent on the product of pre-

synaptic and postsynaptic activity, is known as Hebbian. Typically, such

learning rules have an associated learning rate constant that can be mod-

i®ed to re¯ect neuromodulation. More detailed cell-level computational

models of LTP induction (Holmes and Levy, 1990; Ambros Ingerson and

Lynch, 1993) have yet to be re¯ected in abstract neural networks, which

rarely distinguish the mechanisms of LTP from long-term depression

(LTD). However, one aspect of the cellular basis of learning that has

been examined at network level is the distinction between volume and

wiring transmission (Agnati et al., 1995). This has been looked at in

models of the role of nitric oxide in learning (Montague, Gally and

Edelman, 1991). The computational consequences of volume learning

rules have largely been explored in terms of cortical map formation

and have not yet been applied to behaviour.

The most popular learning algorithm in arti®cial neural networks, the

back-propagation of error, adds a non-physiological element in the expli-

cit computation of an individual error term for each unit in the network.

The error re¯ects the difference between actual and desired output and

allows for environmental feedback in the learning process. The signi®-

cance of this addition is unclear, as units in a network trained with this

algorithm have responses that can match the behaviour of the cells in the

biological networks they represent in a number of respects. One possibi-

lity is that error minimization occurs within cortical structures without

the need for the computation of an explicit error term. However, despite

this face validity, questions remain as to the impact of this non-physio-

logical component on any pharmacological manipulations.

The most biologically plausible mechanism to date of providing feed-

back as an error signal to a neural network can be seen in the algorithms

carrying out what is known as reinforcement learning. This learning rule

is intended to re¯ect the combined effect of ascending noradrenergic and

dopaminergic pathways and provides a general signal to the whole net-
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work or selected regions rather than speci®c signals to each unit. As a

result, training in such networks can take signi®cantly longer. This rule is

discussed in more detail later in the chapter in terms of its relationship to

what is known of dopaminergic function. Given that the time course of

the therapeutic effect of both antidepressant and antipsychotic drugs is

consistent with mechanisms involving learning, this is an area of psycho-

pharmacological neural network modelling that will particularly bene®t

from more neurophysiological detail (Spitzer, 1995).

Network architecture

Important pharmacological differences occur at both cytoarchitectonic

and modular levels. Arti®cial neural networks can readily accommodate

modular distinctions in innervation (Callaway et al., 1994) by selectively

changing aspects of identi®ed groups of units representing different brain

regions. However, this is not the case for cytoarchitectonic distinctions

that are not represented in such models. In addition to the failure to

distinguish excitatory and inhibitory cell types, often there is no repre-

sentation of recurrent connections within a given layer. Given that the

majority of the excitatory input to a layer comes from such intrinsic

connections, this may be an important omission from more abstract

models. Indeed, certain models posit functional effects that are dependent

on this grain of detail (e.g. Hasselmo and Schnell, 1994; Niebur and

Koch, 1994). Whereas it is argued that models at different levels of detail

aim to describe different phenomena, this is not always the case, and

hypotheses are at times in direct competition. Modular selectivity of

neuromodulatory inputs is often a very relative phenomenon, whereas

cytoarchitectonic distinctions can be much clearer. However, detailed

knowledge of cytoarchitectonic pharmacology is limited and the devel-

opment of these models requires further anatomical and neurophysiolo-

gical characterization of the receptor distributions and effects.

Animal behavioural pharmacology

The importance of these studies arises from the fact that some of the

invertebrate networks studied are the most completely characterized in

terms of their neurophysiology and pharmacology. They can therefore be

used to gain an understanding of those simpli®cations in neurophysiolo-

gical detail that can be made that still leave a robust model of network

behaviour. Additionally, they provide a number of examples of how
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network modelling and experimental studies have been combined to gain

an understanding of the relationship between the network components

and the resulting behaviour (Kepler, Marder and Abbot, 1990; Calabrese

and de Schutter, 1992). A number of different pharmacological effects

have been examined. They include the role of multiple receptors in the

expression of neuromodulation by a single transmitter (Zhang and Harris

Warwick, 1994), neuromodulation intrinsic to network function (Katz,

Getting and Frost, 1994; Katz and Frost, 1996), and the effects of pepti-

dergic and electrical neurotransmission (Kepler et al., 1990; Johnson,

Peck and Harris Warrick 1993, 1994). In certain instances, they show

that relatively detailed circuit models have dif®culty in capturing major

neuromodulator effects on rhythmic network behaviour (Rowat and

Selverston, 1993). However detailed these models are, they too will

make certain assumptions about network components for which there

may be limited evidence, e.g. ion channel distribution within the neuron.

Thus, increasing the level of detail in a model will not necessarily lead to a

replication of the desired effect.

Some of the most detailed experimental and modelling work in verte-

brates has been carried out on the neural basis of swimming movements

in the lamprey. The relative contribution of NMDA and non-NMDA

receptor-mediated excitatory transmission and the effect of serotonin (5-

HT) on the frequency of the rhythmic burst pattern of the spinal network

underlying locomotion have been studied, and the effects of experimental

pharmacological manipulation on the behaviour have been replicated

(Wallen et al., 1992; Traven et al., 1993). From a methodological per-

spective, a repeated statement is that the modelling was a necessary

adjunct to the experimental work because of the complexity brought

about by the number of elements in the networks. This statement remains

true for arti®cial neural networks in that the non-linearity of the input±

output functions of the multiple units renders them opaque to intuitive

predictions as to their behaviour in response to manipulation.

Psychopharmacological simulations

Simulations of the generation of speci®c patterns of electrical activity in

diverse brain areas include some of the highest level effects examined

using biologically realistic neurons and neuromodulation. At the network

level, it can be readily shown that the combination of short-range and

long-range excitation with local inhibition leads to synchronized oscilla-

tions (Freeman, 1968; Wilson and Cowan, 1972; Wilson and Bower,
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1991, 1992). Two groups of simulations that are of particular interest to

psychopharmacology relate to the generation of hippocampal and thala-

mic rhythms in response to pharmacological challenge and their relation-

ship to epilepsy, learning and sleep. The extension of this work to

examine the neuropathology of Alzheimer's disease can be found in

Chapter 12 of this book.

Hippocampal oscillations

A model of the hippocampal oscillations occurring in the disinhibited

hippocampal slice has been developed by Traub and Miles (1992). In

the slightly disinhibited slice long-duration after-hyperpolarization,

slow GABA-B IPSPs and the recurrent pyramidal cell excitation were

all critical in the generation of the population oscillation of 1±4 Hz.

However, in extending the model to examine the mechanisms underlying

synchronized multiple bursts, a phenomenon seen with the use of GABA-

A blocker picrotoxin and that may re¯ect seizure activity, the authors

generate the prediction that a dendritic calcium conductance was the

critical component to the network behaviour. Two aspects of this simula-

tion of a more general note are the use of the model to develop a hypoth-

esis for subsequent experimental con®rmation (see Traub and Wong,

1982; Miles and Wong, 1983) and the detail of simulation involved in

this particular prediction.

Traub, Miles and Buzsaki (1992) have also presented a model of the

rhythmic activity induced in the hippocampal slice by the muscarinic

agonist carbachol as a method of examining the relationship between

those rhythms and the hippocampal theta rhythm recorded in rodents

in vivo. The effect of carbachol was simulated as a block in GABA-A-

mediated and GABA-B-mediated inhibition, a block in NMDA postsy-

naptic activity, a reduction in the after-hyperpolarization conductance,

and a tonic depolarization of the apical compartment of the pyramidal

cell dendrites. The model produced oscillations at the observed frequen-

cies of 5 Hz. A critical component in the generation of this effect was the

recurrent excitatory connections between pyramidal cells. This was in

contrast to their simulation of the theta rhythm in which the resonance

of the CA3 network at the septal input frequency was not dependent on

these connections. This model can be compared with that of Liljenstrom

and Hasselmo (1993, 1995) of cholinergic modulation of the oscillatory

activity of the structurally similar piriform cortex. Again, their model was

able to replicate a number of experimental observations of the effects of
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cholinergic modulation on both the electroencephalogram (EEG) and

evoked potentials. However, the inclusion in this model of data from

their laboratory on the effect of acetylcholine to suppress intrinsic exci-

tatory synaptic transmission led to a separate mechanism of rhythm

production that was not dependent on intrinsic bursting activity in the

pyramidal neurons as in the Traub model. The suppression of intrinsic

connections was also proposed as the mechanism for the suppression of

the faster gamma-type oscillations. These models show the interplay

between experimental ®ndings at the cellular level and the use of the

models in understanding the interaction of the multiple components

involved in the behaviour at the network level. The difference in mechan-

ism proposed by the models attests to the fact that it is not just the

amount of detail that determines the observed effects, but also which

details.

A further important difference between the two models is that the later

uses a much more abstract representation of the neural elements. In

particular, the input±output function of the neurons used was an experi-

mentally determined sigmoid in which a single parameter determined the

threshold, slope and amplitude of the response to stimulation. The use of

this abstraction that was developed in comparison with the performance

of a more biologically realistic simulation of the oscillatory properties of

piriform cortex (Wilson and Bower, 1992) can be viewed against the use

of the sigmoid function as the input±output function of arti®cial neural

networks.

Thalamic oscillations and sleep

The relay and reticular nuclei of the thalamus have an important role in

generating some types of sleep oscillations. Realistic models of networks

of thalamic reticular cells, interconnected with inhibitory synapses, show

robust oscillations (Destexhe et al., 1994d, Golomb, Wang and Rinzel,

1994, 1996), re¯ecting their in-vivo behaviour. In vitro, however, such

oscillations do not occur and it has been proposed that this is as the result

of the absence of neuromodulatory inputs to the in-vitro preparation.

This has been modelled in terms of the effect of noradrenergic and ser-

otonergic inputs to depolarize thalamic cells by blocking a leak potassium

current (Destexhe et al., 1994b). The change in resting membrane poten-

tial brought about by the neuromodulatory input was able to generate

these two activity states of the thalamic reticular network. This is
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proposed as a means whereby the ascending neuromodulatory inputs

from the brain stem control arousal.

This model included a representation of the transduction of the

neuromodulator effects on the potassium current by G-proteins devel-

oped in earlier work (Destexhe et al., 1994a). The extent of pharmaco-

logical detail possible in these models is perhaps most clearly seen in a

model that examines how the relationship between transmitter reuptake,

synaptic concentration of transmitter and G-protein activation kinetics

determines differences in inhibitory responses between the thalamus and

hippocampus (Destexhe and Sejnowski, 1995). In addition to the equi-

librium between active and desensitized GABA-B receptor states, the

model includes multiple binding sites for the G-proteins on the potas-

sium channel and a consideration of the effect of uptake blockade on

synaptic currents. As yet, there are no equivalent network models of

monoamine reuptake and receptor activation, but elements of such

models are present in this work, with estimates for the parameters of

the G-protein-mediated conductances for 5-HT1 (serotonergic), alpha-2

(noradrenergic) and D2 (dopaminergic) receptor subtypes (Destexhe et

al., 1994a).

Models have also been developed examining the neuromodulatory

control of the rhythmic behaviour of thalamocortical neurons. The status

of the neuromodulatory inputs to these neurons in part determines the

different ®ring patterns associated with EEG-synchronized sleep, and

periods of arousal and cognition. One of the dif®cult problems posed

for psychopharmacologists is how to disentangle multiple and apparently

overlapping effects of the different transmitters. In the case of the tha-

lamic relay neuron, three different ionic conductances are affected by a

number of different neuromodulators, including acetylcholine, nor-

adrenaline, serotonin and histamine. McCormick, Huguenard and

Strawbridge (1992) have used simulations as a means of exploring the

relative contribution of modulation of the three different conductances.

As the authors point out, such an experiment would be dif®cult to per-

form either in vivo or in vitro. Through the modelling, they were able to

clarify the relative effects of the conductances on neuronal activity and

were able to replicate the marked effect of neuromodulation on ®ring

mode. The models also suggested experimental tests of the effects of the

neuromodulators on speci®c aspects of cell behaviour. This model can be

compared with the higher level model of Lytton, Destexhe and Sejnowski

(1996), which examined the behaviour of the cell in response to simulated

repetitive cortical synaptic input and a more restricted representation of
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neuromodulation that suggested neither alone was suf®cient to generate

the range of oscillation frequencies seen in thalamocortical neurons.

As yet, there is no speci®c way of modelling the effect of 5-HT2 recep-

tor blockade to increase slow wave sleep, though more general models of

the respective in¯uences of cholinergic and serotonergic inputs on slow

wave sleep and REM sleep exist (Sutton, Mamelak and Hobson, 1992;

Sutton and Hobson, 1993; Yamamoto et al., 1994). Sutton's model is

based on a neocortical network with ascending aminergic and cholinergic

inputs from the brain stem, thalamic inputs and intracortical excitation.

The further abstraction within this model generates predictions that can

be tested in human experiments. The model stores sequences of `mem-

ories' that can be reliably reproduced by the network during the simu-

lated wake state, but are output in a discontinuous and mixed fashion

during simulated REM sleep as a re¯ection of dream bizarreness. In view

of the limited information on cognitive processes during sleep, the pre-

dictions are made in terms of the respective effects of ponto-geniculo-

occipital burst cell activity in sleep and during waking on cortical activity

assessed by combining functional magnetic resonance imaging (MRI)

with EEG.

Dopamine and learning

The ascending diffuse inputs from the brain stem have been recognized

for some time within the neural network literature as being of impor-

tance to learning (Hawkins and Kandel 1984; Gluck and Thompson,

1987). The aim of the earlier models was more to do with developing an

understanding of learning than exploring the role of speci®c ascending

inputs. However, as these models have developed, they are increasingly

making explicit calls to the neuroscience literature as regards the beha-

viour of these inputs. Two recent examples (Montague and Sejnowski,

1994; Friston et al., 1994) support their simulations by reporting the

match between their models and the electrophysiological data of

Ljungberg, Apicella and Schultz (1992) on the ®ring behaviour of pri-

mate dopaminergic neurons during learning. The loss of the phasic

response of the dopaminergic neurons once a behavioural response to

a reward is acquired shows that the association between the reward and

dopamine is not a simple linear relationship. The hypothesis suggested

by these simulations is that the ®ring of the dopaminergic neurons

re¯ects a prediction error (Quartz et al., 1992; Montague et al., 1993).

This hypothesis about events at the level of the cell receives further face
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validity from simulations using the same type of learning algorithm

showing the development and registration of activity-dependent neural

maps in the superior colliculus (Pouget et al., 1993), and from the large

body of work using a temporal difference learning algorithm to repli-

cate many of the phenomena of associative learning (Klopf, 1988;

Sutton and Barto, 1990; Donahoe, Burgos and Palmer, 1993). The

selectionist framework of Friston et al. (1994), although it differs

from the temporal difference learning algorithm in certain important

respects, shares the use of the time derivative of the sensory signals.

Despite the different theoretical derivation of the selectionist model, its

convergence at this point adds important support to this explanation

for the behaviour of dopaminergic neurons.

At an algorithmic level, one area that can be questioned as a re¯ec-

tion of dopaminergic function is the extent to which synaptic weights

are differentially increased or decreased following the reinforcement

signal. Evidence from both neocortex (Law Tho, Desce and Crepel,

1995) and striatum (Pennartz et al., 1993) suggests an effect of dopa-

mine on LTD but not on LTP. However, reinforcement algorithms lead

to both increases and decreases in weights, and in certain instances the

effect of the reinforcement signal to increase weights is 10±100 times

greater than the effect to decrease them. This may be re¯ected in the

failure of some of the simulations of associative learning to replicate the

effects of dopaminergic manipulation. The latent inhibition and Kamin

blocking apparent in some of the models are not amenable to changes

in the strength of the reinforcement signal in the same way as described

for dopaminergic manipulation in the animal and human experiments

(Joseph and Jones, 1991). Part of the dif®culty may also arise from the

fact that these phenomena are differentially dependent on a number of

different brain structures (Gallo and Candido, 1995) not represented

within the models. More anatomically detailed models have been devel-

oped (Gluck and Myers, 1992) that provide a more realistic representa-

tion of these interference effects, although as yet they have not been

validated against such pharmacological manipulation.

The role of the basal ganglia in learning is examined in the signi®-

cantly more detailed model of Berns and Sejnowski (1995, 1996). This

model includes representations of the cortex, striatum (with separate

matrix and striosomal neurons), internal and external segments of the

globus pallidus, subthalamic nucleus and thalamus, with realistic con-

nectivity and differences between the input±output functions of the

different cell types. It incorporates the Montague±Dayan±Sejnowski
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model of dopamine and reinforcement learning (Montague et al., 1995)

and additionally describes a mechanism whereby a prediction error is

computed by the striosome to be sent to those units representing the

dopamine neurons of the ventral tegmental area and substantia nigra.

As a result, it provides one of the most biologically complete accounts

of dopamine function yet developed that simulates a number of differ-

ent behaviours. In addition to a consideration of the appearance of

hemiballismus with lesions of the subthalamic nucleus, the model exam-

ines the performance on the Wisconsin Card Sorting Test and shows

perseveration typical of Parkinson's disease when a dopaminergic de®cit

is simulated. This model is not speci®cally about dopamine, but rather

aims to develop a model of the role of the basal ganglia in learning and

selecting between sequences of actions. In part, it was motivated by the

dif®culty for more abstract connectionist models to learn sequential

cognitive processes such as used in the Wisconsin Card Sorting Test

(Parks et al., 1992). Thus, the effect of a pharmacological manipulation

has been successfully used in the validation of this much more biologi-

cally constrained network.

Attention

An important series of models examining dopaminergic, noradrenergic

and subsequently cholinergic effects on tasks involving the effects of

neuromodulation on attention has been implemented by the addition

of two features to arti®cial neural networks. The gain of the sigmoid

input±output function of units within the network is altered to increase

its sensitivity to the inputs, and only certain groups of units within the

network are changed in this way to re¯ect a selective innervation of

discrete brain areas by the neuromodulatory inputs.

The justi®cation for the change in the shape of the sigmoid is based

on the literature suggesting that the effect of dopamine and noradrena-

line on neuronal ®ring is not to alter the baseline rate but rather to

potentiate the responses to excitatory and inhibitory inputs. The semi-

nal publications examined catecholamine effects through a comparison

of their simulations with the effects of amphetamines in normal volun-

teers and the performance of patients with schizophrenia on a series of

attentional tasks (Servan-Schreiber et al., 1990; Cohen and Servan-

Schreiber, 1992). The use of this and more complicated single gain

parameters in determining the shape of the neuronal input±output

functions to represent neuromodulatory effects can be seen in
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subsequent publications from several different groups (Callaway et al.,

1994; Sutton and Hobson, 1993; Jobe et al., 1994; Wu and Liljenstrom,

1994). The additional feature of the original simulations was to desig-

nate one group of units as representing the frontal cortex, and then to

examine the effect of selectively modulating this group of units in order

to re¯ect the relative dominance of the dopaminergic input to this area

compared with other neocortical areas. The psychological component of

the tasks was the working memory component that maintains represen-

tations of task-relevant information on line and that has been termed

`contextual' information.

The strength of these simulations is that despite their simplicity they

are able to simulate many non-intuitive ®ndings (e.g. Servan-Schreiber

et al., 1994, Servan-Schreiber and Blackburn, 1995) from drug challenge

studies affecting different neuromodulator systems. (Callaway et al.

(1994) explore the differences between pimozide and clonidine on

speed±accuracy curves in a signal detection task.) Also, by their explicit

nature, they are able to generate falsi®able hypotheses. Dif®culties arise,

however, as a result of the degree of abstraction used in terms of both

the representation of the psychological task and the neuromodulation.

Typical criticisms would be the failure of the gain parameter to re¯ect

the change in adaptation in neuronal ®ring that is a predominant effect

of neuromodulators (e.g. Barkai and Hasselmo, 1994; Hasselmo, 1995),

or that attention both involves multiple networks (Jackson, Marrocco

and Posner, 1994) and is determined by phenomena at the level of the

single cell (Niebur and Koch, 1994). Against this it is argued that at the

level of description of the task performance, these models provide a

coherent account, and modi®cation is required when they do not

match up to the observed effects at that level (Callaway et al., 1994).

A more theoretical criticism re¯ects the falsi®ability of the more general

hypotheses derived from such models. When Cohen and Servan-

Schreiber describe their models in terms of a predominant effect of

dopamine on the `internal representation of contextual information',

it is not clear how one would speci®cally measure this type of context.

However, this dif®culty is not restricted to neural network models, as

can be seen in comparison with, for example, the `disconnection'

hypothesis of median raphe function (Deakin and Graeff, 1991).

Arguably, the more explicit nature of the network models increases

their falsi®ability in comparison.
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Clinical psychopharmacology

General effects of neuromodulation on cortical behaviour

One of the earliest neural network models of psychopathology (Hoffman,

1987) examined possible neuromodulator effects in a model of ¯ight of

ideas and mania. In this model, parameters determining general network

dynamics were altered and the behaviour of the network was then com-

pared with clinical phenomena. One particular perturbation was to

increase the general randomness of the neural responses to excitatory

and inhibitory input. This led to a network that failed to stabilize and

instead moved from one memory to the next in a manner suggestive of

¯ight of ideas. In support for the model, evidence was cited of lithium

effects to reduce randomness in neuronal ®ring patterns, and the effects

of noradrenergic projections to alter randomness in terms of signal-to-

noise effects, thus proposing mania as a hyponoradrenergic state. It is

important to note that this was not a model designed to challenge the

classical amine hypothesis of affective disorder, but rather an exploration

of what network effects might be seen as a result of perturbations at the

cell level that might re¯ect neurotransmitter actions. A similar perspective

is useful in a more recent publication (Jobe et al., 1994) that looks at

similar abstract neuromodulator effects, but in a more detailed cell model

in which the primary effect is in terms of dendritic conductances, and

relates this to a wide variety of psychiatric phenomena.

Dopamine and Parkinson's disease

A number of models exist that examine the dopaminergic de®cit in

Parkinson's disease (Borrett, Yeap and Kwan, 1993; Contrerasvidal

and Stelmach, 1995; Contrerasvidal, Teulings and Stelmach, 1995; Berns

and Sejnowksi, 1995, 1996). Points of comparison between the models

include their relative detail, which aspect of the disturbance they are

aiming to examine, and the type of predictions the models make. The

most abstract model (Borrett et al., 1993) aims to ®nd a simple explana-

tion for certain aspects of the movement disorder using a four-layer

recurrently connected arti®cial neural network to represent a cortical±

basal ganglia±thalamic±cortical loop. The effect of dopamine depletion

was modelled as a general reduction in activity of the layer representing

the thalamus (equivalent to increased inhibition from the basal ganglia

component of the network), thus taking a very functional approach to its

representation. The network was able to reproduce prototypical activa-
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tions in agonist and antagonist muscles that produce the displacement of

a limb about a single joint, and the bradykinesia and inability to maintain

repetitive movements seen in Parkinson's disease. The model thus sup-

ports the evidence from MPTP models of parkinsonism that the func-

tional effect of the reduced dopamine is to increase the inhibitory input

from the globus pallidus, and that this is suf®cient to explain these aspects

of the movement disorder. This simple abstract model thus provides a

relatively simple explanation that is not obvious intuitively.

Dopamine and schizophrenia

Despite inconsistent evidence, the dopamine hypothesis of schizophrenia

remains one of the most enduring in psychopharmacology. Similarly,

there is an extensive literature on frontal de®cits in schizophrenia.

These two hypotheses have been linked in the growing body of evidence

that frontal lobe function is impaired with de®cits in dopaminergic trans-

mission and that this is responsible for a number of the cognitive de®cits

seen in schizophrenia. Cohen and Servan-Schreiber (1992, 1993) have

compared their simulations of decreased gain in `context' units and

found them to match the performance of schizophrenic patients in a

number of psychological tasks ± the Stroop Test, a continuous perfor-

mance test, and a lexical disambiguation task. In each case, the simula-

tion was able to capture the pattern of de®cits seen in the clinical

population, thus presenting a hypothesis with marked face validity and

no small degree of construct validity. The authors acknowledge that

disturbances other than a reduction in dopamine to the prefrontal cortex

are involved in schizophrenia, and also provide a possible explanation for

the apparently contradictory observation that thought disorder improves

with neuroleptic medication. In an extended discussion, the model is

contrasted with other neuropsychological models of schizophrenia and

the de®cits found in related disorders such as Parkinson's disease and

speci®c frontal lobe lesions (Cohen and Servan-Schreiber, 1992).

A dif®culty for the models is that a number of the components are still

regarded as unproven hypotheses. Studies relating to and questioning

some of the assumptions made, such as the distinction between speci®c

and generalized psychological de®cits in schizophrenia (Javitt et al.,

1995), whether schizophrenia is associated with increased or decreased

interference on the Stroop (Williams et al., 1996), and the role of meso-

cortical dopaminergic transmission in cognitive function (Roberts et al.,

1994), continue to appear as active topics of research. However, the
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framework provided by the models allows testing against such new evi-

dence by virtue of the explicit representation of the components. A sepa-

rate issue is the status accorded to the hypothesis generated by this work.

That it is at least similar to the status of hypotheses generated more

directly from experimental observation can be seen in the diversity of

experimental studies in which it is cited. These range from animal beha-

vioural pharmacology (Brockel and Fowler, 1995) through genetic

(Maier et al., 1994) and social studies (Penn et al., 1995) in schizophrenia.

The models so far described of the three major ascending dopaminergic

inputs are to a large extent independent of each other. However, with the

development of models of speci®c dopamine receptor types, the building

blocks will be in place to examine questions such as why D2 blockade is

relevant to the effects of abnormal frontal±temporal connectivity.

Serotonin and depression

The functions of serotonin on mood are often contrasted with those of

dopamine, and a model is developed of this by Hestenes in Chapter 6 of

this book. The hippocampus is an area of the brain with a limited dopa-

minergic innervation, but which has a pronounced input from seroton-

ergic neurons. The most comprehensive theoretical account of the

relationship between 5-HT neurotransmission and mood (Deakin and

Graeff, 1991) has proposed that projections from the median raphe

nucleus terminating on 5-HT1A receptors in the hippocampus mediate

adaptive responses in the face of chronic aversive stimulation. Depression

occurs when there is a failure of transmission in this pathway, which is

recti®ed by treatment with antidepressants. The following model, whilst

in general agreement with this hypothesis, aims to show the ways in

which it can be developed further.

There is good evidence that the pathways of the two major serotonergic

projections from the median and dorsal raphe nuclei are anatomically

and functionally distinct. The thicker axons from the median raphe

appear to be selectively associated with a subset of inhibitory interneur-

ons subserving feedforward inhibition in predominantly dendritic ®elds

(Hornung and Celio, 1992; Miettinen and Freund, 1992), with the ®ner

projections from the dorsal raphe terminating on 5-HT2 receptors on a

different set of interneurons located at a deeper cytoarchitectonic layer,

which may modulate feedback inhibition. There is indirect evidence that

the effects of median raphe transmission are inhibitory to their respective

interneurons, in keeping with the anatomical association between the
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median raphe innervation and the 5-HT1A receptor. Conversely, the

evidence supports a stimulatory role for the effects of dorsal raphe sti-

mulation through 5-HT2 receptors. Architecturally, this is fairly straight-

forward (Fig. 4.3). At a coarser level of anatomical detail, there is an

extensive overlap between the projections from the two serotonergic

nuclei.

A number of questions can now be posed. What is the role of feed-

forward inhibition in depression? How do the functional effects of

median raphe projections differ between frontal cortex and hippo-

campus? How do the functional effects of dorsal and median raphe

projections differ in the hippocampus? These are not questions that can

be currently answered, but with conventional accounts of serotonergic

function it is also very dif®cult to generate hypotheses. As a result of the

use of particular neurons as the target of an innervation within a given

brain region, this is no longer the case for a neural net model. In order to

implement representations of the two different serotonergic projections,

the basic arti®cial neural network will not suf®ce. Inhibitory interneurons

need to be distinguished from excitatory cells, along with different types

of inhibitory interneuron. In addition, excitatory feedback and more

excitatory units than inhibitory units are included in the network to
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raphe nucleus to feedback (FB) inhibitory interneuron.



increase the extent to which it resembles archicortex. However, other

than these architectural constraints, the neural network has the same

components as an arti®cial neural network. Unlike dopamine, there is

clearer evidence that changes in serotonergic transmission are associated

with changes in the ®ring rate of the target neurons. Hence change in

activity at the different 5-HT receptor subtypes is implemented as a

change in the baseline ®ring rate of the respective interneurons through

a change in the effect of the bias unit (see Fig. 4.2).

In order to simulate the depressed state, the network is ®rst trained to

discriminate two sets of inputs, one of which represents rewarding sti-

muli, the other punishing. The network is then trained on a set of patterns

in which one of the previously rewarding inputs is paired with the punish-

ment-type response. Previous punishment-type input±output pattern

pairs continue to be presented, and reward-type pairs are excluded

from the training set. This is intended to reproduce the effect of loss

and a stressful environment. This leads to a generalization of punish-

ment-type responding such that all reward-type inputs when now pre-

sented to the network are responded to as though they were punishing. In

the ®nal part of the simulation, the remaining reward-type input±output

pattern pairs are returned to the training set. The extent to which the

network continues to respond to reward-type inputs as punishing is taken

as the measure of depression, and the time it takes the network to relearn

the former reward responding is the measure of the time to `recovery'.

Both tricyclic antidepressants and selective serotonin reuptake inhibi-

tors are active at the terminals of both of the two serotonergic projec-

tions. They have similar effects to increase transmission at postsynaptic

5-HT1A receptors, but have opposite effects on dorsal raphe transmis-

sion, which can be seen clinically as part of their differing side-effect

pro®les. The effects of both types of antidepressant, placebo and a post-

synaptic 5-HT1A antagonist were examined during the third phase of

training the network. The results of the simulations can be seen in

Figure 4.4. The simulated antidepressant treatment decreased the time

the network took to return to the original non-depressed-type respond-

ing. This effect was not seen with the simulation of acute changes in

serotonergic function however strongly implemented. The model sup-

ports Deakin's prediction that a postsynaptic 5-HT1A antagonist

would delay the recovery compared with placebo (Deakin, Graeff and

Guimaraes, 1993), and additional simulations showed a partial prophy-

lactic antidepressant effect during the second stage of training.
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The mechanism of antidepressant action within the simulation is

through enhancing the learning at the connections between the input

and middle layers. This is compatible with controlling a gating function

by the feedforward inhibitory interneurons, as might be re¯ected in the

predominant innervation of the dentate by the median raphe nucleus

within the hippocampus, and the role of the dentate in the hippocam-

pal±entorhinal circuitry (Jones, 1993). Further support for this aspect of

the model can be seen in the effects of median raphe stimulation on LTP

induction in the dentate (Klancnik and Phillips, 1991) and the 5-HT1A

receptor speci®city of the effect of 5-HT-releasing drugs to increase the

sensitivity of the dentate gyrus to perforant path stimulation (Richter-

Levin and Segal, 1990).

In terms of the behaviour of the network, the effect of the antidepres-

sant is to reduce the interference resulting from the changed association

of one of the input patterns. Effects such as generalization and interfer-

ence are important properties of neural networks in the more general

argument as regards the extent to which arti®cial neural networks can

re¯ect brain functioning. Connectionist interference is not synonymous

with that observed experimentally in interference learning paradigms;

however, as the experimental form is thought to arise as a result of the

hippocampally mediated context effects, the antidepressant effect may

also be re¯ected in experimental interference effects. This then provides
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Fig. 4.4 Results of simulation of antidepressant activity. TSS (total sum of
squares) re¯ects training error and level of `depression' within the network; epochs
are the number of presentations of the training set and re¯ect time. The TCA
(tricyclic antidepressant) effect is implemented as decreased feedforward inhibi-
tion and decreased feedback inhibition; SSRI (selective serotonin reuptake inhi-
bitor) decreased feedforward inhibition and increased feedback inhibition; 5-
HT1A receptor antagonist increased feedforward inhibition. Results shown are
the mean of ten simulations for each of the types of serotonergic manipulation.



a potential explanation for the effect of decreasing serotonergic function

in normal volunteers to impair performance on a paired associate learn-

ing task and not visual pattern short-term memory (Park et al., 1994; Fig.

4.5), and the effects of selective serotonin reuptake blockers to enhance

recognition memory but not recall in an auditory list-learning task

(Linnoila et al., 1993). There is additionally one study in which trypto-

phan administration improved performance on a list-learning task in

depressed patients before an improvement in mood was noted (Henry,

Weingartner and Murphy, 1973).

In more general terms, the hypothesis arising from this series of simu-

lations is that the impaired serotonergic transmission in depressed

patients prevents the unlearning of the depressed associations and

hence leads to the persistence of the depressed state. This in a number

of respects is not substantially different from Deakin's formulation

(Deakin and Graeff, 1991) in terms of the disconnection hypothesis of

median raphe function. However, the hypothesis generated by the model

has a number of different implications. The mechanism of antidepressant

action does not restrict serotonergic effects to stimuli of a particular

emotional valence. This allows for modulatory effects of serotonergic

transmission on both positively and negatively reinforced operant
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Fig. 4.5 Results of experimental manipulation of serotonergic function on learn-
ing in placebo-controlled, cross-over, within-subjects design in 12 healthy volun-
teers. Tÿ condition, tryptophan (serotonin precursor) de®cient amino acid
mixture; T�, balanced amino acid drink control. Error rates for spatial recogni-
tion memory (F 0.17 d.f. 3,30, NS), paired associate learning (F 4.12 d.f 1,11,
p � 0:07 with F 5.12, p<0.05 for trials to criterion). (See Park et al. (1994) for
further details.)



behaviour, as is observed experimentally (Wogar, Bradshaw and Szabadi,

1993). Neither is it restricted to effects at the hippocampus in that it can

also operate in other areas with strong input from the median raphe

nucleus, such as frontal cortex. As a neuromodulatory input that may

enhance the learning of changed associations, this then provides a poten-

tial explanation for the input to the median raphe nucleus from the

orbitofrontal cortex and the latter area's association with reversal learn-

ing. Perhaps the most signi®cant difference between this model and other

accounts of antidepressant action is the fact that the delay in treatment

effect is related to the learning process and not to adaptive receptor

changes, as is typically proposed. A further observation from this simula-

tion is that an experience of reward from the environment is necessary for

the antidepressant effect to occur. This may have as its clinical correlate

the apparent resistance to treatment of patients who relapse whilst receiv-

ing treatment with antidepressants. It is in these differences that neural

network models can be seen to deconstruct the psychological component

of psychopharmacology. However, it is important to note that the model

is not necessarily antecedent to any of these hypotheses or their falsi®a-

bility.

That this model is a tool rather than an explanation can be seen in a

number of different ways. In common with other higher level models,

elements missing as a result of the simpli®cations used may well be

important. 5-HT1A receptors found outside of median raphe synapses

on pyramidal neurons have not been included. The assumption that

extrasynaptic 5-HT is not important in antidepressant effects is based

on limited evidence. 5-HT±cholinergic interactions are well recognized

in learning and at the level of cell function. There is some evidence that

depression is a hypercholinergic state, and antidepressant responsiveness

has been associated with presumably cholinergically mediated REM sleep

suppression. This provides multiple possible confounds to the model.

Such problems are potentially amenable to examination by more detailed

models in which cholinergic and serotonergic effects are examined

together. However, the effect of acetylcholine on learning has also been

argued to occur through a reduction in interference (Hasselmo, 1993).

This compounds the problem, in that the interference effects in the mod-

els of cholinergic function and this model are different in terms of net-

work functions that do not map directly to psychological interference.

This re¯ects the potential differences in information processing as carried

out by the brain and the psychological means of description available.
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Conclusion

Neural network models provide a method of directly integrating know-

ledge of the cellular and receptor level effects of drugs and neurotrans-

mitters into a model of higher mental function to examine

psychopharmacological effects. Conversely, ®ndings from experimental

psychopharmacology provide an important source of data whereby

neural network models can be tested for their robustness. The experience

from the studies of the oscillatory properties of simple networks is that

the functional signi®cance of the cellular effects of pharmacological chal-

lenge can only be understood when they are incorporated into network

models. Models at this level can and have been directly assessed and

validated against neurophysiological experiment and show predictive

validity. Though the understanding of which simpli®cations in a network

model maintain an accurate re¯ection of network dynamics is at an early

stage, the amount of such information continues to accumulate and is

increasingly being incorporated into more abstract simulations. Such

abstract models share the property of being testable at different levels

of organization, from the pattern of activity of identi®ed cells to the

behaviour of the network. As a tool for the clinical psychopharmacolo-

gist, the techniques of neural network modelling remain in development.

In addition to the delineation of a de®nitive cortical architecture, more

experimental information is required concerning the effects of transmis-

sion through different receptor types on cellular function. However, as a

means of understanding the relationship between clinical observations

and the effects of a transmitter on arrays of non-linear target neurons,

neural network modelling shows the expected promise of a paradigm

shift.

Summary

Neural network models can represent transmission through a number of

different receptor types. This is achieved by implementing synaptic events

and effects with differing time courses and speci®c anatomy within the

network architecture. The effects on network behaviour as a whole are

then examined. This provides a theoretical bridge between pharmacolo-

gical effects observed at cellular and behavioural levels. At its simplest, a

model can distinguish between the slow, diffuse neuromodulator effects

that are directly modi®ed by drugs such as neuroleptics and antidepres-

sants, and the fast neurotransmission that occurs between the target
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neurons. At more detailed levels of simulation, individual receptor types

with selective effects on ion channels and second messenger systems can

be used. This chapter examines the different ways in which pharmacolo-

gical detail has been included within neural network models, and

describes the models that seek to explain the effects on observed beha-

viour.
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5

A connectionist view of psychotherapy1

FRANZ CASPAR

The state of the art in psychotherapy

Psychotherapy is the discipline of treating psychological (including soma-

toform) disorders with psychological means in a planned, professional

way. Psychotherapy has made considerable progress since the days of

unsystematic, although sometimes very effective, stimulation of psycho-

logical change by gifted and charismatic individuals. The elaboration of

unconscious mechanisms by Freud, the formulation of learning mechan-

isms by the behaviourists, and the plea for the power of human relation-

ship by Rogers, are just a few of the many steps in this development. A

better understanding of the mechanisms underlying the development and

maintenance of disorders, as well as the principles of change, has been

achieved. More is known both about the effects of psychotherapeutic

procedures and about the factors that are signi®cant in the process of

psychotherapy. Under the scrutiny of empirical data, some approaches,

such as (cognitive) behaviour therapy, have experienced considerable

change. Today, depending on the type of disorder, psychotherapy offers

success rates of 70±85 per cent.

Studies of cost-effectiveness show that high-quality psychotherapy is

such an excellent investment that the question is not whether society can

afford psychotherapeutic services, but whether society can afford to

renounce psychotherapy if the limited costs of psychotherapy are com-

pared with the almost unlimited costs of untreated psychological pro-

blems (Grawe, Donati and Bernauer, 1998). Books such as the

Handbook of Psychotherapy and Behavior Change (Bergin and Gar®eld,

1994) give testimony to the progress we have made and the position we

have reached. Such books contain a wealth of knowledge, too extensive

to be stored and handled by any one individual. We have reason to be

proud of what we have achieved so far.
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Despite the undoubted success of psychotherapy in many areas, there

are still many types of disorder (and individuals whose problems do not

®t into any simple category of disorder) for which psychotherapy has not

been so successful. Success rates of 45 per cent for state of the art treat-

ment for eating disorders still leave a majority who are not helped to a

satisfactory degree. Even high success rates of around 70 per cent for

psychotherapy in general (Grawe et al., 1998) means that almost a third

of clients are investing time and money into therapy without a satisfac-

tory outcome. Undoubtedly, there is still a need to improve psychother-

apy, and one way to do this is to look for de®cits in the existing basic

concepts and try to overcome them.

The development of an integrative movement is certainly an important

factor in improving psychotherapy, but it is very unlikely that simply

combining existing concepts will eventually lead to the development of

new, suf®ciently powerful concepts (Norcross and Wogan, 1983). There

are several speci®c frontiers where we need to make progress beyond

integrating the most valuable elements developed by representatives of

the current approaches.

One such frontier is the development and use of models for under-

standing the mechanisms underlying disorders, change, and the function-

ing of psychotherapists. Such an understanding is needed for practice: it

would be of purely academic interest if psychotherapy was considered to

be a mere cookbook application of techniques. However, if psychother-

apy is more realistically considered to be a highly individualized process

in which therapists may use standard procedures and techniques ± as

described in manuals ± as prototypes, but generally develop a new, opti-

mized procedure for every individual patient, a deeper understanding of

patients is needed to guide the process of constructing the therapeutic

procedure (Caspar, 1995). Similarly, a deeper understanding of therapists

is needed as a basis for re¯ecting and improving their action.

The view taken here is that: (1) an individualized model of each patient

and an individualized procedure are needed, and (2) although in some

instances traditional models of cognitive±emotional functioning are very

practical, they are not a suitable basis for understanding a number of

other important aspects of psychopathology, of change, and of psy-

chotherapists' functioning.

The main focus of this chapter is on connectionist concepts and their

potential to serve as a basis for understanding and planning individual

change. The potential of these concepts to guide research related to

aspects that are dif®cult to deal with using traditional models is also
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discussed. Because of space constraints, it was necessary to decide

whether to discuss few aspects in depth or to give an overview of numer-

ous issues for which connectionist concepts may be relevant. The decision

was for the latter, since the main goal of this chapter is not only to

stimulate further interest in reading (e.g. Caspar, Rothen¯uh and

Segal, 1992; Stinson and Palmer, 1991) but also to stimulate the reader's

own ideas related to a variety of phenomena. Possibilities of psychother-

apy with patients with impaired neural systems cannot be addressed here,

even though, from a connectionist point of view, this would be a parti-

cularly interesting issue. It is assumed that readers already have some

familiarity with connectionism (see, for example, Stinson and Palmer,

1991; Caspar et al., 1992).

Limits of traditional concepts in founding an understanding and planning

of psychotherapy

Therapists impose limits on their own thinking, on the one hand due to a

one-sided adherence to speci®c therapeutic orientations, and on the other

hand due to more fundamental limitations residing in the basic concepts

used by several orientations. Such restrictions and de®ciencies are dis-

cussed in more detail in Caspar et al. (1992). The question here is whether

connectionism could provide concepts suitable for overcoming the limita-

tions which characterize most psychotherapy approaches. The impor-

tance of some disadvantages of traditional models to psychotherapy

may be small in general, but higher in speci®c cases (e.g. dif®culties in

thinking about the relation between `software' and `hardware' in a

dynamic way for schizophrenia, or brain lesions).

One important function of adequate theoretical concepts is that they

make sense of clinical observations. Traditional concepts are unable to

help with many phenomena observed in therapy. In therapy practice, the

aspects neglected by traditional models can therefore be taken into

account only incompletely and unsystematically. Although the patient's

self-organizational forces often bring about change in spite of our insuf®-

cient understanding, it is obvious that not only would most professionally

minded therapists feel more comfortable if they understood their patients

and the process of therapy better, but also they would work more ef®-

ciently.

The dif®culty symbolic cognitive models have in dealing with some

obviously important aspects of human functioning has had another

effect: it has contributed to the enduring appeal of psychoanalysis.
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Although psychoanalysis is not well founded in contemporary empirical

psychology and has may problems in explaining postulated mechanisms

in detail, it does at least address phenomena such as ambiguity, ambiva-

lence, simultaneous conscious and unconscious processing, multiplicities

of selves, latent contents, etc. (Stinson and Palmer, 1991).2 It is desirable

to develop concepts that at the same time address these and other clini-

cally relevant issues and are based on modern scienti®c psychology and

other important ®elds.

The appeal of connectionist models

It would be foolish to pretend that only a connectionist approach could

deal with all the phenomena addressed below, but in many cases a con-

nectionist approach does so in a more natural or ¯exible way. The rele-

vance of connectionist points of view for psychotherapy is not always

made explicit if it can be assumed that it is obvious.

Distributed representation, interconnectedness, and the distinction of

aspects of human functioning

In the most typical connectionist models, it is assumed that information is

represented in a distributed (as opposed to localist) manner. In addition,

different domains of a person's functioning (work, family, leisure, etc.),

as well as different aspects (cognition, emotion, etc.) are heavily inter-

connected. There is, however, variation in the density of connectedness,

and the system may even be built up in a way that could be described as

modular (e.g. Bechtel, 1993). As a matter of fact, complete connectedness

only works as long as networks remain relatively small.

There are several consequences of distributedness and interconnected-

ness. Although the aim of this section is to introduce the basic concepts

and not the clinical consequences, some macrolevel clinical analogies are

used for reasons of illustration.3

1. A limited impact from outside tends only to reach a part of the

elements responsible for adaptive or maladaptive patterns of beha-

viour and experience directly. For example, criticism of a person's

defensiveness usually triggers arousal and stimulates greater defen-

siveness, but has no direct impact upon the reasons for the defen-

siveness.
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2. Interconnectedness guarantees that parts that are not reached

directly can be reached by their connections to other elements.

They are then not changed under the direct in¯uence of an input

from the environment, but because other, connected elements inside

the system have changed. For example, it may not be possible to

change a person's wish to kill himself or herself directly, but it may

be possible to establish a cognitive dissonance by stating that killing

oneself would mean doing a favour to the person one most hates.

As long as connected elements are in the old state, they work

against change in a part of the structure that is under the direct

in¯uence of therapy. For example, a person may learn to say `no',

but may feel bad for some time because of the old belief that other

people would reject such a person.

3. Because interconnectedness is limited in larger systems, among other

things by modularity, in the sense of different components perform-

ing different tasks, the spreading out of activation is to some extent

channelled (see discussion below). For example, a new attitude

related to work may not easily generalize to private relationships.

4. Interconnectedness prevents behaviour and experience from simply

obeying the will of a person (in an everyday language sense).

Although will (e.g. the will to change) is one important factor,

there are other factors preventing will from having perfect control.

Furthermore, a person's will is itself in¯uenced by many factors.

From a connectionist point of view, much of the debate on deter-

minism is obsolete. Temporary states, as analysed in free associa-

tion, are also determined by a multiplicity of factors: `The neural net

theory could have been invented to explain free association' (Olds

1994, p. 598): Thoughts generally function according to free associa-

tion, but freedom is normally restricted by perceptions from the

external world as well as internal attention processes. In particular,

states such as moods and associations can be channelled in certain

directions beyond an individual's will, which is very relevant for

mood disorders (e.g. Teasdale and Barnard, 1993).

According to a connectionist view, different elements of human func-

tioning such as cognitions, behaviour and emotions, should not be seen

as entities actually existing in a patient. They are rather constructions

by the observer that serve to describe emergent properties of a system's

functioning. People behave and feel `as if' they had particular cogni-

tions, emotions etc., but as these are patterns produced by innumerable
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densely connected, small, meaningless units, there is no need to distin-

guish between these elements as if they existed in reality. The idea that

one can trace schemata in a patient's mind in a real sense has to be

abandoned (Henningsen, 1996): connectionist models are inherently

constructivist.

Connectionist models cannot only deal more easily than traditional

models with the relation between `psychological' aspects such as beha-

viour, cognitions and emotions, but also with the relationship between

the biological and psychological aspects. For example, the effects of

changes related to neurotransmitters can easily be understood as setting

learning parameters to different values. Needless to say, the newer

insights related to the temporary impact of psychological factors on neu-

rotransmitters and their more enduring impact on the brain can be under-

stood with no additional assumptions.

Much of the old discussion of what comes ®rst, cognition or emotion,

of whether or not there are basic emotions (Ortony, Clore and Collins,

1988), of whether one should concentrate on emotions, cognitions or

behaviour in psychotherapy, etc., seems overly simplistic if one assumes

that these elements exist primarily in the observer's mind, and that they

are all heavily interconnected. Based on the latter assumption, one could

argue both ways: because a change on one level, e.g. the behavioural,

would unavoidably introduce changes on the other levels, e.g. the cogni-

tive and emotional levels, it is suf®cient to concentrate on one level in the

therapeutic procedure and just be aware of the other levels. The other

argument would be: we should use all levels and channels in a system-

atically planned strategy, because if we have direct access to only one

level, the other levels will work against change, and true change should,

after all, involve all levels (Stiles et al., 1990). Probably both arguments

are true to some extent, but we have not even begun to study the issue

beyond the single case in a differentiated way, as would be suggested by

connectionist models.

Even in the absence of any precise knowledge of how different parts of

an individual's functioning in¯uence each other, a much broader range of

`side' effects needs to be considered when thinking about therapeutic

procedures. For example, behavioural interventions and practice may

not primarily or exclusively work on the behavioural level, but rather

by causing repeated contact with the environment: they lead to new

cognitive and emotional experiences, which can then be integrated into

the whole system. Behaviour may, in addition, cause changes in the

environment. Of these effects on the environment, it is not only the
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immediate `objective' advantages that count (such as a rise in salary after

an assertive dialogue with the boss), but also the fact that a changed

environment provides changed input to a system,4 with the possibilities

of reinforcing or inhibiting healthy as well as dysfunctional trends within

it. This dynamic interplay is certainly used by good therapists but, as yet,

we possess by far too little systematic knowledge about it. A connection-

ist view makes the de®cit obvious, and could serve as a basis for inves-

tigating the phenomenon in the future.

One general observation can be made regarding psychotherapy

research ®ndings: namely, that therapies are more successful if previously

existing strengths and preferences of a particular patient are taken into

account and used (Grawe et al., 1998). The widespread idea that in

therapy one should mainly identify de®cits and work on them is in line

with a mechanistic approach. In contrast, a dynamic approach such as

connectionism would suggest that desirable, adaptive patterns can be

achieved in many ways and by a variety of different patterns ± even

systems that from a narrow normative point of view have severe de®cits

± as long as one takes advantage of the existing strengths.

Understanding parallel processing: a variety of factors in a process of

multiple constraint satisfaction

People function in a holistic way. According to connectionist models, no

central steering unit is necessary to account for this. Connectionist mod-

els are `more democratic' than traditional models, as Olds (1994) stresses.

This is guaranteed by a process of parallel satisfaction of multiple con-

straints. These constraints can be `soft', i.e. they need not be de®ned and

assessed in a precise fashion. They can be very different in character (e.g.

a temporary mood vs a lasting ethical value vs a particular aspect of a

situation), and they can have different weights, which in addition can

vary over time and situations. A consequence is that people do not

need to decide between distinct alternatives if they are to act in an opti-

mal way. Psychological problems, if seen as `solutions', may be unreason-

able from a rational point of view, but when the internal and external

situations of a client are considered more comprehensively, their devel-

opment may make considerable sense. For example, painful obsessive±

compulsive thoughts may distract from threatening insights.

Parallel multiple constraint satisfaction is a principle by which a system

settles in a state of minimal tension. Rogers' (1951) tendency to grow can

be seen as a tendency towards the integration of new experiences and the
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internal development towards increasingly better functioning (Greenberg,

Rice and Elliott, 1993), which is perfectly in line with connectionism.

Another way of thinking of minimizing tension is that a system tends

to increase coherence of its elements. Coherence is indeed a principle

found to be an essential basis for `good solutions' throughout many

domains, such as theory building, law, etc. (Thagard, 1989). It can be

thought of and simulated in a very convincing way using connectionist

models (see below).

In a process of parallel constraint satisfaction, many of the outputs and

properties of a system that meet the eye of an observer must be seen as

emerging from the whole functioning, rather than as tangible parts of it.

As an illustrative analogy, the property of being humid cannot be located

in a single O or H atom, nor in an H2O molecule. Humidity, which is a

very obvious property of water, emerges as a property of a large accu-

mulation of H2O molecules. As a clinical parallel, Ramzy and Shevrin

(1976, p. 15) write in relation to psychoanalytic theorizing: `there may be

many conscious and unconscious communications involved in the forma-

tion of a symptom but the symptom itself need not be a communica-

tion. . . it is a trace left behind by these processes.' To view such

phenomena as emergent is very much in the mind of connectionism. It

would help to overcome simplistic views if therapists would think in such

a way more often. Consciousness, just as other aspects of a system's

functioning, is a feature dependent on many factors, none of which

determines in isolation whether something is conscious or unconscious.

Perception, expectations and the impact of the past on present

functioning

The ability to use patterns formed under the in¯uence of earlier input

when processing present input is crucial for survival. This assumption is

shared by traditional (e.g. schema) and connectionist approaches.

Connectionist models have the advantage that the process can take

place without a supervising unit (`homunculus'). The old patterns do

their job `by themselves', and are themselves incrementally changed by

incoming information. De®cient input is completed and expectations are

formed because patterns have a built-in tendency to complete themselves.

A small piece of information (e.g. aspects of a current situation) corre-

sponding to an old pattern is suf®cient to activate the whole pattern,

including associated emotions and action tendencies. The stronger the
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old pattern as an attractor, the less the new, activating information needs

to ®t, in terms of similarity and completeness.

Although the traditional concept of `default values' in traditional

frame concepts working with `slots' and `®llers' (Minsky, 1975) was use-

ful, connectionist models are more convincing in their effortless way of

®lling `holes' and completing themselves, and in their ability to do this

with soft, fuzzy information. Constructions with a heavy use of analogies

occur all the time. Transference of old to new situations is a natural

phenomenon, and not something particular to therapies. It is obvious

that perception in this sense, ®lling in missing information, be it adaptive

or maladaptive, and other aspects of information processing play a cru-

cial role in patients' as well as psychotherapists' functioning. For this

reason, realistic models of how these processes work are of great interest.

Connectionism could be a basis for considering under which conditions

analogies and other forms of pattern completion are used, and under

which conditions they are or are not useful. An example of immediate

clinical relevance is a connectionist model that is able to replace missing

parts of stories (Golden and Rumelhart, 1993). This corresponds closely

to what patient and therapist do when reconstructing the past.

Connectionist models make clear that an interactionistic view is

needed: traditionally, psychoanalysis emphasized the old `programs'

within a person (Olds, 1994), and behaviourism emphasized the current

stimulus situation. It is obvious that a system's (re)actions can only be

understood if the interaction of person and situation is the focus of

attention.

The role of the past is to provide remembered contents as well as

learned structures (which are not separate in connectionist models) assist-

ing the current performance of a system, including the processing of new

inputs. Remembered content as well as existing structures are relatively

stable, but are also changed by new input. Looking more closely, we can

never have the same memories twice, because memories are always pro-

duced anew, although they may look identical on the surface. Only to the

extent that the relevant parts of the producing system remain identical

can memories be identical. As there is always some change, all states and

outputs of a system continuously change to some extent. This is utilized

in therapy to bring patients gradually into more favourable states, which

often includes altering memories. Permanent change may be problematic

though, for example when in sexual abuse cases it is pivotal to remember

accurately what a person has actually done. It is obvious that the input by
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a therapist working on a patient's sexual abuse experiences over some

time speeds up changes within abuse memories for better or worse.

Seemingly in contrast to such continuous change of memories, experi-

ences that are related to strong, in particular traumatic, experiences tend

to be stabilized against change. Conscious counterparts would be a con-

scious decision `never to trust men', `always to hide one's feelings, what-

ever happens', etc. We would thus need a model accounting not only for

change but also for the maintenance of old patterns, even if in a wea-

kened fashion, over long periods. Even if old patterns seem to have

disappeared or lost their impact, the activation of other parts, or the

setting of parameters, may lead to their activation, e.g. ¯ashbacks in

post-traumatic stress disorder.

Adaptive as they are, at ®rst sight connectionist models seem less

suitable to model such stability than traditional models. In connectionist

models there are, however, mechanisms serving the resistance against

change.

Change, the ability of systems to compensate irritating input and

resistance to psychotherapy

A system may be ready for change, that is, in a state in which very little

input can have a strong immediate effect, or incoming information may

be embedded in such a way that it has a steady impact over a long period

of time. An example of the latter is a manager of a well-known, malign

sect who once came to see me. For a long time he identi®ed totally with

the sect and served it in many ways. When he witnessed how they treated

members who had clearly psychologically decompensated, this impres-

sion did not have an immediate visible impact on him, but it haunted

him, and gradually it eroded his formerly stable positive attitude towards

the group, until he ®nally left and helped to ®ght the sect.

Although connectionist models have many built-in mechanisms mak-

ing them ¯exible and prone to change (which is an obvious advantage in

comparison to traditional models), it would be wrong to focus one-

sidedly on the adaptability of connectionist systems. They also have a

remarkable self-protective ability of compensating disturbances and dis-

agreeable input. This makes them tolerant to faulty and noisy input, and

thus reliable. However, very often it also makes systems resistant to

therapeutic input that is not compatible with the existing system.

The extent to which a system is resistant to change depends on the state

of a particular system, such as the strength of the relevant attractors, and
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the setting of learning parameters. The clinical observation that a ther-

apeutic input needs to be strong enough not to be neutralized can easily

be simulated in connectionist models. The same is true of the observation

that too strong and threatening an impact can lead to rigidity, caused by

less favourable setting of learning parameters. These phenomena are

general, built-in properties of connectionist systems, which are also in

line with general concepts of change. In particular, Piaget (1954) assumes

that in assimilation, individuals try to process incoming information in

such a way that change to the existing structures is not necessary. This

can include distortions of the input to resist change. Only if assimilation

fails, accommodative processes lead to a change in the existing structures

to re-establish congruence between individual and environment. Several

clinical authors (among others Schneider, 1989; Stiles et al., 1990; Grawe,

1992) have referred to Piaget.

Beyond general conservative tendencies, the particular persistence of

some patterns, which is well known and acknowledged by many clinical

approaches,5 needs speci®c explanation. Yates and Nashby (1993) pos-

tulate that attempts to access dissociated material activate inhibitory

mechanisms. Other approaches assume special mechanisms that isolate

some learning experiences from the new input (Grossberg, 1986, 1987;

Brousse and Smolensky, 1989; Caspar et al., 1992).

Several approaches, rather than focusing all power on the elements to

be changed, concentrate on creating favourable conditions in order to

improve learning conditions in general, and to improve access to espe-

cially stable parts of an individual's functioning (Rogers, 1951; Erickson,

1968; Stiles et al., 1990; Mahoney, 1991; Caspar, 1995; Hayes, 1996;

Grawe et al., 1998). The goal is to enable a system to become more

¯exible and allocate resources to adaptive change processes.

Considerable thought has been given to the question of how a therapist

can create favourable conditions for accommodation, in particular by

providing a safe, assimilative basis within the therapeutic relationship

(see below). Approaches to in¯uence inhibitory mechanisms directly,

such as hypnosis, are interesting but need to be studied more comprehen-

sively to be understood properly.

It should also be noted that much stability is caused not so much by

compensating existing input, but rather by avoiding it completely. This is

the case with phobic patients. Connectionist models learn avoidance

behaviour as easily as organisms learning in the sense of behaviouristic

learning rules do. In addition, instead of having to wait for accidentally

occurring avoidance to be reinforced, connectionist models can be active
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`inventors' of `creative' avoidance strategies, just as we observe with real

patients. For example, based on behavioural learning principles, it would

be hard to imagine how a sociophobic student could devise a strategy of

speaking ®rst in a seminar in order to prevent his or her tension from

building up.

Emotions

Emotions have already been mentioned as being heavily interconnected

to cognitions and other elements of human functioning. It is plausible

that there is an old emotional system with at least partly innate reactions,

and there is a more differentiated, modern emotional regulation with

even more connections to cognitions etc. (Greenberg and Safran, 1987;

Greenberg et al., 1993). In addition to links within the individual, emo-

tional regulation is closely intertwined with the environment. Although

emotions can be de®ned as a particular kind of schema or node (e.g.

Bower, 1981; Grawe, 1992), it is dif®cult to understand the dynamic

interplay of emotions with other elements from a schema point of view

(Teasdale and Barnard, 1993).

Greenberg et al. (1993, p. 5) state that `emotion schemes are internal

synthesizing structures that preconsciously process a variety of cognitive,

affective, and sensory sources of information to provide our sense of

personal meaning. This will help us to present a view of people as who-

listic, organismic beings in whom affect, cognition, motivation, and

action are continually integrated in everything they do'. It can be

assumed that Greenberg et al.'s referral to a scheme model is justi®ed

by the fact that such a model is better known to readers, whereas it would

be dif®cult to show how a schema model can actually function in the way

described by the authors on a microlevel. The example of depression

shows how models that make intuitive sense on a macrolevel need to

be revised when their functioning is traced empirically, as done by

Teasdale and Barnard (1993). Although Teasdale and Barnard do not

decide clearly for a connectionist approach, their model is a big step in

this direction.

The fact that it is possible to distinguish between different systems

(cognitive vs emotional, old vs new, etc.) is compatible with the connec-

tionist view that elements such as cognitions, emotions, etc. can be used

as constructs by the observer, but this does not mean they are real enti-

ties. They are emergent products of dynamic systems, in which neither

cognitions nor emotions exist as real entities. This view makes it much
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easier to account for the fact that in psychotherapy we often have to deal

with cognitive emotions (e.g. surprise), physical emotions (e.g. nervous-

ness), emotionally loaded action tendencies, etc. The boundaries are not

at all clear in clinical reality but, fortunately, from a connectionist point

of view, this does not pose a problem.

Implicit, unconscious aspects

From a connectionist standpoint, the fact that much of human function-

ing remains unconscious requires no explanation. This is related to the

subsymbolic nature of connectionist models, their ability to process

implicit information, and their ability to function without a central steer-

ing unit. Parts of the whole functioning become conscious only when

special activities of a system bring about such consciousness, and this

happens mostly with stable, persisting states (Stinson and Palmer, 1991).

The fact that as a common feature of many psychological problems,

patients tend to focus their attention on their own state (Ingram, 1990)

contributes to making some aspects of the problem conscious.6 The fact

that spontaneous consciousness is limited to parts of the whole function-

ing contributes to patients' inability to change the situation.

There is no clear distinction between conscious and unconscious, and

between knowing and not knowing something, but rather a continuum:

`The process is completely gradual and there is no special point at which

we would say the network now knows, and before this, it did not know.'

(McClelland, 1994, p. 63). This corresponds closely to observations in

clinical practice.

Whereas conscious processing ± which is in the foreground in tradi-

tional cognitive approaches but can also be simulated by connectionist

models ± has advantages for some tasks, there are clearly other tasks

which, apart from greater speed of processing without conscious control,

can be done more easily by unconscious, subsymbolic processes. An exam-

ple is pattern recognition, which typically involves parallel processing of

soft constraints, e.g. when processing non-verbal information. Another

related example is the framing of non-symbolic raw information to make

it accessible to conscious processing. Intuitive processing is a third issue

that connectionist models handle more easily. Obviously, all this is highly

relevant for the understanding of patients' as well as therapists' function-

ing. The list could be continued, with the functioning of dreams as

attempts by the system to spread activation with the aim of arriving at

a better state through processes of integration (Olds, 1994), etc.
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One consequence of the dominance of the unconscious and implicit is

that it would ± as clinical practice shows ± be naive to assume that human

functioning can be controlled in a straightforward way by conscious,

semantic thinking. At present, focusing attention is one of the most

important principles in therapy (Greenberg et al., 1993). From a connec-

tionist point of view, however, this is only one possible approach to

changing people. In future practice, explicit cognitive learning will prob-

ably become less important in psychotherapy, and implicit forms of

learning more important. The increased clinical interest in unconscious

processing (Meichenbaum and Gilmore, 1984; Mahoney, 1991; Dowd

and Courchaine, 1992), together with a wish to ground an approach on

modern models of cognitive±emotional regulation, will most probably

contribute to the appeal of connectionism in the future.

The environment and situations

Schema theories (e.g. Piaget, 1954; Neisser, 1976; Gallagher and Reid,

1981; Grawe, 1992) emphasize that the relationship between schemata

and the environment is interactional, but only a few authors draw con-

sequences from the notion that learning does not take place in isolated

brains (Norman, 1986). The actual interface between individual and

environment, incremental change, and other aspects that seem important

for an adequate conceptualization of system±environment interaction

have always been a problem for traditional approaches. Traditional mod-

els typically assume that the learning parts of a system need some kind of

external control. In connectionist models, the person±environment inter-

action is crucial from the outset, and it happens in a continuous, smooth

and autonomous manner. One important aspect of person±environment

interaction is that goals, beliefs etc. are not ®xed, but their activation and

impact vary over time, largely under the in¯uence of a changing environ-

ment (Ingram and Hollon, 1986; Ingram and Kendall, 1987).

It would be unfair to blame the neglect of the environment only on

traditional models. There seems to be a built-in human mechanism to

attribute psychological phenomena mainly to the individual (Caspar,

1995). Even when clinical approaches, such as systemic family therapy,

pay more attention to the interpersonal environment, they usually con-

centrate on enduring and predictable aspects. A connectionist foundation

of dealing with the environment could support a more dynamic approach

in which a continuous interaction with the environment is presupposed

and utilized, and in which stable parts are the exception rather than the
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rule. This would lead to a greater concentration on the less predictable

parts, and on the on-line monitoring of the interaction (Pfeifer and

Verschure, 1992). The consequences for speci®c psychotherapies are

obvious: much more effort would be invested in the monitoring of

ongoing processes by patients and therapists. When talking about a per-

son, one would not focus on stable properties but on ¯uctuations, and

how they can be monitored and used.

One aspect of a connectionist view is that, just like in Prigogine's (1977)

dissipative structures, change to a higher order is stimulated by exchange

with the environment. Learning is based on discrepancies between the

expected and the observed: `adjust each connection weight in the network

in proportion to the extent that its adjustment will reduce the difference

between the output of the network and the actual next event'

(McClelland, 1994, p. 62). The question is, then, how the environment

needs to be shaped, and how the individual needs to be exposed to the

environment to maximize its stimulative impact. Clinically, one would

put much more emphasis on between-session effects than many

approaches do currently (Hayes, 1996). Repeated confrontation with

the environment is needed to reach a stable new state, and `noisy'

input, which plays a specially important role in acquiring stable, reliable

new patterns, can best be provided by a natural environment. For exam-

ple, it is easy to provide exciting group experiences in a workshop `on the

island'; but in connectionist models, just as clinical experience suggests,

fast change is not stable if it is not integrated by repeated experience,

preferably in a patient's regular environment.

One justi®ed criticism of psychotherapies and outcome research is their

concentration on short-term outcomes. The more one is interested in the

development of an individual in the long run, the less one can afford to

concentrate on a brief phase with a strong impact from one source, such

as therapy. In the long run, more factors, and especially factors in the

environment, become relevant and need to be considered.

Speci®c and non-speci®c factors

From a connectionist point of view it would be unreasonable to distin-

guish between speci®c and non-speci®c factors of psychotherapy, as is

done explicitly or implicitly in much of the literature. As a consequence,

the question of what contributes more to change ± favourable learning

conditions brought about by `unspeci®c' factors (e.g. a property of the

therapist, or even the weather at a particularly important moment), or
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speci®c input by speci®c factors (e.g. exposure to a phobic situations) ± is

obsolete.

When analysing the impact of `unspeci®c' factors, such as the thera-

peutic relationship, a connectionist view suggests that the dynamic char-

acter of a system should be taken into account to a greater extent. For

example, some needs of a patient in the therapeutic relationship may be

typical, i.e. relatively stable, corresponding to relatively stable attractors,

but on closer investigation there may be a ¯uctuation in the moment-to-

moment activation of needs. A concentration on ¯uctuations will help a

therapist to increase the frequency of favourable states and to utilize

them in the therapeutic procedure by timing interventions appropriately.

One of the most developed clinical approaches to tuning the system

into a state favourable to change has been used by Erickson (1968). It was

characteristic for him to use non-threatening entries to the system. Some

therapists seem to be very gifted with such strategies, but research is

needed to ®nd out whether impressive intuitive strategies only work for

a selection of patients, and whether and how the strategies can be made

explicit and learned by therapists. Generally, a recommendation may be

to base an individual therapeutic offer, composed of `unspeci®c' and

`speci®c' parts, on more explicit approaches of individual case concep-

tualizations (Caspar, 1995). A generally useful rule is to support a patient

in all important goals, and to create or maintain tension only in a

restricted area in which one wants to work at a given moment (see below).

Understanding disorders in a dynamic way

The understanding of an individual patient's psychopathology is an

important basis for every psychotherapy. In spite of this, a connectionist

view of diverse disorders is addressed only very brie¯y here, as it is the

topic of other contributions to this volume. A number of considerations

have already been presented that, in sum, suggest a dynamic view of

psychological disorders.

An earlier paper (Caspar et al., 1992) addressed in greater detail repeti-

tion compulsion as a common phenomenon underlying many psycholo-

gical problems, and which exists independently of the concepts and

terminology used to describe it. In brief, phenomena related to repetition

compulsion are listed as described in the psychoanalytic literature (p. 730):

Repetition compulsion actions are accompanied by suffering, yet a person experi-
ences a nearly inescapable compulsion to execute them. The actions themselves
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and the forces controlling them are usually not in direct awareness. A person

experiences the suffering as destiny and often, their contribution to the situation is

not or not accurately acknowledged. If a person has an explanation, it is usually

limited to factors in the present. Mostly, however, a person is merely confused by

the divergence between conscious awareness and what seems to actually deter-

mine the behavior.

Not only behaviours, but also cognitions (e.g. the view of oneself and

other individuals) and emotions are part of such patterns, or, in other

words, determined by as well as determining repetition compulsions.

Often, therapists are able to see parallels between patterns in the past

and in the present, without being able to explain these patterns by posi-

tive goals, and often (but with the signi®cant exception of personality

disorders), the patterns are experienced as ego-dystonic by the patient.

Nevertheless, the patient seems to invest great amounts of energy, in spite

of the pain related to it, to re-establish problematic experiences and

situations similar to the past situation in which the pattern had been

learned. To speak of repetition compulsion, the situation in the present

must be similar enough to the situation in the past to trigger the repeti-

tion, yet dissimilar enough to speak not simply of an `appropriate use of

knowledge acquired in the past'. A broad range of patterns can be viewed

as repetition compulsions, from very concrete repetitive actions (e.g.

compulsive cleaning) to patterns lasting over a long time (e.g. marrying

a spouse similar to one's father or mother, and becoming gradually

unhappy over the years), including the therapeutic relationship (e.g. pres-

suring the therapist into patterns familiar from people in the patient's

earlier life). Strong emotions ± experienced or avoided ± are an obligatory

part of repetition compulsions, going from strong negative feelings to

sulky satisfaction when one ®nds out that one's view of the world has

once again turned out to be right. Repetition compulsions are not char-

acteristic of one particular disorder (e.g. obsessive±compulsive disorder),

but are the basis of many psychological problems, also experienced by

individuals without clinically signi®cant disorders.

Explanations of repetition compulsion include discharge of affects,

relaxation of tensions, mastering traumata, integrating traumatic experi-

ences, undoing traumatic experiences, vicarious mastery by the therapist,

distraction, and need for security guaranteed by the familiarity of pat-

terns. These explanations are elaborated in greater detail in Caspar et al.

(1992).

Most therapists would agree that whatever name is given to the phe-

nomenon, repetition compulsions need to be dealt with because they can
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be seen as underlying clinical problems and/or as posing dif®culties to the

therapeutic relationship. Therefore, a connectionist therapist would need

to ®nd an explanation as a basis for developing therapeutic strategies.

The ideal would be to explain repetition compulsion parsimoniously, to

explain the involved mechanisms at the same time as precisely as possible,

and to explain the pathological phenomenon with the same models used

to explain adaptive functioning. If, as other approaches cannot, a con-

nectionist view cannot provide all the answers, it should at least help in

formulating the remaining questions in such a way that fruitful research

is stimulated. To what extent do connectionist models live up to these

demands?

Some properties of connectionist systems clearly have a direct corre-

spondence to repetition compulsion phenomena.

Systematic patterns of behaviour and experience can be produced with-

out awareness. As emphasized by psychoanalysis, hidden elements can

have a strong impact without being visible on the surface.

Control cannot easily be established, for instance by replacing old, mala-

daptive, unconscious parts by adaptive, conscious parts of a structure.

New elements, such as insights, need to be well integrated if they are to

determine behaviour and experience. This does not mean that a single

piece of new information cannot have a strong impact, but a system

needs to be prepared to react strongly upon it.

New information is interpreted in terms of the existing structure. There is

no clear boundary between adaptive and maladaptive processes.

If the existing attractors are strong, the input can be distorted to an

astounding degree, and the reactions of a system become strongly

predictable. At best, there are several typical perceptive and beha-

vioural patterns (local minima) but no comprehensive, balanced reac-

tions. For example, a man can only be seen as either a rapist or as a

`regular guy', but nothing in between.

Variation in the reaction to similar input can be caused by variation of

the states in which the system can be. An obvious example is the

different behaviours of an alcoholic in a sober vs drunk state, but

different states can also be induced in a merely psychological way

(e.g. `states of mind' concept by Horowitz, 1979).

Input has a stronger impact if the existing structures are `ready' for it,

typically when attractors determining the interpretation are already

activated.
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Long-lasting but not very strong stressors as well as brief, traumatic

experiences are able to build up strong, lasting attractors.

Patterns stabilize particularly well if they are interlocked with the envir-

onment in such a way that there is a mutual reinforcement.

The idea of mastering traumata by integrating them into the existing

structure is a very natural one from a connectionist point of view.

The observation that integration of an individual in a social network

has a protective effect and that talking through the experiences with

friends and relatives helps enormously with mastering traumata is very

much in line with what one would expect from a connectionist point of

view. Of course, it is not the integration on a macrolevel per se that

helps, but the ongoing integration of new and old experiences due to

permanent activation and exchange in the human interaction.

Problem solving can be an unconscious moving around in a space of

possible solutions until the one with a minimum of tension is found,

which may be only a local as opposed to a global minimum. The

possibility of getting stuck in a state that is far from an optimal state

(`global minimum') is built in.

An important question is, of course: why do repetition compulsions

persist? First of all, many persist just long enough to be diagnosed, but

not over a very long period of time. Some may persist because they are

very isolated and have only few connections to the rest of the system,

therefore the impact of new experiences is minimal. Furthermore, from a

longitudinal perspective, it may make sense to assume sensible and less

sensible phases in which learning parameters are set differently. From a

cross-sectional perspective, the same may apply to different domains of

life. In addition, input seemingly suited to change repetition compulsions

may be disempowered already at the surface of the system by powerful

attractors that transform the original challenging information into

neutral or con®rmatory information.

Figure 5.1 illustrates some aspects of a connectionist view of the func-

tioning of repetition compulsions in terms of an energy landscape.

Although it is possible to model such a landscape strictly based on math-

ematical formulae (e.g. Rumelhart et al., 1986), at this point readers are

invited to look at it in an intuitive manner.

The question is what kind of impact therapeutic interventions can have

in such a system. It makes immediate sense that a variety of psychother-

apeutic interventions `heat up' the system, either in general or in some

parts. Therapeutic interventions can help ± randomly or more targetedly
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± to bring systems into different states, in the sense of `connectionist

problem solving' as described above, to ®nd more favourable states

representing solutions. A wonderful example is Kelly's (1955) ®xed role

therapy in which different roles are tried out by patients.

Therapy can concentrate on building up additional connections, be it

on a more conscious level as in cognitive therapy, or on a less conscious

level by interventions, e.g. to integrate traumatic experiences by repeated

contact with previously avoided situations. Corrective experiences, in

particular, can contribute to changes in the connections traumatic experi-

ences, as well as dysfunctional strategies, have to other elements. Two

points are important from a connectionist point of view. First, old pat-

terns hardly ever disappear completely. However, by strengthening new,

competitive connections, and by weakening old ones, the probability is

lowered that old patterns maintain a strong impact on behaviour and

experience. Second, changes in connection strengths represent in them-

selves solutions, even if there is no explicit solution in the sense of tradi-

tional problem solving. Therapy should not be seen as replacing a distinct
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old state by a distinct new one, but rather as a gradual attempt to change

the probabilities of a system moving on to different types of states as the

situations change.

Because many parts are unconscious, it is not an easy task to establish

better control. Even if parts become conscious, or if it is possible actually

to `replace' problematic parts by more adaptive alternatives, one would

still expect that well-established old structures would resist integration of

these new alternatives. An expectation would thus be that patients need

to be supported in therapy over some time and with some intensity, and,

most important, in concrete applications of the new patterns in reality, if

the new parts are to be integrated and become more powerful than the

old parts.

What is the balance of these considerations related to repetition com-

pulsion? Connectionist models are able to account for all clinically

important aspects; several are naturally built in. Few assumptions beyond

the general working principles of connectionist models are needed.

Beyond repetition compulsion the list of similarities between clinical

observations and connectionist concepts could be continued.

Comorbidity is an issue of high relevance in current discussions on

psychopathology. Although enormous effort has always been put into

placing different disorders in distinct categories, there is the observation

that disorders co-occur, overlap, and develop into each other (Ingram

and Kendall, 1987; Clarkin and Kendall, 1992; Caspar and Grawe, 1996).

For example, the experience of anxious arousal in a particular situation,

to which a caffeine overdose may have contributed, leads to avoidance

(normally with an absence of high levels of actual anxiety). After some

time, the avoidance leads to a loss of social contacts and other reinforce-

ment, which is the beginning of a depression. Alternatively, the loss of

energy and abilities caused by severe depression leads to anxiety about

socially demanding situations, if they cannot be avoided.

Although for some purposes it may make sense to stress the distinction

between anxiety and depression, for other purposes it may be better to

acknowledge that they share many elements (negative affectivity, among

others; Watson and Clark, 1984), and concentrate on a description of the

aspects that actually differ, such as the type of physiological hyperarousal

(Clark and Watson, 1991), without conceptualizing them as really sepa-

rate phenomena. From a connectionist view, it is easy to imagine how a

maladaptive development begins with a small `hole' in the energy land-

scape (accidental anxious arousal) that gradually becomes larger and

deeper (by avoidance) so that an individual gets into the hole from a
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greater variety of states, and gets out less easily. Then the loss of positive

experience erodes a valley towards a `depression hole' which, after some

time, becomes deeper than the original anxiety hole. This increases the

relative chance of an individual getting into and remaining in this depres-

sive local minimum for longer periods of time, although the local mini-

mum of anxiety has not disappeared yet. The interplay of multiple soft

constraints, including the interaction with the environment, plays a

greater role in this development than any single causal factor.

Such a view also reminds us of the fact that anxiety and depression are

actually not homogeneous states: the individual goes through a series of

states, including `normal' ones, which can be distinguished, although they

may share some properties causing one to summarize them as `anxiety' or

`depression'. The aim of this way of thinking about disorders is not to

invent yet another psychopathological model, but to ground a heuristic

view of therapeutic procedure on it, as outlined below.

Understanding therapies in a dynamic way

A connectionist view of psychotherapy has a number of consequences.

First of all, if psychological problems are viewed as described above,

therapy must be conceptualized as introducing input into a system to

change the landscape in such a way that desired states become more

probable and undesired states become less probable. We would need to

accept that no direct impact is possible but that we can only try to

stimulate a system to self-organize itself in a more favourable direction.

One could also say that we can provide only soft constraints that, in the

right combination and in the right moment, can have a strong, but never

a direct, impact. We would have to accept and utilize all properties of a

dynamic system as described above. This shifts much of the therapist's

attention away from applying a previously developed plan to monitoring

the patient's present state, and to using the continually changing state of

a patient (and the patient±therapist relationship) in a ¯exible way. The

induction of good learning states ± setting learning parameters appropri-

ately for the whole system or particular domains ± will become more

important. The idea is not so new; Grawe (Grawe et al., 1998), among

others, has given considerable thought to the question of how a therapist

can create favourable conditions for accommodation, in particular by

providing a safe, assimilative basis within the therapeutic relationship.

Even earlier in modern psychotherapy, Rogers was an advocate of this

approach, and now we have models to work it out in a much more
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detailed, individualized fashion. We should not shy away from (criti-

cally!) studying experts, such as sect leaders, successful salespeople, and

politicians. Some of them are better practitioners of connectionist prin-

ciples than the average psychotherapist!

Emphasizing learning conditions means that therapy should not be

seen as an application of techniques. The situations with which patients

are brought into contact (for example, in behavioural exposure)

together with the therapist are a complex and changing input pattern.

If therapists want to optimize this input pattern to maximize effective-

ness and ef®ciency, they need to construct their action anew in every

situation to take into account all lasting and temporary factors. Such

factors are aetiological knowledge about a disorder, knowledge about

prototypical procedures for a particular disorder (as described in treat-

ment manuals), but also hypotheses about the patient's structure,

including, but also going beyond, a particular problem (e.g. referring

to individual resources). In addition, a connectionist view gives a special

weight to constraints related to the particular situation, which is also

dynamically related to the therapist's interventions (e.g. the therapeutic

relationship), and the environment. Such a construction process is, of

course, based on explicit or implicit predictions of effects the interven-

tions will have. It is, however, obvious that at best, a direction of

development can be anticipated, not a precise state. This does not

mean that in the majority of cases we have to expect a development

analogous to the fascinating observation that in chaotic systems the

movement of a butter¯y's wing can trigger a hurricane. In psychother-

apy it is more common that realistically possible developments are

limited and, although there are small surprises in every therapy, sur-

prises on a larger scale are much less frequent.

There are a number of consequences related to such a view of therapy,

which can only brie¯y be mentioned here.

Therapists should not strive for `perfect' performance according to static

rules, because a precise effect cannot be predicted, but rather monitor

their action as well as patients' reactions, and permanently adapt and

correct the procedure (Norman, 1986; Foppa, 1990) without overreact-

ing (Vogel, 1994).

Because the therapist has important, but limited, possibilities of directly

providing new input to the patient, an important task is to mediate

input from a broader environment (Guidano and Liotti, 1983; Hayes,

1996).
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Therapists should be ready to deal with both stability and sudden change,

and try to understand and utilize them on an individual basis.

When thinking about effective principles, one should pay attention to

aspects of self-organization and timing, and generally see therapy

more as a `sequential ¯ow' (Orlinsky, Grawe and Parks, 1994). There

are many references to dynamic models in the rather traditional psy-

chotherapy literature, such as Piaget's assimilation/accommodation

model (Gallagher and Reid, 1981), Waddingtons `epigenetic landscape'

(Waddington, 1974), and Prigogine's dissipative structures (Prigogine,

1977). In addition to rather metaphoric references to such dynamic

models, we should try to use them more systematically, including pre-

cise modelling and simulating (Hayes, 1996; Schiepek et al., 1997;

Tschacher, Scheier and Grawe, in press).

States with disorganization and increased variance should be expected, as

several traditional concepts have suggested already. It seems that some

therapies go through a phase of stagnation or even deterioration before

deeper change takes place (Grawe, 1992; Newman and Martinovich

1996; Hayes, 1996). However, although overall temporary destabiliza-

tion seems to be correlated with positive outcome (Hayes, 1996), it

would be a relapse into causal-linear thinking to assume that change

is related to destabilization in all cases, or `the more destabilization the

better'. Destabilization can also lead to deterioration. Connectionist

modelling has the potential of helping to trace in detail developments

observed with speci®c patients.

Strong attempts at changing a system often activate strong resistance.

The secret of good therapy, if there is any, is to ®nd a balance between

too much and too little strength and persistence of input, or, in

Piagetian terms, to compose an offer with a balance of parts that

can be assimilated (to keep a patient open and ¯exible) and parts

requiring accommodation (not to leave him or her in the maladaptive

old state).

An assimilation of problematic experiences in such a way that they no

longer have a maladaptive impact must involve all levels (cognitive,

emotional, behavioural; Stiles et al., 1990). In the future, it may be

possible to ®ne-tune therapeutic action based on even better elaborated

dynamic models.

Input between therapy sessions can have a strong impact on the system,

and easily outweigh the input by a therapist in one session a week. This

may be a reason for some therapists to see their patients more fre-

quently, or to do in-patient therapy. If we pay more attention to
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using a patient's natural environment systematically, as behaviour

therapists and systemic therapists tend to do, we may be able to save

time and money, and in addition minimize the patient's dependence on

a therapist.

A connectionist perspective suggests a neutral, functional view of what

different traditional approaches of psychotherapy can contribute. If we

take ± for reasons of space limitations as well as lack of empirical

foundation for a more subtle view ± stereotypes of different approaches

as points of departure, one could speculate that, among others:

Psychoanalysis helps to develop insight and to inhibit old patterns con-

sciously by such insights. It also helps to `decentre', which, from a

Piagetian point of view, supports change, and motivates the develop-

ment of new patterns (for more information, see Turkle, 1988; Olds,

1994).

Cognitive therapy has a relatively direct impact on some cognitive pre-

mises of problematic behaviour and experiences. Not accidentally,

however, cognitive therapists generally put a heavy emphasis on inte-

gration by paying due attention to emotions and behaviours.

Behaviour therapy provides new experiences by which new links are estab-

lished and the weights of old structures become relatively less impor-

tant (see Tryon, 1993).

Gestalt therapy or experiential therapy activates emotions: new experi-

ences are provided so that the patient can survive strong emotions;

an integration of more peripheral cognitive and behavioural learning

experiences is furthered.

Rogerian therapy primarily creates favourable learning conditions by an

accepting, warm relationship; insight and integration are furthered by

deepening experiencing.

Focusing (Gendlin, 1978) uses non-symbolic access to implicit knowledge,

etc.

A common element of different therapies, although with great differ-

ences in weight, is their encouragement and direct provision of new

experiences, or help in getting into contact with new experiences. Thus,

new input is introduced that has the potential of incrementally changing

the existing landscape. Therapies providing strong, in general emotion-

ally laden, experiences can be considered as `heating up the system'. It is

striking to what extent a quote by the cognitive scientist D. Norman

(1986, p. 538) sounds psychotherapeutic: `You have to shake up the

system, heat up the temperature. Don't let it freeze into position. New
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interpretations suddenly arise, with no necessary conscious experience of

how they came about; a moment of nothing and then clarity, as the

system heats up, bounces out of one stable con®guration and falls into

a new con®guration'.

Although clear main effects can be highlighted, the fact that therapy

course and outcome are also, if not mainly, determined by the `unspeci®c'

effects of any intervention also needs to be highlighted. A more systema-

tic consideration of side-effects can be postulated on the basis of tradi-

tional models as well (Caspar, 1995), but connectionism provides a more

compelling general basis for thinking about the issue of main vs side-

effects. A view of therapy resulting from a combination of little factors

rather than one main factor corresponds much more to the view most

patients as well as therapists have. If patients can single out one or two

factors that they think are responsible for the change they have experi-

enced, this often has more the character of a construction serving to

organize their experience, than corresponding to the experience itself.

Therapists often seem to think they did something wrong if therapy

success just emerges from a variety of factors and only in some cases

seems related to main factors ± such as a particular technique ± in a

straightforward way. Side-effects should receive more attention, and

they should be used more systematically.

The functioning and development of therapists

The question of how therapists function, and how this functioning is

developed, is in itself interesting. It becomes all the more interesting if

the perspective of applying a technique correctly is replaced by a perspec-

tive of developing an individualized therapeutic procedure that satis®es

multiple constraints in parallel, and is continuously adapted based on the

reaction of the system (patient). The question becomes even more exciting

if we see therapists as managers of highly complicated dynamic processes,

in which ± to make things even more complicated ± they also are involved

as people. Traditional models deal well with a limited set of clear rules;

connectionist systems with a multiplicity of soft rules.

Therapists' functioning has already been referred to above, and many

of the principles addressed apply not only to patients but also to thera-

pists. Issues of particular relevance are intuition, framing and handling of

soft information, implicit knowledge, the ability to recognize non-

obvious patterns, empathy, `clinical wisdom', noise and fault tolerance,

the ability to use defaults, automatization, the ability to process great
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amounts of information, graceful deterioration of performance (`graceful

degradation') when working under bad conditions, automatic error com-

pensation, the fact that processes running in parallel already have an

impact on the whole before they are completed (Cohen, Dunbar and

McClelland, 1990), and the need for a constructivist view.

The fact that traditional models have dif®culties in accounting for

intuition, whereas practitioners know how important intuition is, may

be the most important single factor for the regrettable reluctance of

practitioners to maintain contact with academic psychology, or whatever

other scienti®c background they have. Three models seem particularly

relevant in this context: the model describing frequency and adequacy of

intuitive processing as depending on familiarity and dif®culty of tasks

and subtasks (Hammond, 1988; Hamm, 1988); the model of intuitive

processing as depending on expertise (Dreyfus and Dreyfus, 1986); and

the model of rapid switching back and forth between rational±analytic

and intuitive processing, to use the respective advantages and compensate

disadvantages in relation to varying subtasks (Pascual-Leone, 1990). The

last-mentioned model is supported by research showing that therapists

are able to be intuitive in the sense of holistic processing, and at the same

time rational±analytic in the sense of conscious, re¯ected processing

(Itten, 1994; Caspar, 1997). These approaches, among others, support

the position that it is not acceptable to treat intuition as a non-scienti®c

phenomenon. To the extent that traditional models have dif®culties deal-

ing with intuition, the need for models by which the phenomenon is

treated as a regular form of processing grows. A related issue is the

enormous capacity for processing large amounts of information very

fast, for which connectionist models can also account (Shaastri and

Ajjanagadde, 1993).

Traditional models are a good basis for teaching contents (diagnostic

categories, techniques, etc.), but not suf®cient for training internal pro-

cesses (hypothesis generation, ¯exible use of knowledge, multiple con-

straint satisfaction) in a satisfactory way. An example of issues that

need re¯ection, and for which a connectionist basis could be useful, is

the development of automatization. Automatization is desirable because

automatized processing is less vulnerable to capacity limitations

(Shiffrin and Schneider, 1977; Cohen et al., 1990). However, it not

only has advantages but disadvantages, as the automatized `re¯ex' is

not always the best reaction, and `wisdom' includes the ability to resist

automatization to some extent (Hanna and Ottens, 1995). Another

example is the observation that patients ®tting neatly into familiar
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concepts, with expert models performing therapy in an ideal way, are

not ideal to learn from. Trainees also need `noisy' input, that is,

`strange' patients, models that are not performing ideally, etc. But

what are the right combination and timing?

As far as the therapist as a person is concerned, we need to think much

more about conditions under which therapists can learn and perform

well. For example, the concept of negative affectivity (Watson and

Clark, 1984) should be considered from a connectionist perspective. It

describes a type of person who is very introspective, self-re¯exive, ready

to discuss with others, dreaming and daydreaming more than others, and

tending to focus on the negative side of others. Is this typical for thera-

pists? If it is, how can we tune the systems (therapists) into more favour-

able states to use the positive and minimize the negative parts (negativity,

lack of optimism)?

As far as diagnostic processes are concerned, we could, as Berrios and

Chen (1993) do, view them in terms of energy landscapes, in which the

therapist as a person is intertwined with the diagnostic system and with

information from an individual patient. Different styles of relating symp-

toms to diseases could be identi®ed and, if suboptimal, changed on the

basis of a connectionist model.

The control of attention is another very important issue neglected by

traditional approaches. Although elaborate connectionist models of

attention are also lacking, it is relatively easy to imagine how a partly

conscious, partly unconscious competition of different contents and pro-

cesses for attention, as well as the impact attention has on these processes,

could be modelled in a spreading activation model.

It is not arbitrary whether or not we have realistic models of therapists'

performance and learning; we need them not only for research, each

therapist should have them available, because otherwise they cannot sys-

tematically choose those conditions that favour optimal learning and

performance. For example, the gain of expertise by experience strongly

depends on the availability of feedback, which is not automatically pro-

vided by daily practice. Trainers, in particular, should base their practice

on appropriate models: although supervision already now appears as a

`slow process of multiple corrections and rewards, similar to the ``train-

ing'' in a connectionist system' (Olds, 1994, p. 608), there is certainly

much we can optimize based on explicit, dynamic learning models. As

far as ef®ciency of training is concerned, we are still far from an optimal

offer (Caspar, 1997).
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Communication with the patient and with colleagues

Communication with a patient should re¯ect the assumptions that:

whatever is said reaches the patient only indirectly because it is inter-

preted by him or her at the periphery.

the patient has only limited introspective abilities.

what and, especially, the way we communicate have an impact on the

patient's ability to learn.

Many patients would prefer models that simplify a complex reality.

For example, they prefer to believe that their therapist `knows' what is

wrong with them (instead of a constructivist view), that they `have an

anxiety' (as a clearly distinguishable disorder, instead of thinking of

something always ¯oating, which may be dif®cult to separate from

other disorder categories), that their therapist can change them or solve

their problems (instead of just providing some input to the system that

may or may not help the system to change itself).

Other patients, however ± and we believe this group would be even

larger if we used existing possibilities of explaining models better ±

develop justi®ed resistance against simplistic, monocausal interpreta-

tions. They prefer a model in which a therapist would show awareness

that his or her hypotheses are of constructivist nature, that many factors

in therapy are in interaction and should be used, although nothing can be

predicted precisely, that the patient's functioning is something very com-

plicated and that categories like `anxiety', `repression', `reinforcement',

`threatening experience', etc. are only crude and imperfect descriptions of

what is actually going on, that change is normally incremental, that

con¯icts and the tendency of a system to ®ght back against disturbances

caused by the therapist are something very natural. Needless to say, the

way such ideas are conveyed needs to be adapted to the intellectual

abilities of the patient (a resource often underutilized in therapy due to

the misconception that an intellectual approach is incompatible with the

often desired strengthening of emotions, and intuition). All, or most, of

the elements addressed above are not unique to connectionist thinking,

but a connectionist view implies them in a stringent, comprehensive way.

Many elements of a connectionist approach can be conveyed in a very

simple, concrete manner. An example would be to draw a picture similar

to that in Figure 5.2. As the therapist talks, he or she would point fre-

quently to the drawing (pointing can be indicated here with numbers in

the ®gure only in a very imperfect way). The therapist could say:
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Let's for a moment see your problem in terms of a landscape. Of course, that's

not how it really works, but it may help to think about a certain aspect. See this

curve (1); it stands for the different states you can be in. For example, this hole (2)

on a high overall level represents your anxiety. These (3) would be more pleasant

states, during work; this (4) is, for instance, your excitement about the success you

recently had with that sale. This part (5) stands for anxiety-free states when you

are in your family; here (6) you are excited about what your son Ricky said

yesterday to you. Here (7) you are a little upset, as was the case on Saturday,

when you did not win the lottery. The line represents something like negative

tension; the closer the line comes to the ground, the better off you are. Here (8)

would be complete, desire-free happiness, if that's ideal at all. Got it?

Later on, one could continue:

The way I have drawn it here you see a crucial difference between the negative

state due to the lottery and an anxiety state. The anxiety state is relatively lower,

that is, more positive compared to the immediate environment. To come out of this

state you would need to climb over (10) the hill. The hill (9) represents, for

example, going out to places you are avoiding now, or confronting yourself in

your mind with traumatic situations in the past. The situation we have now is

that, following my suggestions, you always climb a little bit, and then, as tension

increases, fall back into old patterns (11). You are disappointed, you develop

doubts about therapy, etc. As we know, you are not always in anxiety states,

but you have little control over whether you get into a panic or not. As long as

this `anxiety hole' exists, it works like a trap when you wander between different

states over time. What I want to illustrate is, in order to move permanently into a

new, really better state, you need to develop ways to overcome this hill, and that's

painful. I wish I could spare you from that, but there is no way. So what do you
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think we can do, instead of getting desperate half way up and falling back, to be

strong enough and eventually master the hill, steep and high as it may be?

Of course, what we have concentrated on here, due to space con-

straints, should ideally be developed in a dialogue with somewhat shorter

therapist statements (although, if presented in a suitable way, many

patients prefer to listen and get some conceptual input more than

many therapists seem to believe). Also, if intellectual capability is low,

the ideas conveyed may need to be even more simple.

In the communication with colleagues, a connectionist background can

contribute to the awareness that it is never possible to make a colleague

`copy' one's view 100 per cent. Communication provides input patterns

that are processed by the colleague's system, with many factors partici-

pating (including a hungry stomach, rivalry, personal biographic mem-

ories stimulated by a patient, sexual attraction to the colleague or the

patient, the role played in an institution, to mention only a few). It is

sometimes frustrating how limited our ability is directly to reach a col-

league in a congress paper, an article, or even in a very close commu-

nication in daily work. To maximize our impact we should be aware, in

particular, that:

how well we reach him or her depends on our ability to establish favour-

able learning conditions (current setting of parameters), and

whatever input we produce, its processing depends on existing knowledge

(more enduring structures). When trying to address a colleague's

knowledge base, we should be aware that most knowledge is not repre-

sented in readily available, explicit form, but is rather fuzzy, implicit

and dynamic.

The development of new heuristic rules of therapy

A connectionist view of how theoretical concepts can be used by a practi-

tioner suggests that a model like the connectionist model should be stored

in several ways in a therapist's memory. It should be stored in a complex

way to serve as background for thinking in depth about clinical observa-

tions and problems, and there should be some `primitives' (Hofer, 1993;

Caspar, 1995) closer to the surface and readily accessible, in the form of

heuristic rules. In the above considerations, several statements had the

character of such heuristic rules already. It may be useful, however, to

collect and complete the list here. Again, to invent these rules, a connec-

tionist background is not needed, but it makes them especially plausible.
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Plan your interventions on several levels simultaneously (cognitive, affec-

tive, behavioural, somatic; Hayes, 1996).

Before starting an intervention, consider if the patient is in a favourable

learning state.

Bring the system (the patient's as well as your own) into a favourable

learning state.

Heat up the system to make it ¯exible.

Do not heat up the system too much in order to avoid decompensation

and resistance.

Keep a balance between strong enough impact (not to be neutralized by

the system) and not too strong impact (not to stimulate strong resis-

tance).

Expose the patient repeatedly to natural input.

Further the integration of input to prevent it from getting stuck at the

periphery.

Never intervene in a mechanistic way and always take the self-organizing

abilities of the patient into account.

Keep in mind that, whatever you think about your patient, it is a con-

struction.

Find coherent new solutions (`good gestalt'), in which different domains

(e.g. private, work), goals (e.g. autonomy, closeness) and levels (cog-

nitive, emotional, behavioural) are in a balance, or at least consider

whether a patient has the possibility of developing coherence after the

therapy.

If a relevant phenomenon does not make sense from the perspectives

considered so far, keep looking for additional bio-psycho-social deter-

minants. Maybe the phenomenon emerges from a variety of forces of

which none alone would be strong enough.

Construct your procedure as parallel multiple constraint satisfaction

(Caspar, 1995).

Pay attention to side-effects: therapy process as well as overall outcome

are usually largely determined by a multiplicity of soft side-effects.

Rather than trying to be perfect in your therapeutic procedure, concen-

trate on learning from feedback and correcting your errors (Norman,

1986; Foppa, 1990).

To develop such a list further, many open questions need to be studied.

For example, under what conditions is it better to concentrate on one

problem or one aspect of a problem for a period of time? When is it better

to work on its surroundings simultaneously?
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Simulating the effects of planned intervention

Traditional models have their strength in capturing structure in a simple

way, connectionist models in modelling change. The dynamics of change

are considered less intensely than would be ideal in therapy planning, and

this is largely due to our inability to model them (a) more precisely, and

(b) in a suf®ciently simple way to be utilized in practice, or at least in

training. There are ideas in the literature of how connectionist simula-

tions could be used to model phenomena relevant for psychotherapy.

Park and Young (1994) refer to connectionist simulations of different

psychodynamic defences in the recall of traumatic memories by altering

the arousal state of the network during learning.

As part of an ongoing project on the training of inner processes in

therapists (Caspar, 1997), a program by Mross and Roberts (1992) to

simulate the construction±integration model by Kintsch (1988) is used.

The program simulates connectionist spreading of activation, although

the nodes are localist (symbolic). This way, not all advantages of the most

typical distributed connectionist models are used. The advantage of such

a hybrid model is that the networks are much easier to feed and it is much

easier to trace what happens in them. Here, we give a simpli®ed example

of how a therapist's view of a case is represented (Fig. 5.3a), and how

then the impact of an intervention can be simulated. The program does

not actually simulate a real therapy course, but the impact an interven-

tion should have, according to the view previously declared to the com-

puter by the therapist. Space limitations do not allow all details to be

explained here, but it is hoped that this gives at least an impression of

what could be done on a larger scale.

The goal is to reduce social anxiety (as expressed by its activation value

in the list) by using an intervention sending input to elements related to

anxiety. Figure 5.3b illustrates how cognitive±behavioural interventions

(needless to say they are simpli®ed here), used to attack some underlying

beliefs (as expressed by negative, dotted links), have hardly any effect:

they are neutralized by the system ± after 11 iterations their activation

value is at zero, without noticeable traces in the remaining system. What

impact would it have to bring the system into a more favourable state by

appealing to the resources (positive aspects) of the patient's functioning?

Several additional elements and links represent this approach (Fig. 5.3c).

As the activation values show, most elements of this approach are also

neutralized, but they leave traces: there is some reduction of the `social

anxiety's' activation. The simulation gives a ¯avour of how dif®cult it is,
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Fig. 5.3 Simpli®ed networks representing a therapist's view of a patient's problem
and two types of intervention. The solid lines represent a positive, the broken lines
a negative (inhibitory) link. CBT: cognitive±behaviour therapy. For further expla-
nation, see text.



not only in simulation but also in reality, to bring about signi®cant

change. When simulating dif®cult cases (e.g. a borderline case) we

have, however, also found the phenomenon that a system may ¯ip

from a state with much parasuicidal behaviour to a stable state with

very low activation of nodes representing such behaviour. Even with

dif®cult disorders, such as personality disorders, such observations cor-

respond to observations in reality, and connectionist simulations may

help us to understand the conditions under which such change takes

place. In the author's research group, important parts of an entire ther-

apy with a bulimic patient have been successfully simulated and it was

possible to simulate the ¯ipping between bulimic and non-bulimic states

by merely varying the degree of self-esteem dependent on the quality of

interpersonal relationships, just as had been observed in reality.

Needless to say, such modelling does not contain any truth, and many

technical as well as psychological aspects would need discussion.

However, it can already be used in simple forms to guide re¯ection

and, it is to be hoped, better planning by therapists. A pilot study

shows that therapists' acceptance and interest are very high (Caspar

and Torhorst, 1996), and connectionist modelling is used in current psy-

chotherapy training (Caspar, 1997).

Problems of connectionist models and possible solutions

As Norman (1986, p. 546) states about connectionist models: `A large

number of issues are now naturally addressed that were dif®cult to deal

with before. In turn, a large number of things that were easy to do before

are now dif®cult'. However, just as not all advantages of connectionist

models are relevant for a use in the domain of psychotherapy, this is also

true of disadvantages.

A ®rst point is that, with distributed representations, it is dif®cult to

trace what actually happens in connectionist models. There is increased

research that may help remove the `black box' image of connectionist

processing. Nevertheless, at the moment the limited transparency is

indeed a great disadvantage. Several reactions are possible.

A recommendation to use traditional models (e.g. Plan Analysis; Caspar,

1995) is justi®ed if they allow a good enough approximation to `reality'

for the purpose for which they are used.
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For many re¯ections about the functioning of people and psychotherapy,

we do not need to trace developments in concrete detail, but can utilize

models in a more abstract way.

Some problems can be treated with hybrid models, as illustrated in the

last section.

An important step to make connectionist models more surveyable is the

more recent approach of building them in a modular way (Cohen et al.,

1990).

A second point is that connectionist models have many degrees of

freedom (which is a criticism levelled against information-processing

models in general; Cohen and Servan-Schreiber, 1992). This insight

should prevent us from trying to prove anything based on such models,

but we can still use them as a heuristic tool to give us new ideas about

psychotherapy and ultimately to contribute to true explanations. In addi-

tion, we should rather strive for simplicity than for too complex models.

However, if we want to simplify in a rational way, we need background

models that are suf®ciently complex to imagine the effects a simpli®cation

in one or another aspect may have (Elliott and Anderson, 1994).

As Miller, Galanter and Pribram (1960, p. 182) write: `a good scientist

can draw an elephant with three parameters, and with four he can tie a

knot in its tail', but `no benign and parsimonious deity has issued us an

insurance policy against complexity'. When looked at in detail, things are

often complex, but in order to take advantage of a model, not all details

need to be understood. As Olds (1994) argues, psychoanalysts were also

able to utilize a steam-engine model without understanding steam engines

in detail. To be useful practically, models need to be simple enough to be

used by practitioners without daily dependency on technical experts, even

if these are needed to question and improve models from time to time.

We should also be aware that, due to the number of degrees of freedom

in reality, in the ®eld of psychotherapy generally a posteriori construc-

tions of `how something could happen' are more typical than true expla-

natory models. If connectionist models are too complex to be judged for

their quality as explanatory models, at least they allow a precise model-

ling and a tracing of the impact of variations in the structure and para-

meter setting.

A third point is the stability±plasticity dilemma, as addressed above.

Although there are some relatively simple mechanisms suited to explain

the persistence of some patterns in a dynamic system, the problem is not a

trivial one and should be kept in mind. Again, this dif®culty exists not
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only for connectionist models. McClelland (1994) points out that the

graduality with which individuals learn, according to Piaget, is a need

from a connectionist point of view. A system needs confrontation with a

suf®cient sample of an environment to develop well-integrated changes,

which, of course, is a clinically relevant point. How is it possible that such

an incremental system can also produce fast qualitative learning steps?

In part, the apparent problem may be a product of dif®culties in tra-

cing a system's development in suf®cient detail (McClelland, 1994). It

could be that the system does not really change so suddenly, but that

there are all kinds of subtle, incremental changes in parts of the system

that are less accessible to the therapist's observation and the patient's

introspection, but signi®cant for a later change on a larger scale. The

change in a single, more accessible variable may then appear as a sudden

shift, whereas, if seen relative to all other changes that have already taken

place, or follow, it is a relatively small change. For example, a signi®cant

`sudden' insight may have been preceded by several changes on the emo-

tional level, which paved the way to the insight. In addition, to persist

and gain clinically relevant in¯uence on the whole system, the insight may

need to be followed by changes in behaviour and in the environment.

Important and sudden as it may be, if seen as a part of the whole, the

insight is only part of a series of incremental changes. Possible conceptual

solutions to the stability±plasticity dilemma have been mentioned above.

A temporary solution, at least to some of the problems stated above, is

the use of hybrid models (Kintsch, 1988; Anderson, 1990; Ueberla and

Jagota, 1993; Horgan and Tienson, 1994). If one uses them, it is impor-

tant to maintain relevant properties of connectionist models, such as the

dynamic functioning and the ability to deal with multiple soft constraints.

From an economic point of view, hybrid models have advantages

(Gutknecht, 1993), as pure models explaining the same range of phenom-

ena tend to be much more complicated. In addition, it seems possible to

use different models simultaneously. Physicists, for example, seem to be

able to think of light as being a stream of particles and a wave at the same

time, although, logically, these views contradict each other. The use of

hybrid models is also a good way of mastering the dif®cult shift from

thinking traditionally to thinking in a connectionist way in several steps.

Conclusions

Do we need connectionist models? Tietel (1991) presents the interesting

argument that, in the view of some psychoanalysts, psychoanalysis has
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rather the role of criticizing developments in society, including compu-

terization. This would be a role above models such as connectionism, and

indeed, if the role of approach A is to judge approach B, it should not let

itself be in®ltrated by approach B. Other authors argue that connection-

ism may not go far enough in that it remains within the boundaries of

rationalism (Pfeifer and Verschure, 1992). Further, there are many exam-

ples of models that are in line with relevant aspects addressed in this

chapter without being connectionist. An example is Stiles et al. (1990),

using Piagetian schemata as a base. Another example would be M.

Horowitz's (1979) `states of mind' concept. It seems, however, that

often authors open up to connectionist models when they keep looking

at their phenomena in detail (Caspar et al., 1992), or they leave open the

question of which basic models are more advantageous (e.g. Greenberg,

Rice and Elliott, 1993).

Obviously, the interest in and acceptance of new approaches depend to

a large degree on their ability to account for phenomena that were hard

to account for by existing approaches. This is, however, not an all-or-

nothing issue, and it would be naive to believe that connectionism should

simply replace other approaches (`scienti®c reductionism'; Smolensky,

1988).

From the perspective of connectionist approaches, each (or most) of

the existing approaches to psychotherapy is able to contribute unique

aspects to understanding and stimulating change. None is, on its own,

comprehensive enough to provide a ¯exible, individualized approach

using all the opportunities to give every patient an optimal and ef®cient

psychotherapy ± or to state clearly and reliably that psychotherapy is not

the means to help a patient in a particular situation. A connectionist

perspective can contribute to an unbiased evaluation and utilization of

the respective advantages and at the same time make clear where an

integration of the existing (as opposed to developing new) concepts is

not suf®cient, as discussed throughout this chapter. In addition, connec-

tionism can contribute to developing a common language (Tryon, 1993).

The utilization of connectionism in psychotherapy should be furthered

by case studies similar to those by Stiles et al. (1991) for the assimilation

model, and by comparing real therapies with simulations. Already, con-

nectionism can be used as `a framework in which to develop models or

theories' (Bechtel, 1993, p. 149). Traditional models favour thinking in

terms of a limited number of main factors, working in isolation or

together in a simple way. Such a view prevents us from looking into

the dynamic interaction of many soft factors, each of minor importance,
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which, however, seem to be responsible for a great deal of outcome

variance. The general development is away from seeing all that remains

unexplained by a limited number of simple factors as `error variance'

(Mahoney, 1991).

One last argument in favour of connectionism is that it has gained

ground in cognitive science, and psychotherapy needs to maintain contact

with basic science: `One reason that psychoanalysis lost some of its scien-

ti®c respectability in recent decades is that it lost touch with the rest of

science' (Olds, 1994, p. 605). This should not happen to psychotherapy in

general.

If this chapter has not been successful in convincing the reader to

believe in the advantages of a connectionist approach to psychotherapy,

it is to be hoped that it has had at least one effect: that schemata should

no longer be seen as static entities, but as active, dynamic processes.

Summary

The ®eld of psychotherapy has clearly made progress over the past dec-

ades. Nevertheless, some patients have not been helped as much as would

be desirable, and some phenomena are still hard to conceptualize based

on traditional models. The potential of connectionist models to contri-

bute to further development is discussed and exempli®ed. Their potential

lies mainly in the dynamic process of satisfying a multiplicity of soft

constraints in parallel, which is typical in clinical practice. The role of

past experiences, resistance to change, the interplay of cognition, emo-

tion, behaviour, and environment, the functioning of psychotherapists,

and a constructivist position are also addressed from a connectionist

perspective. Finally, inherent problems of a connectionist approach to

psychotherapy and possible solutions are discussed.

Endnotes

1 Just as in Caspar, Rothen¯uh and Segal (1992), the term `connectionist' is
preferred over `neural networks' because the still much discussed issue of
whether these models actually correspond more to the biological basis is of
minor importance for the points made in this chapter. Additional arguments

in favour of the term `connectionism' are used by Henningsen (1996).
Rather than reproduce the points made in an earlier, more comprehensive
paper on `the appeal of connectionism for clinical psychology' in general

(Caspar et al., 1992), this chapter focuses on psychotherapy, and tries to add
some new aspects.
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2 See Stinson and Palmer (1991) and Caspar et al. (1992) for a more complete

list of de®ciencies of traditional approaches.

3 The use of a different level for reasons of illustrations does not imply that
the author believes in simple continuity between levels.

4 Unless speci®ed otherwise, the term `system' is used for the functioning of
an individual patient, not a multiperson system.

5 Grawe (1992): `sore spots'; Stiles et al. (1990, p. 412), refer to Gendlin

(1978): felt referent; Rice (1983): problematic reaction point; Horowitz et
al. (1975): warded off content and con¯ictual ideas, object-relational notions
of experiences that are split off from awareness to maintain a sense of self-
coherence and connection with an idealized internal object; interpersonal

notions of `not-me' experiences that are selectively inattended to in an
attempt to avoid anxiety; Kelly (1955): anxiety when events occur that fall
beyond the range of convenience of the individual's construct system, etc.

6 Connectionist concepts may also be a good basis for thinking about the
interesting contradiction that, on the one hand, increased self-attention is a
vehicle of several approaches to therapy (e.g. psychoanalysis, schema the-

ory; see Grawe, 1992), and, on the other hand, there are indicators that
`effective change mechanisms of therapy are those methods that induce a
decrease in self-focused attention' (Ingram, 1990, p. 165).
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6

Modulatory mechanisms in mental disorders
DAVID HESTENES

This chapter proposes a theoretical framework for biological psychiatry

founded on the following general principles derived from neural network

theory and empirical neuroscience.

1. Cardinal principles of neuropsychology:

(a) the brain has a modular structure,

(b) information is represented by neural activity patterns in each

module,

(c) all psychological functions, including perception, cognition,

learning, memory and motor control, are modes of neural activ-

ity pattern processing.

2. Central brain state control:

Pattern processing in the various brain modules is coordinated by a

central control system. Control variables include the monoamines

(dopamine, noradrenalin and serotonin), acetylcholine and possibly

others. These variables modulate pattern formation, stabilization,

biasing, mixing, matching and switching in the modules.

3. Mental disorders from control malfunctions:

Manic±depressive illness and related mental disorders are malfunc-

tions of the modulatory mechanisms for pattern processing. The

particular symptoms of a disorder depend on the kind of malfunc-

tion and the speci®c module(s) in which it occurs.

The proposed cardinal principles are probably acceptable to most neu-

roscientists today, so it is unnecessary to justify them here. Indeed, they

are so widely accepted that they are often taken for granted. However,

the need for an explicit formulation of the cardinal principles is evident

when one realizes that they have surprisingly rich implications that

emerge when one tries to design brain architectures to implement them.
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One of the premier theoretical neuropsychologists, Stephen Grossberg,

has provided an analysis of these implications leading to a host of design

principles for speci®c mechanisms and architectures. This chapter reviews

a number of his results, with particular relevance to psychiatry.

Following Grossberg, the cardinal principles are elaborated into ele-

mentary network designs for the most basic pattern-processing capabil-

ities: reliable pattern registration and short-term memory, competitive

selection, long-term associative memory and recall, recognition and class-

i®cation. Then gain control variables necessary to control pattern proces-

sing are classi®ed. Later, these variables are identi®ed with

neuromodulators known to play a primary role in mental disorders,

and an explanation is given of how symptoms of these disorders can be

attributed to gain control malfunctions. This provides us with a theore-

tical framework for understanding the roles of neuromodulators within a

central system for integrating and controlling whole brain function.

The clinical implications of this framework are extensive. First, it is a

theoretical framework for psychiatric diagnosis ± for analyzing psychia-

tric symptoms and their genesis in speci®c gain control malfunctions, and

for identifying the loci of these malfunctions in brain modules or control

centers for targeted treatment. Second, the framework can serve as a

guide for research into neurobiological mechanisms in mental illness.

The clinical utility of the framework is limited by uncertainties about

neural correlates of the theoretical constructs. This uncertainty can

only be reduced by basic research, but research is most productive

when it is targeted toward crucial theoretical issues.

As the main concern of this chapter is to outline a theoretical frame-

work, it cannot do justice to empirical issues. Hestenes (1992) reviews the

enormous literature on monoamine neurotransmitters for evidence sup-

porting identi®cation of their roles as gain control variables. That article

can therefore be regarded as an empirical partner of this chapter. The

®nal section of the chapter reviews and updates some of the clinical

evidence and implications.

Pattern-processing principles and mechanisms

The main objective of neuropsychology is to explain psychological func-

tioning in terms of brain structure and activity. This calls for a de®nitive

answer to the fundamental question: `How is information represented

and processed in the brain?'
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According to our cardinal principles, the brain is a pattern-processing

machine. This is to say that information is represented by spatially dis-

tributed patterns, and it is processed by dynamic mechanisms governing

pattern formation. This should be contrasted with the alternative view

that the brain is a symbol-processing machine, that is, information is

represented by symbols and processed algorithmically ± a view that still

has a wide following within the disciplines of arti®cal intelligence, cogni-

tive psychology, and psychiatry.

The brain certainly does process symbols, as they are essential elements

of language. However, the question is whether symbols are basic elements

of cognition or whether they emerge from more basic pattern-processing

activity (Smolensky, 1989). Whereas the propositional structure of nat-

ural language has often been construed as evidence for the symbol-pro-

cessing view, accumulated evidence from linguistics and neuroscience

portrays language as a window to more fundamental mental processes

(Pinker, 1994).

The pattern-processing view has been given its most de®nitive formul-

tion by Stephen Grossberg (1982) in studies extending over several dec-

ades. He has elevated the subject to the status of a genuine scienti®c

theory, with a rich network of robust general principles incorporated in

mathematical models with testable empirical consequences. A qualitative

formulation of Grossberg's ideas will suf®ce for the purposes of this

chapter. However, it should be understood that these ideas are interre-

lated by (often sophisticated) mathematical arguments that lose much of

their logical force when described qualitatively.

Some of Grossberg's insights have been arrived at independently by

others and are fairly commonplace in neuroscience and connectionist

theories of information processing. Connectionist theories are often

said to be `neurally inspired' because processing is distributed over net-

works analogous to real neural networks, and they employ a Hebbian

learning law that may describe essential features of synaptic processes

believed to be the mechanisms for long-term memory in real brains. The

term `connectionist' is often used as a disclaimer of any responsibility to

model real neural networks accurately. Grossberg never makes this blan-

ket disclaimer when he tries to model real brain function. However, like

any good theoretician, he is careful to delineate the limitations and pro-

blematic features of his models.

Neuroscience has supplied mounting evidence in support of the pat-

tern-processing principles and mechanisms described below. It should be

understood, however, that these ideas were not extracted from empirical
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knowledge about real neural networks and so do not ®nd their primary

justi®cation there. Instead, Grossberg derived them from a deep study of

behavioral psychology (Grossberg, 1982). This is why they are so robust,

which is to say that they have not been invalidated by the accumulating

data of neuroscience, and they supply a secure framework for more

detailed models to account for new data.

Our task now is to elaborate the cardinal principles, ¯esh them out

with empirical results from neuroscience, and examine their implications.

To bring the most important ideas to the fore, many details and subtleties

of neural modeling will be ignored, but they can be incorporated by

consulting the references.

Each module of the brain is, like a retina, a layered structure that can

be modeled as a two-dimensional slab of identical computational units

called nodes. Each node represents a neuronal population supporting a

single output neuron. For example, the nodes of a cortical module may

represent cortical minicolumns attached to a single pyramid cell. The

internal state of a node is described by a single variable called its activity,

which can be interpreted as the electrical generating potential of the out-

put neuron. The activity has a limited dynamic range set by the minimum

potential of the output neuron and the maximum potential at the ®ring

threshold when the neuron discharges.

As depicted in Figure 6.1, the internal state of a module with n nodes

is an activity pattern x � fx1; x2; . . . xng; where xi is the activity of the

ith node. Two different levels of pattern activation can be distinguished.

First, there is a subliminal pattern, for which the activation of each

node is below its ®ring threshold; psychologically, this can be inter-

preted as a preparatory set or priming in both sensory and motor

modules. Second, there is an output pattern, when the nodes are acti-

vated above ®ring threshold; the information in such a pattern is trans-

mitted to other modules.

Nodes are connected by axons interacting with other nodes through

synaptic connections which, according to biological evidence, can be
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either excitatory or inhibitory. The signal transmitted along an axon

re¯ects the internal state of the generating node and, accordingly, has a

numerical value (representing the ®ring frequency of the output neuron).

The pattern-processing capabilities of a module are determined by the

structure of its nodal interactions. The following is a review of the struc-

tures necessary for some of the most important processing capabilities.

Pattern registration and storage

Since a neuron has a limited dynamic range, its sensitivity is limited by

noise at low activity and saturation at high activity. How then can neu-

rons maintain the sensitivity to wide variations in input intensities neces-

sary for accurate pattern registration? Grossberg calls this the noise-

saturation dilemma and has noted that it is a universal problem that

must be solved by every biological system. He has proved under very

general assumptions that for accurate pattern registration a module must

be a cooperative±competitive network of particular type.

Interactions among nodes in the same module are called lateral inter-

actions. Nodes linked by excitatory interactions are said to be coopera-

tive because the interactions mutually enhance the activities of the nodes.

Similarly, nodes linked by inhibitory interactions are said to be compe-

titive. As illustrated in Figure 6.2, for stable pattern registration the

excitatory interactions must be short range (on-center) while the inhibi-

tory interactions are long range (off-surround). That explains why the

on-centre/off-surround network structure is so common in real biological

modules from the retina to cortex.

Cooperative±competitive networks have some remarkable informa-

tion-processing capabilities. It is well known, from both empirical and

theoretical studies, that they can enhance contrasts in input patterns.

They also provide a means of implementing a competitive selection prin-

ciple which works as follows. Simultaneous inputs from different sources
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compete through lateral interactions to determine the activity pattern on

a module; the resulting pattern eliminates any ambiguities or inconsis-

tencies among the inputs. When `sharply tuned,' the competition is so

strong that only a few nodes can survive as winners. As described later,

this is a fundamental mechanism for neural code compression.

To maintain activity patterns for periods of the order of seconds in

biological systems, the structure of a module must be recurrent, i.e. the

nodes must have excitatory self-interaction (feedback), as indicated in

Figure 6.2. This type of pattern storage is called short-term memory

(STM) by Grossberg, though it is not precisely equivalent to the usual

de®nition of STM in cognitive psychology.

Associative learning recall

The most plausible biological mechanism for long-term memory (LTM)

storage in the brain is alteration of transmissibility at modi®able synapses

which gate signals from one neuron to another. In the simplest model of

this mechanism, the transmissibility is represented by a numerical factor,

called the synaptic weight, which alters the presynaptic signal multiplica-

tively to produce the postsynaptic input. Modi®cation of the synaptic

weight is governed by Hebb's law, which asserts that it increases when

the two interacting neurons ®re simultaneously. In psychological terms,

this means the association strength between activities of the two neurons

is increased. Variants of Hebb's law allow the synaptic weights to

decrease as well.

Since the information to be stored in LTM is represented in activity

patterns distributed across many nodes in a module, it cannot be stored

in a single synapse. Another mechanism is required and, as depicted in

Figure 6.3, that is supplied by the treelike structure of the output axon

from a node. An essential property of this structure is that the same signal

is transmitted simultaneously along all branches of the tree. This makes it

possible, under appropriate conditions, to store (learn) an activity pattern

in modi®able synapses of the tree. This minimal network for associative

learning of a spatial pattern is called an outstar by Grossberg.

An outstar works like this: suppose that, as depicted in Figure 6.3, an

input pattern (I1; I2; . . . In) is registered as an activity pattern in the mod-

ule M1. At the same time a signal I0 activates a node in module M2 which

broadcasts a `sampling signal' Si to the nodes in M1. This drives a change

in the synaptic weights wij until they are proportional to the Ij. As only

relative values of the variables have information content, this constitutes
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storage of the input pattern in the pattern of weights. The stored pattern

can be regarded as a template or prototype of what the outstar has

`learned from experience.'

The outstar has truly learned the activity pattern on M1 in the sense

that it can recall it exactly, as follows. Suppose that, at some time after

learning, the initial input to M1 has vanished but the input I0 reappears to

activate a signal Si from the outstar to read out, across the nodes of M1, a

subliminal pattern proportional to the synaptic weights. When the signal

is strong enough to drive the nodes of M1 above threshold, it is called a

performance signal.

The outstar is a universal learning device for every kind of learning in

the brain. Kinds of learning are distinguished by the different interpreta-

tions given to modules in which the outstar appears and how the modules

®t into the central nervous system (CNS) as a whole. The following are

three important examples.

1. Top-down expectancy learning. Suppose that nodes of module M1 in

Figure 6.3 represent sensory feature detectors in cerebral cortex. A

visual (or auditory) event is encoded as an activity pattern across the

module, with the activity xi of the ith node representing the relative

importance of the ith feature. The outstar node in M2 can learn this

pattern, and when the LTM pattern is played back on M1, it repre-

sents a prior expectancy of a sensory event.

2. Motor learning and control. Suppose that the nodes of module M1 in

Figure 6.3 represent motor control cells, so that each node excites a

particular muscle group and its activity determines the rate of con-
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traction. Then the outstar command node can learn to control the

synchronous performance of a particular motion with rate modu-

lated by the strength of the performance signal.

3. Temporal order encoded as spatial order. If the nodes of module M1

in Figure 6.3 represent items on a list (such as a phone number) and

their activities represent the temporal order of the items, then the

outstar can learn the temporal order.

Pattern recognition, classi®cation, and code protection

Although the outstar can learn to recall a given pattern, it cannot recog-

nize the pattern. Pattern recognition requires a different network con®g-

uration, called the instar by Grossberg. As illustrated in Figure 6.4, the

instar consists of axonal projections from `feature nodes' in M1 with

`synaptic gates' at a single `category node' in M2. According to Hebb's

law, when the category node is active the instar synaptic weights from

active feature nodes increase in proportion to the node activities. In this

way the node is sensitized to the features in the pattern.

To recognize a pattern is to distinguish it from alternatives. When a

pattern appears on M1 initially, it activates many nodes on M2 through

instar connections. Now suppose that M2 is a competitive±cooperative

network so sharply tuned that only the most strongly activated node

survives the competition (winner-take-all). The winning node then

becomes more strongly associated with the pattern. All patterns that

select the same node by this competetive mechanism form a category ±
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to a given pattern is selected by competition through lateral interactions in M2.



justifying the term `category node.' The category could represent an

object characterized by a set of its features.

Each node in M2 can be sensitized to a different category of patterns.

hence the two-module network in Figure 6.4 serves as a pattern classi®er.

It is, in fact, an adaptive pattern classi®er because each category is

de®ned by the instar synaptic weights that are tuned to the patterns it

has `experienced' (say, through sensory inputs to M1).

The adaptive classi®er is a general purpose device. It can be `trained' to

classify an arbitrary set of patterns by repeatedly activating samples of

those patterns on M1. In other words, it can learn to `classify patterns

presented by experience.' However, the number of patterns it can `distin-

guish' is limited by the number of category nodes in M2, and when this

limit is approached the system begins massive recoding, which destroys

categories it has already learned. This raises a profound issue of neural

network design that Grossberg calls the stability±plasticity dilemma: how

can a pattern classi®er be plastic enough to learn from experience but

stable enough to retain what it has learned?

Grossberg (1982) has shown that the stability±plasticity dilemma can

be solved for an `instar classi®er' (See Fig. 6.4) by introducing `outstar

feedback' (see Fig. 6.3) from every category node. To grasp the crux of

his solution, suppose that the nodes of M1 are visual feature detectors.

After ®ltering through the visual system, external sensory input from the

retina is registered in M1 as a `bottom-up' input pattern. At the same

time, a node in M2 may be activated internally to read out its outstar

template into M1. This template can be interpreted as a `top-down' expec-

tation ± the pattern that the module M2 `expects to see.' This expectation

is superimposed on the sensory input pattern in M1. If the match between

them is suf®ciently close, then the instar signal to the active node is

ampli®ed and fed back by the outstar to amplify the template. Thus, a

feedback loop of sustained resonant activity is set up, and it drives recod-

ing of both instar and outstar in the direction of the input pattern.

Grossberg calls this state of resonant activity between two modules an

adaptive resonance. Of course, the visual system involves more than two

modules, so an act of visual recognition would involve a coherent adap-

tive resonance among all modules of the system. Even so, the two-module

system exhibits the essential features of the resonance mechanism.

Adaptive resonance holds great promise as a key to understanding the

mind as a function of the brain. Grossberg himself suggests that it is `the

functional unit of perception and cognition,' and `only the resonant state

enters consciousness.' Sure enough, even the simpli®ed model of the
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resonant process described above does much more than recognition. In

accord with the deepest insight of Gestalt psychology, the resonant state

has the hallmark of a percept: it is a fusion of `bottom-up' sensory input

with a `top-down' expectation. More than that, it is a fusion of recogni-

tion and recall that adaptively recodes the template during every percep-

tual act. Since the sensory input is never quite the same for different

`sightings' of the same object or object category, the template will learn

an average of the sensory patterns from different sightings. Moreover,

features that are most frequently present on different sightings will be

most strongly represented in the synaptic weights of the template, so the

template tends to become a kind of cartoon emphasizing the most pro-

minent features. It is not too far-fetched to suggest that this mechanism

underlies the extraordinary human ability to identify people from simple

cartoons.

In this mathematical formulation, the adaptive resonance idea is so

rich in variations and implications that it has become a subject in its

own right, which Grossberg calls Adaptive Resonance Theory (ART).

The theory will continue to develop by incorporating empirical results

from neuroscience into increasingly realistic models. Unfortunately, there

seems to be no experimental means for verifying the existence of adaptive

resonances in vivo at the present time. However, there are many possi-

bilities for indirect tests of the theory. For example, ART provides the

most coherent theoretical framework available for explaining empirical

data on event-related potentials, and research in this direction has made

signi®cant progress (Banquet, Smith and Guenther, 1992). This greatly

enriches the possibilities for using evoked potentials in psychiatric

research and evaluation. In the absence of de®nitive empirical tests, the

strongest evidence for ART is the theoretical coherence it gives to brain

science. There seems to be no alternative to ART with such potential for

explaining the mechanisms underlying perception and cognition.

ART has equal potential for explaining disorders of perception and

cognition. Before considering this in the next section, the theory needs to

be elaborated more fully. Adaptive resonances process only expected

events. An unexpected event is characterized by a mismatch between

template and external input. In that case, the node of the mismatched

template must be shut off immediately to avoid inappropriate coding

(code protection). Then the other nodes can compete to determine the

one whose instar activation most strongly matches its outstar template

(competitive search). To accomplish this, several new network mechan-

isms are needed. First, there must be a means for comparing `top-down'
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and `bottom-up' inputs at M1. This can be achieved by introducing extra

processing layers or interneurons in M1. Second, there must be a rapid

on±off switch at each node. This can be achieved neurally by opponent

processing, which may explain why opponent cells are so common in the

brain. Finally, there must be a special type of signal to shut off all the

active nodes in the `category module' M2 when a mismatch has been

detected in M1. This is one of several mechanisms needed to control

activity in a module, to which we now turn.

Gain control functions and malfunctions

Psychotic symptoms, such as hallucinations and delusions, appear in the

conscious processes of perception and cognition. The association of these

processes with mechanisms of adaptive resonance suggests that we look

there for an explanation of psychotic symptoms in terms of malfunctions

in pattern-processing control. Control variables are necessary for ¯exibil-

ity in a module's response to different, sometimes con¯icting, processing

requirements. For the most part they can be regarded as gain control

variables, because they modulate the gain on various signals. Gain con-

trol is ubiquitous throughout the nervous system (Prochazka, 1989), but

its role in conscious processing at the cortical level has not been system-

atically addressed before now.

As indicated schematically in Figure 6.5, gain control variables can be

classi®ed broadly into two types: controls on (1) internal processing, and

on (2) external information ¯ow. Now we can provide plausible explana-

tions for major psychotic symptoms as breakdowns in the control of

speci®c pattern-processing capabilities identi®ed in the preceding section.
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Thought disorder

The thought disorder that often appears in acute mania can be under-

stood as a breakdown in the control of competitive pattern selection, with

particular symptoms depending on the module(s) in which the break-

down occurs. Thus, instabilities in the selection of plans for speech output

(encoded in activity patterns) can produce frequent, sudden switches in

subject, even in midsentence. Moreover, when the in¯uence of intended

meaning on the selection of words and phrases is weakened, the selection

will fall under the control of over-learned and low-level coding, resulting

in punning, rhyming and stereotyped associations. Alternatively, percep-

tual confusion will result from inability to decide among multiple inter-

pretations of sensory stimuli.

A typical module has a multitude of incompatible input patterns from

other modules that compete for control of the module output. Regulation

of the competition is essential to meet varying processing needs. One way

to do this is by gain control of lateral interactions within the module.

High gain biases the competition in favor of the presently active output

pattern and so reduces the possibility of pattern switching. This is one

mechanism for selective attention. On the other hand, low gain greatly

increases the tendency for pattern switching activated by subliminal pat-

terns. Therefore, the search of associative memory for new possibilities

can be enhanced by lowering the gain. When the gain is too low, however,

switching is excessive and stability of pattern formation is lost, resulting

in thought disorder.

Thought disorder also occurs in schizophrenia, but with different char-

acteristics from those just described for mania. Hoffman (1987) and

Shenton, Solovay and Holzman (1987) review the literature on `manic-

like' and `schizophrenic-like' thought disorders derived from analysis of

psychotic speech. The primary difference is that manics exhibit the ability

to organize a coherent discourse plan to express a single message or

gestalt, though its execution is disrupted by unregulated switches, as

described above; whereas, schizophenic discourse plans are incoherent

patchworks of disparate gestalts that are comparatively stable (without

the frequent switching apparent in manic discourse). Manic speech also

tends to be extravagant, loosely structured and often inappropriately

¯ippant, unlike schizophrenic speech.

Hoffman employs a simple Hop®eld network to simulate disordered

thought and so explain it by a network mechanism. His network is able to

simulate the sudden switches characteristic of manic-like disorder, but his
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mechanism for producing switches is quite different from the breakdown

of competitive pattern selection described above, and it is much too

simple to explain the extravagance and playfulness in manic speech or

the response to drug treatment, described below.

Hallucinations

We have seen that perception involves a superposition (or fusion) of

`bottom-up' sensory inputs with `top-down' expectations. Separate con-

trol of the gains on these two inputs confers powerful processing cap-

abilities, including cognitive abilities such as spatial visualization. There

is now substantial evidence that visual mental imagery involves activation

of the same modules activated in visual perception, with the major dif-

ference that primary visual cortex is coactivated only in the latter case

(Farah, 1989). Evoked mental images can serve as `expectations' priming

primary visual cortex for the detection of objects. Evidently, if the top-

down gain is too strong and is not shut off by the matching process, it can

produce percepts of objects not presented in the sensory input. This is a

plausible explanation for visual hallucinations. During dreaming, sensory

input is shut off and perception is dominated by internally generated

expectations, though it has often been noted that some sensory inputs,

such as sounds, are automatically integrated into the dream.

The explanation for auditory hallucinations is somewhat different, as is

to be expected because they commonly occur in schizophrenia without

visual hallucinations, whereas the opposite is common in manic±depres-

sive illness. Frith (1992) argues for a common mechanism underlying

auditory hallucinations and delusions. A gain control version of that

mechanism is considered next.

Reality check

ART tells us that, in some modules, input from two different brain loci

must be compared for consistency. This pattern-matching process can be

interpreted broadly as a reality check, but its speci®c psychological inter-

pretation will depend on the module. For example, in a sensory module a

top-down expectation may be compared with a bottom-up sensory input,

or in a motor module an intended plan of action may be compared with

an executed plan. In every case, theory suggests that gain control is

needed to regulate the degree of mismatch allowed.
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A number of mental disorders appear to be explicable as consequences

of reality check failure due to a malfunction of matching gain control.

According to ART, competitive pattern selection in one module (M2 in

Figs. 6.3 and 6.4) is governed by a reality check in another module (M1).

From the viewpoint of network theory, obsessive±compulsive disorder

(OCD) is evidently a malfunction of the competitive pattern-selection

mechanism, with inappropriate patterns repeatedly winning the competi-

tion for expression as thoughts and/or behaviors. This could be realized,

for example, in a network where the nodes in M2 activate behavioral

plans or intentions while the activity patterns of `context nodes' in M1

encode contextual conditions for the release of those plans. Failure of

matching gain control in this case would allow activation of behavior

unrelated to context. Alternatively, reality check could fail because cer-

tain context nodes are preferentially activated and overwhelm the con-

tribution from other contextual factors. The result is perseveration in the

choice of behavioral plans dominated by a single contextual factor. This

kind of failure in plan selection can arise from malfunction in the biasing

of the context nodes. Such biasing is needed to adjust sensitivity to var-

ious contextual factors. This issue is addressed in the next section.

The gain control malfunction just described can account for obsessive

activation of certain thoughts or the compulsive activation of certain

behaviors, depending on the module in which it occurs. The fact that

`behavior unrelated to context' and perseveration are also important

features of psychotic disorders suggests that this malfunction occurs in

mania and schizophrenia as well as in OCD. Reality check failures in

other modules may well account for other mental disorders.

In a cogent analysis, Frith (1992) argues that all positive symptoms of

schizophrenia, such as delusions and auditory hallucinations, can be

explained as a breakdown in self-monitoring of thoughts and behavior.

He notes that self-monitoring in the sensorimotor system is necessary to

distinguish perceptual changes due to body movement from those due to

external causes. Mechanisms for doing that have been most thoroughly

studied, both experimentally and theoretically, in the case of eye±head

movements. In that case, an intended movement is encoded in a corollary

discharge and compared `downstream' with sensory input on the actual

movement. A detailed network model of all this which does justice to

empirical data has been worked out by Grossberg and Kuperstein (1989).

Though Frith is unaware of this theoretical work, he notes that empirical

evidence indicates that voluntary eye movement is initiated in the frontal

eye ®elds (within frontal cortex) along with a corollary discharge. Frith
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speculates that every willed (voluntary) movement is initiated in frontal

cortex along with a corollary discharge, and, further, that `positive symp-

toms (of schizophrenia) occur because the brain structures for willed

actions send corollary discharges to the posterior parts of the brain con-

cerned with perception . . . In consequence, self-generated changes in

perception are misinterpreted as having an external cause.' Thus, for

example, subvocal speech may be misperceived as having an external

source ± an auditory hallucination. Obviously, comparison of an

intended movement (corollary discharge) with sensory input is a kind

of reality check on available information before the construction of a

conscious percept. Failure of the reality check may be due to structural

damage to the necessary connections or, as has been noted, to gain con-

trol malfunction.

Disorders of attention and short-term memory

The cardinal principles enable us to extend the concepts of attention and

attentional control to the information processed by an individual module.

Gain controls on input and output channels can be regarded as atten-

tional controls because they bias the module's response to information

from those channels. The relative gain in a channel is therefore a measure

of attention allocated to information from that channel. Of course, this

`network concept of attention' should not be confused with any of the

various `psychological concepts of attention.' The network concept cer-

tainly has implications for attentional behavior, and it may well provide

the ultimate foundation for grounding psychological concepts of atten-

tion in neuropsychology. At the same time, the network concept is much

broader, for it embraces biases on internal signals in such psychological

tasks as discrimination. It has the potential, therefore, of demonstrating

deep similarities among such different behaviors as attention and discri-

mination.

To make ®ne discriminations among different inputs to a module, there

must be separate gain control for each channel or even for the input to

each node of the module. Let us refer to the cell populations that produce

such gain control signals as bias nodes. Bias nodes lie outside the module,

but each one projects to a speci®c target within the module. This deter-

mines a (more-or-less) topographic mapping between the locus of bias

nodes and the module ± an important anatomical clue to identifying bias

nodes in the brain, as shall be seen later. As noted in the preceding
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section, malfunctions of input gain control may lead to such mental

disorders as OCD.

In contrast to the topographically speci®c structure of input gain con-

trol, output gain control is nonspeci®c ± which is to say that the same

gain control signal is sent to all nodes of the module. This type of gain

control can serve at least two important functions:

1. Selective attention to the current state. Increased output gain

strengthens the competitive advantage of active nodes over inactive

nodes. This enhances the currently active pattern, momentarily sta-

bilizing it against erosion by new inputs that upset the competitive

balance.

2. Learning of complex associations among activities in many different

modules can be controlled by a nonspeci®c signal that enhances and

stabilizes their currently active patterns simultaneously, thereby

driving transfer of associations between them into LTM by

Hebbian learning.

From this, we may expect that malfunctions of output gain control will

produce de®cits in attending to signi®cant stimuli and learning complex

associations.

Central brain state control

Our objective now is to make plausible identi®cations of the several gain

control variables described in the last section with known neurotransmit-

ter systems in the brain. This will help us identify the loci of speci®c brain

malfunctions that may be responsible for mental disorders attributed to

gain control failures. Moreover, additional information about neural

circuitry supports a more elaborate analysis of brain mechanisms impli-

cated in mental disorders.

For many years anatomical, physiological and behavioral research

(which cannot be reviewed here) has been converging toward the conclu-

sion that cortical activity is modulated by inputs from at least four nuclei:

the locus coeruleus in the brainstem, the rapheÂ dorsalis and ventral teg-

mentum in the midbrain, and the nucleus basalis in the basal forebrain.

As shown schematically in Figure 6.6, each of these nuclei has extensive

projections to the cerebral cortex, although differences in the structure of

these projections are major clues about their functions. The projections

can be described as `chemically coded' because each of them transmits at

its synapses a different neuromodulator: noradrenalin from the locus
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coeruleus, serotonin or 5-hydroxytryptamine (5-HT) from the rapheÂ dor-

salis, dopamine from the ventral tegmentum, acetylcholine (ACh) from

the nucleus basalis. The term `neuromodulator' has been used here to

differentiate their modulatory functions from the functions of other neu-

rotransmitters, such as glutamate and GABA, which are directly engaged

in pattern processing and information transfer. For the latter functions,

synaptic transmission must be fast (of the order of milliseconds), whereas

for modulatory functions transmission is comparatively slow (on the

order of 100ms to minutes). Actually, ACh transmission can be either

fast (for nicotinic receptors) or slow (for muscarinic receptors).

Besides transmission speed, another clue to the identi®cation of some

transmitters as modulators is the circuitry and topography of projections.

Diffuse projections, for example, are inherently unable to transmit struc-

tured information, so they are strong indicators of modulatory function.

Unfortunately, many published neural circuits fail to make the essential

distinction between connections that are modulatory and those that

transmit information. They fail to note that the very different informa-

tion-processing functions of these two kinds of connections are re¯ected

in very different topologies of circuit loops involving them (Percheron et

al., 1989).

Owing to uncertainties about local circuitry andneural interactions, fully

satisfactory explanations of neuromodulator actions are not available.

However, we can evaluate functional descriptions of neuromodulation

148 David Hestenes
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modules is regulated by inputs from four subcortical nuclei with extensive
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from indirect evidence, and this should eventually be helpful in making

sense of local circuitry. It is suggested here that the four kinds of neuro-

modulators are gain control variables with the functions already

examined.

Vigilance control

To ascertain the functions of the four-tract control system schematized in

Figure 6.6, an enormous number of pharmacological and lesion experi-

ments have beeen performed on animals. The results have been confus-

ing, more or less implicating each of the variables in nearly every aspect

of learning and behavior. Koella (1982, 1984) argues that the four tracts

are output components of a vigilance control network that regulates all

behavioral states from alert wakefulness to paradoxical sleep. Other com-

ponents of the network have been dif®cult to identify because they are

not localized in a well-de®ned region of the brain.

In behavioral terms, the vigilance of an animal is a state of readiness to

respond to particular stimuli. Koella has noted that the behavioral con-

cept can be reduced to a more precise concept of network vigilance. We

can de®ne this concept more precisely still as network gain control, which

has already been differentiated into several types. We have seen, though,

that the various gain control functions embrace much more than is sug-

gested by the term vigilance.

The term vigilance applies best to the function of the locus coeruleus/

noradrenalin tract, though the term arousal is more widely used in the

literature. However, empirical evidence supports the stronger claim that

the locus coeruleus/noradrenalin tract modulates ouput gain of the entire

neocortex. Relevant facts include: (1) the tract projects nonspeci®cally to

all cortical modules; (2) the tract enhances cortical outputs in response to

novel or stressful stimuli; and (3) lesions of the tract in animals impair

their ability to learn complex tasks. This supports the conclusion that

through the locus coeruleus tract, noradrenalin modulates selective atten-

tion and distributed associative memory in the neocortex.

This conclusion helps explain the facts about Korsakoff's disease, for

which there is anatomical evidence of damage to the noradrenalin system,

typically preceded by alcohol abuse. Korsakoff patients can learn simple

tasks but performance of complex tasks, such as discrimintion learning, is

dramatically impaired; they have anteriograde amnesia back to (but not

before) the onset of the disease; they have a variety of perceptual de®cits

consistent with impaired attention, including longer discrimination times
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and smaller orienting responses that habituate less quickly. Overall,

Korsakoff patients have a limited ability to compare and integrate suc-

cessive stimulus items.

The information-processing functions of selective attention and mem-

ory consolidation attributed to locus coeruleus/noradrenalin activity cer-

tainly do not exhaust the functions of noradrenalin in the brain.

Disorders of noradrenalin activity are implicated in major depressive ill-

ness, but they most likely occur in the subcortical ventral noradrenalin

bundle, which projects heavily to the hypothalamus, the major organ for

internal body state regulation.

Behavior control and bipolar disorder

Cortical projections of the four nuclei in Figure 6.6 are especially relevant

to psychiatry because they are most likely to be directly involved in the

regulation of conscious processes and therefore of psychotic symptoms. It

has already been noted that explanations for some psychotic symptoms

and mental de®cits can be achieved by identifying the cortical actions of

the four tracts with particular kinds of gain control. The tracts also have

subcortical projections regulating subconscious processing in modules

that may be primary loci for some mental disorders. Indeed, the projec-

tion of a single nucleus to both cortical and noncortical targets is a strong

clue that activity of the targets is coordinated by inputs from the nucleus.

This is especially clear in the case of dopamine projections from the

ventral tegmentum and the substantia nigra shown in Figure 6.7.

Dopamine is clearly involved in the regulation of motor output. For

that reason, Koella refers to dopamine as motor vigilance.

Figure 6.7 shows four nuclei that modulate the ¯ow of information

through two major pathways in the brain, named here as the Plan

Selection Pathway and the Plan Execution Pathway. The ®rst pathway

is concerned with the organization and selection of behavioral plans. The

latter is concerned with motivational and volitional control over plan

selection. The pathways converge at the pallidum, the motor output

module of the basal ganglia.

Without reviewing supporting empirical evidence (Hestenes, 1992), we

can now describe how the primary symptom of manic±depressive illness

can be explained as a breakdown of gain control in the nucleus accumbens,

which functions as a gate through which the limbic system in¯uences

behavioral output. Dopamine input from the ventral tegmentum facil-

itates passage of limbic signals through the nucleus accumbens. In other
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words, dopamine input is a gain control variable that opens and closes

the gate.

This nucleus accumbens gating model explains enhanced motor activ-

ity induced by amphetamines and other dopamine agonists as due to

increased dopamine gain in the nucleus accumbens, which facilitates

the execution of `impulses' or `urges' generated by the limbic system.

Likewise, the pressured speech and impulsive behavior characteristic of

mania are attributed to excess dopamine gain.

On the other hand, when dopamine gain in the nucleus accumbens is

too low, an individual has dif®culty initiating motivated behaviors and
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Fig. 6.7 Behavior control system schematic, showing principal components and
connections. The system has two major pathways, one for the organization and
selection of behavioral plans, the other for motivational/volitional control over
plan execution. Activity in both pathways is modulated by dense, distributed
dopamine (DA) and 5-hydroxytryptamine (5-HT) inputs. Many details including
all feedback loops, have been omitted. VT, ventral tegmentum; SN, substantia
nigra; RD, rapheÂ dorsalis. (Adapted from Hestenes, 1992.)



expressing interest or emotion. This state of depressed activity (or psy-

chomotor retardation) is sometimes labeled as `anhedonic,' because it

may be accompanied by a subjective impression of inability to experience

pleasure. It should not be confused with depression as a state of sadness

or hopelessness, which must have a different origin.

Thus far, this discussion of nucleus accumbens gating has neglected the

powerful in¯uence of 5-HT input from the rapheÂ dorsalis in inhibiting

behavior. By a mechanism that is not well understood, rapheÂ dorsalis/

5-HT input opposes the action of ventral tegmentum/dopamine input to

the nucleus accumbens. This explains the success of treatments for mania

that increase the transmission of 5-HT in the brain, for example by

administering high doses of the 5-HT precursor tryptophan (Hestenes,

1992).

Returning to Figure 6.7, note that the striatum is positioned to play a

gating role in the selection pathway analogous to the role of the nucleus

accumbens in the execution pathway. Indeed, the striatum and the

nucleus accumbens are contiguous and anatomically similar. Moreover,

the substantia nigra modulates gain in the striatum, just as the ventral

tegmentum modulates gain in the nucleus accumbens, although the sym-

metry is broken by a projection from the latter to the substantia nigra

that provides a means for coordinating the gains and hence the outputs

from both pathways. The rapheÂ dorsalis regulates ¯ow through the two

pathways in two ways: indirectly through its projections to the ventral

tegmentum and the substantia nigra, and directly through its projections

to the nucleus accumbens and striatum. One likely mode of behavior

control is this: the locus coerulens signals the presence of stressful stimuli

to cortex and inhibits the rapheÂ dorsalis, which in turn disinhibits that

nucleus accumbens and substantia nigra in preparation for vigorous

behavioral response.

The anatomical contiguity and similarity of the nucleus accumbens and

striatum suggest that they employ common physiological mechanisms, so

they should have comparable malfunctions and responses to drugs.

Indeed, low dopamine gain in the striatum produces Parkinsonian symp-

toms comparable to the anhedonia due to low dopamine gain in the

nucleus accumbens. Moreover, the excess dopamine/nucleus accumbens

gain in mania corresponds to excess striatal gain (or malfunction with

equivalent effect) in Huntington's disease and Tourette's syndrome. In

Tourette's syndrome the excess gain (or network defect) is probably

localized in the striatum, where it can produce the spontaneous release

of some stereotyped action.
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Since the rapheÂ dorsalis has `the last word,' so to speak, in governing

the release of behavioral plans, it may be that its malfunction is a com-

mon cause of bipolar disorder. The fact that mania is often accompanied

by psychotic symptoms such as paranoia, thought disorder and, less

frequently, hallucinations suggests that gain disregulation is not neces-

sarily con®ned to the nucleus accumbens, but can spread to other mod-

ules sharing a common gain control nucleus. There are only two

candidates to consider: the ventral tegmentum and the rapheÂ dorsalis.

Now, neuroleptics that reduce dopamine transmission are effective in

bringing manic behavior rapidly under control; however, they do not

concurrently eliminate psychotic symptoms, which typically take a con-

siderably longer period to dissipate. This implicates rapheÂ dorsalis gain

malfunction as the cause of psychotic symptoms accompanying mania. It

also suggests that mania without psychotic symptoms is due to ventral

tegmentum gain malfunction.

More support for the view that 5-HT rather than dopamine is respon-

sible for psychotic symptoms in mania comes from the literature on

psychomimetic effects of drugs. The drugs inducing psychological states

most similar to clinical psychosis are LSD and amphetamine, the prin-

cipal representatives of two families of drugs with such effects. With

suf®cient doses, both drugs can produce delusions and hallucinations

within a setting of clear consciousness, that is, without the thought dis-

order and disorientation that accompany the psychomimetic effects of

other drugs, although thought disorder can be induced by higher doses.

The mechanism of LSD action is believed to be a reduction of rapheÂ

dorsalis/5-HT transmission. On the other hand, the euphoric effects of

amphetamine (speed) are attributed to increased dopamine transmission.

With increasing doses, amphetamine induces stages similar to hypo-

mania, mania and, ultimately in some people, paranoid psychosis. For

this reason, it has been supposed that psychosis involves dopamine mal-

function. One problem with this conclusion is the fact that neuroleptics,

which are known to reduce dopamine activity, suppress but do not

eliminate psychotic symptoms. Another is the fact that the onset of

amphetamine psychosis occurs much later than the reduction in dopa-

mine transmission. All this can be explained by the fact that ampheta-

mine also reduces 5-HT activity. Though this effect is smaller than the

dopamine reduction, it is cumulative with each dose, and the net reduc-

tion is between 40 and 70 percent over ten days. Furthermore, the onset

and offset of behavioral effects (model psychosis) in cats correlate

perfectly with large changes in 5-HT transmission. To this is added the

Modulatory mechanisms in mental disorders 153



fact that rapheÂ dorsalis/5-HT transmission is turned off in REM sleep,

when dreaming occurs. We conclude, therefore, that reduced cortical

5-HT activity is the major factor, and possibly a suf®cient factor in all

model psychoses, including dreaming. Surely it must be a major factor

in clinical psychoses, though that remains to be demonstrated.

The problem remains to identify mechanisms that can explain the role

of 5-HT in psychoses. Comparison with our previous gain control expla-

nations for hallucinations and delusions suggests that rapheÂ dorsalis/5-

HT regulates gain on top-down inputs and pattern matching in cortical

modules.

Executive control

Prefrontal cortex (less precisely, frontal cortex or frontal lobes) is some-

times described as `the executive of the brain.' In this capacity it is

believed to evaluate information about the state of the body and the

environment and apply it to the selection and pursuit of goals. In brief,

frontal cortex organizes and controls goal-directed behavior.

Frontal cortex is the `Chief Executive Of®cer' for the behavioral con-

trol system (BCS) schematized in Figure 6.7. Our knowledge about the

interaction of frontal cortex with the (rest of the) BCS is very patchy, but

it does supply signi®cant clues and constraints on the theoretical possi-

bilities that we consider. Feedback from the BCS to frontal cortex is not

shown in Figure 6.7, but Figure 6.6 does indicate densely distributed

ventral tegmentum/dopamine innervation, which most probably modu-

lates inputs to frontal cortex. Evidently, the two BCS pathways in Figure

6.7 implement the two major components of goal-directed behavior.

Thus, we surmise that the execution pathway determines and maintains

a goal while the selection pathway organizes motor plans to reach the

goal. Much can be learned about the role of frontal cortex in behavioral

control by examining what happens when it is impaired.

Damage to frontal cortex produces at least three characteristic symp-

toms: distractibility, lack of foresight, and situationally inappropriate

behavior. The same symptoms appear in mania and schizophrenia, so

they suggest a malfunction in frontal cortex. Cohen and Servan-Schreiber

(1992) argue that all three symptoms can be attributed to a single func-

tional de®cit: a disturbance in the internal representation of context. They

observe that goal-oriented behavior requires the construction and main-

tenance of an internal representation of context. More speci®cally, such a

representation is essential for selective attention, which they de®ne as the
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in¯uence of context on the selection of task-appropriate information for

processing.

The previous discussion about the roles of the nucleus accumbens and

striatum (Fig. 6.7) in behavioral control suggests now that they provide a

representation of contextual constraints controlling behavior ± an opera-

tional representation of context. Thus, the nucleus accumbens integrates

inputs from the limbic system (about the internal state of the body) and

from sensory systems (about its external state); this is combined in the

striatum with inputs from prefrontal cortex (about its intended state).

When the prefrontal contribution is cut off, the operational context is

determined solely by immediate sensory stimuli and limbic `urges.' The

result is distractible behavior. To explain less immediate symptoms of

frontal dysfunction, it is necessary to consider how contextual represen-

tations are formed and maintained.

Cohen and Servan-Schreiber construct connectionist models to

describe maintenance and control of contextual information by the fron-

tal lobes, and to explain some symptoms of schizophrenia as gain control

failures in the models when dopamine is identi®ed as the control variable.

A theoretically richer mathematical model of frontal lobe function has

been developed by Levine, Leven and Prueitt (1992). This model simu-

lates both normal and impaired performance on the Wisconsin Card

Sorting Task (WCST), which is often used clinically to evaluate frontal

lobe damage. Dehaene and Changeux (1991) have constructed a more

specialized connectionist model to simulate WCST performance.

The Levine model employs an extended ART model, so it is entirely in

the spirit of our approach, and we can use it to extend and strengthen our

theory of mental disorders. By minor reinterpretations of components in

the Levine model, we can incorporate the insights of Cohen and Servan-

Schreiber along with some of our own.

Consider an ART model with two components, M2 and M1 as in

Figures 6.3 and 6.4. Levine refers to the nodes in M2 as `category

nodes' and in M1 as `feature nodes.' Instead, we interpret the nodes in

M2 as motor intentions and those in M1 as context nodes. The idea is that

an activation pattern in M1 represents context, and an adaptive reso-

nance selects a motor intention in M2 which, through another channel,

sends an `executive order' to the BCS. This suggests that M2 be identi®ed

with prefrontal cortex while M1 represents a collection of other cortical

modules where suitable contextual information can be stored. At least

some of these modules must be sensory modules where the adaptive

resonance activates a preparatory set or expectation that biases their
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response toward `contextually relevant' features in sensory input. In other

words, resonant feedback from frontal cortex supports selective attention in

sensory modules. We can guess that more abstract representations of

context are maintained in submodules of M1 located in temporal cortex,

for example.

The Levine model does, in fact, divide M1 into submodules processing

different `contextual features.' It extends ART by introducing bias nodes

to control the input gain on signals from each M1 submodule into M2.

This gives the system control over the relative weights in the contextual

input representation to M2. It is an example of attentional input gain

control described earlier. Extending the model further by introducing a

mechanism for adjusting the weights in response to outcomes of motor

acts competitively selected in M2, we have a system capable of modifying

its behavioral plans in response to experience. Levine and coworkers

show that such a model can successfully simulate the performance of

normal people on the WCST ± in particular, the ability of normals to

switch behavioral plans (or `contextual set') in response to outcomes of

behavior. Moreover, they show how such a model can explain paradox-

ical effects of frontal damage, namely, perseveration in the choice of

unsuccessful behaviors on the one hand, and attraction to novel stimuli

on the other.

With the interpretation of M2 as prefrontal cortex, there is also a

natural interpretation for the bias nodes on the Levine model as compo-

nents of the nucleus basalis. The nucleus basalis has the kind of detailed

topographic mapping onto the prefrontal cortex that we have already

seen is needed for local attentional control of inputs. It has been noted

that ACh is the neurotransmitter for the nucleus basalis projections. It is

also of interest that there are similar cholinergic projections to the rest of

cortex from other subcortical nuclei. If we are correct in guessing that

these projections exert local gain control on cortical inputs, then we

expect them to have a major role in regulating cognitive function. This

view is supported by evidence that the progressive deterioration of cog-

nitive abilities in Alzheimer's disease is due to deterioration of the cortical

cholinergic system.

There is evidence that bias node activity in frontal cortex is modulated

in at least two ways. Tonic 5-HT transmission is a powerful suppressor of

ACh activity throughout the cortex. This may explain why dreaming

occurs during REM sleep ± for rapheÂ dorsalis/5-HT transmission is

shut off at that time, and this is accompanied by a sudden release of

massive cholinergic activity (Hobson, 1988). In frontal cortex, ACh
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activity is also strongly affected by ventral tegmentum/dopamine trans-

mission (Robinson, 1984). There is some evidence that the ventral teg-

mentum projections have the topological speci®city needed for local

control of ACh activity. The suggestion here is that there are theoretical

reasons, consistent with empirical evidence, to believe that dopamine (and

5-HT) modulates ACh bias control of input to the frontal lobes from other

cortical modules. It may be some time before empirical evidence is suf®-

cient to evaluate this suggestion conclusively. In the meantime, it will be

worthwhile to explore other possible means for frontal cortex input gain

control.

The essential point is that the Levine model provides plausible mechan-

isms for maintaining `contextual set' (input bias in frontal cortex) and for

revising that set in response to experience. It has already been noted that

three major symptoms of mania and schizophrenia can be explained as

failures in the maintenance of contextual set. The identi®cation of dopa-

mine and 5-HT as regulators of contextual set in frontal cortex helps to

pinpoint an anatomical locus for the disorders and to explain the action

of antipsychotic drugs. Evidence supporting a role for dopamine gain

control failure in schizophrenia is discussed at some length by Cohen

and Servan-Schreiber. It should be noted, though, that they do not con-

sider a role for 5-HT gain control. Also, it is quite possible that the

muting of schizophrenic symptoms by reducing dopamine transmission

with neuroleptics is merely compensating for other defects, and is not

necessarily indicative of a dopamine gain control malfunction in schizo-

phrenia. The evidence that manic±depressive illness is essentially due to

gain control malfunction is much stronger, in particular, because `gain

control' drug therapy is generally more effective (Hestenes, 1992).

This completes our adaptation of the Levine model of frontal lobe

function to account for a wider range of data on mental illness and

neurology. The model can be applied to organize and interpret an enor-

mous body of data from psychiatry, psychology, and neuroscience that

cannot be addressed here. For example, it can be applied to elaborate the

analysis of schizophrenic language de®cits by Cohen and Servan-

Schreiber. No doubt the model will have to be modi®ed and extended

to account for new data ± that is in the nature of the `modeling game'

(Hestenes, 1987). The model itself suggests where to look for signi®cant

change. Thus, it suggests that a cognitive component of contextual set is

determined by biasing cortical modules with cholinergic input through

some unknown mechanism, while this set is modulated by the monoa-

mines to account for the immediate (external and internal) environment.
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It is interesting to speculate that the cholinergic system controls the for-

mation of contextual representations from `cognitive habits' such as

stereotypes and prejudices.

Though this description of the BCS is quite fragmentary, it is suf®cient

for making sense of an immense body of information in the literature. Of

course, details of the two major BCS pathways (see Fig. 6.7) need to be

®lled in. This will clarify additional mechanisms in mental disorders. For

example, evidence suggests that OCD is caused by defective communica-

tion of frontal cortex with the striatum, possibly due to a dysfunction of

5-HT modulation (Hestenes, 1992). Along another line, there is much to

be said about the role of the limbic system in behavioral control. Thus, it

seems likely that paranoid delusions may be explained by excessive

weighting of contextual set by `fear processing' in the limbic system,

perhaps because of dopamine or 5-HT dysfunction. The dopamine inputs

to frontal cortex might be a means for expressing that, though a different

role for dopamine inputs has been suggested above.

It hardly matters that our model may be seriously de®cient or even

completely wrong on some details. The important point is that it provides

a framework for asking signi®cant theoretical and empirical questions ± a

framework for organizing what we know and guiding research.

Clinical implications

A theoretical framework has been presented to explain essential roles of

modulatory mechanisms in central control of information processing by

the brain. This has enabled us to identify (tentatively, at least) speci®c

gain control functions for the neuromodulators dopamine, noradrenalin,

5-HT, and ACh, and to account for a variety of mental disorders as

breakdowns of control by these variables. Thereby, we can explain the

psychiatric effects of various drugs by their biochemical effects on gain

control. The clinical implications are many, but let us concentrate on

claims about manic±depressive illness suggested by the theory.

Our main claim about mania is that it is due to a breakdown of gain

control on the release of behavioral plans in the nucleus accumbens.

Sometimes this is accompanied by secondary symptoms, such as thought

disorder, when the gain control breakdown spreads to other modules.

Neuroleptics can eliminate mania by re-establishing dopamine gain con-

trol, but, as explained below, they do not directly in¯uence some second-

ary symptoms. Thought disorder in schizophrenia is different from that

in mania and is probably not due to a gain control malfunction, though it
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can be modulated by using neuroleptics to reduce dopamine gain. Thus, a

schizophrenic's alien voices can be muted by neuroleptics but not elimi-

nated altogether. The symptoms of mania can be eliminated completely

with suitable drug treatment precisely because they originate from gain

control dysfunction. Evidently, the same drugs are less effective with

schizophrenia because they merely compensate for some other kind of

dysfunction.

A second claim about mania is that there are at least two subtypes, one

originating in dopamine dysfunction, the other in 5-HT dysfunction.

They correspond to two different clinical syndromes, sometimes referred

to as pure mania and mixed mania. Pure mania is characterized as ele-

vated mood and extravagant behavior without depression, anger or other

symptoms. This is the classic case of poorly regulated behavioral activa-

tion due to excessive dopamine gain. It can be brought under control by

neuroleptics that reduce dopamine activity.

In mixed mania, the mania is accompanied by some combination of

depression, anger, fear or delusions. Neuroleptics can control the mania,

but they cannot eliminate the secondary symptoms that do not originate

from dopamine dysfunction. The analysis in the body of this chapter

suggests, instead, that the whole syndrome arises from 5-HT dysfunction.

It has been seen how this may explain secondary symptoms depending on

the brain modules involved. Moreover, reduction of 5-HT gain control in

the nucleus accumbens may allow dopamine activity to increase

unchecked and so produce mania. All this suggests that mixed mania is

best treated with drugs that enhance 5-HT activity.

Some support for this analysis of mania comes from the careful and

extensive research on mood disorders by van Praag. He has concluded

that there is a subgroup (possibly as large as 40 percent) of depressives in

which 5-HT functioning is demonstrably disturbed (van Praag et al.,

1990). In this group, anxiety and/or aggression dysregulation are the

primary psychopathological features, while mood lowering is secondary.

Treatment with drugs that enhance 5-HT activity is indicated. Van Praag

has systematically investigated treatment with the 5-HT precursors L-

tryptophan and 5-hydroxytryptophan (5-HTP). He found that 5-HTP

is much more effective than L-tryptophan for treating depression and

has traced the difference to the fact that 5-HTP also enhances noradre-

nalin activity whereas L-tryptophan does not. This explains paradoxical

results in the literature on the use of L-tryptophan as an antidepressant.

Van Praag has con®rmed his explanation by demonstrating effective

treatment of depression by L-tryptophan in combination with the nora-
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drenalin precursor tyrosine. This work provides strong evidence for a

coupling of noradrenalin/5-HT neuromodulatory controls analogous to

the dopamine/5-HT coupling noted earlier.

The treatment of depression and other disorders with the monoamine

precursors L-tryptophan/tyrosine deserves to be more widely investigated,

including combinations with other drugs. Since the amino acids L-tryp-

tophan/tyrosine are basic ingredients of food, their use as drugs might be

expected to be especially safe, though the biochemistry is complex

(Sandyk, 1992; Hestenes, 1992). However, in the United States the

unrestricted sale of L-tryptophan was banned by the Federal Drug

Administration (FDA) in 1990 because L-tryptophan ingestion was impli-

cated in an outbreak of the debilitating eosinophilia±myalgia syndrome.

The ban is still in place, though the case has been traced to a contaminant

or an alteration in batches of L-tryptophan produced by a single company

(Slutsker et al, 1990). Considering the broad usefulness of L-tryptophan

(Sandyk, 1992), there seems to be no justi®cation for continuing the ban

other than commercial advantage to drug companies.

The purported role of 5-HT in mixed mania suggests commonality

with van Praag's group of `5-HT depressives.' According to our theory,

5-HT constrains dopamine activity in the nucleus accumbens, so release

of that constraint will increase the possibility of dopamine dysfunction

and mania but will not necessarily cause it. Indeed, pure mania is sup-

posed to be due to dopamine dysfunction despite the 5-HT constraint,

though it might be allowed by an inherent weakness in that constraint.

All this suggests a common mechanism of 5-HT dysfunction in mixed

mania and 5-HT depression. It follows that a common treatment strategy

is in order, especially, the use of monoamine precursors.

Hestenes (1992) reviews the literature on monoamine treatment of

mania and presents detailed case histories of two sisters suffering from

recurrent mixed mania. These cases are noteworthy for the use of gain

control concepts to analyze symptoms and treatment. This is an oppor-

tunity to update those case histories and review the conclusions about

monoamine treatment.

In both cases, L-tryptophan was used as a prophylactic against mania

until 1990, when the FDA ban on the sale of L-tryptophan took effect.

The younger sister has remained stable for six years since then without

the support of lithium or any other drugs. One conclusion from her prior

treatment for mania deserves to be reiterated because it is strongly sup-

ported by van Praag's (1991) evidence. A common result of neuroleptic

treatment for acute mania or schizophrenia over many days is that the
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patient appears depressed, so antidepressants are introduced, sometimes

creating unfortunate complications. However, there is good reason to

believe that, in most cases, this so-called depression is simply due to

depletion of catecholamine (dopamine and noradrenalin) stores by the

neuroleptics. The most straightforward way to correct this condition,

therefore, is to restock the depleted stores by administering the catecho-

lamine precursor tyrosine. Hestenes (1992) gives details of one such suc-

cessful treatment with 7 g tyrosine/day for two weeks. This tactic deserves

to be more thoroughly studied. It may be that a tyrosine follow-up to

acute neuroleptic treatment should be standard practice.

The case of the older sister is noteworthy because it is the longest and

most thoroughly documented example of successful mania treatment

and prophylaxis with L-tryptophan. After two severe manic episodes

within two years, she was successfully stabilized on L-tryptophan for

ten years until the ban in 1990. Thereafter, she went without any kind

of treatment, but her sleep pattern, which had been fairly well con-

trolled by L-tryptophan, became more erratic. After four years she

had a severe manic episode and was put on a maintenance dose of

lithium, but her adjustment was not as satisfactory as previously on

L-tryptophan. Within a year she had another episode, including a sui-

cide attempt. After acute treatment for the episode she was continued

on lithium, but not without complaints. Recently she was able to secure

L-tryptophan again. Here are some of her observations as she has

switched gradually from lithium back to L-tryptophan maintenance.

Throughout, her typical L-tryptophan dose has been 2 g/day, and her

initial lithium dose was 1125mg/day.

On lithium alone, her sleep is fragile and her circadian rhythm is not

entrained, so she gets to sleep about two hours later each day, and her

sleep time precesses around the clock. This is a major reason why she has

not held a steady job for many years. Attempts to impose a conventional

sleep schedule have been very stressful and ultimately unsuccessful.

However, taking the daily L-tryptophan dose a half hour before bedtime

not only reduces sleep latency and prevents sleep time precession, it even

enables her to sleep an hour earlier if desired ± something she could never

do otherwise. She reports a pronounced difference in her subjective

experience on taking L-tryptophan with and without lithium. Taking L-

tryptophan without lithium, she feels a ¯ood of beautiful imagery sweep-

ing her into a dream, and she feels `more alive' during the day. Taking L-

tryptophan with lithium, she feels a fragile, slowly descending drowsiness

with increasing sleep latency on successive nights.
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Her original plan was to augment lithium treatment with L-tryptophan,

as there is some reason to believe that they will act synergistically.

However, she feels that the combination slows down her intellect, her

reading comprehension and her reaction time. (Of course, the latter could

actually be measured.) It makes her feel weak and clumsy and gives her a

kind of drowsiness throughout the day.

Her report that L-tryptophan completely eliminates her anxiety is espe-

cially signi®cant, as van Praag has emphasized anxiety as a sign of 5-HT

dysfunction. As commonly reported by others, under lithium treatment

her emotions are blunted. As the lithium dose was reduced, her normal

ebullience returned. She now plans to eliminate lithium altogether, but

would return to it if necessary. She has recon®rmed her belief that life

with L-tryptophan is better for her.

The lesson to be learned from this is that monoamine precursors

should probably play a greater role in psychiatric treatment, especially

for mixed mania and 5-HT depression.

Summary

This chapter describes a robust theoretical framework for understanding

the role of neuromodulators in brain state control. The framework pro-

vides the foundation for a new approach to psychiatric diagnosis and a

guide for research into neurobiological mechanisms in mental illness.

Clinical implications for manic±depressive illness and treatment with L-

tryptophan are also discussed.

Note

The deepest theoretical ideas in this chapter come from the work of

Stephen Grossberg, where they are extensively discussed, analyzed, and

applied. However, several factors conspire to make entry into

Grossberg's work dif®cult, even for accomplished scientists. Its mathe-

matical sophistication is a barrier for some. Its extensive references to

diverse branches of psychology and neuroscience are a barrier for others.

Most of all, considerable time and effort are required to become con-

versant with Grossberg's conceptual framework, specialized vocabulary

and analytical style. To soften the entry, Hestenes (1987) gives an intro-

duction that ampli®es the discussion of pattern-processing principles and

mechanisms in this chapter. Levine (1991) gives a wide-ranging introduc-

tion to neural network with minimal mathematics that compares
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Grossberg's approach to major alternatives. From Grossberg's own pro-

digious output the collection of his papers most relevant to the present

concerns is Grossberg (1982).
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Clinical disorders





7

The nature of delusions: a hierarchical
neural network approach
ERIC Y. H. CHEN and
GERMAN E. BERRIOS

For more than 300 years, delusions have been de®ned as `pathological

beliefs' (Berrios, 1996; Spitzer, 1990; see Table 7.1 for clinical examples).

During the ®rst half of the nineteenth century, Baillarger reinforced this

view by suggesting that `form' be distinguished from `content' (Berrios,

1994). Analysis of content (i.e. of the semantics of `belief') has since then

generated clinical subtypes (e.g. depressive versus schizophrenic delu-

sions) (SeÂ rieux and Capgras, 1909; Jaspers, 1963; Moor and Tucker,

1979; Sims, 1988), supported psychoanalytical interest in symbols, and

(more recently) encouraged correlational research, for example with bio-

graphical data, particularly amongst those interested in attribution the-

ory (Bentall, 1994). The `pathological belief' view has, in general, been

less useful to the neurobiological study of delusions (Berrios, 1991;

Fuentenebro and Berrios, 1995). Analysis of the form of delusions has

also been useful in some cases. For example, it has led to stable diagnostic

categories (Schneider, 1959; Jaspers, 1963), and to multidimensional

approaches, whose main consequence has been the erosion of the old,

categorical, `all-or-none' view. Whether from the perspective of content

or of form, most research has been cross-sectional and hence uninforma-

tive on how delusions actually change with time. Notable exceptions to

this approach have been the work of Kendler, Glazer and Morgenstern

(1983) and Garety and Hemsley (1994).

The multidimensional approach is not free from problems. For exam-

ple, some dimensions of delusions such as `bizarreness' remain ambigu-

ous (Monti and Stanghellini, 1993). Borrowed from Kurt Schneider

(Goldman et al., 1992), the term originally meant `absurd', `impossible'

or `contrary to common knowledge' (e.g. as in DSM-III-R: APA, 1987).

Currently, however, `bizarre' is used to mean `improbable' and this shift

in meaning has made the term more dependent upon subjective decision
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and context: not surprisingly, `bizarreness' fails to achieve good inter-

rater reliability (Flaum, Arndt and Andreasen, 1991; Goldman, et al.,

1992) and hence its clinical usefulness has been called into question

(Flaum et al., 1991). The authors believe that this is not a good reason

to jettison this dimension and that further conceptual exploration should

render it stable (Spitzer et al., 1993). However, such analysis cannot be

undertaken unless the notion of delusion itself is examined afresh.

Conceptual analysis of delusion

The clinical phenomenon called `delusion' remains opaque, and it is

important to know whether this opaqueness is a ®endish intrinsic feature

or is `man-made', i.e. results from conceptual confusion. Four aspects of

delusions will be explored to determine where earlier conceptual stipula-

tions might have gone awry.
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Table 7.1. Clinical examples of different types of delusions.

Type of delusion Clinical examples

Secondary
delusion

A 34-year-old woman experienced voices scolding her and
attributed this to a man having implanted a device in her
denture which generated these voices

Non-bizzare
delusion

A 54-year-old man believed that, since the day he was in a
public toilet in which a young boy was also present, he had
been under surveillance from the police and his movements
had been videotaped because of the suspicion that he had
committed indecent sexual behaviour towards the boy

Bizarre
delusion

A 48-year-old man believed that he was controlled by insects
which infested his body and had taken over his bodily func-
tion. These insects (which he called `nits') were believed to
be related to a galactic empire which had also been sending
commands through stereo to instruct him to attend an
intergalactic meeting on behalf of planet earth

Mood
congruent
non-bizarre
delusion

A 68-year-old depressed woman was convinced that her
husband was going to abandon her because she was
unworthy of his commitment and had committed many
minor mistakes in the past. When in this mental state, she
was very distressed and was totally unable to be reassured
by her husband

Mood
congruent
bizarre delusion

A 24-year-old elated man believed that he was a famous late
Japanese admiral (killed in World War II) and marched
naked in the street while thinking that he was in naval
uniform



The raw datum of delusions

What is raw datum out of which the concept of delusion is constructed?

By convention, it is a type of utterance which, in Anglo-Saxon descriptive

psychopathology (DP), is reckoned always to contain a `pathological

belief'. At this stage, the process of conceptualizing delusions may fail,

depending on: (a) what type of behaviour is made to count as raw datum,

and (b) whether it is assumed that such datum provides suf®cient infor-

mation to categorize the utterance as a delusion (i.e. there is no need to

resort to any contextual information).

With regard to (a) above, it is important to ascertain whether all delu-

sions pertain to propositional attitudes (i.e. beliefs, thoughts, etc.) and

never refer to emotions or acts for the idea of a delusional memory or

volition would constitute a clinical non-sense. Anglo-Saxon psychiatry

entertains such a narrow view, partially caused by the etymology of the

English word `delusion' (that de®nes it as an idea, and not as an emotion

or act: The Oxford English Dictionary, 1994). In contrast to this, the

French term deÂlire is found to have a wider compass. Coined during

the late sixteenth century, the word is a direct descendant from the agri-

cultural Latin deliratio: `a going out of the furrow, in ploughing' (Bloch

and Wartburg, 1950). Metaphorical usage soon made the term refer to

generic forms of behaviour such as `giddiness, silliness, folly, dotage,

madness' (Lewis and Short, 1879). When the term was rendered into

the French vernacular deÂlire, all these meanings came with it, and

hence notions such as delusional `emotions or acts' are clinically intelli-

gible within French psychiatry. For example, LittreÂ (1877) gives as its

second de®nition: le deÂ lire de l'eÂ sprit, de l'imagination, des passions.

Porter la passion jusqu'au deÂ lire. (p. 1037).

A consequence of exclusively de®ning delusion as a pathological or

wrong belief has been that aetiological accounts can only be pitched at

the level of `form and content' (e.g. the current cognitive approach).

Furthermore, because the `essence' of the phenomenon is considered as

linguistic, there has been a tendency for it to be treated `psychologically'

rather than neurobiologically. The authors believe that the view that any

human thought, emotion or act could, in principle, be `delusional' is more

heuristic in that it encourages a search for convergent brain mechanisms.

Content and form of delusions

A second area concerns the analysis of the content of the `delusional'

utterance. As mentioned above, delusions have conventionally been
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considered as beliefs that happen to be wrong, unshakeable, incorrigible,

etc. The `belief model' has proven useful in that it makes delusions unpro-

blematic from the structural (form) point of view, paving the way for

simplistic de®nitions in terms of `wrongness' and/or evidential status of

content. By assuming a continuity between `normal' beliefs and delu-

sions, it also opens the gate to the application of psychoanalysis and

attributional theory to the `study' of delusions.

In spite of the fact that the `belief model' is no more than a hypoth-

esis, it has been treated as a fact and its value has never been fully

tested. For, however implausible it may sound, it could be asked why it

is that delusions are not just verbal tics (like, say, the coprolalia of

Tourette's syndrome), directly generated by some brain dysfunction?

Why is it that their content is not just an aleatory (i.e. randomly

acquired) foreign body trapped at the very moment when the delusion

is formed and which has little association with whatever systems control

belief formation?

The following counterclaims might be marshalled: (a) that in clinical

practice delusions are just like beliefs ± in both the way in which they are

expressed and respond to treatment, and (b) that their content is bound

to convey information connected in some way with the utterer or at least

express his cultural codes. There is little force in these points. Indeed, the

fact that some delusions may become degraded in response to cognitive

therapy, for example, cannot be taken as evidence that the cognitive

model of such delusions is correct. In general, human movements are

particularly susceptible to semantic interpretation (even those of animals,

like favourite pets, often are). For example, it is not long ago that spas-

modic torticollis was considered as a `looking away' from an anxiety-

creating stimulus, and the tremor of Parkinson's disease as a `shaking in

anger'. In the case of utterances, the bias towards a semantic interpreta-

tion is even more marked. The point here is that such a bias is likely to act

as a spurious reinforcer of the belief model, and thereby exaggerate the

importance of content.

An intermediate position between the verbal tic and the just-a-belief

hypotheses is to view delusions as beliefs manqueÂ , i.e. utterances that only

mimic or are just bad copies of beliefs. Such an approach would force the

researcher to look at delusions as sui generis behavioural phenomena

(utterances conveying aleatory ideas or images, pseudo-emotions and

driven actions), which for yet unknown reasons are generated by brain

loci in distress, and which in the moment of their manifestation, because

they are channelled out along very narrow expressional systems, acquire
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certain similarities with behaviours that are normally recognized as

beliefs, etc.

Informational value and loci

A third area in which error can be easily generated involves the type,

amount, quality and loci of the information that delusions are supposed

to convey. Since the central function of symptom-descriptions in psychia-

try is to capture suf®cient information to ascertain diagnosis and locate

its neurobiological basis, one must ask what type of information is

included in the form and content of a delusion? Is this information

about brain loci, the utterer, or his or her cultural context? If all three,

what conveys what? For example, does form tell one more about brain

sites (i.e. are delusions isomorphic with or mappable upon a some brain

system)? Does content tell one more about the patient's biography, per-

sonal cognitive capabilities and cultural background? Should content be

taken (as it often is) prima facie? For example, can a persecutory delu-

sional content foretell that the bearer of the delusion has a `paranoid

personality'? A model (far more complex than those available) is needed

to deal with these questions. Firstly, it must be decided whether all delu-

sions have the same structure and whether the latter is mappable onto

(a) putative neurobiological addresses, and/or (b) linguistic mechanisms.

Delusion formation

A fourth area that might generate errors concerns that of models for

delusion formation. Once again, the `belief model' solves this problem

by assuming that delusions are generated by the same cognitive mechan-

isms responsible for normal beliefs. The logic of this view suggests that

delusional emotions or acts (were they to be countenanced by English-

speaking psychiatry) are prepared in the same cauldrons as normal emo-

tions and acts, respectively. But then, what would these three `types' of

delusions have in common?

Most theories of delusion formation (Arthur, 1964) are unrepentantly

`cognitive' in nature. Traditional psychology has adopted a `sequential'

paradigm according to which cognitive events issue seriatim out of a

cascade of processes. This approach is unlikely to offer a satisfactory

description of all aspects of cognition (Martindale, 1991). It can be

argued, for example, that each single synaptic event requires a consider-

able amount of time (in the order of 10ms) in relation to the latency of
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cognitive events (in the order of several hundredths of a ms). The number

of steps that could be accommodated in a sequence (in the order of up to

100) is usually too small for any realistic sequential modelling of even

simple cognitive processes. (A simple serial computer program typically

contains computation in the region of several thousand individual steps

when iterative calculation is involved.) So, moving away from a purely

cognitive view of delusions should free the researcher to seek for other

models of delusion formation.

The role of parallel models

Several parallel models for psychoses have been proposed (see Chapter 8)

but none deals exclusively with delusions. A comprehensive model for the

latter should incorporate both parallel and sequential aspects of cognitive

processing (Callaway and Naghdi, 1982). Because mental symptoms are

structurally heterogeneous (MarkovaÂ and Berrios, 1995), delusions are

likely to require a different model from, say, formal thought disorder.

This chapter proposes a preliminary model of delusion formation inte-

grating both parallel and sequential aspects of cognitive processing. One

of the conspicuous conclusions of the model is that different dimensions

of delusional experience map onto different abnormalities in the parallel

or the sequential aspects of processing.

Existing models of delusion

All current models of delusion make assumptions about the nature of

normal cognition, and hence all theories of delusions are closely related

to prevalent views on cognition (Berrios, 1991). Hence, whether delusions

are explained in terms of other symptoms, or cognitive processes, or

neurobiological systems, will depend on what historical period one is

dealing with (Arthur, 1964).

Earlier models

At least since the seventeenth century, the view has been entertained that

delusions are related to low intelligence and/or inadequate powers of

reasoning and judgement (Berrios, 1994). During the nineteenth century,

some delusions were also conceived of as secondary to interpretations of

primary pathology affecting perception (e.g. hallucinations), emotions,

personality, and social interactions (for a review, see McKenna, 1994).
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It has also been proposed (Bleuler, 1950) that delusions might arise from

formal thought disorder, i.e. a combination of loose associations and

faulty logical reasoning. When generalized, this approach suffers from

the clinical observation that delusions may be the only symptom present

(Munro, 1988; Chapman and Chapman, 1988).

Recent cognitive models

More recently, use has been made of cognitive psychology to explain

delusions. For example, some theories consider delusions as secondary

to putative abnormalities of attention, memory, etc. One such explana-

tion has been offered by Maher and Ross (1984) who proposed that a

spurious `free ¯oating sense of signi®cance' may lead, through `mistaken

attributions', to `delusions of reference'. Another theory (related to the

defective sensory ®lter view) (e.g. Frith, 1979) proposes that delusions

arise from a failure to `limit the content of consciousness'; this view was

later elaborated to incorporate `faulty feedback monitoring' of actions

and intentions (Frith, 1987). This view appears best suited for an account

of delusions and thought possession (passivity), where symptoms arise

from an apparent dissociation between intention and action. Hemsley

and Garety (1986) have offered a further explanation focusing on de®cits

in the cognitive stages of the belief system: for example, deluded patients

seem more likely to arrive at a conclusion based on (statistically) insuf®-

cient information, and are more prone to hold on to delusion in face of

contradictory evidence (Huq, Garety and Hemsley, 1988). These models

have in common the view that cognitive processing occurs in discrete

stages (an assumption inherent in the so-called information-processing

approach). In general, the above models fail to address the crucial feature

of `bizarreness'.

Parallel models or sequential models?

The parallel models described above are based exclusively on parallel

algorithms. From anatomical studies it is clear, however, that the cerebral

cortex involves sequential (output of particular cortical area forwarded as

input to another area) as well as parallel organization (large number of

neurons richly interconnected within one cortical area) (Nieuwenhuys,

Voogd and van Huijzen, 1988; Anderson and Hinton, 1989; Kohonen,

Oja and Lehtio, 1989; Shepherd, 1990; Braitenberg and Schuz, 1991).

This means that parallel models cannot capture well cognitive functions
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such as symbolic processing and logical reasoning; on the other hand,

sequential models (similar to those in a digital computer) cannot capture

functions such as ability to retrieve memory from partial cues (content-

addressable memory) or resistance to minor focal damage (graceful

degradation). It would appear appropriate, therefore, that a new model

of delusions should combine both parallel and sequential aspects of pro-

cessing.

A hierarchical network model of cognitive processing

Cognitive information processing is conceptualized here as a sequence of

`pattern recognition tasks' (Fig. 7.1), with the nature of `representation'

becoming progressively more abstract and complex (or `higher level'). At

each stage, processing involves the mapping of `information patterns' (in

the form of `input vectors') onto `interpretative patterns' (i.e. vectors in

the output space). For example, at a perceptual level, a collection of

features such as colour, shape, surface texture etc. (information space)

maps onto the identi®cation of an object, e.g. a teapot (interpretation

space). At a higher level, a collection of objects, e.g. teapot, dining table,

waiter, menu (information space), maps onto the interpretation of a

restaurant scenario (interpretation space). At an even higher level, the
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Fig. 7.1 Information processing is represented by three networks connected in
sequence. Information primarily ¯ows from the lower level `perceptual' network
(N1) to the higher level `affect' network (N3). At each level of processing, infor-
mation is processed in a parallel distributed fashion by a neural network, which
essentially carries out pattern recognition tasks at the relevant level. From higher
level networks, priming in¯uence could be exerted over lower level networks.



combined data of a restaurant scenario and an attractive companion

(information space) map onto romantic, positive affects (interpretation

space). At each of these stages, the nature of processing is essentially

similar: the simultaneous (i.e. parallel) consideration of a large number

of informational features in relation to past experience and the arrival at

an interpretation consistent with both past knowledge and current infor-

mation.

In the model proposed here, cognitive processing is represented by

three neural networks arranged one after another in a hierarchy of pro-

cessing levels (the exact number of networks is of no consequence to the

basic arguments) (Figure 7.1). The ®rst network (N1) represents proces-

sing of `perceptual information'; the second network (N2) represents

`high-order cognitive interpretation'; and the third network (N3) repre-

sents `affective states'. Each network forwards its outputs to the next

network and in turn receives top-down `priming' (see below) from a

higher level network (Fig. 7.2). The model incorporates parallel proces-

sing within each network and sequential processing between different

networks.

Processing within each network

Processing within each network can be considered as a pattern-recogni-

tion task that is `parallel' in nature (Fig. 7.2). The pattern is represented

by an array of activity distributed across units in the network, each unit

encoding a `micro-feature' of the input pattern. Processing involves each

unit computing information simultaneously (i.e. in parallel) and commu-

nicating the result to all other units at each time step. This process goes

on until a steady state is arrived at. Processing of input information

patterns is partly determined by past correlations (`memories') encoded

by weights of each connection in the network, and partly by global

parameters of the network (such as the degree of `noise', see below)

(Hop®eld, 1982; Amit, 1989; Muller and Reinhardt, 1991). This ®nal

steady pattern of activity across the network maximally satis®es external

information (input pattern) and internal constraints (encoded as connec-

tion weights) and represents the outcome of processing (i.e. `the inter-

pretation' of the input information) (Rumelhart et al., 1986). Such

constraint-satisfaction processes have been used to model the retrieval

of content-addressable memory based on `partial' or `noisy' cues (Amit,

1989; Muller and Reinhardt, 1991). Description of computational details

can be found in Chen (1994; 1995).
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Basin of attraction and spurious attractors

When an input pattern is presented to a network, the network evolves

into a state corresponding to one of the previously stored patterns. The

set of initial input patterns that eventually leads to retrieval of a parti-

cular stored pattern is called its `basin of attraction' (Amit, 1989). With a

larger basin of attraction, a larger set of inputs (that may initially have

only modest resemblance to the target pattern) may eventually lead to

retrieval of the target (stored) pattern.
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Fig. 7.2 In this detailed ®gure of one component network in the system, ®ve units
are represented by circles. Connections are represented by straight lines, with
arrows indicating direction of information ¯ow. Each unit receives input from
three sources: (1) from a lower level network; (2) priming input from a higher level
network; and (3) input from other units in the same level network. Outputs of
each units are also directed: (1) to the next higher level network; (2) to prime a
lower level network; and (3) to other units in the same level (this connection is
omitted in the ®gure for the sake of clarity). The connections between a unit and
all other units at the same level characterize an `autoassociative' network. Each of
these connections carries a weight which determines how much information
should ¯ow through it. The weights are speci®ed via a learning process involving
exposure to patterns. The activation of each unit is determined as a function of all
its inputs. The activation level then determines the information transmitted to the
output lines. Information is represented by patterns of activity across a large
number of units.



In the situation of `memory overload' (where there is an attempt to

store a larger number of patterns than that permitted by the capacity of

the network), `spurious attractors' arise (Amit, 1989; Muller and

Reinhardt, 1991). `Spurious attractors' are `alien' stable patterns that

do not correspond to any of the previously learned patterns. The combi-

nation of micro-features in a spurious attractor does not correspond to

previously encountered regularities in the environment.

Processing across different networks

Within a series of networks (see Fig. 7.1), information ¯ows predomi-

nantly in one direction (from low level to high level). However, informa-

tion from a high-level network could in¯uence the processing of a low-

level network by a `priming' effect (which corresponds to the `top-down'

effects proposed in cognitive psychology) (Callaway and Naghdi, 1982).

Priming

The in¯uence by activity in a higher level network of processing in a

lower level network corresponds to the cognitive process of `priming'.

Priming enhances the probability for a network to settle into the primed

pattern. This process is implemented by selectively contributing to the

subthreshold activation of a set of units corresponding to the primed

pattern in such a way that a smaller amount of subsequent activation

will be required to prompt the network towards retrieval of the primed

pattern (for details, see Berrios and Chen, 1993).

Modelling delusions

Abnormal interpretations (delusions) are modelled here as failures in

mapping input patterns to appropriate sets of interpretations. Such dis-

tortions of mapping from the representational space to the interpretation

space may result from a variety of mechanisms. The model proposes that

different types of mapping failure lead to different structural character-

istics in delusions (Fig. 7.3; Table 7.2).

Spurious attractors and bizarre (impossible) delusions

Intrinsic problems affecting a single network responsible for high-level

interpretation (N2) lead to the formation of spurious attractors in that
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Table 7.2. Relationship between network states, cognition and clinical symptom.

Clinical
symptom

Perception
network
(N1)

Interpretation
network
(N2)

Affect
network
(N3)

Response to
treatment
(prediction
from model)

Secondary
delusions

Neural model
Abnormal
processing

Normal Normal

Cognitive events
Threatening
voices

Persecutory
ideas second-
ary to threat-
ening noises

Fear
secondary to
persecutory
ideas

Responsive as
long as primary
symptom
controlled

Primary
bizarre
delusion

Neural model
Normal Abnormal

spurious
attractors

Normal

Cognitive events
Normal Fixed

interpretation
irrespective of
input and
incongruous
with general
knowledge

Normal Treatment
response less
satisfactory or
questionable

Mood-
congruent
delusions

Neural model
Normal Primed to,

e.g., depress-
ive interpreta-
tion

Fixed at,
e.g., depression

Cognitive events
Normal Negative

interpretation
that is non-
bizarre

Depressed
mood

Good response
as long as
mood improves

Mood-
congruent
bizarre
delusion

Neural model
Normal Spurious

attractor
Fixed, at,
e.g., depression

Cognitive events
Normal Fixed inter-

pretation
irrespective
of input and
incongruous
with general
knowledge

Depressed
mood

Poor response
even if mood
improves; anti-
psychotic
medication
may be
necessary



network (Fig. 7.3). Spurious attractors may arise as a result of a number

of different network conditions. Factors implicated in the precipitation of

psychotic illnesses could be meaningfully represented by some of these

network conditions in the model. For example, a reduction in network

size or in the number of connections may correspond to reduced global

neural resources (which could be due to genetic, neurodevelopmental, or

acquired factors). A change in the noise level in the system may also

correspond to altered neuromodulation by monoamines (Chen, 1994).

It is important to note that spurious attractors emerge as a result of

abnormal processing within a network. Spurious attractors in the `inter-

pretation' network (N2) result in alien patterns in the interpretation space

that bear no resemblance to previous experience and are characterized by

an absurd clustering of features that are incongruous with one another.

The resulting pattern therefore de®es general knowledge (i.e. disregards

encoded correlation between environmental features).

Spurious attractors usually have a large `basin of attraction', which

means that a broad range of different input patterns will map onto the

spurious interpretation. This model therefore addresses the formal char-

acteristics of bizarre delusions. It depicts the latter as unshakeable inter-

pretations (trapped at basin of attraction of a spurious attractor) that are

absurd, internally incongruous (violation of encoded correlations), and

are inferred from apparently unrelated observations in a manner not

understandable by others (expansion of basin of attraction).

Effects of pathological priming and non-bizarre delusions

In the `interpretation' network (N2), a normal output pattern may

become excessively and persistently primed by pathology at a higher

level network, i.e. a ®xed state of activity in the `affective' network

(N3) (see Fig. 7.3). This leads to a persistently biased interpretation of

any input into the `interpretation' network (N2) in favour of the primed

pattern. For example, if processing at the level of affect is ®xed (due to a

primary mood pathology) at a state of `depression', feedback priming at

the level of interpretation (N3 to N2) will be in favour of a `negative'

interpretative pattern. The `negative patterns' will become a dominant

output of the `interpretation' network (N2) regardless of what the inputs

are. Even normal and neutral inputs from the `perception' network (N1 to

N2) might lead to a predominantly negative set of interpretations. This

effect would be further enhanced by a decrease in the level of noise (which
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corresponds to impaired monoamine modulation), thus reducing the

chances of a spontaneous `jump' out of that state.

In contrast to spurious attractors, primed patterns are pre-existing

patterns with pathologically enlarged `basins of attraction'. There is no

intrinsic abnormality within the patterns themselves, which are coherent

clusters of interpretative features. The abnormality lies in the pathologi-

cally enlarged set of informational input that maps onto a particular

interpretation. Examples of this type of biased misinterpretation are

mood-congruent delusions, e.g. delusion of worthlessness in affective

disorder, and non-bizarre delusions in delusional disorders (e.g. delusion

of jealousy).

Global factors

Relative weight of internal and external information

A further mechanism for delusion formation in our model involves

changes in the relative emphasis given to external input and internal

constraints in the retrieval of a pattern. Biases towards internal weights

result in a system that is less responsive to incoming data and therefore

more susceptible to the generation of internal patterns (memories). This

corresponds clinically to situations in which a decrease in the intensity of

external information (e.g. in sensory deprivation, sensory impairment, or

in delirium) leads to a relative dominance of internal information and

predisposes to delusion formation (see Fig. 7.3).

Global noise level and cognitive in¯exibility

The `noise' parameter in a neural network refers to the extent to which

the computation rule is probabilistic rather than deterministic (Amit,

1989; Muller and Reinhardt, 1991). In a more deterministic network,

the unfolding network pattern evolves by alteration in the activity of a

small number of units at a time. The output pattern is arrived at by

incremental revisions of the previous pattern and therefore its trajectory

is more likely to be `trapped' in an interpretative pattern which, although

more satisfactory than the preceding ones, does not necessarily attain the

overall best ®t to external data and internal constraints (local minima).

`Noise' in a network allows a certain possibility of jumping out from such

states, so that there is a better chance of settling in a globally optimized

(overall best-®t) solution (Amit, 1989). This computational phenomenon
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corresponds closely to the cognitive ¯exibility in a changing mental set,

i.e. capacity to reconsider all information and to come to an alternative

interpretation that may differ considerably from an earlier one.

Empirical evidence suggests that the modulatory role of diffuse cate-

cholamine projection systems (including the dopamine system) may act to

suppress random background ®ring of target cortical neurons (therefore

reducing noise) (Reader et al., 1979; Godbout et al., 1991). Although this

may have the effect of increasing the `signal-to-noise' ratio in information

transmission (Keeler, Picher and Ross, 1989; Cohen and Servan-

Schreiber, 1992, 1993), excessive suppression of neural noise results in a

rigid and deterministic neural system more likely to be trapped by locally

stable states. At a cognitive level, this situation manifests as ®xation on a

particular interpretation with an impaired ability to switch to alternatives

(cognitive in¯exibility).

Therefore, under normal circumstances, interpretative cognitive func-

tion requires the neural noise level to be within an optimal range. Too

much noise interferes with signal transmission; too little noise reduces

cognitive ¯exibility. Reduction in cognitive ¯exibility implies that once an

abnormal interpretation is arrived at, there is little possibility of revision.

In this way it closely resembles the dimension of `incorrigibility' of delu-

sional experiences. The same mechanism may be related to the ®nding of

perseverative errors shown by schizophrenic patients in the Wisconsin

Card Sorting Test (Scarone, Abbruzzese and Gambini, 1994). It is also

consistent with the observations of Huq et al. (1988) that patients tended

to arrive earlier at a (statistically unwarranted) conclusion and to main-

tain that conclusion despite contrary evidence.

Classical secondary delusions

Yet another mechanism could explain the generation of delusions sec-

ondary to hallucinations: pathology at the lower level perceptual network

(N1) (i.e. hallucination) leads to abnormal input patterns correctly pro-

cessed by the interpretation network (N2) to produce an interpretation

consistent with the pathological perception (see Fig. 7.3).

Priming effect on the perceptual network

Finally, a ®xed pattern at the interpretation network (N2) also primes the

perceptual network �N1) in favour of perception consistent with a parti-

cular interpretation of the environment (see Fig. 7.3). For example, the
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interpretation of being watched and criticised by others (delusion of

reference) leads to a priming in perception so that irrelevant overheard

conversations are experienced as voices talking about oneself (i.e. a hal-

lucinatory experience secondary to a delusion). `Top-down' in¯uence on

hallucination has also been suggested by Bentall (1990).

Discussion

Based on a neural network framework, different types of processing

dysfunction are suggested to explain a variety of abnormal interpreta-

tions (summarized in Table 7.2). Spurious attractors lead to `odd' inter-

pretations that are internally inconsistent and at variance with general

knowledge (de®ned as absurd clusters of semantic features incongruous

with one another and resulting in a construct that de®es general knowl-

edge). Priming from `upstream' pathology leads to `mistaken' inter-

pretations, i.e. an unlikely, unjusti®ed but potentially conceivable

interpretation.

This model also offers a unique theoretical basis for the re-de®nition

and differentiation between bizarre (impossible) and non-bizarre delu-

sions. This more restrictive conceptualization of bizarreness ef®ciently

addresses the subset of delusions that conventionally have been described

as `bizarre'. Whilst `bizarreness' may re¯ect abnormalities inherent at the

same level of processing (horizontal dimension), top-down or bottom-up

processes constitute an independent dimension (vertical). Thus `mood

congruity' of a delusion, for example, may evidence a top-down priming

in¯uence. Tracing of a delusion to a primary perceptual disorder evi-

dences, in turn, a bottom-up in¯uence. On the other hand, the dimension

of `incorrigibility' is related to a global cognitive factor represented in the

model by the extent to which processing is subjected to deterministic

rather than probabilistic rules (which in turn maps biologically to levels

of noise in cortical neuronal activity).

Albeit speculative, this model provides a framework for empirical

research. For example, because it considers the `horizontal' and `vertical'

dimensions of delusion as independent, it can predict that in clinical

practice delusions should show varied permutations of mood congruity

and bizarreness (suggesting that pathology affects the two mechanisms)

independently. Further predictions may also be made: for example, the

extent to which `bizarreness' and `mood congruity' are `orthogonal' could

be empirically determined by using a multidimensional rating scale.

Similarly, the model offers a speci®c prediction in situations in which a
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delusion results from factors extrinsic to the interpretation network,

namely that removal or cessation of the primary cause should result in

degradation of the delusion. (However, the correlation between the

dynamics of the delusion and that of the primary pathology need not

be linear.) For example, if mood-congruent delusions are assumed to be

produced by top-down priming from the level of affect (as evident by

being typically non-bizarre), resolution of the mood disorder should

result in softening of the delusion. On the other hand, the model predicts

that mood-congruent delusions linked to spurious attractor properties

(i.e. bizarreness) should show a course less dependent upon an improve-

ment in affect (see Table 7.2). This prediction could be tested by long-

itudinal comparison between bizarre and non-bizarre mood-congruous

delusions. Other parameters from the model are also accessible to mea-

surement. For example, cognitive ¯exibility can be re¯ected in executive

function tests such as perseverative errors in the Wisconsin Card Sorting

Test.

We are aware of the fact that caution must be exercised in the mapping

of model components to brain structures. Anatomical studies show that

organization in the cortex is complex and de®es macroscopic lobar

boundaries. Each level of processing (function) may correspond to a

(structural) system of richly interconnected cortical areas (of similar

architectonic status) that transcend lobar or cortical±subcortical bound-

aries (Barbas and Pandya, 1991; Fuster, 1995). For example, the inter-

pretative network may correspond to a connected system involving

speci®c parts of the temporal cortex, frontal cortex as well as subcortical

structures. Other strengths and limitations of mapping neural network

models onto brain structures have already been extensively discussed

(Crick and Asanuma, 1986; Churchland and Sejnowski, 1992).

Conclusions

The ®rst stage in the development of a concept of delusion appropriate

for empirical research must be a conceptual analysis to determine the

locus of opacity in delusions. As shown in this chapter, the `received

view' has resulted from stipulations that are now an obstacle to under-

standing. Dictated by history, social power and fashion, these stipula-

tions are rarely reviewed, and hence research into delusions remains a

prisoner of the past. One way out of this trap is by boldly making use of

different conceptual frames. One such conceptual frame has been a struc-

tural or multidimensional view of delusions; another is neural network
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models. Simple neural network models, however, are limited in their

capacity to represent complex cognitive events. A hierarchical neural

network model based on current understanding of cognitive processes

is proposed here which incorporates both parallel and sequential aspects

of information processing.

It is also suggested that disruption of speci®c parameters in this model

leads to processing abnormalities that are similar in form to subtypes of

delusions, for example bizarre and non-bizarre delusions, mood-congru-

ent and mood-incongruent delusions, and `secondary' delusions. Thus,

bizarre delusions arise from disturbed intrinsic processing within the

same hierarchical level; mood congruity from dysfunction in network

interaction across different hierarchical levels.

The role of cognitive in¯exibility and sensory deprivation is also dis-

cussed in relation to our model. This chapter also proposes a new theo-

retical basis for the differentiation between bizarre delusions (odd belief

systems) and non-bizarre delusions (wrong interpretations), and makes a

number of speci®c predictions about the clinical course (and empirical

ascertainment) of different types of delusions.
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8

`Produced by either God or Satan': neural
network approaches to delusional thinking
SOPHIA VINOGRADOV, J O H N H. POOLE and
JASON WILLIS-SHORE

A schizophrenic man is convinced that the CIA performed cardiac sur-

gery on him on the army and gave him a lizard's heart; now his blood

pumps through only three chambers, which means any medication he

takes is going to be very dangerous for him.

A lonely erotomanic woman tells an elaborate story of how California

politician, Jerry Brown, secretly fell in love with her when she wrote him

a fan letter 20 years ago; Brown still signals his passion to her whenever

he is photographed in pro®le.

Most of us would agree that these are examples of delusional thinking,

one of `the main psychiatric phenomena' encountered by clinicians in

everyday practice (Brockington, 1991). In keeping with Jaspers' classic

description of half a century ago (1946), these examples show the hall-

mark characteristics of subjective certainty, incorrigibility, and imposs-

ible (or improbable) content. Until now, clinical psychiatry has been

preoccupied with only one of these features, namely the content ± and

thus we focus on whether a patient's delusion is bizarre, on whether it is

well systematized, on whether it is paranoid or somatic or grandiose. Yet

any experienced clinician also knows two other perplexing things about

delusions. The ®rst is that `however sharply they may be de®ned logically,

they are not sharply demarcated from normal thinking' (Brockington,

1991, p. 42). The second is that delusional thinking is more than the

sum of its contents. As Sedler (1995, p. 259) notes (italics added):

Whereas . . . delusions may or may not invoke the whole of psychic life to explain

their speci®c contents, it is the form in which these contents appear, the delusional

structure that sustains them, which must command our attention.

189



(For) although the strange, outlandish, or incomprehensible content of delu-

sions is the feature that super®cially engages one's attention, and indeed has

dominated clinical theory, it is clear that these features alone are insuf®cient to

understand what makes a delusion.

So what exactly does make a delusion, this tenacious belief that the

patient clings to despite all of the contradictory evidence of everyday

reality? How different is it from the range of thinking processes we all

engage in? More recent descriptions have emphasized these formal prop-

erties of delusional thinking (e.g. Berrios, 1991; Vinogradov, King and

Huberman, 1992a; Spitzer, 1995; Sedler, 1995) in order to make sense of

the apparently illogical way some patients have of experiencing the

world. A formal approach to delusions ignores the details of content

and focuses instead on the thinking processes or cognitive operations

of the delusional patient. The authors propose that such an approach

is ultimately the most useful and valid way to understand delusional

thinking from a neurobiological point of view ± and, therefore, from a

clinical point of view as well.

As is shown in this chapter, neural network models may be able to

explain, at least in part, how disordered information processing in the

brain can give rise to delusional thinking in all its myriad clinical man-

ifestations. Why is an understanding of this approach crucial for those

who are interested in psychopathology? The authors argue that it is only

such an approach that allows us to grasp in a neurobiologically sound

manner the way in which cerebral pathophysiology interacts with envir-

onmental stressors and individual psychodynamics to give rise to one of

the most classic signs of mental illness (see Brockington, 1991).

Let us return, as our starting point, to the examples about the lizard

heart and Jerry Brown's secret passion. Putting aside the content (inter-

esting as it is), what can we hypothesize about the structure of the

patients' thinking processes in these two examples? How would we char-

acterize their cognitive operations?

Delusions appear to involve both the personal, narrative-based episodic

memory system (`This is what happened to me, I remember it ± I had

secret cardiac surgery/Jerry Brown fell in love with me') and the know-

ledge, belief, or generic (semantic) memory system (`This is factual, I

know this to be true ± the CIA always puts lizard hearts into people/

people convey secret messages in photographs'). As such, delusional

thinking spreads beyond memory of one's personal past. It has a life of

its own in the present and it in¯uences ongoing perceptions, thoughts,

and actions. It also connects or binds together many different aspects of a

190 Sophia Vinogradov, John H. Poole and Jason Willis-Shore



person's experience. Nowhere is this more evident than when a patient

develops ideas of reference and is on the cusp of assigning meaning to the

experience:

At ®rst it was as if parts of my brain `awoke' which had been dormant and I

became interested in a wide assortment of people, events, places, and ideas which

normally would make no impression on me . . . (I felt) there was some over-

whelming signi®cance in all this, produced by either God or Satan, and I felt I

was duty-bound to ponder on each of these new interests, and the more I pon-

dered the worse it became. The walk of a stranger on the street could be a sign to

me which I must interpret, every face in the window of a passing streetcar would

be engraved on my mind, all of them concentrating on me and trying to pass me

some sort of message.

(MacDonald (1964) as cited in Benioff, 1995.)

Delusions are a person's attempt to explain his or her overwhelmingly

signi®cant experience; they represent the creation of a personal narrative.

This narrative ± this self-generated explanation of events ± becomes

integrated into the individual's episodic memory. When these memory

records are later activated, the delusional person can no longer discern

that they were internally generated explanations for a whole set of experi-

ences. Instead, the individual has become certain that the explanations

are part of something that really happened, part of the real, external

world. The delusional explanations have become part of the person's

generic, background knowledge (semantic memory), and like all know-

ledge, will in¯uence the person's ongoing experience of events.

Delusional thinking must, therefore, at its most fundamental level, be

related to aberrant long-term memory formation and retrieval, probably

both in the episodic and in the generic memory systems, with subsequent

effects on perception and interpretation of incoming stimuli. (Although

cognitive psychologists tend to distinguish between the two aspects of

long-term memory, evidence strongly suggests that they are highly inter-

related at both a neuroanatomic and functional level ± Fuster, 1995.)

Over the past 20 years, connectionist models of information processing

in the brain have made great strides in exploring various aspects of

normal memory functioning in humans (e.g., Collins and Loftus, 1975;

Anderson, 1983; McClelland and Rumelhart, 1985). The logical next step

is to use connectionist models to understand some of the abnormal mem-

ory information processing that occurs in psychiatric disorders charac-

terized by delusions.

This chapter discusses such a neural network information-processing

approach to delusional thinking in three sections:
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a brief review of the literature on cognitive aspects of delusional thinking

a presentation of neurological, neuropsychological, and experimental

data that support a neural network model of delusional syndromes

an overview of current connectionist models that are relevant to this

approach.

No attempt is made to present a complete neural network model of

delusional thinking. The empirical data base on the cognitive and neuro-

psychological aspects of delusion formation in clinical populations is still

scanty. Furthermore, connectionist modeling continues to struggle to

develop cogent schemas for relatively simple memory phenomena; it is

not yet able to account for all of the rich and complex attentional, con-

textual, and affective inputs that must in¯uence the formation and retrie-

val of abnormal memories in susceptible individuals. Rather, the

usefulness of the connectionist approach to understanding what we

observe clinically and to planning future research is illustrated.

Cognitive aspects of delusional thinking

I got caught speeding once, about ten years ago, near LA. The cop stopped me
and gave me a ticket. I realized last summer who the cop was: it was Mark

Fuhrman from the OJ Simpson case. Then I suddenly realized that he gave me
another ticket once when I was speeding near Las Vegas, about six years ago. I'm
not sure how he got there. Maybe LA police sometimes work in other places, too.

For substitution or restitution and promotion. And then I knew they would want
me to be a witness in the OJ Simpson trial. They'd want me to say whether or not
Fuhrman was an honest cop. And I knew they were following me, because of the
OJ case. They're rich, they can follow me anywhere. The doctor I saw yesterday

looked like one of their lawyers.

LK, a 40-year-old Caucasian male with delusional disorder.

Maher (1974, 1988) has proposed that delusions are the result of normal

cognitive processes applied to unusual or faulty perceptual data. Humans

tend to see causality in covariation or coincidence; scienti®c researchers

do it all the time, and it is adaptive from an evolutionary point of view. A

painting on a cave wall is followed by a good hunt, a certain clump of

marsh grass hides some edible tubers ± humans will make a link between

events, which can (sometimes) enhance their survival. Likewise, when we

are presented with distorted or troubling incoming sensory data, we

attempt to make sense of it, to assign meaning to it. For example, if

someone has a neurologic disease that causes auditory hallucinations,

then his or her brain will work very hard to come up with an explanation
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for those voices ± perhaps it is God, telling him or her to have faith and

be healed.

The vignette above illustrates that there is something more to delu-

sional thinking than just this, however. Certainly, Mr. K. has distorted

perceptions that are `explained away' by his delusion: his uneasy sense of

being followed is due to his important role in the OJ Simpson case. But it

goes the other way, too: his conviction about his role itself distorts his

perceptions of current and past events. Also, there is a certain vagueness,

a tangentiality, even some unusual word use, as he describes his experi-

ences ± what Chapman, Edell and Chapman (1980) have noted as cog-

nitive slippage during description of symptoms.

Indeed, Chapman and Chapman (1988) have pointed out that schizo-

phrenics show striking cognitive slippage when they discuss their delu-

sional topics; schizophrenics also show a selection bias in that they focus

more often on stimuli that are strong or prominent, and they neglect

weaker stimuli, resulting in a `constriction of the evidence considered.'

These investigators propose that delusions, anomalous perceptual experi-

ence, and thought disorder are independent phenomena that can aug-

ment each other, but that none of the three uniformly occurs ®rst in a

causal sequence.

Faulty cognitive operations are involved in delusional thinking

Several lines of experimental evidence suggest that delusional thinking is

not simply the result of anomalous perceptions, but that it involves some

speci®c faulty cognitive operations. Deluded subjects make more exter-

nal attributions for negative events and more internal attributions for

positive events; they also tend to see coincidences as signi®cant (Kaney

and Bentall, 1992). Deluded subjects request less information before

reaching a decision on a probabilistic inference task (Huq, Garety and

Hemsley, 1988) and they show a reasoning bias when they perform such

tasks (Garety, Hemsley and Wessely, 1991). Johnson (1988) has proposed

that, in patients with delusional thinking, there is a loss of control over

thoughts. This produces a paucity of re¯ective, cognitive±operations

information, and so the thoughts become particularly easy to confuse

with external stimuli.

The experimental work in schizophrenia, a clinical disorder character-

ized by delusions, is also suggestive. Here, the cognitive de®cits relevant

to delusional thinking appear to involve problems with speci®c aspects of

memory function. Symptom severity, which includes positive symptom
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pro®les and therefore the presence of delusions, is a signi®cant predictor

of impaired memory (Sullivan et al., 1994). Schizophrenic patients show

compromised episodic memory (Gold et al., 1992), but preservation of

procedural memory, implicit memory, and some aspects of primary

short-term memory (Clare et al., 1993). Interestingly, semantic memory

is also anomalous in schizophrenia (Manschreck et al., 1988; Kwapil et

al., 1990; Spitzer et al., 1993, 1994; Chen et al., 1994) ± especially in the

realm of controlled processing (i.e. attention-based and effort-based

aspects) (Henik, Priel and Umansky, 1992; Henik et al., 1995;

Vinogradov, Ober and Shenaut, 1992b; Ober, Vinogradov and

Shenaut, 1995, 1996).

Of particular relevance to delusions, schizophrenics show defects in

their memory for the source of information (Harvey, Earle-Boyer and

Levinson, 1988; Harvey et al., 1990; Bentall, Baker and Havers, 1991;

Vinogradov et al., 1997. When schizophrenics are asked to recall the

source of information (`make up a word' vs `read the word') after a long

delay, they often misattribute self-generated items to the experimenter

(Vinogradov et al., 1997). Source monitoring is conceptualized as a

meta-memory function that, while dependent on intact encoding,

storage, and retrieval, also requires monitoring and regulation of

contextual information. Thus, some researchers have concluded that

delusions, such as experiences of alien control in schizophrenia, prob-

ably re¯ect a disorder in central error correction (Malenka et al., 1987)

and in central monitoring of perception, memory, and action (Frith and

Done, 1989; Bentall et al., 1991).

The various faulty cognitive operations reviewed thus far suggest,

among other things, that delusional patients have problems with reason-

ing, attentional processes, and central monitoring, all aspects of the

executive functions of the prefrontal cortex. In addition, there is a poorly

de®ned ensemble of memory de®cits. Taken together, these information-

processing defects undoubtedly play a role in establishing cognitively

biased but tenaciously held explanatory schemata ± based on faulty

executive monitoring of records in episodic and/or semantic memory.

Manifestation of frankly delusional beliefs may also require that these

information-processing de®cits are superimposed on a predisposition to

speci®c cognitive biases ± a kind of stickiness or viscosity of cognition ±

due to distressing life events, negative emotional states, absence of dis-

con®rming feedback, and the like. Thus, a person's delusional interpreta-

tion of events would re¯ect both predisposing biases and impaired

executive functions.
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We know that normal subjects tend to interpret unexplained states of

physiologic arousal negatively, and that subjects who report negative

feelings will almost always provide an explanation for them (Maslach,

1979). Psychiatric patients who experience physiologic arousal as part of

their illness will also attempt to explain the arousal, and will show a bias

towards various negative kinds of explanations. For example, the patient

with panic attacks becomes convinced they are caused by the crowds in a

shopping mall and develops agoraphobia; the hypervigilant veteran with

post-traumatic stress disorder decides that being around Vietnamese

immigrants is dangerous; the obsessive±compulsive patient becomes con-

vinced that her intense anxiety is caused by failure to return home to

check whether the door is locked, even though she has already done so

repeatedly. Yet ± despite the negative bias to their explanatory sys-

tems ± not all of these patients develop true delusional thinking (i.e.,

imperviousness to logical analysis and discon®rming evidence).

It seems likely that an unpleasant state of anxious arousal is necessary,

but not suf®cient, to develop delusions. In other words, problems in

memory processing (which themselves must be quite anxiety producing)

both result in and are superimposed upon heightened arousal, strongly

negative emotional tone, memories of previous experiences, and motiva-

tion to ®nd explanations. This in turn reinforces underlying cognitive

biases in the affected individual. Longitudinal research certainly indicates

that premorbid interests and preoccupations color the content of delu-

sions in schizophrenia when an individual ®nally develops an acute psy-

chotic episode (Harrow, Rattenbury and Stoll, 1988; Chapman and

Chapman, 1988).

In our clinical research, we have also observed the contrasting

phenomenon. We have interacted with higher-functioning schizophrenia

spectrum patients (DSM-IV residual schizophrenia or schizotypal

personality disorder). These patients had brief psychotic episodes in

the past and continue to demonstrate mild forms of the cognitive

anomalies of schizophrenia, but have never developed detailed, well-

systematized, overarching delusions. Instead, they move through life

focused on vague mystical or religious experiences, or are preoccupied

with their memories of dif®culties faced in late adolescence (such as a

hostile social clique or an aggressive boyfriend). Clinically, these

patients seem to lack the exaggeration of cognitive biases, and thus

appear to be protected from elaborating complicated delusional expla-

nations for their experiences.
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The role of cognitive bias in delusional thinking

Let us examine this concept of cognitive bias more closely. It has already

been suggested that delusional thinking occurs because some part of

long-term memory processing is not working very well. What is interest-

ing about cognitive bias is that it actually suggests that some part of

cognition is working too well. Shapiro has described this most eloquently:

A suspicious person is a person who has something on his mind. He looks at the

world with ®xed and preoccupying expectations, and he searches repetitively, and

only, for con®rmation of it . . .

Suspicious people are not simply people who are apprehensive and `imagine

things.' They are, in actual fact, extremely keen and often penetrating observers.

(Shapiro, 1965.)

Paranoid subjects show better nonverbal receiving ability than normals

when asked to identify correctly videotapes of people's facial expressions

(LaRusso, 1978). Paranoid schizophrenics, who by de®nition are preoc-

cupied by one or more delusions (and/or hallucinations), are more ready

to impute the presence of stimuli and to draw inferences more liberally

from presenting stimulation, despite processing it less adequately than

controls (Broga and Neufeld, 1981). They also report illusory correla-

tions between randomly correlated pairs of words, particularly when they

are of a paranoid content (Brennan and Hemsley, 1984).

Magaro (1981) reviewed the experimental information-processing lit-

erature contrasting nonparanoid schizophrenics and paranoid indivi-

duals and concluded that paranoids have preconceived and

idiosyncratic cognitive sets that interfere with their ability to respond

to tasks requiring attentional mechanisms. Stroop task experiments by

Carter et al. (1993) demonstrated that paranoid schizophrenics showed

a greater than normal interference effect (as compared to disorganized

schizophrenics who showed a greater than normal facilitation effect). In

a pilot study, evidence was found that paranoid schizophrenics show

more inhibition dominance than nonparanoids on a semantic priming

task (unpublished data); in a recent experiment, it was demonstrated

that paranoid schizophrenics showed nonsigni®cant priming on a lexical

detection task, consistent with interference in automatic spread of acti-

vation in semantic memory (Ober et al., 1996).

Schizophrenics with systematized delusions show better verbal ability

and verbal memory than those without, as well as a greater discrepancy

between premorbid verbal ability and current attentional functioning

(Kremen et al., 1994). Paranoid schizophrenics are not vulnerable to
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distraction on a digit span task in the same manner as nonparanoid

schizophrenics (Rund, 1982), and do not make as many perseverative

errors on the WCST (Rosse et al., 1991). They process complex informa-

tion more ef®ciently (Langell, Purisch and Golden, 1987) and show evi-

dence of increased inhibitory processes on the P300 AERP task (Louza

and Maurer, 1989). Thus, certain aspects of cognitive bias suggest that

something in the brain is functioning too well, rather than not well

enough. As Shapiro describes it:

On the one hand, the paranoid person searches intensely for con®rmation of his

anticipations. On the other hand, those same rigid anticipations of what he will
®nd allow him to feel entitled to discredit and disregard apparent
contradictions . . . In this process, intellectual capacity, keenness, and acuteness

of attention become . . . instruments of bias. This keenness enables suspicious
people to make, as they often do, brilliantly perceptive mistakes.

(Shapiro, 1965.)

What aspects of brain function might account for this keen anticipa-

tion, this tendency to make brilliantly perceptive mistakes? We can only

propose a tentative and partial answer. The data we have brie¯y reviewed

suggest `interference effects,' as if the set of memory associations that is

brought to bear on a task is too rigid, too strong, too tightly connected,

so that it interferes with the subject's ability to evaluate and respond

¯exibly to the task at hand. Indeed, it is as if incoming percepts are

evaluated only in terms of certain rigid sets of associations, and the

percepts themselves become connected to (and absorbed by) this rigid

set of associations. These observations imply dysfunction in cortical asso-

ciation areas responsible for the generation of context or expectations,

areas which are, by de®nition, involved in the `storage' of memories. At

the same time, the data suggest that there are domains of relatively intact

prefrontal cortical functioning.

Baer (1979, cited in Strauss, 1988) has pointed out that patients with

complex partial seizures (temporal lobe epilepsy), who can show hyper-

religiosity, hypergraphia, and interpersonal `stickiness,' often also have a

propensity to impute particular signi®cance to trivial stimuli; a feature

that may be related to sensory-limbic hyperconnectiveness. In schizo-

phrenia, Saykin et al. (1991) found a selective impairment in memory

and learning consistent with temporo-limbic dysfunction, while Gur et

al. (1994) from the same laboratory found that severity of delusional

thinking was correlated with problems in left midtemporal lobe function

(on functional neuroimaging) as well as de®cits in verbal memory. In a

comparison of schizophrenic subjects with bipolars and normals, Wood

Neural network approaches to delusional thinking 197



and Flowers (1990) found that a focal suppression of left hemispheric

peri-Sylvian activation during memory task performance uniquely char-

acterized schizophrenia, as did a de®cit in narrative prose memory. These

clinical research data hint at a relationship between cognitive bias and

posterior brain areas involved in memory storage and retrieval.

Some preliminary conclusions

Based on a brief review of the cognitive aspects of delusional thinking,

the following preliminary conclusions are suggested.

Delusional thinking is associated with problems in long-term memory

processing with a concomitant misattribution of sources of informa-

tion. There is evidence of both episodic and generic memory anomalies

(especially in the realm of controlled, attentional processing), as well as

defects in reasoning and central monitoring or meta-memory opera-

tions. In other words, there are de®cits in the brain systems that are

responsible for the organization and encoding of memories ± and for

the monitoring of associated contextual information (consistent with

executive dysfunction in prefrontal cortex).

Delusional thinking is associated with cognitive bias, which is the inade-

quate processing of all relevant information combined with the `over-

processing' of certain other types of information. There is suggestive

evidence of involvement of language systems and of temporal lobe

function, including sensory±limbic hyperconnectivity. In other words,

there is overdrive in the brain systems that are responsible for the set of

expectations that are brought to tasks involving perception as well as

the set of associations that is formed during perception.

Given these preliminary conclusions, let us turn now to the neurologi-

cal and neuropsychological data pointing to the brain systems that might

be involved in delusional thinking.

Delusional thinking is associated with disconnection of reciprocally

innervated brain systems

Clinical research over the past 15 years indicates that a number of delu-

sional syndromes are caused by dysfunction of speci®c brain systems

important for the formation of general schemata and the utilization of

speci®c memories. Several neuropathological conditions that point to the

neural bases of delusions are examined ®rst. Then evidence is considered
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for cerebral impairment in two psychiatric disorders that involve severe

reality distortion: the obsessive±compulsive and schizophrenia spectrum

disorders. Taken together, this body of work supports a neural network

model of delusional syndromes based on disconnection of reciprocally

innervated brain systems ± particularly those involved in the retrieval

and inhibition of sensorimotor schemata.

The neuropathology of delusional syndromes

Acute-onset delusional syndromes

Even patients with no prior tendency for psychosis may develop delu-

sional symptoms following cerebral impairment. For example, studies of

senile dementia patients who have no prior history of psychiatric distur-

bance (Cummings and Victoroff, 1990; Mendez et al., 1990) indicate that

delusions occur in 40 percent of cases. In progressive dementias, these

symptoms occur in the early and middle stages of the illness and cease as

cognitive functions continue to decline (Drevets and Rubin, 1989). This

suggests that, for delusions to manifest, no only must there be defective

cerebral functioning, but also certain subsystems must be preserved.

Thus, two questions arise: (1) which subsystems have failed? and (2)

what is the effect of this failure on still-functioning modules?

Delusions of imperfection

Strong evidence for neurologic etiology comes from several delusional

syndromes, which have in common the belief that something has gone

wrong with familiar objects or people, i.e., reduplicative and dysmorphic

delusions (Malloy and Duffy, 1994). Reduplicative delusions involve the

®xed belief that imperfect doubles have replaced familiar places (redupli-

cative paramnesia), important people in one's life (Capgras delusion), or

even oneself (doppelganger delusion). Dysmorphic delusions involve the

®xed belief that one's own body is dis®gured (body dysmorphic delusion),

diseased (hypchondriasis), infested by bacteria or parasites (Ekbom delu-

sion), or dead (Cotard delusion). These delusions can occur in the

absence of neurodiagnostic ®ndings. However, a large proportion of

cases are accompanied by neurologic signs (Malloy, Cimino and

Westlake, 1992) or may result from neurologic disorders acquired in

adulthood (e.g. toxic metabolic conditions, traumatic brain injury,

dementia).
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Several reviews of the neurological evidence in adult-onset cases with

these syndromes point to involvement of the frontal lobes in virtually all

cases (e.g., Ruff and Volpe, 1981; Hakim, Verma and Greiffenstein,

1988). Associated behavioral features are also characteristic of frontal

dysfunction, and include amnesia with confabulation, poor insight into

consequences of actions, and lack of concern regarding one's illness.

Furthermore, impairment of right frontal functioning may be a prerequi-

site for the development of delusional thinking, in that most studies point

to either right or bilateral frontal damage.

Beyond this rather nonspeci®c requirement, the content of reduplica-

tive and dysmorphic delusions appears to be in¯uenced both by person-

ality factors (pre-illness biases in the system) and by the exact location of

additional nonfrontal damage ± most frequently in the perceptual asso-

ciation areas of the right temporal or parietal lobes (Malloy and Duffy,

1994). For example, speci®c areas in the inferior temporal cortex are

dedicated to recognition of familiar faces, and lesions in this region are

associated with the impression that familiar pepole have been imperfectly

replicated (Alexander, Stuss and Benson, 1979; Malloy et al., 1992). In

contrast, the posterior temporo-parietal area specializes in identifying

objects, and impairments in this region can produce the sensation that

familiar objects or places have been replaced by dilapidated surrogates

(Benson, Gardner and Meadows, 1976). Finally, the anterior parietal

region contains a schematic map of the body, and lesions here can pro-

duce impressions of bodily distortion or dysfunction.

Anorexia nervosa, a disorder involving not only severe disruption of

eating behaviors but also marked body-image distortion, may exemplify

the con¯uence of premorbid cognitive biases with neurocognitive dys-

function. A large volume of research has documented that anorexia is

associated with speci®c predisposing psychosocial factors, such as cul-

ture-speci®c and subculture-speci®c models of beauty, socioeconomic

level, and family members' reactions to adolescent body changes.

Evidence (reviewed by Braun and Chouinard, 1992) has also accumulated

that this disorder tends to be associated with neuropsychological and/or

electrophysiological disturbances in the right temporo-parietal cortex,

possibly accompanied by frontal metabolic disturbances. Many patients

with anorexia nervosa have beliefs of delusional intensity that they are

grossly overweight (despite clear evidence to the contrary), and that los-

ing even more weight will yield feelings of success and social acceptance.

This appears to result both from premorbid cognitive and emotional

biases as well as from a breakdown in self-monitoring and regulation.
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All of the above delusions involve the erroneous conviction that some-

thing is seriously wrong with oneself or one's world. The contrary convic-

tion ± that nothing is wrong ± can also be triggered by neurologic de®cits,

particularly when associated with the perceptual de®cit, anosognosia.

Anosognosia

When brain trauma causes an acute loss of sensory, motor, or language

abilities, patients' capacity accurately to appraise their own functions

may or may not be spared. This ability depends primarily upon speci®c

multisensory perceptual and cognitive functions, based in a cortical

region at the con¯uence of temporal, parietal, and occipital lobes. In

the right hemisphere, this region is involved in judging whether one's

own body is functioning properly, while in the left hemisphere it evaluates

the progress and effectiveness of verbal communications. Anosognosia,

the inability to perceive dysfunction in oneself, is a common consequence

of lesions in this region. When damage is in the right temporo-parieto-

occipital area, patients often cannot recognize even complete loss of limb

function, such as left hemiplegia or anesthesia. When such patients are

confronted with evidence of their dysfunction (such as an immobile left

arm), they often respond with confabulations that can reach delusional

proportions (`That's someone else's arm'). Similarly, when the left tem-

poro-parietal area is damaged, patients frequently cannot recognize even

severe disruption in their semantic language functions, such as an inabil-

ity to name objects or comprehend language, and their production of

¯uent but empty speech (Wernicke's aphasia). This combination of

incomprehensible language with an inability to see the de®cit in oneself

often leads to agitated, paranoid states, which can easily be misdiagnosed

as schizophrenia.

The role of central monitoring and control functions

Given that delusional symptoms are related to dysfunction in posterior

association areas, why would frontal dysfunction also be an essential

component of these syndromes? The prefrontal cortex is the ®nal com-

mon convergence for perceptual information collated by posterior asso-

ciation areas. The process of monitoring one's internal and external

environment involves intensive reciprocal communication between the

posterior heteromodal sensory association area and the prefrontal hetero-

modal association cortex (Mesulam, 1985). Indeed, 85 percent of
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pathways to the prefrontal cortex that convey environmental information

originate in the posterior association areas ± 60 percent from tertiary

association cortex, and 25 percent from secondary association areas

(Strub and Black, 1988). In this role, the prefrontal cortex coordinates

diverse brain functions that are involved in shifting and focusing atten-

tion. It also provides the central control function of maintaining adaptive

concepts and responses while suppressing irrelevant concepts and

responses (Goldman-Rakic, 1987a, 1987b). Thus, if the frontal lobes

and their reciprocal connections with the posterior cortex are intact,

irrelevant, maladaptive percepts from the posterior cortex, despite their

alarming nature, may eventually be ignored or even suppressed.

Conversely, if frontally based monitoring and control functions are dis-

rupted, then any perceptual defects, prexisting temperamental tenden-

cies ± or even the subtle perceptual biases that are normal features of

human perception ± may take on a degree of autonomy that severely

distorts thinking and behavior.

Automatisms

The converse occurrence ± loss of frontal regulatory functions while per-

ceptual and motor systems remain intact ± further highlights the role of

frontal dysfunction in delusional states. For example, the supplementary

motor area regulates exploration of the environment by alternately allow-

ing or suppressing basic searching behaviors initiated by limbic motiva-

tional centers. Damage to this area can release automated behaviors from

control, resulting in `alien hand syndrome,' in which the patient's hand

persistently manipulates objects without conscious initiation or control.

The uncanny sensation of a seemingly autonomous limb frequently

causes patients to believe they have been possessed or are controlled by

an outside force (Goldberg, Mayer and Toglia, 1981).

Temporal lobe epilepsy

Temporal lobe epilepsy is a disorder involving partial seizures (not gen-

eralized to the entire brain) originating in cortical or limbic structures of

the temporal lobe. Temporal lobe epilepsy has been of considerable the-

oretical interest due to apparent associations with altered behavior and

personality. Temporo-limbic ictal phenomena (occurring at or near the

time of seizure) are highly diverse, potentially including intense percep-

tual, motor, mnestic, autonomic, and emotional manifestations (Bigler,
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1988). This suggests that stimulation of temporo-limbic circuitry can

activate templates for a wide variety of phenomena ± in short, almost

any experience that the brain is capable of producing (Spiers et al., 1985).

Interictal manifestations (occurring between seizures) are thought to

result primarily from chronic irritation of brain systems near the epileptic

focus. (This is a topic with some disagreement, as attempts are made to

distinguish speci®c neurologic effects from general `psychological' reac-

tions to seizures, medication effects, etc.) While no interictal behaviors

are inevitably associated with temporal lobe epilepsy, most studies have

found speci®c personality traits, including: heightened emotionality,

dependency, obsessionality, paranoia, and reduced sexuality (Hermann

and Riel, 1981; Brandt, Seidman and Kohl, 1985; Fedio, 1986). In addi-

tion, circumstantiality (verbosity with poor closure), hypergraphia (inces-

sant impulse to write), intense philosophical interest or religiosity, and

sense of personal destiny are also frequently observed (Hermann and

Riel, 1981; Rao et al., 1992; Sanders and Mathews, 1994).

The temporo-limbic system specializes in collating sensory input with

internally stored perceptual and emotional templates, in interpreting their

relevance, and in encoding this for later retrieval. Temporal lobe epilepsy

research suggests that repeated, uncontrolled discharges in this system

can result in a heightened drive to ascribe meaning to details, in activa-

tion of emotions, and in dif®culty perceiving pragmatic cues that guide

social interactions. Baer (1979) proposed that these are due to sensory-

limbic hyperconnectivity, which results in the overinvestiture of emotions

in the details of perception and ideation.

The interictal manifestations of temporal lobe epilepsy are reminiscent

of the behavioral distortions and cognitive biases of psychoses (i.e., cir-

cumstantiality, paranoia, heightened sense of meaningfulnes, poor social

pragmatics). However, these tendencies typically do not take on psycho-

tic proportions, and patients with temporal lobe epilepsy are not gener-

ally considered to have an elevated risk for psychosis. As discussed for

right temporo-parietal lesions, this may be due to the presence of intact

prefrontal systems that are able to monitor, regulate, and to some degree

override posterior perceptual systems and therefore to maintain adaptive

functioning. Nonetheless, when one examines psychiatric populations,

left temporal lobe epilepsy is over-represented in schizophreniform dis-

orders (Sherwin, 1982; Flor-Henry, 1983). In such cases, the temporal

lobe epilepsy tends to be associated with diffuse cerebral pathology

(Hermann and Whitman, 1984) and, thus, a reduced capacity to com-

pensate for biases in temporo-limbic functioning.
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Synthesis: a neuropsychological model of delusional syndromes

Memories and perceptual maps of one's world are mainly stored in the

primary association areas of the cerebral cortex, located between the

primary sensory and motor areas (Markowitsch, 1985; Damasio,

Tranel and Damasio, 1990; Killackey, 1990). Modality-speci®c memories

and schemata (e.g., of sights, melodies, tactile impressions, motoric

sequences) are typically stored in the secondary association areas, imme-

diately adjacent to the primary sensory or motor area of the same mod-

ality. The integration of multiple, `heteromodal' sensorimotor features of

experience occurs in two tertiary association areas: the temporal-occipi-

tal-parietal juncture, and the prefrontal cortex (Strub and Black, 1988).

Finally, each of these regions is intimately connected with subcortical

structures (the limbic system, basal ganglia, and thalamic nuclei) respon-

sible for the encoding and retrieval of memories along with their asso-

ciated emotional relevance.

These association areas are storage sites for fundamental schemata ±

internal maps of the world that guide our perceptual, cognitive, and meta-

cognitive processes. As discussed below, the posterior associative and

limbic structures contain perceptual templates by which sensory input is

recognized, logically interpreted, and imbued with emotional color.

Likewise, frontal associative and subcortical structures contain regulatory

schemata for cognition and action, and include such processes as: gener-

ating and choosing among options, monitoring and correcting errors,

assessing emotional motivation of actions, and imposing self-control.

The posteriorally located temporal-occipital-parietal-limbic (TOPL)

circuits are most directly responsible for the formation and storage of

perceptual schemata. They provide the framework within which sensory

percepts are recognized, interpreted, evaluated, and imbued with emo-

tional valence. In these circuits, lateralized hemispheric specialization is a

salient organizing principal. The language-dominant (usually left) TOPL

specializes in verbal, sequential, and detail-oriented schemata for evalu-

ating self and environment. For example, it monitors the linguistic sen-

sibility of speech (by oneself and others), and provides the internal labels

for explaining events, evaluating the accuracy and signi®cance of minute

perceptual details, and analyzing cause±effect sequences. In short, it gen-

erates a verbally encoded associative network for sequentially analyzing

the minutiae of experience.

In a complementary manner, the right TOPL specializes in visuospatial

schemata for evaluation of self and environment, using mainly nonverbal,
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globally organized, simultaneous processing of patterns. It provides inter-

nal templates against which complex perceptual con®gurations can be

compared, thereby differentiating the familiar from the alien, the func-

tional from the dysfunctional, the beautiful from the discordant. In sum,

it generates a con®gurally encoded associative network for synthetically

interpreting the `rightness or wrongness' of objects, organisms, and their

functions. When they function normally together, the perceptual±mem-

ory circuits of the left and right TOPL generate and store a complex

associative network in which narrative, sequential analyses of perceptual

details are meshed with a visuospatial map of the overall pattern of

perceptions, and the whole is then colored with emotional signi®cance.

The frontal±basal ganglia-limbic-thalamic (FBGLT) circuits are the

primary regulators of `action' in the physical and cognitive realms. In

contrast to the schema-generating and storage function of the TOPL

circuits, the FBGLT circuits are involved in the regulatory integration,

monitoring, and control of existing schemata. FBGLT circuits are

involved in such processes as the organization of learning, the retrieval

of memories, the generation of multiple behavioral options, the ability to

make context-appropriate choices, the formation of expectancies, the

sustained execution of plans, and the suppression of inappropriate

responses. Furthermore, the prefrontal cortex is the ®nal common path-

way for metacognitive processes such as self-monitoring, self-regulation,

and self-consciousness (Stuss and Benson, 1987; Perecman, 1987).

The FBGLT circuits manifest lateralized differences similar to the pos-

terior areas ± including left frontal regulation of verbal, sequential,

detail-oriented behavior, and right frontal regulation of con®gural, simul-

taneous, pattern-oriented processing. In addition, there is a striking func-

tional divergence along the dorsal±ventral axis, with the dorsolateral

prefrontal circuit and the ventrally located orbitomedial circuit enacting

complementary roles of elaboration and inhibition over thoughts, emo-

tions, and behavior (Mesulam, 1985; Cummings, 1993; Malloy and

Richardson, 1994).

Clinical and experimental research suggests that a wide variety of delu-

sional syndromes involve disruption of the ciruits which connect three

basic modules:

the posterior perceptual-association and limbic circuits involved in inter-

preting the world;

the anterior motor-association, basal ganglia, and limbic structures

involved in initiating and maintaining actions;
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the prefrontal association areas involved in monitoring and controlling

behaviors.

Speci®cally, structural or functional disconnection results in the exces-

sive autonomy of functional units, with an oversimpli®cation and perse-

veration of their functions. This results in their unmodulated domination

over surrounding processes. For example, if impaired posterior TOPL

circuits begin to free-run, unconstrained by prefrontal regulation, then

surrounding circuits will be dominated by irrelevant schemata that

prompt the false recognition of threat, alienness, or damage. Similarly,

if anterior motor or speech-generating circuits are isolated from prefron-

tal regulation, one may become convinced that one's actions or verbally

encoded thoughts are under external control or come from an alien

source.

Application of the neuropsychological model to two psychiatric disorders

We will apply this neuropsychological model of delusional thinking to

two common and debilitating psychopathological conditions, obsessive±

compulsive disorder (OCD) and schizophrenia.

Obsessive±compulsive disorder

Let us consider OCD brie¯y insofar as it contributes to our understand-

ing of delusional mechanisms (see Chapter 9 for in-depth discussion of

neural network approaches to OCD). OCD is characterized by relentless,

obsessional thoughts that one's world is full of speci®c dangers or con-

taminations. Patients cannot suppress these thoughts, which are asso-

ciated with severe anxiety and which prompt either constant cleaning

(of hands, objects, etc.) or endless compulsive checking (that the door

is locked, that the gas is turned off). Neuropsychological, neuroimaging,

and evoked potential studies consistently indicate that OCD involves

dysfunction within a circuit linking the temporal pole of the limbic system

(an area involved in anxious ideation), basal ganglia (especially the cau-

date nucleus, responsible for initiation of actions), and the orbitofrontal

cortex (involved in suppressing nonadaptive responses) (Abbruzzese et

al., 1995; Baxter et al., 1987, 1988; Malloy et al., 1989). The latter two

areas are typically hypermetabolic in OCD, which suggests that the pro-

blem is not loss of function within these areas. Rather, there appears to be

inadequate serotonergic activity within inhibitory projections connecting
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these three structures, resulting in inadequate negative feedback ± a

situation that can be pharmacologically ameliorated (Benkelfat et al.,

1990; Insel and Winslow, 1992).

Thus, OCD illustrates the consequences of functionally disconnecting

the temporo-limbic and basal ganglia structures known to be responsible

for the recognition of danger, narrative elaboration, anxiety, and initia-

tion of behavior, from the frontal areas responsible for suppressing inap-

propriate responses. Patients develop a stereotyped, anxiety-charged

narrative that takes on a `free-running' quality and cannot be inhibited.

In many cases, the affected person realizes that the incessant thoughts are

irrational; in some patients, however, the symptoms attain delusional

proportions, resisting all attempts at factual demonstration and logic.

As discussed previously, the model presented here makes the testable

prediction that these two groups differ primarily in the intactness of

frontal circuitry involved in the monitoring and evaluation of experience.

Schizophrenia: a pervasive reality distortion syndrome

This section summarizes some of the neurocognitive anomalies consistent

with our model that may contribute to the formation of delusional beliefs

in schizophrenia. Schizophrenia involves one or more episodes of sus-

tained psychosis (delusions, hallucinations, severely disorganized beha-

vior) with a signi®cant loss of adaptive functioning. As every clinician

knows, however, beyond this basic de®nition, patients with schizophrenia

manifest a heterogeneous mix of possible symptoms and de®cits, with no

single lesion or dysfunction occurring in all cases of the disorder. Any

truly integrative model of schizophrenia must therefore de®ne its common

biological substrate as a pattern of functional (dis)organization in the

brain, one that allows for divergence among subjects in the details of

impairment. In light of this consideration, it is fascinating that both neural

network hypoconnectivity and hyperconnectivity have been proposed as

central to the de®cits of schizophrenia (David, 1994; Hemsley, 1994).

A ®rst possible approach to de®ning neurocognitive impairment in

schizophrenia emphasizes failures in automatic regulatory processes.

For example, the P50 auditory event-related potential, which typically

is inhibited when stimuli are repeated in close succession, has been used

as an index of `sensory gating,' or ®ltering of redundant stimuli. Many

schizophrenics fail to inhibit this response to repeated stimuli, suggesting

a failure of ®ltering that may lead to information overload and interfer-

ence with selective attention (Freedman et al., 1987). Recent studies have
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found that absence of P50 gating is associated with altered semantic

information processing, namely hyperpriming on a mainly automatic

priming task (Vinogradov et al., 1996). This suggests that a failure of

inhibitory controls over sensory perception may be coupled to overly

productive, automatic associative processes in semantic memory.

A second approach focuses on regulatory failures in schizophrenia, but

at the level of controlled (effort-based) processes, using tasks mediated by

different regions of the frontal lobes and their projections. Such studies

provide evidence of hypometabolism in the dorsolateral prefrontal cortex

when schizophrenics engage in tasks requiring ¯exible problem-solving

strategies, such as the Wisconsin Card Sort (WCS; Weinberger, Berman

and Zec, 1986), and in the premotor, sensorimotor, and mesial frontal

lobes during complex motor tasks (Guenther et al., 1994). Individuals

affected by schizophrenia, however, do not show a uniform pattern of

de®cits affecting all aspects of prefrontal cortical function, and various

measures of frontal integrity do not necessarily correlate highly with one

another (Goldberg and Weinberger, 1988). This suggests considerable

heterogeneity of the `frontal syndrome' even within schizophrenia. For

example, while Seidman et al. (1995) found schizophrenics to be severely

impaired on the WCS and on two tasks thought to be sensitive to orbi-

tofrontal integrity, Abbruzzese et al. (1995) only found WCS perfor-

mance to be impaired.

To integrate these studies, Poole et al. (1996b) administered a battery

of frontally related tasks to schizophrenics and normal controls, along

with a computer-administered semantic priming procedure under condi-

tions requiring either automatic or controlled information processing.

The schizophrenics showed impairment on three, relatively independent,

factor-derived indices: cognitive in¯exibility, motor incoordination, and

inhibitory failures. Inhibitory failures were associated with hyperpriming

on an automatic semantic priming task. Cognitive in¯exibility was asso-

ciated with absence of priming on a mainly controlled semantic priming

task. Motor incoordination was unrelated to both automatic and con-

trolled semantic information processing. Individuals exhibited varying

combinations of these de®cits. Taken together, these studies suggest

that, while impairment of FBGLT circuits is common in schizophrenia,

individuals differ widely in terms of the exact structural and functional

domains affected. Three affected sites are suggested: dorsolateral prefron-

tal with impaired formation of strategic sets, orbitofrontal with impaired

inhibition of nonadaptive responses and `hyperassociations,' and basal

ganglia with impaired motor sequencing.
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A third domain of neurocognitive analysis of schizophrenia is that of

memory functions. These studies (e.g., Gold et al., 1992; Paulsen et al.,

1995) typically ®nd that the majority of memory dif®culties in schizo-

phrenia involve suboptimal organization of storage and retrieval pro-

cesses, not true amnesia (i.e., failure to encode or maintain a stable

memory trace). While simple recognition memory is typically intact, cer-

tain aspects of metarecognition, such as source monitoring and recall, are

typically impaired (Harvey et al., 1988, 1990; Bentall et al., 1991). Source

monitoring is that aspect of memory which involves tracking the origin of

experiences and memories. Vinogradov et al. (1997) studied source mon-

itoring in schizophrenia, using a task that required recall of whether

words were generated by the subject, the experimenter, or were new.

Schizophrenics had two types of source-monitoring anomalies: a failure

to recognize items that were self-generated, and a response bias towards

identifying items as experimenter generated. The net result was a ten-

dency to say that self-generated items had an external source.

These ®ndings of a projective, externalizing tendency in schizophrenics'

memory processes parallel what is seen when causal expectancies are

examined. Bentall (1994) found that delusional schizophrenics show an

enhancement of the self-serving bias typically seen in normals, i.e., an

exaggerated tendency to attribute negative outcomes to external causes

and to attribute positive outcomes to one's own effort. These ®ndings

from memory and attribution studies suggest that in some schizophre-

nics, delusional beliefs may be rooted in an exaggeration of the normal

cognitive biases towards projective externalization. In the study by

Vinogradov et al. (1997), subjects with the worst source-monitoring

performance had signi®cantly higher ratings of unusual thought content,

disorganized behavior, and motor incoordination ± suggesting that these

cognitive biases re¯ect a breakdown in self-regulation of thoughts and

behavior. Liddle (1995) has proposed that the symptoms of schizophrenia

re¯ect disorder of the supervisory mental processes responsible for initia-

tion, selection, and monitoring of self-generated mental activity, and that

the underlying neuropathology entails disordered functional connectivity

within the neural networks of multimodal association cortex.

A fourth domain of cognitive analysis in schizophrenia focuses on per-

ceptual accuracy. For example, impaired recognition of emotional cues

(facial expression and vocal prosody) has been repeatedly documented in

schizophrenia, with a severity comparable to that produced by right-

hemispheric lesions (Borod et al., 1990, 1993). In a study that controlled

for general cognitive level (IQ) and nonemotional perceptual abilities
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(facial and vocal discrimination), Poole et al. (1996a) found that inac-

curate affect recognition was associated with the severity of schizophre-

nics' reality distortion (delusions, hallucinations), disorganization (loose

associations, bizarre appearance/behavior), and cognitive symptoms (dis-

tractibility, stereotyped thinking). These ®ndings suggest that some

schizophrenics have a core disturbance of affect recognition, which may

be differentiated from less-speci®c de®cits, and is associated with psycho-

tic symptoms, stereotyped thinking, and loss of attentional control.

Thus, depending on the subject sample ± indeed, on the individual

examined ± schizophrenics show impairments in any of several relatively

automatic perceptual/associative processes (sensory gating, semantic

associations, affect recognition), as well as any of several relatively con-

trolled monitoring/regulatory processes (organization of memory, source

monitoring, strategy formation, response sequencing, response inhibi-

tion). We propose that no single one of these impairments is necessary

or suf®cient for schizophrenia, but that these diverse de®cits re¯ect a

single meta-organizational pattern: functional disconnection between

the perceptual and the regulatory domains, resulting in stimulus-driven

responses and autonomous, stereotyped mental productions.

Delusional thinking and neural network models

The discussion has so far been focused on the clinical and empirical

evidence that supports a neural network approach to delusional thinking.

However, several investigators have developed speci®c computational

models that can be applied to the cognitive processes involved in delu-

sional thinking. These models will be examined brie¯y and their salient

features highlighted. Interestingly, the themes already discussed from a

phenomenological, cognitive psychological, and neuropsychological/

neuroanatomical point of view ± that is, functional disconnections

between domains of information processing combined with hyperassocia-

tions within domains ± resurface now in these various connectionist

models.

Hoffman's model of positive symptoms in schizophrenia (1989/1993)

Hoffman and colleagues have developed a neural network model in

which a disruption of communication between cortical areas leads to

the characteristic symptoms of schizophrenia, including auditory

hallucinations, experiences of thought broadcasting, delusions, and the
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paranoid state (Hoffman and Dobscha, 1989; Hoffman and McGlashan,

1993). They argue that diminished frontal metabolism in schizophrenic

patients re¯ects a normal developmental process of axonal pruning gone

awry. Citing evidence of dramatic reductions in synaptic density over the

course of normal adolescence (Huttenlocher, 1979; Phelps and Chugani,

1986), Hoffman and his colleagues suggest that the `hypofrontality' of

schizophrenia results from a breakdown in the pruning shut-off mechan-

ism that normally kicks in at around 16 years of age. This pathological

and excessive neuronal pruning is the cornerstone of their neural network

model of schizophrenia (Hoffman and McGlashan, 1994).

Hoffman and Dobscha's computer simulations of brain information

processing use a Hop®eld-type network in which each `neuron' receives

synaptic input from all other neurons. The authors explain that `the

behavior of a Hop®eld network can be intuitively thought of as a

physical system that tends to orient itself in certain stable ``crystalline''

structures . . . These structures correspond to speci®c, reproducible pat-

terns of activation . . . [which] can be thought of as memories of the

system' (Hoffman and Dobscha, 1989, p. 480). The connection weights

are initially set from exemplar patterns (which function as attractors),

so that a set of associations is encoded in the equilibrium state. The

initializing input pattern serves as a `seed.' Weights then remain ®xed

and only sequential updating of activation values takes place. Finally,

the network is systematically pruned, i.e., network connections are func-

tionally eliminated.

The results of the simulation show that when this network is over-

pruned, patches of output activation patterns tend to fall into ®xed,

autonomous states that are inappropriate given the input. Additionally,

these pathological outputs do not resemble any particular encoded mem-

ory and they repeatedly interfere with the overall ¯ow of information in

the system. Hoffman calls these pervasive and pathological outputs

`parasitic foci.'

According to this model, the emergence of parasitic foci within human

cortical pathways contributes to the formation of positive symptoms in

schizophrenia (Hoffman and McGlashan, 1993, 1994). For instance, a

parasitic focus arising in cortical circuits responsible for speech percep-

tion will lead to `factitious speech percepts' (p. 126), which might be

experienced as verbal hallucinations (Hoffman and McGlashan, 1993).

A parasitic focus falling in the communication pathways between speech

production and speech perception areas could subtly in¯uence or shape

one's own inner thoughts and could simultaneously contort external
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auditory and verbal perceptions into the same mold (Hoffman et al.,

1994). Experientially, one would (mis)perceive people as saying the

same things one was thinking, which could result in symptoms of thought

broadcasting or mind reading (Hoffman et al., 1994).

Hoffman and McGlashan carry this model a step further to illustrate

how a parasitic focus in cortical association areas related to narrative

memory might precipitate paranoid delusions. Speci®cally, they hypo-

thesize that story memories would become dominated by a ®xed, auton-

omous, and persistent associative activation pattern. Seemingly unrelated

perceptions would easily trigger the parasitic focus which, given its

observed tendency to dominate information ¯ow, would consistently dis-

tort the schizophrenic patient's internal narrative. Due to the ®xed nature

of the parasitic focus, delusional beliefs would be resistant to discon®rm-

ing evidence.

In sum, this model relates reduced synaptic density caused by excessive

axonal pruning in schizophrenia to a loss of control of narrative memory,

which ultimately results in the formation of delusions. This model sug-

gests that functional disconnection (excessive axonal pruning) between

certain cortical circuits results in autonomous, hyperactive information

¯ow within pathological and pervasive output patterns (parasitic foci).

Cohen and Servan-Schreiber's model of disturbances in the processing of

context in schizophrenia (1992)

Cohen and Servan-Schreiber have constructed a neural network model

that relates the neuromodulatory effects of dopamine in the prefrontal

cortex to information processing de®cits in schizophrenia. The authors

point out that the cognitive impairments observed in schizophrenics on

attentional and lexical disambiguation tasks commonly re¯ect a de®cit in

the processing of contextual information. They cite evidence that the

prefrontal cortex plays an important role in the processing of contextual

information (Goldman-Rakic, 1987a, 1987b; Diamond and Goldman-

Rakic, 1989) and that the proper functioning of the prefrontal cortex is

dependent on the neuromodulatory effects of mesocortical dopamine

projections (Levin, 1984; Weinberger, Berman and Chase, 1988). Using

a computer model, Cohen and Servan-Schreiber explain how reduced

dopaminergic tone in the prefrontal cortex may directly in¯uence the

processing of contextual information.

The authors begin by constructing back-propagation network models

that simulate normal human performance on attentional and lexical
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disambiguation tasks. Although the models require architectural modi®-

cations for each task, they share some common features, including a `dis-

course module.' The discourse module is important as it holds a

representation of general information about context. For instance, in

the lexical disambiguation task, given the phrase `without a pen . . . you

can't sign a check' or the phrase `without a pen . . . you can't keep chick-

ens,' the subject must interpret the appropriate meaning of the ambiguous

word `pen' given the context in which it is used. While the semantic mod-

ule processes the meaning of individual words, the discourse module pro-

cesses or holds the meaning of the phrase. Network information cycles in

and out of the semantic and discourse modules; the meaning of individual

words (e.g., keep chickens or sign a check) in¯uences the interpretation of

a phrase and vice versa.

To simulate schizophrenics' performance on these tasks, the authors

reduce their model's dopamine analogue: the gain parameter. The gain

parameter functions as a multiplier for the effects of excitatory and inhi-

bitory inputs to the unit, and thus is analogous to a neuromodulator.

When the gain is reduced in the discourse module, presumably analogous

to reduced mesocortical dopamine activity in the prefrontal cortex, the

network's performance closely resembles that of schizophrenic patients.

This occurs on all of the cognitive tasks, and only when the gain para-

meter in the discourse module of each model is reduced. Cohen and

Servan-Schreiber interpret these results as support for their hypothesis

that schizophrenic de®cits in attention and language-processing tasks are

a consequence of reduced dopaminergic activity in the prefrontal cortex.

When gain is reduced, the effects of both excitatory and inhibitory inputs

to cortical circuits are reduced, which in turn has an impact on informa-

tion processing and memory functions, especially those related to the

processing of context.

The authors do not speci®cally address how these cognitive de®cits

might lead to the clinical symptoms of schizophrenia. Nevertheless,

they argue that their modeling approach provides a powerful and

much-needed tool for exploring the complex connections between physi-

ology and behavior. They postulate a decrease in the dopaminergic `gain

function' to the prefrontal cortex, which implies a functional hypocon-

nectivity between mesolimbic areas and their dopaminergic projections to

prefrontal cortex. They also emphasize that this results in inadequate

processing of contextual or discourse level information by the prefrontal

cortex, a notion that echoes some of the metamemory (source-monitor-

ing) de®cits explored earlier in this chapter.
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Vinogradov, King, and Huberman: spread of activation, phase transitions,

and the paranoid process (1992a)

Vinogradov and her associates have proposed a spreading activation net-

work model of the process of delusion formation with an emphasis on

discrete phase transitions in the network. This process occurs along a

phenomenological continuum that can be viewed in three overlapping

stages. The ®rst is that of the initial paranoid state, when the predisposed

individual experiences a sense of connections or associations among tem-

porally contiguous perceptions. In the second stage, the individual begins

to assign meaning to these associations, and ultimately a self-generated

schema is learned that allows the individual to explain his or her experi-

ence. Finally, by the third stage, with this explanatory schema in place,

the delusion becomes crystalized and self-perpetuating. New perceptions

and events not only become connected to a past set of associations, they

serve to con®rm the ever-more tenaciously held delusional beliefs and

thus become integrated into the explanatory schema itself.

Vinogradov et al. suggest that the initial paranoid state, which is best

characterized as one of overactivation or hyperconnectivity, can be

described with a neural nework model of memory formation. This state

results from the dynamic interplay among three model parameters:

(1) the average number of links per node; (2) the weights for each link;

and (3) the relaxation rate of an individual node. Abnormally large

numbers of links between nodes, abnormally large link weightings,

and/or an abnormally sluggish node relaxation rate could create an over-

active, hyperassociative network state where temporally contiguous per-

ceptions become pathologically `connected' to one another, as is the case

in the initial paranoid state.

Vinogradov et al. carry this model a step further to explain the process

by which this initial paranoid state becomes crystalized into a ®xed delu-

sion. Changes in the network parameters (links per node, weights per

link, or relaxation rate) will precipitate major changes in the behavior

of networks, leading to abrupt phase transitions characterized by

an explosive growth in the expansiveness of network activation

(Shrager, Hogg and Huberman, 1987). The hyperassociative network

state (the paranoid state) is already predisposed to form more connec-

tions among events or perceptions; as the number of these connections or

links grows, computer simulations show that an abrupt phase transition

occurs (Fig. 8.1). It is manifested by an explosion of network activation

such that a single giant cluster of nodes becomes activated. The charac-
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teristics of the spreading activation network in this phase are analogous

to those that occur in the crystalization of the ®xed delusion where any

number of various perceptions, experiences, and thoughts can trigger

expression of the entire delusional system.

This neural network model suggests that hyperconnectivity within a

given cortical circuit, perhaps related to decreased inhibitory processes

in¯uencing the circuit, leads to the delusional patient's initial experience

of associations between a variety of events. Hyperconnectivity within the

memory network ultimately results in abrupt phase transitions and thus

in the formation of a ®xed, crystalized delusion.
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Fig. 8.1 Phase diagram for the characteristics of spreading activation networks as
a function of the number of links per node, the weights per link, and the relax-
aiton rate of network nodes. (Adapted from Vinogradov et al., 1992a.)



Krieckhaus, Donahoe, and Morgan: paranoid schizophrenia and

dopamine hyperactivity in the hippocampus (1992)

Krieckhaus, Donahoe, and Morgan have presented a model of paranoid

schizophrenia in which delusions arise from aberrations in the consolida-

tion of declarative memory. They propose that this dysfunctional process

results from changes in synaptic connections in the parietal-temporal-

occipital association cortex (PTO). These changes in PTO connective

networks are secondary to their modulatory inputs from dopamine D2

hypersensitive neurons in the CA1 region of the hippocampus.

Krieckhaus et al. postulate that long-term, declarative memory stores

are `embodied' in the numerous synaptic connection strengths in the

PTO. These connection strengths are normally modi®ed as a result of

complex interactions between internal and external inputs. They are

further modi®ed ± or reinforced ± by the diffuse modulatory inputs

from the CA1 hippocampus. The cumulative effect of these reinforcing

inputs is to strengthen network connections that are consistently paired.

That is, these reinforcement signals strengthen the associations between

perceptions that warrant association.

Krieckhaus et al. suggest that in paranoid schizophrenia, CA1 neurons

of the hippocampus are hyperactive. The overstimulation of PTO net-

works by the hyperactive modulatory CA1 inputs causes inappropriate

connections to be strengthened. As a result, unrelated and temporally

contiguous perceptions are experienced as strongly associated and inter-

connected. This hyperassociative state ultimately leads to the formation

of delusions. The model also explains the ameliorating effects of D2

dopamine antagonists (neuroleptics) on delusions: presumably, dopa-

mine-hypersensitive CA1 hippocampal neurons are rendered less sensitive

by these agents, which reduces the overstimulation of the PTO memory

networks.

Like Cohen and Servan-Schreiber's work, this model examines the

modulatory effect of dopaminergic tone on information-processing cir-

cuits, although here it is a case of increased gain on memory circuits in

PTO, rather than reduced gain on discourse or context circuits in pre-

frontal cortex. Like Vinogradov et al.'s model, Krieckhaus and col-

leagues propose that unrelated and temporally contiguous perceptions

are experienced as strongly related because of a hyperassociative state

in memory circuits ± and that this gives rise to paranoid delusions.

Though not explicitly stated, one might infer that CA1 dopamine over-

activity could be a result of impaired inhibitory input to this area from
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frontal afferents (as suggested in Weinberger's neurodevelopmental

model of schizophrenia, 1987).

Chen's model of cortical information processing in schizophrenia

(1994/1995)

Recently, Chen has developed a model similar to Hoffman's (Hoffman

and Dobscha, 1989) in its design and function, but Chen considers the

additional roles of dopaminergic modulation, of cognitive overload, and

of hippocampal dysfunction in schizophrenia through treatment of dif-

ferent intrinsic parameters within the neural network (Chen, 1994, 1995;

also see Chapter 3 by Chen and Berrios).

Chen observes that when the level of noise in his neural network model

is reduced, a situation analogous to increased dopaminergic suppression

of random ®ring in cortical neurons, `spurious attractors' ± the ®xed and

autonomous activation patterns that Hoffman calls parasitic foci ±

become prevalent throughout the network. These spurious attractors in

turn lead to the formation of delusions, presumably through the same

hypothetical mechanisms detailed by Hoffman (see the discussion of

Hoffman's model above).

Chen also details the effects of bombarding the information-processing

network with a high degree of input relative to processing capacity, ana-

logous to high cognitive demands placed upon an individual under exces-

sive stress. This high memory loading in the neural network results in

parasitic foci dominating the network. Chen proposes that his model

provides evidence for the interaction of both biological and social factors

in the formation of psychotic symptoms. An increase in the dopamine-

mediated suppression of the random ®ring of cortical neurons in biolog-

ically predisposed individuals, paired with stressful social factors such as

those prevalent in early adulthood, may precipitate delusional thinking

through aberrant information processing in memory systems.

Chen goes on to simulate the effects of dysfunctional hippocampal±

cortical communication. Rolls (1989, cited in Chen, 1995) has argued that

hippocampal processing of information serves to `orthogonize' input

such that overlapping or correlated incoming events (e.g., perceptions)

are coded onto cortical output patterns that are separated from one

another. Chen experiments with this process by presenting input patterns

that have varying degrees of overlap to his neural network, modeling a

possible aspect of hippocampal dysfunction in schizophrenia.
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His results indicate that a failure in input orthogonization could lead to

delusional thinking. Chen ®nds that the higher the degree of input pattern

overlap, the more prevalent the same ®xed and meaningless output pat-

terns (parasitic foci) become. This occurs even under circumstances of

relatively low cognitive load. Chen notes that such a failure in input

orthogonization, i.e., a failure to separate input patterns, would result

in the categorization dif®culties that have been observed in schizophrenia

(Chen, Wilkins and McKenna, 1994). Such de®cits may play a role in

establishing the cognitive biases that precipitate delusional thinking.

Like Vinogradov and Krieckhaus, Chen underscores the important

role played by inputs becoming associated, though he uses different ter-

minology. Similarly to Vinogradov, he infers that this hyperassociation

plays a causative role in producing abnormally functioning memory cir-

cuits (for Krieckhaus, abnormal memory associations are the result of

overactive dopamine input). Like Krieckhaus, Chen focuses on dopamine

overactivity and its effects on cortical information processing;

Krieckhaus and Chen also both assign a de®cit to the hippocampus.

However, as does Hoffman, Chen examines the role of lack of communi-

cation between cortical circuits (excessive pruning for Hoffman,

decreased random ®ring or noise for Chen), which results in auto-

nomously functioning cicuits or parasitic foci. Somewhat similarly to

Cohen and Servan-Schreiber, Chen looks into the effect of cognitive

overload on overall information processing in the system (Cohen and

Servan-Schreiber would call it decreased dopamine to prefrontal cortex),

and concludes that it impairs the ability of the system to engage in con-

textual processing ± a sort of `dopamine steal' syndrome.

Ruppin et al.'s attractor network model for positive psychotic symptoms

in schizophrenia (1995)

Ruppin and colleagues (1995) have proposed a neural network model for

delusions and hallucinations in schizophrenia in which synaptic degen-

eration in inputs is accompanied by an increase in local connections in the

network (the analog of new synaptogenesis). In this attractor network,

general memory retrieval was normal, but there was spontaneous activa-

tion on noncued memory patterns when either the noise in the system or

the strength of internal connections increased beyond a certain threshold

level. Like the positive symptoms of schizophrenia, the spontaneous

retrieval bias of this network was both self-limiting and self-reinforcing;

it is suggestive of the response biases seen in schizophrenic patients on

218 Sophia Vinogradov, John H. Poole and Jason Willis-Shore



source memory tasks (e.g., the response bias towards labeling internal

events as externally generated ± see Vinogradov et al., 1997). In addition,

this model generated interesting predictions about the pathophysiology

and psychopathology of schizophrenia: the notion of synaptic compensa-

tion for the degenerated inputs, the notion of increased spontaneous

neural activity in these attractor networks, and the well-known clinical

phenomenon of environmental cuing of delusional memory retrieval.

An integration of the neural network models

Let us now integrate these six models, with an emphasis on the features

they share that are most pertinent to delusional thinking.

1. All of the models point, either explicitly or implicitly, to the impor-

tant role played by a functional disconnection between domains of

brain information processing. Decreased communication between

cortical circuits and/or frontal±hippocampal circuits are most

often emphasized (excessive pruning ± Hoffman, Ruppin; reduced

dopamine input to prefrontal cortex with impairment in discourse

or contextual level processing ± Cohen and Servan-Schreiber;

decreased inhibitory processes to memory association circuits and/

or hippocampus ± Vinogradov, Krieckhaus, Chen; decreased ran-

dom ®ring in cortical neurons ± Chen).

2. Nearly all of the models focus on hyperassociation within memory

circuits with pathological and autonomously functioning output

patterns (parasitic foci ± Hoffman; increased connectivity with

abrupt phase transitions in memory circuits ± Vinogradov; increase

in local connections with spontaneous activation of noncued mem-

ory patterns ± Ruppin; hyperassociative state in PTO memory cir-

cuits ± Krieckhaus; spurious attractors ± Chen).

3. Several of the models either explicitly or implicitly acknowledge the

general effect of cognitive overload, cognitive limitations, and/or

excessive activation of limbic areas, i.e., emotional overload and

stress (reduced functional capacity of prefrontal cortex ± Cohen

and Servan-Schreiber; tendency of the system to overload and

move towards abnormal states of activation ± Vinogradov, Chen,

Ruppin).

4. Three of the models underscore the importance of integrating the

role of dopamine neuromodulation into models of brain informa-

tion processing, especially those involving context-processing or
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monitoring functions and memory formation (Cohen and Servan-

Schreiber, Krieckhaus, Chen).

Future directions

Convergent evidence from cognitive psychology, neuropsychology, and

neural network modeling supports the idea that delusional thinking is the

result of two fundamental aspects of brain function gone awry:

1. a disconnection that occurs between normally integrated domains of

cortical information processing (overall central monitoring and/or

inhibitory functions are disconnected from memory association/

schemata formation);

2. a form of `free-running' overdrive or hyperconnectivity that occurs

within given isolated regions of memory formation, expectations,

association, and retrieval ± with pathological outputs as the result.

This approach allows us to answer two questions about delusional

thinking that have long perplexed psychopathologists. The ®rst is the

notion of severity. If brain pathology exists along a continuum of dys-

function, as it almost certainly does, then it makes sense that there may

be milder or more severe forms of delusional thinking (improbable delu-

sions vs impossible delusions), depending on a person's level of neuro-

biologic dysfunction. Second, a formal, cognitive approach allows those

of us who are clinicians to move beyond the perplexing and often bizarre

contents of our patients' delusions to re¯ect on the ways in which brain

pathology interacts with environmental and intrapsychic stressors to give

rise to the unique signs and symptoms of each individual.

As neural network models of psychopathology become more sophisti-

cated, they will obviously need to address the important questions of

variation. First, what is the effect on the overall information-processing

system when one varies the relative contributions of the two domains of

malfunction described above? Second, what is the effect of varying the

extent and severity of the malfunctions, both independently and con-

comitantly? Third, might there be variations in the underlying causes

of malfunction? We suggest that such variations in real brain systems

account for the large clinical heterogeneity observed in patients with

delusional thinking ± from the almost-believable and well-circumscribed

preoccupations of the erotomanic, to the disorganized, kaleidoscopic

delusions of the schizophrenic, to the patently absurd `stuck loop' of

the severely obsessive±compulsive patient.
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Finally, a major challenge for models of the future will be to integrate

the contributions of the following.

1. Premorbid biases in the system. How do an individual's psychody-

namics (prior memory records) in¯uence the formation of delusions?

At the same time, why, despite an almost in®nite number of idosyn-

cratic variations, is there so much thematic coherence to patients'

delusional systems? As Sedler (1995) puts it: `The frequency with

which certain themes recur ± jealousy, persecution, grandiose

ideas, somatic ideas ± long has provided a basis for subtyping delu-

sions but this alone fails to tell us whether these themes are

biographically pregnant or simply general categories of human

interest gone awry' (p. 258).

2. Affective state and emotional valence. What are the contributions of

emotional state to the initiation and sustenance of delusional think-

ing? How do certain delusions obtain a strong negative emotional

valence, while others have a neutral or even more positive valence?

How is the role of affect different in delusions associated with mood

disorders from those associated with thinking disorders?

3. The subjective sense of `relief' and the inherently rewarding proper-

ties of the delusional system. What accounts for the relief that delu-

sions provide? Why is having an explanation experienced by the

human brain so rewarding? Dopamine release is triggered by sur-

prise or unmet expectations; does an explanatory system reduce

anxiety-producing dopamine overdrive?

4. The role of certainty. Why do delusional individuals have such a

high degree of conviction or certainty about their beliefs? How is the

level of certainty signaled? Why is this certainty not open to feed-

back or evidence to the contrary? What is the role of dopaminergic

(and/or serotonergic) overdrive in the development of pathological

certainty?

5. Brain dopamine systems. What is the possible relationship between

the formation of delusions and brain dopamine systems that mediate

responses to novelty/unmet expectations? Are delusions a means the

brain can use to change inputs that are experienced as unexpected/

novel/surprising into inputs that are expected (and so decrease dopa-

minergic tone)?

6. Integration with current ®ndings in laboratory neuroscience.

Multiple unit recording in primates of cortical representations of

auditory stimuli in primary auditory cortex is mappable,
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manipulable, and subject to re®nement (Recanzone, Schreiner and

Merzenich, 1993). Multiple unit intracortical recording experiments

in primates have also conclusively demonstrated that structuring the

expectation for a particular visual stimulus will modify its represen-

tation in primary visual cortex (Desimone and Duncan, 1995). In

other words, expectation results both in a widespread inhibition of

extrinsic stimulus-driven responses within the cerebral cortex and in

a positive and highly speci®c representation of the `remembered'

(expected) events (Desimone and Duncan, 1995). Expectancy signals

are likely to be powerful, distributed inhibitory and excitatory

effects from frontal cortex sources; the role of expectation as a factor

in the accuracy of perceptual responses (representations in primary

sensory cortex) is a new area of laboratory neuroscience investiga-

tion, one that will generate valuable empirical data in the coming

years (Susan Smiga and Michael Merzenich, personal communica-

tion). Neural network models of normal brain function will need to

account for the net balance between input signals, intrinsic cortico-

cortical connections, and output variables in the maintenance of

associational relationships between stimulus expectations and stimu-

lus representations, yet allow for cognitive and perceptual ¯exibility.

Models of psychopathology will have the far more daunting task of

coherently describing breakdowns in one or another of this elabo-

rate set of interrelated processes.

The implications of neural network approaches to delusional thinking

are sure to be far reaching. As hinted at by this last factor, future research

will touch not just upon the study of psychopathology, but upon our

understanding of normal human brain function as well, including the

complex associational relationships between expectations (cortical repre-

sentations of remembered events) and ongoing perceptions (cortical

representations of current stimuli). As we understand more clearly

what makes a delusion, we will gain new insights into the power of

rigid belief systems and extremist dogma in general, into their emotion-

ally and cognitively rewarding aspects, and into our ability as human

beings to see only what we want to see and to be seduced and manipu-

lated by simplistic explanatory schemes.
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9

Neural network modelling of cognitive
disinhibition and neurotransmitter
dysfunction in obsessive±compulsive disorder
JACQUES LUDIK and DAN J. STEIN

In recent years there has been a dramatic revolution in our conceptual-

ization of obsessive±compulsive disorder (OCD). OCD has long been

considered a prototypical psychogenic condition, one that allowed an

important window onto the workings of the unconscious mind. The dis-

order was thought to be relatively uncommon and refractory to treat-

ment. In the last decade or so, however, advances in the neurobiology of

OCD have led to a view that this disorder is best understood as one of the

neuropsychiatric disorders, with speci®c brain dysfunction underlying

complex behavioural symptoms. Furthermore, OCD is now recognized

to be one of the most common psychiatric disorders (Karno et al., 1984;

Weissman et al., 1994), and the introduction of novel pharmacothera-

peutic and psychotherapeutic interventions has signi®cantly improved its

outcome (Baer and Minichiello, 1990; Jenike, 1992).

One of the most interesting aspects of current research on OCD is the

new perspective that is being brought to questions about brain±behaviour

relationships. Clearly, patients with OCD suffer from psychological symp-

toms, with anxiety-provoking intrusive thoughts (obsessions) leading to

repetitive and ritualistic responses (compulsions). Functional imaging stu-

dies, however, demonstrate that these symptoms are mediated by speci®c

dysfunctional brain circuits. Of signi®cant interest is that both medication

and psychotherapy lead to normalization of these circuits. Thus, while

OCD may involve brain dysfunction, a comprehensive understanding of

the condition also requires attention to brain-based emergent psychologi-

cal structures and processes (Stein and Hollander, 1992).

In order to think about and further study this kind of integration of

biological and behavioural data, clinicians and researchers may ®nd it

useful to draw on the theoretical constructs and empirical methods of

cognitive science. Computational models seem to provide a sophisticated
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theoretical framework for incorporating both neuroscienti®c and psycho-

logical domains, and also for undertaking rigorous testing of integrative

hypotheses. This chapter starts with an outline of recent advances in the

neurobiology and neuropsychology of OCD, and continues with a neural

network model of OCD, which, it is argued, allows a useful perspective

on the intersection between these different approaches.

Neurochemistry of obsessive±compulsive disorder

A particularly important impetus was given to research on the neurobiol-

ogy of OCD by the ®nding that the disorder responds to treatment with

the serotonergic reuptake inhibitor (SRI), clomipramine, but not to the

noradrenergic tricyclic antidepressant, desipramine (Zohar and Insel,

1987). This ®nding differentiates OCD from many other psychiatric dis-

orders, such as depression and panic disorder, which respond to a range

of antidepressants, and strongly suggests a speci®c role for serotonin in

the mediation of OCD symptoms. More recently, clinical trials of sero-

tonin selective reuptake inhibitors (SSRIs) have consistently demon-

strated ef®cacy in the treatment of OCD (Greist et al., 1995; Stein,

Spadaccini and Hollander, 1995).

Additional support for the hypothesis that serotonin plays an impor-

tant role in OCD has been provided by a range of studies. Cerebrospinal

¯uid (CSF) concentrations of the serotonin metabolite 5-hydroxyindole-

acetic acid (5-HIAA) may be raised in a subgroup of OCD patients, with

these levels falling during clomipramine treatment (Thoren et al., 1980).

Furthermore, in some studies, pharmacological challenges with the

serotonin agonist m-chlorophenylpiperazine (m-CPP) resulted in exacer-

bation of OCD symptoms in a subgroup of OCD patients (Zohar et al.,

1987; Hollander et al., 1992). These behavioural ®ndings were no longer

present after pharmacotherapy with SRIs.

Nevertheless, other patients with OCD do not appear to have elevated

CSF 5-HIAA, show no symptom exacerbation after m-CPP, or do not

respond to treatment with SRIs. While some of the these ®ndings may

re¯ect methodological limitations of the relevant research, another expla-

nation of the data is that neurochemical systems in addition to serotonin

also play a role in OCD. In particular, there is increasing evidence that

dopamine is also important (Goodman et al., 1990). Dopamine is

strongly implicated in the mediation of involuntary movements, and

there are now data showing that tics are common in OCD and that

OCD symptoms are frequent in tic disorders (Pauls and Leckman,

232 Jacques Ludik and Dan J. Stein



1986). Indeed, it has even been suggested that OCD and tic disorders are

different phenotypic manifestations of an underlying genetic dysfunction

(Pauls and Leckman, 1986).

Serotonin and dopamine are known to have signi®cant functional

interactions, and both preclinical and clinical ®ndings provide support

for the hypothesis that dopamine is also involved in OCD (Goodman et

al., 1990). Administration of dopamine agonists may result in stereoty-

pies in animals and in increased compulsive behaviours in humans (Frye

and Arnold, 1981; Borcherding et al., 1990). Furthermore, patients with

OCD and comorbid tics who fail to respond to a SRI may respond to the

combination of a SRI and a dopamine blocker (McDougle et al., 1994).

While additional neurochemical systems are also likely to be involved in

OCD, current data therefore support a particular role for serotonin and

dopamine.

Neuroanatomy of obsessive±compulsive disorder

While both serotonin and dopamine neurons have widespread connec-

tions, it is notable that they converge on the basal ganglia. Certainly, the

basal ganglia are thought to play an important role in involuntary move-

ment disorders, suggesting that these structures are also important in

OCD. Indeed, some of the earliest evidence that OCD is mediated by

speci®c neuroanatomical structures emerged after the in¯uenza epidemic

in the early 1900s. Patients who developed the sequela of encephalitis

lethargica sometimes had both involuntary movements, presumably on

the basis of basal ganglia pathology, and also obsessive±compulsive

symptoms.

Several strands of more recent evidence support an important role for

the basal ganglia in OCD. Patients with various neurologial conditions

involving the basal ganglia, including Sydenham's chorea and

Huntington's disease, may have comorbid OCD (Wise and Rapoport,

1989). Furthermore, patients with OCD may have increased neurological

soft signs suggestive of basal ganglia pathology. Finally, both structural

and functional brain imaging studies have implicated basal ganglia

pathology in OCD. Thus, some computerized tomography (CT)

(Luxenberg et al., 1988) and magnetic resonance imaging (MRI)

(Robinson et al., 1995) studies have found decreased caudate volume in

OCD patients, while functional imaging studies have found decreased

activity in caudate after effective treatment of OCD (Baxter et al.,

1992; Insel, 1992).
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Occasionally, patients with frontal lobe lesions present with OCD

symptoms, and OCD patients may show evidence of frontal lobe impair-

ment on electrophysiological studies. An MRI study found subtle

abnormalities in right frontal lobe, while some functional imaging studies

have documented increased prefrontal or orbito-frontal activity before

treatment, with normalization after treatment (Baxter et al., 1992; Insel,

1992). In addition, surgical lesions to cortical±basal ganglia pathways

may result in improvement in OCD symptoms (Wise and Rapoport,

1989). Taken together, these various ®ndings suggest that cortical±

basal ganglia-thalamic-cortical circuits play a signi®cant role in the med-

iation of OCD symptoms.

Indeed, it may be hypothesized that some sort of malfunctioning feed-

back or feedfoward circuit could explain the repetitive nature of OCD

symptoms. The basal ganglia have been conceptualized as a repository

for repetitive motor programmes, reminiscent of the repetitive beha-

vioural sequences seen in OCD, which might then be released excessively

as a result of basal ganglia pathology and dysfunctional gating of

impulses (Wise and Rapoport, 1989). Increased orbito-frontal activity

on functional imaging might then re¯ect the resistance that OCD patients

describe in response to their symptoms. Alternatively, increased orbito-

frontal activity may re¯ect a primary dysfunction in regulating internal

cues, which manifests in dysregulation of goal-directed behaviours (Insel,

1992).

Neuropsychology of obsessive±compulsive disorder

What are the functional implications of brain neurotransmitter and cor-

tical±basal ganglia abnormalities? An increasing range of work has docu-

mented that OCD is characterized by speci®c neuropsychological

impairments (Stein, Hollander and Cohen, 1994). One of the most con-

sistent neuropsychological ®ndings has been impairment on tests of set-

shifting (Head et al., 1989; Martinot et al., 1990; Hollander, Liebowitz

and Rosen, 1991). Certainly, impairment in set-shifting seems consistent

with dysfunction in cortical±basal ganglia circuits, which may be asso-

ciated with an inability to inhibit non-relevant information (Wise and

Rapoport, 1989).

Along similar lines, Enright and Beech (1990, 1993) have argued that

OCD is characterized by decreased cognitive inhibition. Certainly, elec-

trophysiological studies in OCD have demonstrated the presence of cen-

tral hyperarousal (Towey et al., 1990). Furthermore, Enright and
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colleagues found that OCD differs signi®cantly from other anxiety dis-

orders on tests of negative priming. Typically, such a task results in

normal negative priming (longer reaction times to previously ignored

stimuli). However, OCD patients demonstrate reduced negative priming

(shorter reaction times to previously ignored stimuli). Such reduced cog-

nitive inhibition may be consistent with data demonstrating that both the

serotonin system and frontal cortex are involved in impulse control

(Soubrie, 1986; Stein and Hollander, 1993).

Unfortunately, to date relatively little empirical research has directly

explored the relationship between psychological symptoms, neuropsy-

chological impairment, and neurotransmitter dysfunction in OCD.

Nevertheless, it is possible to hypothesize a link between core symptoms

of OCD, such as a sense of incompleteness and abnormal risk assess-

ment (Rasmussen and Eisen, 1993), and psychobiological ®ndings. Stein

and Hollander (1992), for example, have suggested that OCD involves

impairment in the determination of goal±response completion. Thus, in

some patients a de®cit in match±mismatch mechanisms may result in

inadequate determination of goal discrepancy with repetitive behaviours

prior to goal completion. In other patients, inadequate assessment of

goal discrepancy with overestimation of harm associated with possible

mismatch may result in exaggerated uncertainty and doubt.

Preliminary data provide partial support for the validity of these

kinds of associations. Thus, Hollander et al. (1991) found that

responses on the Matching Familiar Figures Test (MFFT) may be use-

ful in delineating the heterogeneity of OCD. This test of re¯ection±

impulsivity involves comparing a set of detailed ®gures with a back-

ground foil that differs in only one detail. Hollander and colleagues

reported that one subgroup of OCD patients responded rapidly with

a high error rate, whereas a second subgroup responded slowly and

with a low error rate. It might be postulated that the ®rst group had

dif®culty in determining goal±response completion, while the second

group was characterized by harm overestimation.

Furthermore, there is preliminary evidence that neuropsychological

responses on the MFFT correlate with speci®c neurobiological de®cits

(Hollander et al., 1991). Thus, rapid erroneous response correlated with

increased neurological soft signs and with poor response to serotonin

reuptake blockers. On the other hand, slow correct response correlated

with more reactive responses to serotonergic challenge. Thus, there is

some suggestion that one subgroup of OCD patients has matchÐmis-

match impairments associated with neurological de®cits. while a second
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subgroup of OCD patients is characterized by harm overestimation

associated with serotonin dysregulation (Stein and Hollander, 1992).

Clearly, however, further theoretical and empirical work needs to be

undertaken to consolidate this framework.

Integration via a neural network model

A crucial task for both the clinician and the researcher interested in OCD,

then, is to develop integrated models that incorporate neurobiological

and psychological data. A comprehensive understanding of OCD

requires attention not only to brain dysfunction, but also to impairment

in emergent psychological structures and processes. Certainly, the evi-

dence suggests that effective intervention in OCD can take place at this

psychological level, and that this in turn is accompanied by brain changes

(Baxter et al., 1992). In this way, OCD provides an outstanding exemplar

of `complex' neuropsychiatric disorders, in which both brain and mind

play crucial roles.

Building a rigorous computational model that incorporates both bio-

logical and psychological information may be useful in developing such an

integration. Stein and Hollander (1994) have previously presented a the-

oretical approach to developing connectionist models of OCD. They dis-

cussed neural networks concerned with modelling inadequate

determination of goal discrepancy, and considered a network for the

assessment of goal discrepancy as harmful. For example, a high threshold

for pattern switching in a neural network, with implementation of only a

single response pattern, may be seen as equivalent to behavioural inhibi-

tion and high harm avoidance. In contrast, a low threshold for pattern

switching with execution of several response patterns may be seen as

equivalent to behavioural activation and low harm avoidance. Changes

in serotonin activity may be associated with the modulation of thresholds

for pattern switching.

Stein and Hollander (1994) noted that additional work was necessary

in order to understand the interaction of the neural networks for the

determination of goal discrepancy and for pattern switching, perhaps

by incorporating data on the interaction of serotonin and dopamine

systems in OCD. Furthermore, they provided no computer implementa-

tion of their particular neural network models. Such an implementation is

the subject of the rest of this chapter. In particular, a neural network is

described for simulating neuropsychological data on decreased cognitive
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inhibition in OCD in order to model the effects of serotonin and dopa-

mine dysfunction in this disorder.

Complex negative priming task

As noted earlier, impaired set-shifting has been a consistent ®nding in

studies of the neuropsychology of OCD (Stein et al., 1994) and OCD has

been characterized as a disorder of impaired cognitive inhibition (Enright

and Beech, 1990, 1993). Enright and Beech (1990, 1993) found that OCD

differs substantially from other anxiety disorders on tests of negative

priming, particularly when the complexity of these tests is increased.

This experimental paradigm was therefore chosen to provide simulation

data for the neural network developed here.

In negative priming tasks, subjects are presented with a priming stimu-

lus (for example, two simultaneously presented ®gures, one in red, the

other in green), and they attempt to identify the target (the red stimulus)

and ignore the distractor (the green stimulus). The previously ignored

distractor stimulus is then presented as the next target for selective nam-

ing. Such a task results in negative priming, and OCD patients were

found to demonstrate reduced negative priming.

Enright and Beech (1993) have also presented a more complex negative

priming task (which might be called the Temporal Stroop). In this task,

the stimuli were ten words, two drawn from each of ®ve semantic cate-

gories. Subjects were instructed to ignore the green word in each pair and

to categorize the red word into one of the ®ve semantic categories.

Stimuli were presented under one of ®ve conditions (Table 9.1). There

were 40 randomized trials in each of the ®ve conditions. The amount of

negative priming was calculated by subtracting the mean reaction time of

the control (CO) condition from the mean reaction time of the ignored

repetition (IR) condition. The amount of semantic negative priming was

calculated by subtracting the mean reaction time of the CO condition

from the mean reaction time of the ignored semantic (IS) condition.

In the Temporal Stroop, Enright and Beech (1993) found that anxiety

disorder patients demonstrated negative priming in both the repetition

priming and the semantic negative priming condition. In comparison,

OCD patients failed to show any priming effects in the repetition priming

condition and demonstrated reduced negative priming in the semantic

priming condition. The increased complexity of the semantic negative

priming task would seem to be re¯ected by the enhanced difference

between OCD patients and anxiety disorder controls on this task.
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Recurrent network simulation of the Temporal Stroop

A partially recurrent neural network was developed in order to simulate

normal performance on the semantic negative priming task. A partially

recurrent neural network model was chosen as these are particularly

useful for the storage and recognition of temporal processes and are

not as computationally expensive as fully recurrent networks. The

model consisted of two coupled Elman partially recurrent neural net-

works (Elman, 1988, 1990) in order to have a so-called `left word path-

way' (with its own colour input unit, word units, context units and

hidden units) and a similar `right word pathway' (Fig. 9.1). This was

necessary becauses the network was not only required to learn to give

the correct current and previous semantic categories, but also to `switch

off' (i.e. ignore) the green word's pathway, whether it was left or right.

The training data consisted of 200 temporal patterns (where each tem-

poral pattern consisted of two pairs of red/green words), with 40 random-

ized trials in each of the ®ve conditions. The coupled Elman partially

recurrent neural network was trained with a back-propagation learning

algorithm with a learning rate of 0.1. The network was trained until the

root mean square error was less than 0.005 and the percentage of correct

responses on the training set was 100 per cent. A response was classi®ed
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Table 9.1. Stimuli were presented under one of the ®ve conditions in the Temporal
Stroop task. The stimuli were ten words, two drawn from each of ®ve semantic
categories (animals, furniture, body, tool, and music).

Condition Description Example

Attended repetition
(AR)

The attended priming stimulus
was identical to the subsequent
probe

Red DOG
Red DOG

Attended semantic
(AS)

The attended priming stimulus
was semantically related to the
subsequent probe

Red DOG
Red CAT

Control (CO) The attended and ignored
priming stimuli were unrelated
to the subsequent probe

Red DOG/green CHAIR
Red FOOT

Ignored semantic
(IS)

The ignored distractor prime
was semantically related to the
subsequent probe

Red CHAIR/green DOG
Red CAT

Ignored repetition
(IR)

The ignored distractor prime
was identical to the subsequent
probe

Red CHAIR/green DOG
Red DOG



as correct if the current and previous semantic category output units with

maximum activation values matched their respective desired targets. This

was achieved after 6000 epochs.

A simulation consisted of a run through the entire test set of 200

temporal patterns. The following were the processing steps for a parti-

cular temporal pattern in a simulation.

1. After presenting the ®rst pair of red/green words, the hidden and

output units were activated in a normal single processing step.

2. For the second pair of red/green words, the context layers contained

a copy of the previous hidden unit activation values, and a gradual

build-up of activation over time was allowed for the hidden and

output units.

Reaction time was implemented in the network as a function of the

number of cycles (single processing steps in the gradual build-up of acti-

vation) it takes to accumulate the speci®ed amount of activation accord-

ing to the response threshold. This was to simplify the comparison

between the empirical reaction times (obtained by Enright and Beech,

1993) and the model's performance.
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Fig. 9.1 Recurrent neural network model for the Temporal Stroop.



Lesioning the recurrent neural network

Three kinds of lesions were made to the recurrent network, each repre-

senting changes to a single monoamine neurotransmitter system. First,

gain of the colour module was decreased in order to simulate serotonergic

dysfunction. There is sound evidence that serotonergic modulatory

effects in frontal cortex play a key role in harm assessment. Thus, in

both preclinical and clinical paradigms, serotonergic dysfunction typi-

cally results in impaired impulse control, leading to increased self-direc-

ted and other-directed aggression (Soubrie, 1986). Speci®cally, decrease

in serotonergic transmission leads to an inability to accept situations that

necessitate or create strong inhibitory tendencies or to adopt passive or

waiting attitudes (Soubrie, 1986). In a general sense, Jacobs and Fornal

(1995) argue that serotonin facilitates gross motor output and inhibits

sensory information processing. In the recurrent neural network

described here, the colour module plays a speci®c role in representing

information about the colour of the current stimulus, effectively ensuring

the representation of information about the dangerousness of the current

stimulus (green being a colour that must be ignored, and red being a

colour that must be focused on).

Second, gain of the context module was decreased in order to simulate

dopaminergic dysfunction. As Le Moal (1995) has argued, dopamine

neurons are thought to regulate and allow integrative functions in the

areas onto which they project. Lesioning of dopamine neurons results in

a decreased facilitation of response sequencing in preclinical paradigms,

and impaired executive functioning in patients (Lyon and Robbins,

1975). It is also possible that dopamine projections of the striatum are

involved in the ®ltering of signals relating to sensorimotor processing

(cortex) and basic biological drives (limbic area), which are then synchro-

nized and translated into behaviour via the pallidal and pontine motor

nuclei (Le Moal, 1995). Fuster (1980) and Goldman-Rakich (1989)

described dopamine as having a modulatory effect on the responsivity

of cells in prefrontal cortex, where it mediates the representation of goals.

In the neural network described here, the context module played a parti-

cular role in representing information about differences between previous

and current goals.

Simulation results reported are the mean of 50 simulations for each

combination of parameters. Results were tabulated (Table 9.2) for nor-

mal simulation, reduction of context gain, reduction of colour gain, and

combined reduction in context and colour gain. Reduction of context
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gain, colour gain, or both, results in signi®cantly slower reaction times

(F � 48:6, df � 199, p < 0:0001) and more error responses (F � 54:2,

df � 199, p < 0:0001) than in the normal case. Enright and Beech

(1993) found that anxiety disorder patients demonstrated negative prim-

ing in the semantic negative priming (SNP) condition, whereas OCD

patients exhibited positive priming (reduced negative priming) on the

same measure. The simulation results indicate that the normal perfor-

mance exhibits negative priming in the SNP condition, whereas lesioning

the colour and/or context gain results in reduced negative priming on this

condition.

Interestingly, reduction of both context and colour gain resulted in

responses that correspond nicely with those obtained by Enright and

Beech, i.e. OCD patients failed to show any priming effects in the repeti-

tion priming and demonstrated reduced negative priming in the semantic

priming condition (the amount of repetition negative priming is respec-

tively 0.4 and 0.2, whereas the amount of semantic negative priming is,

respectively, ÿ20:9 and ÿ36:1). Thus, the hypothesis that serotonin and

dopamine are both involved in OCD and that they are known to have

signi®cant functional interactions is further emphasized by the result that

lesions to both dopamine and serotonin units in the neural network more

accurately re¯ect the experimental data than lesions to only dopamine or

only serotonin units.
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Table 9.2.Mean results of 50 simulations for normal performance, only context gain
reduction, only color gain reduction, and combined context and colour gain reduc-
tion compared to OCD experimental results.

Lesion type Normal Colour Context Combined OCD

Colour gain 1.0 0.6 1.0 0.6
Context gain 1.0 1.0 0.8 0.8

Reaction times (ms)
Attended repetition (AR) 424.7 (6.4) 436.4 (8.0) 578.8 (7.9) 561.1 (7.1) 447.4
Attended semantic (AS) 455.6 (7.4) 487.8 (8.7) 579.6 (6.3) 597.6 (4.1) 558.1
Control (CO) 463.6 (9.1) 475.0 (7.9) 605.2 (5.5) 590.3 (8.4) 602.0
Ignored semantic (IS) 469.6 (10.0) 472.0 (8.0) 597.5 (7.4) 569.4 (7.3) 565.9
Ignored repetition (IR) 456.3 (9.9) 480.4 (7.4) 607.4 (4.5) 590.6 (6.3) 602.1

Derived priming data
RNP � IR ÿ CO ÿ7:3 5.4 2.2 0.4 0.2
SNP � IS ÿ CO 6.0 ÿ3.1 ÿ7.7 ÿ20.9 ÿ36.1

Correct performance (%) 100.0 99.8 98.9 99.1 97.1

SNP, semantic negative priming; RNP, repetition negative priming; standard
deviation indicated in brackets.



The third lesion was to increase the maximum time cycle during net-

work training in order to simulate noradrenergic discharge. Several the-

ories have been presented to explain noradrengergic function (Robbins

and Everitt, 1995). An early idea was that the locus coeruleus was

involved in alarm systems, increasing attention and vigilance (Aston-

Jones et al., 1991). Similarly, Cole and Robbins (1992) described the

locus coeruleus as resulting in focused rather than automatic functioning.

Thus, according to Robbins and Everitt (1995), the noradrenergic system

seems to play a role in focusing attention onto salient events in demand-

ing or threatening situations. In the neural network developed here, the

maximum time cycle sets a limit on the number of processing steps

allowed during the build up of activation over time, with an increase in

maximum time cycle effectively allowing increased concentration on the

task at hand.

It was found that increasing the maximum cycle number under ordin-

ary conditions resulted in a further increase in semantic negative priming,

whereas increasing the maximum cycle number in OCD during context or

colour gain reduction resulted in a signi®cant further decrease in semantic

negative priming. Although the role of the noradrenergic system in OCD

has not been fully elucidated, these results are consistent with evidence

for signi®cant interactions between the noradrenergic, serotonergic, and

dopaminergic systems.

Conclusion

Empirical psychiatric researchers may offer a general objection to the

theoretical nature of the research reported here, expressing dissatisfaction

that neural network modelling of psychopathology fails to uncover new

knowledge about either the neurobiology or the neuropsychology of psy-

chiatric disorders. Although this is possibly an accurate criticism, it fails

to see the advantages and strengths of the neural network approach.

Connectionist models do not necessarily aim to uncover new neurobio-

logical or psychobiological mechanisms; rather, they often aim at inte-

grating biological and psychological data in a particularly rigorous way

in order to shed new light on these data.

In the authors' view, the model described here supports an interesting

theoretical view of OCD and suggests further avenues for empirical

research on this disorder. The model is based on data that OCD is char-

acterized by impairment in cognitive inhibition, with involvement of

monoamine regulatory neurotransmitters. The success of the simulation
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thus supports a view that emphasizes the failure of impulse control in

OCD (Lopez-Ibor, 1990; Stein and Hollander, 1993). In addition, the

simulation leads to the suggestion that heterogeneity of OCD may be

explained in terms of variance in neurobiological (serotonergic and dopa-

minergic) dysfunction and neuropsychological (harm assessment and

goal discrepancy) impairment. The evidence for the heterogeneity of

OCD is increasing, and a differentiation between the psychobiology of

harm assessment and goal discrepancy determination may provide a way

of further researching this issue.

Our recurrent neural network model does not necessarily support a

de®nitive division of OCD subtypes. However, one speculative way of

subtyping OCD may be to divide patients into those with predominantly

serotonergic and those with both serotonergic and dopaminergic involve-

ment. OCD patients with predominantly serotonergic de®cits may have

increased harm avoidance, more exacerbation of OCD symptoms on m-

CPP challenge, decreased neurological soft signs, and a better response to

SRIs. In comparison, OCD patients with both serotonergic and dopami-

nergic abnormalities may have increased executive function impairment,

less exacerbation of OCD symptoms on m-CPP challenge, increased neu-

rological soft signs, and a poorer response to SRIs unless these are com-

bined with dopamine blockers. While this division is clearly speculative,

there are some supporting data for it (Hollander et al. 1991; Stein and

Hollander, 1992; Hollander et al., 1993; McDougle et al., 1994).

Research in this area challenges the creative imagination of clinicians

and connectionists to develop increasingly elaborate mechanisms and

quantitative parameters to account for disorders. Computer implementa-

tion provides a rigour that many approaches towards psychobiological

integration lack. In particular, a recurrent neural network model of OCD

may allow a novel account of how neurobiological dysfunction (of ser-

otonergic and dopaminergic systems) mediates neuropsychological

impairment (of harm assessment and goal determination) characteristic

of OCD, so providing a rigorous integrative psychobiological approach

to this disorder.

Summary

This chapter presents advances in the neurochemistry, neuroanatomy,

and neuropsychology of OCD, and develops a neural network model

for integrating neurobiological and neuropsychological data. A connec-

tionist simulation of a semantic negative priming task on which patients
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with OCD have reduced negative priming, but in which anxiety disorder

patients do not, allowed an investigation of the effects of lesioning of

each of the monoamine neurotransmitter systems. The temporal nature

of this task demanded a complex recurrent neural network, which led to a

more comprehensive neural network simulation of neurotransmitter dys-

function in OCD than has previously been offered. Lesions of the recur-

rent neural network that corresponded to dopaminergic and serotonergic

dysfunction resulted in reduced semantic negative priming, while mod-

i®cations of the network that corresponded to noradrenergic dysfunction

resulted in enhancement of effects that had been present beforehand.
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10

The fables of Lucy R.: association and
dissociation in neural networks
DAN LLOYD

According to Aristotle, `to be learning something is the greatest of plea-

sures not only to the philosopher but also to the rest of mankind.' But

even as he af®rms the unbounded human capacity for integrating new

experience with existing knowledge, he alludes to a signi®cant exception:

`The sight of certain things gives us pain, but we enjoy looking at the

most exact images of them, whether the forms of animals which we

greatly despise or of corpses.' Our capacity for learning is happily

engaged in viewing representations of painful objects, but not, it seems,

in viewing the objects themselves. When an experience is intensely pain-

ful, what then is a rational animal to do? We can neither disable our

learning process, nor erase its traces. In the face of intense pain, horror,

or terror, learning and remembrance cause no pleasure but rather persis-

tent psychological pain and disruption. The memorious mind reverbe-

rates with trauma.

The traumatized mind responds in diverse ways to the recurrent crises

of reminiscence, responses which lead at the extreme to the symptoms of

various disorders. These reactions fall into two broad categories: the

associative and the dissociative. The ®rst is exempli®ed by some (but

not all) of the symptoms of post-traumatic stress disorder, in cases in

which even a trivial element associated with the painful event becomes

an evocative cue for reliving the experience. In contrast, dissociation is

characterized by subjective distancing from the initial pain and its remem-

brance, often with secondary effects. In dissociative amnesia, for example,

subjects fail to recall critical spans of their lives, often seeming to obliter-

ate the traumatic memory. The erasure is only apparent; in diverse ways

the trauma continues to oppress even if it cannot be consciously recalled.

There are, of course, many (too many) occasions of trauma. That

diversity, and the diversity of responses in its aftermath, imply that the
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causal mechanisms of traumatized cognition are manifold.

Understanding post-traumatic psychopathology is further complicated

by the compounded effects of multiple or repeated trauma. With this

complexity in mind, this chapter explores connectionism as a unifying

framework for understanding the traumatized mind. The ®rst motive for

this attempt is already apparent. Trauma is an occasion for a kind of

learning, and connectionist models are most adept at simulating learning.

In addition, a connectionist model offers extraordinary ¯exibility in

representation. Arrays of neural processing units afford subtlety and

precision in simulating the contents of mind. With learning, these repre-

sentations change. `Traumatic learning' can thus be modeled, and a net-

work observed in its initial responses, and then subjected to further

simulated trauma with further testing. In this way, a narrative of trau-

matic experience and its diverse psychological manifestations can be con-

densed, simpli®ed, and examined. Even a simple network allows many

variations. For a ®rst foray into the simulation of psychogenic psycho-

pathology, the author followed a well-known case study, using the con-

crete history and experienced symptoms of a patient (and her therapist)

as a guide for a network model. The case study is exemplary of the 90s ±

the 1890s, that is. In various ways, it is emblematic of a century of clinical

thinking that followed.

Sometime in the fall of 1892 a governess working in the outskirts of

Vienna visited her doctor with an unusual complex of symptoms. The

patient presented a physical symptom, a chronic suppurative rhinitis,

combined with a `psychological' symptom, a persistent olfactory halluci-

nation, the smell of burnt pudding. Her doctor referred the case to

Sigmund Freud, who ultimately told the patient's story as the case

study of `Lucy R.,' in Freud and Breuer's Studies on Hysteria ([1895]

1955). Freud described the case as `a model instance of one particular

type of hysteria, namely the form of this illness which can be acquired

even by a person of sound heredity, as a result of appropriate experiences'

([1895] 1955, p. 122). Looking back on the case from the other end of

Freud's career, it seems to be a model instance of more than just a type of

hysteria. It anticipates Freud's own evolution toward psychoanalysis, as

well as developments in clinical approaches to psychopathology both

before and after Freud. In the early 1890s, Freud and Breuer hypothe-

sized that `hysterics suffer mainly from reminiscences' (p. 7).1 In Studies

on Hysteria, the mind of the hysteric is seen to be fending off painful

memories and wishes, with unintended symptomatic side-effects. This

basic process of thoughts repressed and resurgent would soon be applied
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in pathologies other than hysteria, and ultimately be read into every

detail of twentieth-century life. Even more ubiquitous in our time is the

presupposition implied by repression, namely, that there is something to

repress, in the form of thoughts exerting causal powers without entering

consciousness. The conception of an active-but-unconscious realm of

mind reigns in both clinical and cognitive psychology. The study of

Lucy R. explicates these ideas in terms that are familiar still. In addition,

the psychoanalytic method seems already implicitly at work with Lucy R.

Unlike Breuer's treatment of Anna O., for example, with Lucy, Freud

abandoned hypnotism as a diagnostic and therapeutic aid, probing

instead for remembered associations and achieving a `talking cure.'

Yet at the same time the case of Lucy R. is not yet laden with the

apparatus and theory that Freud would later develop. Ego, id, superego,

and the speci®c complexes from infancy all lay in Freud's future. More

important, in Studies on Hysteria, Freud still clearly conceived of psy-

chopathology as originating in traumatic experience. Later, he would

relocate the origins of pathology in repressed fantasies and wishes, a

reorientation that decisively in¯uenced the subsequent development of

psychoanalysis. In the earlier, `experiential,' conception Freud showed

his af®nity with the great nineteenth-century theorists Charcot (with

whom Freud studied) and Janet. Conveniently, this orientation has re-

emerged as a central contemporary issue. Although hysteria has fallen

out of terminological favor, both its symptoms and traumatic etiology

still echo in contemporary clinical taxonomy and theory (Kihlstrom,

1994). For the dissociative disorders in particular, a frequent cause is

real, not merely imagined, trauma. Lucy R., as Freud interpreted her

experience, provides a straightforward example.

For these reasons the author turned to Lucy R. as a model to approach

within the connectionist framework. As in all of his case studies, Freud

used his subject as an object lesson from which he drew speci®c conclu-

sions. As we revisit Freud's fable, we will examine the conclusions he

drew and draw some new ones as well.

`Lucynet,' the simulation of Lucy R.

Representing Lucy R.'s phenomenology

Lucy R. also enjoys the curious distinction of having been the target of an

earlier attempted computer simulation, which was described but not

implemented by Cornelis Wegman (1985). In the epilogue to his heroic
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effort, Wegman estimated that the actual implementation of the model

would require at least ®ve years of programming work. How did the case

of Lucy R., one of Freud's briefest, get so complicated? This author

suggests that the complexity re¯ects the limitations of the approach

taken, which was drawn entirely from classical arti®cial intelligence

(AI) in its heyday, before the re-emergence of connectionism. A brief

look at Wegman's work shows the limits of classical AI as a concrete

modeling tool, suggests the unique powers of connectionism, and offers

an initial foot-hold on `Lucynet,' our sequel to Freud's study.

Wegman based his efforts on a sophisticated theory of `knowledge

structures' and their modi®cations, Roger Shank's theory of scripts

(Shank and Abelson, 1977). A script is a framework for knowledge

about actions or other sequences of events. To de®ne a script, one

draws from a repertoire of actions (of which some are basic), each action

having speci®ed effects on the world. The problem unfolds from the

words `de®ne' and `specify:' every change, and all its relevant or probable

consequences, must be programmed by hand. Any genuine interaction in

the world demands a huge script for its description. The one event from

the Lucy saga that Wegman fully scripts accordingly implicates 17 sepa-

rate actions ful®lling ten distinct goals and plans for their achievement.

Being an outline and not an implemented program, there is no guarantee

that even this level of detail will be enough. His initial scripting is cer-

tainly not enough, Wegman notes, to incorporate the proposed mechan-

isms of hysteria, and thence he carefully and explicitly adds each of the

following to the expanding model: affect, arousal, facial expression,

abreaction, working-over, episodic memory, and several others.

Signi®cantly, a separate component called `consciousness' appears in

the ¯owchart in order to enable the functions of attention and repression.

(For a similar exegesis, but much less sympathetic to Freud, see

Cummins, 1983.)

The exercise has the enormous value of ¯ushing out unnoticed ambi-

guities in Freud's hypotheses. But even if the model led to a working

implementation, it would leave open the question which, if any, of the

many installed modules was real. Like the epicycles of Ptolemaic astron-

omy, every module in this sort of model is a kludge, hand-built to do just

what Freud (as interpreted by the would-be modeler) supposes. A more

powerful demonstration, in contrast, would be one that requires less

programming intervention, operates according to a few highly general

principles, and yet exhibits several of the symptoms and responses in

parallel with the case study. A model of this sort has the capacity to
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exhibit the target phenomena as emergent side-effects of more basic and

general functions, rather than as the explicit result of a deliberate pro-

gram. This in turn suggests new hypotheses and tests in the target

domain. Connectionist models, when they work, have these attractive

features. Indeed, connectionism makes a virtue of simplicity. The simpler

the model, the more basic and general will be the mechanisms explaining

its functional behavior, resulting in more powerful explanatory hypo-

theses in the real world.

To construct Lucynet, then, the author took the minimalist approach

of radical simplicity, as afforded by connectionism. Network design was

guided by the observations reported by Freud, which were taken at face

value (pace Crews, 1993; GruÈ nbaum, 1984; and other critics of Freud's

self-ful®lling observations). Lucy's primary symptoms, unlike those

reported elsewhere in Studies on Hysteria, were perceptual hallucinations,

a smell of burnt pudding and the smell of cigar smoke. To understand

these symptoms, Freud probed Lucy's conscious memories and even-

tually uncovered episodes that Lucy had apparently repressed. But

although Lucy would not easily recall them, these episodes were initially

fully conscious. The goal of the model, then, could be initially restricted

to capturing the conscious world of Lucy's perceptions, representing both

a sequence of perceived events, some of them traumatic, and the recollec-

tion of those events later on, including their `conversion' into symptoms.

The case study mentions many details of Lucy's background and current

life, but the speci®c and signi®cant players in Freud's reconstruction of

the case turn out to be few. As a prelude to setting the simulated psy-

chodynamics in motion, the author compiled the salient elements from

Lucy's reports. The ®rst is the head of the household, a widower, and

director of a factory outside Vienna (the `Director,' for short). No less

important in Lucy's narrative are the Director's two children, Lucy's

pupils. Although each of the two girls would have been separately and

complexly represented in Lucy's consciousness, for the purposes of

understanding her neurosis it was suf®cient to treat them as a single

element (`Children'). The several servants working alongside Lucy can

be similarly con¯ated. One other role repeats in important moments in

the study, a guest of the Director, in one case female and in another male.

But as the study unfolds, these two also occupy an interchangeable func-

tional role, abbreviated as `Guest.' In Lucy's experience, these key players

are not inert, but among their many deeds just one plays a recurrent and

signi®cant role in her story: the attempt by each of the guests to kiss the

children. These events (`Kissing,' in short) will be narrated below. Lucy's
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`lived world' also features intense feelings. `Love' and `Distress' are pro-

minent, along with the subjective sensations of her chronic rhinitis. Last,

but not least, is her perception of burnt pudding and cigar smoke, both

the real percepts during moments explicitly identi®ed in the case study,

and the later recurrent hallucinations.

In sum, these ten explicit elements within Lucy's unfolding experience

compose an initial `alphabet' for Lucynet. Each would have been a com-

plex internal representation but, in pursuit of the minimal model, we can

regard each as a distinct whole, with varying degrees of prominence from

moment to moment in Lucy's history. Different scenes from the saga,

then, can be represented by combining subsets of these, as letters might

combine to form words. However, in Lucynet as in Lucy herself, the

elements are not isolated. Connectionism borrows from a long psycho-

logical tradition a single highly general conception of the interaction of

ideas, namely, association. Potential `elements' in conscious thought can

be activated by associated thoughts, or by inputs from the external world.

Which elements are most active at any moment depends on the combina-

tion of these in¯uences. In keeping with the radical minimalism of the

approach, the activation of any unit at any time was proportional to the

sum of its immediately preceding inputs only ± units retained no activa-

tion from the previous cycle. By these broad strokes, we have built an

architecture for Lucynet consisting of ten elements ± ten processing units

± suggested by Lucy R., with the potential for interaction both among the

elements themselves and from the outside. This architecture is shown in

Figure 10.1. (For a similar approach to modeling memory, see

McClelland and Rumelhart, 1986.)

The narrative of learning, and the lessons of trauma

Experience changed Lucy. Whether trivial or traumatic, each episode in

the case study left its traces, and so each may be regarded as an occasion

of learning. Connectionism captures these experience-driven changes

through a process of changing association strength governed by over-

arching `learning rules.' In a network with the simple architecture of

Lucynet, we can use a simple form of a very general learning rule

known as the delta rule (McClelland and Rumelhart, 1986). To a ®rst

approximation, the delta rule works as follows. For each cycle of proces-

sing, the current level of activity in a unit is compared to the current sum

of all inputs to the unit. The connection strengths among the units

involved are adjusted so as to reduce this difference (for details, see
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Lloyd, 1994). In general, delta rule learning produces networks that are

good at associative learning. When Lucynet receives the paired inputs,

`Director' and `Children,' the delta rule increases the connection strengths

between these two units. Subsequently, if Lucynet is presented with either

input alone, it will tend to reproduce their combination, the learned

association.

The extent of learning with each cycle of operation is governed by a

crucial variable, the learning rate coef®cient. In connectionist models, this

learning rate is kept very low (usually around 0.05) to prevent the learn-

ing of one association interfering with the learning of others. As a con-

sequence, network learning traditionally requires massive repetition of

inputs to be learned. With a low learning rate, the same network can

learn a number of associations. As a prelude to Lucynet's bumpy ride, the

network was trained on a number of background associations that would

have characterized Lucy's regular associations in her job. (Some exam-

ples: `Director + Children,' due to the obvious familiar links; `Rhinitis +
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Distress,' re¯ecting Lucy's chronic complaint; `Children + Love,' follow-

ing Lucy's repeated statements of fondness for her charges). The network

had no trouble learning these associations and reproducing them when

partial inputs were provided. In terms of the model, for any given sensory

input, Lucynet `recognizes' it (= corresponding unit activation) and

experiences `conscious associations' with it (= secondary, weaker activa-

tions), both in plausible correspondence to a simple associative psychol-

ogy conjectured for Lucy herself. During testing, these associations were

manifest with the processing cycle immediately following the test input.

The network did not need to `settle' through multiple cycles to display its

associative pattern completions.

Both Lucy and Lucynet are severely challenged by several subsequent

events. Freud identi®ed these episodes as traumatic, although weakly so.

To represent these in the changeable web of Lucynet, a crucial hypothesis

was tested, the sole modi®cation of connectionist minimalism: an essen-

tial concomitant of traumatic experience is learning at an abnormally high

learning rate. One main effect of a high learning rate is obvious. Patterns

of inputs presented with a high learning rate will be `branded' into a

network, swamping prior learning with new associations. In Lucynet,

the `traumatic learning' effects occurred with learning rates over 0.3.

These effects were increasingly complex, as the subsequent stages of the

network will show. Furthermore, at a high learning rate, large effects

follow single exposures of patterns to be learned. In this respect, the

learning-rate hypothesis corresponds to a fortunate fact about most trau-

mas ± the traumatic event is isolated in its intensity among more ordin-

ary, nontraumatic experiences. The story of Lucy R., then, was reduced

in Lucynet to a prelude of unexceptional associative pattern learning,

followed by a sequence of single exposure learning trials, where each of

Lucy's traumas was modeled by just one exposure, at a `traumatic' high

learning rate, to a pattern corresponding to each trauma from the case

study.

First, the author followed Freud in a slight romantic excess. Lucy's

troubles began with falling in love with her boss, the factory director and

father of the children in Lucy's care. Freud imagined Lucy's passion

beginning with a single meaningful conversation, a sudden and dramatic

psychological change. The ®rst pattern for `traumatic learning' was

accordingly `Director + Love.' The results were as expected. After learn-

ing, the background associations involving both units were overwhelmed

by the new mutual association of love. Table 10.1, row I displays Freud's
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account of the moment and its effects, together with their recreation in

Lucynet.

Lucy's love for her employer infuses her reactions to several other

events. The ®rst of these is a scene that `crushed her hopes' (p. 118) of

a real relationship with the director. The blow came following a visit from

a female acquaintance. As the guest prepared to leave, she kissed the two

children on the lips. Later, the director shouted at Lucy that such a

breach of sanitation was intolerable. If Lucy permitted it to happen

again, she would be dismissed. Freud describes this moment as traumatic,

the `operative trauma' in the case. The case study is unclear about the

immediate effect of the episode (which occurred well before the encounter

with Freud). The Lucynet simulation of the event suggests some plausible

conjectures. The input for learning is the complex `Director + Guest +

Kissing-children + Distress.' As expected, subsequent tests after learning

showed a pronounced pattern completion effect: presentation of any one

element of the `trauma' led to a pronounced `recall' of the other elements.

The sole modulation of this emphatic recall showed a continuing in¯u-

ence of the already established association of units representing the

Director and Love. The episode model appears in row II of Table 10.1.

DSM-IV (American Psychiatric Association, 1994) lists the following

phenomenological symptoms for post-traumatic stress disorder (PTSD):

B. The traumatic event is persistently re-experienced in one (or more) of the
following ways:

1. Recurrent and intrusive distressing recollections of the event, including
images, thoughts, or perceptions. . . .

2. Recurrent distressing dreams of the event. . . .

3. Acting or feeling as if the traumatic event were recurring (includes a sense of

reliving the experience, illusions, hallucinations, and dissociative ¯ashback
episodes). . . .

4. Intense psychological distress at exposure to internal or external cues that
symbolize or resemble an aspect of the traumatic event.

5. Physiological reactivity on exposure to internal or external cues that sym-
bolize or resemble an aspect of the traumatic event.

All of these are plausible elaborations of the pattern completion effects

observed in Lucynet. Thus, the basic mechanism of PTSD suggested is a

mechanism for associative learning and recall operating in a disruptively

emphatic way. In Lucynet, the learned complex has no internal structure

and every element is equally effective in recreating or `reliving' the experi-

ence. As a result, a range of inputs, including trivial reminders of the

event, may be suf®cient to kindle the whole traumatic pattern.
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These observations were very much as expected, given the initial under-

standing of the delta rule and the effects of increased learning rates.

Moreover, the apparent analogy between network learning and PTSD

symptoms has been independently noted by Li and Spiegel (1992), who

proposed (but did not implement in a model) that trauma be modeled as

pattern-completion effects following unusually strong constraints that are

imposed on the net from the environment (Li and Spiegel, 1992, p. 146).

However, Li and Spiegel did not anticipate the side-effects of traumatic

learning when traumas compound. For Freud, Lucy, and Lucynet, the

more interesting and complex developments lay ahead.

Associations dissociated: effects of multiple traumas

As it happened, the unpleasantness in Lucy's household recurred. Some

weeks after the director's outburst, another guest repeated the attempt to

kiss the children. This time the director ¯ared up at the guest, the chief

accountant at the factory and a regular visitor. To Lucy, however, the

scene was `a stab at my heart' (p. 120). One other feature was prominent

in Lucy's eventual memory of the scene, the smell of cigar smoke. As in

the case study, the Lucynet representation of this scene (which Freud

called an `auxiliary trauma') closely parallels the previous traumatic

scene, with the noted addition of the smell of cigars. The learned pattern,

then, was the complex `Director + Guest + Kissing-children + Cigar-

smoke + Distress.'

For Freud, it was this scene, rather than the ®rst, that was the origin of

Lucy's hysterical symptoms. One might expect that the large overlap

between the operative trauma and its auxiliary echo would only reinforce

the emphatic learning and pattern completion effects. Yet in Lucynet, the

responses to the next cycle of traumatic learning departed from the PTSD-

like symptoms observed earlier. The ®rst surprise is the nearly complete

disappearance of the pattern completion effects (row III, Table 10.1).

None of the elements of the two traumatic scenes evokes the others.

The recall of `Distress' and of the main event, the attempt to kiss the

children, both seem to vanish. This paradoxical loss of exactly the pattern

expected to be retained is the neural network analogue of repression.

Instead of accurate recall of the learned pattern, the network exhibited

an unexpected replacement. To several input probes, Lucynet responds

with the activation of the unit representing the smell of cigar smoke. Prior

to this point in the simulation, when an input was sent to a single unit of

the network, the strongest response was invariably in that same unit; we
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interpreted that response as the perceptual registration of the input. Now,

after compounded trauma, the strongest network activation no longer

corresponds to the input, but is found in another unit altogether, the

`Cigar' representation. An input is thus converted into a new percept,

an activation formed in the absence of its appropriate input. Lucy experi-

enced a recurrent hallucination of cigar smoke. Lucynet exhibited an

`inappropriate' activation of its `Cigar' unit, without the corresponding

input. The paradoxical emergence of a maximal activation without the

corresponding input is the neural network analogue of hallucination.

What is going on here? Freud drew his principal morals from the case

study at this point, offering a mechanism to explain the twin observa-

tions of repression and symptom formation. Repression begins with a

deliberate and conscious effort to banish a painful memory from recall.

Memories cannot be erased, however. Instead, they are merely isolated

(p. 123):

When this process occurs for the ®rst time there comes into being a nucleus and

center of crystallization for the formation of a psychical group divorced from the

ego ± a group around which everything which would imply an acceptance of the

incompatible idea subsequently collects. The splitting of consciousness in these

cases of acquired hysteria is accordingly a deliberate and intentional one.

This effort to repudiate the hated memory is thwarted when something

in the environment strongly reminds one of the original trauma. In the

case of Lucy R. (p. 123):

Her hysterical symptoms did not start until later, at moments which may be

described as `auxiliary'. The characteristic feature of such an auxiliary moment

is, I believe, that the two divided psychical groups temporarily converge in it.

The `convergence' is unbearable, however (pp. 122±3):

The hysterical method of defense . . . lies in the conversion of the excitation into a

somatic innervation; and the advantage of this is that the incompatible idea is

repressed from the ego's consciousness. In exchange, that consciousness now

contains the physical reminiscence that has arisen through conversion (in our

case, the patient's subjective sensations of smell) and suffers from the affect

which is more or less clearly attached to precisely that reminiscence.

In short, Freud imagines a dual process: repression, followed by con-

version. His conception of these processes posits a discrete `nucleus of

thoughts,' explicit mental representations (`reminiscences') that are dri-

ven from consciousness, but nonetheless reassert themselves in disguise as

symptoms. Because these unbearable thoughts continue to exist, Freud
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cheerfully posited an explicit unconscious `system' to house them. This

conception would be elaborated throughout his career (e.g., Freud [1915]

1957), but is already presupposed here.

Lucynet models the signi®cant symptoms of Lucy R., and develops

those symptoms through a consistent analogue of Lucy's experience in

the months before her visit to Freud. But, as Figure 10.1 makes clear,

Lucynet utterly lacks the mechanism Freud imagined. Connectionism

thus offers a different way of thinking about what occurred in Lucy R.,

and in cases of compounded trauma in general, Lucynet's `symptoms' are

explained by the conjoint effects of the `traumatic learning' of overlapping

patterns and the delta learning rule. With a single trauma, the delta rule

leads to a pronounced increase in connection strength among the units

involved in the traumatic pattern. A single exposure leads to `overlearn-

ing,' as discussed above. When that same pattern partly repeats, units

involved in the pattern receive a ¯ood of input as the external input

combines with the massive lateral inputs along the positive, overlearned

connections. The delta rule accordingly compensates for this overload by

driving down the weights on connections. Since subsequent patterns are

also traumatic (that is, are learned at a high learning rate), this inhibitory

effect is dramatic. When subsequent patterns partly overlap, the mael-

strom of delta rule effects rapidly becomes intractable. In this case, the

new element, `Cigar smoke,' is exempt from the inhibition affecting the

other units, and the network develops the tendency to respond as if that

element were present in response to several unrelated inputs.

Lucy's story did not end with the episode just modeled, however, nor

was the hallucinated cigar smoke her initial complaint. One more `trau-

matic' scene followed. In part because of her troubles in her household,

Lucy considered quitting her post, but at the price of losing her ties to the

children. This con¯ict of emotions was particularly acute one day as she

played with the children just after receiving a letter from her mother,

back in Scotland. Just at that moment a pot of pudding on the stove

began to burn. Freud reasoned that the con¯ict of feelings at just that

moment was intense enough to constitute a trauma (p. 115), and the smell

of burnt pudding its conspicuous marker. As a result, Lucy would hallu-

cinate that smell, her principal complaint henceforth.

Although the pudding only burns once, it seems likely that the emo-

tional tumult that accompanied the smell recurred throughout this period

in Lucy's life. If a prior moment of con¯ict had already been traumatic,

then the scene with burnt pudding might have been a repeating, `auxili-

ary' trauma. In that case, the psychodynamics underlying this symptom
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would be parallel to the origin of the cigar smoke hallucination, where

the ®rst trauma creates massive association, but its repetition massive

inhibition and dissociation, save for new elements, which `pop out' as

conspicuous new symptoms. Alternatively, Freud proposes that in gen-

eral an initial trauma and its auxiliary repetition can `coincide,' with

conversion occurring as an immediate effect (p. 124). In this case, the

immediate recall of trauma would itself be traumatic, and even an iso-

lated trauma would become self-compounding.

Each of these interpretations suggests different simulations at this stage

in Lucynet. Rather than pursue them, however, the author kept as close

as possible to the case study itself. Freud recounts a single traumatic

moment on the theme of leaving the children, a moment also marked,

as it happens, by Lucy's rhinitis, and so for Lucynet one pattern was

input for traumatic learning: `Children + Rhinitis + Burnt-pudding +

Distress.' Row IV of Table 10.1 shows the results of this next stage of

Lucynet traumatic learning. The four elements of the traumatic pattern

are bound into a tight associative unit, and the responses parallel the

PTSD-like responses also shown in row II. Unlike the cigar smoke hal-

lucination, the smell of burnt pudding does not dominate the response to

other inputs. Thus, in the Lucynet framework, it is a pronounced asso-

ciation rather than a clear `hallucination.' However, the association is

very strong, and elicited by single inputs which Lucy might have encoun-

tered routinely: children, her rhinitis, and her ongoing distress. This

simulation also suggests that the memory of the traumatic scene would

be readily available, if not intrusive. So it was for Lucy. Freud began his

interrogation by asking whether the smell of burnt pudding reminded her

of anything, and she was quick to recount just this scene. But that is

another story, one of therapy and cure.

Remembrance and catharsis

Having created what may be the world's only neurotic neural network,

the author felt compelled to restore his creation to full (simulated) mental

health. Again, he turned to Freud and Breuer for guidance (p. 6, repeated

on p. 225, emphasis in the original):

Each individual hysterical symptom immediately and permanently disappeared when

we had succeeded in bringing clearly to light the memory of the event by which it was

provoked and in arousing the accompanying affect, and when the patient had

described that event in the greatest possible detail and had put the affect into words.
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In Studies on Hysteria, this was called the `cathartic technique,' which

Freud would later call `the immediate precursor of psycho-analysis; and,

in spite of every extension of experience and of every modi®cation of

theory . . . still contained within it as its nucleus' (Freud [1924] 1955,

p. 194).

The network version of catharsis, then, will consist of the re-exposure

to the traumatic stimuli. Freud and Breuer stress that the reminiscence of

the scene must be accompanied with its original affect. Thus, within the

connectionist framework, at least some of the original traumatic intensity

must accompany the catharsis. The overall catharsis was modeled by re-

exposing the network once to each of the traumatic patterns, using a

learning rate coef®cient set at half that of the original traumatic learning.

As in the case study, the patterns were presented in reverse order, as Lucy

herself (with Freud's prompting) recounted them.

Catharsis led to cure for Lucynet as for Lucy. Re-exposure to the

second auxiliary trauma led to a reduction of associative intensity of

inputs to the `burnt pudding' unit (in Lucynet), and a gradual reduction

in the hallucination (for Lucy). Re-exposure to the earlier traumas led to

a more dramatic reversal. In Lucynet, the `hallucination' of cigar smoke

and the accompanying `repression' of the traumatic pattern both disap-

peared completely, replaced with a normal set of associative links among

parts of the traumatic pattern. (For example, the input `Guest' yields

activation in `Guest,' `Kissing-children,' `Cigar-smoke,' `Director,' and

`Distress.') For Lucy, too, the hallucinated cigar vanished at once.

However, one trauma neither patient nor network could overcome.

Both ®nished their histories with an abiding (if secret) love for their

boss. Lucy confessed as much in her last session with Freud; Lucynet

showed an implacable two-way association between `Director' and

`Love.'

To re-experience a trauma one must ®rst remember it. Usually, any

number of cues leads to retrieval of a learned pattern. But when a mem-

ory is repressed, whether in arti®cial or human neural networks, many of

those associative paths are blocked. How, then, is the repressed pattern

recovered? Lucy R. made her way back to the operative trauma by

patient association. `At my insistence,' Freud wrote, `a picture gradually

emerged before her, hesitatingly and piecemeal to begin with' (p. 119). So

far, Lucynet only displays its immediate response to any input, its `®rst

associations.' This made the `repression' of the operative traumatic pat-

tern a barrier to its recall that could not be overcome by any combination

of inputs. To further explore this issue, Lucynet was redesigned to
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simulate a purely internal sequence of thoughts, a simulated `stream of

consciousness.' To do this, the author took the current activation follow-

ing an initial input, and re-input this activation as a new input. In essence,

each pattern of internal activation in the network thus generates its suc-

cessor, following only the associative paths established between units in

the course of the network history. Each of these activation states was

recorded over ten cycles of recurrent network `re¯ection.'

Examples of the network's changing internal operations are shown in

Figure 10.2. Each panel shows the initial input to the network in the

leftmost column, labeled `I.' The columns labeled `A' then show ten

cycles of response. (The size of the dark squares indicates the magnitude

of positive activation. Light squares signify negative activation values,

i.e., inhibition). Cycle 1 is the net's `percept' or immediate response to the

input; this is the activation the author has interpreted as an analogue to

Lucy's state of consciousness at turning points in the case study. Each

subsequent cycle is the network's purely internal response to its previous

state of activation. For comparison, Figure 10.2 depicts just the evolving

responses to input in the `Cigar' unit. Until far along in the traumatized

training, the net displays a fairly predictable associative `psychology,' in

which the network settles into a stable state of self-sustaining activation.

Two of the background associations (prior to any trauma) are initially

apparent: `Director + Guest' (re¯ecting the director's noted propensity

to entertain visitors) and `Director + Guest + Cigar' (following the

favorite pastime, noted explicitly by Lucy, of her boss and his male

acquaintances). The cigar input `reminds' Lucynet of these associations,

and the net settles into a stable recreation of those associative patterns,

with echoes of other connections (e.g., `Children + Love').

Following the overlearning of `Director + Love,' Lucynet's soliloquy

changes. The cigar still reminds it initially of guests and the director, but

once the latter is `in mind,' all further thoughts follow the love connec-

tion. That stable association is then overthrown by the operative trauma,

`Director + Guest + Kissing-children + Distress.' As soon as the back-

ground associations carry the network toward `Guest' and `Director,' it is

this most recent `trauma' that dominates, modulated by the prior strong

associations between `Director' and `Love.'

Up to this point, the network behaves like most connectionist models

in that it `settles' into a stable pattern of activation in the absence of

further inputs. Simple assumptions about associative psychology and the

intense learning of a traumatic pattern explain its behavior. But all this

changes in panel D, showing the network's internal processing following
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the auxiliary trauma, which repeated the preceding trauma with the addi-

tion of the smell of cigars. First, the `Cigar' input fails to recreate the

traumatic pattern (as discussed above). But rather than settling into a

stable response, even without new input the `neurotic' network oscillates
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Fig. 10.2 Lucynet `stream of consciousness.' Each panel shows ten cycles of
recurrent activation. After the initial external input, indicated by column I,
each column A1 through A10 indicates the activation pattern based solely on
the previous state of activation, without further external input. Dark tiles indicate
positive activation values; light tiles indicate negative values. Each test panel
re¯ects a different state of network learning: A. following background associative
training, prior to episodes of `traumatic learning;' B. following the emphatic
learning of `Director + Love,' C. following the emphatic learning of `Director
+ Guest + Kissing-Children + Distress;' D. following the emphatic learning of
`Director + Guest + Kissing-Children + Cigar + Distress.' Panels A through C
exhibit `settling' toward stable states re¯ecting the dominant associations at that
point in network training. Panel D shows oscillation as a result of interference
through compounded traumatic learning. At cycle 1, the traumatic input pattern
has been inhibited, but it rebounds around cycle 5, and again at cycle 10. This
rebound effect may model recall of repressed or dissociated content.



between states of excitation and inhibition, each cycle a ¯ashback to an

earlier scene in the case study. Signi®cantly, at cycles 4 and 5, the

`repressed' traumatic pattern brie¯y reappears, to be promptly canceled

in cycle 6. The compounding of traumatic inputs has not simply erased

the history of network learning. That history has radically altered net-

work function, and even left a path for its explicit reconstruction. But the

path is a tortuous one. Despite its simplicity, Lucynet captured this

aspect of the case study by suggesting the possibility of the recall of

repressed content. (Other implications of recurrent processing are con-

sidered below.)

Discussion: from the 1890s to the 1990s

To summarize, the history of Lucynet follows the case study of Lucy R.

by simulating the learning of plausible background associations followed

by a series of `traumatic' inputs, learned via single exposures with an

abnormally high learning rate coef®cient. A second sequence of learning

followed the course of therapy, re-exposing the network to the `trau-

matic' input patterns via single exposures at an intermediate learning

rate. As a result, the network exhibited robust analogues of three of

Freud's most salient observations of Lucy: two olfactory hallucinations

and the repression of memory for key episodes of symptom formation.

These symptoms emerged and disappeared from the network at moments

corresponding to their emergence and disappearance in Freud's chronol-

ogy of the case. The pattern of symptoms emerged as a side-effect of the

simulation of Lucy's experience and the operation of the neural network,

rather than as a direct result of programming or explicit training to

produce these responses.

These are intriguing results given the radical simplicity of Lucynet ± ten

units only, governed by a single activation equation and a single learning

rule. From ten processing units to the tens of billions in the human brain

is a sobering leap. We would not wisely conclude anything about the

speci®c psychology or physiology of Lucy R. or anyone else based on

Lucynet. But we can use Lucynet as a heuristic model and foil for theories

of hysteria and dissociation. Its simplicity leaves no place for special

processes to hide, and thus reveals and questions some widespread

assumptions about the mechanisms and etiology of hysteria and its mod-

ern descendants.

Perhaps the most useful lesson of Lucynet lies in its deep challenge to

what might be called the archival model of memory. By this is meant the
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conception of memories as ®xed records or `rei®ed contents' that can pass

in and out of consciousness, and be variously in¯uential or dormant over

time. Even in Studies on Hysteria, Freud clearly conceived of ideas of all

sorts in this way (p. 300):

It remains, I think, a fact deserving serious consideration that in our analyses we
can follow a train of thought from the conscious into the unconscious (i.e. into
something that is absolutely not recognized as a memory), that we can trace it

from there for some distance through consciousness once more and that we can
see it terminate in the unconscious again, without this alternation of `psychical
illumination' making any change in the train of thought itself, in its logical con-
sistency and in the interconnection between its various parts.

Once thoughts are rei®ed as special sorts of ®xed objects to be manipu-

lated by the mind, most of the Freudian mechanics follows as a matter of

course. If thoughts exert in¯uences on behavior and consciousness with-

out themselves becoming conscious, then they must sometimes exist in

the unconscious (a sort of specialized processing module) and, moreover,

some sort of mental executive must take on the task of moving thoughts

in and out of consciousness, and in and out of conscious or unconscious

play. This way of thinking about thoughts certainly meshes smoothly

with the computational model of mind that has long dominated cognitive

science (Erdelyi, 1985).

These days, the archival model of memory has been explicitly dis-

avowed by all. Extensive work in cognitive psychology has shown recall

to be construction of a memory rather than its retrieval. Connectionists

have certainly encouraged this reconception of memory by showing how

explicit patterns of activation can be stored implicitly in the form of

matrices of connection weights. Memory to a connectionist is a disposi-

tion to reform patterns of activation, rather than extract them from some

form of storage.

Yet, in discussions of psychopathology, the archival model and its

attendant mechanisms still operate, even if covertly. For example, in

his excellent review of dissociative disorders, Kihlstrom (1994) notes

that a number of disorders involve failures of recall, but the failures

are temporarily or permanently reversible. (This characterizes the

DSM-IV disorders of dissociative amnesia, dissociative fugue, and dis-

sociative identity disorder.) `Reversible memory disorders are disorders

of retrieval; they occur because the individual cannot, at the moment,

gain access to memories that have been adequately encoded, and remain

available in storage' (Kihlstrom, 1994; p. 379). Here, the image of the

archive is explicit, although one could alter the terminology to depict
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storage as a merely dispositional, connectionistic storage. But what

Kihlstrom concludes from his observation requires an archival view:

`Retrieval and accessibility are phenomena of consciousness as they entail

bringing available memories into phenomenal awareness' (Kihlstrom,

1994). Memories, in short, move in and out of the spotlight of awareness;

with the rei®cation of memory comes the rei®cation of a special proces-

sor, `consciousness.' Kihlstrom and Hoyt (1990, p. 201) make this explicit

as follows:

The essential distinction between what is conscious and what is not is that con-

scious mental contents are both activated (by perception or thought) and linked

with activated representations of the self, its goals, and the local environment.

Preconscious mental contents are latent: not activated (or, more properly, not

activated above some threshold) and perforce not linked to the activated mental

representation of the self. Dissociated, subconscious mental contents, while fully

activated, are not linked with either an active mental representation of the self or

the active mental representation of the context, or both.

Thus, a conception of memories as ®xed records brings along with it

a model of mind in which conscious and unconscious mental processes

can unfold in parallel, passing thoughts back and forth. The evidence of

disintegrated cognition has suggested to a long line of researchers the

existence of parallel executives. The ®rst to argue along these lines is

probably Plato, who interpreted con¯ict of the will as evidence for

distinct faculties of mind (Republic, Book IV). It persists at the origins

of clinical psychology, not only in Freud but also in Janet and James,

and in numerous contemporary sources (e.g., Hilgard). Even the psy-

chopathologists Li and Spiegel, in their discussion of the import of

connectionism for understanding dissociation, declare a need for the

parallel operation of two or more information processors (Li and

Spiegel, 1992; p. 145).

Lucynet gets away with much less. One processor accommodates both

Lucynet's preserved `normal' associative processing and its dissociated

dislocations. Yet, for all its simplicity, once a certain learning history has

transpired, the network ceases to be a passive responder to input stimuli.

Figure 10.2D depicts a new stage in Lucynet evolution and an intriguing

moment in connectionist modeling. At this point, patterns vie for expres-

sion. While some strut and fret their hour upon the stage, others are

(temporarily) heard no more. When various trains of network thought

exclude each other, we observe the network analogue of dissociation.

But, as always in this study, there is no off-stage orchestration. There

are just the thoughts on the surface, interacting with each other. The
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functions of integration or disintegration, making conscious or repres-

sing, are not administered by an agency separated from the thoughts

(patterns) themselves.

Instead of a special processing system to monitor and manipulate

explicit unconscious representation, through learning Lucynet undergoes

widespread changes in the connection weights between conscious ele-

ments. These weights de®ne the dispositions of elements to activate one

another. They are `unconscious' in the sense that they are part of the

implementation of the network rather than its explicitly represented con-

tent, analogous to the physiology of synapses in the brain. But this

remains a different and less robust conception of the unconscious than

that of the archival model.

In addition to its dispositional, connectionist storage of memories,

Lucynet exhibits a further break from the archival model: in Lucynet,

encoding of new memories alters the encoding of the old. Previously learned

patterns change as an immediate side-effect of traumatic learning; no

special re-enactment of old memories is required. Connectionist modelers

usually go to great lengths to prevent the interference of old learning by

new, with the goal of accurate reconstruction of discrete learned patterns

(Hetherington and Seidenberg, 1989; Kortge, 1990; Murre, 1992). But in

Lucynet this interference is exactly the source of both the negative and

positive `symptoms' ± dissociation from the overlearned past, and the

insertion of a `perceptual hallucination.' In most models, interference

effects are meaningless noise, but within the guiding framework of a

clinical study, Lucynet's wild ride remains interpretable.

The study of Lucy R. has thus become a twice-told tale. Its second

telling, as Lucynet, has elided much of the humanity of the ®rst, but it has

preserved the main episodes and the main effects noted in Freud's ver-

sion. The new tale has added a crucial subtext, the fundamental hypoth-

esis that one form of psychogenic pathology can originate when stimulus

patterns are subject to intense single-exposure learning. But a single epi-

sode of `traumatic learning' did not generate the dissociative effects typi-

cal of hysteria. For this, our simulated subject needed a history of

simulated suffering. Only then did the network become both neurotic

and interesting.

Like any story, the new fable of Lucynet is open to many interpreta-

tions. Given its simplicity, Lucynet provides no direct evidence about any

aspect of human psychology. But it does show something of what is

possible on a shoestring. In that spirit, it suggests a few possible morals

± avenues of inquiry worth noting for future clinical research.
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1. Psychopathology is a narrative. The scienti®c emphasis on ef®cient

causation, experimental method, and statistical signi®cance leads to

a search for `stories' of pathology in which there are just two epi-

sodes, a single cause and its particular effect. Lucynet developed its

most revealing syndrome only after a sequence of unique events,

each contributing to a complex outcome. In the huge networks

that are each of us, every experience and every response re¯ects

the remembrance of things past. Our past experience may not merely

provide a general backdrop, but instead contribute in speci®c ways

to otherwise inexplicable responses. Freud, of course, would agree,

as would most clinicians (but not most insurers). This complicates

the understanding of pathology in general, as well as diagnosis and

treatment of speci®c cases. It also threatens the rigor of clinically

based science, leading to charges (such as those leveled at psycho-

analysis) that it is pseudoscience (e.g., GruÈ nbaum, 1984, 1993).

Connectionism may offer a middle ground, by allowing for models

sensitive to the cumulative effects of personal history, but still con-

strained by the basic computational capacities of networks. Such

models afford further controled exploration of several variables

that may be clinically important.

2. To interpret a clinical narrative, one must understand the perceptual,

cognitive, and affective world of the subject. Models like Lucynet are

`loose' in several senses. First, they rest on an initial assignment of

meanings to network architecture and possible patterns of activa-

tion. Second, the traumatic learning is indiscriminate, branding both

the central and the trivial elements of a horri®c scene into the trau-

matized memory. But a compounded trauma has the further effect

of inhibiting some links within the repeated trauma while enhancing

others, leading (in Lucynet, and perhaps in humans) to modi®ca-

tions in subsequent encodings and ultimately to dissociative phe-

nomena. These complex effects in turn depend on the perceptual

categories that underlie the recognition of elements as `same' or `dif-

ferent' from one exposure to the next. This category assignment will

be sensitive to the ramifying effects of compounded trauma, and to a

host of developmental and idiosyncratic differences. If retroactive

memory interference occurs in us as well, unravelling a dissociated

life narrative may be even more dif®cult. Event memory traces may

not merely be hidden but altered.

3. Connectionism is a multilevel modeling tool. Connectionists often

celebrate the `neural inspiration' of their approach, and in recent
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years have worked toward ever-increasing biological realism. The

connectionist approach naturally lends itself to the simulation of

biological and neural networks. But it nonetheless also lends itself

to the simulation of other complex phenomena, especially systems

subject to multiple simultaneous constraints or internal interactions.

Our minds, described at the psychological level as arenas for the

interplay of thought, are such systems. It does not matter that

Lucynet is biologically unrealistic, or that the delta rule probably

does not describe the waxing and waning of synaptic ef®cacy. What

does matter is that the model offers a consistent representation of a

domain, so that the model's behavior can be compared with that of

entities in the domains. As models become suf®ciently general, they

become theories of the domain. Lucynet, as a pilot study, cannot

pose as a theory of dissociation. But it could indicate a family of

psychological models that may ultimately cohere as a theory of some

aspect of psychology. That ultimate theory will be no more biologi-

cal than Lucynet, but none the worse as a theory at its own level.

4. Without a central executive, anything is possible. Just as digital com-

puters suggest (falsely) an image of unfailing and un¯appable ration-

ality, connectionist networks project the image of steady pattern

completion and solid, predictable, rote association. They are built

to work. But no law enforces this expectation. In fact, these net-

works are delicate hot-house ¯owers, reared in the most rigid and

contrived learning environments. In the erratic climates of human

experience, such nets would fail. Lucynet became a failure as a

pattern associator, but an interesting and suggestive one. After his

reading of Charcot, Janet, Breuer, and Freud, William James ([1896]

1982, pp. 71±2) commented:

The enigmatic character of much of all this cannot be contested, even

though there is a deep and laudable desire of the intellect to think of the

world as existing in a clean and regular shape. The mass of literature

growing more abundant daily, from which I have drawn my examples,

consisting as it does almost exclusively of oddities and eccentricities, of

grotesqueries and masqueradings, incoherent, ®tful, personal, is certainly

ill-calculated to bring satisfaction either to the ordinary medical mind or

that of a psychological turn. The former has its cut and dried classi®cations

and routine therapeutic appliances of a material order; the latter has its

neat notions of the cognitive and active powers, its laws of association and

the rest. Everything here is so lawless and individualized that it is chaos

come again; and the dramatic and humoring and humbugging relation of

operator to patient in the whole business is profoundly distasteful to the
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orderly characters who fortunately in every profession most abound. Such

persons don't wish a wild world, where tomfoolery seems as it were among
the elemental and primal forces. . .

Between `chaos come again' and the `neat notions of cognitive and

active powers,' we ®nd the vast middle ground of connectionism. In its

mechanics and its poetics we may oneday ®nd a new understanding of

both psychopathology and everyday mental life.

Endnote

1 Undated page references are from Studies on Hysteria (Freud and Breuer,
[1895] 1955).
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11

Neural network analysis of learning in autism
IRA L. COHEN

Goldilocks . . . dipped a spoon into Father Bear's bowl, but the porridge in it was

too hot. . . Then she tried some from Mother Bear's bowl, but that was too cold.
The porridge in Baby Bear's bowl was just right. . .

Robert Southey, Goldilocks and the Three Bears

Even though autism is a relatively infrequent disorder, occurring in about

1.5 to 2 cases/1000 in the population (Sugiyama and Abe, 1989), it has

attracted the attention of many researchers since the time of Kanner's

(1943) initial description of the syndrome. This curiosity re¯ects, in part,

the fact that the bizarre and puzzling behaviors shown by individuals

with autism present a challenge to theorists. More urgently, the fact

that age-appropriate learning and social±communicative behavior is

not present in these children has a devastating impact on their families

and on the children's later social, emotional and cognitive development.

Understanding the biological mechanisms responsible for autism may

help to shed light on the best way to treat this syndrome.

Autism has an age of onset that is, typically, between 12 and 30 months

of age, although some mothers report noticing abnormalities in their

child's behavior from birth. The ®rst behavioral disturbances noted

include lack of response to the child's name being called, acting as if

deaf, despite other evidence of apparent normal hearing (e.g., dashing

to the kitchen from another room when a candy bar is unwrapped);

failure to anticipate being picked up; failure to cuddle when held; poor

eye contact and lack of interest in social interaction; failure to use normal

gestures such as pointing to communicate (instead pulling others to

desired objects); lack of speech development or speech regression; failure

to develop appropriate play skills; and later development of repetitive/

ritualistic behaviors such as unusual hand movements, visual ®xations,

rocking, resistance to change, etc. (Gillberg and Coleman, 1992).
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Unless exposed to highly intensive intervention (e.g., Lovaas, 1987),

most show persistent problems in language, cognition and social interac-

tion throughout their lives. If speech is acquired, it is not used for sharing

experiences and conversational purposes but, instead, is often literal,

repetitive (on words, phrases or topics), echoic, emitted with an odd

rhythm (prosody) and/or solely used to make requests for desired objects.

Additionally, many individuals display disturbances in sleep or arousal,

hypersensitivity to tactile, taste, or auditory stimuli, and incongruous

affect (American Psychiatric Association, 1994).

This vast variety of behavioral disturbance in autism and similar syn-

dromes such as Asperger's disorder (Wing, 1981) suggests that multiple

systems are affected, hence the use of the term `pervasive developmental

disorder' (American Psychiatric Association, 1994). Most affected per-

sons are male (about three to four males for every one female) and have

sub-average intellectual functioning (about 70 percent with IQs less than

70). However, it is often the case that not all aspects of cognition are

equally affected. On standardized tests, many persons with autism tend to

do poorly on tests of vocabulary and comprehension but do quite well on

tests of rote memory and visual pattern recognition (Frith and Baron-

Cohen, 1987). Abstract concepts of language and social interaction such

as pronouns, prepositions, humor, and empathy typically elude such

individuals, irrespective of IQ. A few, however, display islets of normal

to exceptional abilities (so-called savant skills) such as calendar calculat-

ing skills, hyperlexia, rote memorization of extensive lists of information

on idiosyncratic topics, memorization of locations and routes to various

places, etc. In addition, unusual learning styles have been consistently

demonstrated. Many of these children can be highly distracted by task-

irrelevant stimuli yet appear highly focused at other times. Frequently,

what they have been taught fails to generalize well to other teachers,

situations, or environments (Koegel and Koegel, 1995).

This list of unusual behaviors presents a challenge for the development

of theories as to how such patterns could exist or coexist. Why are such

inconsistencies present? Why are some complex associations easily mem-

orized and performed while others, such as the desire to share experiences

or feedback from others, are not acquired despite the fact that such

behaviors are displayed by typically developing infants? Why is it that

behaviors acquired in one situation fail to generalize to others?

The purpose of this chapter is to review and elaborate upon the impli-

cations of a previously published model of the learning characteristics of

people with autism (Cohen, 1994). This model attempts to integrate
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recent neuropathological observations with some of the attentional and

learning characteristics described above. Unlike other models, the linkage

between the neuropathological observations and behavior that is drawn

here is more direct in the sense that the observed pathology is qualita-

tively `simulated' with a neural network in which the effects of abnormal

neuroanatomy on learning (relative to a given problem type) can be

simulated. The model is, admittedly, speculative, but it does have an

advantage in its parsimony in addition to its ability to simulate and tie

together a diverse set of data about autism ± neuroanatomy, neuro-

pathology, pathogenesis, behavioral characteristics, learning, generaliza-

tion, and behavior modi®cation ± in one single framework as well as

making speci®c, testable predictions.

The neuropathology of autism

Several researchers have identi®ed neuropathological changes in the

brains of individuals diagnosed with autism. The speci®city of these

observations to autism has yet to be elucidated, i.e., it has not been

clearly demonstrated that the observations are unique to autism.

However, if they are, then the ®ndings are potentially interesting because

they help to explain some of the phenomena, as described below. These

abnormalities have been revealed primarily by two means: neuropatho-

logical observations of the brains of deceased individuals and magnetic

resonance imaging (MRI).

Although earlier neuropathological investigations provided inconsis-

tent ®ndings (Williams et al., 1980), Bauman and Kemper (1985; 1986)

and Kemper and Bauman (1993) have more recently reported abnorm-

alities in the `wiring patterns' of several individuals who had been diag-

nosed with autism. Speci®cally, increased neuronal density along with

smaller neurons was observed in several limbic structures including the

hippocampus, entorhinal cortex, amygdalae, mammillary body, medial

septal nucleus (pars posteriori), and cingulate cortex. Neuronal loss was

reported in the diagonal band of Broca and the biventer, gracile, tonsile,

and inferior semilunar lobules of the neocerebellar cortex (Purkinje and

granule cells) as well as the fastigial, globose, and emboliform nuclei.

Raymond, Bauman and Kemper (1989) have reported, in hippocampal

pyramidal cells, reduced dendritic branching in CA1 and CA4 and

reduced area of the perikaryon in CA4 neurons. Kemper (1988) has

also reported ®nding polymicrogyria in the orbital frontal cortex and

operculum. In a different laboratory, Ritvo et al. (1986) reported ®nding
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lower Purkinje cell counts in the cerebellum in four cases. One of these

cases also showed microgyria of the left occipital and temporal lobes,

asymmetry of the ventral±medial temporal lobes, and asymmetry of the

cerebellar tonsils.

MRI studies have revealed problems in the forebrain and hindbrain

consistent with some of these neuropathological studies, in particular

those related to aberrant cerebellar development (Courchesne et al.,

1987, 1988, 1993, 1994; Gaffney et al., 1987a, 1987b, 1988, 1989;

Murakami et al., 1989; Hashimoto et al., 1991, 1992, 1993, 1995).

Others were unable to replicate some of these observations, or had meth-

odological concerns (Ritvo and Garber, 1988; Nowell et al., 1990; Hsu et

al., 1991; Filipek, 1995; Piven and Arndt, 1995).

These MRI and neuropathological observations are suggestive of

abnormal wiring patterns in various brain regions and have been

hypothesized to be due to de®cits in neuronal migration during fetal

development (Courchesne et al., 1988; Piven et al., 1990), curtailment

of normal neuronal growth (Bauman, 1991) and/or aberrant develop-

ment (Courchesne et al., 1993). Despite variability in location, the struc-

tural de®cits, as noted by Bauman (1991), appear to be of two types: `too

few' neurons in one area, e.g., the cerebellum, and apparently `too many'

in other areas, e.g., the amygdala and hippocampus.

Explanations of the meaning of these structural abnormalities for the

behavior and learning characteristics of people with autism have been

based on the behavioral sequelae of lesion experiments in animals and/or

on clinical human neuropsychological studies of patients with lesions in

these same areas of the brain (Bauman and Kemper, 1985; Courchesne et

al., 1988; Gaffney et al., 1989; Hashimoto et al., 1992). However, it is

often not the case that lesioning an intact or developing nervous system is

functionally the same as an aberration in neuronal wiring patterns result-

ing from some prenatal insult or genetic anomaly.

For example, the above autopsy studies implicate the hippocampus in

the pathology of some cases with autism. One of the functions the hip-

pocampus serves is to provide the ability to form spatial maps of the

environment (Wilson and McNaughton, 1993), and lesioning the hippo-

campus in primates disrupts the acquisition of spatial maps of the envir-

onment and the control of spatially directed movements (Rolls, 1990a,

1990b). However, many people with autism seem to be especially adept at

encoding, discriminating and recalling spatial maps, such as complicated

routes to various places, and can be very upset if these routes are not

followed precisely (Wing and Attwood, 1987).
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In 1994, Cohen discussed the rami®cations of an abnormal wiring

pattern for a theory of autism in which the presenting de®cit was one

of having too many or too few neurons and/or neuronal connections

from a connectionist perspective. The a priori assumption in this model

is that the problem of `too many' and/or `too few' neurons or neural

connections (whether pathological or a `normal' variant) is a reliable

observation, at the cellular level, in autism. A review and an elaboration

of these implications are now presented, following a brief discussion of

back-propagation models, simulations of which form the basis for the

arguments that follow.

Back-propagation analogues of learning in autism

Neural networks come in a variety of architectures, with some having

more `biological realism' than others. One of the most frequently used

multilayer associative networks is one that uses a back-propagation

training algorithm to adjust the strengths of the weighted connections

among the layers (Rumelhart, Hinton and Williams, 1986). Figure 11.1

shows a typical feed-forward network consisting of at least three layers:

(1) an `input layer' in which the number of neurons usually corresponds

to the number of distinct features of the input pattern; (2) one or more

`hidden layers,' the ®rst of which receives connections from the input

layer; and (3) an `output layer' which arrives at a prediction or classi-

®cation based on input from the hidden layer(s). The number of neu-

rons in the output layer usually depends on the number of categories in

a classi®cation problem or on the output pattern that is to be repre-

sented in prediction problems. The quantitative relation (i.e., the `trans-

fer function') between output from and input to a neuron is nonlinear

in such models (typically sigmoidal), as shown in Figure 11.2. This type

of architecture is known as a feed-forward model because information

¯ows in one direction only. Weight changes occur based on the error

that is `back-propagated' ®rst to the hidden layer±output layer connec-

tions and then to the input layer±hidden layer connections ± hence the

name. Each individual neuron can have both excitatory and inhibitory

in¯uences on elements to which it is connected. Thus, this anatomy is

not very similar to a biological nervous system. Nevertheless, back-

propagation networks have been extensively used in nervous system

models. Why is this the case? As Churchland and Sejnowski (1992,

p. 135) have stated:
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(1) It is reasonable to assume that the evolution of nervous systems can be

described by a cost function; development and learning in nervous systems

are probably also describable by a cost function. In other words, by dint of

parameter-adjusting procedures, nervous systems. . . appear to be ®nding

minima in their error surfaces. (2) Model nets that are highly constrained by

neurobiological data concerning architecture and dynamics of the neural circuit

being simulated may use backprop as a search procedure to ®nd local minima.

(3) Identical nets using the same cost function and sliding into error minima will

nonetheless vary considerably in the speci®c values assigned to their para-

meters. . . (4) There is no guarantee that the local minima found by the

model net will overlap the local minima found by the real neural network,

but it is reasonable to assume so. . . (5) That assumption can be tested against

the nervous system itself. . . (6) Thus the model nets can be viewed as hypoth-

esis generators.
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Fig. 11.1 A typical multilayer, feedforward neural network is shown with four
input-layer neurons, three hidden-layer neurons and two output-layer neurons. In
this network, all of the input-layer neurons are connected to all of the hidden-
layer neurons, which are, in turn, connected to all of the output-layer neurons.
These multiple connections allow for distribution of information in the network.
(Reprinted, with modi®cation, by permission of the publisher from Cohen, I.L.
(1994). An arti®cial neural network analogue of learning in autism. Biological
Psychiatry, 36, 5±20. Copyright 1994 by Elsevier Science, Inc.)



Relevant to points (4) and (5), Lehky and Sejnowski (1988, 1990; cited

in Churchland and Sejnowski, 1992) have been able to use a back-

propagation network to extract information on curvature of objects

from shaded image input to an arti®cial retina. In learning this task,

the hidden-layer neurons developed properties similar to the receptive

®elds of simple cells in the visual cortex. Therefore, even though such

back-propagation models are not that similar to biological nervous

systems, they mimic, and may help to explain, some of their properties

(Churchland and Sejnowski, 1992).

Thus, there would seem to be enough similarities for one to begin to

ask questions about a back-propagation network that could have

importance for understanding parts of a biological nervous system.
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Fig. 11.2 Schematic diagram of a neuron as the target with input from source
neurons and a bias neuron that always provides a constant input. Also shown is
the equation for combining weights (Wij) with inputs (Si), yielding a value (X)
which is, in turn, the parameter in the transfer function. The transfer function
shown here produces an S-shaped, nonlinear, hyperbolic tangent output, which
is a function of the input X. (Reprinted, with modi®cation, by permission of the
publisher from Cohen, I.L. (1994). An arti®cial neural network analogue of
learning in autism. Biological Psychiatry, 36, 5±20. Copyright 1994 by
Elsevier Science, Inc.)



However, the analogy extends much further. Back-propagation models

can successfully mimic some of the learning characteristics of people

with autism, once the task and neuropathological observations sugges-

tive of too few or too many neurons are taken into account. How is this

possible?

Neural network anatomy and problem type

As one of its functions, the brain maps its environment, as exempli®ed by

the tonotopic organizational map of the auditory cortex. Neural net-

works also perform such a mapping function, i.e., they compute mathe-

matical functions that relate a set of data in one domain (e.g., presence or

absence of symptoms elicited from a diagnostic interview) to another

domain (e.g., internal representations of symptom clusters at the hidden

layer(s) or predicted diagnoses at the output layer). For example, in a

classi®cation problem, a suitably constructed network can identify com-

plex, multidimensional, nonlinear boundaries separating one class from

another. As it turns out, the effect of having too many, as opposed to too

few, neurons and neural connections on learning in computer-generated

neural networks depends on the anatomy of the network and the type of

problem the network is asked to solve.

Linear classi®cation problems

Linear classi®cation problems, by de®nition, have linear boundaries, i.e.,

groups can be separated by a line, plane or hyperplane. These problems

are fairly easy to solve, do not require, and are not helped by, hidden

layers with nonlinear transfer functions. For such problems, a two-layer

network is suf®cient, i.e., one with an input layer and an output layer.

Such a `network' is functionally identical to linear discriminant analysis,

multiple linear regression or multiple logistic regression (if a logistic

transfer function is used at the output layer). Therefore, for such pro-

blems, only the number of inputs devoted to the input layer is critical

during the learning process. Too many noninformative inputs that are

spuriously correlated with other inputs or with the outputs can affect

both learning and generalization.

In working with young children with autism, it is not unusual for

teachers to present their pupils with such linear discrimination problems.

Consider the problem of teaching such a child to discriminate between

cartoon pictures of happy and sad faces, as shown in Figure 11.3. If we
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assume that the nonlinear downstream perceptual systems of such chil-

dren are functioning properly, such that issues of rotation and translation

are not of concern, then one output neuron is suf®cient to discriminate

these faces as long as that neuron receives pertinent preprocessed infor-

mation such as the orientation of the mouth and/or slant of the eyebrows.

Such a problem is linearly separable because, as shown in Figure 11.3, a

line can easily separate these faces based on eyebrow and/or mouth

orientation. Why, then, do some children with autism seemingly have

dif®culty with learning such easy problems? The answer may be that

for such children: (1) stimuli such as eyebrow or mouth orientation are

as salient or less salient than any other stimulus present in the learning

situation such as prompts provided by the teacher, extraneous noise,

visual distracters etc., i.e., a true `blank state' is present for facial cues

(Weeks and Hobson, 1987); and (2) the decision-making neuron(s) may

be receiving too many connections from downstream neurons that pro-

cess these other, often extraneous, inputs.
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Fig. 11.3 Cartoon happy and sad faces are shown as two of nine possible out-
comes in a two-dimensional coordinate system in which mouth or eyebrow orien-
tation is manipulated. Note that these two categories can easily be separated by a
single line. Hence, this is an example of a linear classi®cation problem. Also note
that these expressions emerge as qualitatively distinct con®gurations as a result of
quantitative variation in their component features. Neural networks are quite
good at this type of pattern recognition.



Why would facial cues be equally or less salient than extraneous stimuli

for people with autism? The autopsy data described above indicate that

there are too many neurons in the amygdalae of some of these indivi-

duals. The amygdalae are important in acquiring and remembering affec-

tive associations and in facial recognition (Rolls, 1992). If having too

many neurons has a deleterious effect on such associative learning,

then the affective value of facial cues important to effective and mean-

ingful social communication could be impaired. The effect of having too

many neurons on the learning and generalization of complex, fuzzy, non-

linear pattern recognition problems, such as the meaning of facial expres-

sions, is described in more detail below. For the simple linear

classi®cation problem described here, however, lack of salience of rele-

vant cues means that other cues may have relatively greater salience, even

extraneous ones, depending upon their attention-grabbing value. Should

such extraneous stimuli become spuriously correlated with the require-

ments of the learning situation, then they would serve as potential sources

of information for problem solution. Since the correlation is spurious,

however, any learning that takes such stimuli into account will fail to

generalize if such spurious stimuli are not present in the to-be-generalized

testing situation.

The author has simulated such a situation with a three-layer feed-for-

ward network that employs a back-propagation training algorithm for

weight change (NeuralWare, 1993). The problem involved differentiating

between a `happy' and a `sad' face by presenting two numbers describing

the orientation of the `mouth' or `eyebrows.' These numbers varied from

ÿ1:0 to �1:0 for mouth orientation, with negative numbers correspond-

ing to the corners of the mouth downward, and from 0 to ÿ1:0 for eye-

brow orientation, with negative numbers indicating that the part of the

eyebrows closest to the ears was lower than the part closest to the nose

(see Fig. 11.3). Thus, the mouth input was more `salient' in that it had

greater variation in range than did the less salient, and redundant, eye-

brow input. In addition to these salient, but redundant, cues, 1, 3, 5 or 10

extraneous inputs were also added to the input. These consisted of ran-

dom numbers (from 0 to 1.0) derived from a uniform random numbers

distribution. The number of neurons in the middle or hidden layer was

varied as follows: 1, 2, 4 and 8. The number of neurons in the output

layer was two, corresponding to the presence of a happy or sad face. The

transfer function at the hidden and output layers was a hyperbolic tan-

gent (see Fig. 11.2). In keeping with typical classroom-type situations, a

small data set was used. Sixteen data points were used in the training set
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and eight in the test set. Nets were run for 100 trials and stopped every

ten trials to record classi®cation accuracy. Four additional replications

were run for each permutation by initializing a net to a different set of

starting connection weights so that each would converge on the solution

from a different starting point in weight space.

Contrary to expectation, even though this was a simple linear problem,

hidden-layer size affected performance in the training set. Speci®cally, the

net with only one hidden-layer neuron acquired the discrimination at a

slower rate than the other anatomies, which did not differ from each

other (F(30,800)=3.44, p<0.001 for the hidden neurons by trials inter-

action). However, all nets eventually achieved the same level of accuracy,

i.e., percentage correct classi®cation. Thus, although accuracy was not

affected by hidden-layer size in this problem, acquisition rate was in¯u-

enced by this variable.

The number of extraneous inputs also affected learning speed

(F(40,800)=2.72, p<0.001 for the number of extraneous inputs by trials

interaction) such that, up to a point, the greater the number of extraneous

stimuli, the faster learning took place, as shown in Figure 11.4. Why was

this the case? Although the extraneous inputs were random numbers,
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Fig. 11.4 Acquisition rate is shown as a function of number of training trials, with
number of extraneous inputs as the manipulated parameter for the happy±sad
discrimination problem.



some were spuriously linearly correlated with the output. Thus, extra

input numbers 1, 3, 5 and 7 had Pearson correlations of 0.47, 0.39,

ÿ0.47, and ÿ0.39, respectively, with one of the outputs (the signs were

reversed for the other output). This is somewhat analogous to the teacher

who provides, on some trials, cues to the correct answer by pointing to

the relevant stimulus. While this speeds up learning, it can cause pro-

blems with generalization. Indeed, this was the case.

For the test set, the rate of generalization was also affected by hidden-

layer size (F(30,800)=2.64, p<0.001). Generalization occurred at the

fastest rate for the network with two hidden neurons and was slowest

for the network with only one hidden neuron. However, as above, all

networks eventually achieved the same accuracy.

The number of extraneous inputs had a marked effect on both the

rate and pattern of generalization (F(40,800)=12.93, p<0.001). As

shown in Figure 11.5, the addition of one extraneous cue had no sig-

ni®cant effect on generalization. Three extra inputs led to a lower

asymptote. Five or more extraneous inputs had minimal effects on

generalization initially, but then had a marked deleterious effect as

training proceeded. These data suggested that the networks were
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`attending to' or utilizing the spurious inputs in the training set as

learning proceeded and that reliance on such data had a deleterious

effect on generalization. Indeed, this was evident when the effect of

systematic deletion of successive neurons in the input layer on general-

ization was examined. Table 11.1 shows the effect of successive deletion

of input neurons, for each fully trained network that had eight neurons

in the hidden layer, as a function of increasing numbers of extraneous

inputs. This hidden-layer size was arbitrarily chosen since hidden-layer

size, by itself, had no overall effect on generalization.
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Table 11.1. Effects of deletion of successive inputs on generalization in nets with
eight hidden neurons.*

Number of extraneous inputs Inputs deleted Generalization impact (%){

1 Brow 0.6
1 Mouth ÿ41.5
1 Extra 1 ÿ1.4
3 Brow ÿ28.8
3 Mouth ÿ117.6
3 Extra 1 ÿ42.0
3 Extra 2 ÿ0.4
3 Extra 3 5.6
5 Brow ÿ17.3
5 Mouth ÿ146.5
5 Extra 1 ÿ27.3
5 Extra 2 16.5
5 Extra 3 100.0
5 Extra 4 5.1
5 Extra 5 73.6
10 Brow 14.5
10 Mouth ÿ263.3
10 Extra 1 17.9
10 Extra 2 ÿ7.1
10 Extra 3 199.9
10 Extra 4 36.6
10 Extra 5 259.1
10 Extra 6 ÿ15.5
10 Extra 7 42.5
10 Extra 8 ÿ1.6
10 Extra 9 15.2
10 Extra 10 ÿ29.2

*See text.
{Percentage difference in generalization accuracy relative to baseline conditions
with no inputs deleted. Negative numbers signify deterioration in generalization
when that input is deleted; positive numbers signify improvement in generalization
when that input is deleted.



As shown in Table 11.1, all of the networks relied on the more salient

input of mouth orientation for categorization, in that elimination of this

input had marked deleterious effects on generalization. In most instances,

elimination of successive extraneous input neurons caused marked

improvements in generalization accuracy, with numbers 3 and 5 (corre-

sponding to random inputs 3 and 5, respectively) having the most in¯u-

ence ± two of the four extraneous inputs that showed a moderate linear

correlation with the training set outputs.

By analogy, if all inputs have equal initial salience, biological nervous

systems may also attend to all available information that is correlated,

even spuriously, with the problem that is to be solved. If those spurious

stimuli are not present in novel test sets, generalization will be hampered.

Up to a point, the greater the number of connections from such down-

stream inputs, the greater the problem. This same phenomenon is perva-

sive amongst children with autism.

It has been repeatedly demonstrated that such children are notoriously

poor at generalization, and the need to train generalization is built into

behavior-modi®cation programs (Koegel, Rincover and Egel, 1982).

Lovaas et al. (1971) have attributed this generalization decrement to a

problem with `stimulus overselectivity.' In this study, children with aut-

ism were found to attend to only one of three components of a redundant

compound cue (as in the above simulation), whereas nonhandicapped

children responded to all three, and those with mental retardation

responded to two. Subsequent studies have replicated this phenomenon

but have also shown that when such children are taught stimulus discri-

minations involving multiple stimulus attributes, they will learn the dis-

crimination by focusing on a characteristic of the stimulus that may be

relevant to the discrimination at hand but irrelevant for generalization to

a related but dissimilar stimulus (Schreibman and Lovaas, 1973).

This stimulus overselectivity effect is remarkably similar to the effects

of extraneous, irrelevant information on learning and generalization just

described. Indeed, when cues are presented to aid discrimination learning

(so-called extrastimulus prompts), children with autism have marked dif-

®culty in maintaining their task performance when such cues are elimi-

nated (Schreibman, Charlop and Koegel, 1982). Solutions to this

problem have included increasing the salience of the stimuli by exagger-

ating their features ± so-called within-stimulus prompts (Schreibman,

1988) ± as in the present simulation. In the model described above, this

can also be mimicked by increasing the size of the weights for the two

relevant cues, relative to the extraneous stimuli, prior to training. When
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this (prebiasing) was done with one of the networks described above,

generalization was facilitated in a manner proportional to the size of

the preset weights.

The network with ®ve extraneous input neurons and four hidden neu-

rons was arbitrarily selected for modi®cation. The pretrained weights

connecting the two salient inputs with the four hidden neurons were set

to either 0.5, 1.0, 2.0 or 4.0. At each weight level, the network was trained

for 100 trials, with training and generalization results checked every ten

trials. This process was replicated four additional times at each weight

level, with all weights except the prebiased ones randomly initialized to

values between �=ÿ 0:1.

As shown in Figure 11.6, the higher the preset weight, the higher the

asymptote (F(30, 160)=2.55, p<0.001) in the test set. Thus, by pre-

enhancing `attention' to relevant stimuli in a neural network, general-

ization is enhanced, much as it is with children with autism.

Presumably, typically developing children are already biologically `pre-

biased' or `prepared' to attend to relevant facial cues such as mouth or

eyebrow orientation, and would not therefore need this additional help.

Similar arguments could be made for so-called `higher-functioning'
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Fig. 11.6 Generalization rate is shown as a function of number of training trials,
with preset weight size as the manipulated parameter for the happy±sad discrimi-
nation problem, with pre-biasing of the eyebrow and mouth orientation stimuli.



children with autism who appear to be less susceptible to these overse-

lectivity problems (Koegel and Koegel, 1995).

Well-de®ned nonlinear classi®cation problems

There exist other classi®cation problems that children with autism are

asked to learn that are not linearly separable. Consider teaching such a

child the concept of the prepositions `inside' vs `outside'. Here, a teacher

might give the child a block and tell him to put it inside or outside of a

circle placed on a table top. In this case, there is no linear mapping

contour that divides these two categories. However, the circular border

separating these categories, in this problem, is well de®ned. To solve such

nonlinear pattern classi®cation problems requires a more complex neural

network. In this case, a simple three-layer network will do, with nonlinear

sigmoidal functions at the hidden and output layers governing the rela-

tion between output and input to a cell. Such a network can readily solve

this problem, also known as the `circle in the square' problem

(NeuralWare, 1993) ± as long as irrelevant distracters are not present.

Since it has been shown that a single hidden layer with enough neurons

can ®t almost any mathematical function (Hornik, Stinchcombe and

White, 1989), complex but well-de®ned borders can be described quite

well with three-layer, feed-forward models. Indeed, the more complex the

function that describes the border regions, the more neurons are required

in the hidden layer. By extrapolation, aberrant neural development that

results in an excessive number of neurons in a given region should result

in enhanced ability to de®ne and map out complex patterns. However,

presenting a child with new inside/outside problems with differently

shaped or localized borders requires learning to map new contours. If

too many neurons and neural connections are present, the possibility of

`cross-talk' problems developing, with degradation of previously

acquired memories as more and more new, but similar, problems are

introduced, becomes of concern.

Some studies have indicated that the brain size of people with autism is

above average (Piven et al., 1995). These observations, coupled with the

subcortical autopsy results, suggest that some affected individuals have

more neurons and/or neural connections than average in selected brain

areas. It is hypothesized, therefore, that this is the basis for the above-

average to savant-like skills shown by some individuals when it comes to

learning and memorizing well-de®ned, nonlinear patterns such as routes

to various places or musical selections. As Kanner (1943) described, some
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people with autism have an extraordinary ability to encode and recall

complex patterns, be they visual, auditory, spatial, or temporal. For

example, in the visual modality, the child known as Nadia (Selfe, 1977)

had an exceptional ability to draw pictures from memory with exquisite

detail. Other children have a facility with reproducing detailed geo-

graphic maps from memory or show unusual fascination with diverse

visual patterns such as lines and edges, their hands or their face in the

mirror. Auditorially, many such children precisely echo what they hear,

including the intonation pattern, and they can be better than matched

controls when asked to recall random word strings (Hermelin and

O'Connor, 1967). Spatially, as noted above, many other children with

autism call recall complicated routes and locations of signi®cant objects

in space. Temporally, some readily learn routines and can become quite

upset if those routines are altered. Therefore, it would follow from the

above that, for so-called savants, the number of neurons and neural

connections is increased in those networks responsible for learning visual,

auditory, spatial and/or temporal patterns, depending on the particular

skills of the savant. In other words, those with savant visual memory

skills should have enlarged development of visual, but not haptic, mem-

ory circuits. However, if this is the case, then the danger of spatial or

temporal cross-talk is problematic and could be the basis for the reported

`resistance to change' shown by people with autism when they are asked

to modify their rituals or tolerate change in their environment.

In neural network construction, various solutions to this cross-talk

problem have been proposed. One of these is to have `sparse' connectivity

where fewer neurons are used to represent information (Churchland and

Sejnowski, 1992). This notion of an optimal connectivity size for a given

problem is discussed in more detail below.

Fuzzy nonlinear classi®cation problems

Most categorization problems that we face in everyday life are not so

easily classi®ed. The border regions are not only nonlinear, but they are

subtle or `fuzzy' (Kosko, 1993) and depend on context. What, for exam-

ple, de®nes a chair? A four-legged structure that people can sit on equally

describes a table, as well as a chair, and excludes sofas, ottomans, tree

stumps, etc. Laughter can indicate delight as well as hysterical fear, sar-

casm, etc., depending on the context or the actors' point of view.

Differentiating between shapes requires attending to their invariant prop-

erties, irrespective of their physical location or rotation in space. Solving
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such nonlinear, ill-de®ned problems requires complex neural network

structures. In some less complex instances, multilayer back-propagation

models will suf®ce, as when such models are used for hand-writing recog-

nition (Sejnowski and Rosenberg, 1987), diagnosis (Cohen et al., 1993),

etc. Fuzzy boundary problems are precisely the types of problems that

people with autism have dif®culty resolving, irrespective of degree of

intellectual functioning. For example, semantic comprehension is often

problematic, with many having quite literal interpretations of words and

sentences (Kanner, 1943) and a concomitant inability to comprehend

their world. Some normally intelligent people with autism have dif®culty

with higher abstractions such as perceiving situations from another's

point of view (Frith and Baron-Cohen, 1987). Why? Analysis of the

anatomy of back-propagation models may provide a clue.

As noted above, back-propagation networks employ a hidden layer (or

layers) that can form higher order representations of the input pattern. In

forming these representations or boundary regions, the hidden layer per-

forms a type of curve ®tting, i.e., trying to ®nd the best curve that will ®t

all of the data points (or separate out groups in a classi®cation problem)

in the set on which it is trained (Churchland and Sejnowski, 1992). As in

any other curve-®tting procedure, one desires the simplest function that

will best describe the data. Why? Because, as noted by Cohen (1994) and

many others, a complex curvilinear function may ®t a training set too

well, i.e., it describes the training set so perfectly that it is relatively

poorer than a simpler function at describing a different, albeit concep-

tually similar, sample, the `test set.' (This problem is known as `over-

®tting.') In a back-propagation network, this curve-®tting problem

translates into determining the number of neurons needed in the hidden

layer, as well as the number of hidden layers to use, in order to (a) best ®t

the data set, and (b) best describe the test set. As the number of neurons

and connections increases, the ®t to the test set may deteriorate

(NeuralWare, 1993). Thus, while too few neurons may not be able to

solve a problem to begin with, having too many may impair general-

ization. This problem in over®tting the data set is also a function of

the number of training trials (NeuralWare, 1993) because, as the network

learns, it will modify connection weights so as to minimize error on the

training set. To the extent that the test set does not precisely resemble the

training set and to the extent that the boundaries between groups are

fuzzy, generalization will worsen as training progresses. Similar effects

were also present in the linear classi®cation problem described above as

the number of noisy inputs increased.
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An illustration of how this would apply to autism is exempli®ed by the

problems autistic individuals have with speech and language comprehen-

sion. It has been argued (Lovaas, Koegel and Schreibman, 1979) that a

stimulus overselectivity problem can, in part, explain this de®cit. That is,

if a child attends to irrelevant parts of a verbal cue, such as the pitch

contours to which infants attend (Mehler et al., 1978), instead of those

features that are important in discriminating one type of word from

another, then comprehension will be impaired. In a related manner, the

same or different people may pronounce the same words in different

ways, depending on their age, gender, states of health, regional accent

etc., i.e., word recognition is a complex, nonlinear, fuzzy classi®cation

problem. Consider a more basic problem than word recognition ± vowel

recognition, a phenomenon that is very likely evident in early infancy (see

Rosser (1994) for a review). Figure 11.7 shows a plot of the ®rst two

formants of different speakers (males, females, and children) saying ten

different vowels in an hVd format (Nowlan, 1990): (1) `ee' as in `heed'; (2)

`ih' as in `hid'; (3) `eh' as in `head'; (4) `aah' as in `had'; (5) `uh' as in `hud';
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Fig. 11.7 Samples of the ®rst and second formant values of all vowels spoken by
different speakers. The abscissa is the ®rst formant value and the ordinate is the
second formant value. Axes are labeled in cycles per second. The solid-line bound-
aries of each vowel class were estimated from the training data. (Reprinted, with
modi®cation, by permission of the author from Nowlan, S.J. (1990). Competing
experts: An experimental investigation of associative mixture models. Technical
Report CRG-TR-90-5, University of Toronto, Copyright 1990.)



(6) `ah' as in `hod'; (7) `aw' as in `hawed'; (8) `uuh' as in `hood'; (9) `oo' as

in `who'd'; and (10) `er' as in `heard.' Note that there is wide variation in

the way different speakers pronounce the same vowel, and a great deal of

overlap amongst the different vowel clusters. Even if a child with autism

were to attend to relevant features such as the ®rst two to four formants

of vowel production and did not ®nd some frequencies more salient than

others, a problem with too many or too few neural connections could still

impair generalization, albeit for different reasons.

Too few connections would limit the complexity of the boundaries that

must be computed in order to differentiate one vowel from another. Here,

a generalization problem is secondary to limited classi®cation ability. The

problem with too many connections is more complex. To the extent that

the child's experience with attending to a variety of different speakers is

limited (the `training set'), generalization to other speakers (the `test set')

could be impaired, especially if the spectral characteristics of the vowels

that they produce differ from the child's experience and/or if those vocal

characteristics overlap with other vowels spoken by familiar speakers.

Why? Because too many connections would compute boundaries that

®t the training set `too well' and this would therefore limit generalization

under the conditions speci®ed. This would result in a child who could

accurately recognize (and, perhaps, reproduce) sounds or words spoken

by his or her teacher but not some of the same sounds or words when

spoken by an unfamiliar person.

This effect was modeled with a three-layer, feed-forward network.

The data for the network were approximated from a replotting of

some of the recognizable data points in Figure 11.7. The ®rst two

formants served as the inputs, and ®ve of the ten vowel sounds (num-

bers 1, 2, 3, 4, and 10) served as the predicted outputs. In order to

model a `limited experience' situation, one-half of the data was set aside

for the training set and the rest served as the test set. Two experiments

were run. In the ®rst, the number of neurons in the hidden layer was

systematically manipulated as follows: 3, 6, 9, 12, and 15. Nets were run

for 50 000 trials. Four additional replications were run for each hidden-

layer size by initializing a net to a different set of starting connection

weights so that each would converge on the solution from a different

starting point in weight space. In the second experiment, nets with

hidden-layer sizes of 2, 3, and 12 were run on the same problem

(each with ®ve replications) with the nets stopped at 2000, 4000,

8000, 16 000, 32 000, and 64 000 trials in order to track the effects of

experience on both learning and generalization.
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In the ®rst experiment, as hidden-layer size increased during training,

classi®cation accuracy increased from 81 percent with three hidden-layer

neurons to over 88 percent with 9 to 15 hidden-layer neurons

(F(16,80)=27.66, p<0.0004). Further, some vowels were easier to recog-

nize than others (F(16,60=90.23, p<0.0001), as shown (on the left) in

Figure 11.8. Recognition of vowels 3 and 10, for example, required

increasingly larger hidden-layer sizes, with the former achieving levels

of 90 percent accuracy at hidden-layer sizes of nine or more, and the

latter requiring a hidden-layer size of 15 to reach 77 percent accuracy.

The latter is not surprising since, as shown in Figure 11.7, vowel 10 (`er')

showed signi®cant overlap in cluster areas with some of the other vowels,

particularly 3 (`eh') and 4 (`aah').

Results for generalization testing were the opposite of those seen dur-

ing acquisition. Overall, the larger the hidden-layer size, the worse the

generalization (F(4,20)=16.49, p<0.007). However, this effect depended

on vowel type (F(4,80)=8.75, p<0.0001). As shown on the right in

Figure 11.8, generalization was quite good (over 90 percent) for vowels

1 and 4, irrespective of hidden-layer size; increased from 69 percent to 78

percent for vowel 2; and decreased from 82 percent to about 50 percent

for vowel 3 as hidden-layer size increased. Thus, as the hidden-layer size
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Fig. 11.8 Acquisition (left) and generalization (right) rates are shown as a func-
tion of number of hidden neurons for each vowel type.



increased, the border isolating the training set data for vowel 3 became

more complex. This increasingly complex border led to a progressive

generalization decrement for the test set with increases in hidden-layer

size. The results for vowel 10 were more complex. Generalization

improved as hidden-layer size increased from three to six, but declined

with further increases in hidden-layer size. Thus, as the border for this

vowel became more complex in order to describe its training set data,

generalization to the test set deteriorated markedly, once network size

had exceeded some `optimal' range. These observations, and the results

for vowel 3, are examples of how exposure to a limited data set can

impair generalization in those whose nervous systems may be `too com-

plex.' If this concept is extended beyond vowels to words, phrases and

sentences, it could, perhaps, account for the idiosyncratic reactions of

some children with autism to the statements of others.

Results for the developmental progression of this phenomenon were

examined in Experiment 2. As shown in Figure 11.9, learning accuracy

was low (65 per cent overall) and did not improve with trials for the net

with two hidden-layer neurons. Learning accuracy monotonically

increased with trials for the other two hidden-layer sizes, eventually

reaching almost 90 percent correct for the largest network

(F(10,60)=2.69, p<0.0076).
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The generalization data were complex, with the results affected by

hidden-layer size, vowel type and trials (F(40,240)=1.79, p<0.005), as

shown in Figure 11.10. A hidden-layer size of two clearly could not

generalize because, as evident from Figure 11.9, it was unable to learn

to classify all ®ve patterns. That is, a system with too few neurons has

limited capacity to learn and therefore generalize, as noted above.

Further, there were small, but consistent declines in generalization per-

formance as training proceeded. By contrast, hidden-layer sizes of three

or 12 generalized quite well, depending on when generalization was

assessed during training. A hidden-layer size of three actually resulted

in increased generalization accuracy, for four of the ®ve vowels, with

extended training. Thus, this network size, which appeared to be almost

optimal for generalization in the previous study, did not show a general-

ization decrement with extended training. Put in other terms, an optimal

brain size improves with experience.

The networks with a hidden-layer size of 12 showed excellent general-

ization early on in training (about 4000 to 8000 trials), equaling that of

the more optimal network size. However, with continued exposure to the

same vowels, one of the vowels, vowel 3, showed a marked decrement

from 85 percent to 45 percent accuracy with extended training. Therefore,

the effects on generalization of having too many neurons and neural
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Fig. 11.10 Generalization rate is shown as a function of trials and hidden-layer
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connections depends on when, in the course of learning or development,

generalization is assessed. Had training been stopped for this network

size between 4000 and 8000 trials, and inappropriate or irrelevant con-

nections deleted or pruned (as in Table 11.1), excellent learning and

generalization could have been maintained with continued exposure to

the training set.

It should also be noted that the variability in generalization outcome

was a function of hidden-layer size for four of the ®ve vowels, in

Experiment 1, and all ®ve vowels at the end of training, in Experiment

2, based on tests for homogeneity of variance across hidden-layer size. As

shown in Table 11.2, variance was lowest at both the near-optimal and

largest hidden-layer sizes, relative to the other hidden-layer sizes. Thus,

with too few neurons, overall learning and generalization are weak and

responses are inconsistent. With an optimal number of neurons, both

learning and generalization are good and correct responding is consistent

and predictable. With too many neurons, learning is good but general-

ization is poor and shows relatively little variation, i.e., incorrect answers

tend to be reproduced in such systems.

Accordingly, unpredictability in outcome is inevitable with such dyna-

mical systems but the degree of variation in generalization ability is a

function of network complexity for a given type of problem. This obser-

vation is consistent with the typically stereotyped and in¯exible responses

of children with autism to verbal requests from others. As several parents

have said to the author, `He doesn't understand it when you ask him that

way, you have to say. . .'. Such children must be truly puzzled and fru-

strated (or depressed) by their efforts at trying to fathom the rules behind

fuzzy problems. This could encourage some (depending on arousal state,

`temperament,' and prior history) to try harder by memorizing ever-more

irrelevant details (see Carpenter and Grossberg's (1991) discussion of

arousal effects in their ART-1 model). This is an instance of not being

able to `see the forest for the trees.'

Of course, vowel comprehension is much more complicated than the

simple vowel discrimination model described here. Rule-governed `top-

down' expectancies play a large role in phoneme or word recognition, as

in the phonemic restoration effect (Warren, 1984). However, such top-

down rules must be based on a history of having received reasonably

consistent `bottom-up' information. Should the latter be error laden,

appropriate top-down rules should be particularly dif®cult to abstract.

Similarly, too many or too few neurons in certain top-down networks

could lead to a system that fails to develop appropriate rules, develops
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extremely limited rules, or develops rules that are incorrect or bizarre

because they include spuriously correlated information in the input pat-

tern. Such a developmental history could be responsible for the higher-

order `theory of mind' de®cits noted in children with autism (e.g., Leslie

and Thaiss, 1992).

Implications and predictions

The above data for vowel classi®cation illustrate several well-known

properties of neural networks when they are presented with complex
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Table 11.2. Percentage correct means (M) and standard deviations (SD) of vowel
generalization as a function of hidden-layer size in Experiments 1 and 2.*

Vowel Hidden-layer size

3 6 9 12 15

Experiment 1 (50 000 trials)

1 M 94.0 95.2 95.2 94.0 94.0
SD 0.0 2.7 2.7 0.0 0.0

2 M 69.0 69.2 73.8 75.4 77.0
SD 0.0 5.3 7.2 3.6 0.0

3 M 83.0 61.8 50.0 51.6 54.8
SD 0.0 7.7 13.3 6.7 4.4

4 M 92.0 92.0 91.8 90.2 91.8
SD 0.0 0.0 6.0 4.0 6.0

10 M 63.0 72.6 70.2 67.8 65.4
SD 0.0 5.4 6.6 6.6 5.4

Experiment 2 (64 000 trials)

Vowel Hidden-layer size

2 3 12

1 M 94.0 94.0 89.0
SD 0.0 0.0 11.2

2 M 51.0 69.0 80.0
SD 28.7 0.0 6.7

3 M 56.6 83.0 46.8
SD 13.9 0.0 4.4

4 M 98.4 92.0 96.8
SD 3.6 0.0 4.4

10 M 15.0 63.0 60.4
SD 33.5 0.0 5.8

*See text.



problems that have ill-de®ned borders. In general, the more hidden neu-

rons, the better the network is at classifying data in the training set.

Generalization to a novel test set is a bitonic function of hidden-layer

size in which an optimal size (the `Goldilocks size') exists for maximizing

both training and test set predictions. Also, because neural networks are

dynamical systems, substantial variability in performance exists that

depends upon the initial state and size of the network. Finally, since

the system attempts to minimize error on the training set, test set predic-

tions may deteriorate with extended training.

Thus, it can be seen that quantitative variation in one basic parameter,

number of neurons and neural connections, can result in complex effects

on learning and generalization. These complex outcomes mimic several

well-validated characteristics of the learning style of children with autism:

(1) greater attention to idosyncratic than to socially relevant stimuli; (2)

stimulus overselectivity; (3) problems in acquiring fuzzy concepts; (4)

development of savant skills; (5) problems with generalization of pre-

viously acquired skills; (6) rigidity and resistance to change; (7) stereo-

typed responses to others; and (8) dif®culty in learning complex higher-

order concepts. By extension and analogy, these basic learning and gen-

eralization effects have implications for a variety of other issues in aut-

ism, and these are outlined below.

Lack of awareness of the affective meaning of facial expressions

Discriminating context-speci®c differences in facial expressions is an

example of the type of fuzzy classi®cation problem that people must

learn to respond to every day. Having too few or too many neurons for

such problems should, by extension, interfere with learning and general-

ization of these affective cues. This is illustrated in Figures 11.11 and 11.12.

Imagine a two-dimensional weight space exists for discriminating

between angry and sad facial expressions. Further, imagine that the bor-

der between these states is noisy or fuzzy, as pictured by the closed

triangles. A typically developing child with an optimal number of amyg-

dalar neurons and neural connections establishes a nonlinear boundary

that `satis®es' (to use Churchland and Sejnowski's (1992) term) the dis-

tinction between these two emotional states, as illustrated by the quad-

ratic function. A child with too few neurons (Fig. 11.11) in this structure

does not possess enough computational power adequately to differentiate

these states and so his or her boundary is linear, with substantial overlap

amongst the two true states. The child with too many neurons (Fig.
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11.12) has the opposite problem. He or she attends to all of the noisy

aspects of the border between these two states, as illustrated by the spline

curve. As a result, this child learns to attend to too many irrelevant

details and, so, generalization of these affective associations is hampered.

In either situation, knowledge concerning affective associations is idio-

syncratic and fails to generalize well. Therefore, other normally devel-

oped neural structures that rely on this information may show poor

performance because they lack relevant information concerning the affec-

tive salience of evolutionarily signi®cant stimuli in the child's environ-

ment (see Churchland and Sejnowski's (1992, pp. 317±29) discussion on

Damasio hierarchies, and Eichenbaum, 1993). Without such salience

information, overselective attention to irrelevant cues can result, as illu-

strated above.

Accordingly, the following pathogenic scenario suggests itself. For a

variety of possible reasons, the development of the brain of a child with

autism is altered in such a manner that regions that are important for

processing of affective and other associations have either too few or too
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Fig. 11.11 A hypothetical two-dimensional weight space for the problem of dif-
ferentiating between angry and sad faces with a noisy or fuzzy boundary (closed
triangles). The quadratic function `sati®ces' the discrimination between these two
states (true boundary). The child with too few neurons in a relevant brain struc-
ture lacks the computational power to identify this curvilinear boundary (repre-
sented by the linear boundary) and so has dif®culty discriminating these states.
(See text.)



many neurons and/or neural connections. Too few neurons and neuronal

connections will set an upper limit on the number and quality of affective

associations that can be acquired. If too many neurons and neuronal

connections exist, then the number and quality of affective associations

that can be learned and stored may be limited, associations could be

highly idiosyncratic, and there may also be deterioration in the quality

of these associations with time (the stability±plasticity dilemma discussed

in Carpenter and Grossberg, 1991), depending on the memory storage

capacity of the network. This de®ciency in processing of affective

responses from others could readily account for the unusual social learn-

ing and performance de®cits shown by these children, such as lack of

awareness about when to establish eye contact, how close to stand next to

others, stereotyped questioning of strangers, etc. In a causal chain, failure

to comprehend the function of fuzzy social cues, and to associate affective

meaning with them, would be expected to lead to failure of the child to

have a desire to share experiences with others ± so-called joint attention

de®cits (Mundy, Sigman and Kasari, 1990).
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Fig. 11.12 A hypothetical two-dimensional weight space for the problem of dif-
ferentiating between angry and sad faces with a noisy or fuzzy boundary (closed
triangles). The quadratic function `sati®ces' the discrimination between these two
states (true boundary). The child with too many neurons attends to all of the
noise in this curvilinear boundary (represented by the spline function noisy
boundary) and so has dif®culty in generalizing these states. (See text.)



Self-stimulatory behaviors

It has been known for quite some time that the reward value of a given

environmental stimulus is judged relative to the reward value of stimuli

that compete for the individual's attention (e.g., Herrnstein, 1970). It is

also the case that organisms tend to be biased or `prepared' to acquire

associations at a faster rate to some stimuli than to others, suggesting the

presence of an `attending hierarchy' (Baron, 1965). For example, Warren

(1953) reported that monkeys learn visual discriminations best when cues

are based on color; next best when cues are based on form; and least

when they are based on size. Advertisers have learned that people attend

to visual stimuli that are bright, ¯ashy, repetitive, moving, and colorful.

Such stimuli are easily detectable, controllable (in some instances), and/

or predictable and they also tend to be interesting to children with aut-

ism, as evidenced by the fact that they often focus too intently on ¯ashing

lights, brightly colored signs, television cartoons, spinning wheels, their

own moving ®ngers, etc. Precisely which stimulus a child with too many

connections chooses to focus on is likely to be highly idiosyncratic and

dependent, in part, on `superstitious' associations that may have been

established with that stimulus in the past. The relative reward value of

attending to such `concrete' stimuli should be especially high if competing

fuzzy stimuli lack affective meaning. It would be predicted, therefore,

that the frequency of repetitive behaviors should be an inverse function

of social±communicative functioning. Based on data collected from care-

givers of almost 300 people with autism seen in the clinic of the New

York Institute for Basic Research in Developmental Disabilities, care-

giver reports of the severity of repetitive behaviors shown by these indi-

viduals were weakly, but signi®cantly, negatively correlated with

increases in adaptive functioning (partial r(274)=ÿ0.27, p<0.0001),

but not with increases in age (partial r(274)=0.004), as predicted. Data

on repetitive behaviors were gathered with a parent interview developed

by Cohen et al. (1993) and adaptive functioning was assessed with the

Vineland Adaptive Behavior Scales (Sparrow, Balla and Cicchetti, 1984).

Alternative pathogenetic mechanisms

Aside from the mechanisms discussed at the beginning of this chapter,

what else could account for having too many or too few neurons and/or

neural connections in selected regions of the brain? The typically devel-

oping brain produces more neurons than it needs (Rakic, 1991), and
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excess neurons are removed through a `pruning' process. LaMantia and

Rakic (1990) have reported that newborn monkeys lose over 70 percent

of their axons in the hippocampal commissure. Overproduction of synap-

tic connections has also been noted in the neocortex by Rakic et al.

(1986). While such cell or connection death may be genetically pro-

grammed, the death of certain connections may be a Darwinian compe-

titive process in which, as a function of experience, connections that have

been strengthened through learning or exposure survive while those that

are weak die (Rakic, 1991). The results from the simulations described

above suggest that this pruning is necessary for proper learning and

generalization. Indeed, pruning of connections in large, overdetermined,

arti®cial neural networks leads to improved generalization of the network

(Sietsma and Dow, 1988). Therefore, if not already affected by patholo-

gical aberrations such as migration errors, the brains of children with

autism could have too many or too few neurons and/or neural connec-

tions because they are impaired in their ability to develop or strengthen

new connections and/or to prune out weak or interfering connections in

critical brain regions (Rapin, 1993). Indeed, had the larger neural net-

works in the vowel discrimination problem been monitored while they

acquired the discrimination, hidden neurons that impaired generalization

could have been pruned away, leading to no loss of ability, and, perhaps,

improved performance with additional training. Pruning of too many

neurons and/or neural connections could lead to deterioration in pre-

existing concepts according to Lashley's mass action principle, depending

on when in the course of development such pruning occurs, and could

account for some cases of autism that are associated with early loss of

previously acquired skills and/or the often reported positive or negative

changes in functioning at adolescence when cortical pruning of connec-

tions accelerates (Hoffman and McGlashan, 1993).

For the child who has problems with too many neurons in some brain

structures as a result of insuf®cient pruning, continued exposure to fuzzy

categorical problems should lead to a nonlinear developmental progres-

sion (see Fig. 11.10). Initially, learning should proceed well and, even-

tually, the child will correctly generalize. However, continued exposure to

the same experiences will lead to overlearning, attention to idiosyncratic

details, deterioration in concept formation, and poor generalization.

Perhaps this can explain, in part, the apparent regression in functioning

from `normalcy' shown by some children with autism between 18 and 30

months of age. Those children with too few neurons because of dimin-

ished development or excessive pruning may also show a regression, but
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attainment of age-appropriate social±communicative functioning would

not be expected.

Hoffman (Hoffman and Dobscha, 1989; Hoffman and McGlashan,

1993) has explored this same concept of excessive neural pruning to

simulate some of the symptoms of schizophrenia using a reciprocally

connected, parallel distributed processing model. In Hoffman's model,

excessive pruning at adolescence was felt to be localized primarily to

cortical regions, with secondary effects on the hippocampus. With exces-

sive amounts of pruning, three consequences were noted in the simula-

tions (Hoffman and McGlashan, 1993). First, outputs `became bizarre' in

that stimuli were found to elicit memories unrelated to the input. Second,

subpopulations of neurons were found to become functionally autono-

mous. Finally, spontaneous outputs that were unrelated to any stored

memory in the system were excessively reproduced. The latter was termed

a `parasitic focus.' These unusual consequences were felt to simulate

positive symptoms such as thought insertion, loose associations, delu-

sions of control, auditory hallucinations, ideas of reference etc., as well

as some negative symptoms such as thought withdrawal.

The present model of autism differs in several ways from Hoffman's

model. First, the present model emphasizes the fact that problems in

behavioral development can occur in response to too much, as well as

too little, neuronal complexity. Second, the cortical brain structures

thought to be involved in schizophrenia by Hoffman are unlikely to be

involved in autism to the same degree because the two disorders differ

markedly in several ways, including age of onset and types of behaviors

displayed. As alluded to above, the present model assumes that the most

likely neural structures to be involved in autism are those that relate to

social±emotional development, with, perhaps, some involvement of those

regions that are responsible for certain `cognitive' behaviors such as lan-

guage. There are several reasons for this assumption:

1. The earliest appearing symptoms relate to lack of appropriate reac-

tions to social cues (poor eye contact, lack of response to being held,

etc.) and these behaviors are the ones that are least likely to be

in¯uenced by overall intelligence in these children.

2. Cortical changes are not consistently reported in either autopsy or

imaging investigations, as noted above.

3. Differences that have been more consistently observed (at least in

one laboratory) involve those brain areas related to social±

emotional development, as cited in the section on neuropathology.
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These same structures have been speculated to be involved in more

general issues of temperament differences in children and adults

(Nelson, 1994; Steinmetz, 1994).

4. Some of the deeper structures appear to reach maturity within the

®rst one to two years of postnatal life (Nelson, 1994), close to the

time of onset of most cases of autism.

5. It has been found that neonatal amygdalar±hippocampal lesions

produce a syndrome in primates that resembles autism in several

ways (Bachevelier, 1991). Indeed, the author has evaluated several

children with autism who also displayed behaviors reported to occur

in Kluver±Bucy syndrome (Kluver and Bucy, 1939), a disorder

resulting from damage to the temporal lobes. Thus, in addition to

autism, these children also displayed indiscriminate mouthing and

ingestion of inedible objects as well as lack of response to stimuli

that would be painful to others.

Treatment

Recently, data have become available that would suggest that the aber-

rant neural development hypothesized to be responsible for autism can,

in some instances, be overcome by early, intensive, structured learning

experiences (Lovaas, 1987; McEachlin, Smith and Lovaas, 1993). This

could be accounted for in the present model if such experiences force

activity-dependent or experience-dependent strengthening of appropriate

connections and pruning of aberrant ones, as has been demonstrated for

development of some parts of the visual system. Hypothetically, this

intervention should work best in those cases where the problem is, in

pertinent brain structures, one of too many rather than too few neurons

or neural connections. This is because neural activity appears to play

more of a role in maintenance and elimination of synapses than in

their initial formation (Jacobson, 1991). This assumes, of course, that

any other normally developed structures that may be present cannot be

remapped to `take over' the function of the malfunctioning structure.

Such intensive behavioral therapy is hypothesized to work by focusing

the child's attention on a larger and more varied data set than he or she is

used to, thereby forcing the child to attend to all relevant aspects of the

problem space. Then, given suitable problems to solve (e.g., those dealing

with affective recognition of emotional states or learning to recognize

words pronounced by different people), constant repetition of these

many different patterns together with immediate feedback should lead
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to higher-order recognition by weakening or pruning previously estab-

lished, irrelevant connections that do not `pay-off' and maintaining or

strengthening those that do. That is, it is assumed that such intensive

work may stimulate a sluggish neurodevelopmental process. In arti®cially

distributed neural networks, increasing the size of the data set for a ®xed

network size leads to enhanced performance, especially when the data set

is noisy (NeuralWare, 1993). A critical period may exist for such inter-

vention because synaptic patterns that are already established are, theo-

retically, dif®cult to change (Munro, 1986).

The present model implies that genes that control (or exogenous

agents that in¯uence) neural growth, migration, differentiation, cell

death or pruning will have treatment as well as etiological signi®cance

for autism. Drugs that facilitate or inhibit nerve growth or pruning in

relevant brain regions or that selectively stimulate or inhibit nerve func-

tioning in these same regions may be of bene®t in the treatment of this

syndrome, when given in combination with intensive structured inter-

ventions so that experience-dependent plasticity effects can be realized.

Unfortunately, the psychopharmacology literature in autism is limited

in this respect. For example, in the only study of this kind in young

children with autism, Campbell et al. (1978) investigated the therapeutic

ef®cacy of a combination of behavioral language instruction with halo-

peridol, a drug that is primarily a dopamine antagonist. They found

that the drug potentiates the effects of language intervention.

Unfortunately, the possible long-term side-effects associated with this

drug limit its usefulness with this population. The mechanism that could

account for the language intervention effect is unclear, but this study

and other research suggest that haloperidol helps such children to sup-

press impulsive and stereotyped behaviors (e.g., Cohen et al., 1980;

Campbell et al., 1982) that can interfere with learning, perhaps through

its action on those dopamine systems involved in initiation and control

of body movements. As a possible mechanism for the latter, it is rele-

vant to note that dopamine has effects on striatal synaptic plasticity and

has been hypothesized to be involved in determining when such

synapses should be strengthened or weakened (Alexander, 1995). In

fact, neurotransmitters such as dopamine, norepinephrine, serotonin,

and the endogenous opioids have been implicated in synaptogenesis,

neural plasticity, dendritic and dendritic spine development (Jacobson,

1991), axonal pruning and cell death (Soto-Moyano et al., 1991), and

they have also been suggested as possible etiologies for autism

(Panksepp, 1979; Gillberg and Coleman, 1992). Support for the opioid
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model, for example, has been developing. Mild bene®cial effects of

naltrexone, an opiate antagonist, have been observed on a variety of

symptoms of autism (e.g., Campbell et al., 1990; Kolmen et al., 1995).

The short-acting version of naltrexone, naloxone, has been found in

animal studies to enhance memory of an avoidance task through its

effects on amygdalar norepinephrine receptors (McGaugh, 1991), and

there is evidence that opiates are strongly involved in the development

of social attachment (Panksepp, 1979).

Long-term studies examining the possible therapeutic effects of `safe'

pharmacological agents that modify neural development in relevant sites,

such as the amygdala, should be initiated. Such studies should be com-

bined with intensive, early intervention in young children with autism so

that relevant neural activity can be stimulated by environmental means

and, it is to be hoped, enhanced pharmacologically.

Some additional speculations: genetics; neural development and the

`broader phenotype'

It has been hypothesized that the large variations in brain structure seen

both within and across species could be caused by genetic mutations that

have had no selective survival advantages or disadvantages. Therefore,

these mutations would accumulate across generations, because of this

neutrality, and result in increased polymorphism of the nervous system.

This polymorphism could then lead to survival advantages or disadvan-

tages, depending on the environment (Jacobson, 1991). Rakic (1991) has

arrived at similar conclusions regarding numbers of neural connections.

Taken together, these hypotheses have signi®cance for the, as yet

unknown, numbers of children with autism who, despite the best tech-

nology, will never be found to demonstrate pathological aberrations in

their neural development. They also relate to observations suggestive of a

`broader phenotype' characterized by learning and social communication

de®cits in the relatives of children with autism (Folstein and Rutter,

1988). Why?

In the generalization data for the vowel discrimination problem, gen-

eralization variance was greatest for the nets with too few or with

above-optimal (but not too much above optimal) numbers of hidden

neurons (see also Cohen, 1994). Some of the nets that found a good

solution at a given network size clearly took a different path in weight

space during learning from those whose generalization results were not

as good. From a pathogenetic point of view, these observations suggest
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that the deleterious effects of having many neuronal connections are

dependent upon a chaotic process, i.e., resulting from a very complex

dynamical system showing strong sensitivity to initial conditions

(Abraham, Abraham and Shaw, 1990). In fact, brain maturation has

been hypothesized to be such a dynamical system (Mpitsos, 1993). If

neurons and neuronal connections increase across successive genera-

tions because of the mutations described above and positive assortative

mating, behavioral outcomes would be expected to be increasingly var-

ied both within and across generations of family members with good

outcomes (e.g., gifted and/or unusually socially adept children), less

advantageous ones (e.g., autism and/or mental retardation), or a com-

bination of autism or autistic-like behavior and giftedness (e.g., many

typical Asperger's cases). This, of course, assumes that the mutations

responsible for variable numbers of neural connections cause such

events to happen in brain sites relevant to social±emotional awareness,

brain sites involved in higher-order cognitive functioning, or both. The

number of neurons in such children would be statistically, but not

pathologically, unusual.

This effect is illustrated in Figure 11.13. In this scenario, the numbers

of neurons and neural connections are hypothesized to increase across

successive generations in brain regions important to both cognitive and

social±emotional development. For ease of presentation, the expected

increases in variance in the middle ranges are not shown. The two curves

differ primarily in their terminal portions. It is assumed that the older

subcortical structures important for social±emotional development are

affected to a greater extent by excesses in neural complexity than the

cortical structures involved in cognitive development. In sections A and

B, both types of functioning covary in the same direction, with the dif-

ferences in these two areas separating average to highly intelligent indi-

viduals from their progeny who are in the highly gifted range. As neural

complexity in these structures increases across generations, the two

curves begin to diverge, with cognitive development stabilizing and

social±emotional development declining (section C). This region repre-

sents `eccentric' or relatively socially impaired geniuses. As social devel-

opment continues to decline with further increases in neural complexity

across generations (section D), social pathology develops, perhaps con-

forming to Asperger's disorder. Beyond these two sections, both cogni-

tive and social development decline together and produce high (section E)

and low (section F) functioning people with autism, respectively.
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The scenario depicted in Figure 11.13 follows directly from the above

neural network simulations, assumptions of positive assortative mating,

and hypotheses concerning the genetic bases of neural complexity. It

predicts increases in the probability of: (1) both social±emotional and

cognitive problems in the parents and siblings of low-functioning chil-

dren with autism; (2) more social±emotional (e.g., Asperger's disorder)

than cognitive de®cits in the parents and siblings of high-functioning

children with autism; and (3) social oddity and high intelligence (`eccen-

tricity' and/or Asperger's disorder) in the parents and siblings of chil-

dren with Asperger's disorder. In all of these groups, substantial

variability in outcome within generations is expected. This scenario

`explains' the broader phenotype of social and cognitive impairment

sometimes observed in relatives of the child with autism (Folstein and

Rutter, 1988).

There is some empirical support for these predictions. Baird and

August (1985) found that the frequency of autism and intellectual impair-

ment was signi®cantly increased amongst siblings of low-functioning chil-

dren with autism. No such impairment was present in a small sample of
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Figure 11.13 A hypothetical graph depicting level of cognitive (solid line) and
social±emotional (dotted line) functioning as a function of increasing neural com-
plexity with successive generations of family members. Section A depicts normal
to above-normal cognitive and social±emotional functioning; B shows individuals
gifted in both social±emotional and cognitive development; C begins to depict
gradual declines in social±emotional functioning along with gifted levels of cog-
nitive ability; D shows more severe social impairment with gifted levels of cogni-
tive ability; and E and F depict declines in both functions. (See text.)



siblings of higher-functioning children with autism (IQs > 70). Also,

DeLong and Dwyer (1988) found a higher rate of Asperger's disorder

and bipolar disorder in family members of high-functioning children with

autism than in family members of children with mental retardation and

autism.

More well-controlled, large-sample family studies would be needed to

support the predictions generated from Figure 11.13. Future genetic,

neuropathological, computational and behavioral studies will help to

determine the extent to which the predictions generated from the overall

model are accurate.
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Are there common neural mechanisms for
learning, epilepsy, and Alzheimer's disease?
GENE V. WALLENSTEIN and
MICHAEL E. HASSELMO

Introduction

Understanding the neurophysiological mechanisms that support learning

and memory remains one of the greatest challenges to science today. A

major landmark in this area of study occurred some 20 years ago when

Bliss and Lomo (1973) discovered a long-term potentiation (LTP) of

synaptic excitability in the dentate area of the hippocampal formation

due to a brief, high-frequency stimulation of the perforant path. Since

then, LTP has become the leading model for the molecular basis of

memory. While there is now a growing taxonomy for LTP classi®cation,

this chapter is concerned primarily with N-methyl-D-aspartate (NMDA)-

dependent potentiation. Recent research has begun to elucidate the man-

ner in which NMDA-dependent LTP induction leads to functional and

morphological changes in synaptic structure and ion channel properties

that may serve to maintain the increased potentiation (e.g., Desmond and

Levy, 1988; Chen and Huang, 1992). Moreover, malfunction in the devel-

opment of NMDA-dependent LTP may provide insights into our under-

standing of certain neurological disorders such as epilepsy and,

particularly, Alzheimer's disease, both of which seem to be affected by

changes in NMDA receptor activation.

In the popular consciousness, Alzheimer's disease is identi®ed as a

disorder of memory function. While research on Alzheimer's disease

has produced a range of etiological theories, ranging from the improper

splicing of the amyloid precursor protein (Selkoe, 1993) to epidemiolo-

gical factors such as aluminum exposure (Crapper McLachlan and Van

Berkum, 1986) or prions (Goudsmit and Van der Waals, 1986), these

etiological theories have not explicitly accounted for why this disorder

should show its earlier symptoms as a disorder of memory function

(Jolles, 1986; Morris and Kopelman, 1986; Albert et al., 1991), and
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should so severely affect those structures associated with memory func-

tion (Hyman et al., 1984; Hyman, Van Hoesen and Damasio, 1990;

Arnold et al., 1991; Arriagada, Marzloff and Hyman, 1992). As it stands,

the early effect on memory function is attributed to the unexplained

speci®city of Alzheimer's disease for hippocampal region CA1, the sub-

iculum, and layers II and IV of entorhinal cortex (Hyman et al., 1984,

1990; Arnold et al., 1991; Braak and Braak, 1991). Here, it is proposed

that the causality is in fact reversed. The selective cortical neuro-

pathology associated with the progression of this disorder may be rooted

in the breakdown of the essential mechanism of cortical memory

function.

A major component of this chapter is a computational theory of the

initiation of Alzheimer's disease that attempts to account for evidence on

the progression of the disease not in terms of a speci®c etiological factor,

but in terms of the processing characteristics of cortical structures, and

the stability of the learning mechanisms within these structures. This

theory was inspired by the phenomenon of runaway synaptic modi®ca-

tion, as demonstrated in models of cortical associative memory function

(Hasselmo, Anderson and Bower, 1992; Hasselmo, 1993, 1994; Hasselmo

and Bower, 1993; Barkai et al., 1993; Hasselmo and Barkai, 1995). In

these models, interference during learning can lead to the exponential

growth of a large number of synaptic connections within the network.

Runaway synaptic modi®cation of this sort may underlie the neuropatho-

logical characteristics of Alzheimer's disease. The theory provides a

framework showing why this neuropathology should appear initially in

particular cortical regions associated with memory function (Braak and

Braak, 1991; Arriagada et al., 1992), and why it should appear to pro-

gress into adjacent regions of association cortex along the observed ana-

tomical connections (Pearson et al., 1985; Arnold et al., 1991; Arriagada

et al., 1992). Finally, the theory suggests that the apparent degeneration

of cortical cholinergic innervation in this disease (Davies and Maloney,

1976; Perry et al., 1977; Whitehouse et al., 1982; Coyle, Price and

DeLong, 1983; Saper, German and White, 1985) may result from feed-

back mechanism placing too great a demand on the cholinergic modula-

tion of learning processes.
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Experimental observations

Molecular mechanisms of NMDA-dependent LTP

LTP is characterized by an enhancement of synaptic ef®cacy following

presynaptic activation of a postsynaptic cell above a certain threshold for

induction. This potentiation occurs only if presynaptic activation takes

place prior to postsynaptic depolarization within a time span of approxi-

mately 50 ms (Levy and Steward, 1983), and is locally speci®c to the

active synapse. That is, other inputs to the same postsynaptic cell are

not potentiated if they were not active during stimulation (Lynch,

Dunwiddie and Gribkoff, 1977). This form of potentiation is consistent

with a theory by Hebb (1949) that postulated an increase in synaptic

ef®cacy with repeated co-activation of the cells sharing a single synapse.

Approximation of this process in neural models, therefore, has often been

referred to as Hebbian learning (Hasselmo, 1995a; 1995c).

Since the primary source of excitatory postsynaptic potentials (EPSPs)

in the hippocampus is mediated through glutamate receptors, much

attention has focused on their involvement in LTP induction (see

Gustafsson and Wigstrom, 1988). There are three classes of glutamate

receptors in the central nervous system: (1) those that are NMDA sensi-

tive; (2) those that are activated by alpha-amino-3-hydroxy 5-methyl 4-

-isoxazole proprionic acid (AMPA); and (3) metabotropic receptors.

Each of the conductances associated with channel activation of these

classes has different time-dependent properties, which may have a

marked in¯uence on membrane dynamics. For instance, in hippocampal

pyramidal cells, AMPA-mediated EPSPs have a rapid onset (approxi-

mately 2 ms) and short duration (5±8 ms), whereas NMDA receptor-

mediated EPSPs have rise times on the order of 5±10 ms and may last

70±100 ms (Jahr and Stevens, 1990). There is now evidence suggesting

that NMDA and AMPA receptors are located proximally to each other

on dendritic spines and that they may be actively coupled (Wigstrom and

Gustafsson, 1986). This anatomical structure may have important func-

tional consequences for the way malfunctions in normal LTP induction

may lead to aberrant behavior.

Besides having different conductance properties, a key difference

between these receptor types is that the NMDA receptor channel is

also voltage sensitive. At resting potentials, NMDA channels are nor-

mally blocked by Mg2+ (Mayer, Westbrook and Guthrie, 1984). Local

depolarization of the membrane in close proximity to the NMDA recep-

tor complex will relieve the Mg2+ block and allow the channel to be
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activated by glutamate or a suitable agonist. During normal low-fre-

quency synaptic transmission, presynaptic spiking leads to glutamate

release and subsequent binding at both NMDA and AMPA receptors

on the postsynaptic cell. Because low-frequency stimulation does not

typically produce a depolarization in the postsynaptic cell of suf®cient

magnitude to relieve the Mg2+ block, only the AMPA receptor channels

open initially, which pass both Na+ and K+ ions. If presynaptic activity

provides suf®cient depolarization (through AMPA receptor activation)

to relieve the Mg2+ block of NMDA receptors, possibly due to bursting

in the presynaptic cell or high-frequency single spike ®ring, NMDA

receptor activation will also pass Na+ and K+ ions, as well as Ca2+

ions which, as is shown below, has been found to be an important step

in LTP induction. The fact that NMDA receptor activation depends both

on presynaptically released glutamate binding to the channel and post-

synaptic depolarization of suf®cient magnitude to alleviate the Mg2+

block, results in a synapse that operates somewhat akin to a coincidence

detector.

Several studies have now shown that the increase in Ca2+ in the

postsynaptic cell due to NMDA channel activation is a critical step

in LTP induction (Dunwiddie and Lynch, 1979; Lynch et al., 1983).

Indeed, LTP induction is blocked by intracellular injection of the

Ca2+ chelator ethylene glycol-bis N, N, N 0, N 0-tetra-acetic acid

(EGTA) (Lynch et al., 1983), while transient increases in extracellular

Ca2+ may induce LTP (Turner, Baimbridge and Miller, 1982). Several

Ca2+-activated enzymes (e.g., calpain and calcineurin) and protein

kinases have been shown to be important for structural changes to

the synapse that maintain LTP. For instance, protein kinase C (PKC)

levels have been shown to rise postsynaptically with increased Ca2+

(Akers et al., 1986), which, when inhibited, results in a blocking of

LTP induction (Malenka et al., 1989). PKC in conjunction with calpain,

has been observed to produce changes in cytoskeletal postsynaptic

structure (Lynch and Baudry, 1984), which may be responsible for

maintaining the sustained potentiation at AMPA receptors. Such struc-

tural changes may be related to the reported increase in surface area of

postsynaptic spine heads and density following LTP induction

(Desmond and Levy, 1988). Moreover, PKC has also been reported

to increase NMDA channel conductance and produce alterations in

the extent of the Mg2+ block, which could have consequences for the

proper maintenance of intracellular free Ca2+ concentrations (Kelso,

Nelson and Leonard, 1992; Chen and Huang, 1992).
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NMDA receptor activation and epilepsy

Croucher, Collins and Meldrum (1982) were among the ®rst to point

out that NMDA antagonists, while inhibitors of LTP induction, are

also potent anticonvulsants. It is also known that hippocampal slices

bathed in low Mg2+ are prone to seizure behavior (Swartzwelder et al.,

1987), presumably through an increase in NMDA receptor activation.

Considering these observations, it is perhaps reasonable to postulate a

relationship between the processes which support normal LTP induc-

tion and those which may lead to epileptiform activity. Such behavior is

characterized by a large population of neurons ®ring in a synchronous

and repetitive manner. Indeed, such a ®ring pattern can be initiated by

a process known as kindling, in which seizure activity is induced with

repeated applications of brief, high-frequency stimulation similar to

what is required for LTP induction. Moreover, even short-lived seizure

events have been shown to produce long-lasting changes in synaptic

potentiation and morphological changes to cytoskeletal structure such

as sprouting, similar to those observed after LTP induction (Ben-Ari

and Represa, 1990).

Seizure events have also been reported to produce long-lasting changes

to NMDA receptors such as increasing their mean open time (Kohr,

DeKoninck and Momdy, 1993), reducing their af®nity for Mg2+, and

increasing receptor density similar to that observed following LTP induc-

tion (Lahtinen et al., 1993). Thus, it seems plausible that a transient

alteration of normal NMDA receptor-mediated conductances may play

a role in epileptiform development. A classic recipe for epileptic activity

in hippocampal slices involves the application of a -aminobutyric acid A

(GABAA) receptor antagonist such as bicuculine (Traub and Miles,

1991). Removal of local inhibitory effects of this fashion enables tonically

active pyramidal cells (mediated by neuromodulatory in¯uences such as

acetylcholine from the basal forebrain) to become more depolarized and

hence reduce the degree of Mg2+ block of NMDA channels. A similar

cascade of events has been found to be necessary for LTP induction in the

hippocampal slice (Mott and Lewis, 1991). In the case of epilepsy, how-

ever, this increase in NMDA channel conductance is left completely

unchecked by a block of GABAergic inhibition, resulting in a positive

feedback loop where depolarization may spread to other locations,

recruiting additional NMDA channels and still further depolarization

of the cell. NMDA antagonists such as 2-amino-5-phosphonopentanoic

acid (AP5) prevent the development of epileptic activity by reducing this
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positive feedback and have also been shown to block the induction of

LTP (Slater, Stelzer and Galvan, 1985).

NMDA receptor activation and Alzheimer's disease

Given the putative role for NMDA receptors in LTP, a molecular model

for memory acquisition, and clinical symptoms of Alzheimer's patients,

including an inability to form new memories, several investigators have

speculated on a relationship between NMDA receptor malfunction and

various forms of neurodegenerative disease (see Krogsgaard-Larsen,

1992, for a review). Some have proposed that hyperactivity of glutamate

channel conductances may produce an excitotoxic effect in postsynaptic

cells (Maragos et al., 1987; Represa et al., 1988). Indeed, overactivation

of NMDA channel conductances would allow a persistent increase in

Ca2+ inside the postsynaptic cell, which may, through some of the second

messengers mentioned earlier, lead to cell death or aberrant changes in

cytoskeletal structure (Represa et al., 1988).

Alzheimer's disease is diagnosed post mortem on the basis of the den-

sity of the neuropathological characteristics, including neuritic plaques

and neuro®brillary tangles (for a review, see Katzman, 1986; Hyman et

al., 1990; Selkoe, 1993). Neuritic plaques tend to be broadly distributed,

appearing throughout the cortex, with a greater density in regions of

frontal, parietal and temporal association cortex distant from the pri-

mary sensory and motor cortices (Pearson et al., 1985; Arnold et al.,

1991). In addition, neuritic plaques appear in subcortical regions receiv-

ing projections from the cortex (Pearson et al., 1985). The distribution

and component features of neuritic plaques have led to the suggestion

that they re¯ect the degeneration of axonal processes from the same set of

neurons that develop neuro®brillary tangles (Hyman et al., 1984). Here, it

is proposed that neuritic plaques result from a breakdown in the normal

mechanisms for modi®cation of synaptic strength. In fact, the develop-

ment of neuritic plaques results from an accumulation of an altered beta-

amyloid precursor protein, which has been suggested normally to regu-

late internal levels of free Ca2+ (Mattson et al., 1993). Thus, if internal

Ca2+ reaches critically high levels, one may expect increases in excito-

toxicity. Grenamyre et al. (1987) have, in fact, shown a decrease of 75±87

percent in NMDA-receptor binding in human hippocampal and adjacent

parahippocampal cortical slices of Alzheimer's disease patients.

This pattern of degeneration would then be expected to prevail in brain

regions associated with high concentrations of NMDA receptors.
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Neuro®brillary tangles show a more localized initial distribution than

plaques and spread in a characteristic sequence (Hyman et al., 1990;

Arnold et al., 1991; Braak and Braak, 1991). Tangles appear initially

and attain their highest concentration in layer II of entorhinal cortex,

region CA1 of the hippocampus, and the portions of the subiculum

adjacent to region CA1 (Ball, 1972; Hyman et al., 1984, 1990; Braak

and Braak, 1991; Arriagada et al., 1992). As the severity of the disease

progresses, tangles appear in regions receiving projections from these

areas, initially in portions of the temporal lobe adjacent to the entorhinal

cortex, and later in regions of parietal lobe and frontal cortex that are

closely linked to entorhinal cortex (Brun and Gustafson, 1976; Pearson et

al., 1985; Arnold et al., 1991; Braak and Braak, 1991; Arriagada et al.,

1992). Tangles appear to be distributed in almost columnar fashion, with

tangles in layers 2 and 3 appearing in register with tangles in layers 5 and

6 (Pearson et al., 1985). The primary sensory and motor cortices typically

show the lowest density of neuro®brillary tangles, suggesting they are the

least sensitive to the mechanisms underlying this disorder (Brun and

Gustafsson, 1976; Pearson et al., 1985; Esiri, Pearson and Powell,

1986). These patterns of distribution suggest that the disease progresses

from the hippocampus along back-projections into cortical regions. In

addition, it suggests that susceptibility to degeneration is somehow cor-

related with the level of involvement in higher-order cognitive processes

and associations between modalities ± processes that involve ongoing

remodeling of cortical representations.

Theories of the progression of Alzheimer's disease

Research into potential causes of Alzheimer's disease at the molecular

level does not attempt systematically to describe the spread of pathology

between different regions. Many forms of familial Alzheimer's disease

have been linked to speci®c inherited differences in protein structure

(Schellenberg et al., 1992), although the fact that monozygotic twins

can show different susceptibility for the disease suggests that it is not

entirely genetic (Breitner et al., 1993). This class of theories depends

upon the assumption that one of the protein components of the

Alzheimer neuropathology, such as amyloid or tau, is a causative agent

in the disease (see, for example, Hardy and Higgins, 1992). The charac-

teristic distribution of neuropathology places extra demands on this the-

ory, suggesting a particular susceptibility of the hippocampus and

association cortex but not of the primary motor and sensory cortices.
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Theories based on environmental factors must also account for this selec-

tive sensitivity.

The theory presented here focuses on relating initiation and progres-

sion of the disease to functional characteristics of cortical regions. In this

framework, the initial imbalance of cortical parameters that results in

pathology could be due to defects of the genetic code, the spread of

toxic factors, an infection by a prion, or a combination of different

factors. But this theory proposes that the ®nal effect of this imbalance

is the initiation of runaway synaptic modi®cation (an NMDA-dependent

process) within cortical regions with a strong capacity for synaptic mod-

i®cation, such as the hippocampal formation. In this context, the pro-

gression of the disease depends upon the functional interaction of cortical

regions. Rather than depending on the transmission of some substance

from the axon terminal of an affected cell to an as yet unaffected post-

synaptic neuron, this theory depends only on the normal mechanisms of

synaptic transmission and synaptic modi®cation at these connections.

The basis of this theory is that the pattern of activity propagated from

affected to unaffected regions may be pathological in itself. That is, run-

away synaptic modi®cation may cause a breakdown of function in one

region, and the patterns of activity elicited can induce runaway synaptic

modi®cation in connected regions.

The focus of this model differs from that of other models of

Alzheimer's disease (Horn et al., 1993; Herrmann, Ruppin and Usher,

1993), which do not attempt to address the dynamics of spread of cortical

neuropathology. These previous models start with the assumption of loss

of neurons or synaptic connections within models of cortex, and then

analyze how the effects of this loss on memory function may be affected

by synaptic compensation mechanisms.

Models of epilepsy and Alzheimer's disease in the hippocampus

Transitions between states of learning and epilepsy

This section presents a biophysical model of hippocampal region CA3,

used to investigate the effects of cholinergic modulation from the basal

forebrain on population dynamics. Considering that the NMDA-depen-

dent effects mentioned above may be important for regulating LPT

induction and the development of epilepsy, how is a stable balance

achieved in the hippocampus between conditions that foster accurate

associative memory and those that may lead to epileptiform events?
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Traub and colleagues (Traub and Jefferys, 1994a, 1994b; Traub,

Jefferys and Whittington, 1994; Traub, Colling and Jefferys, 1995)

have performed numerous computational investigations of the cellular

bases of hippocampal epilepsy. However, to date no one has used a

biophysically realistic model to study the manner in which this area is

capable of producing accurate associations where limited subsets of

neurons exhibit synchronized ®ring under one condition, but may tran-

sition into epileptiform-like activity with globally synchronous behavior

under relatively small parameter change. In fact, we show transitions

between these two markedly different functional states can occur with

changes in a single parameter intrinsic to pyramidal cells. Our network

simulations indicate that cholinergic modulation from the medial sep-

tum sets the proper `tonus' of excitability in CA3 pyramidal neurons to

promote accurate learning by: (1) blocking a voltage-independent K+

leak current, IK(leak); (2) suppression of an intrinsic adaptation current,

IK(AHP); and (3) reducing synaptic transmission at recurrent excitatory

synapses between these cells. Each of these mechanisms has been

observed in vitro (Bernardo and Prince, 1982; Cole and Nicoll, 1984;

Madison, Lancaster and Nicoll, 1987; Hasselmo, Schnell and Barkai,

1995a). In order to understand how each of these components shapes

population activity in area CA3, a biophysical model based on extensive

neuroanatomical and electrophysiological ®ndings from this region was

developed.

The model consisted of 500 pyramidal cells and 100 inhibitory inter-

neurons. Each pyramidal cell was a reduced Traub model (Traub, Miles

and Wong, 1989; Traub et al., 1991), which consisted of a fast sodium

current (INa(fast)), a delayed recti®er (IK(DR)), a high-threshold calcium

current (ICa), two calcium-dependent potassium currents ± (IK(AHP)),

which is carbachol sensitive, and IK(Ca), which does not appear to be

(Madison et al., 1987) ± the transient potassium current (IK(A)), and a

potassium leak current (IK(leak)). Each of these currents was located at

the soma and proximal dendrites, while the distal dendrites contained

ICa, IK(AHP), IK(Ca), and IK(leak). Calcium buffering was performed in

each compartment using a ®rst-order diffusion process (Traub et al.,

1991). Each interneuron consisted of INa(fast) and IK(DR) located at the

soma, with the four remaining compartments (two basal and two api-

cal) being passive.

The isolated pyramidal cell reproduced several electrophysiological

properties known to exist in real CA3 neurons, including bursting (Fig.

12.1) and the transition to single-spike ®ring patterns with increasing
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levels of somatic current injection. Interneurons contained two intrinsic

and four synaptic currents. When isolated, these cells displayed high-

frequency, single-spike ®ring with little adaptation as shown in CA3 in-

vitro slice preparations (Miles, 1990).

Each cell in the model also included four synaptic currents that were

the chloride-dependent GABAA and potassium-dependent GABAB inhi-

bitory conductances along with the AMPA and NMDA excitatory con-

ductances. Recurrent excitatory synapses located at the apical dendrites

of pyramidal cells included Hebbian modi®cation of NMDA conduc-

tances in conjunction with a voltage-dependent Mg2+ block based on

previous modeling (Zador, Koch and Brown, 1990). The network also

included recurrent inhibitory synapses (GABAA and GABAB) at the

soma and proximal dendrites of interneurons. Feedforward inhibition

of pyramidal cells occurred via GABAA receptors situated at the soma

and proximal dendrites while slower GABAB receptor-mediated inhibi-

tion was located at distal dendrites (Doi, Carpenter and Hori, 1990).

Feedforward excitation occurred through NMDA and AMPA receptors

located at the soma of interneurons. Both cholinergic (Frotscher and

Leranth, 1985) and GABAergic (Freund and Antal, 1988) projections

from the medial septum were included in the model and all synaptic

delays, conduction velocities, and connection probabilities were

approximated to parameter estimations made previously from in-vivo

data (see Traub and Miles, 1991, for a review of these data).

Connection probabilities were increased slightly in the model in com-

pensation for the reduced scale compared to slice preparations.
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Fig. 12.1 An example of pyramidal cell bursting with a somatic current injection
of 0.15 nA.



Associative memory and Hebbian learning

Models of cortical associative memory function (Grossberg, 1970;

Anderson, 1972; Hop®eld, 1982; McClelland and Rumelhart, 1988;

Amit, Evans and Abeles, 1990) focus on the anatomical evidence for

widely distributed excitatory intrinsic and associational connections link-

ing pyramidal cells within cortical structures, including neocortex and

hippocampus. While they differ in detail, the function of all these models

depends upon the synaptic modi®cation of excitatory connections using

some modi®cation of the Hebb rule (Hebb, 1949; Wigstrom et al., 1986).

As mentioned earlier, the basic feature of the Hebb rule is a change in

synaptic strength proportional to presynaptic and postsynaptic activity

during learning. These modi®ed excitatory synapses can then form the

basis for recalling associations between different patterns of activity. A

simple example of this associative memory function is shown in Figure

12.2.

Neurophysiological data suggest that Hebbian synaptic modi®cation

depends upon combining postsynaptic depolarization with synaptic

transmission to activate NMDA receptors at the synapse being modi®ed

(Wigstrom et al., 1986). However, if a modi®able synapse can in¯uence

postsynaptic activity during learning, strengthening this synapse will

increase postsynaptic activity, and thereby increase subsequent strength-

ening of the synapse. This positive feedback effect can very rapidly lead
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Fig. 12.2 Associative memory function. A. Learning: separate input patterns are
presented to regions 1 and 2. The synapses between active neurons are strength-
ened using a Hebbian learning rule (dependent on presynaptic and postsynaptic
activity). Strengthened synapses are represented by thicker lines between neurons.
B. Recall: input is presented to region 1 only. The spread of activity along pre-
viously strengthened connections (thick lines) induces activity in region 2 resem-
bling the pattern previously associated with pattern 1.



to exponential growth of undesired synapses within the network, i.e.,

runaway synaptic modi®cation. The mechanism for runaway synaptic

modi®cation is illustrated in Figure 12.3. This ®gure shows that if synap-

tic transmission at modi®able synapses is allowed during learning, the

spread of activity across previously modi®ed connections causes the new

synaptic modi®cation to contain elements of proactive interference from

previously learned memories (Hasselmo et al., 1992, 1995a; Hasselmo

and Bower, 1993; Hasselmo, 1993, 1994). This results in a rather sub-

stantial increase in synaptic connections that have been potentiated (Fig.

12.4). Without the proper balance of parameters of cortical function, this

interference during learning can have disastrous effects in models of

cortical memory function. Though the effect of interference during learn-

ing in any particular stage of learning may be small, this phenomenon can

severely affect the function of the network over time, because the effects

are compounded by subsequent learning. The progressive build up of
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Fig. 12.3 Runaway synaptic modi®cation. As more overlapping memories are
stored within the network, greater interference during learning occurs.
A. Learning of the ®rst association shows no interference. B. Interference due
to recall of the ®rst association during learning of the second association causes
strengthening of one additional undesired connection (dashed line). C. Recall of
the ®rst and second associations during learning of the third association causes
strengthening of two additional undesired connections.

Fig. 12.4 Matrix of synaptic connectivity within an associative memory model.
The size of the black squares represents the strength of synapses. A. After run-
away synaptic modi®cation. B. After normal learning.



interference from previous retrieval leads to a malignant nostalgia result-

ing in runaway synaptic modi®cation throughout the whole network. In

this case, severe proactive and retroactive interference results in a com-

plete breakdown of normal memory function. This runaway interference

during learning has been described previously in detail using mathema-

tical analysis (Hasselmo, 1994) and computational models (Hasselmo et

al., 1992; Hasselmo, 1993; Barkai et al., 1993).

Because of the problems caused by synaptic transmission during learn-

ing, most associative memory models ignore the effects of synaptic trans-

mission at modi®able synapses during learning (Anderson, 1972;

Hop®eld, 1982; McClelland and Rumelhart, 1988; Amit et al., 1990),

allowing synaptic transmission only during recall. In computational mod-

els, this suppression of synaptic transmission at intrinsic and association

®ber synapses during learning can prevent runaway synaptic modi®cation

(Hasselmo et al., 1992; Hasselmo, 1993, 1994; Hasselmo and Bower,

1993; Barkai et al., 1993; Hasselmo and Barkai, 1995). Though this sup-

pression of synaptic transmission during learning has been used for dec-

ades in neural network models, researchers did not provide a

neurophysiological mechanism for this effect until recently. It has also

recently been shown that acetylcholine has the capacity selectively to

suppress intrinsic and association ®ber synaptic transmission, while leav-

ing afferent ®ber synaptic transmission unaffected (Hasselmo and Bower,

1992; Hasselmo and Schnell, 1994; Hasselmo et al., 1995a). In addition,

acetylcholine enhances the excitability of cortical neurons to the afferent

synaptic input (Cole and Nicoll, 1984; Barkai and Hasselmo, 1993). In

computational models of cortical associative memory function, applica-

tion of this selective suppression of intrinsic ®ber synaptic transmission

during learning prevents interference from previously learned memories

(Hasselmo et al., 1992; Hasselmo, 1993, 1994; Hasselmo and Bower,

1993; Hasselmo and Barkai, 1995). Prevention of runaway synaptic mod-

i®cation by cholinergic suppression of synaptic transmission is illustrated

in simpli®ed form in Figure 12.5.

In this new framework for learning, synaptic modi®cation must be

maximal during the cholinergic suppression of synaptic transmission.

But how does this allow activation of postsynaptic NMDA receptors?

The activation of NMDA receptors and the mechanisms of synaptic

modi®cation are still possible because the cholinergic suppression of

synaptic transmission is not complete. In neurophysiological experi-

ments, the cholinergic suppression of synaptic transmission is usually

less than 70 percent (Hasselmo and Bower, 1992). Analysis of associative
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memory models incorporating feedback inhibition, a threshold for synap-

tic modi®cation and gated decay of synaptic strength shows that this level

of suppression is suf®cient to prevent interference during learning, while

allowing suf®cient synaptic transmission for the modi®cation of synapses

(Hasselmo, 1993, 1994). In models of cortical associative memory func-

tion, interference during learning can be prevented by the proper balance

of cortical physiological parameters including: (1) presynaptic cholinergic

modulation of synaptic transmission; (2) regulated decay of synaptic

connectivity strength; (3) postsynaptic cholinergic modulation of cellular

excitability; (4) the level of inhibition within the network; (5) the thresh-

old for synaptic modi®cation; and (6) the nature of the patterns being

stored within the network. In addition, cholinergic agonists have been

shown to enhance synaptic modi®cation in cortical structures (Hasselmo

and Barkai, 1995).

Population oscillations in CA3

Whereas the examples shown here are highly simpli®ed, the prevention of

runaway synaptic modi®cation has also been explored in detailed

biophysical simulations of cortical associative memory function (Barkai

et al., 1993; Hasselmo and Barkai, 1995). To test the manner in which

acetylcholine affects associative memory in region CA3, a simple input

pattern was presented to the model followed by a degraded version to test

recall performance (Wallenstein and Hasselmo, 1997). The input pattern

was delivered to the model as a fast AMPA receptor-mediated excitatory
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Fig. 12.5 Cholinergic suppression of synaptic transmission during learning can
prevent runaway synaptic modi®cation. The thick gray line represents diffuse
cholinergic suppression of transmission at modi®able synapses, preventing the
spread of excitation across previously modi®ed synapses from bringing post-
synaptic neurons above threshold. This allows Hebbian synaptic modi®cation
to occur only between neurons receiving direct afferent input (only these neurons
have suf®cient postsynaptic activity). Strengthening of additional undesired con-
nections does not occur (compare with Fig. 12.3). ACh, acetycholine.



input to the apical dendrites of pyramidal cells at 25 Hz for a period of 60

ms every 200 ms. Cholinergic modulation was performed during the

`learning' period and removed during the test of recall performance. At

these parameter values, the model partially completed the input pattern

during initial recall, with `waves' of pyramidal cell bursting occurring

across the simulated slice. A gradual recruitment of more pyramidal

cells into this bursting activity, independent of the particular input pat-

tern, resulted in poor recall performance.

Reasoning that increased excitability in pyramidal cells unique to the

input pattern should foster better learning, the maximum conductance

underlying IK(AHP) was reduced from a normal value of 0.65 ms/cm2 to

0.1625 ms/cm2 to simulate the suppression of this adaptation current by

the cholinergic agonist carbachol (Madison et al., 1987). However, during

learning the model exhibited a rapid recruitment of pyramidal cells into

globally synchronous bursting at approximately 1.5±2 Hz. This effect was

most sensitive to shortening the after-hyperpolarizing potential (AHP)

that normally follows a calcium-mediated burst. Reduction of the AHP

indirectly decreased the bursting refractory period of pyramidal cells,

thus creating a condition in which an exaggerated number was available

for EPSP-induced ®ring. Population activity of this sort resembles epi-

leptiform-like behavior observed in hippocampal slice preparations

(Swartzwelder et al., 1987), and made learning new patterns impossible

because all Hebbian NMDA synapses were systematically increased inde-

pendent of the given input. Increasing the maximum conductance under-

lying IK(AHP) to 70 percent of normal resulted in small regions of

synchronous bursting, which while not completely blocking recall of

learned patterns, still lead to the inclusion of spurious activity. Thus,

these results demonstrated that an additional biophysical mechanism

was needed to constrain the intercellular spread of excitatory pyramidal

cell bursting.

A natural choice for such a mechanism, as alluded to above, was the

known cholinergic suppression of recurrent excitatory synapses in stra-

tum radiatum of region CA3 (Hasselmo et al., 1995b). This effect was

included in the model during learning by decreasing the maximum con-

ductance underlying the pyramidal cell synaptic current IAMPA to 42

percent of its normal value (1.5 ns), simulating a 38 percent decrement

in unitary EPSP height under 20 �m carbachol (Hasselmo et al., 1995b).

During learning, this resulted in the attenuation of both globally and

partially synchronous pyramidal cell bursting in neurons not related to

the input pattern, thus promoting accurate recall performance. At these
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values, successful recall of a pattern was possible with a learning period

as short as a single burst. With further reduction of this conductance to

25 percent of its normal value, a mixture of single bursts and sub-

threshold oscillations arose, with limited spread of activity beyond cells

related to the input pattern. Simulations using multiple, overlapping

input patterns were also performed at these parameter values. In one

case, three different input patterns were consecutively learned. Each

pattern was presented to the model for a period of 60 ms (25 Hz).

Successful recall performance was sensitive to the degree of overlap in

the patterns. Patterns overlapping by more than 30 percent showed a

marked decrement in completion tasks where a degraded version of the

pattern was presented.

These results demonstrate the regulatory property of cholinergic mod-

ulation in CA3 as illustrated in the gK(AHP) ÿ gAMPA parameter space

representation in Figure 12.6. By adjusting the maximum conductances

underlying these two currents ± one (IK(AHP)) an ionic conductance

intrinsic to pyramidal neurons, the other a synaptic conductance coupling

these cells together ± a diverse variety of population behaviors emerges,

with substantially different functional implications associated with each.

While the parameter space shows a broad region where partial and full

recall is possible, state transitions to globally synchronized behavior can

occur with changes in a single parameter, depending on the initial loca-

tion and direction of travel in this space. These results also point to the

importance of relating cellular behavior to population activity when

investigating the functional aspects of a neuronal system.

From these results, it is clear that at portions of the parameter space

where globally synchronous bursting occurs, NMDA-dependent LTP

increases markedly since all cells are simultaneously active. As more

pyramidal cells are recruited into the rhythm, potentiation is extended

to these additional cells, and if the activity becomes epileptic, LTP should

also occur more frequently in time as well. This sustained positive feed-

back could conceivably lead to pyramidal cell excitotoxicity due to an

exaggerated level of glutamate in postsynaptic cells. Increased levels of

intracellular Ca2+ may also trigger aberrant sprouting or other cyto-

skeletal changes to synapse morphology, which may result in cell death.
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Fig. 12.6 Qualitatively different modes of population behavior were obtained
depending on the values for the maximum conductances underlying IK�AHP� and
IAMPA. State transitions from accurate recall performance to epileptiform activity
were possible with manipulation of a single parameter.



Runaway synaptic modi®cation and the progression of Alzheimer's

disease

Selective distribution of neuropathology

From the simulations described above, it is fair to suggest that under

conditions of globally synchronous behavior, the resulting exponential

increase in NMDA-dependent LTP may induce substantial increases and

¯uctuations in intracellular free Ca2+ levels. In addition to having an

impact on the functional electrophysiological characteristics of the cell,

this sudden change in intracellular Ca2+ dynamics may also trigger exces-

sive sprouting or permanent changes in the protein structure of glutamate

receptors in the postsynaptic cell. Thus, the biophysical mechanisms that

normally maintain LTP under less active conditions may result in a form

of runaway synaptic modi®cation in which intracellular Ca2+ levels do

not have suf®cient time to diffuse.

If the neuropathology associated with Alzheimer's disease results from

runaway synaptic modi®cation, this suggests that the apparent early and

severe involvement of layers II and IV of the lateral entorhinal cortex,

region CA1 of the hippocampus, and the adjacent regions of the subicu-

lum (Hyman et al., 1984, 1990; Arnold et al., 1991; Braak and Braak,

1991; Arriagada et al., 1992) results from a particular sensitivity of these

regions to runaway synaptic modi®cation. For example, it is possible that

sensitivity to runaway synaptic modi®cation might be associated with

two features: (1) a strong capacity for Hebbian synaptic modi®cation,

and (2) absence of the cholinergic suppression of synaptic transmission

during learning. Indeed, it has been shown that different areas of the

hippocampal formation exhibit varying degrees of long-term potentiation

with comparable stimulation (Racine, Milgram and Hafner, 1983).

Considerable research has focused on how subregions of the hippocam-

pus resemble the structures of associative memory models (Marr, 1971;

McNaughton and Morris, 1987). As noted above, this region shows

robust Hebbian synaptic modi®cation (Wigstrom et al., 1986) and has

been implicated in memory function in extensive research (Scoville and

Milner, 1957; Squire and Zola-Morgan, 1991). The greater propensity for

synaptic modi®cation could underlie the early sensitivity of the hippo-

campal formation. The early sensitivity of lateral entorhinal cortex could

be linked to the absence of cholinergic suppression at synapses arising

from this region and terminating in the outer molecular layer of the

dentate gyrus (Kahle and Cotman, 1989), while the relative sparing of

region CA3 could result from the robust cholinergic suppression of
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synaptic transmission at synapses arising from CA3 pyramidal cells

(Hasselmo and Schnell, 1994; Hasselmo et al., 1995a).

Spread of degeneration between cortical regions

The neuropathology of Alzheimer's disease appears to spread from the

hippocampus into the neocortex along well-established anatomical con-

nections, the back-projections from the subiculum and entorhinal cortex

to association cortex (Pearson et al., 1985; Hyman et al., 1990; Arnold et

al., 1991). In later stages of the disease, neuro®brillary tangles appear in

regions of the temporal, parietal, and frontal neocortex (Hirano and

Zimmerman, 1962; Pearson et al., 1985; Arnold et al., 1991).

Neuro®brillary tangles primarily spread into cortical regions, though

the plaques associated with terminal degeneration appear in subcortical

regions as well (Pearson et al., 1985). This spread of degeneration is

proposed here to result from the spread of runaway synaptic modi®cation

between cortical regions. This would use the same mechanisms that are

important for transferring information stored in the hippocampus back

into the neocortex ± the process of consolidation (Wilson and

McNaughton, 1994). A network simulation of the hippocampus

(Hasselmo, 1995b) has been used to model the process of consolidation,

as shown in Figure 12.7.

Runaway synaptic modi®cation could spread from hippocampus back

into neocortical structures using the same mechanisms as consolidation.

It has been shown in simulations that if runaway synaptic modi®cation

occurs during the initial formation of representations of new memories in

the hippocampus, then subsequent retrieval of these representations will

result in a spread of runaway synaptic modi®cation. For example, as

shown in Figure 12.8, a decrease in the mechanisms of synaptic decay

of the input from entorhinal cortex layer II to dentate gyrus results in the

initiation of runaway synaptic modi®cation in this pathway. Even if the

parameters of other connections have not been altered, the initiation of

runaway synaptic modi®cation at these perforant path synapses results in

the spread of runaway synaptic modi®cation into back-projections from

region CA1 to neocortex. In simulations with multiple interacting layers,

the initiation of runaway synaptic modi®cation in one layer results in the

progressive spread to other layers, even if those layers would not undergo

runaway synaptic modi®cation independently.

Modeling suggests that runaway synaptic modi®cation will spread

according to functional boundaries. That is, after occurring in neurons
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encoding a particular category of information, it will more rapidly in¯u-

ence similar or strongly associated information before in¯uencing unre-

lated information. This might explain the apparent heterogeneous

distribution of tangles in Alzheimer's disease and the apparent speci®city
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Fig. 12.7 Consolidation of a single pattern in a network model of the hippocam-
pal formation. The size of the black squares represents the activity of individual
neurons. A. Presentation of input to entorhinal cortex layer II. Synaptic modi®-
cation in dentate gyrus forms a sparse self-organized representation, and mod-
i®cation in region CA3 forms an attractor state. B. Testing recall with degraded
(partial) input with hippocampus present (with hc). Representations are activated
in dentate gyrus and region CA3. Attractor dynamics in region CA3 drive recall
activity in CA1 and neocortex. C. With a simulated hippocampal lesion (w/o hc),
no recall can occur. Input to neocortex alone does not result in recall before
consolidation. This corresponds to temporally limited retrograde amnesia. D±
G. Consolidation. Homogeneous depolarization of region CA3 results in activa-
tion of the previously stored attractor state. This activates the full pattern in
neocortex, allowing gradual strengthening of synapses in neocortex. H. The pre-
ceding period of consolidation allows neocortex to respond to the partial input
cue with the full learned pattern. Thus, after consolidation, memory recall is not
impaired by lesions of the hippocampus.



for speci®c modalities in some cases. In particular, the distribution of

neuro®brillary tangles may be of the order of magnitude of cortical col-

umns, with tangles in layers 2 and 3 in register with tangles in layers 5 and

6 (Pearson et al., 1985).

The rate of spread of runaway synaptic modi®cation depends upon the

ongoing capacity for Hebbian synaptic modi®cation and the amount of

excitatory associative connectivity. Primary sensory and motor cortices

have more restricted and speci®c connectivity of excitatory intrinsic and

associational connections (Lund, 1988), and are further removed from

the highly plastic structures of the hippocampal formation. This may

explain why the neuropathology in Alzheimer's disease is far less
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Fig. 12.8 Spread of runaway synaptic modi®cation (RSM) between different
regions. A. Normal function of the network. B. Initiation of runaway synaptic
modi®cation through regions CA3 and CA1. Excessive strengthening of back-
projections from CA1 to neocortex results in broadly distributed activity in
response to presentation of later patterns (e.g., pattern 7).



pronounced in the primary sensory cortices (Hirano and Zimmerman,

1962; Brun and Gustafson, 1976; Pearson et al., 1985; Esiri et al., 1986).

Conclusions

As has been shown above, in addition to being important for LTP induc-

tion, NMDA receptor-dependent events may play a role in the develop-

ment of certain neurological disorders such as epilepsy and Alzheimer's

disease. From a perspective of the symptoms involved, the disorders may

seem very distinct, yet may share commonalities when examined at the

cellular level. Clearly, a greater understanding of NMDA receptor-

mediated changes to synaptic morphology is needed in order to elucidate

the mechanisms that may support aberrant glutamatergic activity

(AMPA and NMDA) in vivo. The most common symptoms in both

disorders involve de®cits in the acquisition of new memories. The com-

putational modeling presented here suggests that runaway synaptic

modi®cation could cause increased interference between stored represen-

tations, causing impairments in short-term memory tasks requiring free

recall (Corkin, 1982; Morris, 1986) and increasing the number of intru-

sions reported in other tasks (Fuld et al., 1982; Troster et al., 1989;

Jacobs et al., 1990; Delis et al., 1991). Continued interference effects

during learning could eventually lead to the spread of runaway synaptic

modi®cation into neocortex via the mechanisms of consolidation. This

would lead to impairments of remote memory (Wilson, Kaszniak and

Fox, 1981; Corkin et al., 1984) and semantic memory (Huff, Corkin and

Growdon, 1986). Although models of the type presented here are far

from complete descriptions of the cellular events that may promote

such pathological behavior, their use is vital to bridging the gap between

the physiological and behavioral study of these disorders.

Summary

Numerous clinical and experimental observations have suggested that the

hippocampus is critical to the neural processes believed to underlie learn-

ing and memory. At the same time, however, this area has also been

shown to be involved in the genesis of certain neurologic disorders

such as epilepsy and Alzheimer's disease. By using models of this region

at different levels of biophysical detail, this chapter shows that changes in

NMDA receptor-mediated excitatory postsynaptic potentials in hippo-

campal pyramidal cells coupled with alterations in an intrinsic calcium-
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dependent potassium current can set the stage for transitions between

states of learning and neuropathology. Modeling of the CA3 region

demonstrates how changes in these parameters can shift the network

from a state of associative learning to one in which epileptiform activity

dominates. Additional modeling of the entire hippocampal formation

also shows how these parameters may contribute to neurodegenerative

pathology such as that observed in Alzheimer's disease. Initial sensitivity

of the hippocampus and entorhinal cortex to the development of neuro-

®brillary tangles is proposed to result from an imbalance of parameters

regulating the in¯uence of synaptic transmission that may lead to the

phenomenon of runaway synaptic modi®cation. It is shown in this chap-

ter that once the disease is initiated, degeneration may spread from the

hippocampus into neocortical structures due to the mechanisms of con-

solidation. Memory de®cits are described as due to increased interference

effects in recall and the inability of the system to display locally synchro-

nous states of activity.
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Epilogue





The patient in the machine: challenges for
neurocomputing
DAVID V. FORREST

This volume has provided many examples of how connectionist models

may allow clinicians to replace vague and nonquantitative approaches to

psychopathology with a more sophisticated and quantitative paradigm.

Nevertheless, several challenges remain for clinicians and researchers

interested in consolidating the intersection between connectionism and

psychiatry. In this closing contribution, a number of these challenges are

discussed.

The challenge of education

The ®rst challenge for neural network modelers is to become included in

the mainstream of general psychiatry. It may be argued that neural net-

works look more mathematical than they are on a practical level.

Nevertheless, neural networks may involve more mathematics than

many psychiatrists are willing to countenance. At least some preparation

is required for comprehension.

However, there is reason to be optimistic that the challenge of educa-

tion will be met. When the author ®rst presented a grand rounds on

neural networks in 1990, he found few psychiatric residents had any

computer preparation. Since then, the wave of children who have

grown up with computers has reached our residencies, and most are

now willing to consider these logicomathematical structures. The author

is con®dent that in the future a working knowledge of neurocomputation

will be pushed earlier and earlier in general education, partly because its

applications will be everywhere.

We can help by translating neural network models into verbal struc-

tures and by beginning to speak during our clinical rounds in the meta-

phors of neurocomputing. As discussed below, these metaphors are most
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compatible with a dynamic psychiatry that is cognitively informed. And

as their currency grows, computers offer metaphors for many processes

of thought. The author recently heard himself arguing against self-ana-

lysis because individually we do not have enough computational power to

comprehend the totality of our minds, since so much of them must be

devoted to unconscious machinery and subattentional processing, and we

need a buffer in the person of the psychiatrist into whom to dump data

and free ourselves up for larger self-consideration.

The penetrance of neural networks into other aspects of everyday life,

such as speech and writing recognition and indoor climate control, may

make them a household word, whether or not most people know how

they work. Similar wide-ranging terminological examples are thermo-

stats, elevator automata, cybernetics, cruise control, smart appliances,

and web browsers.

The challenge of biological verisimilitude

Several authors have commented that neural networks are not capable of

very much on their own, or are limited as an explanatory mechanism for

the self-emergence of mind. One complaint has been that neural networks

rely on extraneous rule-based instructions, and in particular the back-

propagation of errors, which has no exact biological correlate.

Criteria of what is biologically verisimilar not only help build better

models of the brain, they also, at this stage of neurocomputation, help

build better, brainier computers. But, to turn the problem around, com-

putational successes that seem nonbiological may suggest that we look

more closely at them for parallels in the brain. For example, the depar-

ture from pure neural nets in the form of hybrids with rule-based features

is typical of Grossberg's complex biomodeling of perceptual and adaptive

learning biofunctions. But is this not a feature of many brains in animals?

An inborn genetically determined programming often initiates the bird-

song, in natural neural nets, of species-speci®c behavior, such as bird-

song, which hierarchically represented in the avian forebrian (Yu and

Margolish, 1996).

The neuroscienti®c understanding of neural function is anything but a

stationary target for modelers. As Sejnowski (1997) summarizes, new

work has shown that the dendrites of pyramidal neurons in the neocortex

and hippocampus have fast sodium and high-threshold calcium currents

that make for highly nonlinear synaptic integration in their dendritic
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trees. Other studies suggest such back-propagating action potentials do

in¯uence the strength of dendritic synapses in both the neocortex and the

hippocampus, regulating LTP, LTD, and the coupling between synapses

and the spike-initiating zone near the cell body, ®ndings which Sejnowski

says would have pleased Hebb.

Another aspect of brains overlooked in requiring neural nets to be

totally self-organizing and self-sustaining is the programmatic nature of

environmental input. Data that input via sensory apparatuses are not

solely raw data lacking any organization; rather, they are often speci®cally

coded and user-friendly signals for the individual from other members of

its species. These signals and much of the species' habitat are genetically

prewired expectancies, starting from the expectancy of the shadow pat-

terns of a single overhead solar light source. In a sense, part of the elusive

homunculus is outside the brain, contributing and reaf®rming rule-based

knowledge. Dennett (1996) has proposed differentiating levels of brains in

the animal kingdom according to the use of this coding: Darwinian crea-

tures are simply hardwired; Skinnerian creatures have wired-in reinforcers

that favor smart moves, i.e., actions better for the creature than alternative

actions; Popperian creatures employ preselection among possible moves,

and insight rather than chance; and Gregorian creatures (named for

Richard Gregory, the British psychologist), the top of the line, are

`informed by the designed portions of the outer environment' (p. 99),

importing `mind tools' (p. 100) from the cultural environment.

One interesting class of neural phenomena for modeling that also has

correlates in the nonbiological sphere might be termed readiness activity.

An example is the dedicated `chattering' pyramidal cells that contribute

to synchrony in the visual cortex (Gray and McCormick, 1996). A good

number of psychiatric functions could conceivably be related to problems

with such readiness activity, including signal anxiety, paranoid perceptive

tendencies, phobic conditioning, schizophrenic attention problems, regis-

tration problems in delirium, kindling, and priming. Similarly, uncon-

scious (or `unaware') perception has recently attracted new credibility.

Greenwald, Draine and Abrams (1996) have investigated subliminal

semantic activation of very short (100 ms) duration by means of priming

procedures. A related challenge would be modeling the demand function

of brain. Just et al. (1996) demonstrated by functional MRI (fMRI) that

brain activity increases with the linguistic complexity of visually pre-

sented sentences. Now that `thinking harder' can be imaged, further

work could elucidate the activation basis for emotional work.
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The shackles of our new traditions

Modelers, unless they are creating a prototype, hark back to the source

they are imitating, and neurocomputational researchers try to emulate

brains as more and more is known about them. But arti®cial life and

arti®cial minds have been launched in their own right, and are devel-

oping at an astonishing rate. A survey on the world economy in The

Economist (1996) notes the `vertiginous decline in the price of computer-

processing power, which has fallen by an average of around 30% a year

in real terms over the past couple of decades' (p. 8); `70% of the

computer industry's revenues come from products that did not exist

two years ago' (p. 10).

It is entirely possible that arti®cial minds will evolve faster than the

`explosion' in neuroscienti®c knowledge. The result may be that the evo-

lution of arti®cial life will branch off from models based on biological

minds. Indeed, what is being done in this, the ®rst generation of simulation

of mind and its pathology, may be important in determining the models

used by future generations. Current models could perhaps be as determi-

native as earbones from gill arches. The very techniques we use, of error

minimization by back-propagation, cyclic updating, and so forth, may

achieve such currency that they will be comparable to life's choice of a

carbon over a silicon basis, unless we strive to free our computers from

traditions that can become as excluding of alternatives as evolution in the

biosphere has been. The most dif®cult creative challenge is to think

beyond our traditions.

Closeness to what we do and lack of a perspective threaten to blind us

to other possibilities. Even the fact that the students of arti®cial mind,

perhaps less than students of mind generally, are often the students of

pathological biological mind, should give us pause. To be sure, many

aspects of normal and supernormal function in communication, recogni-

tion, locomotion, etc. have attracted neurocomputational research and

development. But the emulation of higher and more unifying cortical

function tends to be in pursuit of models of derangement. These models

include aspects of error and delusion, degrees of signal misapprehension,

information or stimulus overload, disorders of drive parameters, bias of

the response, etc. Although these are generalizable features of the net-

works, in our particular usages of them we may overly commandeer them

for psychopathological models.

Again and again, the seminal models cited by modelers have been those

of Hoffman and Cohen and Servan-Schreiber, whose particular choices
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for models, though highly heuristic, may by their very strength create

traditions that overly in¯uence the development of future models.

Challenges from nonbiology

There are also nonbiological neural networks that are of interest. Let us

take, for example, pyramidal neural networks, as described by Bischof

(1995). Here, the term pyramidal in the title does not refer to the

imitation of an anatomical, bioneural component such as a pyramidal

cell, as does, for example, the term cerebellar neural network (Burgin,

1992), which denotes a computational structure that imitates, by a

profusion of input-level neurons, the proximal arborization of

Purkinje cells to provide for the modeling of coordinated motion con-

trol. `Pyramidal' here refers to image pyramids in computer vision, a

technique of reshaping the tractability (number of steps) of visual

search through approximating and optimizing the resources devoted

to visual processing, dividing and conquering the task by converting

global features to local ones and ®nding regions of interest for guided

analysis at low cost in low-resolution images, ignoring irrelevant details.

`An image pyramid tries to combine the advantages of high and low

resolution. An image pyramid is a collection of images of a single scene

at exponentially decreasing resolutions. The bottom level of the pyra-

mid is the original image. In the simplest case, each successive level of

the pyramid is obtained from the previous level by a ®ltering operation

followed by a sampling operator' (Burgin, 1992, p. 20). This involves

the localization of visual ®elds, noting that objects and events are not

arbitrarily spread out spatiotemporally, a bioneural feature. Indeed,

image pyramids have been noted to be similar to the human visual

system by Rosenfeld (see Chapter 1) and others cited in this book.

Related to the concept of scale space, each pyramidal cell (except the

base level) has a set of children at the input level below, a set of

neighbors at the same level, some of whom do not survive stochastic

decimation, and a set of parents at the level above. Cell and level in

image pyramids correspond to unit and layer in neural networks. The

contents of the cell, which may be pixels, edges, grey levels, numbers, or

symbolic values, correspond to the activation of units. The bottom-up

reduction corresponds to the activation function familiar in neural net-

works. In sum, the effects of pyramids are impressive, and while they do

not particularly derive from the neurology of vision, they may yet help
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us to understand some of the logical steps necessary for the independent

adaptability of human vision and visual attention.

Should the psychiatric modeler eschew all such architectures that do not

slavishly follow a bioprototype? Or can we learn from and be stimulated

by the seemingly nonphysiological? For one thing, it is not always imme-

diately clear what is a nonbiological mechanism. How, for example, does a

pyramidal vision system compare with the neural wiring of an insect's

faceted eye? If a given system is getting the job done, perhaps there is

some logical, if not anatomic, throwoff. Some version of the arti®cial

vision system may ultimately be implantable in a human nervous system.

We have already seen that some of the least biologically likely materi-

als in the world of physical chemistry, namely metals in the process of

annealing, and spin glasses, which are metallic alloys approaching ferro-

magnetism ± frozen paramagnets attempting to line up their molecular

poles and become magnets ± have deeply impacted the philosophy of

mind as it has been expressed in neural networks. Thus, models of

minor impurities have been used to discuss jumpstarting the otherwise

homogeneous and therefore unstartable elements in a brain's neural net

(Forrest, 1996).

Interest in the nonbiological, at the very least, provides a check against

parochialism in modeling. We may have the consolation of modeling life

elsewhere in the universe, if not the future of life in the universe. We have

no idea how diverse life is on other planets, and, in the end, it may not

matter. Human±machine hybrids are probable in the not-too-distant

future, and our only constraint for that evolution is the limits of math-

ematical logic.

The challenge of surmountability

Any too facile assumption that the structure of hardware or wetware is

function will founder on the demonstrated potentiality that, with suf®-

cient complexity or speed, a thinking apparatus or a brain can surmount

its basic structure and, within limits, simulate an entirely different struc-

ture as an enclosed mega-object in its software programming. The best

example is right before our eyes: the very neural networks we have all

been playing with, all of which are simulations on serial digital computers

of parallel and netlike processes.

Brains, too, are so complex they also may have similar tricks up their

sleeves. For example, we can think like a serial computer. Many of our
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more obsessive patients try to do this as an emotion-avoiding technique

of thought. Information modulation may occur at so many sites of the

neuron (dendrites as well as synapses) that a broad range of computa-

tional processes is possible. Our brains' functions are so highly dependent

on our cultural and educational programming that we may be oblivious

to other ways of using them. A simple example is the almost unlimited

potential of our minds for rote memorization of series of digits (80 or

more) when this is encouraged, and the peculiar way in which the brain

accomplishes this by associational chunking. Mathematical and musical

memory and thinking may also seem to mimic the serial computer.

The challenge of evolution

It is clear that the evolutionary process is overwhelmingly and exponen-

tially conditioned by its starting points, however ultimately distant from

them. To overcome the weight of our own traditions, evolutionary net-

works could be given the task of searching for things reminiscent of our

minds through a much wider domain of possible neurocomputational

models for appropriation as arti®cial brain timber. The fact that the

brain is our most evolved organ and that evolution is stamped all over

its oddly burgeoning shape should remind us that evolution is intrinsic to

all biology. Our brains can be more fully understood as evolving from

previous adaptations toward new adaptations to changing selection pres-

sures. In some way, perhaps using genetic algorithms, evolution should

be built into our models of brain and psychopathology.

The challenge of normality

The parochialism of modeling pathology leads to aspirations of modeling

normality, or the body's attempts to return itself to the homeostatic

balance of health. Certainly, pathology is a whole lot simpler than nor-

mality, when normality is de®ned as all the processes that must function

to maintain homeostasis and lead the person back to homeostasis from

the derangement of disease and disorders. Elsewhere (Forrest, 1994)

homologies have been suggested between neuropathologies and robotic

mechanopathologies in motoric action systems. Perhaps, in building

neural network models, we tend too much to look in the light of obvious

deviations for our solutions rather than in the dark where homeostatic

processes silently work their restorations.
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The search for monkey wrenches is like the search for silver bullets: it

rarely pays off a jackpot, easy wins are serendipitous and unanticipated,

and it is less a heuristic for full understanding than an edi®ce of science.

A simple thought experiment, relevant to Park's contribution to this

volume (see Chapter 4), is to ask what the complete computational

modeling of a psychopharmacologic agent would amount to. A pro-

gram for chlorpromazine or ¯uoxetine might be very long, incorporat-

ing a great deal not yet known, and one might keep ®nding objections

that certain contexts and contingencies of response to its use had been

omitted.

From the static to the kinematic to the dynamic

Another consideration in modeling life processes of any kind is the desir-

ability of a progression in our models toward dynamic animation. All

that is alive changes, transforms, moves, grows, and is in dynamic con¯ict

and disequilibrium. Our outstar and avalanche neural networks are kine-

matic in that they are based on formulas that employ lots of `t's for time

units and run like an animated movie that allows for a serial output, for

example simply to spell out a sequence like the alphabet. This is done by

having the travel time between the neurodes be a unit of time and a decay

function be two units, so there is an overlap and a stored sequential

process (Forrest, 1996, p. 65; see also Chapter 6).

Inherent in the models of the Parallel Distributed Processing (PDP)

group (McClelland and Rumelhart, 1988) is an interactive competition

that could be a starting point for a model of dynamic con¯ict: the weight-

ing of attributes in the sorting of many-featured percepts. But a truer

model of the dynamic will emerge when the computational entity must

enact its conceptualizations against opposing demands, preferably

embodied in an ambulatory robot. Old-time science ®ction provided us

with stationary computers that began to smoke and spark when con-

fronted with irresolvable con¯icts of a purely logical nature fed to

them by some wily human hero. Or it provided robots that became lost

in endless repetitive indecision about a logicomathematical paradox such

as Epimenides about the Cretans being liars, Russell's class of all the

classes that are not members of themselves, or Zeno's that motion is

impossible. This would be comparable to a purely cognitive explanation

of content dilemmas in obsessive±compulsive disorder. One way out

would be to adduce a reality check function, as Hestenes has discussed
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(see Chapter 6). In Ludik and Stein's model (see Chapter 9), the modeling

of an OCD defect in negative priming, equivalent to impaired cognitive

inhibition (increasing the cycle number), is along this line, as is decreasing

the gain of the context module. The incorporation of a temporal compo-

nent makes the model more kinematically lifelike.

Implicit in this multiple neurotransmitter model is the idea, which

psychiatry understands better than cognitive psychology, that minds

employ drives to override the inevitable mathematical paradoxes of

existence and to live practically in the world, which OCD patients

®nd dif®cult. The modeling of the increased impulsiveness of OCD

patients portrays an OCD pathological solution in place of normal

emotional thought. The dynamic viewpoint adds to this the realization

that once the drives are necessarily brought into play to avoid cognitive

paralysis, we are in a dynamic playground of con¯icting drives strug-

gling for resolutions which are (to use a Freudian term) always com-

promise formations. The performance of a computational entity under

these conditions will add a poignancy, as in the learned helplessness

animal models. Beyond cerebral con¯ict there is the clash of wants,

needs, and drives.

Our new logical beasties, to be properly driven, must have something

to lose by erroneous choice. A device even as simple as the recharging of

their batteries, if they must struggle for this replenishment against obsta-

cles, prohibitions, time limits or con¯icting demands, would be a start.

They should be capable of pleasure and pain, unpleasure and relief. And

they might also have an af®liative longing, or even a desire, like

Commander Data of the television series Star Trek: The Next

Generation, to become more human. One of the more intriguing predic-

tions (by Professor Masohiro Mori of the Tokyo Institute of Technology,

quoted in Reichardt, 1978) about the eventual development of near-

human equivalence in androids is that when they become very close to

human resemblance, and not until then, they will engender feelings of

creepiness in humans. Brilliant as the modeling of psychopathology is,

the reader will probably agree that none of it is creepy yet!

The challenge of complexity and decipherment

Deciphering the decisions of neural networks in the sense of retracing

how they arrive at a particular result or decision has always been prob-

lematic because of their distributed nature and the very unpredictability
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and unrepeatability that we value as biologic. Neural networks may

decide by a variety of feature criteria and, like humans, by patterns of

absences of features. Understanding them is like understanding a person:

one has to `interview' or test them by submitting known test data sets and

observing outcomes, or subjecting them to differing conditions and set-

tings. Fully reading them would be like reassembling shredded docu-

ments. In Chapter 4, Park discusses nonintuitive results and raises

critical issues about the abstractness of neural networks and their degree

of falsi®ability, which may increase as they are made more explicit.

As the complexity of neural network models increases, the limits of

human ability to comprehend may be left in the dust. It is true human

processing has not been tested in this way, and our capacity, like our

storage for rote memory, may be much greater than we realize, but

eventually there will be limits of multiple system interaction that will

be beyond us, and better handled by other neural networks. Indeed,

this very complexity should be the trump card for neural networks to

convert the unpersuaded and unwooed: their use in the thought process

of comprehending the fully modeled thought process. Like all computer

systems, the totality of the neural system is greater than the system's

ability to self-report, or to identify with as a self-concept. In other

words, in neural modeling, we have met the adversary and it is not us,

or not entirely us.

The challenge of mathematical limits

It is sobering to consider that the complete modeling of a human being,

even in the prospect of exponential growth in computational capacity,

will not be soon. A physicist (Krauss, 1995, pp. 76±8) has estimated the

information encoded in the human body, specifying the conditions of

each of our 1028 atoms, as 1028 kilobytes. All the information in all the

books ever written would take 1012 kilobytes ± 16 orders of magnitude

less. Stacked 10-gigabyte hard disks storing one human would reach a

third of the way to the center of the galaxy. At the fastest digital transfer

rate of 100 megabytes per second, it would take 2000 times the present

age of the universe of 10 billion years to write the data of a human

pattern to tape. Krauss (1995, p. 78) estimates that at the current progress

of computers' improvement in storage and speed by a factor of 100 each

decade, the task of recording a human will not be possible for another

210 years. Or should I say only 210 years?
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The challenge of the quantum level

The concept of multiple scales in the understanding of mind has been

pushed to the quantum level in a collection of papers edited by Pribram

and King (1995). Beginning with Searle's listing of features of conscious-

ness, including subjectivity, unity, intentionality, attention, Gestalt,

familiarity, mood, and situatedness, the opening papers contend that

the comprehensive, uni®ed and instantaneous properties of consciousness

and memory do not seem, to a number of our best scienti®c thinkers, to

be accounted for by our neurotransmitter theories alone.

In the model of consciousness proposed by Stuart Hameroff and Roger

Penrose (1995), there is an `orchestrated reduction of quantum coherence'

in brain microtubules. Cytoskeletal microtubules are hollow cylinders, 25

nm in diameter and of varying length, comprised of 13 longitudinal

proto®laments, each of which is a series of subunit proteins known as

tubulins. These microtubules mediate the delicate quantum effects

proposed to exist within the `wild, wet and noisy' brain. How this occurs

is that subunits of microtubules undergo coherent conformational excita-

tions when energy is supplied by the surrounding `heat bath.' The

metaphor that comes to mind is the moving border of lights on old-

fashioned movie marquees. The stationary bulbs can be either on or

off, and, when coherent, the emergent pattern of stripes seems to move.

This takes on the aspects of a quantum computer, and can self-collapse, a

quality suitable for consciousness.

Hameroff and Penrose continue (King and Pribram, 1995, p. 253): `by

considering only classical computing and local neighbor interactions,

microtubule automata fail to address the problematic features of con-

sciousness for which quantum theory holds promise.' What conscious-

ness is, is still stranger. When the degree of mass±energy difference leads

to suf®cient separation of space±time geometry, the system must choose

and decay (reduce, collapse) to a single universe state, thus preventing

`multiple universes' (e.g., Wheeler, 1957). In this way, a transient super-

position of slightly differing space±time geometries persists until an

abrupt quantum to classical reduction occurs and one or the other is

chosen.

Quantum coherence in microtubules is theoretically prevented by

anesthesia, slowed in dreaming, and speeded up in altered states and

heightened experience. In quantum physics, such states are called Bose±

Einstein condensates (BEC), which were proposed in 1924 and have

received much attention lately, being named 1995 Molecule of the Year
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by Science (Bloom, 1995; Culotta, 1995). The suggestion is that BEC are

responsible for the rapid, holistic, global properties of thought, con-

sciousness, and subjectivity. Amoroso and Martin (King and Pribram,

1995, pp. 351±77) bring from California the thought that `reality as it

were surfs on a standing wave of spacetime' (p. 365). They present a list

of 21 `mentons' (p. 354), or quanta possibly related to mind, of which the

ions we are used to considering are only one class. The quantum level has

been breached, and the computational modeling of mental phenomena

must eventually enter it. What remains as a further challenge is to decide

what is the relevant scale for each psychopathology, although there may

be perturbations on several levels.

The challenge of the narrative

In their approach to delusional thinking in Chapter 8, Vinogradov, Poole

and Willis-Shore discuss Hoffmann and McGlashan's (1993) linking of

reduced synaptic density and excessive axonal pruning in schizophrenia

to a loss of control of narrative memory. In Chapter 10, Lloyd concludes

from his neural net simulation of Freud's case of Lucy R. that psycho-

pathology is a narrative, not simple cause and effect but a scienti®cally

demonstrable network of events leading to a complex outcome. Narrative

is no simple stringing together in a sequence. Roemer (1995), for example,

has discussed the concepts of fate, deriving from Greek sources, and

individual freedom in narratives from ancient drama to television,

arguing against the deconstructivist idea that our deeds, perceptions,

and experience are structured by culture. The contradictions and con¯icts

that Roemer ®nds arising from the problems of narrative challenge our

concepts with their complexity and passions. Ultimately, our models need

to account for the brain as a storymaking mechanism.

The challenge of intersubjectivity

Individual psychodynamic approaches to the theory of mind are cur-

rently undergoing a refocusing in psychoanalytic circles. The interper-

sonal model ®rst proposed by Sullivan (1953) is considered more

explanatory of the psychotherapeutic process, especially when interacting

mental processes are construed in full intrapersonal psychodynamic rich-

ness. Lloyd's `Lucynet' for Freud's Lucy R. (see Chapter 10) is not inter-

subjective, but there would seem to be no obstacle to incorporating the
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subjective experiences of the others in her story, if they were known.

Neural nets could potentially simulate dyadic couple dynamics, and

family or small group dynamics, especially if they focused on affective

and transference phenomena.

When the author was engaged in training international psychiatric

residents, he decided to present videotapes of patients for an exercise in

calibrating affect perception and description. An intrapsychic model

would have required extended soliloquies of the patients, speaking into

a video camera, and the author elected to employ 3±5-minute samples of

videotapes with psychiatrists. It is interesting that when these were scored

from 0±4+ points for the six basic objects ± joy, fear, anger, shame, guilt,

and sadness ± and the results averaged, groups of only 20 upward would

agree with other groups within a few tenths of a point, whether the

groups were of a particular nationality (e.g., Indian) or region in the

United States where the author had gone to give the exercise as a

grand rounds at various psychiatry departments. The point is that inter-

personal processes can have a certain quantitative purity, and all science

does not have to stop at the boundary of the cerebral membranes. When

brain and mind are considered as information, the ¯ow between brains

may be considered similarly to chip allocation, porting, and display pro-

blems in computation.

Humans are social animals, and our well-being is frequently linked to

the well-being of small identi®catory groups with whom we have a rela-

tion of heterostasis (Forrest, 1997), a homeostatic process relying upon

others. The eventual social limits of neural modeling, from dyadic rela-

tionships to anthropology, are yet to be explored. Larger-scale human

interaction science, like predicting the weather, could employ the mathe-

matics of chaos and assemble results from multiple model runs (Kerr,

1996), and will eventually be advanced by the further development of

computer power.

The teleology of arti®cial mind

Much of this book has focused on modeling as it relates to practical

clinical issues. This concluding section addresses some of the more spec-

ulative issues currently being raised about computational science. Like

Moravec (1988), Tipler (1994) calculates that the next stage of intelligent

life is information-processing machines. Taking issue with the ideas of

Freeman Dyson (1979), Tipler (1994) argues: `using the standard physics

Challenges for neurocomputing 359



measure of complexity, it is possible for an in®nite amount of complexity

to be produced, and hence an in®nite amount of subjective time, between

now and the collapse of the universe.' This is because `the total energy

diverges to in®nity, so there is plenty for everybody.' The physics for this

assertion is provided.

Eventually, conscious intelligence will sweep the spatial universe. Our

current bodies implemented in matter (p. 242) could not survive the

®nal singularity's extreme heat, but a computer simulation could.

Tipler argues that `the drive for total knowledge' (p. 219) and for the

re-creation of all past lives is inevitable in the eschaton (last times); we

humans shall be emulated in the unlimited capacity of the computers of

the far future. The best way to immortalize any past human's quantum

state (at the moment of death) is to generate all 10 to the 10th to the

70th possible humans, who will be brought to life with their children

and familiar environment (p. 224). Of course, people will be emulated

who never lived.

One of the obsessive delights of Tipler's book is his use of the power of

double exponents to determine and put a number on the farthest limits of

human possibility. We learn that if we have 10 000 genes, it is possible for

them to code 10 to the 10th to the 6th power genetically distinct human

beings. We could resurrect all humans merely by simulating the ®nite

number of possible life forms that could be coded by DNA. The

human brain can store about 217 informational bits, and there would

be 2 to the 10th to the 17th possible human memories.

The lens of physics allows Tipler to say fresh things about some of the

most dif®cult problems of theology. It does not require a great deal of

imagination to realize that, even short of ultimate teleology, the philoso-

phical bases of psychiatry as a science of mind are even now beginning to

be affected by projections of computer potentiality, and the present book

on neural network simulations of psychopathology is one example.

Tipler's book is good natured and leaves one with a feeling between

exhilaration and hope. Viewed from the future ± a future of human-

engendered arti®cial intelligence ± the predictions of the universal expan-

sion of mind may become classics beside early attempts, like the present

volume, to computerize the intimate psychiatric agonies of the human

spirit.
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