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Abstract 

This paper investigates Jaynes’ “unbelievably short proof” of the 2nd law of 

thermodynamics. It assesses published criticisms of the proof and concludes that these 

criticisms miss the mark by demanding results that either import expectations of a proof 

not consistent with an information-theoretic approach, or would require assumptions not 

employed in the proof itself, as it looks only to establish a weaker conclusion. Finally, a 

weakness in the proof is identified and illustrated. This weakness stems from the fact the 

Jaynes’ assumption of unitary evolution is too strong given his perspective, rather than 

too weak to provide the desired results. 
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1. Introduction 

The cornerstone of the Jaynesian approach to statistical mechanics is the claim 

that the probability distribution associated with the statistical mechanical ensemble be 

interpreted as epistemic.1 More to the point, the approach claims that the probability 

distribution should not be thought of as an objective physical part of our ontology. 

Rather, it is generated by a privileged way of assigning a measure to one’s uncertainty or 

ignorance regarding the exact microstate of an SM system given a set of known 

constraints by means of a generalised principle of indifference known as the Maximum 

Entropy Principle (MEP). 

Briefly, the MEP prescribes an algorithm for the generation of probabilities in 

statistical mechanics through the use of a standard calculation by the technique of 

Lagrange multipliers, where one adopts the density matrix that both satisfies a set of 

thermodynamic constraints (interpreted as the phase averages of the density matrix) and 

also maximises the von Neumann (or Shannon-Weaver) entropy 

€ 

SI = −Tr ρ lnρ[ ]  (

€ 

SI = − pi ln pi
i
∑ ).     (1) 

over the relevant space of states. 

As Jaynes repeatedly emphasised, he saw the MEP as providing the foundation 

for making the best inferences possible given a state of incomplete information, and 

statistical mechanics (SM) is but a particular example of this method. As he characterised 

                                                
1 This paper is primarily formulated in terms of density matrices and unitary dynamics, 

though the paper could equivalently written in from the perspective of probability 

distributions and Hamiltonian dynamics. 



 

it, the proper objective of SM is generate inferences as to how thermodynamic systems 

are likely to behave, given all the knowledge one possesses regarding their current and 

past states. 

One aspect (and indeed a very important one) of any foundational account of SM 

includes an interpretation and a demonstration of the 2nd law: we look to provide a 

statement of how the 2nd law is to be understood within a given interpretation, and to 

show how the 2nd law follows from this interpretation (if it follows at all). Although a 

clear and unproblematic statement of the content of the 2nd law is problematic (Uffink 

2001), one intuitive aspect of the content of the 2nd law is the claim that the entropy 

increases over time. In the Jaynesian vein, this is translated as the claim that given some 

thermodynamic constraints that initially generate an ensemble distribution and a 

particular thermodynamic entropy, it is a consequence of the unitary evolution of such 

systems that the predicted entropy based on the evolved thermodynamic observables 

cannot be less that the initial values. As Jaynes characterises it, the “real reason for the 

second law [is that] it is a fundamental requirement on any reproducible process that the 

phase volume W’ compatible with the final state cannot be less that the phase volume W0 

which describes our ability to reproduce the initial state” (1965, 395 emphasis original). 

This paper is an attempt to investigate Jaynes’ attempt to characterise and prove 

an ‘information-theoretic’ account of the 2nd law, in the limited sense just described. The 

next section briefly presents the proof. Section 3 discusses and evaluates some common 

criticisms that the proof is too weak in its results, which I argue demand more out of the 

proof than Jaynes either desires or feels is necessary on his conception of the 2nd law. The 

final section argues that in fact the proof is in some sense too strong in its assumptions, as 



 

one is not immediately entitled to assume unitary evolution from the Jaynesian 

perspective, and absent this assumption the proof fails. 

 

2. The Unbelievably Short Proof  

This emphasis on the manipulability of physical systems is a major theme of 

Jaynes (1965). In this paper, Jaynes offers an “almost unbelievably short” proof of the 2nd 

law, derived based on his approach to SM. His proof is indeed very short, and discussion 

of the proof has focused on a more detailed exposition found in Lavis and Milligan 

(1985), which is itself cobbled together from Robertson (1966) and Hobson and Loomis 

(1968).2 

The proof considers a canonical system undergoing an adiabatic change. Define 

an arbitrary set of observables {Ω1(t), Ω2(t), Ω3(t), Ω4(t)…Ωm(t)} and suppose we have 

made a set of measurements made at t0, {ω1(t0), ω2(t0), ω3(t0), ω4(t0)…ωm(t0)}. On the 

basis of these values, we find the density matrix ρ0(t0) that maximises the information-

theoretic entropy 

€ 

SI
0( ) t0( ) = −Tr ˆ ρ 0 t0( ) ln ˆ ρ 0 t0( )[ ] subject to the constraints 

€ 

ωk t0( ) = Tr ˆ ρ 0 t0( ) ˆ Ω t0( )[ ],k =1....m       (2) 

and the thermodynamic entropy is given as a function of this density matrix, by 

€ 

Se
0( ) t0( ) = −kTr ˆ ρ 0 t0( ) ln ˆ ρ 0 t0( )[ ] .3      (3) 

                                                
2 The presentation here employs the quantum mechanical formalism, though the classical 

case has an exact analogue (e.g. Frigg 2008 169-171). 

3 This is the standard prescription according to Jaynes’ Maximum Entropy Principle. 



 

Although the information-theoretic entropy and the thermodynamic entropy are 

conceptually independent, in this case they yield identical values up to Boltzmann’s 

constant. If we allow the system to evolve, at some later time t, we predict the values of 

the observables {ω1(t), ω2(t), ω3(t), ω4(t), ω5(t)…}, using 

€ 

ωk t( ) = Tr ˆ ρ 0 t( ) ˆ Ω t( )[ ],k =1....m       (4) 

Given these predicted observables, we define a new density matrix according to these 

new constraints, and subject to maximising the information-theoretic entropy (call it 

ρ(t)). 

€ 

ωk t( ) = Tr ˆ ρ t( ) ˆ Ω t( )[ ],k =1....m       (5) 

The new thermodynamic entropy is calculated according to the new density operator for 

the predicted values of the observables: 

€ 

Se t( ) = −kTr ˆ ρ t( ) ln ˆ ρ t( )[ ]       (6) 

Since 

i. 

€ 

Se
0( ) t( )  is invariant under unitary evolution. 

ii. both ρ0(t) and ρ(t) satisfy the constraints provided by the values of the 

predicted observables. 

iii. ρ(t), but not necessarily ρ0(t), maximises the information-theoretic entropy for 

the predicted values of the observables. 

It follows that

€ 

Se
0( ) t0( ) ≤ Se t( ).  

 

3. Criticism 



 

It is fair to say that philosophers have been unimpressed by this proof (e.g. 

Earman 1986, Sklar 1993, Frigg 2008), and Earman has gone so far as to claim that he 

agrees that this proof is “almost unbelievably short” provided that one removes the 

‘almost’. Generally, there appear to be three main threads of criticism concerning the 

proof. 

 

Dynamical details. First, it does not provide the kind of details one would expect 

from a proof of the 2nd law, insofar as it cannot supply the values of transport 

coefficients, relaxation times, etc. Taken on its face, this objection seems to fall flat. The 

proof does not purport to provide these details, and it is hard to fault the proof for failing 

to provide them as this is not its intent. This is not to say that these details are 

uninteresting, just that they are well beyond its intended scope. Given that all that is 

assumed is that the density matrix evolves unitarily, it would be hard to imagine the 

details of the evolution would follow from this fact alone. 

Further, there are two ways to read Jaynes’ proof as demonstrating the increase of 

entropy. On the weak reading of the proof, all Jaynes demonstrates is that the entropy at 

some arbitrary later time (given unitary dynamics) will be greater than or equal to the 

entropy at the initial time. If this is all that Jaynes intends to demonstrate, he seems to be 

successful. There is no expectation that one should take the entropic values generated by 

this proof seriously, in the sense that this reading of the proof does not claim to (nor can 

it) generate specific predictions, but only shows that the entropy must increase (or be 

equal to its initial value) at some later time. But this is not the entire content of the 2nd 

law, and the worry is that the too much is missing from the proof to recover a useful 



 

statement of the law. This would be the intent of a stronger proof of the 2nd law. 

 

Monotonicity. Second, the proof fails to demonstrate that the entropy increases 

monotonically. Rather, the proof only asserts that the entropy value at later times will be 

greater than the initial value of the entropy based on the values of the observables at t0; 

that is, although the proof asserts that for t1<t2, S(t0)< S(t1) and S(t0)< S(t2), it does not 

show that S(t1)< S(t2). 

Piggybacking on the previous discussion, it is hard to see how this can be a 

problem for the proof itself since again, the only dynamical assumption that enters into 

the proof is that the density matrix evolves unitarily. Further, it is even unclear as to 

whether a monotonically increasing entropy curve is a necessary or even desirable feature 

of a proof of the 2nd law. Although monotonic increase is an intuitive desideratum for the 

behaviour of entropy, there exists no consensus as to how to define the thermodynamic 

entropy in non-equilibrium contexts. The fact that the entropy described in (6) does not 

monotonically increase should not necessarily be seen as a problem. 

Moreover, there are experimentally realisable scenarios where the entropy curve 

does not monotonically increase (on an intuitive understanding of the entropy), but 

actually decreases. In the spin-echo experiments, where the entropy is associated with the 

alignment of the spins, the entropy increases until a magnetic pulse is applied to the 

system, and the entropy begins to decrease back to its initial value, in an apparent 

violation of the monotonic increase of the entropy. In such a case, Jaynes’ proof captures 

the relevant features of this phenomenon rather nicely, since at all times the entropy is 

greater than or equal to the initial entropy, though it does not increase monotonically.  



 

Ridderbos (2002) and Ridderbos and Redhead (1998) suggest that the spin-echo 

experiments provide an argument for the correctness of the fine-grained Gibbs entropy, 

roughly since its constancy ensures that there is no spontaneous decrease in entropy as 

the spin states return to their original orientation.  In the Jaynesian case, we have two 

density matrices to work with, ρ and ρo, the latter describing the initial density matrix and 

the former indicating the distribution that would be used if it were constructed from the 

predicted values of the observables at a later time. Clearly, the behaviour of the matrix ρo, 

being restricted to unitary evolutions, mirrors the relevant features of the Gibbsian fine-

grained entropy to which Ridderbos and Redhead appeal. In the present context, this adds 

force to the undesirability of a proof that strictly requires monotonic entropic increase. 

Conversely, the predicted matrix identifies the entropy that would be generated had the 

matrix been generated only from contemporaneous predicted constraints, i.e. if one’s 

knowledge of the state of the system were limited to the values of those predicted 

constraints. 

Sklar (1993) exploits this distinction. He argues that the spin-echo experiments 

are actually problematic for the Jaynesian because the proof seems to suggest that we get 

an increase in entropy through the use of the matrix ρ by purposely throwing away 

information about the history of the system (contrary to Jaynes’ repeated assertions that 

we should never throw relevant information away), information that is crucial to 

providing a correct description of the spin-echo behaviour. This seems in tension with the 

proof of the 2nd law, since it suggests that there may be contexts where we might want to 

use the matrix ρo and those where it is preferable to use ρ to describe the system, 

depending on our objectives. A partial solution to this worry is to maintain a conceptual 



 

separation between the experimental, thermodynamic entropy, and the information-

theoretic entropy associated with one’s knowledge of the system, the latter always being 

described by the evolution of the matrix ρo, whereas the former is at least partially 

defined by the subjunctive reading in the paragraph above.  

 

Time Step Dependence. Finally, a third criticism attempts to block an obvious 

remedy to the problem of the non-monotonic behaviour of the entropy curve (on the 

assumption that this is a genuine problem). Lavis and Milligan (1985) suggest that one 

could recover monotonic behaviour if, instead of comparing the entropy at later times 

with the entropy at the time of the initial measurements, we compare the entropy at t0 to 

t1, and then repeat the proof with t1 taken as the initial time so that it ensures S(t1)< S(t2). 

In Frigg’s words, the problem with this approach is that “it would have the disadvantage 

that the entropy curve would become dependent on the sequence of instants of time 

chosen. This seems odd even from a radically subjectivist point of view: why should the 

value of Se at a particular instant of time, depend on earlier instants of time at which we 

chose to make predictions, or worse, why should it depend on us having made any 

predictions at all?” (2008, 172) Lavis and Milligan argue that this rescue, despite these 

problems, appears unmotivated from the Jaynesian perspective, since it is assumed that 

the values of the observables at t0 are privileged, in that this is the only time that the 

values are actually measured on the system itself, rather than ‘merely inferred’. 

Here again, it is striking that such expectations are being placed on Jaynes’ proof. 

Again, it is not clear that the monotonic increase in entropy is a desideratum for the 

proof, and without any dynamical assumptions in place it is hard to see how one might 



 

expect monotonicity to be shown.4 Further, Frigg, Lavis and Milligan are right to note 

that privileging certain times seems unmotivated from the Jaynesian perspective. 

Fortunately, as described above, monotonicity is neither a desired result nor to be 

expected from a proof that only relies on the unitary nature of the evolution. 

Another point of concern in Frigg’s evaluation of the proof is that the time 

dependence of this move only seems odd if we do identify the entropy predicted at later 

times with the thermodynamic entropy, which is thought to be a property of the physical 

system. Indeed, Frigg points to the strange possibility that making predictions, or even 

not making predictions, might have an effect on the system’s entropy, which is indeed an 

odd claim. It would be strange for the entropy curve to depend crucially on the seemingly 

arbitrary times at which we make predictions about the system. 

But is it the case that the entropy that figures into this proof really is the 

thermodynamic entropy? Although Jaynes seems to identify the predicted entropy with 

the thermodynamic experimental entropy, there is no demonstration that this is actually 

the case, and the entropy SI is treated as conceptually independent in the proof. Indeed, 

whether the TD entropy does match the predicted entropy depends on the details of the 

dynamics: one should not expect detailed and correct entropy curve from the assumption 

of unitary evolution alone. Indeed, the immediate inference from the information-

theoretic entropy to the experimental thermodynamic entropy is not licensed by Jaynes in 

any way. Jaynes (1963) himself argues that the information-theoretic entropy “for some 

                                                
4 In fact, Jaynes’ original presentation of the proof only looks to establish that the final, 

equilibrium entropy is greater than the initial entropy, without considering any 

intermediate values. 



 

distributions and in some physical situations, has long been recognised as representing 

entropy. However, we have to emphasise that the “information-theory entropy” SI and the 

experimental thermodynamic entropy Se are entirely different concepts. Our job cannot 

be to postulate any relation between them; it is rather to deduce whatever relations we 

can from known mathematical and physical facts.” (187, emphasis original) Absent some 

set of relevant “mathematical and physical facts”, such as the details of the dynamical 

evolution, there is no reason to expect that the two entropies should match. As such, (6) is 

ambiguous: the predicted entropy Se might refer to one of two quantities. Either we take 

this quantity to be the actual predicted entropy given by a precise quantity, or as the 

weaker statement that whatever dynamics are in place, the expected experimental entropy 

will be greater than the initial entropy, without taking the proof to generate a specific 

numerical value for either the expectation values or the entropy. Given the analysis 

above, it is clear that the latter reading is to be preferred.5 Nonetheless, in the next section 

we shall see that even this reading fails. 

In sum, the expectations placed on the proof seem unreasonable, and they are 

fairly easy to diagnose. Instead of amounting to a critique of the information-theoretic 

approach on its own terms, these criticisms amount to a list of desiderata associated with 

interpreting SM as a proper physical theory, and demanding that the proof track, in all its 

gory detail, the specifics of the physical behaviour of the system. But the proof purports 

                                                
5 Spelling out the exact relation between these two entropies would surely be a difficult 

task that cannot be endeavoured here. However, I at least suggest that one component of 

this relation is given by the subjunctive, counterfactual, reading of the thermodynamic 

entropy mentioned in discussing Sklar. 



 

to do no such thing, and interpreted as reflecting the physical necessity of the 2nd law, 

Jaynes’ proof is indeed wanting in numerous respects. Insofar as the proof only assumes 

unitary evolution and nothing more, it is hard to see how one could hope for a stronger 

result than the one proven: the premises of the proof are far too weak to give us 

relaxation times or a monotonic entropy curve. Without a specification of the dynamics, 

what more could be expected out of this proof than what has been given? 

However, when interpreted as a statement regarding the manipulability of such 

systems based on the values of the observables at some initial time, the proof takes a 

somewhat different light. If these probabilities are interpreted as epistemic rather than as 

a physical probability distribution (whatever the relation between these might be), the 

object of the proof is not to describe some physical necessity, but to establish a restriction 

on one’s ability to make inferences about and control the evolution of the system, given 

only the knowledge that the dynamics are unitary. Jaynes’ objective in this proof is 

limited to this: there is no reproducible or controllable way that the values of the 

thermodynamic observables can change adiabatically such that the entropy associated 

with the predicted density matrix will decrease below its initial value. 

 

4. Why Assume Unitarity? 

This does not mean that all is well with Jaynes’ proof. However, the qualm I have 

with the proof is not that the proof is too weak in its conclusions, but that its fundamental 

assumption is too strong. Jaynes’ programme is intended as a framework in which one 

makes inferences about the future state of thermodynamic systems, based on the results 

of an initial set of measurements. And although we can expect the evolution of the 



 

probability distribution, construed physically, to evolve unitarily, it is unclear why the 

evolution of an epistemic probability distribution, insofar as it describes the evolution of 

our knowledge, should evolve in this way. Indeed, it would be odd for this distribution to 

evolve unitarily, mirroring the physical evolution (unless we were Laplacian demons). 

Although the proof assumes unitary evolution, and many of the criticisms discussed 

above hit on this assumption as being too weak to deliver the results desired, this 

assumption in fact seems unjustifiably strong. 

The natural counterpoint here is to defend Jaynes’ proof by observing that there is 

a difference between actually being able to evolve a probability distribution through its 

unitary evolution, such that for any initial distribution one can actually describe its time-

evolved state6, and the weaker claim that we know that the distribution, however it 

evolves, evolves unitarily. And in fact, nothing is assumed in the proof other than that the 

distribution evolves in a unitary fashion. So one should read the proof as not demanding a 

sort of Laplacian omniscience, but merely the more general observation that we know 

evolutions are unitary. Clearly, this is in the spirit of the Jaynesian approach, and perhaps 

this would vindicate the proof. 

However, this move will not work. Even though we assume the fundamental 

dynamical evolution to be unitary, this is not actually something one is entitled to assume 

in this proof. The assumption of unitary evolution is subject to an important qualification: 

                                                
6 In principle if we knew how to evolve the probability distribution exactly, we would be 

able to demonstrate the monotonic increase in entropy (presuming it is a fact), determine 

relaxation times, etc. Indeed, much research and many open questions in SM would be 

obviated if this were feasible. 



 

the degrees of freedom that comprise the representation of the system must be complete. 

If there are additional physical degrees of freedom associated with the system beyond 

those that are specified, it is possible that the evolution relative to the specified known 

degrees of freedom will not appear unitary. 

From an ‘objective’ perspective, this hardly matters: unitary evolution is a 

fundamental feature of the dynamics, and if one fails to incorporate some degrees of 

freedom into the description of the system, then the description is wrong. However, from 

the Jaynesian perspective, one is only permitted to assume unitarity if one is justified in 

believing that all the physical degrees are represented in one’s description of the system, 

since it is our goal to make inferences based only on the knowledge in hand. 

To see how this is problematic, as a toy example we consider a discrete phase 

space taking on six possible microstates, and loosely based on Jaynes’ (1963) Brandeis 

dice problem. Initially, we are given an expectation value across the states of 4.5, and for 

the moment can be thought as representing the average value of the pips on a die. Jaynes 

(1979) solves this problem through the MEP method, attaining the following probability 

distribution: 

p(1)=0.054, p(2)=0.079, p(3)=0.114, p(4)= 0.166, p(5)=0.24, p(6)=0.348 (7) 

According to Jaynes, this distribution represents the maximal entropic state for the 

constraints given, and the maximal entropic state for the system, absent the constraint that 

the expectation value is 4.5, has an expectation value of 3.5 where each outcome is 

assigned equal probability. Clearly, the further the expectation value from 3.5, the lower 

the maximum entropy assigned to the system, such that 

S(x)>S(y) iff |x-3.5|<|y-3.5|       (8) 



 

where x and y are the expectation values associated with some macrostate of the system. 

Now, let us specify that the system evolves by some unitary dynamics, such that 

for each discrete time step, a new state is achieved by permuting the probabilities of each 

individual microstate in some definite but unspecified way. Clearly, the informational 

entropy due to such dynamical evolution is unchanged, since this amounts to permuting 

the indices on outcomes in the Shannon-Weaver entropy. However, the expectation value 

may change through arbitrary permutations. Because the probabilities assigned by the 

MEP are monotonically increasing when x>3.5 and monotonically decreasing when 

x<3.5, the expectation value of the system is bounded under evolution since the 

permutations can only move the expectation value closer to 3.5; that is, if the initial 

expectation value was 4.5, the dynamics can only generate probability distributions with 

expectation values between 2.5 and 4.5. Thus if one constructs a new probability 

distribution on the basis of these new expectation values, the entropy associated with the 

new distribution must be greater than the entropy of the original distribution. This is the 

essence of Jaynes’ proof. 

We can see the relevant features of the proof even in this toy model. Although the 

initial entropy represents a lower bound on the entropy, it is entirely possible that the 

unspecified unitary dynamics move the system into states which move closer and further 

away from the mean value of 3.5, and thus the entropy cannot, by this method, be shown 

to increase monotonically with each time step. 

Despite the above arguments that usual criticisms of this ‘almost unbelievably 

short’ proof are misguided, there is a sense in which one needs a more robust 

characterisation of the dynamics beyond the stipulation that they are unitary. The proof 



 

works because there is no way in which the expectation values can obtain values outside 

the bound described above, and this is achieved by limiting the dynamics to permutations 

of the initial probability distribution. However, if the state space is incompletely 

specified, in the sense that there are further degrees of freedom not accounted for in the 

description of the system, it is possible for the entropy relative to this description to 

decrease.  

For instance, suppose that there are additional dofs not accounted for in the phase 

space, such that (according to some ‘natural’ measure or reproducible physical 

distribution) the probability of each outcome from 1-6 is actually the marginal sum over a 

more fine-grained joint distribution where each outcome is actually associated with two 

outcomes of unequal weight. If these probabilities are permuted by some unitary 

dynamics, it is entirely possible for the expectation values (from the coarse-grained 

perspective) to, say, exceed 4.5, since it is with respect to the coarse-grained p.d. that the 

initial p.d. is generated. For instance, suppose that each microstate can be bifurcated into 

two states with different densities, such that according to the ‘natural’ measure 

p1(1)=p2(1), with p2(y)=(1/y2)p(y) and p1(y)=p(y)-p2(y) for y∈{2, 3, 4, 5, 6}. The 

resultant probabilities for this fine-grained state are as follows: 

 P1(y) P2(y) 
Px(1) 0.02718 0.02718 
Px(2) 0.05908 0.01969 
Px(3) 0.10148 0.01268 
Px(4) 0.15511 0.01034 
Px(5) 0.23018 0.00959 
Px(6) 0.33784 0.00965 

 

If the actual dynamics are given by the rule that for each time step, the states in 

the left hand column move to the right hand column, and states in the right hand column 



 

move to the left hand column below it in a cyclical fashion such that p2(6)p1(1), then 

one computes the expectation value after one time step to be 4.53, which has a lower 

entropy than the initial state from the perspective of the coarse-grained description where 

the only observable defined is Y. Such examples are easy to multiply. 

This point is similar to criticisms of Jaynes’ programme that suggest that he 

tacitly relies on systems being ergodic in order to get his programme off the ground 

(Sklar 1993, Frigg 2008). In the case of ergodicity, the worry is that if the space is not 

metrically indecomposable, the phase averages associated with the density matrix may 

not equal the time averages, so that the Jaynesian method will deliver the wrong 

predictions if it cannot demonstrate the system to be ergodic. However, this worry is 

different, and perhaps more fundamental, for in the case of ergodic theory the dynamics 

are assumed to be measure preserving. In this case, if there is no guarantee of unitary 

evolution because relevant degrees of freedom are missed, one cannot even assume 

measure preservation. Nonetheless, the best response available to the Jaynesian is likely 

parallel to the one offered against the ergodic criticism: provided that one is sure the 

dynamics are unitary, the appearance of apparent entropy decreasing phenomena is an 

indication that important physical features of the system have been omitted and need to 

be found or included. As such, it should not be understood as an indictment of the 

Jaynesian progamme itself. The reader is left to decide whether this response is 

convincing. 

 

5. Conclusion 

Some common criticisms of Jayne’s unbelievably short proof have been 



 

discussed. Generally, these criticisms have pointed to the fact that the proof is too weak 

in its conclusions, and any attempt to strengthen them would be unjustified from the 

Jaynesian perspective. Conversely, I have argued that the demands placed upon this proof 

are too stringent, and in fact demand more from a proof of the 2nd law than Jaynes desires 

or needs to show. However, I have suggested that there is a sense in which the proof is 

actually too strong, rather than too weak. Specifically, unless the dynamical description 

of the system is known to be complete, one is not entitled to assume the unitary evolution 

of the system relative to the description given. Without the assumption of unitarity, it is 

possible for the entropy to decrease, even if the fundamental dynamics are unitary. 
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