Skip to main content
Log in

A Categorical Interpretation of the Intuitionistic, Typed, First Order Logic with Hilbert’s \({\varepsilon}\)-Terms

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

We introduce a typed version of the intuitionistic epsilon calculus. We give a categorical semantics of it introducing a class of categories which we call \({\varepsilon}\)-categories. We compare our results with earlier ones of Bell (Math Logic Quart 39(3):323–337, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell J.L.: Hilbert’s \({\epsilon}\)-operator in intuitionistic type theories. Math. Logic Quart. 39(3), 323–337 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Diaconescu R.: Axiom of choice and complementation. Proc. Ame. Math. Soc. 51(1), 176–178 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hilbert, D., Bernays, P.: Fondements des mathématiques. 1. L’Harmattan, Paris (2001) (translated from the second (1968) German edition by François Gaillard and Marcel Guillaume)

  4. Hilbert, D., Bernays, P.: Fondements des mathématiques. 2. L’Harmattan, Paris (2001) (translated from the second (1970) German edition by François Gaillard, Eugène Guillaume and Marcel Guillaume)

  5. Johnstone, P.T.: Topos Theory, London Mathematical Society Monographs, vol. 10. Academic Press [Harcourt Brace Jovanovich Publishers], London (1977)

  6. Johnstone P.T.: Sketches of an Elephant—A Topos Theory Compendium. Clarendon Press, Oxford (2002)

    MATH  Google Scholar 

  7. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic, Cambridge Studies in Advanced Mathematics, vol. 7. Cambridge University Press, Cambridge (1988) (reprint of the 1986 original)

  8. Makkai, M., Reyes, G.E.: First Order Categorical Logic. Lecture Notes in Mathematics, vol. 611. Springer, Berlin, New York (model-theoretical methods in the theory of topoi and related categories) (1977)

  9. Mints G.: Epsilon substitution for first- and second-order predicate logic. Ann. Pure Appl. Logic 164(6), 733–739 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pitts, A.M.: Categorical logic. In: Handbook of Logic in Computer Science, vol. 5, pp. 39–128. Oxford University Press, New York (2000)

  11. Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Acta Universitatis Stockholmiensis. Stockholm Studies in Philosophy, No. 3. Almqvist & Wiksell, Stockholm (1965)

  12. Tait, W.W.: The substitution method revisited. In: Proofs, Categories and Computations, Tributes, vol. 13, pp. 231–241. Coll. Publ., London (2010)

  13. Von Heusinger, K.: The reference of indefinites. In: Reference and Anaphoric Relations, pp. 247–265. Springer (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Pasquali.

Additional information

The author is grateful to Pr. Christian Retoré for his suggestions and useful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquali, F. A Categorical Interpretation of the Intuitionistic, Typed, First Order Logic with Hilbert’s \({\varepsilon}\)-Terms. Log. Univers. 10, 407–418 (2016). https://doi.org/10.1007/s11787-016-0155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-016-0155-y

Mathematics Subject Classification

Keywords

Navigation