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Guest Editorial

Traditionally, logic has been thought to be finite. In Griffiths
and Paseau (2022: One True Logic, OUP), we argue that the
tradition is wrong. When we consider the nature and purposes
of logic, we see that it is in fact infinite, maximally so. The
focus of this issue is infinitary reasoning, understood broadly to
include infinitary logic as well. The nine articles collected here
explore themes from our book, the history of infinitary logic,
the mathematical study of infinite systems and the possibility
of infinite reasoning in humans. We are hugely grateful to all
of our contributors.

Owen Griffiths
University College London

A.C. Paseau
University of Oxford

Features: Focus on infinitary reasoning

Ancestral links
The word ‘ancestor’ has inter-
esting links to other words. It
seems equivalent to an infinite dis-
junction: you are my ancestor
if you are my parent or grand-
parent or great-grandparent or ...,
where the list continues ad infini-
tum. As such, the word ‘ances-
tor’ features in apparently valid ar-
guments essentially containing in-
finitely many premises. Here is a
variant of one on p. 102 of Grif-
fiths and Paseau (2022: One True
Logic, Oxford University Press):

Bob is not my parent.

Bob is not my grandparent.

Bob is not my great-grandparent.

...

Bob is not my ancestor.

What are we to make of this argument? It looks valid, though
not formally. To see its non-formal nature, change the word
‘parent’ to ‘child’ throughout and change no other words. The
modified argument’s premises would be true and its conclu-
sion false if Bob were, say, my grandfather, so an ancestor of
mine, but neither my child nor my grandchild nor my great-
grandchild nor.... Hence the original, displayed argument’s va-
lidity is conceptual rather than formal: it is owed not entirely to
form but also to the specific meanings of the words contained.
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The second feature of the argument is that its premise set
is infinite, essentially so if the conclusion is to follow from it.
That Bob is my ancestor cannot be ruled out by any finite subset
of the premises: if you just include the first three, for example,
you haven’t ruled out Bob’s being my ancestor because he is my
great-great-grandparent. One might object that humans have
only a finite number of ancestors. Our actual family trees are
finite, whether or not you trace them back beyond homo sapiens
(to include previous hominids and even beyond). But the range
of possibilities the argument is supposed to take in is not limited
in this way. We can imagine a world in which humans have
existed forever. Such a world can yield a counterexample to the
validity of the argument with any finite subset of the original
premise set.

So: the argument before us is valid in a non-formal sense and
its validity is owed to infinitely many premises. How should
we capture its validity? Here is a natural thought: employ an
infinitary logic. The logic Lω1ω is just like first-order logic ex-
cept that it allows for countably infinite disjunctions and con-
junctions. In Lω1ω, we can easily capture the validity of the
original argument augmented with the meaning premise that
my ancestor is anyone who is my parent or my grandparent or
my great-grandparent or .... Let the predicate P1 formalise ‘is
my parent’, P2 ‘is my grandparent’, and so on, let the predicate
A formalise ‘is my ancestor’ and let the constant b formalise
‘Bob’. Then the argument’s formalisation in Lω1ω is:

¬P1b

¬P2b

¬P3b

...

∀x(Ax↔
∨
i∈ω

Pix)

¬Ab

This argument is Lω1ω-valid. Taking our foundational logic to
be at least as strong as Lω1ω, we can therefore explain the orig-
inal argument’s conceptual validity by supplementing it with a
meaning premise and showing the formalisation of the result-
ing argument to be Lω1ω-valid, as displayed. In short, the logic
Lω1ω does a good job of explaining the original argument’s con-
ceptual validity.

What about the competition? Can a finitary logic match
Lω1ω? A finitary logic, at the very least, should not allow for in-
finitary disjunctions and conjunctions. The most standard logic,
predicate or first-order logic, is finitary. It is also compact: any
valid first-order argument has a valid finite sub-argument (i.e.
a sub-argument with a finite premise set). Can first-order logic
explain the conceptual validity of the original argument? No.
And this for a general reason: the argument’s validity cannot
be explained by any compact logic.

To sketch why, let L be a compact logic. Consider what
an L-based explanation of the argument’s validity presumably
looks like. Let’s call the original argument (the one exhibited in
premise-conclusion form at the start of this article) B. The L-
based explanation of B’s conceptual validity will add a mean-
ing premise to B, turning it into the formally valid B+. It will
then formalise B+ in L, to yield an L-valid argument that we
may call Form(B+). Now notice that no finite sub-argument

of Form(B+) is L-valid, since it corresponds to a finite sub-
argument of B+. And no finite sub-argument of B+ can be
valid, because Bob’s not being reachable by moving n links
up my family tree, for any finite n, does not preclude Bob from
being my ancestor. But L is by assumption compact, which
contradicts the hypothesis that it can explain B’s validity.

This is not a watertight argument, but a very plausible one
nonetheless. We might be sufficiently moved by it to accept
the following conclusion. To explain the conceptual validity of
B, we must either adopt an infinitary logic or a non-compact
finitary one, such as second-order logic.

These sorts of arguments are developed in much greater de-
tail in Griffiths and Paseau (2022). We called them bottom-up
arguments in that book, because they rest on relatively light the-
oretical principles. They differ from top-down arguments, typ-
ically arguments about the nature of logical consequence and
the logical constants, as discussed in Griffiths’ contribution to
this volume. And in Part II of our book, we supplemented the
sort of bottom-up argument sketched here with further ones that
support the first disjunct at the end of the previous paragraph:
only infinitary logics will do the required job, i.e. underwrite
the validity of arguments like B and its generalisations. Frege’s
definition of an ancestral relation famously used second-order
logic, but it will not generalise in the required way. An infini-
tary logic is needed.

Mathematical logic has not given a central place to infinitary
logics. Barwise and Feferman (1985: Handbook of Model The-
oretic Logics, Springer-Verlag), which summarised the state of
knowledge at the time, is a magnificent achievement, but lo-
gicians have not built on it in the way they might have. The
author of the more recent textbook Marker (2016: Lectures on
Infinitary Model Theory, Cambridge University Press) cites two
reasons to be interested in the model theory of infinitary lan-
guages: ‘One reason is that we get new insights about first order
model theory. But the simplest answer [reason] is that there are
many natural classes that are axiomatized by Lω1ω-sentences’
(p. 9). Marker’s reasons are manifestly mathematical.

As well as mathematical reasons, there are also more philo-
sophical ones to be interested in infinitary logics. These log-
ics are required to capture the validity, be it formal or concep-
tual, of various arguments, including B. That is one, but by
no means the only, reason to accept infinitary logic. Others are
offered in One True Logic. The one true logic, it appears, is
highly infinitary.

A.C. Paseau
University of Oxford

Logical nature and infinity
‘You are a reader of the The Reasoner, all readers of
The Reasoner will enjoy One True
Logic; so you will enjoy One True
Logic.’ This is a valid argument in
virtue of its logical form. It has the
form ‘a is F, all Fs are Gs; so a is
G’ and every instance of this form
is valid.

A crucial aspect of logical form
is an account of the logical con-
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stants. When I specified the form
of the above argument, I replaced
some expressions—‘you’, ‘reads The Reasoner’, ‘will enjoy
One True Logic’—with variables. But I kept ‘all’ fixed, since it
is distinctively logical.

Alfred Tarski thought that the logical constants are terms of
a general character, which don’t have any particular subject
matter of their own but which are required for correct reason-
ing about any subject matter. In modern terminology, they are
topic-neutral.

Tarski, and others, have made this thought more rigorous by
considering permutations. Consider set {A, B,C} and a permu-
tation mapping A to B, B to C and C to A. Some sets, such as
{A, B,C}, are mapped to themselves by this permutation. They
are invariant under it. Others, such as {A, B}, are not: it is
mapped to the distinct set {B,C}. They are variant under the
permutation.

We can think of relations as sets and define what it is for a
relation to be permutation invariant. Consider a set contain-
ing the previous British Prime Minister Boris Johnson, the new
British Prime Minister Liz Truss and her logician father John
Truss. And consider the relation being a logician. The exten-
sion of this relation of the set in question is the singleton of
John Truss. The image of this set under any permutation that
maps him to his daughter is the singleton of Liz Truss. These
sets are distinct so the relation fails to be permutation invari-
ant. As a test for topic neutrality, this seems correct: being a
logician is a relation with a particular subject matter.

This cannot be the end of the story, however. Consider the
relation being human over the same domain. It is invariant un-
der permutation, since all members of the set are humans. But,
like being a logician, being human is not topic-neutral. To re-
move all sensitivity to subject matter, as Gila Sher showed, we
must consider not just permutations of a domain but bijections
to others of the same size. Consider a three-membered domain
none of whose members are human. If we consider a bijection
from the original domain to this one, the extension of being
human is not preserved.

Call the resulting test one for isomorphism invariance. If a
relation is isomorphism-invariant, it has a good claim to be-
ing topic-neutral. The result is an attractive account of topic-
neutrality: philosophically motivated by traditional thoughts
about the formality of logic and capable of rigorous treatment.

What has all of this got to do with infinitary reasoning? In
his contribution to this volume, Paseau offers a bottom-up argu-
ment for infinitary logic, starting from particular cases. These
thoughts about isomorphism invariance can be used to offer a
top-down argument for the same conclusion, starting with gen-
eral theoretical considerations about logic.

The first step in this top-down argument is provided by
adapting a theorem from Vann McGee (1996: Logical Opera-
tions, Journal of Philosophical Logic 25, 567–80). Consider
the logic L∞∞, which extends first-order logic by allowing,
for any cardinal κ, conjunctions and disjunctions of κ-many
conjuncts or disjuncts, respectively, and allowing existential
and universal quantification over κ-many argument places. In
essence, it is the most highly infinitary extension of first-order
logic.

What McGee proved, roughly, is that a relation of the right
type is isomorphism-invariant just when it is expressible by
a formula of L∞∞. What is isomorphism-invariant, in other
words, is just what is definable in terms of infinitary ver-

sions of operations like conjunction and universal quantifica-
tion. McGee’s theorem, therefore, allows us to make the crucial
leap from isomorphism invariance to infinitary logic.

So far, we’ve discussed the logicality of relations, which are
worldly entities individuated by their extensions. But the logi-
cal constants we invoked at the start to explain validity are lin-
guistic, not worldly. The next step in our top-down argument,
then, is how we can use isomorphism invariance to deliver ver-
dicts about which expressions are logical constants.

We can treat the relevant expressions as having relations as
their semantic values. Isomorphism-invariant expressions are
then those that have isomorphism-invariant relations as their
semantic values. How does this relate to logical constanthood?
Clearly, we need some principles linking isomorphism invari-
ance and logical constanthood. The most simple-minded would
be: an expression is a logical constant iff it is isomorphism-
invariant.

For various reasons, this seems implausible. One problem is
that we’ve said nothing about meaning. Concerned, as we have
been, with extension alone, we will judge anything coexten-
sive with a logical constant to be a logical constant. Consider
McGee’s example of unicorn negation:

Uφ =De f (not-φ and there are no unicorns)

There are no unicorns, so this is coextensive with ordinary
negation and hence a logical constant, by the crude principle.
But you might think that an expression which invokes uni-
corns in its meaning is a poor candidate for being a logical
constant. The relationship between logical constanthood and
isomorphism invariance is clearly rather subtle.

Fortunately, the top-down argument presented here doesn’t
rely on such a controversial principle. Rather we need: if
a relation is isomorphism-invariant, then logic—the one true
logic—should include a logical constant with that relation as
its semantic value. This condition avoids the unicorn nega-
tion worry above. We require that if a relation is isomorphism-
invariant, then there must be a logical constant to name it. So
the isomorphism-invariant operation of negation needs to be
named by at least one logical constant, e.g. ‘¬’. If it happens
to be named by several, e.g. ‘U’ as well as ‘¬’, that’s just fine.

From McGee’s theorem, we know that infinite resources are
required for all isomorphism-invariant operations to be named
in this way; first-order logic, for example, is not up to the task.
But a logic at least as strong as L∞∞ is. So logic had better be
infinitary, otherwise it fails to talk about some logical relation.
And that’s the top-down argument.

We began with thoughts about the formal nature of validity,
developed this in terms of topic-neutrality, which we captured
with isomorphism invariance. And that leads us to the one
true logic’s being highly infinitary. For more, I can’t do bet-
ter than refer you back to the argument with which we started.

Owen Griffiths
University College London

Variation on a theme by Griffiths and Paseau

Consider the following structure, called argumentA in Griffiths
and Paseau (2022: One True Logic, Oxford University Press, p.
92; all page references will be to this book):

There is at least one planet.
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There are at least two planets.

...

There are at least n planets.

...

There are infinitely many planets.

Is the above structure a logically valid argument? Let us join
the authors in thinking that it is. Now, consider what they say
later:

Relatedly, one could try to argue, in the same vein as
in Chapter 5, that the argument with premises ‘There
are at least κ planets’ for every cardinal κ and con-
clusion ‘There is an absolute infinity of planets’ is
logically valid. (p. 132)

Call this argumentA∗. First, no-
tice that the formal structure of the
two arguments, A and A∗, is ex-
actly the same. The sequence in-
dexing the premisses of A is the
sequence of natural numbers, and
the limit of that sequence is the
first aleph. So, if the authors are
right that A is valid, and its pre-
misses are true, we must conclude
that there is an infinite number of
planets. Similarly, since the se-
quence indexing the premisses of
A∗ is the sequence of the cardinals
κ, and if, of course, we believe in
absolute infinity being their limit (more on this later), then by
the same rationale we get that there is an absolute infinity of
planets. Notice that the crucial terms in the two arguments—
and those that differ between them—are names of numbers. So
to suggest that A is logically valid while A∗ is not must be to
assume that there is a certain threshold in the hierachy of num-
bers, such that one and the same principle is ‘logical’ below it,
but stops being logical above it. How could this be?

Griffiths and Paseau do not question the validity ofA∗. They
do have some worries about it, though, mostly for reasons to do
with their general thesis in the book, given that they are con-
cerned there with arguments in extended forms of English (see
below). As a consequence, they take pains to address the rea-
sonable worry that no argument of English can have an infinite
number of premisses (pp. 94–96). They argue— convincingly,
I believe—that natural languages are structures that might be
consistently thought of as having a denumerably infinite num-
ber of terms/sentences, and, so, structures that can deliver ar-
guments such asA. Moreover, and in between the presentation
of argument A and the presentation of argument A∗, they take
even more pains to convince the reader that:

To cut off possible extensions of English at some
particular ordinal and declare that beyond this point
there can be no others would be arbitrary (p. 104).

They need to disallow any such restriction for they intend to
generalize A to Aκ. Argument Aκ has premisses ‘There are at
least λ planets’ for all λ < κ and conclusion ‘There are at least
κ planets’, for κ any infinite limit cardinal.

The authors are undecided about A∗’s validity. Their rea-
son is that the totality of A∗’s premisses is class-size, and, so,
they now need a class-size language in order to express the ar-
gument. But can any extended form of English be a class-size
language, they wonder.

I find this worry exaggerated. After all, we need a leap of
faith to come to terms with the view that natural languages are
structures extendable to such a degree that, for any cardinal
κ, there is a language with κ-many terms/sentences. If so, we
cannot proclaim that it is the absence of any intuition regarding
class-size languages that makes us reluctant here. We had no
intuition regarding the infinite extensions of English that we
have previously come to endorse; but although most of them
are not even recursive, we ended up endorsing them.

Language is no reason for scaring us away from A∗. Other
things might be, as I now explain.

Consider the sequence of arguments A, · · · ,Aκ, · · · ,A∗.
First, notice that all of its elements follow the same pattern.
In the premisses of each such argument, a multiplicity is put
into an ascending order, and, by the validity of the argument,
the multiplicity mentioned in the conclusion is also affirmed.

Second, notice that the arguments’ respective conclusion
contains a quantifier of the form ‘There are (at least) . . .’. These
quantifiers pick up, besides aleph-0, an infinite sequence of
limit cardinals, plus absolute infinity, which, if we accept that
A∗ is valid, is these cardinals’ limit. Now, crucially, notice that
these quantifiers, as such, do not discriminate between sets,
proper classes, absolute infinities, etc. So, one has to find a
means to make them formally sensitive to ‘absolute infinity’ in
a consistent way; otherwise, the sequence will keep going be-
yondA∗, thereby generating a form of Cantor’s paradox. Para-
doxes will follow because absolute infinity, unlike the transfi-
nite, is no limit, and for Cantor, at least, everything that reaches
a limit can be propagated even further. TreatingA∗ as a proper
class will not do, for not only do we need to make it impossible
for it to belong to anything, but we also need to find some cor-
responding quantity for it. This is exactly what is implied by
the validity and the conclusion inA∗. What this conclusion im-
plies is that there is a quantity of planets (an ‘absolute infinity’),
that cannot be measured by any of the numbers that appear in
the sequence. But these were supposed to all be numbers.

The upshot is that we need some novel post-Cantorian se-
mantics and formalism for ‘absolute infinity’ in order to make
the sequence stop for good, so to speak. Another viable option
would be not to shiver in front of the ‘inconsistent multiplicity
or absolute infinity’, as Cantor called it (Letter to Dedekind,
28.7.1899), and embrace the contradiction instead. In fact,
there are paraconsistent logicians who genuinely believe that
this represents Cantor’s own attitude on the matter.

Other possibilities are available too. Among them is that
of abandoning the idea of absolute infinity altogether, and go-
ing back to the perpetual iteration leitmotif, so much cherished
among set theorists of the past century. But if we do so, A∗

will no longer be valid. And this will mean that the validity of
the arguments within the sequenceA,Aκ, ... ,A∗ does not rest
entirely on logic, but also on the existence of the collections
mentioned in their conclusions as separate, actual, well-defined
entities.
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Summing up, I think these are open questions that might de-
serve to be addressed in a sensible follow-up project to One
True Logic. I end with a Cantorian jest for those who have read
this magnificent book already: it takes a superκ-human for the
full experience of the validity of every argument Aκ, but only
God has full experience of the validity ofA∗.

Doukas Kapantais
Academy of Athens, Research Centre for Greek Philosophy

Löwenheim numbers as a measure of logicality

Current work in logic, at least in a very prominent strand, cru-
cially relies on a theory of models that is, in turn, couched in
set theory. Since Tarski formulated his model-theoretic def-
initions in the 1930s, set theory has progressed into a rich,
complex, and, importantly, philosophically perplexing field.
Its richness has become part of its self-definition, guiding
mathematicians working in the field through principles such
as maximize and inexhaustibility, as well as richness; see
Maddy (1988: Believing the Axioms I-II, Journal of Sym-
bolic Logic 53, 481–511). Logic, by stark contrast, tradi-
tionally comes with restrictions, limitations and boundaries.
Logic is positioned by philosophers at an extreme: as the
stringent underlying foundation of the mathematical edifice;
or as the most general discipline; the most widely applicable;
the least metaphysically involved; the least controversial, etc.

Criteria for logicality serve the
purpose of keeping logic within
its purported bounds. The crite-
rion for logicality of invariance un-
der isomorphisms, known as the
Tarski-Sher thesis, is articulated in
set-theoretic terms. It states that
logical constants denote operations
that are invariant under isomor-
phic underlying domains. (Here
I slide over issues on the relation
between logical constants and op-
erations and on isomorphism in-
variance’s necessity and logical-
ity.) While accepted as a go-to criterion in various contexts
(e.g. in linguistics), this criterion has aroused fierce opposi-
tion by philosophers of logic. The objections are varied and
nuanced, but the majority can be presented as resistant to let-
ting logic succumb to the unbridled extravagance of set theory.
Yet, most of the critics of isomorphism invariance aren’t pre-
pared to give up all use of set-theoretic tools in logical seman-
tics; the explication of logical consequence in model-theoretic
terms is recognised as an important advances in the topic, and
no one shall drive us out of this Tarskian paradise. The ques-
tion is whether and how this criterion should be modified and
restricted.

The Tarski-Sher Thesis is fully endorsed by Griffiths and
Paseau in One True Logic. Griffiths and Paseau go further
than either Tarski or Sher, and require that the One True Logic
should include a constant for each isomorphism-invariant op-
eration (normally, the criterion is used for determining which
logical constants are available and permissible for use in sys-
tems for logic). This means, for example, that for each cardi-
nality κ, the quantifier there are at least κ has to be included

in the language. Set theorists debate which cardinals in the
higher infinite exist, or are consistent with accepted axioms—
but whichever those may be, they will be assigned a constant in
the One True Logic. To be sure, the infinite-cardinality quan-
tifiers are invariant under isomorphisms, and as such, are gen-
eral: they do not distinguish between members of the domain.
But they carry with them all the metaphysical weight of con-
temporary set theory, and have understandably been deemed
problematic; see Bonnay (2008: Logicality and Invariance,
Bulletin of Symbolic Logic, 14, 29–68).

On the other hand, if a set-theoretic background is employed,
some assumptions regarding sets will invariably be made. Per-
haps some assumptions will be more metaphysically objection-
able than others, but it is debatable whether a strict line can be
drawn. In One True Logic, Griffiths and Paseau write that from
the point of view of ontology, “numbers and sets are as good
as each other or as bad as each other, or so it seems” (p. 180).
Logic, on this point of view, relies on the full set-theoretic hi-
erarchy, whatever that may be. They submit that there’s a firm
boundary between logic and mathematics (the former is gen-
eral and topic neutral and the latter is not), but this poses no
limitation on cardinality quantifiers.

However, the choice between drawing a strict boundary be-
tween acceptable and unacceptable set-theoretic entities and re-
jecting any such relevant difference between them is a false
one. A graded notion of logicality can account for the differ-
ence between quantifiers. On any occasion in which a system
for logic is called for (e.g. assessing arguments’ validity), one
fixes some terms as logical according to the level of metaphys-
ical or set-theoretic commitment one is willing to take on. The
idea would be that the more set-theoretic structure is required
in order to fix a term as logical, involving more metaphysical
assumptions, the less logical it is.

Contemporary set theory provides us with a possible mea-
sure, using the notion of the Löwenheim number of a logic;
see Sagi (2018: Logicality and Meaning, Review of Symbolic
Logic 11, 133–59).

Definition. Let L be a logic. The Löwenheim number of
L, `(L), is the least cardinal µ such that any satisfiable sentence
in L has a model of cardinality less or equal to µ if such exists.
Otherwise, `(L)=∞.

For example, by the Downward Löwenheim-Skolem Theo-
rem, the Löwenheim number of first-order logic is ℵ0. This
means that facts about validity and logical truth in first-order
logic, while defined on the full range of models, require only
models of size up to ℵ0 to be determined. Let L be first-order
logic, and L(Q) be first-order logic with the quantifier Q added
to its logical vocabulary. We measure the logicality of Q by
the Löwenheim number of L(Q). The higher the Löwenheim
number of a quantifier, a higher infinity of models is required
for determining logical facts involving Q—more set-theoretic
structure is needed and stronger metaphysical assumptions—
thus, the less logical it is. This measure takes L as a baseline,
and builds on it. Some examples:

◦ Let Qα be the unary monadic quantifier “there are at least
ℵα many”. We have `(L(Qα))=ℵα for each ordinal α.

◦ Let QW be the unary polyadic quantifier over binary re-
lations such that M |= QW xyϕ(x, y) iff ϕ(x, y)M is a well-
order. We have `(L(QW ))=ℵ0.
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◦ Let the Härtig quantifier I be the binary monadic quanti-
fier stating equal cardinality of sets: I is a binary monadic
quantifier such that M |= Ix(ϕx, ψx) iff |(ϕx)M | = |(ψx)M |.
`(L(I)) is very high, and is independent of ZFC. `(L(I)) is
a fixed point of the function α 7→ ℵα, and further, Magidor
and Väänänen showed that it is consistent with ZFC both
that `(L(I)) is under the first weakly inaccessible cardinal
and that it is above the measurable cardinal.

◦ Let Most be the binary monadic quantifier such that M |=
Most x(ϕx, ψx) iff |(ϕx)M\(ψx)M | < |(ϕx)M ∩ (ψx)M |. Then
we have: `(L(Most)) = `(L(I)).

◦ The logic Griffiths and Paseau argue the one true logic
must contain, L∞∞, is at the very (infinite) end of our spec-
trum, as `(L∞∞) = ∞.

(See Sagi 2018 for references and more examples).
We see that some everyday quantifiers (e.g. “Most”) have

complex set-theoretic ramifications in the higher infinite, which
may tell against fixing them as logical. To be sure, the proposed
measure is not the only consideration to appeal to when setting
a logical system—but it does provide a nuanced approach to
the problem of logicality in the set-theoretic setting.

Gil Sagi
University of Haifa

Early infinitary logic
Infinitary devices were used by
some of the most important pio-
neers of modern logic. This of-
ten goes unrecognised, since Be-
griffschrift (1879) and Principia
Mathematica (1910) involve only
finitary expressions, and are the
best known of the early systems of
modern logic. But a broader view
on the origins of modern logic can
serve as a corrective.

Following Boole, there emerged a tradition of algebraic
logic which included the school of logicians surrounding C.
S. Pierce. Previous algebraists provided algebraic treatments
of propositional logic and syllogistic, but with Pierce and his
followers we see algebraic treatments of quantificational logic
as we would recognise it today. Key innovations attributed to
Frege were achieved independently here—in particular, the iso-
lation of the quantifier and with it the capacity for multiple gen-
erality. The notation devised by Pierce’s school is strikingly fa-
miliar. Predications are written xi, with lowercase letters being
predicates and indices denoting individuals. Existential quan-
tifications are rendered Σixi, with Σ serving as an existential
quantifier (and Π as universal quantifier). As the symbols indi-
cate, quantification is understood in analogy to taking a disjunc-
tion (logical sum) or a conjunction (logical product) of claims:
Σixi is like an infinite sum xa + xb + xc + ... where a, b, c, ... are
all individuals in the domain (Pierce 1885: Algebra of Logic,
American Journal of Mathematics 7, 195). Where the domain
of discourse is infinite, Pierce stresses that quantification is not
identical with infinitary disjunction or conjunction; his scru-
ples were not shared by other algebraists. Schröder, the next
major figure in this tradition, is happy to use quantification
interchangeably with infinitary truth-functions (e.g. Schröder

1890–1905. Vorlesungen über die Alebra der Logik (3. vols).
Teubner. vol. 3, 10). Moreover Schröeder, Löwenheim, and
the early Skolem all explicitly countenanced infinitary expres-
sions (Moore 1990: Proof and the Infinite, Interchange 21(2),
49-51). The use of such expressions was not limited to the al-
gebraists. Zermelo and the early Hilbert are two other figures
who use of infinitary expressions in some capacity (cf. Moore
1990: 51–52). But early amicability towards infinitary devices
did not last. Hilbert later banned infinitary devices from his
metamathematics (Moore 1990: 51). Skolem came in 1922
to prohibit infinite expressions in trying to make precise Zer-
melo’s notion of a “definite proposition” used in his axiom of
separation (Skolem 1977: Some remarks on axiomatised set
theory. In van Heijenoort (ed.) From Frege to Gödel. Harvard.)
Even Tarski, who would later go on to be a great (re)habilitator
of infinitary devices, seems in the 1930s to have had little pa-
tience for them (Moore 1990: 53–54).

Why the change? The start of an explanation might go as
follows. Two conceptions of logic are seen in the writings of
modern logic’s early innovators. One is the picture of logic
as an algebra or calculus, the other is of logic as a language.
These are not contradictory, both owing something to Leibniz.
However in the algebraic tradition, where the picture of logic as
a calculus was emphasised, there likely did not seem anything
so objectionable about infinitary conjunctions and disjunctions.
After all, infinite sums and products are indispensable in other
areas of algebra; why object to their use in the algebra of logic?

Plausibly, the move away from infinitary expressions did not
arise from this algebraic current of thought, but from the current
that conceptualised logic primarily as language. This current
was delayed in its influence; Frege was its first definite figure,
and the unfavourable reception of Begriffsschrift, though per-
haps sometimes overstated (cf. Vilkko 1998: The Reception of
Frege’s Begriffsschrift, Historia Mathematica 25, 412–422) is
part of folklore. Perhaps less known is that Schröder wrote a
review of the book (Schröder 1880: Review of Frege’s Concep-
tual Notation. Zeitschrift für Mathematik und Physik 25, 81–
94). He argues that Frege’s system is no more powerful than
algebraic systems of logic, and notationally marks a step back-
wards. Schröder was mistaken on the specifics; he does not ad-
dress Frege’s treatment of multiple generality, which contem-
porary systems of algebraic logic lacked. But his argument is
not wrong in principle. As mentioned, in 1879 Pierce’s school
was within a few years of publishing algebraic systems of quan-
tificational logic that also handle multiple generality, with the
same expressive power as Frege’s system. Nevertheless, a dis-
tinguishing feature of Begriffsschrift was its presentation as a
formal language, rather than as an algebra. It is this innova-
tion which doubly ensures the importance of Frege’s system in
the history of logic. As the foundational crisis in mathemat-
ics took shape towards the end of the 19th century, so too did
the need for a systematic investigation of metamathematics. It
is little surprise that within this turn, a conception of logic as
just another calculus would be far less appealing than a more
distinctive conception of logic as a universal language in which
mathematical theories could be precisely formulated. Thus this
conception of logic came to eclipse the one adopted by the al-
gebraic tradition.

Infinitary logic makes less sense under a linguistic concep-
tion of logic than it does under an algebraic conception. In-
finitely long sums are common enough; infinitely long sen-
tences are not. So it makes sense that, prior to the development
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of rigorous treatments of infinitary formal languages, logicians
outside the algebraic tradition would be sceptical in temper-
ament. We see this above in the younger Tarski. We see it
also in Gödel who in one place criticises “the fiction that one
can form propositions of infinite (and even non-denumerable)
length”, going on to say:

[W]hat else is such an infinite truth-function but a
special kind of an infinite extension (or structure) [...]
with a hypothetical meaning, which can be under-
stood only by an infinite mind? (Gödel 1944: Rus-
sell’s Mathematical Logic in Schilpp (ed.) The Phi-
losophy of Bertrand Russell, Northwestern Univer-
sity Press, 142).

This attitude was only overcome via the formal investigation
of infinitary languages, which are now increasigly well under-
stood. One wonders to what extent the marginalisation of in-
finitary logic in the first half of the previous century has delayed
this understanding.

Michael Bevan
University of Colorado, Boulder

On One True Logic
If one takes the surface grammar
of mathematics at face value, set-
ting aside the entirety of natural
language, one sees a mixture of
logical idioms in play: first and
second order quantifiers, quanti-
fiers such as “there are infinitely
many”; the language is both re-
lational and functional; categori-
cal and set-theoretical terminology
can often lurk in the background;
a rejection of classical disjunction
occasionally emerges. Added to this is perhaps the most fre-
quently used logical idiom of all, namely “. . . ” as in “A1(x) ∧
A2(x) ∧ A3(x) . . .” formalised in infinitary logic by means of
(here) infinite conjunction or disjunction.

This seemingly harmless observation has the consequence
that any single logic will necessarily fail to be an adequate re-
construction of the discourse, on account of the logic’s being
committed to specific syntactic features, e.g. order of quantifi-
cation, etc. On the level of surface grammar, in other words, an
easy case can be made in favour of pluralism.

The ideology of “One True Logic,” presumably (this author
has not yet read One True Logic so this note is not to be read as
a commentary on that work) is that this linguistic motley of the
mathematician is, at best, illusory; that there is a unique logic
L which governs mathematical discourse and/or gives rise to
a logical formalism into which that discourse can be reformu-
lated. The motivation behind such formal reductions is well
known and goes back to the therapeutic foundational programs
of early 20th century, due, for example, to Hilbert.

This is the prescriptive approach. In this note I ask: what
if we take the surface grammar of the mathematician seriously,
and simply investigate the logical territory presupposed by the
mathematician’s natural language?

The territory is complex. If we hold up the mathematician’s
natural language against the various formalisations on the mar-

ket, one sees immediately the great sensitivity of these for-
mal systems, to even small perturbations on the side of syntax.
Moving from relational to functional languages causes 0 − 1
laws to fail; moving from second to first order quantification in
the formulation of arithmetic, induces a failure of categoricity,
and so forth. As a rule, formal systems tend to be in this sense
unstable.

It is an interesting if rather underappreciated feature of the
natural language discourse (of mathematics), that while to the
logician these perturbations of syntax are highly significant, the
discourse of the mathematician is unaffected by framework de-
cisions of this kind, i.e. it is stable with respect to perturbations
of syntax, or as this author calls it, formalism free. In terms of
the prescriptive approach, one would think that the One True
Logic would have to exhibit a similar stability in order for it
to count as capturing adequately our mathematical discourse—
never mind capturing human reasoning tout court.

There would be much to say here, impossible in the space al-
lotted. As it turns out though, luckily, there is something to say
beyond ideology: one can develop calculi to study syntax sen-
sitivity, and these calculi are of independent interest. One such
calculus is the following: a semantically presented mathemat-
ical object usually has a detectable underlying logic L, often
first order logic. One can changeL for another logic, and ask if
there is a change in the object. This tests the sensitivity of the
object to the syntactic elements of L. As an example, consider
Gödel’s constructible hierarchy L, which is built over first order
logic. By a result of Myhill and Scott, if one builds L over sec-
ond order logic, one obtains HOD, the hereditarily ordinal de-
finable sets, and these are (consistently) a different inner model
from the original L. Investigating L from this point of view has
proved revealing; see Kennedy, Magidor and Väänänen (2021:
Inner models from extended logics: Part 1, Journal of Mathe-
matical Logic 21, Paper No 2150012) and (2022: Inner models
from extended logics: Part 2, Journal of Mathematical Logic,
to appear). For example, Lindström’s characterisation of first
order logic displays anomalies in this setting: logics close to
first order are “misread” by L in the sense of yielding a dif-
ferent inner model, whereas logics far from first order accord-
ing to the Lindström characterisation, simply return L back,
i.e. L (mis)reads them as being first order; see Kennedy (2020:
Gödel, Tarski and the lure of natural language: Logical entan-
glement, formalism, freeness, Cambridge University Press).

A second calculus, based on the concept of symbiosis, aims
at studying the set-theoretical entanglements of a logic, in par-
ticular the entanglement of a logic with a concept of set theory
such as “x is countable,” “x is finite,” “x is a cardinal number,”
“x is the power-set of y”; see Väänänen (1979: Abstract logic
and set theory. I. Definability, in Logic Colloquium ‘78 (Mons,
1978), vol. 97 of Studies in Logic and the Foundations of
Mathematics, North-Holland, Amsterdam-New York, pp. 391–
421). With symbiosis one is able to detect whether a logic
“sees” the invariant content of a given set-theoretic predicate—
recognises, one might even say, its meaning. And on the other
hand the absoluteness of the logic is pinned to the absoluteness
of the predicate—whence the name “symbiosis.”

Recent debates concerning the comparative virtues of sec-
ond order logic vs. set theory, for example, decry the entan-
glement of set theory with second order logic—insofar as it is
admitted to exist at all; see Shapiro (1991: Foundations with-
out foundationalism, Oxford University Press). Whereas from
the symbiosis point of view, one can prove that second order

61

https://www.colorado.edu/philosophy/people/lecturers/michael-bevan


logic is actually symbiotic with the power set operation. Bald-
win (2018: Model theory and the philosophy of mathematical
practice, Cambridge University Press) gives a thorough anal-
ysis of the entanglement of infinitary logics with set theoretic
assumptions. Or to put it another way: it is useless to try to
separate second order logic from set theory.

This, together with the constructibility case, demonstrates
the difficulties involved in advocating a single formalism for
mathematical discourse. The natural language discourse of the
mathematician is entangled with various logics, and these en-
tanglements are hard to pull apart.

Juliette Kennedy
University of Helsinki

Infinitary logic in the finite

The study of the expressive power
of logics on finite structures is
an area of research in the inter-
face between mathematical logic
and computer science. A fi-
nite structure is an object A =

(A,R1, . . . ,Rn), where A is a finite
set and each Ri is a relation on A.
Every relational database can be
viewed as a finite structure. For
concreteness, the focus here will
be on finite graphs, that is, finite
structures of the form G = (V, E),
where E is a binary relation con-
sisting of the pairs of nodes in V connected via an edge. The
expressive power of a logic is gauged by its ability to express
properties of finite structures, where a property of finite struc-
tures, such as “connectedness” of a graph (i.e., “every two
nodes are connected via a path”), is identified with the collec-
tion of all finite structures possessing that property. Thus, given
a logic L and a property P, the question is whether or not there
is a sentence ψ of L, such that a finite structure A possesses the
property P if and only if A satisfies the sentence ψ (in symbols,
A |= ψ).

On the collection of all finite graphs, first-order logic FO
can express local properties, such as “every node has exactly
five neighbors” and “every two nodes are connected via a path
of length at most three”, but FO cannot express “connected-
ness” or any other such property that requires some form of
recursion to be computed. This limitation in expressive power
can be overcome by enhancing the syntax of FO with infinitary
connectives. Indeed, if ϕn(x, y) is a FO-formula expressing the
property “there is a path of length n from x to y”, where n ≥ 1 is
a fixed natural number, then “connectedness” is defined by the
expression ∀x∀y(

∨
n≥1 ϕn(x, y)). Note that

∨
n≥1 ϕn(x, y) asserts

that there is a path from x to y; the ancestor relation discussed
in Paseau’s article in this issue is an instance of this. Now,
the expression ∀x∀y(

∨
n≥1 ϕn(x, y)) is a formula of the infini-

tary logic L∞ω, the extension of FO obtained by augmenting
the syntax with disjunctions and conjunctions that may range
over sets of arbitrary cardinality. While L∞ω can make inter-
esting distinctions between infinite structures, it is too power-
ful to be relevant in finite model theory because every collec-
tion of finite structures closed under isomorphisms is definable
by a sentence of L∞ω. Indeed, if C is such a collection, then

C = {B : B |=
∨

A∈C ψA}, where ψA is a FO-sentence that de-
fines A up to isomorphism (i.e., for every structure B we have
that B |= ψA if and only if B is isomorphic to A – it is an
exercise in logic that such a FO-sentence ψA exists, if A is fi-
nite). Note that this property of L∞ω is a version of McGee’s
theorem in the finite – McGee’s theorem is discussed in Grif-
fiths’ article in this issue. Barwise (1977: On Moschovakis
Closure Ordinals, J. of Symbolic Logic 42(2), 292-296) intro-
duced the family Lω∞ω of the finite-variable infinitary logics
logics Lk

∞ω, k ≥ 1, consisting of all formulas of L∞ω with
at most k distinct variables (each of these k variables, how-
ever, may have infinitely many occurrences in a Lk

∞ω-formula).
The finite-variable infinitary logics were introduced to solve an
open problem about inductive definability on infinite structures,
yet they turned out to have numerous uses in finite model the-
ory.

The first important feature ofLω∞ω is that it can express “con-
nectedness”; more broadly, Lω∞ω can express every property of
finite structures definable in least fixed-point logic LFP, a pow-
erful extension of FO with a recursion mechanism; see Barwise
(1977: 292-296). To illustrate this feature, consider again the
property “there is a path of length n from x to y”, for some fixed
n ≥ 1. The FO-formula that immediately comes to mind for ex-
pressing this property uses n+1 distinct variables; for example,
“there is a path of length 4 from x to y” is expressed by the FO-
formula ∃z1∃z2∃z3(E(x, z1) ∧ E(z1, z2) ∧ E(z2, z3) ∧ E(z3, y)).
Yet, “there is a path of length n from x to y” can be ex-
pressed by a FO-formula θn(x, y) that uses just 3 distinct vari-
ables. The key idea is to systematically reuse variables to rep-
resent nodes in the path from x to y; for example, “there is
a path of length 4 from x to y” is expressed by the formula
θ4(x, y) =: ∃z(E(x, z) ∧ ∃x(E(z, x) ∧ ∃z(E(x, z) ∧ E(z, y)))). It
follows that “connectedness” is expressed by the L3

∞ω-formula
∀x∀y(

∨
n≥1 θn(x, y)).

The second important feature of Lω∞ω is that its expressive
power can be analyzed using combinatorial games; see Bar-
wise (1977: 292-296) and Immerman (1982: Upper and Lower
Bounds for Expressibility, J. Comput. Syst. Sci. 25(1), 76-98).
The k-pebble game, k ≥ 1, is played on two structures A and
B by two players, called Spoiler and Duplicator. Each player
has k-pebbles labeled 1, . . . , k. The Duplicator picks one of the
two structures and places on or removes from an element of the
structure one of their pebbles; the Duplicator then responds by
a similar move on the other structure using their pebble with
the same label. The Spoiler wins if at some point the mapping
ai 7→ bi is a not a partial isomorphism, where ai and bi are the
elements of A and B pebbled by the pebbles labeled i, 1 ≤ i ≤ k.
The Duplicator wins if they can maintain a partial isomorphism
in perpetuity. For example, if Kk is the k-clique (i.e., the com-
plete graph with k nodes), then it is easy to see that, for every
k ≥ 2, the Duplicator wins the k-pebble game on Kk and Kk+1,
while the Spoiler wins the (k + 1)-pebble game on Kk and Kk+1.
The pebble games characterize definability in the finite-variable
infinitary logics. Specifically, for every k ≥ 1, a collection C of
structures is definable by a sentence of Lk

∞ω if and only if for
all structures A and B, whenever A is in C and the Duplicator
wins the k-pebble game on A and B, we have that B is also in
C. As an immediate consequence, the collection of all graphs
containing a clique of size k + 1 is not definable in the logic
Lk
∞ω, while this collection is clearly definable in Lk+1

∞ω and, in
fact, in first-order logic with (k + 1) variables. Furthermore,
since least fixed-point logic LFP is subsumed by Lω∞ω, the peb-
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ble games provide a tool for showing that certain properties are
not expressible in LFP.

The last important feature ofLω∞ω discussed here is that a 0-1
law holds for Lω∞ω under the uniform measure; see Kolaitis and
Vardi (1992: Information and Computation 98(2), 258-294).
This means that for every sentence ψ of Lω∞ω, the asymptotic
probability limn→∞ µn(ψ) exists and either 0 or 1, where µn(ψ)
is the fraction of finite structures with n elements in their uni-
verse that satisfy ψ. For example, µ(connectedness) = 1, which
intuitively means that almost all finite graphs are connected.
The 0-1 law for Lω∞ω subsumes 0-1 laws for FO and LFP that
had been established earlier. Moreover, it delineates the bound-
ary of 0-1 laws for infinitary logics since the “even cardinality”
property (i.e., “the universe has an even number of elements”)
has no asymptotic probability, but it is expressible in L∞ω by
the sentence

∨∞
n=1 σ2n, where σ2n is the FO-sentence asserting

that the universe has 2n elements.
In conclusion, infinitary logic in the finite may appear at first

to be an oxymoron, yet a rich body of work can be produced
by focusing on the “right” fragment, namely the finite-variable
infinitary logics.

Phokion G. Kolaitis
University of California Santa Cruz and IBM Research

Frege’s infinite hierarchy of senses

‘Anna believes that Bob Dylan
won a Nobel Prize’ and ‘Anna
believes that Robert Zimmerman
won a Nobel Prize’ may differ
in truth-value. How’s that pos-
sible given that ‘Bob Dylan’ and
‘Robert Zimmerman’ refer to just
the same person? This is (a version
of) Frege’s puzzle, one of the most
important problems in the philoso-
phy of language. Frege’s own solu-
tion crucially involves ascribing to
an expression not only a reference
but also a sense, a way in which
the entity referred to is being presented. In the belief reports
above, we are, according to Frege, not so much asserting a re-
lationship between Anna and the unique musician who goes by
the names ‘Bob Dylan’ and ‘Robert Zimmerman’, but between
Anna and the two distinct senses these names express. This
solution, when generalized, has been taken to lead to an infi-
nite hierarchy of senses. This infinite hierarchy of senses, in
turn, has been taken to render a Fregean language unlearnable.
Learning just a single expression, so the objection goes, would
require a thinker to apply infinite cognitive resources. Luckily,
for Frege, this objection can be resisted. His account, when
properly developed, does not require an infinite hierarchy of
senses.

Where exactly is the infinite hierarchy supposed to come
from? Here’s the standard story, endorsed by most commen-
tators from Carnap to Kripke. It has three steps. First, Frege
postulates a reference shift for expressions occurring in the
‘that’-clause following an attitude verb. This is what allows
him to treat such contexts as extensional, a major selling point
of his account. In the example above, ‘Bob Dylan’ no longer
refers to Bob Dylan, but to the sense it ordinarily expresses.

Accordingly, since ‘Bob Dylan’ and ‘Robert Zimmerman’ dif-
fer in sense when occurring in ordinary (‘direct’ as Frege puts
it) contexts, they differ in reference when occurring in attitude
(‘indirect’) contexts. That they cannot be substituted for one
another salva veritate in indirect contexts then no longer counts
against the extensionality of these contexts. Second, if expres-
sions shift their reference in indirect contexts, they must also
shift their sense. After all, sense determines reference. So, in
the above example sentence, ‘Bob Dylan’ not only assumes an
indirect referent, distinct from its direct referent, but also an in-
direct sense, distinct from its direct sense. Third, note that we
can iterate attitude operators, as in ‘Berta believes that Anna
believes that Bob Dylan won a Nobel Prize’. If the business of
such operators is to induce a shift in sense and reference, the
reasoning continues, then each additional operator must lead
to an additional such shift. In a doubly indirect context, then,
‘Bob Dylan’ must refer to the sense it expresses in a singly in-
direct context. Accordingly, it must express yet another sense
(its doubly indirect sense). Further attitude operators will lead
to further shifts. Since we can always form a new sentence
by prefixing yet another operator, ‘Bob Dylan’ (and, of course,
any other expression) ends up associated with infinitely many
indirect senses.

Is this a fair price to pay for a simple, extensional account of
attitude ascriptions? Some have thought it prohibitively high. If
each expression comes with infinitely many senses, then fully
mastering even a single expression would take up infinite cog-
nitive resources, so that a language that works along the lines
described would be unlearnable (see Davidson (1965: Theories
of Meaning and Learnable Languages, in Inquiries into Truth
and Interpretation, 1984, Clarendon Press, 3-15)). However,
this argument assumes that the infinitely many indirect senses
associated with, e.g., ‘Bob Dylan’ are entirely independent of
one another and need to be learned piece by piece. But why
should this be the case? Burge (2005: Truth, Thought, Reason,
Clarendon Press, Ch. 4) and Kripke (2008: Frege’s Theory of
Sense and Reference: Some Exegetical Notes, Theoria, 181-
218) have suggested ways of rendering the hierarchy learnable.
What their approaches share is the assumption that the n-ly in-
direct reference of an expression determines its n + 1-ly indi-
rect reference: each direct sense (= singly indirect referent) is
presented by exactly one singly indirect sense (= doubly indi-
rect referent), which is presented by exactly one doubly indirect
sense (= triply indirect referent), and so on. The hierarchy of
indirect senses associated with, e.g., ‘Bob Dylan’ thus doesn’t
branch out as we move upwards but forms a single, straight col-
umn. On the Burge-Kripke view, there is then only two things
we need to grasp in order to understand ‘Bob Dylan’ in any
context it may occur in, no matter how indirect. First, we need
to grasp the expression’s direct sense, the sense at the foot of
the infinite column. Second, we need a (perhaps implicit) grasp
of a function or rule that gets us from a given sense in the col-
umn to the unique sense one level further up.

I think this approach succeeds in taming the infinite hierar-
chy. In doing so, it also renders the hierarchy entirely useless
though. For recall the theoretical pay-off of the original refer-
ence shift. The original shift allows us to say that two expres-
sions which co-refer in direct contexts (‘Bob Dylan’, ‘Robert
Zimmerman’) no longer co-refer in (singly) indirect contexts.
This works because the direct reference of an expression does
not determine its (singly) indirect reference. The two names
have the same direct reference, but not the same direct sense
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and thus, given the shift, not the same (singly) indirect refer-
ence. Now, in assuming that the n-ly indirect reference of an
expression determines its n+1-ly indirect reference, the Burge-
Kripke approach ensures, by its very design, that no further the-
oretical pay-off is to be had by any of the further shifts. On their
approach, any two expressions which co-refer in singly indirect
contexts also co-refer in doubly indirect contexts, and in triply
indirect contexts, and so on. While the initial shift from direct
to singly indirect reference allows us to draw more fine-grained
semantic distinctions, the additional shifts, e.g. from singly in-
direct to doubly indirect reference, have no such effect. But
then why even postulate these shifts at all? Why not simply say
that each expression is subject to a one-off reference shift when
placed in the scope of an attitude operator while prefixing fur-
ther such operators has no additional semantic effect on the ex-
pression? (See Skiba (2015: On Indirect Sense and Reference,
Theoria, 48-81) for an extended defence of this proposal).

If there is no use for the infinite hierarchy, we should only
accept it if, for some reason, we must. Some have thought
there to be such reasons. Burge (ibid.) takes a rejection of
the hierarchy to conflict both with certain principles govern-
ing sense composition as well as with the possibility of provid-
ing a recursive truth theory with certain desirable features for a
Fregean language. But both conflicts can be resolved (see Skiba
(2015: 63-75)). The most convincing rational reconstruction of
Frege’s theory of attitude ascriptions thus only requires one or
two layers of sense, depending on whether one takes the single,
one-off reference shift which actually pays a theoretical divi-
dend to be accompanied by a single, one-off sense shift. Either
way, the infinite hierarchy of indirect senses can and should be
avoided.

Lukas Skiba
University of Hamburg

Infinite reasoning and arithmetical undecidabil-
ity

Gödel’s first incompleteness theo-
rem shows that any suitably ax-
iomatized theory of arithmetic, if
it is sound (proving only truths),
fails to prove all the truths of arith-
metic. For such a theory T, we can
code syntactic information about
the theory itself into the language
of arithmetic, and construct T’s
Gödel sentence, GT. This is true if,
and only if, it is not provable from
the axioms of T. Hence, if there
were a T-proof of GT, T would
prove a falsehood. So if T is sound,
it does not prove GT, and GT is true. The second incomplete-
ness theorem and related results establish further limits on what
such theories can prove, including ConT, which is true if and
only if T is consistent.

We must distinguish propositions which are unprovable
merely in T from those which are absolutely undecidable. Ac-
cording to Gödel, ‘the epithet “absolutely” means that they
would be undecidable, not just within some particular ax-
iomatic system, but by any mathematical proof the human mind
can conceive’ (1951: Some basic theorems on the founda-

tions of mathematics and their implications, in Feferman et
al. 1995: Kurt Gödel: Collected Works Vol. III: 304–323).
The existence of absolutely undecidable arithmetical proposi-
tions would overturn the deeply-held convictions of some of
the greatest mathematicians of recent history (including Hilbert
and Gödel himself), and establish a limit on our ability to an-
swer mathematical questions that is far closer to home than the
distant reaches of higher set theory. In ‘Gödel’s Disjunctive
Argument’ (forthcoming in Philosophia Mathematica), I argue
that Gödel’s theorems, together with some other mathematics,
imply the existence of such propositions.

The implication is not immediate. According to Gödel, un-
decidable sentences such as GT and ConT are exactly as evident
as the axioms from which they are constructed (193?: Undecid-
able diophantine propositions, in Feferman et al. 1995: 164–
175). Consider, for example, PA (standard first-order arith-
metic), which we (presumably) know to be sound. By Gödel’s
second theorem, there is no PA-proof of ConPA. But we know
that if PA is sound, it is also consistent. So any evidence
we have for the soundness of PA is also evidence for ConPA.
Hence there is some theory which we know to be sound, namely
PA + ConPA, which does prove ConPA.

The incompleteness theorems, however, are really incom-
pletability theorems; PA + ConPA has its own consistency sen-
tence, which is true and unprovable in the strengthened theory.
But if we know that PA + ConPA is sound, we also know that
it is consistent, and the whole process starts up again. One
might wonder—in connection with the theme of this issue—
what happens if we repeat this process of reasoning, from truth
to consistency, infinitely many times? We would keep building
stronger theories, but would they remain forever incomplete?
And if so, would the consistency sentences for these theories
(and related propositions) really be exactly as evident as the
humble axioms of PA?

A reflection principle is a procedure for iteratively adding
new axioms to a theory, such that the soundness of the stronger
theories which result is an evident consequence of the sound-
ness of the initial theory. The Gödel sentence construction is
an example of one such principle: PA is sound, so PA + GPA is
sound, so PA + GPA + GPA+GPA is sound, and so on ad infinitum.
Interestingly, the result of infinite reflection for this principle
still results in a well-behaved axiomatic theory, PAω, obtained
from PA by ω-many iterated additions of the Gödel sentence
construction. PAω is subject to the incompleteness theorems;
its Gödel sentence, though true, is PAω-unprovable. But how
do we even formulate the Gödel sentence for a theory like PAω,
when the language of arithmetic does not include the symbol
‘ω’?

The question is an important one. Suppose φ is some sen-
tence the truth of which follows from the soundness of T. If
you don’t know that the truth of φ follows from the soundness
of T, then φ might fail to be exactly as evident as T for you. In
some cases, you might have independent evidence for φ which
makes it just as evident as the soundness of T. But if not, then
you could have a wealth of evidence for the soundness of T,
but no means of bringing it to bear in order to demonstrate φ.
Since the evidence that we have for the Gödel sentence of a
theory obtained by iterated reflection on PA piggybacks on our
ability to recognize that the theory is an extension of PA by it-
erated reflection, there is a real risk that the Gödel sentence of
a theory like PAω might turn out to be absolutely undecidable,
if we have no means of recognizing that sentence for what it is.
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In order to formulate Gödel sentences and consistency sen-
tences for theories which result from infinite reflection, we need
a mechanism to code information about the ordinals in the lan-
guage of arithmetic. The standard system for this is Kleene’s
O, which assigns natural numbers as “notations” for every com-
putable ordinal. Given the considerations above, the results of
infinite reflection will only be as evident as PA in the cases
where we can recognize that the numerical notation coding the
axioms of the theory does in fact stand for an ordinal in O.

In ‘Gödel’s Disjunctive Argument’, I identify a particular hy-
pothetical infinitary reasoning ability, relating to our ability to
enumerate O, or a part thereof. Using Feferman’s completeness
theorem, I show that if we have this ability, then there are no ab-
solutely undecidable arithmetical propositions. At some point
in a particular process of infinite reasoning, not only do all the
Gödel sentences and consistency sentences become provable,
but every arithmetical truth does. However, O is an exceedingly
complex subset ofN (it falls far short of being computably enu-
merable) and it would be, I argue, nothing short of miraculous
if we had the ability to recognize the right notations.

Indeed, the entire issue of absolutely undecidable arithmeti-
cal propositions turns on the delicate issue of which notations
we can “recognize”. I show that if all arithmetical truths are
provable, then we do indeed possess the infinitary reasoning
ability in question, because the provability of all arithmetical
truths includes the provability of those which encode the infor-
mation that certain numbers do stand for ordinals in O.

So, the evidence overwhelmingly favours the existence of ab-
solutely undecidable arithmetical propositions. Not only does
one strategy for establishing the absolute decidability of all
arithmetical truths fail, because it relies on the unjustified posit-
ing of a miracle. All routes to establishing the absolute decid-
ability of all arithmetical propositions are complicit. In the case
of arithmetic, infinite reasoning promises the greatest possible
reward: a complete number theory. Unfortunately, such infinite
reasoning goes beyond what is possible for creatures like us.

WesleyWrigley
London School of Economics and Political Science
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