
Draft Introduction to Philosophy of Mathematics, 5 volumes, Routledge Major Works, 2017, 

A.C. Paseau (ed.). Pages xiii–xxxii of Volume 1.  

 

INTRODUCTION 

Philosophy of mathematics  

Why philosophy of mathematics?  

An entire book could be written about why the philosophy of mathematics exists. Indeed it has, 

by the distinguished philosopher Ian Hacking, with the title Why Is There Philosophy of 

Mathematics At All? To cut Hacking’s long story short, there are two answers. The 

epistemological answer is based on the experience of doing mathematics. When we prove a 

mathematical proposition, be it a simple fact such as that 37 is prime or a sophisticated 

conjecture such as Fermat’s Last Theorem,1 we use only pure thought. We do not perform 

experiments; we do not investigate the historical record; we do not even need to look at the 

world before us. We could in principle determine that 37 is a prime number with our eyes shut, 

indeed without relying on any sensory information, using only our powers of reasoning. So 

how can pure thought give rise to mathematical knowledge? This question was stressed by both 

Plato in the early 4th century BC and, more than two millennia later, by Kant in the 18th 

century. In fact, Kant’s entire philosophy grows out of his answer to it, as in a way does Plato’s.  

The other reason the philosophy of mathematics exists is metaphysical, the question now 

being: how is it possible for the subject matter of mathematics to relate to the physical world? 

The objects of mathematics – numbers, geometric shapes, functions, sets – seem to hold 

universally, yet the objects themselves are nowhere to be found. However far, deep and wide 

you search our universe, you will not come across the number 2. What you will find are pairs 

of objects, though not the abstract quantity they have in common. So if not in space, where are 

numbers? Can non-physical entities even exist? Plato had an answer to these questions in 

keeping with his epistemology, and his pupil Aristotle had another. In fact, there would be no 

better way to explain the key difference between Plato’s and Aristotle’s philosophies than to 

begin with their disagreement over the nature of mathematics.  

In sketching why the philosophy of mathematics exists, we have mentioned three great 

philosophers: Plato, Aristotle and Kant. This is no coincidence. Coeval with philosophy itself, 

the philosophy of mathematics lies at its core. As soon as one begins to think about the nature 

of reality, the question of how mathematics fits into it becomes not just natural, but pressing.  

Historical division  

The five volumes you have before you comprise the most significant contributions to 

philosophical thought about mathematics. Although I have consulted several people formally 

and informally, the final selection is entirely mine. My working criterion for inclusion has been 

this. Suppose an English-speaking philosopher of mathematics were stuck on a desert island 

and could take with her only about 70 articles or book excerpts, totalling no more than 2,000 

pages. What would she take?  

To answer the question, one must appreciate why contemporary philosophy of mathematics 

is different from its pre-20th-century antecedents. One reason is that mathematics has become 

integral to science since the 17th century. Science has over the past few centuries become 

increasingly mathematical; indeed the fundamental science of nature, physics, is today 

                                                           
1 The claim that there are no solutions in positive integers x, y, z to xn + yn = zn for integer  

n > 2. Posed by Pierre de Fermat in 1637, a proof had to wait until Andrew Wiles (assisted by  

Richard Taylor) finally produced one in 1995.  
 



recognised as a branch of applied mathematics. The second reason is that mathematics 

underwent a transformation in the course of the 19th century: starting the century as a 

traditional-looking science of quantity, it ended it a radically transformed abstract theory of 

structure. The final factor in the transformation of the philosophy of mathematics is the rise of 

modern logic. Developed by Frege, Cantor and others in the late 19th century, modern logic 

pervades contemporary mathematics, philosophy and computer science. It has had an 

immeasurable impact on the philosophy of mathematics, as on philosophy more generally.  

In light of this history, we may broadly divide the historical evolution of the philosophy of 

mathematics into three periods. The first period is from its birth circa the 6th century BC up to 

the late 19th century, before mathematics had fully evolved into its modern form and before 

modern logic had been created. The second is the so-called golden age of the philosophy of 

mathematics, from the late 19th century to the mid-20th century. In this period, several 

important philosophies of mathematics were developed which in their scope, precision and 

mathematical detail surpassed anything previously seen. That leaves ‘contemporary’ 

philosophy of mathematics as the third and final (and ongoing) period. The period begins 

towards the middle of the 20th century, after modern mathematics and logic had evolved into 

roughly the form they take today.  

The structure of the anthology reflects this tripartite division. Volume I traces some key 

moments in the evolution of the philosophy of mathematics. We begin with Plato, the earliest 

philosopher whose extant body of work represents a coherent philosophy of mathematics. We 

conclude with a capstone to the historical evolution of mathematics and its philosophy during 

this first period: Albert Einstein’s 1921 lecture, which depicts the new mathematical landscape. 

Volume II picks up the story and showcases the principal philosophies of mathematics that 

emerged in reaction to 19th-century developments, from logicism to logical empiricism via 

intuitionism and formalism. Volumes III, IV and V are then devoted to contemporary issues. 

Each of them presents key works, mainly from the past 60 years, on the three principal topics 

that animate contemporary debate. Volume III is on the foundations of mathematics, set theory 

and structuralism. The selected papers investigate the metaphysics of modern mathematics and 

ask whether set theory is in some sense the true metaphysics of mathematics. Volume IV is 

concerned with the nature of mathematical justification, in particular proof. The papers in 

Volume V deal with the relation of mathematics to the natural world: what philosophical 

lessons can we draw from the fact that mathematics is applied in science?  

Selection  

Although historically and thematically wide-ranging, the collection does not pretend to either 

impartiality or comprehensiveness. I am all too aware that it reflects biases and predilections, 

however much I may have tried to mitigate them. Omissions of important material, both 

historical and contemporary, are unavoidable. A conscious example of a gap is the philosophy 

of mathematical practice, a movement only about a couple of decades old. The movement’s 

guiding thought is that the philosophy of mathematics should examine the detail of what 

mathematicians do; as a (usually intended) consequence, it distances itself from more 

traditional metaphysical and epistemological concerns. This movement is not much rep-

resented here, partly because to my mind it has not yet reached maturity. That said, several of 

the works in later volumes could be so labelled – e.g. Penelope Maddy’s magisterial 

contributions – since they are concerned with the fine grain of mathematical experience.  

My selection criterion also imposes a utilitarian constraint on historical work. Historical work 

in the philosophy of mathematics is included only to the extent that it resonates today, that it 

offers ideas, techniques or arguments for the contemporary philosopher of mathematics. A 

concomitant of this approach is that the summary of these five volumes sometimes lapses into 



Whig history. For our representative desert-island philosopher of mathematics, the value of a 

historical source is sometimes that it expresses the germ of an idea that was to flower centuries 

later.  

Another potential omission concerns non-Western philosophy of mathematics. The 

constraint that my desert-island philosopher is a speaker – reader – of English excludes a great 

deal of untranslated material in other languages. It also creates a presumption in favour of 

‘Western’ philosophy of mathematics, since this is the tradition best represented in the English 

language and in English-speaking culture. The constraint that the material must be a 

contribution to the philosophy of mathematics, as opposed to mathematics itself (which of 

course has an immensely rich ‘non-Western’ tradition) or other modes of reflection about 

mathematics – theological, sociological, educational and so on – also biases the collection in 

favour of, dropping scare quotes now, the Western tradition. I have searched for important non-

Western texts in the philosophy of mathematics, but in the end was unable to include any. 

Unhappily, I found that the translated work of many candidate authors falls between two stools. 

Umar Khayyām, for example, produced much important mathematics; witness, say, his 

commentary on Euclid, in which he tries to prove the parallel postulate, predating Saccheri’s 

work by many centuries. Khayyām also produced much work of philosophical and theological 

importance. But I could not find any English-language writings of his that satisfied me as 

falling under the heading of the philosophy of mathematics as (perhaps narrowly) understood 

today. Other writers are not sufficiently known to merit inclusion. My intended readership 

would not be well served by texts unknown to the majority of today’s philosophers of 

mathematics, students and professionals alike. I have construed my remit of canon compilation 

more descriptively than normatively, and have accordingly aimed to report rather than to 

reconfigure the philosophical conversation through the ages. It would of course be a mistake 

to think that all later philosophers in this anthology read earlier ones, to try to draw a simplistic 

narrative arc in which the future always logically builds on the past. Nevertheless, there is a 

strong unity to the tradition here represented, which ostensively defines the philosophy of 

mathematics as understood by a contemporary English-speaking philosopher.  

Prior philosophy of mathematics collections  

Of the prior English-language collections, the most famous are probably the two editions of 

Paul Benacerraf and Hilary Putnam’s Philosophy of Mathematics, published in 1964 and 1983 

respectively. The 1983 edition covers a good deal of the most important literature from the late 

19th century to the 1970s, and significantly overlaps with some of the works in the present 

anthology, in particular those in Volume II. Both these collections – mine and Benacerraf and 

Putnam’s – also overlap significantly with Jean van Heijenoort’s From Frege to Gödel, which, 

as its title indicates, focusses on the golden age and which was published in 1967. Other 

noteworthy collections include the historically wider-ranging From Kant to Hilbert, edited by 

William Ewald (1998); the state-of-the-art anthology Philosophy of Mathematics Today, edited 

by Matthias Schirn (1998); and the shorter set of readings Philosophy of Mathematics, focusing 

on the second half of the 20th century and edited by W.D. Hart in 1996. An advantage of the 

present collection is that its coverage is historically wider than any of the before mentioned; 

with the partial exception of the two Ewald tomes, it also goes deeper, and it is naturally more 

up to date.  

Volume I  

The first volume offers a historical introduction to the philosophy of mathematics, taking in 

some emblematic positions. We start with selections from Plato, Aristotle and Kant, as well as 

some representative early modern thinking about the nature of mathematics. We conclude with 



19th-century selections from Mill and Dedekind. The coda is Einstein’s 1921 lecture, which 

surveys the 19th-century revolution in mathematics, focusing on geometry in particular.  

However little it might otherwise have in common with Plato’s doctrines, Platonism in 

mathematics derives its name from Plato’s claim that the objects of mathematics are not 

spatiotemporal. In the selections from the Platonic dialogues we do indeed find their author’s 

conviction that mathematical Forms are immutable and outside space and time. The focus in 

these excerpts, however, is more epistemological than it is metaphysical. Plato propounds his 

theory of recollection (anamnesis) according to which knowledge of the Forms (in particular, 

of mathematics) derives from our soul’s acquaintance with them before physical birth.  

The passages also reveal an evolution in Plato’s thought: Plato’s mature view in The Republic 

that the mathematics of his day does not amount to proper knowledge goes against those views 

expressed in the Meno and Phaedo.  

The passages from Aristotle pinpoint his fundamental disagreement with his teacher, Plato. 

In the Metaphysics selection we find Aristotle’s general view that Forms are not independent 

of their instances: the bad does not exist apart from bad things, as he puts it in Book IX. When 

it comes to mathematics itself, Aristotle’s view is subtle and defies simple characterisation. But 

roughly speaking, on his metaphysics, what mathematicians investigate are certain properties 

of (real, instantiated) objects considered in the abstract – the attributes of things qua quan-

titative and continuous, as he puts it in Book XI. Although it would be anachronistic to call 

Aristotle an empiricist in the philosophy of mathematics, this line of thought certainly 

influenced later empiricists, including John Stuart Mill, as we shall see. Some of the excerpted 

passages (e.g. from Book III of the Physics or the selection from De Anima) also articulate 

Aristotle’s view that the infinite is potential rather than actual. In contemporary terms, the idea 

is that a sequence such as 0,1,2, … is infinite not in virtue of its terms existing as an actually 

realised infinite totality, but rather in virtue of being indefinitely extensible, meaning that one 

can continue the sequence beyond any given term. This potentialist conception of the infinite 

was to inspire late 19th- and 20th-century constructivists in the philosophy of mathematics, in 

particular the intuitionists Brouwer, Heyting and Dummett featured in Volume II.  

Although Descartes was a great mathematician and a great philosopher, his output in the 

philosophy of mathematics proper was meagre. The reason for including the short passage from 

the Discourse on Method here is that it expresses the foundationalist ideal in epistemology and 

by implication in the philosophy of mathematics. The precept to not accept anything as true 

unless it is evident has had an important influence in the history of mathematics and its 

philosophy, in particular in the choice of axioms and discussions of their status. The precept 

leads directly to some of the foundationalist programmes of the late 19th and early 20th 

centuries, covered in Volume II. In Locke and Berkeley we find classic expressions of early 

modern empiricist views of the nature of mathematics. Locke in particular distinguishes 

intuitive, demonstrative and other types of knowledge. The upshot for mathematics is that 

demonstrative mathematical knowledge consists in the perception of the agreement or 

disagreement of ideas by means of proof. The Lockean passages are also the locus classicus of 

their author’s conviction that human knowledge is derived ‘without the help of any innate 

impressions’—the so-called tabula rasa (blank slate) theory of the human mind. Mathematics 

was one of Bishop Berkeley’s lifelong interests, and he returned to it on several occasions. In 

the Principles of Human Knowledge, Berkeley cleaves mathematics in two, offering differing 

accounts of geometry and arithmetic. Later historians of mathematics have seen in Berkeley’s 

account of arithmetic one of the first manifestations of a formalist philosophy of mathematics. 

There is certainly much evidence for this interpretation, as witnesses Berkeley’s claim that ‘[i]n 

arithmetic therefore we regard not the things but the signs, which nevertheless are not regarded 

for their own sake, but because they direct us how to act with relation to things and dispose 



rightly of them’ (Principles of Human Knowledge, §122). In his discussion of geometry, 

Berkeley anticipates his famous critique of the calculus in the Analyst (1734).2 

Leibniz’s ideas about mathematics are scattered throughout his writings; it is a pity that he 

never synthesised them into a systematic whole. I have selected a few short pieces mainly with 

a view to illustrating Leibniz’s key idea of a universal characteristic, which he believed was 

‘a calculus more important than those of arithmetic and geometry’. The idea of a universal 

language into which mathematics – more ambitiously, all factual discourse – could be 

transcribed, and all its problems mechanically solved, is often traced back to these passages. It 

is an idea that flowered in the late 19th and early 20th centuries in the works of the logicist and 

formalist schools. In a broad sense it still animates contemporary mathematical logic and other 

formalisation programmes, even if we have learnt to live with the fact that there is no decision 

procedure for mathematics (see the discussion of Volume IV).  

If Diderot’s Encyclopedia of 1751 is the great literary project of the Enlightenment, the 

Preliminary Introduction to it may be regarded as its manifesto. The author of the Preliminary 

Introduction, Jean d’Alembert, a noted 18th-century mathematician, devotes several of its 

pages to mathematics and its place in the worldview of the French Enlightenment philosophes. 

Though 21 centuries separate Aristotle and d’Alembert, their philosophies are remarkably 

similar. According to the Enlightenment philosopher, the human mind via an operation of 

abstraction considers physical objects as divested of various sensible properties. The residual 

shaped extensions are then the subject matter of geometry; arithmetic and algebra arise as the 

sciences of the laws governing the shaped extensions’ relationships. The account of 

mathematical applications follows on naturally. We see, then, that in 1751 it was still tenable 

to understand mathematics as in some sense the quantitative science of space and time. That 

was about to change very soon.  

The monumental Critique of Pure Reason is Immanuel Kant’s answer to this question: how 

is synthetic a priori knowledge possible? By an analytic proposition, Kant understands one of 

the form ‘All As are B’ in which the concept of an A includes that of being a B, such as ‘All 

bodies are extended’ in Kant’s own example; a synthetic proposition is one that is not analytic.3 

A proposition that is a priori knowable is, broadly speaking, a proposition that is knowable in 

a way that does not require sense experience for its justification. Kant thought that the paradigm 

of synthetic a priori knowledge was mathematics, and that this created a major philosophical 

problem. How can one know something that is not a matter of conceptual necessity without 

relying on sense-experience?  

The Critique of Pure Reason, a magnificent testament to the reach and depth of philosophical 

thought, represents Kant’s attempt to answer this question. To explain how synthetic a priori 

knowledge is possible, Kant hypothesised that it is we who bring space, time, force, action and 

motion into our experience, and that we do so a priori—without the aid of any previous 

experience. In his terminology, we cognise the world using two distinct faculties. One is the 

faculty of sensibility, which moulds the raw matter of sensory experience into spatiotemporal 

form. The other is the faculty of understanding, which brings the intuitions produced by the 

sensibility under pure concepts. The so-called forms of intuition (due to the faculty of 

sensibility) and the pure categories (due to the faculty of understanding) are the means by which 

we organise the raw sensory input of a world that cannot be known in itself into a coherent 

                                                           
2 Berkeley’s differentiated philosophy of mathematics may also be found in his later 

Alciphron (1732). 
3 Today, those who accept the analytic-synthetic distinction, questioned by Quine in the 20th 

century (see Volume V), would characterise analytic truths as true in virtue of meaning, and 

synthetic truths as true but not solely in virtue of meaning.  
 



law-governed spatiotemporal reality. The exercise of this capacity in the absence of sensory 

data is the domain of pure mathematics, and explains how we can know synthetic propositions 

a priori. A notable consequence of Kant’s conviction that space is a construct of the human 

sensibility is that space must conform to the laws of Euclidean geometry. This implication of 

Kant’s position was confuted by later developments in mathematics and physics, as Albert 

Einstein’s lecture at the end of this volume makes clear. Readers new to Kant’s philosophy of 

mathematics may wish to start with the excerpt from Kant’s 1783 Prolegomena, which 

introduces Kant’s thinking about mathematics, before moving on to the passages from the 

Critique of Pure Reason.  

John Stuart Mill’s A System of Logic, published in 1843, is a high-water mark in the history 

of empiricism. In a nutshell, and to simplify somewhat, Mill construes mathematics as what 

we today would call natural science. Mathematical knowledge is a form of empirical or 

scientific knowledge, only more general. Indeed, as Mill sees it, all so-called deductive sciences 

are in fact inductive. As for the objects of mathematics, they are ultimately physical; for 

example, the proposition that 1 + 2 = 3 expresses the physical fact that conjoining a 1-mem-

bered collection and a 2-membered collection yields a 3-membered collection (of physical 

objects).  

Dedekind’s ‘On the nature and meaning of numbers’ answers a natural question that had 

arisen towards the end of the 19th century. Over the course of the century, analysis had been 

‘arithmetised’, and in particular real numbers (rational numbers and irrational numbers such as 

√2 or ) had been shown to be constructible from natural numbers (0,1,2,3. . .) by set-theoretic 

means. So the question becomes this: how does one account for natural numbers themselves? 

Are they fundamental, or are they also constructed somehow? Dedekind in this essay provides 

his own answer to this question, and set outs the first axiomatisation of arithmetic, about 2,200 

years after Euclid’s axiomatisation of geometry. This axiomatisation is usually erroneously 

named after Peano, who elaborated it (fully acknowledging Dedekind as its source).  

We end Volume I with Einstein’s 1921 lecture. This lecture is less an original piece of 

philosophy than a summary of the new way of thinking about geometry in particular and 

mathematics in general that had emerged at the start of the 20th century. According to this new, 

and today still orthodox, conception, pure geometry is concerned with mathematical spaces 

(typically set-theoretic structures of a certain sort). In geometry we deduce consequences from 

stipulated axioms. In particular, any collection of objects constitutes a geometry so long as it 

satisfies the axioms in question. As far as pure geometry is concerned, Euclidean space is thus 

just one space among many: it satisfies the axioms of some geometries, but not those of others. 

As a consequence, there is no sense in asking which is the ‘correct’ pure geometry. In contrast, 

applied or physical geometry is about our actual space. Its methods are the methods of physics, 

and the geometric structure of our spacetime is a question inseparable from other physical ones, 

addressed by theories of gravitation and electromagnetism. In answer to this question, Einstein 

points out that physical space is most likely curved and therefore non-Euclidean.  

Volume II  

On display in the second volume are some of the jewels of the golden age of the philosophy of 

mathematics. We divide this era into four broad movements: logicism, intuitionism, formalism 

and logical empiricism.  

The volume begins with Frege, often regarded as the first ‘modern’ philosopher of 

mathematics. Frege was also famously a logicist about arithmetic and analysis. Logicism is the 

thesis that mathematics is logic. Logicism about a particular branch of mathematics takes its 

objects, if any, to be logical objects; mathematical knowledge (of that branch) to be logical and 

its truths (falsehoods) to be logical truths (falsehoods). In his Foundations of Arithmetic of 



1884, Frege tried to argue for his brand of logicism both positively and negatively: negatively 

by arguing that previous non-logicist accounts of arithmetic and analysis were flawed, and 

positively by arguing that arithmetic – and, more summarily, analysis – are logical. He sought 

to establish the conclusion that arithmetical truths are a certain kind of logical truth by 

demonstrating that (i) the axioms of arithmetic are logical, and (ii) inference steps preserve the 

property of being a logical truth.  

Frege’s official logicist strategy in the Foundations of Arithmetic is based on Basic Law V, a 

principle about extensions (his word for what we would now call sets) not stated as such in 

Foundations of Arithmetic, and which in modern notation would be formulated as:  

Ext (F) = Ext (G)  F  G,  

where ‘F  G’ means that every instance of an F is an instance of a G and vice versa. For 

example, the extension of the concept of a crow is the same as the extension of the concept of 

a raven if and only if any instance of a crow is an instance of a raven; since as a matter of fact 

crows and ravens don’t share all their instances (the two concepts are not extensionally 

equivalent), the concepts have different extensions. This logicist strategy occupies sections 68–

83 of Foundations of Arithmetic. In this book Frege says surprisingly little about extensions; 

his theory of extensions comes later, in Basic Laws of Arithmetic (Volume I: 1893; Volume II: 

1903). The Fregean samples in Volume II present his positive philosophy of mathematics in 

Foundations of Arithmetic, and the key ideas, definitions and early proofs in Basic Laws of 

Arithmetic, using the recent first full English translation of the text. We conclude the Fregean 

sections with Bertrand Russell’s letter to Frege, in which he informed Frege of the 

inconsistency of Basic Law V, followed by Frege’s remarkable reply. This dramatic exchange 

speaks for itself and marks the passing of the logicist torch from Frege to Russell and A.N. 

Whitehead.  

Russell and Whitehead circumvented the inconsistency of Basic Law V by formalising a 

ramified ‘type theory’, which employs propositional functions in place of Frege’s extensions. 

Each object of the theory is assigned a logical type, and a propositional function can only take 

arguments from a lower type in the hierarchy. In particular, a function can never take arguments 

of the logical type to which it belongs; the implication is that constructions such as the set of 

all sets that are not members of themselves (the ‘Russell Set’) are inadmissible in the logic of 

Principia Mathematica. Despite the historical importance of Principia Mathematica, the theory 

of propositional functions is mathematically unwieldy, and has been for the most part eschewed 

by mathematicians in favour of set theory (see Volume III).  

The last three articles in the logicist section are critical pieces. The first, by (Jules) Henri 

Poincaré, sometimes known under its alternative title, ‘The last efforts of the logisticians’, is a 

take-no-prisoners polemic targeted at logic’s role in mathematics in general and logicism in 

particular. Poincaré develops a circularity objection against logicism. This argument has 

several strands, the most prominent of which are perhaps these: how can logic found arithmetic 

if recursive definition is required to state the logical principles and rules on which arithmetic 

is supposedly founded? And how can we can convince ourselves that a logicist (or any other) 

system is consistent without an argument that relies on the principle of mathematical induction, 

thereby rendering the epistemology of logicism reliant on that of arithmetic?  

Moving forward in time, we include a late 20th-century article by Crispin Wright, the best-

known contemporary neo-logicist. Strictly Fregean logicism is not viable, as we saw, since its 

theory of extensions is inconsistent. The publication of Crispin Wright’s Frege’s Conception 

of Numbers as Objects in 1983 led to a resurgence of interest in a broadly Fregean logicism 

based on Hume’s Principle. Hume’s Principle states that  



Number (F) = Number (G)  F ~ G,  

where F ~ G abbreviates the claim that there is a correspondence from the Fs to the Gs that is 

both one-one and onto, i.e. it associates each F to a single G in such a way that no two Fs are 

associated with the same G and every G is associated with some F. Thus the number of crows 

equals the number of ravens if there is a one-one and onto correspondence between the crows 

and the ravens. In light of the fact that Hume’s Principle is consistent and sufficient for deriving 

the basic principles of arithmetic in a second-order setting, neo-Fregeans have argued that it is 

the correct foundational axiom for logicism about arithmetic. Crispin Wright advocates this 

position in his 1997 article and summarises the (then) state of play. The 20th-century American 

logician and philosopher George Boolos4 provides a penetrating critique of this revived version 

of Frege’s logicism. Although a fair amount of ink has been spilled over neo-Fregeanism since 

the late 1990s, we have scarcely moved the opposing positions elegantly staked out by Wright 

and Boolos, at least with regard to the main philosophical points.  

The next section presents readings by proponents of intuitionism, a radical philosophy of 

mathematics dreamt up in the first half of the 20th century by L.E.J. Brouwer, a brilliant Dutch 

mathematician also known for his contributions to topology. Brouwer’s difficult prose is set 

alongside that of his disciple Arend Heyting. The third entry in this trio, by Michael Dummett, 

is a late 20th-century swansong to intuitionism. It represents Dummett’s impressive, though 

ultimately unsuccessful, attempt to revive intuitionism by shifting its foundation from meta-

physics to the philosophy of language. So what is intuitionism? In a succinct formulation, the 

intuitionist’s credo is this:  

Mathematics deals with constructions. In particular, the truth of a statement consists in 

the existence of a construction establishing it, and the falsity of a statement consists in 

the existence of a construction establishing its absurdity. There is no logical reason to 

assume that for any statement there is a construction establishing its truth or absurdity. 

Hence neither bivalence nor the law of excluded middle is assumed. Constructions are 

not to be identified with proofs in some formal system. In addition, the completed 

infinite is an illusion: infinities are only potential. An infinite sequence is one that may 

be indefinitely iterated rather than one all of whose members are in some illusory sense 

predetermined.  

This foundational philosophy leads intuitionists to reject not just standard mathematics but also 

standard logic. In particular, intuitionists do not accept the principle that either A is the case or 

not-A is the case (the law of excluded middle). Although intuitionism has not been adopted by 

the mathematical community, it marks an exciting moment in the philosophy of mathematics. 

For the first time in history a philosophy of mathematics motivated a systematic alternative to 

mainstream mathematics.  

The next two articles are on formalism, usually regarded as the third of the ‘big three’ golden-

era philosophies of mathematics alongside logicism and intuitionism. ‘On the infinite’ is 

emblematic of Hilbert’s mature, instrumentalist and part-formalist philosophy, which gave rise 

to a mathematical research programme known as Hilbert’s Programme. Hilbert divided 

mathematics into two: finitary (or real or contentual) and ideal (or infinitary) mathematics. The 

finitary portion consists of the basic parts of arithmetic; the rest of mathematics makes up the 

ideal portion. The finitary/infinitary distinction was intended by Hilbert to mirror the observa-

tion/theory distinction in natural science. Infinitary mathematics is an instrument for deriving 

                                                           
4 Not to be confused with the 19th-century English logician, philosopher and mathematician 

George Boole. 



finitary truths and has no intrinsic value of its own. Showing by finitarily acceptable methods 

that ideal mathematics is consistent—or, potentially more strongly, that it does not prove any 

false finitary statements—was the programme’s goal. Hilbert’s programme is generally 

thought to have been scuppered by Gödel’s incompleteness theorems, proved in his famous 

1931 article that opens Volume IV.5 Gödel’s second incompleteness theorem implies that 

finitary mathematics cannot even prove its own consistency, never mind its consistency with 

ideal mathematics appended. Bill Tait’s ‘Finitism’ from 1981 further elucidates the nature of 

Hilbert’s programme, brings to bear on it logical methods not available in Hilbert’s time and 

imbues it with deeper philosophical clarity and precision.  

Volume II ends with some selections from logical empiricists. A.J. Ayer’s Language, Truth 

and Logic is a classic of popular philosophy. It more than makes up for what it lacks in 

originality – the book was the young Ayer’s dispatches from philosophical Vienna – with its 

style and verve. In Chapter IV, Ayer sets himself the task of accounting for necessary truths, 

in particular ‘the truths of formal logic and mathematics’, from empiricist principles. Rejecting 

Mill’s empiricist account and Kant’s characterisation of mathematical truths as synthetic (both 

expounded in Volume I selections), Ayer proposes that mathematics is made up of analytic 

truths. According to Ayer, analytic truths are the product of linguistic convention, and so to 

deny a mathematical truth is to contradict oneself. It also follows that mathematical truths are 

devoid of factual content. Moritz Schlick makes a similar point in his entry, with more stress 

on the anti-Kantian implications of the theory and a greater focus on the nature of geometry. 

The final article is Rudolf Carnap’s ‘Empiricism, Semantics and Ontology’, which arguably 

represents a more mature version of logical empiricism. Carnap in this article draws a now 

famous distinction between internal and external questions. To paraphrase Carnap, questions 

of the existence of certain entities within a framework are internal; questions concerning the 

existence of a system of entities as a whole are external questions. Thus to ask whether there 

is a prime number between 1010 and 1010 + 10 is to pose an internal question, but to ask whether 

there are numbers at all—to ask that question in a way that does not admit a trivial answer such 

as ‘Yes, of course, since 0 and 1 and 2 etc. exist’—is to pose an external question. Typically 

mathematicians ask internal questions, whereas philosophers are interested in external 

questions. According to Carnap, internal mathematical questions, if answerable at all, are 

answerable using the rules of the framework, i.e. mathematics. In contrast, external questions 

such as ‘Do numbers exist?’ are practical rather than theoretical. Fundamentally, what such an 

external question asks is whether we should adopt the framework of standard mathematics. 

Carnap’s distinction between internal and external questions was later criticised by W.V. Quine 

in ‘Two Dogmas of Empiricism’ (reproduced in Volume V) and elsewhere.  

Volume III  

The topic of the third volume is the foundations of mathematics. Set theory is widely 

acknowledged to be a foundation for mathematics, by mathematicians and philosophers of 

mathematics alike. But a foundation in what sense? The third volume presents answers to this 

question, examines the justification for the axioms of set theory, and also considers arguments 

for alternative foundations of mathematics.  

We begin with Ernst Zermelo’s 1908 article, on whose system today’s standard version of 

set theory, Zermelo-Fraenkel-Choice (ZFC), is based. ZFC effectively consists of the axioms 

                                                           
5 But see my ‘Mathematical Instrumentalism, Gödel’s Theorem and Inductive Evidence’, 

Studies in the History and Philosophy of Science 42 (2011), pp. 140–9, for a re-evaluation of  

that conclusion from an instrumentalist perspective.  
 



Zermelo introduced in this paper, plus a later addition by Fraenkel (the Axiom Scheme of 

Replacement) and a more precise understanding of what Zermelo meant by a ‘definite 

property’. Although this work is not in the philosophy of mathematics proper, it earns its place 

in the volume as a cornerstone of contemporary metaphysics of mathematics.  

Paul Benacerraf’s ‘Mathematical Truth’ in a sense defines contemporary philosophy of 

mathematics. Benacerraf in this article presents a dilemma for any philosophy of mathematics. 

Anyone who takes mathematical language at face value and interprets it as akin to the rest of 

language faces an epistemological problem: how do we know mathematics? Alternatively, if 

one opts for a plausible epistemology of mathematics, then the semantics of mathematics – the 

interpretation of its claims – becomes problematic. The other piece by Benacerraf, the third 

entry in this volume, can be seen as a response to the second article, extracted from Quine’s 

1960 book Word and Object. Quine in this chapter develops a philosophical justification for 

taking the objects of mathematics to be sets. His celebrated pursuit of ontological economy – 

preferring to posit as few entities as possible to get the job done – finds crisp articulation in 

these pages. Benacerraf’s response in ‘What Numbers Could Not Be’ is to take issue with the 

idea that numbers could be discovered to have been sets all along. Benacerraf’s famous paper, 

which set the scene for the structuralist philosophies of mathematics of the past 50 years, 

consists of two arguments. The first is supposed to establish that numbers are not sets, the 

second that numbers are not objects. From the second conclusion, Benacerraf apparently infers 

a form of structuralism about arithmetic. Although the second argument is somewhat opaque, 

the first is clear. Take the number 2. Arithmetic can be interpreted in set theory in different 

ways. On the von Neumann interpretation, 2 is construed as {Ø, {Ø}}, the set consisting of the 

empty set and its singleton. On the Zermelo interpretation, 2 is construed as {{Ø}}, the 

singleton of the singleton of the empty set. But 2 cannot be both {Ø, {Ø}} and {{Ø}}, since 

these two sets are distinct. Hence, Benacerraf concludes, the number 2 is not a set. The 

argument generalises, apparently showing that one cannot reduce any part of mathematics to 

set theory. Although critics have generally not found the argument convincing,6 they are 

nevertheless agreed that Benacerraf has set an important challenge for the idea that all of 

mathematics is set theory in disguise.  

Chapter 2 of Penelope Maddy’s Realism in Mathematics follows on neatly from Benacerraf’s 

‘Mathematical Truth’. Maddy in these pages attempts to directly answer Benacerraf’s 

challenge by arguing on the basis of neurological and developmental evidence that we can, in 

fact, perceive certain types of sets. The penultimate piece in the volume, by the Cambridge 

philosophers Alex Oliver and Timothy Smiley, picks up on Zermelo’s remark in the first entry 

that, properly speaking, the empty set is not a set. Basing their arguments on ideas developed 

in their study of the plural idiom of natural language,7 they give Zermelo’s thought a run for 

its money and thereby propose a novel metaphysics of set theory.  

Eliminative structuralism is Charles Parsons’ label in ‘The Structuralist View of 

Mathematical Objects’ for the version of structuralism that construes mathematical theorems 

as universally quantified claims conditional on axioms. The basic idea is that instead of 

interpreting ‘1 + 2 = 3’ as an assertion about numbers, one should interpret it (roughly) as ‘in 

any structure instantiating the axioms of arithmetic, the function representing addition takes 

the second element (the first being the element representing zero) and the third element to the 

fourth element’. By the axioms of arithmetic what is usually meant is some version of Peano’s 

                                                           
6 My own diagnosis of where it goes wrong can be found in ‘Reducing Arithmetic to Set 

Theory’, in Ø. Linnebo & O. Bueno (eds), New Waves in Philosophy of Mathematics 

(Palgrave Macmillan, 2009), pp. 35–55. 
7 See their Plural Logic (Oxford University Press, 2013).  

 



axioms; the account is eliminative because it avoids reference to mathematical entities. The 

problem with this simple version of structuralism—perhaps the one intended by Benacerraf in 

the positive part of ‘What Numbers Could Not Be’—is twofold. First, if there are no structures 

instantiating the axioms of arithmetic, then all arithmetical statements come out vacuously true; 

this is because a claim of the form ‘For all As it is the case that. . .’ is true if there are no As. 

Second, if such structures exist only contingently, arithmetical statements will only be con-

tingently true. Yet arithmetic, it seems, is necessary.  

The sixth, eighth and ninth entries in Volume III – by Hilary Putnam, Geoffrey Hellman and 

David Lewis respectively – represent different reactions to these problems. The Putnam and 

Hellman pieces should be read in conjunction, as the latter is a development of the former. 

Hellman’s Putnam-inspired idea is to reformulate eliminative structuralism so that it interprets 

a claim such as ‘1 + 2 = 3’ as ‘necessarily, in any structure instantiating the axioms of 

arithmetic, the function representing addition takes the second element (the first being the 

element representing zero) and the third element to the fourth element’. The supplementary 

hypothesis underpinning the account is that it is possible for some structure to instantiate the 

axioms of arithmetic. Hellman’s 1989 book, Mathematics Without Numbers, from which the 

introduction and first chapter are here reproduced, develops an account along these lines, 

generally known as ‘modal-structuralism’, in great detail and sophistication. This work can be 

seen as a high point of the philosophical unfolding of the slogan that mathematics is the study 

of abstract structure. A different fork in the structuralist road is taken by David Lewis in 

‘Mathematics is Megethology’, ‘megethology’ meaning the theory of size. Lewis interprets 

mathematics structurally without a modal element, and avoids the vacuity and contingency 

problems by positing an appropriately large amount of necessary abstract objects. The article 

by Parsons and the second one by Hellman, the eighth and tenth entries, are authoritative 

surveys of the varieties of structuralism in contemporary philosophy of mathematics.  

The final piece, by Øystein Linnebo and Richard Pettigrew, is sui generis in the context of 

this volume and anthology. The orthodox picture of mathematics that emerged in the middle 

of the 20th century is this: mathematics is about sets; ZFC set theory, or some extension-cum-

refinement of it is the correct theory of sets and the rest of mathematics (e.g. group theory or 

number theory) is interpreted structurally within set theory. One challenge to this picture comes 

from category theory. Created by Samuel Eilenberg and Saunders Mac Lane in the 1940s, cat-

egory theory unifies a good deal of mathematics in one fell swoop. By taking a bird’s-eye view 

of the subject, it perspicuously describes conceptual connections and recurring patterns. 

According to some, category theory’s importance also lies in the fact that it suggests an 

alternative picture to orthodox set-theoretic foundationalism. In their article, Linnebo and 

Pettigrew briefly survey some of the various category theories in the literature and present one 

– Lawvere’s ETCS – with a philosophical audience in mind. Their article dissects the notion 

of a foundation for mathematics, presents the by-now standard arguments for and against cat-

egory-theoretic foundations, and pinpoints the philosophical issues trenchantly. This final piece 

leaves us with a more sophisticated understanding of the pressures set theory faces as a 

foundation for mathematics.  

Volume IV  

Mathematics is thought to differ from the empirical sciences (physics, chemistry and so on) in 

two important ways. As stressed in the readings in Volume III, the first difference is 

ontological: the objects of mathematics are standardly thought to be abstract, whereas the 

empirical sciences are typically concerned with concrete entities (as well as abstract ones). The 

second presumed difference is epistemological: whereas the empirical sciences employ 

inductive (as well as deductive) methods, mathematics employs only deductive methods. 



Mathematics, in short, is based on proof. Volume IV concentrates on this apparently distinctive 

aspect of mathematics.  

The volume begins with two articles by the Austrian-born logician Kurt Gödel. Although 

Gödel was not the founder of logic, nor even of modern logic (Frege, if any single person, 

deserves that title), his incompleteness results of 1931 are undoubtedly one of its highest 

achievements. The first entry in Volume IV is accordingly Gödel’s original 1931 article, in 

which he proved his first incompleteness theorem and sketched the argument for the second. 

In a concise, fairly informal formulation that incorporates a further improvement by J. Barkley 

Rosser, the first incompleteness theorem states that in any consistent logical system whose set 

of theorems may be mechanically generated (i.e. generated using some algorithm) and which 

is strong enough to carry out basic mathematics, there is at least one proposition A expressible 

in the language of the system such that A is neither provable nor refutable in the system. In 

other words, to put it even more informally, any decent logical system for mathematics is 

incomplete. The second incompleteness theorem affirms (roughly) that any such system will 

also be unable to prove its own consistency. Prior to Gödel, mathematicians such as Leibniz 

and Hilbert had hoped that a single axiomatisation of mathematics might suffice to prove all 

mathematical truths and to refute all mathematical falsehoods. Their great hope had been the 

decidability of mathematics: find a single decision procedure – an algorithm or mechanical 

procedure of some sort – such that any given mathematical problem could be fed into it and, 

after a finite amount of time and with no further input, the procedure would terminate and 

return the answer Yes if the statement is true and No if the statement is false. One of the 

consequences of Gödel’s first incompleteness theorem is that no such decision procedure exists 

for mathematics, at least given the Church-Turing Thesis, which equates the informal notion 

of a decision procedure with a precise mathematical one.  

Gödel’s ‘What is Cantor’s Continuum Problem?’ can be read as his own reaction to the 

incompleteness results. Although his first theorem implies that completeness in mathematics 

cannot be attained within a single system, it does not exclude the possibility that any 

mathematical question of interest can be answered in some system or other. In fact, this is 

precisely what Gödel proposes in his 1964 article by arguing that there is a coherent way to 

extend the axioms of set theory so as to progressively increase their deductive power. It was 

Gödel’s earnest hope that this large cardinals programme (as it has come to be known) would 

allow us to settle any mathematical question using some system in the hierarchy of 

progressively stronger set theories. By Cantor’s Continuum Problem, by the way, Gödel means 

the Continuum Hypothesis, first conjectured by Georg Cantor, the founder of set theory, in the 

1870s. It is a consequence of Cantor’s development of set theory that infinities come in 

different sizes (known as alephs). The Continuum Hypothesis is the conjecture that the size of 

the real numbers is the next one up from the smallest infinite size (aleph-null), that of the natural 

numbers. It has been known since the 1960s that the Continuum Hypothesis is neither provable 

nor refutable in ZFC set theory.  

Daniel Isaacson’s ‘Arithmetical Truth and Hidden Higher-Order Concepts’ is another 

philosophical reaction to Gödel’s first incompleteness theorem. Gödel’s theorem implies that 

the standard predicate logic formalisation of arithmetic, known as Peano Arithmetic (PA),8 is 

incomplete. It is noteworthy, however, that the statements in its language that PA is unable to 

prove or refute tend to be of a ‘metamathematical’ character.9 The classic example is the Gödel 

sentence, intuitively interpretable as ‘I am not provable in the system PA’. The Gödel sentence 

                                                           
8 Erroneously, as noted in our discussion of Dedekind.  
9 A statement that is neither provable nor refutable in the system is known as an undecidable 

statement. The term derives from the – not always accurate – idea that provability in a system 

amounts to decidability. 



is metamathematical rather than straightforwardly mathematical because it is a statement 

which, on this understanding, is about a system of arithmetic rather than about numbers 

themselves. Isaacson argues that though incomplete in the logician’s sense, PA is complete in 

an epistemologically important sense: it proves all and only the truths of arithmetic that are 

directly arithmetical rather than metamathematical. As Isaacson puts it more precisely himself, 

it proves all and only ‘those truths which can be perceived as true directly from the purely 

arithmetical content of a categorical conceptual analysis of the notion of natural number’. 

Along with other contributions to our anthology, his article exemplifies what the philosophy 

of mathematics can achieve when it marries philosophical sensitivity with a deep understanding 

of the relevant mathematics.  

Euclid’s Elements (c. 300 BC) came to be seen as an ideal of mathematical method: in 

mathematics we start with self-evident axioms, and via watertight deductive reasoning derive 

theorems. This ideal still holds sway today, with the difference that axioms are no longer 

required to be self-evident. Reflecting on the Euclidean paradigm, one might naturally wonder: 

where do the axioms come from? In particular if, as some of the pieces in Volume III argue or 

presuppose, set theory is the foundation of modern mathematics, where do its axioms come 

from? George Boolos in ‘The Iterative Conception of Set’ addresses precisely this question. 

Boolos argues that the iterative conception of set justifies most, but not all, the ZFC axioms. 

According to the iterative conception, sets are formed in stages. At stage zero, the set containing 

all previous elements, i.e. the null set, is formed. At any finite stage, any sets formed at earlier 

stages are collected into a set. After the finite stages come the infinite ones, corresponding to 

the transfinite ordinals (ordinals beyond the finite ones), at which further sets are formed in 

like fashion. Boolos’ article is one of the first systematic explanations of precisely how the 

iterative conception underlies the axioms of contemporary set theory.  

An even more sustained analysis of the provenance of the ZFC axioms may be found in 

Penelope Maddy’s ‘Believing the Axioms I’.10 In this article Maddy goes through the various 

proposed justifications for the axioms of set theory with a fine-tooth comb. She draws an 

important distinction between intrinsic justification, according to which an axiom is evident or 

obviously flows from an intuitive conception of set, and extrinsic justification, whereby an 

axiom is justified in terms of its consequences. In her later ‘Does V = L?’, Maddy investigates 

why most set theorists reject the so-called Axiom of Constructibility (whose most concise state-

ment is V = L, V being the universe of sets and L the universe of constructible sets). Despite its 

name, this principle is a candidate for axiomhood rather than an axiom proper. In her article, 

Maddy diagnoses the debate between a proponent of the Axiom of Constructibility (e.g. Gödel, 

for a brief period) and its many detractors as ultimately a choice between the methological 

maxims she calls Definabilism and Combinatorialism respectively. The two Maddy articles 

display methodology at its best and pioneered recent interest in the fine detail of mathematical 

justification.  

A concern with the detail of mathematics as it is actually done is very much evident in Mic 

Detlefsen’s ‘Purity as an Ideal of Proof’. Roughly speaking, a mathematical argument is pure 

to the extent that it does not involve any extraneous ideas or method; for example, despite the 

theorem’s name, by dint of taking a detour outside algebra the usual proofs of the Fundamental 

Theorem of Algebra are impure.11 Detlefsen outlines some of the history of philosophical 

thinking about purity in mathematical argumentation and purity’s significance.  

                                                           
10 The sequel (as well as part of the article in question) is concerned with the justification for 

proposed extensions to ZFC. 
11 The theorem states that every non-constant polynomial of one variable over the complex 

numbers has a complex root – in other words, the complex numbers are an algebraically 



The inclusion of the two chapters on the Church–Turing thesis has a dual purpose. First, it 

serves as a brief introduction to the Church–Turing thesis, which equates an informal notion – 

that of an effectively or algorithmically computable function on the natural numbers – with a 

mathematically precise one. Of the many mathematically equivalent ways to state the thesis, 

perhaps the clearest is that a function is effectively computable if and only if it is computable 

by a Turing Machine. Precisely because it claims that a non-mathematical concept is coex-

tensive with a mathematical concept, the Church–Turing thesis is usually thought incapable of 

mathematical proof. In the second of the excerpted chapters by Peter Smith, we see him 

mounting an argument to the effect that the Church–Turing thesis is actually susceptible to 

proof.  

Mathematics is unique among all the areas of human inquiry in that it relies almost 

exclusively on proof for its justification. This prompts several questions: why is there such an 

intimate relationship between mathematics and deductive reasoning? What is so special about 

proof — what are its epistemological virtues? The works by Imre Lakatos, Don Fallis and the 

present author all address these questions. Lakatos’s classic 1976 article contrasts a Euclidean 

mathematical theory with a ‘quasi-empirical’ theory. As sketched earlier, a Euclidean theory is 

top down: truth flows from the axioms down to the theorems. A quasi-empirical theory, in 

contrast, is (at least in part) bottom up: truth flows from some particular theorems up to the 

axioms. The axioms of a quasi-empirical theory are thus justified extrinsically, at least in part. 

The main contention of Lakatos’s article is as simple as it is striking: mathematics is quasi-

empirical rather than Euclidean.  

Don Fallis’s contribution compares one particular probabilistic method, which he calls 

probabilistic DNA proof, with generally accepted mathematical methods such as deductive 

proof. Fallis argues that there is no epistemically important difference between 

mathematicians’ orthodox methods and probabilistic DNA proof. This radical conclusion 

challenges part of mathematics’ self-image; if correct, it shows that some of the methodological 

distinctions drawn by mathematicians are epistemically unmotivated. The last paper, by the 

present author, is very much in the same vein. Mathematicians never claim to know a 

proposition unless they think that they possess a proof (or proof sketch) of it. For all their 

confidence in the truth of the Riemann Hypothesis,12 they maintain that, strictly speaking, the 

hypothesis will become known only until such time as someone has proved it. My paper 

marshals arguments against this strict conception of mathematical knowledge. It denies that 

knowledge of mathematics must be deductive, thereby chipping away at the epistemological 

dimension of the presumed divide between empirical science and mathematics. 

Volume V  

The fifth and final volume consists of papers concerned with the lessons the philosophy of 

mathematics should conclude from the fact that mathematics is applied in science. More 

                                                           

closed field. It was first proved in the early 19th century. The proofs of the theorem usually 

take a detour via analysis. 
12 The Riemann Hypothesis states that the nontrivial zeros of the zeta function all lie on the 

line with real part ½, known as the critical line. The Riemann zeta function ζ(s) is the analytic 

continuation of ∑
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𝑛=1  to ℂ\{1}; its trivial zeros are −2, −4, −6, . . . . The conjecture was first 

proposed by Bernhard Riemann in 1859. Although the Riemann Hypothesis remains 

unproven to this day, it is now known that at least the first 1.5 × 109 non-trivial zeros of the 

zeta function satisfy the hypothesis, and that millions of later zeros all lie on the critical line. 

The importance of the conjecture for core parts of mathematics, in particular number theory, 

can hardly be overstated. 



precisely, it is concerned with the indispensability argument, famously expounded by the 

American philosophers W.V. Quine and Hilary Putnam in the second half of the 20th century. 

A classic version of the argument takes something like this form: we should believe in the 

existence of entities indispensably invoked in successful scientific theories; mathematical 

objects (numbers, functions, sets, etc.) are indispensable in this way; therefore we should 

believe in the existence of mathematical objects. This is roughly the form the argument takes 

in Putnam’s Philosophy of Logic, here reprinted.13 A version of the argument may also be 

educed from Quine’s ‘Two Dogmas of Empiricism’, included in this collection as much for its 

implicit statement of the indispensability argument as for its general philosophical importance.  

One response to the indispensability argument is to deny its second premiss, that 

mathematical objects are indispensable to successful science. Many nominalists in the 

philosophy of mathematics, who reject the existence of abstract entities, take this route.14 

Interestingly, Quine himself had been a nominalist prior to writing ‘Two Dogmas of 

Empiricism’. Indeed, in ‘Steps Towards A Constructive Nominalism’, he and Nelson Goodman 

had attempted to rewrite the mathematical parts of science, assuming that if mathematics 

contains reference to objects, then these objects must be abstract. Yet try as he might, Quine 

found that he could not get the nominalisation programme to work for non-elementary parts of 

science. His apparent failure to nominalise science convinced him that it could not be done at 

all. As a result, he embraced the second premiss of the indispensability argument and recanted 

nominalism. The nominalist baton was picked up three decades later by Hartry Field, who 

reckoned that Quine had given up too soon. With a little more perseverance, Field maintained, 

one can nominalise all of science. The selections from Field take the next steps following those 

of Quine and Goodman along the hard path to nominalism. On the resulting conception of pure 

mathematics, mathematical sentences we typically take to be true are not in fact literally true. 

As Field himself puts it, ‘2 + 2 = 4’ is not literally true, but only true according to the fiction 

of mathematics, in much the same way in which ‘Oliver Twist lived in London’ is not literally 

true but true only in Dickens’s novel. In contrast, a statement such as ‘Charles Dickens lived 

in Doughty Street in London’ is literally true.  

George Boolos in ‘Nominalist Platonism’ is not directly concerned with the indispensability 

argument. Yet as his title hints, his aim is also to nominalise a part of discourse, or rather to 

explain why a part of discourse hitherto construed as platonist is not in fact committed to sets. 

The focus of Boolos’s interest is plural quantification, which he argues should be admitted as 

a primitive logical notion. Take the sentence, ‘There are some Frenchmen such that Arnaud is 

one of them’. We could paraphrase it as ‘Arnaud is a Frenchman’ and formalise the latter in 

standard, non-plural, logic as Fa. But what if we would like to formalise the sentence with as 

little paraphrasis as possible? A traditional option has been to resort to sets and read the 

sentence as ‘There is a set of Frenchmen of which Arnaud is a member’. This interpretation, 

observe, commits us to the existence of a particular set. A pluralist proposal along the lines 

Boolos proposes would instead lightly regiment the sentence as ‘There are some things such 

that they are Frenchmen and Arnaud is one of these things’ and then formalise it directly in 

plural logic. A highlight of the paper is Boolos’s use of plural quantification to interpret 

monadic second-order logic.  

The next two entries, by Elliott Sober and Penelope Maddy respectively, offer critiques of 

the indispensability argument. Chapters 4 to 6 of Mark Colyvan’s The Indispensability of 

Mathematics respond to these critiques from the perspective of an indispensabilist platonist. In 

                                                           
13 The subtle differences between the two writers’ formulations will not matter here.  
14 Nominalism in the philosophy of mathematics should not be confused with nominalism in 

metaphysics, which is usually understood as the rejection of properties or universals. The two 

forms of nominalism are independent in principle and in practice. 



his article, Sober argues that the indispensability of mathematics to natural science is precisely 

why the success of scientific theories does not justify taking mathematical truths to be literally 

true. More precisely, Sober emphasises that the empirical success of a theory is always relative 

to (actual or imagined) alternatives – for example, relativistic as opposed to classical physics. 

If mathematics is truly indispensable to scientific theory, then all the alternatives will quantify 

over mathematical objects, and therefore the existence of such objects is no more confirmed 

by our most successful scientific theories than it is by our least.  

The extract from Penelope Maddy’s Naturalism in Mathematics is built around her case study 

of modern atomic theory. From about 1860 onwards the atomic theory in chemistry had proved 

itself so successful that it had become indispensable to science, Maddy claims. Yet in spite of 

all the evidence in its favour it was still viewed with suspicion, because the evidence for the 

atomic theory, though extensive, remained fairly indirect. In 1905 Einstein produced a 

mathematical analysis of Brownian motion. This spurred the French physicist Jean Baptiste 

Perrin to perform experiments to determine the mass and dimensions of atoms. Perrin’s experi-

ments from 1908 to 1913 produced direct evidence for the existence of atoms. The 

experiments’ success led to the widespread acceptance of atomism. Maddy concludes from this 

episode that the indispensability and empirical success of a scientific theory are insufficient for 

scientists to literally believe it. She then carries over the moral to mathematics: just as the 

scientific indispensability of late 19th-century atomic theory was insufficient reason to regard 

it as true at the time, so we should not take the indispensability of mathematics as sufficient 

grounds for its truth.  

Indispensability platonists other than Colyvan have responded to Field, Sober and Maddy. 

In their A Subject with No Object, John Burgess and Gideon Rosen offer an assessment and 

critique of contemporary nominalism in the philosophy of mathematics. Their excellent book 

has both a philosophical and a more technical dimension. In our selection we focus on the more 

philosophical side of things. In these sections Burgess and Rosen offer strong arguments 

against the philosophical theories of knowledge, justification and reference that typically 

motivate nominalism. They roll back the platonist-nominalist debate to metaphilosophical 

territory, showing how and why it turns on the norms governing philosophical theory choice. 

Alan Baker, in ‘Are there Genuine Mathematical Explanations of Physical Phenomena?’, opens 

another front in the platonist defence against the nominalist offensive. A popular response to 

the indispensability argument by post-Fieldian nominalists has been to argue that the 

mathematics used in scientific explanations of natural phenomena, though perhaps 

indispensable in the logician’s sense, is not truly explanatory. A slightly revised version of the 

indispensability argument then insists that we should only believe the parts of scientific theories 

genuinely responsible for successful scientific explanation. Applying this argument, Baker 

contends that there are genuine mathematical explanations in science. His clever case study of 

periodical cicadas has attracted much attention, and Baker himself has become a key figure in 

the second wave of the indispensability debate.  

The last entry strives to draw a fundamental distinction. Suppose one agrees with Quine and 

Putnam that the applications of mathematics in science are sufficient reason to believe that 

mathematics is true. Does it follow that they are sufficient reason to believe in the existence of 

mathematical objects? In this final contribution, I suggest that the answer may well be no. By 

bringing to light this nuance in the indispensability argument, I hope to point the way to future 

research on the topic.  

A.C. Paseau (editor)  


