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Abstract We prove that if the Mathias forcing is followed by a forcing with the Laver
Property, then any V-q-point is isomorphic via a ground model bijection to the canon-
ical V-Ramsey ultrafilter added by the Mathias real. This improves a result of
Shelah and Spinas (Trans AMS 325:2023–2047, 1999).
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Let us fix and recall the following notation. In a generic extension V† of V:

• for x ∈ [ω]ω,

�x� = {y ∈ [ω]ω : x ⊆∗ y},

where x ⊆∗ y means that x\y is finite;
• if U ⊆ [ω]ω and f ∈ ωω, then

f∗(U) = {y ∈ [ω]ω : f −1[y] ∈ U};

• a V-ultrafilter is a maximal filter of subsets of [ω]ω ∩ V;
• a V-ultrafilter U is V-Ramsey (resp. V-q-point) if each (resp. each finite-to-one)

f ∈ ωω ∩ V is injective or constant (resp. injective) on a set from U .
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Shelah and Spinas [2] prove the following very interesting (see [1]) result.

Theorem ([2], Propositions 2.3 and 2.4)Suppose that r is aMathias real over V � CH
and that 〈rξ 〉ξ<ω2 is a generic sequence of Mathias reals added to V[r ] via countable
support iteration. Then, for any

x ∈ [ω]ω ∩ V[r ][〈rξ 〉ξ<ω2 ],

if �x� ∩ V is a V-Ramsey ultrafilter, then

�r� ∩ V = f∗(�x� ∩ V)

for some bijective f ∈ ωω ∩ V.
In particular,

f −1[r ] ∈ V[r ] and �x� ∩ V = � f −1[r ]� ∩ V.

Unfortunately the proof in [2] is somewhat demanding.1 We prove:

Theorem Suppose that r is a Mathias real over V, P ∈ V[r ] is a poset that has
the Laver property in V[r ], GP ⊆ P is a generic filter over V[r ], and x ∈ [ω]ω ∩
V[r ][GP ] is such that �x� ∩ V is a V-ultrafilter.

Then

�r� ∩ V = f∗(�x� ∩ V)

for some f ∈ ωω ∩ V.
If moreover �x� ∩ V is a V-q-point, then f can be chosen to be bijective.

Recall that a poset P has the Laver property iff for any f ∈ (ω\1)ω, if τ is
a P-name for an element of

∏
n<ω f (n), then dense in P is the set of p such that

there is Tp ∈ ∏
n<ω[ f (n)]�n+1 with p �P ∀ n τ(n) ∈ Tp(n).

Our theorem generalizes the result of Shelah and Spinas since V-q-points are
V-Ramsey and V[r ][〈rξ 〉ξ<ω2 ] is a generic extension of V[r ] via a poset that has
the Laver property, namely via countable support iteration of the Mathias forcing.

Before starting the proof let us introduce and recall some more notation.
For u ∈ [ω]ω, U ∈ [ω]<ω, and n < ω, let

u/U = {n ∈ u : U ⊆ n},
u(n) = the n-th element of u,

n−u = sup(u ∩ n),

n+u = min(u/{n});

so, u(0)−u = sup∅ = 0.

1 In the proof of the key Lemma 4.6 in [2], at the very end of Case 1, it is claimed that the desired
contradiction has been reached. It seems to us that this is too optimistic.
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Mathias forcing and ultrafilters 859

The Mathias forcing consists of the set

Q = {(U, u) ∈ [ω]<ω× [ω]ω : u ⊆ ω/U }

ordered by

(U, u) � (V, v) ⇐⇒ V ⊆ U ⊆ V ∪ v ∧ u ⊆ v.

If a filter G ⊆ Q is generic over V, its associated Mathias real is given by

r =
⋃

{U : ∃ u (U, u) ∈ G}.

We have V[r ] = V[G] since

G = {(U, u) ∈ Q ∩ V : U ⊆ r ⊆ U ∪ u}.

Let ṙ denote the canonical name of r .

Lemma (Technical Lemma) Suppose that

Q � (Ṗ has the Laver property)

and

(U◦, u◦) ∗ ṗ◦ �
(
ẋ ∈ [ω]ω ∧ ∀ i<ω |ẋ ∩ ṙ(i)| � i

)
.

Then, there exists

(U, u) ∗ ṗ � (U◦, u◦) ∗ ṗ◦

such that for any (U †, u†) ∗ ṗ† � (U, u) ∗ ṗ,

(U †, u†) ∗ ṗ† � ẋ ⊆∗ ⋃

n∈u†
[ n−u, n+u).

Proof of Theorem Since �x� ∩ V is a V-ultrafilter, we have that �x� ∩ V = �x ′� ∩ V
for any x ′ ∈ [x]ω from V[r ][GP ]. So, without loss of generality we may think that
∀ i<ω |x ∩ r(i)| � i . To prove the Theorem we run the following density argument.

Assuming that a condition (U ◦
, u◦) ∗ ṗ◦ forces that

ẋ ∈ [ω]ω ∧ ∀ i<ω |ẋ ∩ ṙ(i)| � i ∧ �ẋ� ∩ V is a V-ultrafilter,

get (U, u) ∗ ṗ by the Technical Lemma.
Let

uodd = {u(2i + 1)}i<ω.
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Then (U, uodd) ∗ ṗ forces that

∀ v∈ �ṙ�∩V ẋ ⊆∗ ⋃{[ u(2i), u(2i + 2)) : u(2i + 1) ∈ v
}
.

Indeed, given

(U †, u†) ∗ ṗ† � (U, uodd) ∗ ṗ

and v ∈ [ω]ω such that

(U †, u†) ∗ ṗ† � v ∈ �ṙ� ∩ V,

we have that u† ⊆∗ v ∩ uodd; so, by the Technical Lemma,

(U †, u†) ∗ ṗ† � ẋ ⊆∗ ⋃{[ n−u, n+u ) : n ∈ v ∩ uodd
}
.

Define f ∈ ωω by

f � [ 0, u(2)) ≡ u(1), ∀i>0 f � [ u(2i), u(2i + 2)) ≡ u(2i + 1).

Clearly the condition (U, uodd) ∗ ṗ forces that

�ṙ� ∩ V ⊆ f∗(�ẋ� ∩ V).

Since it also forces that

�ṙ� ∩ V and f∗(�ẋ� ∩ V) are V-ultrafilters,

it must force that

�ṙ� ∩ V = f∗(�ẋ� ∩ V).

Note that the function f is finite-to-one, so, if

(U ◦
, u◦) ∗ ṗ◦ � �ẋ� ∩ V is a V-q-point,

then we can find

(U ′, u′) ∗ ṗ′ � (U, uodd) ∗ ṗ

and

D ∈ [ω]ω
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Mathias forcing and ultrafilters 861

such that ω\D and ω\ f [D] are infinite, f � D is injective, and

(U ′, u′) ∗ ṗ′ � D ∈ �ẋ� ∩ V.

Modifying f on ω\D we can get a bijective f ′ ∈ ωω such that

(U ′, u′) ∗ ṗ′ � �ṙ� ∩ V = f ′∗(�ẋ� ∩ V).

��
Proof of Technical Lemma For x ⊆ ω × ω, let (x)i = { j : (i, j) ∈ x}. Also, let the
topology in P(ω) be induced by the standard product topology of the Cantor space
2ω by identifying t ∈ 2ω with {n : t (n) = 1}; likewise for P(ω × ω).

We will need the following well-known lemma. ��
Lemma (Pure Extension Property) The poset Q has Pure Extension Property, i.e.,
for any (U ◦

, u◦) ∈ Q, n ∈ ω, and a Q-name τ such that (U ◦
, u◦) � τ � n, there

exist i � n and (U, u) � (U ◦
, u◦) with U = U ◦ such that (U, u) � τ = i .

Now we can begin the proof.

Lemma 1 If v ∈ [ω]ω and f : [v]<ω → ω, then there exists v′ ∈ [v]ω such that

∀ V∈[v′]<ω f (V ) < min(v′/V ).

Proof Let v0 = v. For i ∈ ω let ni = min vi and vi+1 = vi/ f [P(i)]. Then put
v′ = {ni }i∈ω. ��
Lemma 2 Let v ∈ [ω]ω and f : [v]<ω → P(ω). Then there exist v′ ∈ [v]ω and
f ′ : [v′]<ω → P(ω) such that

∀ V∈[v′]<ω f ′(V ) = lim
n∈v′/V

f (V ∪ {n}).

We can require moreover that the convergence is so fast that

∀ V∈[v′]<ω ∀m∈v′/V ∀ n∈v′/{m} f ′(V ) ∩ m = f (V ∪ {n}) ∩ m.

Likewise, if we have f : [v]<ω → P(ω ×ω), with the obvious modifications, e.g.,
the fastness condition changes to

∀ V∈[v]<ω ∀m∈v′/V ∀ n∈v′/{m} f ′(V ) ∩ (m × m) = f (V ∪ {n}) ∩ (m × m).

Proof Let V = [v]<ω. For n ∈ v, let xn ∈ (P(ω))V be given by

xn(V ) =
{
f (V ∪ {n}), V ⊆ n,

∅, V � n.

123



862 J. Pawlikowski, W. Stadnicki

By compactness of (P(ω))V, there exist v′ ∈ [v]ω such that 〈xn〉n∈v′ converges to
some x ∈ (P(ω))V . Put f ′ = x � [v′]<ω.

Further trimming of v′, using that P(m) is finite, gives the second part. ��
Lemma 3 Suppose that

∀ i<ω (U ◦
, u◦) � ẋi ⊆ ṙ(i).

Then there exists (U, u) � (U ◦
, u◦) such that for any nonempty V ∈ [u]<ω there

exists xV ⊆ max V with

(U ∪ V, u/V ) � xV = ẋ|U∪V |−1.

Likewise, if

∀ i<ω (U ◦
, u◦) � ˜̇xi ⊆ (i + 1) × ṙ(i),

then there exists (U, u) � (U ◦
, u◦) such that for any nonempty V ∈ [u]<ω there

exists ˜x
V ∈ |U ∪ V | × max V with

(U ∪ V, u/V ) � ˜x
V = ˜̇x |U∪V |−1.

Proof We prove the first part. Let u0 = u◦, n0 = min u0, and

V0 = {V : n0 ∈ V ⊆ {n0}} = {{n0}}.

Note that

(U ∪ {n0}, u0/{n0}) � ṙ(|U ∪ {n0}| − 1) = n0.

Using the Pure Extension Property find u1 ⊆ u0/{n0} and x {n0} ⊆ n0 such that

(U ∪ {n0}, u1) � ẋ|U∪{n0}|−1 = x {n0},

and put n1 = min u1 and

V1 = {V : n1 ∈ V ⊆ {n0, n1}}.

Since |V1| = 2, using the Pure Extension Property twice find u2 ⊆ u1/{n1} and
xV ⊆ n1 for V ∈ V1 such that

∀ V∈V1
(U ∪ V, u2) � ẋ|U∪V |−1 = xV .
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Mathias forcing and ultrafilters 863

Put n2 = min u2 and

V2 = {V : n2 ∈ V ⊆ {n0, n1, n2}}.

Since |V2| = 4, using the Pure Extension Property four times find u3 ⊆ u2/{n2} and
xV ⊆ n2 for V ∈ V2 such that

∀ V∈V2
(U ∪ V, u3) � ẋ|U∪V |−1 = xV .

Continuing in this way we get 〈ui , ni ,Vi 〉i<ω such that for each i < ω we have

ui ∈ [ω]ω, ni = min ui , ui+1 ⊆ ui/{ni },

Vi = {V : ni ∈ V ⊆ {n j : j � i}}, and ∀ V∈Vi x
V ⊆ ni ,

and

∀ V∈Vi (U ∪ V, ui+1) � ẋ|U∪V |−1 = xV .

Now, the condition

(U, u) = (U ◦
, {ni }i∈ω),

and the sets xV work. ��
Lemma 4 Suppose that Q � Ṗ has the Laver property, and that

∀ i<ω (U ◦
, u◦) ∗ ṗ◦ � ẋ ⊆ ω ∧ ∀ i |ẋ ∩ ṙ(i)| � i.

Then there exists a condition

(U, u) ∗ ṗ � (U ◦
, u◦) ∗ ṗ◦

such that for any n ∈ u and V ⊆ u ∩ n the condition

(U ∪ V ∪ {n}, u/{n}) ∗ ṗ

forces that

ẋ ∩ [ supU, n) ⊆ [ supU, (sup(U ∪ V ))
+u) ∪ [ n−u, n+u).

In particular, any condition (U †, u†) ∗ ṗ† � (U, u) ∗ ṗ forces that

ẋ\min u† ⊆
⋃

n∈u†
[ n−u, n+u).
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Proof Since

Q � Ṗ has the Laver Property,

there exist Q-names ˜̇xi , i < ω, and a condition

(U ◦
, u◦) ∗ ṗ � (U ◦

, u◦) ∗ ṗ◦

that forces that for all i

˜̇xi ⊆ (i + 1) × ṙ(i) ∧ ∀ j�i |( ˜̇xi ) j | � i ∧ ∃ j�i ẋi = ( ˜̇xi ) j .

Put (U, u) = (U ◦
, u◦) and trim u as follows.

Use Lemma 3 to trim u so that for the trimmed u for any nonempty V ∈ [u]<ω

there exist ˜x
V,0 ∈ |U ∪ V | × max V such that

(U ∪ V, u/V ) � ˜x
V,0 = ˜̇x |U∪V |−1.

This implies in particular that

∀ j<|U∪V | ( ˜x
V,0) j ∈ [max V ]<|U∪V |.

Next, use Lemma 2 to trim u further so that for the trimmed u for any (possibly empty)
V ∈ [u]<ω the sequence

〈 ˜x
V∪{n},0〉n∈u/V

converges inP(ω × ω) to some ˜x
V,1 ⊆ ω × ω in such a way that

∀m∈u/V ∀ n∈u/{m} ˜x
V,1 ∩ (m × m) = ˜x

V∪{n},0 ∩ (m × m);

in particular,

∀m∈u/V ∀ j�|U∪V | |( ˜x
V,1) j ∩ m| � |U ∪ V |,

and thus

∀ j�|U∪V | |( ˜x
V,1) j | � |U ∪ V |.

Finally, trim u again so that for the trimmed u we have

∀m∈u ∀ V⊆u∩m ∀ j�|U∪V | ( ˜x
V,1) j ⊆ m+u .

It is not hard to see that the condition (U, u) ∗ ṗ works.
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To see the last assertion of the lemma, fix

(U †, u†) ∗ ṗ† � (U, u) ∗ ṗ.

Suppose that k � min u† and that for some condition

(U ‡, u‡) ∗ ṗ‡ � (U †, u†) ∗ ṗ†

we have

(U ‡, u‡) ∗ ṗ‡ � k ∈ ẋ .

Without loss of generality |U ‡| � 2 and k < maxU ‡. Let m < n be the consecutive
elements of U ‡ such that k ∈ [m, n). Let V = U ‡ ∩ [ supU, n). Note that sup(U ∪
V ) = m. Since

(U ∪ V ∪ {n}, u/{n}) ∗ ṗ‡ � ẋ ∩ [ supU, n) ⊆ [ supU,m+u ) ∪ [ n−u, n)

and

(U ∪ V ∪ {n}, u/{n}) ∗ ṗ‡ � (U ‡, u‡) ∗ ṗ‡ � k ∈ ẋ,

we must in fact have

k ∈ [m,m+u ) ∪ [ n−u, n) ⊆ [m−u,m+u ) ∪ [ n−u, n+u ).

Since both m and n are in u†, we are done. ��
This ends the proof of Technical Lemma. ��
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