Mathias forcing and ultrafilters

Janusz Pawlikowski ${ }^{1}{ }^{(D} \cdot$ Wojciech Stadnicki ${ }^{1}$

Received: 19 December 2014 / Accepted: 3 August 2016 / Published online: 12 August 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract

We prove that if the Mathias forcing is followed by a forcing with the Laver Property, then any V-q-point is isomorphic via a ground model bijection to the canonical V-Ramsey ultrafilter added by the Mathias real. This improves a result of Shelah and Spinas (Trans AMS 325:2023-2047, 1999).

Keywords Mathias forcing • Ramsey ultrafilter • Laver property
Let us fix and recall the following notation. In a generic extension V^{\dagger} of V :

- for $x \in[\omega]^{\omega}$,

$$
\lfloor x\rfloor=\left\{y \in[\omega]^{\omega}: x \subseteq^{*} y\right\},
$$

where $x \subseteq^{*} y$ means that $x \backslash y$ is finite;

- if $\mathcal{U} \subseteq[\omega]^{\omega}$ and $f \in \omega^{\omega}$, then

$$
f_{*}(\mathcal{U})=\left\{y \in[\omega]^{\omega}: f^{-1}[y] \in \mathcal{U}\right\} ;
$$

- a V-ultrafilter is a maximal filter of subsets of $[\omega]^{\omega} \cap \mathrm{V}$;
- a V-ultrafilter \mathcal{U} is V-Ramsey (resp. V-q-point) if each (resp. each finite-to-one) $f \in \omega^{\omega} \cap \mathrm{V}$ is injective or constant (resp. injective) on a set from \mathcal{U}.

[^0]Shelah and Spinas [2] prove the following very interesting (see [1]) result.
Theorem ([2], Propositions 2.3 and 2.4) Suppose thatr is a Mathias real over $\mathrm{V} \vDash \mathrm{CH}$ and that $\left\langle r_{\xi}\right\rangle_{\xi<\omega_{2}}$ is a generic sequence of Mathias reals added to $\mathrm{V}[r]$ via countable support iteration. Then, for any

$$
x \in[\omega]^{\omega} \cap \mathrm{V}[r]\left[\left\langle r_{\xi}\right\rangle_{\xi<\omega_{2}}\right],
$$

if $\lfloor x\rfloor \cap \mathrm{V}$ is a V -Ramsey ultrafilter, then

$$
\lfloor r\rfloor \cap \mathrm{V}=f_{*}(\lfloor x\rfloor \cap \mathrm{V})
$$

for some bijective $f \in \omega^{\omega} \cap \mathrm{V}$.
In particular,

$$
f^{-1}[r] \in \mathrm{V}[r] \quad \text { and } \quad\lfloor x\rfloor \cap \mathrm{V}=\left\lfloor f^{-1}[r]\right\rfloor \cap \mathrm{V} .
$$

Unfortunately the proof in [2] is somewhat demanding. ${ }^{1}$ We prove:
Theorem Suppose that r is a Mathias real over $\mathrm{V}, \mathcal{P} \in \mathrm{V}[r]$ is a poset that has the Laver property in $\mathrm{V}[r], G_{\mathcal{P}} \subseteq \mathcal{P}$ is a generic filter over $\mathrm{V}[r]$, and $x \in[\omega]^{\omega} \cap$ $\mathrm{V}[r]\left[G_{\mathcal{P}}\right]$ is such that $\lfloor x\rfloor \cap \mathrm{V}$ is a V -ultrafilter.

Then

$$
\lfloor r\rfloor \cap \mathrm{V}=f_{*}(\lfloor x\rfloor \cap \mathrm{V})
$$

for some $f \in \omega^{\omega} \cap \mathrm{V}$.
If moreover $\lfloor x\rfloor \cap \mathrm{V}$ is a V -q-point, then f can be chosen to be bijective.
Recall that a poset \mathcal{P} has the Laver property iff for any $f \in(\omega \backslash 1)^{\omega}$, if τ is a \mathcal{P}-name for an element of $\prod_{n<\omega} f(n)$, then dense in \mathcal{P} is the set of p such that there is $T_{p} \in \prod_{n<\omega}[f(n)]^{\leqslant n+1}$ with $p \Vdash_{\mathcal{P}} \forall_{n} \tau(n) \in T_{p}(n)$.

Our theorem generalizes the result of Shelah and Spinas since V-q-points are V -Ramsey and $\mathrm{V}[r]\left[\left\langle r_{\xi}\right\rangle_{\xi<\omega_{2}}\right]$ is a generic extension of $\mathrm{V}[r]$ via a poset that has the Laver property, namely via countable support iteration of the Mathias forcing.

Before starting the proof let us introduce and recall some more notation.
For $u \in[\omega]^{\omega}, U \in[\omega]^{<\omega}$, and $n<\omega$, let

$$
\begin{aligned}
u / U & =\{n \in u: U \subseteq n\}, \\
u(n) & =\text { the } n \text {-th element of } u, \\
n^{-u} & =\sup (u \cap n), \\
n^{+u} & =\min (u /\{n\}) ;
\end{aligned}
$$

so, $u(0)^{-u}=\sup \emptyset=0$.

[^1]The Mathias forcing consists of the set

$$
\mathcal{Q}=\left\{(U, u) \in[\omega]^{<\omega} \times[\omega]^{\omega}: u \subseteq \omega / U\right\}
$$

ordered by

$$
(U, u) \leqslant(V, v) \Longleftrightarrow V \subseteq U \subseteq V \cup v \wedge u \subseteq v
$$

If a filter $G \subseteq \mathcal{Q}$ is generic over V , its associated Mathias real is given by

$$
r=\bigcup\{U: \exists u(U, u) \in G\}
$$

We have $\mathrm{V}[r]=\mathrm{V}[G]$ since

$$
G=\{(U, u) \in \mathcal{Q} \cap \mathrm{V}: U \subseteq r \subseteq U \cup u\}
$$

Let $\dot{\boldsymbol{r}}$ denote the canonical name of r.
Lemma (Technical Lemma) Suppose that

$$
\mathcal{Q} \Vdash(\dot{\mathcal{P}} \text { has the Laver property })
$$

and

$$
\left(U^{\circ}, u^{\circ}\right) * \dot{p}^{\circ} \Vdash\left(\dot{x} \in[\omega]^{\omega} \wedge \forall_{i<\omega}|\dot{x} \cap \dot{\boldsymbol{r}}(i)| \leqslant i\right) .
$$

Then, there exists

$$
(U, u) * \dot{p} \leqslant\left(U^{\circ}, u^{\circ}\right) * \dot{p}^{\circ}
$$

such that for any $\left(U^{\dagger}, u^{\dagger}\right) * \dot{p}^{\dagger} \leqslant(U, u) * \dot{p}$,

$$
\left(U^{\dagger}, u^{\dagger}\right) * \dot{p}^{\dagger} \Vdash \dot{x} \subseteq^{*} \bigcup_{n \in u^{\dagger}}\left[n^{-u}, n^{+u}\right)
$$

Proof of Theorem Since $\lfloor x\rfloor \cap \mathrm{V}$ is a V -ultrafilter, we have that $\lfloor x\rfloor \cap \mathrm{V}=\left\lfloor x^{\prime}\right\rfloor \cap \mathrm{V}$ for any $x^{\prime} \in[x]^{\omega}$ from $\mathrm{V}[r]\left[G_{\mathcal{P}}\right]$. So, without loss of generality we may think that $\forall_{i<\omega}|x \cap r(i)| \leqslant i$. To prove the Theorem we run the following density argument.

Assuming that a condition $\left(U^{\circ}, u^{\circ}\right) * \dot{p}^{\circ}$ forces that

$$
\dot{x} \in[\omega]^{\omega} \wedge \forall_{i<\omega}|\dot{x} \cap \dot{\boldsymbol{r}}(i)| \leqslant i \wedge\lfloor\dot{x}\rfloor \cap \mathrm{V} \text { is a V-ultrafilter, }
$$

get $(U, u) * \dot{p}$ by the Technical Lemma.
Let

$$
u^{\text {odd }}=\{u(2 i+1)\}_{i<\omega} .
$$

Then $\left(U, u^{\text {odd }}\right) * \dot{p}$ forces that

$$
\forall v \in\lfloor\dot{r}\rfloor \cap \vee \dot{x} \subseteq^{*} \bigcup\{[u(2 i), u(2 i+2)): u(2 i+1) \in v\} .
$$

Indeed, given

$$
\left(U^{\dagger}, u^{\dagger}\right) * \dot{p}^{\dagger} \leqslant\left(U, u^{\text {odd }}\right) * \dot{p}
$$

and $v \in[\omega]^{\omega}$ such that

$$
\left(U^{\dagger}, u^{\dagger}\right) * \dot{p}^{\dagger} \Vdash v \in\lfloor\dot{\boldsymbol{r}}\rfloor \cap \mathrm{V},
$$

we have that $u^{\dagger} \subseteq^{*} v \cap u^{\text {odd }}$; so, by the Technical Lemma,

$$
\left(U^{\dagger}, u^{\dagger}\right) * \dot{p}^{\dagger} \Vdash \dot{x} \subseteq^{*} \bigcup\left\{\left[n^{-u}, n^{+u}\right): n \in v \cap u^{\text {odd }}\right\} .
$$

Define $f \in \omega^{\omega}$ by

$$
f \upharpoonright[0, u(2)) \equiv u(1), \quad \forall_{i>0} f \upharpoonright[u(2 i), u(2 i+2)) \equiv u(2 i+1) .
$$

Clearly the condition $\left(U, u^{\text {odd }}\right) * \dot{p}$ forces that

$$
\lfloor\dot{\boldsymbol{r}}\rfloor \cap \mathrm{V} \subseteq f_{*}(\lfloor\dot{x}\rfloor \cap \mathrm{V})
$$

Since it also forces that

$$
\lfloor\dot{\boldsymbol{r}}\rfloor \cap \mathrm{V} \text { and } f_{*}(\lfloor\dot{x}\rfloor \cap \mathrm{V}) \text { are } \mathrm{V} \text {-ultrafilters, }
$$

it must force that

$$
\lfloor\dot{\boldsymbol{r}}\rfloor \cap \mathrm{V}=f_{*}(\lfloor\dot{x}\rfloor \cap \mathrm{V})
$$

Note that the function f is finite-to-one, so, if

$$
\left(U^{\circ}, u^{\circ}\right) * \dot{p}^{\circ} \Vdash\lfloor\dot{x}\rfloor \cap \mathrm{V} \text { is a } \mathrm{V} \text {-q-point, }
$$

then we can find

$$
\left(U^{\prime}, u^{\prime}\right) * \dot{p}^{\prime} \leqslant\left(U, u^{\text {odd }}\right) * \dot{p}
$$

and

$$
D \in[\omega]^{\omega}
$$

such that $\omega \backslash D$ and $\omega \backslash f[D]$ are infinite, $f \upharpoonright D$ is injective, and

$$
\left(U^{\prime}, u^{\prime}\right) * \dot{p}^{\prime} \Vdash D \in\lfloor\dot{x}\rfloor \cap \mathrm{V}
$$

Modifying f on $\omega \backslash D$ we can get a bijective $f^{\prime} \in \omega^{\omega}$ such that

$$
\left(U^{\prime}, u^{\prime}\right) * \dot{p}^{\prime} \Vdash\lfloor\dot{\boldsymbol{r}}\rfloor \cap \mathrm{V}=f_{*}^{\prime}(\lfloor\dot{x}\rfloor \cap \mathrm{V})
$$

Proof of Technical Lemma For $x \subseteq \omega \times \omega$, let $(x)_{i}=\{j:(i, j) \in x\}$. Also, let the topology in $\mathscr{P}(\omega)$ be induced by the standard product topology of the Cantor space 2^{ω} by identifying $t \in 2^{\omega}$ with $\{n: t(n)=1\}$; likewise for $\mathscr{P}(\omega \times \omega)$.

We will need the following well-known lemma.
Lemma (Pure Extension Property) The poset \mathcal{Q} has Pure Extension Property, i.e., for any $\left(U^{\circ}, u^{\circ}\right) \in \mathcal{Q}, n \in \omega$, and a \mathcal{Q}-name τ such that $\left(U^{\circ}, u^{\circ}\right) \Vdash \tau \leqslant n$, there exist $i \leqslant n$ and $(U, u) \leqslant\left(U^{\circ}, u^{\circ}\right)$ with $U=U^{\circ}$ such that $(U, u) \Vdash \tau=i$.

Now we can begin the proof.
Lemma 1 If $v \in[\omega]^{\omega}$ and $f:[v]^{<\omega} \rightarrow \omega$, then there exists $v^{\prime} \in[v]^{\omega}$ such that

$$
\forall_{V \in\left[v^{\prime}\right]^{\prime}<\omega} f(V)<\min \left(v^{\prime} / V\right) .
$$

Proof Let $v_{0}=v$. For $i \in \omega$ let $n_{i}=\min v_{i}$ and $v_{i+1}=v_{i} / f[\mathscr{P}(i)]$. Then put $v^{\prime}=\left\{n_{i}\right\}_{i \in \omega}$.

Lemma 2 Let $v \in[\omega]^{\omega}$ and $f:[v]^{<\omega} \rightarrow \mathscr{P}(\omega)$. Then there exist $v^{\prime} \in[v]^{\omega}$ and $f^{\prime}:\left[v^{\prime}\right]^{<\omega} \rightarrow \mathscr{P}(\omega)$ such that

$$
\forall_{V \in\left[v^{\prime}\right]^{<}<\omega} f^{\prime}(V)=\lim _{n \in v^{\prime} / V} f(V \cup\{n\}) .
$$

We can require moreover that the convergence is so fast that

$$
\forall_{V \in\left[v^{\prime}\right]^{\prime}<\omega} \forall_{m \in v^{\prime} / V} \forall_{n \in v^{\prime} /\{m\}} f^{\prime}(V) \cap m=f(V \cup\{n\}) \cap m .
$$

Likewise, if we have $f:[v]^{<\omega} \rightarrow \mathscr{P}(\omega \times \omega)$, with the obvious modifications, e.g., the fastness condition changes to

$$
\forall_{V \in[v]<\omega} \forall_{m \in v^{\prime} / V} \forall_{n \in v^{\prime} /\{m\}} f^{\prime}(V) \cap(m \times m)=f(V \cup\{n\}) \cap(m \times m) .
$$

Proof Let $\mathcal{V}=[v]^{<\omega}$. For $n \in v$, let $x_{n} \in(\mathscr{P}(\omega))^{\mathcal{V}}$ be given by

$$
x_{n}(V)= \begin{cases}f(V \cup\{n\}), & V \subseteq n \\ \emptyset, & V \nsubseteq n\end{cases}
$$

By compactness of $(\mathscr{P}(\omega))^{\mathcal{V}}$, there exist $v^{\prime} \in[v]^{\omega}$ such that $\left\langle x_{n}\right\rangle_{n \in v^{\prime}}$ converges to some $x \in(\mathscr{P}(\omega))^{\mathcal{V}}$. Put $f^{\prime}=x \upharpoonright\left[v^{\prime}\right]^{<\omega}$.

Further trimming of v^{\prime}, using that $\mathscr{P}(m)$ is finite, gives the second part.

Lemma 3 Suppose that

$$
\forall_{i<\omega}\left(U^{\circ}, u^{\circ}\right) \Vdash \dot{x}_{i} \subseteq \dot{\boldsymbol{r}}(i) .
$$

Then there exists $(U, u) \leqslant\left(U^{\circ}, u^{\circ}\right)$ such that for any nonempty $V \in[u]^{<\omega}$ there exists $x^{V} \subseteq \max V$ with

$$
(U \cup V, u / V) \Vdash x^{V}=\dot{x}_{|U \cup V|-1} .
$$

Likewise, if

$$
\forall_{i<\omega}\left(U^{\circ}, u^{\circ}\right) \Vdash{\underset{\sim}{x}}_{i}^{\dot{x}_{i} \subseteq(i+1) \times \dot{\boldsymbol{r}}(i), ~}
$$

then there exists $(U, u) \leqslant\left(U^{\circ}, u^{\circ}\right)$ such that for any nonempty $V \in[u]^{<\omega}$ there exists ${\underset{\sim}{x}}^{V} \in|U \cup V| \times \max V$ with

$$
(U \cup V, u / V) \Vdash{\underset{\sim}{x}}^{V}={\underset{\sim}{x}}_{|U \cup V|-1} .
$$

Proof We prove the first part. Let $u_{0}=u^{\circ}, n_{0}=\min u_{0}$, and

$$
\mathcal{V}_{0}=\left\{V: n_{0} \in V \subseteq\left\{n_{0}\right\}\right\}=\left\{\left\{n_{0}\right\}\right\}
$$

Note that

$$
\left(U \cup\left\{n_{0}\right\}, u_{0} /\left\{n_{0}\right\}\right) \Vdash \dot{\boldsymbol{r}}\left(\left|U \cup\left\{n_{0}\right\}\right|-1\right)=n_{0} .
$$

Using the Pure Extension Property find $u_{1} \subseteq u_{0} /\left\{n_{0}\right\}$ and $x^{\left\{n_{0}\right\}} \subseteq n_{0}$ such that

$$
\left(U \cup\left\{n_{0}\right\}, u_{1}\right) \Vdash \dot{x}_{\left|U \cup\left\{n_{0}\right\}\right|-1}=x^{\left\{n_{0}\right\}},
$$

and put $n_{1}=\min u_{1}$ and

$$
\mathcal{V}_{1}=\left\{V: n_{1} \in V \subseteq\left\{n_{0}, n_{1}\right\}\right\}
$$

Since $\left|\mathcal{V}_{1}\right|=2$, using the Pure Extension Property twice find $u_{2} \subseteq u_{1} /\left\{n_{1}\right\}$ and $x^{V} \subseteq n_{1}$ for $V \in \mathcal{V}_{1}$ such that

$$
\forall_{V \in \mathcal{V}_{1}}\left(U \cup V, u_{2}\right) \Vdash \dot{x}_{|U \cup V|-1}=x^{V} .
$$

Put $n_{2}=\min u_{2}$ and

$$
\mathcal{V}_{2}=\left\{V: n_{2} \in V \subseteq\left\{n_{0}, n_{1}, n_{2}\right\}\right\}
$$

Since $\left|\mathcal{V}_{2}\right|=4$, using the Pure Extension Property four times find $u_{3} \subseteq u_{2} /\left\{n_{2}\right\}$ and $x^{V} \subseteq n_{2}$ for $V \in \mathcal{V}_{2}$ such that

$$
\forall_{V \in \mathcal{V}_{2}}\left(U \cup V, u_{3}\right) \Vdash \dot{x}_{|U \cup V|-1}=x^{V} .
$$

Continuing in this way we get $\left\langle u_{i}, n_{i}, \mathcal{V}_{i}\right\rangle_{i<\omega}$ such that for each $i<\omega$ we have

$$
\begin{gathered}
u_{i} \in[\omega]^{\omega}, n_{i}=\min u_{i}, u_{i+1} \subseteq u_{i} /\left\{n_{i}\right\}, \\
\mathcal{V}_{i}=\left\{V: n_{i} \in V \subseteq\left\{n_{j}: j \leqslant i\right\}\right\}, \quad \text { and } \forall \forall_{V \in \mathcal{V}_{i}} x^{V} \subseteq n_{i},
\end{gathered}
$$

and

$$
\forall_{V \in \mathcal{V}_{i}}\left(U \cup V, u_{i+1}\right) \Vdash \dot{x}_{|U \cup V|-1}=x^{V}
$$

Now, the condition

$$
(U, u)=\left(U^{\circ},\left\{n_{i}\right\}_{i \in \omega}\right)
$$

and the sets x^{V} work.
Lemma 4 Suppose that $\mathcal{Q} \Vdash \dot{\mathcal{P}}$ has the Laver property, and that

$$
\forall_{i<\omega}\left(U^{\circ}, u^{\circ}\right) * \dot{p}^{\circ} \Vdash \dot{x} \subseteq \omega \wedge \forall_{i}|\dot{x} \cap \dot{\boldsymbol{r}}(i)| \leqslant i .
$$

Then there exists a condition

$$
(U, u) * \dot{p} \leqslant\left(U^{\circ}, u^{\circ}\right) * \dot{p}^{\circ}
$$

such that for any $n \in u$ and $V \subseteq u \cap n$ the condition

$$
(U \cup V \cup\{n\}, u /\{n\}) * \dot{p}
$$

forces that

$$
\dot{x} \cap[\sup U, n) \subseteq\left[\sup U,(\sup (U \cup V))^{+u}\right) \cup\left[n^{-u}, n^{+u}\right) .
$$

In particular, any condition $\left(U^{\dagger}, u^{\dagger}\right) * \dot{p}^{\dagger} \leqslant(U, u) * \dot{p}$ forces that

$$
\dot{x} \backslash \min u^{\dagger} \subseteq \bigcup_{n \in u^{\dagger}}\left[n^{-u}, n^{+u}\right)
$$

Proof Since
$\mathcal{Q} \Vdash \dot{\mathcal{P}}$ has the Laver Property,
there exist \mathcal{Q}-names $\underset{\sim}{\dot{\underset{x}{i}}} \underset{i}{ }, i<\omega$, and a condition

$$
\left(U^{\circ}, u^{\circ}\right) * \dot{p} \leqslant\left(U^{\circ}, u^{\circ}\right) * \dot{p}^{\circ}
$$

that forces that for all i

$$
{\underset{\sim}{\dot{x}}}_{i} \subseteq(i+1) \times \dot{\boldsymbol{r}}(i) \wedge \forall_{j \leqslant i}\left|\left({\underset{\sim}{x}}_{i}\right)_{j}\right| \leqslant i \wedge \exists_{j \leqslant i} \dot{x}_{i}=\left({\underset{\sim}{x}}_{i}\right)_{j} .
$$

Put $(U, u)=\left(U^{\circ}, u^{\circ}\right)$ and trim u as follows.
Use Lemma 3 to trim u so that for the trimmed u for any nonempty $V \in[u]^{<\omega}$ there exist $\underset{\sim}{x} V, 0 \in|U \cup V| \times \max V$ such that

$$
(U \cup V, u / V) \Vdash{\underset{\sim}{x}}^{V, 0}={\underset{\sim}{\dot{x}}}_{|U \cup V|-1} .
$$

This implies in particular that

$$
\forall \forall_{j<|U \cup V|}\left({\underset{\sim}{x}}^{V, 0}\right)_{j} \in[\max V]^{<|U \cup V|} .
$$

Next, use Lemma 2 to trim u further so that for the trimmed u for any (possibly empty) $V \in[u]^{<\omega}$ the sequence

$$
\left\langle{\underset{\sim}{x}}^{V \cup\{n\}, 0}\right\rangle_{n \in u / V}
$$

converges in $\mathscr{P}(\omega \times \omega)$ to some $\underset{\sim}{x}{ }^{V, 1} \subseteq \omega \times \omega$ in such a way that

$$
\forall_{m \in u / V} \forall_{n \in u /\{m\}}{\underset{\sim}{x}}^{V, 1} \cap(m \times m)={\underset{\sim}{x}}^{V \cup\{n\}, 0} \cap(m \times m) ;
$$

in particular,

$$
\forall_{m \in u / V} \forall_{j \leqslant|U \cup V|}\left|\left({\underset{\sim}{x}}^{V, 1}\right)_{j} \cap m\right| \leqslant|U \cup V|,
$$

and thus

$$
\forall j \leqslant|U \cup V| \quad\left|\left({\underset{\sim}{x}}^{V, 1}\right)_{j}\right| \leqslant|U \cup V| .
$$

Finally, trim u again so that for the trimmed u we have

$$
\forall_{m \in u} \forall V \subseteq u \cap m \quad \forall_{j \leqslant|U \cup V|}\left({\underset{\sim}{x}}^{V, 1}\right)_{j} \subseteq m^{+u} .
$$

It is not hard to see that the condition $(U, u) * \dot{p}$ works.

To see the last assertion of the lemma, fix

$$
\left(U^{\dagger}, u^{\dagger}\right) * \dot{p}^{\dagger} \leqslant(U, u) * \dot{p}
$$

Suppose that $k \geqslant \min u^{\dagger}$ and that for some condition

$$
\left(U^{\ddagger}, u^{\ddagger}\right) * \dot{p}^{\ddagger} \leqslant\left(U^{\dagger}, u^{\dagger}\right) * \dot{p}^{\dagger}
$$

we have

$$
\left(U^{\ddagger}, u^{\ddagger}\right) * \dot{p}^{\ddagger} \Vdash k \in \dot{x} .
$$

Without loss of generality $\left|U^{\ddagger}\right| \geqslant 2$ and $k<\max U^{\ddagger}$. Let $m<n$ be the consecutive elements of U^{\ddagger} such that $k \in[m, n)$. Let $V=U^{\ddagger} \cap[\sup U, n)$. Note that $\sup (U \cup$ $V)=m$. Since

$$
(U \cup V \cup\{n\}, u /\{n\}) * \dot{p}^{\ddagger} \Vdash \dot{x} \cap[\sup U, n) \subseteq\left[\sup U, m^{+u}\right) \cup\left[n^{-u}, n\right)
$$

and

$$
(U \cup V \cup\{n\}, u /\{n\}) * \dot{p}^{\ddagger} \geqslant\left(U^{\ddagger}, u^{\ddagger}\right) * \dot{p}^{\ddagger} \Vdash k \in \dot{x},
$$

we must in fact have

$$
k \in\left[m, m^{+u}\right) \cup\left[n^{-u}, n\right) \subseteq\left[m^{-u}, m^{+u}\right) \cup\left[n^{-u}, n^{+u}\right)
$$

Since both m and n are in u^{\dagger}, we are done.
This ends the proof of Technical Lemma.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Blass, A.: MR1751223 (2001f:03095), Mathematical Reviews
2. Shelah, S., Spinas, O.: The distributivity numbers of $\mathcal{P}(\omega) /$ fin and its square. Trans. AMS 325, 20232047 (1999)

[^0]: Partially supported by IM UWr Grant 2155/M/IM/14.
 Janusz Pawlikowski
 Janusz.Pawlikowski@math.uni.wroc.pl
 Wojciech Stadnicki
 Wojciech.Stadnicki@math.uni.wroc.pl
 1 Department of Mathematics, University of Wrocław, 50-384 Wrocław, Poland

[^1]: ${ }^{1}$ In the proof of the key Lemma 4.6 in [2], at the very end of Case 1, it is claimed that the desired contradiction has been reached. It seems to us that this is too optimistic.

