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 2 

Abstract: A new strategy for moving forward in the characterization of the Global Neuronal 24 

Workspace (GNW) is proposed. According to Dehaene, Changeux and colleagues, broadcasting 25 

is the main function of the GNW. However, the dynamic network properties described by recent 26 

graph-theoretic GNW models are consistent with many large-scale communication processes that 27 

are different from broadcasting. We propose to apply a different graph-theoretic approach, 28 

originally developed for optimizing information dissemination in communication networks, which 29 

can be used to identify the pattern of frequency and phase-specific directed functional 30 

connections that the GNW would exhibit only if it were a broadcasting network.  31 

 32 
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 3 

1. Introduction 47 

Dehaene, Changeux and colleagues postulate the existence of a global network or a ‘global 48 

neuronal workspace’ (GNW) constituted by a set of cortical neurons that send projections to many 49 

distant areas through long-range excitatory axons. The main function of this network is to make 50 

the information encoded in a given specialized processor globally available by broadcasting it to 51 

all brain systems, a process that constitutes the neural basis of access to consciousness (Dehaene 52 

2014, pp. 304, 312, Dehaene and Changeux, 2004, 2005).  53 

 Although the model has been supported through the detection of key neural signatures 54 

associated with GNW broadcasting, these are not substantially different from those that could be 55 

associated with alternative large-scale processes. Perhaps the more precise characterization of 56 

these signatures has been provided by recent models describing graph-theoretic properties that 57 

were found in transient undirected functional GNW networks. These properties indicate a high 58 

degree of ‘integration’ between network components and therefore contribute to moving forward 59 

in our understanding of the connection between GNW signatures and broadcasting. Nevertheless, 60 

integration only entails efficient communication between GNW nodes and is therefore consistent 61 

with very different communication processes. By contrast, a GNW broadcasting model entails 62 

dynamic network properties uniquely tied to broadcasting. Section 2 characterizes the mentioned 63 

ambiguity of the GNW model. Section 3 presents a framework that can be used to depict a set of 64 

neural signatures exclusively associated with a GNW broadcasting process and a possible 65 

approach to experimentally detect them. A GNW broadcasting scheme is constituted by a specific 66 

pattern of frequency and phase-specific directed functional connections that could be detected 67 

through the application of phase transfer entropy (PTE) to the EEG signals that pick up the GNW’s 68 

“ignition”.  69 
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 70 

2. GNW signatures 71 

2.1. The four original signatures 72 

According to the workspace model, the GNW breaks the modularity of the cortex by making the 73 

information encoded within any given specialized (and otherwise encapsulated) processor globally 74 

available, that is, by broadcasting it to all the other processors (Dehaene & Changeux 2004). This 75 

broadcasting process was originally associated with four predicted neural “signatures”, i.e., neural 76 

markers which reliably indicate that the stimulus was consciously perceived.  77 

 The first two signatures describe, respectively, the spatial and temporal properties of a 78 

large-scale activity pattern that characterizes conscious states. Firstly, conscious perception is an 79 

‘avalanche’ in which signals pick up strength as they progress forward into the cortex and are 80 

finally spread throughout parietal and prefrontal lobes, resulting in a sustained large-scale ignition 81 

reaching and connecting distant processors (Dehaene 2014, pp. 223-225). The second signature 82 

characterizes the temporal properties of the conscious avalanche. Only for conscious stimuli, a late 83 

(300 ms after stimulus onset) slow wave of activity is amplified and flows into the prefrontal cortex 84 

and many other associative regions, and then back to visual areas (Dehaene 2014, pp. 334, 335). 85 

Finally, two additional signatures provide a more precise characterization of the GNW global 86 

activity pattern: the active units exhibit high-frequency (gamma-band) oscillations and a massive 87 

long-distance phase-synchrony between them (Dehaene & Naccache 2001, Dehaene 2014, pp. 88 

216, 262, Mashour et al. 2020).  89 

 These last two signatures are associated with the specific mechanism through with 90 

communication between GNW modules occurs. Dehaene suggests that the GNW implements 91 

Pascal Fries’ ‘communication through coherence’ (CTC) mechanism (Dehaene 2014, pp. 255 and 92 
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ss., Fries 2005, 2015). This is the proposal that gamma-band phase synchronization can have an 93 

essential role in communication between neural populations.  94 

 The basic idea is that rhythmic modulations of postsynaptic activity in a given neuron or 95 

set of neurons constitute rhythmic modulations in synaptic input gain or excitability. Pre-synaptic 96 

inputs that consistently arrive at moments of high post-synaptic input gain will be more effective 97 

than those arriving at random phases of the excitability cycle. When a postsynaptic neuronal group 98 

receives inputs from several different presynaptic groups, it will respond primarily to the 99 

presynaptic group to which it is coherent. Thus, effective communication requires rhythmic 100 

synchronization between pre- and postsynaptic neurons (Fries 2005, 2009, 2015). This mechanism 101 

will be crucial for the discussion of our graph-theoretic approach.  102 

 103 

2.2. Graph-theoretic signatures  104 

A key development in the characterization of GNW signatures comes from recent graph-theoretic 105 

studies on dynamic functional brain networks. These explore the idea that cognitive tasks result 106 

from transient functional networks, established and dissolved on the timescale of milliseconds 107 

(Hutchison et al. 2013, Gonzalez-Castillo et al. 2012, Kucyi et al. 2013, Kucyi et al. 2016, Bola & 108 

Borchardt 2016, Simony et al. 2016, González-Castillo & Bandettini 2018). Some of these studies 109 

characterize the GNW theory as implying such functional reorganization. These approaches offer 110 

a graph-theoretic interpretation of the GNW’s ignition in terms of a transient functional network 111 

exhibiting forms of “integration” that maximize inter-modular communication. I will mention 112 

three representative examples of this trend spanning the past decade.  113 

 Kitzbichler et al. (2011) interpret the network organization predicted by workspace theory 114 

as a shift toward small-worldness in which the performance of tasks that require conscious access 115 
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 6 

reduces minimum path length (maximizing integration) and reduces clustering or modularity (thus 116 

minimizing segregation). In turn, Godwin et al. (2015) argued that GNW ignition is associated 117 

with a degradation of modularity via an increase in the participation coefficient, i.e., an increase 118 

in functional connectivity across modules rather than within modules. Finally, Deco et al. (2021) 119 

argue that GNW intermodular integration must be characterized through the concept of a 120 

‘functional rich club’. During GNW global ignition, specialized modules tend to be more densely 121 

functionally connected among themselves than to other brain regions (see also Vatansever et al. 122 

2015, Finc et al. 2017 and Finc et al. 2019, for complementary GNW analyses) 123 

 These findings constitute a crucial step towards a mechanistic understanding of the GNW. 124 

A key insight is that the large-scale communication between any given pair of GNW nodes 125 

depends not only on a mechanism involving those two nodes (such as CTC) but also on the global 126 

pattern of functional connections between all network nodes. That is, communication between any 127 

pair of GNW modules is facilitated by the transient functional connectivity of the whole network.  128 

 However, a key assumption of the GNW theory is underdetermined by the predictions 129 

provided by these network models. All the mentioned graph-theoretic measures account for the 130 

‘integration’ of information by the GNW, which in this context is equivalent to a general notion 131 

of communication. Network properties such as reduced average path length, reduced modularity 132 

and increased rich club connectivity are used to indicate how communication between specialized 133 

modules is facilitated. In the same way as in the anatomical network models, these measures are 134 

employed in dynamic models to explain (following Sporns et al. 2004) how a network solves the 135 

trade-off between time and metabolic cost required for communication between a relevant set of 136 

nodes (Chklovskii & Koulakov 2004; Kaiser & Hilgetag 2006; Bullmore & Sporns 2012; Sterling 137 

& Laughlin 2015, ch. 13; Sporns 2016). Nevertheless, efficient communication is consistent with 138 
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many different large-scale processes that may be different from broadcasting. This is why focusing 139 

on network properties uniquely tied to broadcasting is an appealing strategy for exploring further 140 

the GNW.  141 

 142 

2.3. Broadcasting vs. alternative communication processes 143 

A notion of broadcasting was developed within a graph-theory research program originated in the 144 

1950s, which is focused on problems concerning information dissemination in communication 145 

networks with multiple sources and/or destinations (e.g., Bavelas 1950, Shimbel 1951, Landau 146 

1954).  A communication network is presented as a graph G = (V, E) in which the set V of vertices 147 

or nodes corresponds to the members or processors of the network, and the set E of edges 148 

corresponds to the communication lines connecting pairs of members. A subset U of nodes are 149 

identified as the originators that introduce a set M of messages into G. During each communication 150 

round, each informed node makes a ‘call’ (represented by a directed edge), that is, it sends a 151 

message to an uninformed node. During a series of rounds in which each node is either a message 152 

sender or a receiver, a communication task is completed (Figure 1).  153 

 154 

 155 
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 156 

Figure 1. A communication network. Node U1 is the originator introducing message M1 to the network. 157 
Undirected edges represent communication lines between nodes. Directed edges represent the propagation of 158 
M1 from one node to another (i.e., a call) during one of the communication rounds R1-R4. In this case, the network 159 
is performing a broadcasting process.   160 

 161 

 For instance, Hajnal, Milner, and Szemeredi (1972) considered the so-called “Gossip 162 

Problem”, which can be characterized as follows: There is a scandal, which can be divided into n 163 

different pieces of information and there are n people, each of which knows one piece of scandal 164 

which is not known to any of the others. The problem is to determine how many calls are needed 165 

before all the people know all the scandal (Figure 2a). The accumulation problem is a second task. 166 

In this case, we have the same initial conditions but the task is to accumulate or send the n pieces 167 

of information from all the sources to a single receiver in the network (Hromkovič et al. 2005, p. 168 

26) (Figure 2b).  169 

 A major variant of the gossip problem is the broadcasting problem. Whereas gossiping is 170 

an all-to-all information dissemination process and accumulation is an all-to-one process, 171 

broadcasting is a one-to-all process. Broadcasting is the process in a communication network G = 172 
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(V, E), whereby a message m (or set of messages M) originated by one root or source node u  V, 173 

is transmitted to all the nodes of the network (Hedetniemi et al.1988) (Figure 2c). 174 

 These tasks define different optimization problems that will have different solutions for a 175 

given number n of nodes. Therefore, if the GNW can be characterized as an efficient broadcasting 176 

system (Figure 2d), we should be able to identify signatures that are different from those it would 177 

exhibit if it were dedicated to an alternative communication process. In the next section the kinds 178 

implications that a broadcasting model entails will be articulated. 179 

 180 

 181 
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 183 

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00261/2031954/netn_a_00261.pdf by guest on 01 July 2022



 11 

 184 

Figure 2. An input-output representation of three communication tasks: Gossiping (a), accumulation (b) and 185 
broadcasting (c). Nodes on the left side represent the initial state of the network (the initial distribution of 186 
messages M1-Mn) whereas nodes on the right side represent the result of the relevant communication algorithm. 187 
A GNW broadcasting model (d) can be used to determine what network properties the GNW would have if it 188 
were exclusively dedicated to solve this third problem.   189 

   190 

3. Taking broadcasting seriously 191 

3.1. The broadcast problem 192 

Broadcasting is accomplished by placing a series of ‘calls’ over the communication lines of a 193 

network. According to the original version of the problem, the main goal is to complete this task 194 

as quickly as possible (see section 3.4 for further discussion). In order to achieve this, a broadcast 195 

algorithm or scheme must be designed. A broadcasting scheme for a message m is the specification 196 

of a set of calls in a graph G originating from a vertex u to be made during successive time steps 197 

or “rounds” until all network nodes receive m (Farley 2004). The broadcast scheme generates a 198 

broadcast tree, which is a spanning tree of the graph rooted at the originator (Harutyunyan et al. 199 

2013, Harutyunyan 2014, 2017, 2018). The broadcast tree is simply the set of communication lines 200 

required to execute a given scheme.  201 
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 12 

 The original formulation of the broadcast problem involved a set of restrictions for calls. 202 

These represent constraints imposed by some of the systems to which the framework was 203 

originally applied (e.g., people communicating by telephone). Therefore, they may have to be 204 

revised if we want to apply this approach to a brain system (see section 4). The original rules 205 

determined that (1) each call involves only involves only two nodes (a sender and a receiver) (2) 206 

each call requires one round or unit of time, (3) a node can participate in only one call per unit of 207 

time, (4) a node can only call its neighbors (i.e., its adjacent nodes) and (5) many calls can be 208 

performed in parallel (e.g., Farley et al. 1979, Hedetniemi, Hedetniemi & Liestman 1988, 209 

Harutyunyan 2014).  210 

 The basic broadcasting optimization problem is to find the scheme that minimizes the 211 

number of rounds required to complete broadcasting from a message originator, node u, in a 212 

connected graph with n nodes. The minimum time for broadcasting from u in a given graph G with 213 

n nodes is called the broadcast time b (u) of a vertex u in G. The task is to find the graph that can 214 

implement a scheme with minimal b(u), which is a minimum broadcast tree (a tree for which b(u) 215 

= log2n in networks constrained by the rules mentioned above) (Proskurowski 1981).    216 

 A more complex version of this problem is to determine how efficient a network is in 217 

broadcasting from any of its nodes. The broadcast time of the whole graph G, b (G), is defined as 218 

equal to the maximum broadcast time of any vertex u in G, i.e., b (G) = max {b (u)  u  V (G)} 219 

(e.g., Harutyunyan 2017). In this case, the optimization problem is to find n schemes for 220 

broadcasting in a n node network, each of which determines a minimal broadcast tree with its root 221 

in a different node. The graph that results from combining these trees is a broadcast graph. b(G) 222 

seems a plausible design variable for the GNW. This is because all the specialized processors must 223 

be able to make their outputs globally accessible. Finally, efficient broadcasting may also be 224 
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 13 

required to minimize wiring cost. The minimum broadcast graph (Figure 3), is a graph on n 225 

vertices with optimal b(G) and minimum number of edges, determined by a broadcast function B 226 

(n) (Farley 1979, Harutyunyan 2017).  227 

 228 

 229 

 230 

Figure 3. From Farley et al. (1979). Minimum broadcast graphs for n= 7-15 nodes. 231 

  232 

 The present framework entails that if the GNW is an efficient broadcasting network 233 

connecting n nodes, it will exhibit very specific structural and functional properties (i.e., its 234 

broadcast graph and broadcast schemes, respectively).   235 

 236 
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3.2.  A neural broadcast model 237 

 Characterizing the specific predictions that a GNW broadcasting model entails (i.e., the GNW’s 238 

broadcast graph and schemes) requires to experimentally determine the value of some key network 239 

parameters (see below) and therefore is beyond the scope of this perspective. However, sections 240 

3.2 to 3.4 will conceptualize the kinds of predictions that the framework can make (e.g. explain 241 

what a GNW broadcasting scheme is), identify the parameters that must be experimentally 242 

determined for computing the specific GNW broadcast graph and schemes, and propose a possible 243 

approach for experimentally testing these specific predictions.  244 

 The first step in the characterization of the GNW as a broadcast network is finding an 245 

adequate parcellation scheme. Given that the function of the GNW is to broadcast signals from 246 

any given specialized module to all the others, the natural choice is to characterize these modules 247 

as the nodes of the GNW broadcast network. Crucially, unlike nodes in alternative macro-scale 248 

parcellation strategies (e.g., sensor-based schemes) modules may define actual anatomical and 249 

functional neural boundaries that can be detected through graph-theoretic methods. In graph-250 

theoretic terms, a module (also called “community”) is a sub-set of nodes within a network that 251 

exhibit dense internal connections between them but weak or sparse connections with nodes that 252 

do not belong to that sub-set. These are often considered the building blocks in the organization of 253 

brain networks and are detected through different methods, of which the most widely applied is 254 

modularity maximization. This method aims to maximize a modularity quality function Q 255 

(Newman & Girvan 2004), where a partition of a network into different communities has a high 256 

Q value when its communities are more internally dense than would be expected by chance (see 257 

Sporns & Betzel 2016 and Betzel 2020 for a technical and methodological analysis of this 258 

approach).    259 
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 15 

 This notion is different from the characterization of modules in cognitive science as 260 

systems specialized for realizing particular cognitive functions (Fodor 1983), often defined by a 261 

set of special features such as informational encapsulation and inaccessibility, fast and mandatory 262 

processing, fixed neural architecture and/or domain specificity, among others. As we saw, the 263 

GNW presupposes a modular architecture in this last sense: The GNW is supposed to diminish the 264 

modules’ informational encapsulation. However, the connection between graph-theoretic and 265 

cognitive modules has been explored in both structural and functional brain networks. For instance, 266 

the community structure that was discovered in the C. elegans network through different methods 267 

(Bassett et al. 2010, Sohn et al. 2011, Towlson et al. 2013), seems to line up with the organization 268 

of its functionally specialized structures (e.g. Jarrell et al. 2012, Pan et al. 2010, Sohn et al. 2011). 269 

Other examples of anatomical modules that map onto known cognitive modules include 270 

Drosophila (Shi et al. 2015), mouse (Wang et al. 2012), and rat (Bota et al. 2015) brain. In the 271 

human brain, Crossley et al. (2013) associated modules defined by functional connectivity with 272 

specific cognitive domains. More generally, it has been shown that functional modules identified 273 

through community detection methods line up with specialized modules with proprietary cognitive 274 

domains (Meunier et al. 2010, Sporns & Betzel 2016, Betzel 2020). 275 

 If the cognitive modules in Dehaene’s model also line up with community analysis, then 276 

its application as a parcellation scheme entails that the GNW has a relatively small number of 277 

nodes. This means that the task of finding the GNW broadcast graph and schemes is a relatively 278 

simple computational problem.  The problem of finding the optimal broadcast algorithm for a 279 

network with an arbitrary number n of nodes is a hard problem (more precisely, an NP-complete 280 

problem, Farley et al. 1979, Garey & Johnson 1979, Problem ND4). This is why minimum 281 

broadcast graphs have been determined for specific and relatively low values of n (see figure 3). 282 
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Global accessibility only involves perceptual, motor, long-term memory, evaluation and attention 283 

systems (Dehaene & Naccache 2001). By identifying GNW nodes with cognitive modules, we 284 

know that in this network n is low and its minimum broadcast graph is plausibly already known or 285 

easily determinable.    286 

 The next step is to understand how a broadcasting scheme (i.e., a sequence of calls) is 287 

accomplished between such set of nodes. We saw that a call is the process, represented by a 288 

directed edge, of sending a message from one node to another through a direct communication 289 

line, represented by an undirected edge. At the neural level, this could be understood as the 290 

propagation of an electrical (or electro-chemical) signal from one neural structure to another 291 

through the fiber tract directly connecting them (Fornito et al 2016, ch. 7). In network neuroscience 292 

terms, identifying signal propagation requires to determine edge direction, which can be 293 

accomplished through different approaches, such as Granger causality (e.g., Goebel et al. 2003, 294 

Deshpande et al. 2011), dynamic causal modelling e.g., Friston et al 2013, Kahan & Foltynie 2013) 295 

and lagged correlations (Mitra & Raichle 2016). 296 

 Identifying a call not only requires to determine the direction of a functional connection 297 

between two nodes, but also that this connection depends on a specific communication line or 298 

anatomical edge directly connecting them. Calls bridge structural and functional connectivity. 299 

Different approaches are being developed for determining the relationship between functional and 300 

structural connections (e.g., Griffa et al. 2017, Avena-Koenigsberger et al. 2018, see Sadaghiani 301 

& Wirsich 2019 for a review). Thus, a neural call will be a directed functional connection between 302 

two nodes depending on a direct anatomical connection between them. In turn, a broadcast scheme 303 

will be a sequence of such calls. That is, a scheme describes the trajectory or temporal pattern of 304 

signal propagation through a structural network.  305 
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 17 

 Having identified the elements of neural broadcasting we can now specify what kind of 306 

predictions the model will make regarding GNW structural and functional properties. A first 307 

prediction is that the anatomical connections between n GNW modules will resemble the broadcast 308 

graph for n nodes. Assuming that the GNW has the anatomical structure of a small-world network, 309 

the broadcast model would describe the pattern of long-range inter-modular connections (those 310 

reducing average path-length) that specifically facilitates broadcasting. A second prediction is 311 

related to how the GNW broadcasting schemes will shape dynamical functional connectivity. 312 

During its ignition, the GNW will exhibit a specific pattern of directed functional dependencies 313 

between its nodes, which will have the form of a minimum spanning tree with its root at the 314 

originator module. Finally, given that broadcasting is accomplished through neural calls, a further 315 

prediction is that each functional edge between GNW nodes will depend on a structural edge 316 

belonging to the GNW broadcast graph.   317 

 How can these predictions be experimentally assessed? Regarding the anatomical 318 

properties associated with the broadcasting model, a first possibility is to explore them by 319 

employing any of the different methods for identifying structural macroscopic connectivity 320 

(anatomically segregated brain regions connected by inter-regional pathways), including invasive 321 

(e.g., histological dissection and staining, degeneration methods or axonal tracing) and non-322 

invasive in vivo mapping (e.g., diffusion MRI and tractography). For instance, by applying white 323 

matter tractography to diffusion MRI data we can produce a structural connectivity matrix, 324 

representing connectivity between GNW nodes.  325 

 However, these matrices only describe direct connections between regions and identifying 326 

and characterizing indirect polysynaptic connections may be crucial for computing the optimal 327 

GNW broadcasting schemes that will be executed over its structural connections. For instance, we 328 
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will see below (3.3) that broadcasting rounds can probably be implemented in the GNW by the 329 

oscillation cycles of the CTC mechanism. These cycles determine the time window during which 330 

communication between a pair of directly connected pre and post-synaptic neurons is possible. 331 

Thus, communication through a path with n synaptic crossings will require n broadcasting rounds. 332 

Given that directly connected regions are generally sparse (there are no white matter tracts between 333 

many pairs of regions) the optimal strategy minimizing GNW broadcasting time should probably 334 

be computed over a weighted structural matrix including information about the time costs of 335 

indirect connections.   336 

 In a recent study Seguin et al. (2020) analyzed polysynaptic neural signaling by 337 

transforming structural connectivity matrices into communication matrices that quantified the 338 

efficiency of communication between indirectly as well as directly connected regions under 339 

different network communication models, defined by different kinds of schemes or algorithms. 340 

Interestingly, the assessment of communication efficiency relied on applying these different 341 

optimization strategies to matrices with different kinds connectivity weights that operationalize 342 

metabolic factors shaping large-scale signaling (Bullmore & Sporns, 2012, Fornito et al. 2016, 343 

Rubinov & Sporns, 2010). Efficient communication will privilege high-volume white matter 344 

projections that may enable fast and reliable signal propagation, connections with lower number 345 

of synaptic crossings and connections with less physical length. Following this approach, the 346 

optimal GNW broadcasting schemes can be computed for a weighted structural graph representing 347 

some of these parameters. Crucially, the binary weight representing the number of synaptic 348 

crossings of a given edge connecting two GNW nodes can be used to measure its time cost in terms 349 

broadcasting rounds (see 3.3). 350 
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 In turn, the assessment of the functional properties of described by the broadcasting model 351 

presents different challenges. Functional connectivity is very often measured from functional 352 

magnetic resonance imaging (fMRI) data which, having a spatial resolution of the order of some 353 

millimeters, can be employed for reliably mapping large-scale functional networks (Fox and 354 

Raichle, 2007; Gillebert and Mantini, 2013). However, despite a number of technical issues, the 355 

higher temporal resolution electroencephalography (EEG) or magnetoencephalography (MEG) 356 

makes them potentially better suited than fMRI to capture the dynamics of GNW broadcasting, 357 

which is characterized by functional connections that rely on the CTC mechanism, that is, on the 358 

phase alignment of oscillations with specific frequencies.    359 

 Perhaps the main technical issue related to EEG spatio-temporal mapping is that at each 360 

channel, the signal is the result of the contributions from an unknown number of different sources, 361 

including distant neural and non-neural sources (Lopes da Silva, 2013). Consequently, sensor level 362 

data cannot provide the information required to identify the spatial origin, trajectory and 363 

destination of a neural broadcasting call. This is why source modeling is necessary to resolve (to 364 

some degree) the ambiguity of sensor level analysis (Michel et al., 2004; Lopes da Silva, 2013; 365 

Baillet, 2017, Stropahl et al. 2018).  For instance, Liu et al. (2017, 2018) have recently proposed 366 

the use of independent component analysis (ICA), which performs a blind decomposition of 367 

different spatio-temporal patterns that are mixed in the data, assuming that these patterns are 368 

mutually and statistically independent in time or space. ICA identifies a number of independent 369 

components, each of which consists of a spatial map and an associated time-course (Calhoun et 370 

al., 2001). The IC spatial map reveals brain regions that have a similar response pattern, and are 371 

therefore considered to be functionally connected (Mantini et al., 2007; Brookes et al., 2011).  372 
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 However, we saw that GNW broadcasting schemes are constituted by directed functional 373 

connections that depend on the phase alignment of oscillations with specific frequencies. A 374 

number of very recent EEG-based network analyses use phase transfer entropy (PTE) for 375 

identifying phase-specific directed functional connectivity as part of the biomarkers of different 376 

psychiatric disorders.  PTE was presented by Palus and Stefanovska (2003) and evaluated by 377 

Lobier et al. (2014), and is a reformulation of Granger’s causality principle mentioned above 378 

(Granger, 1969; Wiener, 1956). Unlike other phase synchrony metrics (Rosenblum et al., 1996, 379 

Stam et al., 2007, Vinck et al., 2011), PTE allows to identify the direction of information flow. 380 

Unlike other directed functional connectivity metrics, it allows to identify frequency and phase-381 

specific information flow. For instance, Hasanzadeh et al. (2020) used PTE to discovered patterns 382 

of directed connectivity associated with Major Depression Disorder. In addition to local and global 383 

efficiency, they calculated node degree (number of links connected to a node) and node strength 384 

(the sum of link weights connected to a node) computing separately inward and outward links (in-385 

degree, in-strength, and out-degree and out-strength, respectively).  In turn, Ekhlasi et al. (2021) 386 

investigated directed functional connections in ADHD patients with EEG by using PTE in each 387 

frequency band during an attentional task. Among other findings, they showed that the posterior 388 

to anterior pattern of connectivity commonly seen in the control group is disturbed in the ADHD 389 

patients in the theta band during visual tasks. Finally, Al-Ezzi et al. (2022) developed an EEG 390 

study of functional directed connectivity for assessing the severity of social anxiety disorder (SAD) 391 

in different patients. They identified the direction of functional connections by using partial 392 

directed coherence (PDC) at four frequency bands (delta, theta, alpha, and beta). PDC is a 393 

frequency-domain metric similar to PTE that is also based on the Granger causality approach. In 394 
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addition to other network properties, they also used in-degree, in-strength, and out-degree and out-395 

strength for assessing the severity of SAD. 396 

 Thus, PTE or PDC could constitute a possible approach for assessing the direction of EEG-397 

detected functional connections in the GNW. The GNW model predicts an intense propagation or 398 

“ignition” of neural activity particularly toward the prefrontal and parietal cortex at 200 to 300 ms 399 

after stimulus onset on trials with conscious perception. This is a robust signature that can be 400 

detected through EEG independently of stimulus modality or paradigm used to manipulate 401 

consciousness (Mashour et al. 2020).  Given a GNW ignition originated from a specific module u, 402 

we can examine whether the system implements a broadcasting process by determining whether 403 

the direction of each gamma-band functional connection between GNW modules during this 404 

process is consistent with the direction of the calls that constitute the GNW scheme for 405 

broadcasting from u.  406 

 However, computing the GNW broadcasting schemes with which PTE analysis will be 407 

matched may require to introduce a number of biologically plausible constraints and parameters 408 

that were not considered in the more basic versions of the broadcast model. These constraints will 409 

be examined in the next section.  410 

 411 

3.3. Neural restrictions on the broadcast model 412 

Calls (and consequently schemes) are also defined by the restrictions of the original version of the 413 

broadcast problem, which specify how they work in some of the systems to which the framework 414 

was originally applied (e.g. communication by telephone). These constraints strongly shape the 415 

predictions of our network model. Thus, it is crucial to assess whether they apply to neural 416 
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processing. In this section, we will focus on what we take to be the most problematic constraints 417 

on calls.  418 

 Firstly, we have to assess the constraints prohibiting that a given node has simultaneous 419 

relations with n  1 nodes. These are the conditions that a node can participate in only one call per 420 

round and that each call involves only two nodes.  421 

 Telesford et al. (2011) have analyzed information flow in brain networks by following a 422 

characterization of different flow types provided by Borgatti (2005). There are at least two 423 

classification parameters that are relevant for neural communication. First, nodes can communicate 424 

with each other via transfer (i.e., the message remains at only one node at a time) or via replication 425 

(i.e., the message is copied at each node). If a system communicates through replication, we should 426 

determine whether information is duplicated at one node at a time (serial) or simultaneously 427 

duplicated at several nodes (parallel). Telesford et al. (2011) claim that the brain uses parallel 428 

duplication. This is implied by how signal propagation works in divergent connections (i.e., 429 

multiple synaptic outputs from a single source). Activation of multiple synapses from a single 430 

terminal occurs simultaneously (e.g., Shepherd 2003, p. 10). A neuron can send signals 431 

simultaneously to different postsynaptic neurons and, consequently, through different neural paths.  432 

 Fortunately, broadcasting processes with one-to-many relations have been considered in 433 

the literature. There are two different approaches to this form of broadcasting. In ‘radio 434 

broadcasting’, each node makes simultaneous calls to all of its neighboring nodes. In broadcasting 435 

with ‘conference calls’, each node makes one call per round but each call can involve n ≥ 2 nodes. 436 

A question for further research is to determine which, if either, of these approaches would be 437 
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suitable for modeling the GNW1.    438 

Secondly, we have to examine the rule that each call requires one unit of time. This requires 439 

to determine first whether there is a GNW round. Although the idea that neural processes in general 440 

can be parsed into regular and functionally relevant time intervals seems implausible (Piccinini & 441 

Bahar 2013), it is possible that the GNW is an exception. 442 

The idea that the CTC mechanism underlies communication in the GNW suggests a 443 

candidate for a GNW round. As we saw, synchronization between pre and post synaptic neurons 444 

determines the time window in which effective communication between them is possible. CTC 445 

demands that information is only sent at moments of high input gain in the post-synaptic oscillation 446 

cycle. This cycle is a possible candidate for a GNW communication round because, as we saw, the 447 

network produces a large-scale synchrony between its active units. This suggests that all of the 448 

GNW active units have a regular and shared series of time windows in which communication 449 

between them can occur2. The identification between broadcasting rounds and oscillation cycles 450 

is a possibility that could be experimentally and theoretically explored. 451 

 Assuming that these cycles do constitute GNW rounds, what about the condition that each 452 

call occurs in one round? It seems that this condition should be revised. As we suggested, many 453 

edges in the GNW network are probably polysynaptic paths connecting two processors and 454 

therefore communication between processors could take more than one round. A possible way to 455 

address the broadcasting problem in a network not satisfying this one-round condition is by using 456 

a weighted graph in which each weight represents the time cost (i.e., the number of rounds) of 457 

communicating through a given edge. We saw that binary weights have been used to represent the 458 

 
1 For instance, Telesford (2011) affirms that the firing neuron typically activates approximately 30% of all synapses 
in a stochastic manner. This seems to favor conference calls, in which not all of the post-synaptic neurons would be 
activated.   
2 Recall that within this context neural synchrony refers to phase alignment.   
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number of synaptic crossings of a given edge (Seguin et al. 2020). In a broadcasting model the 459 

same weights could stand for the number of rounds required for sending a message through a given 460 

edge. Thus, the tree representing an optimal GNW broadcast scheme would be a weighted 461 

minimum spanning tree. The algorithm for developing a minimum spanning tree in a weighted 462 

graph was developed by Prim (1957). 463 

An additional key constraint that a broadcasting model of neural signal propagation should 464 

account for is related to recent discussions on neural routing. Routing involves the control of paths 465 

that information can take across a network. Given that physical networks have limited resources, 466 

the role of routing is to allocate signal paths in a way that optimizes relevant communication goals, 467 

such as those defining the broadcasting problem (i.e., time and wire minimization). In this sense, 468 

a scheme constituting the optimal solution to a given broadcasting problem represents an efficient 469 

routing strategy. However, we still need to assess whether it lines up with the general strategies 470 

that are plausibly implemented by neural communication.  471 

Daniel Graham distinguishes three different routing models that have been employed in 472 

neuroscience (e.g., Graham & Rockmore 2011, Graham 2014). According to a message-switched 473 

routing model, each message is passed along in its entirety from node to node. Graham suggests 474 

that it is implausible that this strategy is implemented by brain networks because message-switched 475 

routing requires memory buffers to store messages in a queue in which they “wait their turn” to be 476 

passed along. In turn, in circuit-switched routing an exclusive path is established between the 477 

nodes that send and receive a given message. However, such systems are plausibly not 478 

implemented by the brain, among other reasons, because it does not have the resources for the all-479 

to-all connectivity that exclusive paths between each sender and each receiver would require. 480 

Finally, in packet switching routing (the scheme used on the internet) messages at a source are 481 
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chopped into small packets and then reassembled at its destination. As Graham and Rockmore 482 

(2011) point out, packet switching has several appealing parallels with cortical signaling. They 483 

emphasize that this strategy entails (1) an ability to dynamically reroute traffic, as cortex does 484 

following lesion, (2) a capacity for different “applications” (e.g., email, http, etc.) to run 485 

concurrently on the same system, as distinct modalities and signaling systems do in cortex and (3) 486 

an inherent hierarchy of the network protocol stack, which mirrors hierarchical organization within 487 

and across cortex. 488 

How would a GNW scheme look if it performed broadcasting by using packet switching 489 

routing? There is a version of the broadcasting problem, first studied by Chinn et al. (1979) and 490 

Farley (1980), in which the broadcasted message at an originator node can be represented as being 491 

chopped into different sub-messages.  Given that each sub-message is broadcasted to all network 492 

nodes, all sub-messages will be reunited at each destination to be assembled, as packet switching 493 

requires.  Multiple message broadcasting is the process of multiple message dissemination in a 494 

communication network in which n messages, originated by one vertex, are transmitted to all 495 

vertices of the network (Harutyunyan 2006). In this case, the optimization problem requires to 496 

find, for m nodes, the graph and scheme with minimum number of time units necessary to 497 

broadcast n messages to all vertices from any given originator.  498 

Additionally, the fact that GNW broadcasting depends on CTC could also contribute to 499 

understand how routing may work in this system. In CTC models of visual processing the 500 

feedforward propagation of signals is modulated by top-down signals. If CTC also controls signals 501 

within the GNW, then their propagation schemes would also be regulated by feedback signals from 502 

receptor units. Graham (2014) has pointed out that neural feedback from higher levels in a 503 

processing hierarchy could be a fundamental aspect of neural routing. The optimization of GNW 504 
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schemes predicted by the broadcasting model could be the result of signal routing through the CTC 505 

mechanisms.   506 

 Finally, there is an additional restriction that did not affect the original broadcasting model 507 

but may nonetheless be required for its neural implementation. We need to assess whether, for 508 

each node, sending a message (or a number of messages) can be a function of a number of inputs 509 

defining a transmission threshold. Very often neural communication depends on the summation of 510 

presynaptic potentials in a shared post postsynaptic neuron within a time window (e.g. the kind of 511 

integration performed by simple cells in the visual cortex). This kind of restriction would obviously 512 

affect broadcasting schemes, as a given node would make a call (or a number simultaneous of 513 

calls) when (and only when) a given number of signals have arrived from other nodes. However, 514 

the fact that GNW communicates through the CTC mechanism suggests that its broadcasting 515 

scheme will possibly not involve a fixed or general input-output rule of this kind. Recall that CTC’s 516 

main function is to modulate input gain or excitability, thus making possible to route neural signals 517 

in a flexible way by affecting the sensitivity of a given node to specific input signals (Fries 2015). 518 

In CTC communication post-synaptic units can selectively modulate which pre-synaptic are 519 

effective in producing post-synaptic activation and which are not. Additionally, GNW feedback 520 

projections act as distributed routers through which signals can be amplified, sustained, and spread 521 

(Mashour et al. 2020), modulating the strength of the input signals themselves. This routing is 522 

plausibly a form of “balanced amplification” which depends not only on inter-areal excitatory 523 

feedback connections but also on intra-areal lateral inhibition, so that the facilitation of signal 524 

propagation between weakly connected areas does not undermine the stability of more strongly 525 

connected areas (Joglekar et al. 2018). These top-down routing mechanisms can be used to adapt 526 

input-output relations at each GNW node to fit an optimal broadcasting scheme. 527 
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 528 

3.4. Neural broadcasting design variables  529 

In addition to constraints, we must also consider whether the design variables that define the 530 

broadcasting problem (time and wiring costs) also require to be adjusted or reinterpreted in order 531 

to represent plausible GNW demands.  532 

 The idea that brain networks evolved to solve the trade-off between wiring cost and 533 

processing speed can be traced back to Ramón y Cajal’s time and space “conservation laws” 534 

(Chklovskii & Koulakov 2004; Kaiser & Hilgetag 2006; Bullmore & Sporns 2012; Sterling & 535 

Laughlin 2015, ch. 13; Sporns 2016). In network neuroscience, small-world networks have been 536 

proposed as a possible solution to this trade-off.  Regular clustering minimizes wiring cost whereas 537 

short average path length produced by random long-range connections minimizes conduction 538 

delay, thus increasing the speed at which information can be exchanged. Thus, the broadcast 539 

approach can be considered a development of small-world GNW models in the following sense: 540 

If (as Kitzbichler et al. 2011 argue) the GNW exhibits a small-world structure, then the 541 

communication processes it performs are plausibly optimized for minimizing time and wiring cost. 542 

The broadcast model then shows how the optimization of those specific parameters would affect 543 

the pattern of intermodular connections of this small-world network if it were dedicated 544 

exclusively to broadcasting. 545 

 Another possible worry is related to a design variable that seems to be crucial to neural 546 

design, namely energy cost.  In very early studies of neural information transmission it has been 547 

suggested that, due to the fact that the brain is one of the metabolically most active organs of the 548 

body (Sokoloff 1989), optimizing neural processing would require a compromise between energy 549 

and informational efficiency (e.g., Levy & Baxter 1996). For instance, a long-standing hypothesis 550 
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affirms that the visual system optimizes information processing by implementing sparse coding, 551 

which basically consists in representing each environmental condition by using very few active 552 

units (Barlow 1961). This is why it is reasonable to ask whether and how the demand for energy 553 

cost minimization shapes a broadcast network. Calls seem a key component of broadcasting energy 554 

cost. A GNW call is a signaling process and neural signaling has been considered a major element 555 

in the brain’s energy budget (Attwell & Laughlin 2001). Thus, it is plausible that the cost of a 556 

broadcasting process is at least partially determined by the total number of calls required by the 557 

implemented algorithm or scheme.  558 

 Nevertheless, once we identify the number of calls as one of the key elements for estimating 559 

broadcasting energy cost, it becomes clear why this variable has not been considered in the 560 

literature. The main reason is that this number is constant, i.e., alternative algorithms for 561 

broadcasting to a given number of nodes require the same amount of calls. Although the possibility 562 

of having simultaneous calls makes broadcasting time much smaller, n - 1 calls are always required 563 

to broadcast in graphs with n nodes (Richards & Liestman 1988)3.  564 

 Of course, energy cost makes no difference regarding algorithm choice only if we assume 565 

that all calls have the same cost. However, we saw that this is plausibly not the case for the GNW. 566 

Many GNW edges may be polysynaptic paths that require more than one round to make a call. 567 

Part of the energy cost of a particular call may be given by the n consecutive synapses that a signal 568 

has to pass through in order to go from one processor to another. If n is different for different GNW 569 

edges, then the broadcasting scheme could be optimized by using only the cheapest paths. 570 

However, notice that an energy weight of this kind would be redundant. If these weights are 571 

 
3 For broadcasting in k-uniform hypergraphs (the kind of graph required by conference calls) with n nodes, n-1/k-1 
calls will be required. 
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determined by the number of synaptic crossings of a given path, they will be equal to the time 572 

weight mentioned in the previous section.   573 

   574 

4. Conclusion 575 

The graph-theoretic characterization of the GNW theory key assumption, i.e., that the GNW is a 576 

broadcasting network, can contribute to the development of its model. It predicts fine-grained 577 

network properties that are uniquely tied to broadcasting. Unlike current GNW network models, 578 

which focus exclusively on undirected functional connectivity associated with efficient 579 

communication, the broadcast model entails signal propagation hypotheses characterized in terms 580 

of directed functional connectivity. GNW broadcasting schemes are constituted by frequency and 581 

phase-specific directed functional connections that could be detected through the application of 582 

phase transfer entropy (PTE) to the EEG signals that pick up the GNW’s “ignition”. The 583 

computation of these schemes requires to experimentally determine time weights for each GNW 584 

path through the detection of polysynaptic connections and to theoretically determine a 585 

communication strategy (e.g., multiple vs. single message broadcasting and radio broadcasting vs. 586 

conference calls). Finally, the model is not an alternative to but a development of previous ones in 587 

that it abstracts away from intra-modular connectivity and explores the specific pattern of long-588 

range inter-modular connections described by small-world GNW models.   589 
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