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Abstract

Recent advances in causal reasoning have given rise to a computational model that
emulates the process by which humans generate, evaluate and distinguish counter-
factual sentences. Contrasted with the “possible worlds” account of counterfactuals,
this “structural” model enjoys the advantages of representational economy, algorithmic
simplicity and conceptual clarity. This introduction traces the emergence of the struc-
tural model and gives a panoramic view of several applications where counterfactual
reasoning has benefited problem areas in the empirical sciences.

1 Introduction

One of the most striking phenomena in the study of conditionals is the ease and uniformity
with which people evaluate counterfactuals. To witness, the majority of people would
accept the statement: S1: “If Oswald didn’t kill Kennedy, someone else did,” but few, if any,
would accept its subjunctive version: S2: “If Oswald hadn’t killed Kennedy, someone else
would have.” For students of conditionals, these canonical examples (attributed to Ernst
Adams, (1975)) represent a compelling proof of the ubiquity of the indicative/subjunctive
distinction, and of the amazing capacity of humans to process, evaluate and form consensus
about counterfactuals.

Yet, not many students of conditionals asked the next question: How do we, humans,
reach such consensus? More concretely, what mental representation permits such consensus
to emerge from the little knowledge we have about Oswald, Kennedy and 1960’s Texas,
and what algorithms would need to be postulated to account for the swiftness, comfort and
confidence with which such judgments are issued.

The basic thesis of structural counterfactuals (Balke & Pearl, 1995; Pearl, 2000) is
that counterfactuals are generated and evaluated by symbolic operations on a model that
represents an agent’s beliefs about functional relationships in the world. The procedure
can be viewed as a concrete implementation of Ramsey’s idea (Ramsey, 1929), according
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to which a conditional is accepted if the consequent is true after we add the antecedent
(hypothetically) to our stock of beliefs and make whatever minimal adjustments are
required to maintain consistency (Arlo-Costa, 2009). In the indicative case, we simply add
the antecedent A as if we received a new evidence that affirms its truth and discredits
whatever previous evidence we had for its negation. In the subjunctive case, we establish
the truth of A by changing the model itself.

Taking Kennedy’s assassination as a working example, the distinction is as follows:
To evaluate the indicative conditional S1 (“If Oswald didn’t kill Kennedy, someone else

did”) we start by assigning truth values to variables that are known (or believed) to be true
in the story. In our case, we start with the common knowledge that Kennedy was in fact
killed, so, adding the hypothetical fact that Oswald did not kill Kennedy, it must be that
someone-else killed him.

The evaluation of the subjunctive conditional S2 (“If Oswald hadn’t killed Kennedy,
someone else would have”) demands a different procedure. S2 calls for rolling back history
as we know it, and rerun it under different conditions where, for some unknown reason,
Oswald refrains from shooting Kennedy. The key difference between the two procedures lies
in holding Kennedy’s death true in the indicative case but leaving it uncommitted in the
subjunctive case.

In Section 2 of this paper, I will present simple algorithms that reliably interpret
subjunctive conditionals, and cast these algorithms in the context of the general theory of
structural counterfactuals. I will briefly compare the structural account of counterfactuals
to the “possible worlds” account of Lewis (1973) and defend my preference of the former. In
Section 3, I will demonstrate how this model has given rise to an effective methodology of
causal inference in several of the empirical sciences, and how it has helped resolve practical
questions, from policy evaluation to mediation analysis to generalizing conclusions across
experimental studies.

2 An outline of the structural theory

The distinctions illustrated in the preceding section are part of a general theory of
counterfactuals that I named “structural” (Pearl, 2000, Chapter 7) in honor of its origin in
the structural equation models developed by econometricians in the 1940-50’s (Haavelmo,
1943; Simon, 1953; Hurwicz, 1950; Marschak, 1953).

At the center of the theory lies a “structural model,” M , consisting of two sets of
variables, U and V , and a set F of functions that determine how values are assigned to
each variable Vi ∈ V . Thus for example, the equation

vi = fi(v, u)

describes a physical process by which Nature examines the current values, v and u, of all
variables in V and U and, accordingly, assigns variable Vi the value vi = fi(v, u). The
variables in U are considered “exogenous,” namely, background conditions for which no
explanatory mechanism is encoded in model M . Every instantiation U = u of the exogenous
variables uniquely determines the values of all variables in V and, hence, if we assign a
probability P (u) to U , it defines a probability function P (v) on V .
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The basic counterfactual entity in structural models is the sentence: “Y would be y had
X been x in situation U = u,” denoted Yx(u) = y. The key to interpreting counterfactuals
is to treat the subjunctive phrase “had X been x” as an instruction to make a “minimal”
modification in the current model, so as to ensure the antecedent condition X = x.
Such a minimal modification amounts to replacing the equation for X by a constant x.
This replacement permits the constant x to differ from the actual value of X (namely
fX(v, u)) without rendering the system of equations inconsistent, thus allowing all variables,
exogenous as well as endogenous, to serve as antecedents.

Letting Mx stand for a modified version of M , with the equation(s) of X replaced by
X = x, the formal definition of the counterfactual Yx(u) reads:

Yx(u)
∆
= YMx(u). (1)

In words: The counterfactual Yx(u) in model M is defined as the solution for Y in the
“surgically modified” submodel Mx.1 Galles and Pearl (1998) and Halpern (1998) have
given a complete axiomatization of structural counterfactuals, embracing both recursive
and non-recursive models (see also Pearl, 2009a, Chapter 7).

Since the distribution P (u) induces a well defined probability on the counterfactual
event Yx = y, it also defines a joint distribution on all Boolean combinations of such
events, for instance ‘Yx = y AND Zx′ = z,’ which may appear contradictory, if x 6= x′. For
example, to answer retrospective questions, such as whether Y would be y1 if X were x1,
given that in fact Y is y0 and X is x0, we need to compute the conditional probability
P (Yx1 = y1|Y = y0, X = x0) which is well defined once we know the forms of the structural
equations and the distribution of the exogenous variables in the model.

In general, the probability of the counterfactual sentence P (Yx = y|e), where e is any
propositional evidence, can be computed by the 3-step process (illustrated in Pearl, 2009a,
p. 207);

Step 1 (abduction): Update the probability P (u) to obtain P (u|e).

Step 2 (action): Replace the equations corresponding to variables in set X by the equa-
tions X = x.

Step 3 (prediction): Use the modified model to compute the probability of Y = y.

In temporal metaphors, Step 1 explains the past (U) in light of the current evidence e;
Step 2 bends the course of history (minimally) to comply with the hypothetical antecedent
X = x; finally, Step 3 predicts the future (Y ) based on our new understanding of the past
and our newly established condition, X = x.

It can be shown (Pearl, 2000, p. 76) that this procedure can be given an interpretation
in terms of “imaging” (Lewis, 1973) – a process of “mass-shifting” among possible worlds –
provided that (a) worlds with equal histories should be considered equally similar and (b)
equally-similar worlds should receive mass in proportion to their prior probabilities (Joyce,

1Simon and Rescher (1966) came close to this definition but, lacking the “wiping out” operator, could
not reconcile the contradiction that ensues when an observation X = x′ clashes with the antecedent X = x
of the counterfactual Yx.
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2009; Pearl, 2000, pp. 76; 2010). Because “similarities” are thus shaped by causal-temporal
priorities, the structural account does not suffer from classical paradoxes that plague
“similarity by appearance” (Taylor & Dennett, 2011). For example, the sentence “Had
Nixon pressed the button, a nuclear war would have started” is accepted as true, despite
Fine’s ((1975)) “more similar” scenario in which someone had disconnected the switch.
Fine’s scenario is not minimally sufficient to ensure the antecedent “pressed the button.”

In (Pearl, 2000, p. 239), I remarked: “In contrast with Lewis’s theory, [structural]
counterfactuals are not based on an abstract notion of similarity among hypothetical
worlds; instead they rest directly on the mechanisms (or ‘laws,’ to be fancy) that govern
those worlds and on the invariant properties of those mechanisms. Lewis’s elusive ‘miracles’
are replaced by principled mini-surgeries, do(X = x), which represent a minimal change (to
a model) necessary for establishing the antecedent X = x (for all u). Thus, similarities and
priorities—if they are ever needed—may be read into the do(·) operator as an afterthought
(see (Pearl, 2000, Eq. (3.11)) and (Goldszmidt & Pearl, 1992)), but they are not basic to
the analysis.”

2.1 The two principles of causal inference

Before describing specific applications of the structural theory, it will be useful to summarize
its implications in the form of two “principles.” The entire set of tools needed for solving
causal and counterfactuals problems are based on only these two:

Principle 1: “The law of structural counterfactuals.”

Principle 2: “The law of structural independence.”

The first principle is described in Eq. (1) and instructs us how to compute counterfactuals
from a structural model. It thus allows us to define formally which counterfactual is true
in a given model M and in any given circumstance (U = u), and to express communicable
assumptions about reality in terms of counterfactual sentences. Likewise, when probabilities
are defined on U , principle 1 permits us to compute probabilities of a counterfactual, to
determine if one counterfactual depends on another given a third and, most importantly, to
determine what assumptions one must make about reality in order to infer probabilities of
counterfactuals from either experimental or passive observations.

Principle 2 instructs us how to detect conditional independencies in the data from the
structure of the model, that is, from the graph that describes the functional relationships
between the variables. Remarkably, regardless of the functional form of the equations in the
model and regardless of the distribution of the exogenous variables U , if the disturbances are
mutually independent and the model is recursive, the distribution P (v) of the endogenous
variables must obey certain conditional independence relations, stated roughly as follows:
whenever sets X and Y are “separated” by a set Z in the graph, X is independent of Y
given Z in the probability.2

2The “separation” criterion requires that all paths between X and Y be intercepted by Z, with special
handling of paths containing head-to-head arrows (Pearl, 2000, pp. 16–18). In linear models, Principle 2 is
valid for non-recursive models as well.
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This powerful theorem, called d-separation (Pearl, 2000, pp. 16–18) constitutes the link
between causal assumptions encoded in the model and the observed data. It serves as the
basis for causal discovery algorithms (Pearl & Verma, 1991; Spirtes, Glymour, & Scheines,
1993) as well as deciding identification and testing model misspecification.

3 Summary of applications

Since its inception (Balke & Pearl, 1995) this counterfactual model has provided
mathematical solutions to a vast number of lingering problems in policy analysis and
retrospective reasoning. In the context of decision making, for example, a rational agent is
instructed to maximize the expected utility

EU(x) =
∑
y

P (Yx = y)U(y) (2)

over all options x. Here, U(y) stands for the utility of outcome Y = y and P (Yx = y)
stands for the probability that outcome Y = y would prevail, had action do(X = x) been
performed and condition X = x firmly established.3

The central question in many of the empirical sciences is that of identification: Can
we predict the effect of a contemplated action do(X = x) or, in other words, can the
post-intervention distribution, P (Yx = y), be estimated from data generated by the
pre-intervention distribution, P (z, x, y)? Clearly, since the prospective counterfactual Yx

is generally not observed, the answer must depend on the agent’s model M and then the
question reduces to: Can P (Yx = y) be estimated from a combination of P (z, x, y) and a
graph G that encodes the structure of M .

This problem has been solved by deriving a precise characterization of what Skyrms
(1980) called “KD-partition,” namely, a set S of observed variables that permits P (Yx = y)
to be written in terms of Bayes conditioning or, “adjusting for” S:

P (Yx = y) =
∑
s

P (y|x, s)P (s).

The solution came to be known as the back-door criterion (Pearl, 1995), stating (roughly)
that a set S of variables is admissible for adjustment if it “blocks” every path between
X and Y that ends with an arrow into X. Hagmayer and Sloman (2009) provide some
evidence that this is exactly what people do. Tian and Pearl (2002) and Shpitser and Pearl
(2007) further expanded this result and established a criterion that permits (or forbids)
the assessment of P (Yx = y|Z = z) by any method whatsoever, including the use of
X-dependent covariates Z (Pearl, 2009a, pp. 339–341), and time-varying sets of antecedent
variables X.

Prospective counterfactual expressions of the type P (Yx = y) are concerned with
predicting the average effect of hypothetical actions and policies and can, in principle,

3Equation (2) represents the dictates of Causal Decision Theory (CDT) Stalnaker (1981); Lewis (1973);
Gardenfors (1988) and Joyce (1999) – the pitfalls of Evidential Decision Theory are well documented (see
(Skyrms, 1980; Pearl, 2000, pp. 108–9)), and need not be considered.
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be assessed from experimental studies in which X is randomized. Retrospective
counterfactuals, on the other hand, like S2 in the Oswald scenario, consist of variables
at different hypothetical worlds (different subscripts) and these may or may not be
testable experimentally. In epidemiology, for example, the expression P (Yx′ = y′|x, y)
may stand for the fraction of patients who recovered (y) under treatment (x) who would
not have recovered (y′) had they not been treated (x′). This fraction cannot be assessed
in experimental study, for the simple reason that we cannot re-test patients twice, with
and without treatment. A different question is therefore posed: which counterfactuals can
be tested, be it in experimental or observational studies. This question has been given a
mathematical solution in (Shpitser & Pearl, 2007). It has been shown, for example, that
in linear systems, E(Yx|e) is estimable from experimental studies whenever the prospective
effect E(Yx) is estimable in such studies. Likewise, the counterfactual probability P (Yx′|x),
also known as the effect of treatment on the treated (ETT) is estimable from observational
studies whenever an admissible S exists for P (Yx = y) (Shpitser & Pearl, 2009).

Retrospective counterfactuals have also been indispensable in conceptualizing direct
and indirect effects (Baron & Kenny, 1986; Robins & Greenland, 1992; Pearl, 2001), which
require nested counterfactuals in their definitions. For example, to evaluate the direct effect
of treatment X = x′ on individual u, un-mediated by a set Z of intermediate variables, we
need to construct the nested counterfactual Yx′,Zx(u) where Y is the effect of interest, and
Zx(u) stands for whatever values the intermediate variables Z would take had treatment
not been given.4 Likewise, the average indirect effect, of a transition from x to x′ is defined
as the expected change in Y affected by holding X constant, at X = x, and changing Z,
hypothetically, to whatever value it would have attained had X been set to X = x′.

This counterfactual formulation has enabled researchers to derive conditions under
which direct and indirect effects are estimable from empirical data (Pearl, 2001; Petersen,
Sinisi, & van der Laan, 2006) and to answer such questions as: “Can data prove an employer
guilty of hiring discrimination?” or, phrased counterfactually, “what fraction of employees
owes its hiring to sex discrimination?”

These tasks are performed using a general estimator, called the Mediation Formula
(Pearl, 2001, 2009b, 2012a), which is applicable to nonlinear models with discrete or
continuous variables, and permits the evaluation of path-specific effects with minimal
assumptions regarding the data-generating process (Pearl, 2012b, 2012c).

Finally, as the last application, I point to a recent theory of “transportability” (Pearl &
Bareinboim, 2011) which provides a formal solution to the century-old problem of “external
validity” (Campbell & Stanley, 1966); i.e., under what conditions can experimental findings
be transported to another environment, how the results should be calibrated to account
for environmental differences, and what measurements need be taken in each of the two
environments to license the transport.

The impact of the structural theory in the empirical sciences does not prove, of course,
its merits as a cognitive theory of counterfactual reasoning. The evidence is in fact mixed
on this issue (see Sloman and Lagnado (2005), versus Rips, this issue. Also see Kaufmann,

4Note that conditioning on the intermediate variables in Z would generally yield the wrong answer, due
to unobserved “confounders” affecting both Z and Y . Moreover, in non linear systems, the value at which
we hold Z constant will affect the result (Pearl, 2000, pp. 126-132).
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this issue). It proves nevertheless that in the arena of policy evaluation and decision
making the theory is compatible with investigators states of belief and, whenever testable,
its conclusions have withstood the test of fire.

4 Conclusions

This introduction started with the enigma of consensus: “What mental representation
permits such consensus to emerge from the little knowledge we have about Oswald, Kennedy
and 1960’s Texas, and what algorithms would need to be postulated to account for the
swiftness, comfort and confidence with which such judgments are issued.” The very fact
that people communicate with counterfactuals already suggests that they share a similarity
measure, that this measure is encoded parsimoniously in the mind, and hence that it must
be highly structured.

The theory of structural counterfactuals offers a solution to the consensus enigma. It
presents conceptually clear and parsimonious encoding of knowledge from which causes,
counterfactuals, and probabilities of counterfactuals can be derived by effective algorithms.
It further carries the potential of teaching robots to communicate in the language of
counterfactuals and eventually acquire an understanding of notions such as responsibility
and regret, pride and free will.

The theory has given rise to major breakthroughs in the methodology of the empirical
sciences.
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