
International Journal of Approximate Reasoning 53 (2012) 293–315

Contents lists available at SciVerse ScienceDirect

International Journal of Approximate Reasoning

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i j a r

Belief and probability: A general theory of probability cores<

Horacio Arló-Costa, Arthur Paul Pedersen ∗

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA

A R T I C L E I N F O A B S T R A C T

Article history:

Received 30 May 2011

Received in revised form 31 December 2011

Accepted 7 January 2012

Available online 26 January 2010

Keywords:

Henry E. Kyburg

Probability cores

Acceptance rules

Full belief

Ordinary belief

Expectation

This paper considers varieties of probabilism capable of distilling paradox-free qualita-

tive doxastic notions (e.g., full belief, expectation, and plain belief) from a notion of prob-

ability taken as a primitive. We show that core systems, collections of nested propositions

expressible in the underlying algebra, can play a crucial role in these derivations.Wedemon-

strate how the notion of a probability core can be naturally generalized to high probability,

giving rise to what we call a high probability core, a notion that when formulated in terms

of classical monadic probability coincides with the notion of stability proposed by Hannes

Leitgeb [32]. Our work continues by one of us in collaboration with Rohit Parikh [7]. In turn,

the latter workwas inspired by the seminal work of Bas van Fraassen [46].We argue that the

adoption of dyadic probability as a primitive (as articulated by van Fraassen [46]) admits a

smoother connectionwith the standard theory of probability cores as well as a bettermodel

in which to situate doxastic notions like full belief. We also illustrate how the basic structure

underlying a system of cores naturally leads to alternative probabilistic acceptance rules,

like the so-called ratio rule initially proposed by Isaac Levi [34].

Core systems in their various guises are ubiquitous inmany areas of formal epistemology

(e.g., belief revision, the semantics of conditionals, modal logic, etc.). We argue that core

systems can also play a natural and important role in Bayesian epistemology and decision

theory. In fact, the final part of the article shows that probabilistic core systems are naturally

derivable frombasic decision-theoretic axiomswhich incorporate only qualitative aspects of

core systems; that the qualitative aspects of core systems alone can be naturally integrated

in the articulation of coherence of primitive conditional probability; and that the guiding

idea behind the primary qualitative features of a core system gives rise to the formulation

of lexicographic decision rules.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Personal probability occupies a central role in Bayesian epistemology, delivering rational quantitative belief, or degrees

of belief, thus understood to observe the laws of probability. These laws furnish standards of consistency for a body of

quantitative beliefs, much in the spirit of the laws of logic. Rational quantitative belief itself serves to ground the consistency
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of an agent’s decisions, supporting the explication and application of theories of rational decision making, giving rise to an

important and vibrant area of philosophical and scientific research.

In traditional epistemology, the origin of many of the fascinating philosophical problems addressed in Bayesian epis-

temology, rational qualitative belief is the predominant notion of philosophical interest. Itself understood to observe the

laws of logic, rational qualitative belief occupies a coarser scale than degrees of belief. In spite of this, one may recognize

a variety of related notions of rational qualitative belief, the notion of certainty, or full belief, being undoubtedly among

them, and perhaps a notion of plain, or ordinary, belief belonging among them as well. Full belief, tied to a strong epistemic

commitment, requires probability one, whereas ordinary belief does not. Intermediate among these notions one might also

locate other notions such as qualitative expectations, as understood among philosophers, logicians, computer scientists, and

others.

While degrees of belief and notions of rational qualitative belief are undoubtedly related—something we take for granted

in this article—the form of the relationship has remained elusive. Henry Kyburg, amongst other contemporary philosophers,

helped to make explicit the difficulties involved in relating rational degrees of belief with rational plain belief or certainty.

One natural suggestion to bridge the gap between qualitative and quantitative belief is to adopt an acceptance rule according

towhich an agent believes propositions carrying high probability. Thus, an agent believes a proposition just in case it exceeds

a fixed threshold r. Kyburg [30] showed early on that this rule leads to paradoxical conclusions, pointing towhat has become

known as the lottery paradox.

Example 1.1 (Kyburg). Consider an agent confronted with a fair lottery with 1million tickets. For each i, the agent considers

highly probable (.999999) that ticket number iwill not be the winning ticket. According to the present proposal, where r is

less than .999999, he will believe that each lottery ticket is not the winning ticket and that some ticket is a winning lottery

ticket.

If we understand rational quantitative belief and qualitative belief to be equipped with normative standards, such a rule,

therefore, leads to paradoxical results. In fact, the above example illustrates that a weaker form of the rule, according to

which high probability is sufficient for belief, leads to trouble.

Another natural suggestion intended to bridge the gap is to adopt an acceptance rule according to which propositions

with probability one are precisely those which are fully believed. While this rule may be too restrictive for ordinary belief,

even for full belief such a proposal faces difficulties.

Example 1.2. Consider a fair coin flipped until you see heads. The probability that the coin will lands heads in n flips is 1
2n
.

The agent maintains that it is possible that the coin never lands heads, yet according to the latest proposal, the agent fully

believes that the coin will land heads.

Thus,where full belief is understoodas anagent’s standard for seriouspossibility, this example conflictswith the requirement

that propositionswhich are seriously possiblemust be compatiblewith an agent’s full beliefs [33].While replacing full belief

with qualitative expectation certainly appears to get things right—indeed, the agent may reasonably be willing to place any

amount of money on a bet that the coin lands heads—a rule which requires that an agent fully believe that the coin land will

land heads is itself too restrictive for an adequate account of full belief.

Moreover, such a proposal is met with a transfinite version of the lottery paradox, as Patrick Maher [35], among others,

has remarked.

Example 1.3 (Maher). Suppose that an agent assumes that the weight of a stone can be represented by a real number in

some interval, say, between .5 and 1 pounds. The agent fully believes that the weight of the stone lies somewhere in the

interval [.5, 1]. To be sure, the agent assigns probability 1 to the proposition that the weight of the stone lies in the interval

[.5, 1]. In addition, for each x in the interval [.5,1], the agent judges that the weight of the stone is exactly x pounds carries

probability zero, as the agent regards it equiprobable that for any x in [.5, 1], the stone has weight x. Thus, that the stone is

exactly x pounds will carry probability one. But then if propositions of probability one are fully believed, the agent is certain

that the weight of the stone does not lie in [.5, 1].
Here, the notion of serious possibility need not be invoked to demonstrate that the present proposal attempting to relate

degrees of belief to full belief is faced with difficulties. One may squirm over the infinitary nature of such a paradox, but we

will not allow ourselves to become distracted by such dismissive finitists.

In fact, there are many possible principled reactions to the lottery in its finite and infinite versions. One solution that

Kyburg endorsed restores consistency by weakening the underlying logic. Thus, one adopts a drastic solution, abandoning

the so-called rule of adjunction of logic [31]. One of us [4] has suggested a second, less draconian solution, according to

which one may retain the laws of logic but articulate the notion of belief in a suitable epistemic logic in which the axiom

(�φ ∧ �ψ) → �(φ ∧ ψ) is permitted to fail, the modality being interpreted as a high probability operator.

If the underlying logic is stronger—for example, if it has the power of at least a first-order epistemic logic—one must

abandon the quantificational version of the aforementioned axiom, the so-called Barcan schema, ∀x�φ → �∀xφ, resulting



H. Arló-Costa, A. Paul Pedersen / International Journal of Approximate Reasoning 53 (2012) 293–315 295

in classical non-normalmodal logics. As such, the familiar Kripkean semantics cannot be used to study them, but a semantics

deriving from the pioneering work of Dana Scott [41] and Richard Montague [36] meets the task.

Henry Kyburg and Choh Man Teng creatively endorse the second approach in a conference paper [28]. An extension of

this paper is being published now in the present issue of this journal [29].

Of course, these two strategies (weakening classical logic by adopting a non-adjunctive logic; appealing to non-normal

epistemic operators) are related. It is easily seen that some of the most salient non-adjunctive logics can be mapped to

non-normal epistemic operators [5]. We can call this unified strategy the non-adjunctive strategy.

These solutions, unfortunately, will fail to satisfy those who are convinced that plain (or full) belief is closed under

conjunction, whether these solutions appear in theirmodal or classical varieties. The non-adjunctive strategy to the paradox

of the lottery consists in arguing that a different notion of rational qualitative belief—one that does not observe classical

logical properties—can be smoothly connected with rational degrees of belief. Kyburg argued in various writings that this

non-adjunctive notion of belief is epistemologically self-sufficient. As a non-adjunctive cousin, the notion of belief, it is

claimed, gives us a workable notion of serious possibility and can be used to guide rational action.

Yet, of course, we ask: What about the standard notion of rational belief? If one thinks that it obeys the standard laws of

logic, ought one conclude that it is incompatible with or underivable from probability? If this indeed were the case, perhaps

a Bayesian epistemology ought to adoptmore than one primitive. Belief and probability would then each assume a primitive

status, now being mutually irreducible. Such is the view of, for example, Issac Levi [33]. Unfortunately, many probabilists

have found this strategy unpalatable. In fact, if one does endorse a probabilistic stance recognizing qualitative notions of

rational belief, one would like to explicate non-probabilistic notions in terms of probability. Is this impossible?
Bas van Fraassen [46], concerned with some of the foregoing problems and related issues, has elegantly expresses a

viewpoint we share concerning attempts to relate belief to degrees of belief:

Personal or subjective probability entered epistemology as a cure for certain perceived inadequacies in the traditional notion of belief.

But there are severe strains in the relationship between probability and belief. They seem too intimately related to exist as separate but

equal; yet if either is taken as the more basic, the other may suffer [46, p. 349].

Van Fraassen thereuponproposed anunifiedprobabilistic explication of the notion of full belief, taking conditional probability
as basic. In addition, van Fraassen, who contends that unconditional beliefs are inadequate to account for the variety of an
agent’s epistemic attitudes, appealed to the notion of supposition:

There is a third aspect of opinion, besides belief and subjective grading, namely supposition. Much of our opinion can be elicited only

by asking us to suppose something, which we may or may not believe. The respondent imaginatively puts himself in the position of

someone for whom the supposition has some privileged status. But if his answer is to express his present opinion—which is surely what

is requested—then this “momentary” shift in status must be guided by what his present opinion is [46, p. 351].

Subsequently, van Fraassen adopted a form of probabilism that takes conditional probability as primitive function as a

primitive and suggests how to derive full belief from it by appealing to an interpretation in terms of the notion of supposition.

One of us undertook to extend, apply, and revise van Fraassen’s proposal (see [1–3,6,7], and the references therein).

The central idea of this modified proposal consists in showing that a primitive conditional probability function induces

a core system of nested propositions expressible in the underlying algebra under consideration. A core system encodes an

agent’s judgements of the relative plausibilities of events of zero probability. In the presence of countable additivity, a core

system possesses a smallest core, and provided that the algebra is closed under arbitrary unions, it also contains a largest

core (the union of all cores). The view that one of us has endorsed is that the smallest core encodes a notion of ‘near certainty’,

or qualitative expectation, while the largest core encodes that of full belief or certainty. The largest core carries measure one

and so all full beliefs—that is, those propositions entailed by the largest core—have probability one, but there are probability

one propositions which are not fully believed. As argued in a series of articles [1–3,6,7], this strategy offers a principled way

to address the transfinite lottery paradox. Probability one is not enough to ground full belief.

This strategy, which we review in Section 2, represents a promising way of proceeding to arrive at a fuller explication

of belief in terms of degrees of belief. Furthermore, among other fruits of the resulting account is an elegant probabilistic

semantics for conditionals and non-monotonic notions of consequence. Still, this strategy does not say anything about the

weaker notion of plain belief, for a proposition could be plainly believed even when it does not carry probability one.

Our goals in this article are rather simple. Among other things, we will endeavor to show that the main ideas proposed

by van Fraassen can be further extended and modified to explicate the notion of plain belief and to address the standard

version of the lottery paradox. In Section 3, we will propose a natural extension of the notion of a probability core, which

we call a high probability core. We will see that high probability cores, when derived from classical monadic probability, are

logically equivalent to the notion of stability as proposed by Hannes Leitgeb as part of an explication of belief in terms of

degrees of belief [32]. Stable sets enjoy various interesting properties, but they are tied to classical monadic probability,

preventing a smooth connection with the standard theory of probability cores, as primitive conditional probability is an

essential ingredient in this theory. Nevertheless, as we show in Section 4, it is easy to formulate a notion of a high probability

core derived from dyadic probability (using the definition thereof presented in [46]). This accountmeshes rather nicely with

the standard theory of cores, naturally extending the theory to high probability. As we will show, the central idea behind

the core construction finds application beyond its initial formulation.
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Highprobability acceptance rules are not the only type of ruleswhich have beenproposed to connect belief and degrees of

belief. For example, Isaac Levi [34] has proposed an alternative acceptance rule he calls the ratio rule. Although this rule has a

pedigree connected with cognitive decision theory, the ratio rule is formulated purely in probabilistic terms. In Section 4we

briefly discuss how a version of the ratio rule can also be used to define a variant of probabilty cores we call ratio cores. Ratio

cores enjoy many of the formal properties of standard probability cores and high probability cores. But one consequence of

the rule is that the innermost ratio core need not carry probability one or even high probability. Philosophers who think that

high probability is a necessary condition for belief can use ratio cores which qualify as high probability cores and possess

nice dynamic properties (not necessarily satisfied by the simple version of high probability cores).

After revisiting the lottery paradox in Section 5, we continue with a discussion of rational decision making. Thus, in

Section 6 we offer a representation result showing that probability core systems are naturally derivable from basic, com-

pelling qualitative decision-theoretic axioms which incorporate only qualitative aspects of core systems. In fact, we will see

that the qualitative features underlying probability core system can play a natural role in the formulation of a Dutch Book

argument for primitive conditional probability and more generally conditional expectation. These features also give rise to

a lexicographic decision rule.

The unified picture emerging from this article is that core systems in their different guises can play a crucial role in

the formulation of a variety of paradox-free acceptance rules linking rational belief and degrees of belief and decision rules

linking preference and value.Whilewedonot claim tohave provided the account of qualitative belief or any other expressible

epistemic notion, we believe that our account represents an attractive and principled candidate to serve as the foundation

for a unified epistemology, delivering sophisticated versions of probabilism and more complex epistemological accounts in

which cognitive utility grounds ampliative rules. Moreover, we believe that our account will bear fruit in areas well-beyond

the scope of this article. In Section 7 we close with concluding remarks and a discussion about ongoing and future work.

2. Dyadic probability and probability cores

Let us begin with the basic idea that propositions are sets of possibilities from a spaceW . Thus, propositions, denoted by

the letters A, B, C, etc., are subsets of W .

What basic structural features should we require a collection of propositions to satisfy? A mild requirement is that the

set of propositions in question be closed under logical operations—that it forms an algebra. We will use the notation A to

denote the absolute complement of a proposition A;⊆ to denote subset inclusion; and⊂ to denote proper subset inclusion.

We appeal to the usual symbols for intersection and union. We can now make some of the foregoing ideas more precise.

Definition 2.1. A collection A of subsets of a setW is called an algebra of sets (or field of sets) overW if it containsW itself

and is closed under the formation of complements and finite unions:

(i) W ∈ A ;

(ii) If A ∈ A , then A ∈ A ;

(iii) If A, B ∈ A , then A ∪ B ∈ A .

The collectionA is called aσ -algebra of sets (or aσ -field of sets) overW if it is an algebra and it is also closed under countable

unions:

(iv) For every collection {An}∞n=1 ⊆ A ,
⋃∞

n=1 An ∈ A .

We call an element A of A a proposition (or an event) from A .

The distinction between an algebra and σ -algebra is relevant whenW is infinite, collapsing otherwise. Now, since prim-

itive conditional probability plays a central role in the theory of probability cores, we ought to clarify what we mean by it.

Accordingly, we offer a definition (cf. [46]).

Definition 2.2. Let A be an σ -algebra onW . A two-place probability measure on A is a mapping P : A × A → R such that

for every A ∈ A :

(I) Either:

(a) P(·|A) has constant value 1;

or

(b) P(·|A) is a countably additive probability measure, i.e.,

(1) P(B|A) ≥ 0 for every B ∈ A

(2) P(W|A) = 1

(3) For every pairwise disjoint collection (Bn)n<ω ⊆ A :
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P

( ⋃
n<ω

Bn|A
)

= ∑
n<ω

P(Bn|A);

(II) P(A|A) = 1;

(III) P(B ∩ C|A) = P(B|A)P(C|B ∩ A) for all B, C ∈ A .

Definition 2.2 allows for conditioning on the absurd event ∅, but in such a case the definition demands that for every

event A, P(A|∅) = 1. In fact, part I.a is intended to represent the result of supposing a proposition the agent regards as

impossible. This feature deviates from standard presentations of probabilistic belief states, even for primitive conditional

probability (cf. [16,18,20,27,39,40]), although it aligns with the presentations of Harper [23], Popper [37] and van Fraassen

[46]. For thosewho find such a deviation difficult to digest, we point out that onemay usewhat could be thought of as amore

conservative, and yet essentially equivalent, definition of a two-probability measure, according to which the requirement

that P be defined on A × A is replaced by the requirement that P be defined on A × B, where B is a subcollection of A

excluding the absurd event such that P(A|B) > 0 implies that B ∈ B, and the option that P(·|B) have constant value 1 is

no longer available. Such a reformulation forbids inconsistent suppositional states, and the theory presented here could be

easily articulated using this reformulation instead.

We take property II to be partly constitutive of any notion of conditional probability, although other accounts—notably

the standard Kolmogrov account of regular conditional distributions—do not require this property ([11,10,42] contains a

valuable discussion of the extent of impropriety of regular conditional distributions—those that, roughly speaking, violate

property II). Property III has a long history going back at least to Jeffreys and to Keynes. It captures the idea that conditioning

preserves ratios, evenwhen conditioningonevents of unconditional probability zero.Wewill followestablished terminology

by referring to III as theMultiplication Axiom. 1

In this article we require that P be countably additive when it is an additive measure at all. It is well-known that the

requirement of countable additivity faces difficulties with existence. A more liberal approach would demand only that P be

finitely additive. Such an approach does not face the same difficulties with existence. However, as we will make an effort

to emphasize, some of the results for probability cores no longer obtain when the requirement of countable additivity is

dropped.

Beforewecontinue,wewish topoint out thatDefinition2.2 requires that probability beprecise. Although in this articlewe

assume that probabilistic assessments are precise, we recognize that amore satisfactory theorywould relax this assumption.

Indeed,while rational quantitative belief is understood to observe the laws of probability, such anunderstanding leaves room

for degrees of belief to be imprecise, reflecting, for example, an agent’s uncertainty concerning particular quantitieswhen on

the basis of the available evidence, making a numerically precise probability judgment would be unwarranted and arbitrary.

Nonetheless, the standard theory of cores assumes that probabilities are precise, and for our present purposes, we find it

better to retain this assumption.

When needed, we will refer to the probability (simpliciter) of a proposition A ∈ A , p(A), which is simply P(A|W). Given
A ∈ A , we call A normal if P(·|A) is a probability measure and abnormal otherwise, i.e., if P(·|A) has constant value 1, so in

particular, P(∅|A) = 1. Thus A is normal just in case P(∅|A) = 0.We emphasize that normal propositions can have probability

0. For example, under Lebesgue measure, the rationals as a subset of the reals comprise a normal set of probability 0. It

follows that the absurd proposition ∅ has probability 0 conditional on the set of rationals in the interval [0,1]. By contrast,

an abnormal proposition not only is assigned the value 0 but also leads to assigning any proposition the value 1 if it is

conditioned upon. In addition, abnormal propositions contained in normal propositions have probability 0, so if the W is

normal (which is the case if P is not the constant function 1), then all abnormal propositions have probability 0. To see this,

observe that if A ⊆ B, B is normal, and A is abnormal, then we have P(∅|B) = P(∅|A)P(A|B), so since P(∅|B) = 0 and

P(∅|A) = 1, it must be the case that P(A|B) = 0. Van Fraassen [46] establishes that supersets of normal propositions are

normal and that subsets of abnormal propositions are abnormal. Some useful facts about normal and abnormal propositions

can be found in [7].

Modifying van Fraassen’s presentation, we now introduce the notion of superiority or domination. Given propositions

A and B, say that A dominates B, written A >P B, just in case P(B|A ∪ B) = 0. The idea is that event A is infinitely more

“expected” than B. In terms of gambling, any bet on A for a small dollar amount is strictly preferred to having a bet on B. This

notion goes as far back as [14], with different formulations in Rényi [39], Krauss [27], and van Fraassen [46]. We consider

variations of this notion and the different notions of cores to which they give rise.

Finally, with the notion of superiority in place, we introduce the standard concept of a core.

Definition 2.3 (P-core). Let P be a two-place probability measure on A , and let K ∈ A . We call a K a core if it satisfies the

strong superiority condition:

For every A, B ∈ A ,

If A ⊆ K is nonempty and K ∩ B = ∅, then A >P B.

1 This axiom appears under the name ‘W. E. Johnson’s product rule’ in [25].
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Fig. 1. Probability core system.

Thus anynon-empty subset ofK dominates anyproposition outside ofK . In a sense, any suchpropositionwithinK is infinitely

more plausible than any proposition incompatible with K . In terms of supposition, a core K enjoys the property that under

the supposition that either a consistent proposition entailing K or a proposition entailing K is the case, the degree of belief

in the proposition entailing that K is false is infinitely small and so the degree of belief in the proposition entailing K is

maximal. Hence, a core places propositions which entail it is false far below those consistent propositions which entail it is

true. Moreover, all consistent cores carry probability 1.

While all supersets of normal sets are normal, all non-empty subsets of a core are normal. Let CP denote the collection of

all consistent cores associated with P. Of course, we drop the subscript when the context is clear. The following property is

an elementary consequence of the definitions (cf. [46]).

Proposition 2.4 (Finesse). All non-empty subsets of a core K for P are normal.

The next property is an essential feature of cores (cf. [46]).

Proposition 2.5. The family of cores CP is nested, i.e. given any two cores K1, K2 either K1 ⊆ K2 or K2 ⊆ K1.

A central result concerning cores was proved in [1].

Theorem 2.6 (Descending chains). The system of cores CP does not contain an infinitely descending chain of cores.

Thus, probability cores are well-ordered with respect to inclusion, closely resembling Grove spheres [21] and Spohn’s

ordinal conditional functions [44]. Figure 1 depicts a core system. The smallest core is K0, and Kn ⊆ Kn+1 for all. Core systems

are abundant and available in any order type. In fact, for any nonzero ordinal α, there is a two-place probability measure Pα
on P(α) such that the family of its cores has ordinal length α (ordered by⊆, of course). To see this, define Pα on α by setting

for every A, B ⊆ α, Pα(A|B) := 1 if min(A ∩ B) = min(B) and A ∩ B �= ∅ or B = ∅, and P(A|B) := 0 otherwise. It is easy

to verify that Pα is a two-place probability function on P(α). Every ordinal β ≤ α is a core, for if A ⊆ β is nonempty and

B ∩ β = ∅, then B is either 0 or B only contains ordinals following β , whence Pα(B|A ∪ B) = 0. In addition, no other subset

of P(α) is a core, for if K ⊆ α is a nonempty set which is not an ordinal, then there are ordinals β, γ such that β ∈ K and

γ ∈ β\K , so Pα({γ }|{β} ∪ {γ }) = 1 and therefore K is not a core.

As indicated above, some results for high probability cores no longer hold when countable additivity is dropped. To take

a simple example in the present context, if P is not countably additive, CP may have an infinite descending chain of cores. To

see this, takeW = ω (the first infinite ordinal) andA to consist of all finite and co-finite subsets ofω, and define a two-place

probability function P by setting for every A, B ∈ A :

P(A|B) :=
⎧⎪⎨
⎪⎩
1 if A, B are co-finite;
1 if max(A ∩ B) = max(B) and B is finite;

0 otherwise.

Clearly P is not countably additive, and if we set Cn := ω\n, then for every n < ω, Cn is a core and Cn ⊃ Cn+1, so CP is not

well-ordered with respect to inclusion and in particular does not contain a smallest core.



H. Arló-Costa, A. Paul Pedersen / International Journal of Approximate Reasoning 53 (2012) 293–315 299

When W is countable, probability cores as studied in [7] have nice properties, such as the following: 2

Proposition 2.7. If the space W is countable, then there is a largest core.

Again, the smallest core (and hence every core) has probability 1, being composed of propositions carrying positive proba-

bility, so in particular the largest core, which is the union of all probability cores, has probability 1.

If W is uncountable, however, there may not be a largest core. Consider W := ω1 · 2, where ω1 is the first uncountable

ordinal, and let A be the collection of countable and co-countable subsets of W . Define a two-place probability measure P

onA by setting for every A, B ∈ A , P(A|B) := 1 ifmin(A∩B) = min(B) and A∩B∩ω1 �= ∅ or B∩ω1 = ∅, and P(A|B) := 0

otherwise. Then all and only countable ordinals are cores, but
⋃
β<ω1

β = ω1 is not a core.

When there is a largest core, as when the space W is countable, the proposal advanced in [2] is to explicate full belief in

terms of the largest core. Thus, a proposition is believed just in case it is entailed by the largest core. To accommodate cases

in which there is no largest core, we adopt the following definition.

Definition 2.8 (Full belief). Let P be a two-place probability measure on A , and let B ∈ A . We shall say that B is fully believed

with respect to P if it is a superset of the union of all cores in CP .

Hence, a full belief is entailed by all cores and has maximal probability, and as such, is most entrenched and certain among

an agent’s epistemic commitments. To be sure, an agent cannot consistently suppose a proposition entailing that his full

beliefs are false without being in an absurd state of opinion in which he judges all propositions maximally likely. An agent’s

expectations are less demanding, yet still require probability 1, as attested by the following explication.

Definition 2.9 (Expectation). Let P be a two-place probability measure on A , and let E ∈ A . We shall say that a proposition

E is expected (or almost certain) with respect to P if it is a superset of the smallest core in CP .

Unlike full belief, anagent can consistently supposeaproposition incompatiblewithhis expectations.Anagent’s expectations

are stronger than his full beliefs but do not conflict with them, expressing what the agent anticipates to be the case—indeed,

with probability 1.

This review points to an important feature of the theory under consideration, viz., while the foregoing epistemic notions

obey classical closure properties, they are explicated in terms of primitive conditional probability. We refer the reader to [6]

and [1] and in particular [2,3] and [7] for a fuller discussion of the theory outlined here and its interesting connections to

conditionals and belief dynamics.

3. Monadic probability and high probability cores

In this section we turn to high probability cores. But we begin with a different probabilistic primitive: classical monadic

probability. While, as we shall see, the theory of probability cores is formulated in terms of dyadic probability, we take a

first step towards the articulation of the extended theory using monadic probability to facilitate a clear discussion of its

relationship to the theory proposed in [32]. For the sake of clarity, we present the definition of monadic probability due to

Kolmogorov [26].

Definition 3.1. Let A be an algebra overW . A probability function on A is a non-negative, normalized, and finitely-additive

real-valued function P on A :

(i) P(A) ≥ 0 for every A ∈ A ; (Non-Negativity)

(ii) P(W) = 1; (Normalization)

(iii) For every A, B ∈ A such that A ∩ B = ∅, (Finite Additivity)

P(A ∪ B) = P(A)+ P(B).

If A is in addition a σ -algebra over W , then P is a (σ -additive) probability measure on A if it is a probability function such

that for every pairwise disjoint collection (An)n<ω ⊆ A :

(iv) P(
⋃

n<ω An) =
∑

n<ω P(An). (σ -additivity)

While the properties of primitive conditional probability entail the well-known formula below, in the present setting

conditional probability is defined in terms of monadic probability:

2 Observe that there are two-place probability measures which have no cores. To take a simple example, let W = [0, 1], and let λ be the Borel measure on

[0, 1]. Define a two-place probabilitymeasure P by setting P(·|B) := λ(·|B) if λ(B) > 0 and P(·|B) := 1 otherwise. Then P has no probability core, for any normal

subset K contains a finite set K0 such that P(∅|K0) = 1.
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Definition 3.2. Let P be a probability measure on A , and let A, B ∈ A . Then the conditional probability of B given A, P(B|A),
is defined as

P(B|A) := P(A ∩ B)

P(A)
,

provided P(A) > 0, and is undefined otherwise.

Now we are in good position to extend the notion of a probability core as introduced above. The idea is to generalize

the notion of a core by generalizing the notion of dominance or superiority to high probability. Recall that we said of two

propositions A, B that A dominates B, written A >P B, if P(B|A ∪ B) = 0. To generalize, given t ∈ (0, 1
2
], let us say that A

dominates B if P(B|A∪ B) < t when P(A∪ B) > 0. Equivalently and officially, given r ∈ [ 1
2
, 1), let us say that A r-dominates

B, written A >r
P B, if P(B|A ∪ B) < 1 − r when P(A ∪ B) > 0.

Definition 3.3 (r-Core). Let P be a probability measure on A , let K ∈ A , and .5 ≤ r < 1. We call K a high probability corer ,

or r-core, if it satisfies the strong r-superiority condition:

For every A, B ∈ A ,

If A ⊆ K is nonempty and K ∩ B = ∅, then A >r
P B.

This is a natural generalization of the Strong Superiority Condition used in the previous section. Under the supposition that

either a consistent proposition entailing K or a proposition entailing K is the case, the degree of belief in the proposition

entailing that K is false is small. Like a probability core, an r-core favors propositions entailing that it is true to those which

proclaim that it false.

Observe thatK is a high probability corer just in case for all A, B ∈ A with∅ �= A ⊆ K andK∩B = ∅, if P(A∪B) > 0, then

P(A|A∪B) > r. Thus, rather than requiring that P(B|A∪B) = 0 and so P(A|A∪B) = 1, it is required that P(B|A∪B) < 1− r

and so P(A|A ∪ B) > r. It follows from the definition that every consistent high probability core has a probability exceeding

the threshold r. When it is understood that we are operating with a fixed threshold r, we will talk about a high probability

core (HPC) rather than a high probability corer (HPCr) or r-core.

Given a probability measure P, we will refer to the nested set of consistent cores of probability less than one induced

by P as the high probability core system for P, and we will denote the high probability core system for P by C r
P<1, dropping

subscripts and superscripts when no confusion will arise.

Like probability cores, high probability cores (HPCs) enjoy nice properties. In fact, it is possible to prove a series of

observations paralleling those established for probability cores. In particular, high probability cores nest, in the presence

of countable additivity there is an innermost core, and so on. In part because they proceed in a similar fashion, we do not

furnish all of the proofs of the properties.

We have further historical reasons for providing only a selection of the proofs. In June of 2010, Hannes Leitgeb gave a

stimulating talk on probability and acceptance rules during the inaugural workshop of the Center for Formal Epistemology

at CarnegieMellon University. During theworkshop, Leitgeb presented a paper showing how to derive belief fromdegrees of

belief frommonadic probability using his notion of stability, to be presented momentarily. The theory had some qualitative

resemblance to the traditional theory of probability cores, although the central definitions were not shown to be connected

to a natural extension of the theory of probability cores presented here. The goal of Leitgeb’s talk was to strike a compromise

between logical closure and high probability acceptance rules. The theory has not yet been unveiled in publication, although

we were fortunate enough to have an unpublished manuscript slightly before the conference [32].

When the workshop ended, we considered whether the theory of cores could be naturally extended to accomplish

something similar to what Leitgeb’s theory achieved. We accordingly proposed something close to the above definition

for dyadic probability as a candidate for such a natural extension, thereupon exploring its formal properties, conducting

our rather straightforward investigation from a point of departure different from Leitgeb’s to check whether the resulting

extension possessed the central properties of cores. At this pointwe considered the possibility that in the context ofmonadic

probability the two definitionswere logically equivalent, and this was easily seen to be the case. Of course, this waswelcome

news. We now present Leitgeb’s notion of stability [32, p. 20, Definition 2]), and we show that for monadic probability stable

sets are precisely high probability cores.

Definition 3.4 (Stabilityr). Let P be a probability measure on a σ -algebra A overW , and let S ∈ A . We say that S is P-Stabler

if for all B ∈ A with B ∩ S �= ∅, if P(B) > 0, then P(S|B) > r.

On the one hand, as Leitgeb describes it, a P-Stablerset is characterized by the property that it has stably high probabilities

under all suppositions consistent with it where probability is well-defined. On the other hand, a high probability core is

charactered by the property that the degree of belief in a proposition entailing its falsity is small under the supposition that

either the proposition entailing its falsity or a consistent proposition entailing its truth is the case, again where probability

is well-defined. As indicated above, these two notions are easily seen to be logically equivalent.
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Proposition 3.5. Let P be a probability measure on A over W. Then K is a r-core for P if and only if K is P-Stabler .

The proof is straightforward, but we include it for the sake of clarity.

Proof

(⇒) Suppose that K is P-stabler . Let A, B ∈ A be such that A �= ∅, A ⊆ K , and B ∩ K = ∅, and suppose that P(A ∪ B) > 0.

Then (A ∪ B) ∩ K = A �= ∅, whereby since K is P-stabler , it follows that P(K|A ∪ B) > r. Then:

P(A|A ∪ B) = P(A ∩ (A ∪ B))

P(A ∪ B)
= P(A)

P(A ∪ B)
= P(K ∩ (A ∪ B))

P(A ∪ B)
= P(K|A ∪ B) > r.

Hence, K is a high probability corer .

(⇐) Suppose that K is a high probability corer . Let A ∈ A be such that A ∩ K �= ∅, and suppose that P(A) > 0. Then

(A\K)∩K = ∅, A∩K ⊆ K and P((A∩K)∪ (A\K)) = P(A) > 0, whereby since K is a high probability corer it follows

that P(A ∩ K|A) > r. But

P(K|A) = P(K ∩ A)

P(A)
= P((A ∩ K) ∩ A)

P(A)
= P(A ∩ K|A) > r.

Hence, K is P-stabler . �

In light of this and the remarks above, we need not repeat a number of proofs regarding cores.We list themain theorems,

asking the reader to consult [32] or try his or her hand at them on his or her own.

Proposition 3.6. All non-empty subsets of a high probability core K such that P(K) < 1 carry positive probability.

Furthermore, high probability cores are nested.

Proposition 3.7. The family C r
P<1 is nested. In fact, for all high probability cores K1, K2 such that either P(K1) < 1 or P(K2) < 1,

either K1 ⊆ K2 or K2 ⊆ K1.

Finally, we turn to the analogue of Theorem 2.6 (Descending Chains). Since this is an elementary though fundamental

result in the theory of probability cores and since our proof is a simple generalization of the well-known proof for standard

cores, we present the proof here. A different proof of the same fact can be found in [32].

Theorem 3.8. There is no infinitely descending chain of cores in C r
P<1.

Proof. For reductio ad absurdum, assume that there is an infinitely descending chain of high probability cores which are all

subsets of some core K0 ∈ A such that P(K0) < 1:

K0 ⊃ K1 ⊃ K2 ⊃ · · ·
Consider the sets An := ⋃∞

i=n Ki\Ki+1 and Bn := K0\Kn. Then for each n, An ⊆ Kn is nonempty, Bn ∩ Kn = ∅, and
P(An ∪ Bn) > 0, so P(An| ⋃∞

i=0 Ki\Ki+1) = P(An|An ∪ Bn) > r. Therefore, since An ⊇ An+1 for each n, it follows that

limn→∞ P(An| ⋃∞
i=0 Ki\Ki+1) = P(

⋂∞
n=0 An| ⋃∞

i=0 Ki\Ki+1) ≥ r. But
⋂∞

n=0 An = ∅, yielding a contradiction. �

Hence, the system C r
P<1 is well-ordered with respect to the subset relation. There is no guarantee that a probability

function P has a high probability core with probability less than one, but if one exists, there must be a least non-empty core

with probability less than one and it carries a probability exceeding r, as do all high probability cores in C r
P<1 .

Tomake things clear, obviouslyW is a high probability core and indeed so is every proposition A ∈ A carrying probability

one. We know that any core K with P(K) < 1 is a subset of a probability one core, but these cores need not be nested.

As such, this theory fails to retain proper command of probability 1 cores and to mesh well with the standard theory of

probability cores. Among other things, the largest core cannot be used as a non-trivial representation of full belief. But this

should not be surprising. We abandoned primitive conditional probability, and this is one of the prices one must pay for

this move. Nevertheless, in the next section we will see that it is possible to construct a version of this account for primitive

conditional probability, permitting a smoother connection with the standard theory of probability cores.

We now state the culmination of the previous results.

Theorem 3.9. If C r
P<1 is nonempty, then C r

P<1 has order type at mostω, has a smallest core, and the union of all cores in C r
P<1 is

a high probability core, which carries probability 1 if and only if C r
P<1 is countably infinite.

Leitgeb [32] verifies essentially the same properties, the exercise being routine, so we omit a proof.
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Leitgeb [32, p. 34] proposes to restrict attention to probability measures satisfying a condition that he calls the ‘Least

Certain Set Restriction,’ which demands that there is a set K of A such that P(K) = 1 and for every A ∈ A with P(A) = 1,

it follows that K ⊆ A. That is, there is a least set of probability one in A . Still the sets of probability one need not be nested.

Of course, the least probability one proposition cannot have non-empty subsets of probability zero.

As Leitgeb correctly explains, there are many examples of countably additive measures obeying the aforementioned

restriction, including all probability measures on finite algebras A , all probability measures on the power set algebra of a

countably infinite setW , and all regular countably additive probability measures. In the case of probability measures on the

power set of a countably infinite set, the conjunction of every proposition carrying probability 1 is the least set of probability

1. Regular probability measures observe the requirement that only the empty set has probability 0, so for such measures

the least set of probability 1 is the set W itself. Leitgeb claims that these examples cover many, if not most, of the typical

philosophical toy examples of subjective probabilities [32]. For measures satisfying this restriction, a natural suggestion is

to define a high probability core system in the following way:

Definition 3.10. Let P be a probability measure on an algebra A such that P satisfies the Least Certain Set Restriction. An

(extended) high probability core system for P,C r
P , is defined byC r

P := C r
P<1∪{K}, whereK is the least proposition of probability

one.

As suggested by the definition, we call both C r
P<1 and C r

P high probability core systems when the context is clear. Of course,

probability measures satisfying the Least Certain Set Restriction allow for C r
P<1 to be empty, but K , the least proposition of

probability 1, is guaranteed to exist. We thereby define ordinary or plain belief in terms of probability as follows.

Definition 3.11 (Ordinary belief). Let P be a probability measure on A satisfying the Least Certain Set Restriction, and let

O ∈ A . We shall say that O is plainly believed (or is an ordinary belief ) if it is a superset of the smallest high probability core

in C r
P .

Hence, all ordinary beliefs have a degree of belief exceeding r.

Leitgeb compelling argues that such a definition is materially adequate because it follows from plausible postulates gov-

erning ordinary belief, probability, and the relationships amongst belief and probability. Loosely speaking, these postulates

consist of logical norms for belief, the aforementioned axioms of probability, well-known AGM-style axioms, mixed postu-

lates requiring that ordinary belief have high probability and that supposing a proposition with zero probability must result

in an absurd state of opinion, and finally an axiom requiring an agent’s corpus of beliefs to be in a certain sense maximal.

We find Leitgeb’s arguments to be headed in the right direction, much in the spirt of the arguments presented by Arló-Costa

and Parikh [6,7] and Arló-Costa [1–3] for probability cores. Of course, we take issue with the postulate demanding that sup-

positions upon zero probability propositions lead to absurdity, but Leitgeb seems to acknowledge that this is a simplifying

assumption. Furthermore, it would be desirable to drop the Least Certain Set Restriction, for although a substantial class of

probability measures do satisfy this requirement, many probability measures of philosophical interest do not—for example,

those used in economics, statistical inference and decision theory, and scientific practice more generally. We therefore ad-

vance the theory presented here with cautious enthusiasm, recognizing that the theory thus far developed—and to be more

adequately developed in the next section—represents an important stepping stone.

That Leitgeb’s theory can be formulated as a generalization of the standard theory of probability cores lends additional

credibility to the theory. The theory of probability cores has some pedigree at this point, even being based on ideas that go

back to de Finetti’s notion of probabilistic superiority. In any case, as the reader can see, both theories have identical logical

scope. Of course, Leitgeb should be credited for discovering the theory, and we hope that he publishes his paper soon. We

wish to put his theory in a different perspective, showing that the central ideas supporting the theory of probability cores

can offer a unified account of acceptance transcending the case of probability one.

4. Dyadic probability and high probability cores

The previous section set aside primitive conditional probability as used in the second section to introduce the theory of

probability cores. Instead, we focused onmonadic probability, the primary purpose being to show that a natural extension of

the standard theory of probability cores coincideswith Leitgeb’s recent proposal. In this sectionwepresent the theory of high

probability cores for primitive conditional probability. We will see that this move has various advantages. High probability

cores for primitive conditional probability are better behaved, affording a smooth connection with the previous work on

probability cores. The good news is that since we have already presented many of the main ideas behind high probability

cores, the presentation here will be abbreviated.

To be clear, we presuppose the definition of primitive conditional probability of Section 2. Again invoking a variation of

de Finetti’s notion of superiority, given r ∈ [ 1
2
, 1), let us say that A r-dominates B, written A >r

P B, if P(B|A ∪ B) < 1 − r.

Definition 4.1 (r-Core). Let P be a two-place probabilitymeasure onA , letK ∈ A , and let .5 ≤ r < 1.We callK a (two-place)

high probability corer , or r-core, if it satisfies the strong r-superiority condition:
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Fig. 2. High Probability Core System.

For every A, B ∈ A ,

If A ⊆ K is nonempty and K ∩ B = ∅, then A >r
P B.

Again, the idea behind probability cores may be expressed in terms of supposition: Under the supposition that either a

consistent proposition entailing K or a proposition entailing K is the case, the degree of belief in the proposition entailing

that K is false is small. An important feature of the above definition is that we have dropped the restriction that A ∪ B must

have positive probability. As with monadic high probability cores, when it is understood that we are operating with a fixed

threshold r, we will talk about a (two-place) high probability core (2-HPC) rather than a (two-place) high probability corer .

We use the notation from the previous sections, denoting the collection of consistent r-cores for P by C r
P and the subcol-

lection of r-cores with probability less than one by C r
P<1. Observe that C r

P contains all r-cores carrying maximal probability.

As usual, we drop the subscript and superscript where no confusion will arise. We now summarize the main properties of

high probability cores in the following theorem, the proof of which is straightforward and so omitted.

Theorem 4.2. Let P be a two-place probability measure on A .

(i) All non-empty subsets of any core in C r
P<1 carry positive probability;

(ii) The system C r
P is well-ordered with respect to inclusion;

(iii) The subsystem C r
P<1 has order type at most ω;

(iv) The union of all cores in C r
P<1 is a high probability core, which carries probability 1 if and only if C r

P<1 is countably infinite.

The main difference with the previous section is that cores carrying probability one will also be nested. In particular,

all probability cores introduced in Section 2 are high probability cores. Moreover, we will have a least such probability one

set representing the notion of expectation or ‘almost certainty.’ And if the probability function has cores with probability

less than one, we will also have a least high probability core representing the notion of plain or ordinary belief. So we can

accommodate all the attitudes we considered in the introduction of this paper and more. Figure 2 depicts a high probability

core system in which each Km is a probability one core, K0 is the smallest probability one core, each Kr
m is a member of C r

P<1,

and Kr
0 is the least r-core.

Now observe that the largest core—or indeed the union of all cores if a largest does not exist—need not coincide with

the universe W . To see this, let us return to Example 1.2—the one about flipping a coin until the agent sees heads. Let

W := {1, 2, 3, . . .} ∪ {∞}, let A := P(W), and for each A ⊆ W , let m(A) := ∑
n∈A\{∞} 1

2n
. The agent in question

may have degrees of belief given by the two-place probability measure P1 for which P1(A|B) = m(A∩B)
m(B)

, where m(B) > 0,

P1(A|{∞}) = 0 if ∞ /∈ A, and P1(A|B) = 1 otherwise. In such a case, the agent clearly has two probability 1 cores,

W0 := {1, 2, 3, . . .} and W itself. Yet the agent may instead have degrees of belief P2 given by P2(A|B) = m(A∩B)
m(B)

, where

m(B) > 0, and P2(A|B) = 1 otherwise. In this case, the agent has one probability 1 core, W0. Generally speaking, as in the

standard theory of cores, probability measures with abnormal events will determine non-trivial (or non-tautological) full

beliefs. The foregoing example also illustrates that the theory is suitably flexible for representing an agent’s beliefs.

Let us now consider briefly an appropriate generalization of the notion of P-stabilityr . A natural idea is to do what we

did for Definition 4.1—simply drop the requirement that B, the conditioning event in the definition of stability, must have
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positive probability. Thus, we might say that S ∈ A is P-Stabler if for every B ∈ A with B ∩ S �= ∅, P(S|B) > r. Yet a

consequence of this definition is that high probability cores and stable sets no longer coincide, as can be seen by considering

the measure P2 from above. In fact, a definition for which high probability cores and stable sets coincide takes the following

form.

Definition 4.3 (Stabilityr). Let P be a two-place probability measure on A . We say that S ∈ A is P-Stabler if for all B ∈ A

with B ∩ S �= ∅, P(S|B) < 1 − r.

While thebasic idea is todrop the requirement thatP(B) > 0, onemust take care of abnormal sets, demandingP(S|B) < 1−r

rather than just P(S|B) > r.

4.1. Core dynamics

In this brief subsection, we point to some properties of the dynamics of core systems. This is the problem that we want

to analyze: let P be a two-place probability measure inducing a high probability core system C r
P . P can then be updated with

new information A, so we have:

PA(·|−) = P(·| − ∩A) (Update)

What is the new core system for PA? For standard probability cores, one of us proved in [3] that:

CPA = {K ∩ A : K ∈ CP and K ∩ A �= ∅}
For high probability cores, the situation is slightly different. It is straightforwardly shown that:

{K ∩ A : K ∈ C
r
P and K ∩ A �= ∅} ⊆ C

r
PA

But new cores can also emerge after updating, as illustrated in the following example.

Example 4.4. Let W = {ω0, ω1, ω2}. Let P be the two-place probability measure on the power set of W such that

P({ω0}|W) = 4
5
, P({ω1}|W) = 1

10
, P({ω2}|W) = 1

10
. Then for A = {ω0, ω1} and r = 17

20
, we have C

17
20
P = {W}, while

C
17
20
PA

= {{ω0}}.
While such a scenario may arise, we find no reason that it should not, especially when an agent learns a proposition,

thereby ruling out certain possibilities. Nevertheless, there are conditions under which the dynamics of high probability

cores is identical to the dynamics of standard cores.

4.2. The ratio rule and probability-ratio cores

In this subsection wewish to briefly discuss acceptance rules which differ from those based on high probability, focusing

on the so-called ratio rule proposed by Isaac Levi [34]. In the following we present background for the ratio rule and its

connection to core systems. Readers may skip this subsection and proceed directly to the next section without disrupting

the flow of the article.

Let Q and N be unary probability measures. Epistemologically, the probability measure Q is introduced to represent

concern for truth in inductive expansion, while the probability measure N is an “information-determining” measure. The

idea behind these measures is rather straightforward: At the same that we wish to avoid introducing falsehoods in the

current corpus of beliefs, we wish to acquire as much information (measured as propositional content) as possible.

Obviously both concernsmight clash and onemust strike some kind of compromise between them. Oneway to represent

this compromise mathematically is in terms of the quotient of these measures. Levi introduces a rejection rule defined in

terms of this quotient and a partition π of events.

Definition 4.5. Let X∗ be an element of π carrying maximum value of
Q(X∗)
N(X∗) . Let q be a real number between 0 and 1. Reject

an element X of π if and only if
Q(X)
N(X)

< q.Q(X
∗)

N(X∗) .

To simplify things mathematically, we will assume that N is regular, i.e., that every consistent event E in the underlying

space receives positivemeasure underN. This ratio rulemotivates the following alternative formulation of a probability core

that we will call a probability-ratio core:
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Definition 4.6. Let Q and N be probability measures on A , let K ∈ A , and 0 < q ≤ 1. Then K is a probability-ratio core if

for all A, B ∈ A with ∅ �= A ⊆ K and K ∩ B = ∅,
Q(B)

N(B)
< q.

Q(A)

N(A)

Ratio cores enjoy many of the properties of probability cores, giving rise to an interesting class of acceptance rules. It is

possible to articulate other acceptance rules which also enjoy interesting static and dynamic properties, and we will engage

in a comprehensive discussion of such rules in another article.

5. Coda: the lottery paradox revisited

Can we use the machinery offered above to solve the lottery paradox?We can, and quite simply. Suppose that the lottery

has n tickets. Then for each i, the statement that ticket i is not the winning lottery ticket carries high probability. Under a

uniform distribution, the only core is given by the proposition W itself. Such a result clearly carries over to the transfinite

case.

Does this result coincide with intuition? Well, it depends on whose intuition we are talking about. The result certainly

does not capture the intuitions of stauncher defendants of high probability acceptance rules, and in particular, it does not

capture Kyburg’s intuitions. Kyburg’s central idea is that in the lottery scenario one should be practically certain that ticket i is

not the winning lottery ticket. Using themost recent terminology that he and Teng have introduced, one has risky knowledge

of each such proposition ([28]; cf. [29]). Of course, this line of thinking cannot be sustained along with the requirement

that risky knowledge be closed under conjunction. By contrast, the solution in terms of high probability cores captures the

intuitions of enemies of high probability acceptance rules (e.g., Isaac Levi), the idea articulated in this solution being that

in the lottery scenario one only believes that either ticket 1 is the winner, or ticket 2 is the winner, or . . . or ticket n is the

winner. The novelty of such a solution is that one arrives at it by way of a probabilistic analysis, while authors like Levi shun

such analyses.

In fact, the kind of argument offered here exhibits a compromise between the views of Levi and Kyburg. Although the

representationof theepistemic stateunder consideration isprobabilistic, the certaintiesderived fromtheprobabilitymeasure

in the lottery scenario are those certainties non-probabilists think are reasonable in this situation. Some non-probabilists

just posit that these certainties are adequate, while others (like Levi) arrive to this conclusion by using non-probabilitic

acceptance rules (deploying the notion of epistemic value).

So, it is clear that the model offered here manages to reconcile high probability and logical closure by abandoning

some of the basic intuitions that probabilists take for granted in analyses of puzzles such as the lottery paradox. But it

is unclear whether probabilists like Kyburg embraced these intuitions just because they are necessary consequences of

adopting particular kinds of probabilistic acceptance rules, or whether they pre-systematically enjoyed these intuitions,

thereby articulating them in terms of high probability acceptance rules. Of course, we consider the first hypothesis more

plausible. The notion of risky knowledge is just the result of embracing a limited form of probabilism intrinsically tied to the

use of crude high probability acceptance rules. Once one sees that probabilism can be articulated in alternative ways, such

post-systematic intuitions no longer must remain awkward members of the arsenal of probabilism.

6. A decision theory

In this section, we show how qualitative aspects of core systems naturally give rise to a decision theory. Among other

things, we will see that the guiding idea behind the primary qualitative features of a core system leads to a lexicographic

decision rule which respects compelling principles of rationality. We will also see that the notion of coherence due to Finetti

[15], when suitably reformulated, provides grounds for observing the principles of two-place probability and indeed finitely

additive conditional expectation. To avoid distracting technicalities and unless indicated otherwise, throughout this section

we assume that the underlying algebra A is finite. We begin with our central notion.

Definition 6.1. A system of cores over W is a nonempty collection C of subsets of W well-ordered by ⊆.

We let �C := min⊆ C and �C := max⊆ C . According to the intended interpretation, any superset of �C is expected

while every superset of �C is fully believed. The collection �C is the space of serious or epistemic possibilities available to the

agent. Thus, any proposition disjoint from �C is epistemically impossible; let us setC := W\�C . We drop the superscript

C when the context is clear.

Now given a system of cores C and a proposition A ∈ A , define CA by setting:

CA := {A ∩ K : K ∈ C }.



306 H. Arló-Costa, A. Paul Pedersen / International Journal of Approximate Reasoning 53 (2012) 293–315

Definition 6.2. Let C be a system of cores over W . Define a map πC : A → A by setting for every A ∈ A :

πC (A) := min⊆ (CA).

We call πC the (suppositional) expectation function for C .

Again, we drop the subscript C when there is no danger of confusion. According to the intended interpretation, E ⊇ π(A)
just in case E is expected under the supposition that A. Thus, π(A) is the strongest proposition expected under the supposition

that A. Let us say that E ismaterially expected under the supposition that A if π(A) ⊆ E ⊆ � ∩ A. Events disjoint from � ∩ A

are regarded as epistemically impossible under the supposition that A.

Observe that π satisfies the following properties:

(i) π(A) ⊆ A. (Reflexivity)

(ii) π(A) ⊆ �. (Entertainability)

(iii) If π(A) ∩ B �= ∅, then π(A) ∩ B = π(A ∩ B). (Arrow)

(iv) If � ∩ A �= ∅, then π(A) �= ∅. (Consistency Preservation)

Property (i) says that A should be expected under the supposition that A, while property (ii) says that regardless of your

hypothetical supposition, any full belief ought to be expected. Condition (iii) owes its namesake to Kenneth Arrow, who

introduced it in his [8] in the context of rational choice. It captures two plausible properties:

(iiia) π(A) ∩ B ⊆ π(A ∩ B). (Conditionalization)

(iiib) If π(A) ∩ B �= ∅, then π(A ∩ B) ⊆ π(A) ∩ B. (Rational Monotonicity)

According to the intended interpretation, if a proposition B is compatible with the expectations under the supposition

that A, then expecting E on the supposition that A and B ought to be the same as deducing E from the meet of B and the

expectations obtained under the supposition that A. Finally, property (iv) says that any supposition consistent with your full

beliefs—any supposition unqualifiedly epistemically possible—ought to give rise to a consistent body of expectations.

In fact, given anymappingπ : A → A satisfying conditions (i) to (iv) for some�, there is a unique systemof coresC such

that � = max⊆ C and π = πC . To see this, define a sequence of sets (πi)i<n by setting πm := π(W\(⋃i<m πi)) for each
natural number m, and let k be the least natural number such that πn = ∅. Then � = ⋃

i<n πi, and setting Km := ⋃
i≤m πi

for each m < n, C := (Ki)i<n is a system of cores with � = Kn−1 = max⊆ C and π(A) = πC (A) for every A ∈ A . The

simple construction of C is depicted in Figure 3, while the relationship between π and πC in terms of (πi)i<n is depicted in

Figure 4.

In light of this, we may say that a function π : A → A is an expectation function with respect to �. We will also call

(πi)i<n the system of tiers for C (or π ), given its tier-like status.

Let us now turn to the data of the decision models with which we will concern ourselves.

Definition 6.3

(i) An act is a mapping f : W → R.

(ii) A constant act is an act f such that for some r ∈ R and every ω ∈ W , f (ω) = r.

(iii) Given acts f , g and an event A ∈ A , we define f �A g : W → R by setting for every ω ∈ W:

(f �A g)(ω) :=
{
f (ω) if ω ∈ A;
g(ω) otherwise.

In other words, f �A g = f · IA + g · IA. Thus, f �A g takes on the value of f on A and the value of g on A. As usual, a constant

function f taking the value r will be abbreviated by r itself (in bold). We denote the collection of all acts by A, and the

collection of constant acts by C.

To simplify our exposition, we take real-valued functions f : W → R as acts instead of functions on the state spaceW to

a set of consequences, and we assume that all suchmappings are measurable. As wewill try to make clear in our exposition,

much of what we have done in the following can be suitably reformulated in a more general setting. 3

Given a binary relation � on A, we define � by setting for every f , g ∈ A:

f � g :iff f � g and g �� f .

We define ∼ in the usual way by setting f ∼ g :iff f � g and g � f .

3 In this context, a mapping f : W → R is measurable if f−1(B) ∈ A for every Borel set B in R. If A = P(W), then every mapping is measurable.
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Fig. 3. Core system. Building (Ki)i<n out of (πi)i<n .

Recall that the notion of conditional preference is usually defined so that an act f is (weakly) preferred to an act g on the

condition that A just in case there is h ∈ A such that f �A h � g �A h.Wemodify the definition of conditional preference as

follows.

Definition 6.4. Let � be a binary relation on A, and let π be an expectation function for C . Given an event A ∈ A , we

define a binary relation �A on Aby setting for every f , g ∈ A:

f �A g :iff there is h ∈ A such that f �π(A) h � g �π(A) h.
The intended interpretation of f �A g is that ‘f is (weakly) preferred to g on the supposition that A’ or more accurately ‘on

all expectations under the supposition that A,’ the expectations in question belonging to the decision maker. Thus, what is

relevant to the decisionmaker for determiningwhether or not f �A g are his comparisons of f and g in light of his body of ex-

pectationsunder the supposition thatA, ignoringeverything inconsistentwith these expectationsbymaking f and g the same.

Except for axiom (0) and axiom (4), the following axioms are analogues of those from standard expected utility repre-

sentations.

Definition 6.5. Let π : A → A be a mapping, and let � be a binary relation on A . We call the pair (�, π) a preference

order on A if it satisfies the following conditions:

(0) π is an expectation function with respect to �;

(1) � is a weak order on A;
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Fig. 4. Expectation function in terms of (πi)i<n .

(2) For every f , g, h ∈ A:

If f � g, then f + h � g + h.

(3) For every f ∈ A and A ∈ A , there is c ∈ C such that f ∼A c.

(4) For every f , g ∈ A and A ∈ A such that A ⊆ , f · IA ∼ g · IA.
We call conditions (1)–(4) Order, Additivity, Suppositional Price Equivalence, and Absurdity Equivalence. These axioms

capture basic rationality commitments of a decision maker. Additivity corresponds to the axiom of independence, and if we

took acts more generally as mappings on the state space to a set of consequences (in particular, horse race lotteries), we

would replace additivity with a properly formulated axiom of independence. Suppositional price equivalence corresponds

to the property in standard expected utility representations that every act has a certainty equivalent, or to the property of

the betting interpretation of probability and prevision (i.e., expected value) according to which the prevision of a gamble is

the price at which the decision maker is willing to exchange the gamble (the “fair” price). In our context, however, the name

“certainty equivalent” would be inappropriate, for, among other things, f ∼W c says that the decisionmaker is indifferent to

the amount c with respect to his expectations. Indeed, it would be unobjectionable to call axiom (3) something like Expected

Suppositional Price Equivalence. As before, in amore general settingwhere actsmap states to consequences, we could replace

(3) with an Archimedean axiom which would be assumed to hold under every supposition. Absurdity equivalence requires

that an agent be indifferent betweenacts contingent onanevent he regards as impossible. In the context of standard expected

utility representations, an event with this property is often called Savage-null.

Definition 6.6. Let� be the space of serious possibilities. and let f , g : W → R be two acts. We say that f weakly dominates

g with respect to �, f �� g, if (i) for every ω ∈ �, f (ω) ≥ g(ω), and (ii) for some ω ∈ �, f (ω) > g(ω).

When there is no danger of confusion, we will drop the subscript �.

Definition 6.7. We call the pair (�, π) a dominance-sensitive preference order on A if it is a preference ordering satisfying

the following condition:

(5) For every f , g ∈ A:

If f � g, then f � g.

We call (5) the principle of Weak Dominance. This is an eminently plausible principle indeed. Assuming that the agent’s

decision is independent of the state to obtain, when faced with a decision between two acts such that in every state one act

is at least good as the other act and in some states better, the agent in question ought to regard the former act as superior

to the latter act and regard the latter act as inferior to the former act. The following table illustrates the principle of weak
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dominance with a state spaceW = {ω0, ω1, ω2} and full beliefs � = W . According to this table, f weakly dominates g and

so by the principle of weak dominance f ought to be preferred to g.

ω0 ω1 ω2

f $2 $1 $3

g $2 $0 $2

A standard way to justify the laws of probability andmore generally prevision (as de Finetti called it; the more familiar term

is “expected value”) is by way of a Dutch Book argument. Such an argument, tracing back to Bruno de Finetti [15] and Frank

Ramsey [38], standardly presume that an individual’s degrees of beliefs can be identified with her fair betting quotients

on bets. Such arguments proceed as follows. Acting as bookie, the individual posts her betting quotients for a collection of

events subject to the condition that she is willing to accept a gambler’s offer to exchange bets on or against the events for

sums ofmoney determined by the betting quotients. The individual’s degrees of belief are then called incoherent if a gambler

can make Dutch Book against her with a combination bets, subjecting her to an (almost) sure loss; otherwise, her degrees

of belief are coherent. The prized mathematical result is that an agent’s degrees of belief are coherent just in case they are

probabilities. Accordingly, the Dutch Book argument offers prudential grounds for acting in conformity with probabilities.

De Finetti himself considered a more general case in which the individual in question posts her fair prices for a collection

of gambles, or random quantities, subject to the condition that she is willing to buy or sell these gambles for sums of money

determined by the prices [17,18]. We also take this more general approach. We may express coherence in this context by

requiring that a decision maker should not find himself entangled in a situation in which for some collection of pairs of acts

(f0, g0), . . . , (fn−1, gn−1) he prefers each fi to gi yet when taken together the fi are never better and sometimes even worse

than the gi taken together.

Definition 6.8. We call the pair (�, π) a coherent preference order on A if it is preference order satisfying the following

condition:

(6) There is no collection of acts (fi, gi)i<n ⊆ A such that for every i < n,

fi � gi,

and∑
i<n

fi �
∑
i<n

gi.

We call (6) Coherence. As a special case, where P(A|B) is such that IA ∼B P(A|B), coherence requires that there is no collection

of pairs of events (Ai, Bi)i<n such that for every i < n:

λiIπ(Ai)(IBi − P(Ai|Bi))∼ 0,

yet ∑
i<n

λiIπ(Ai)(IBi − P(Ai|Bi))� 0.

That is, there is no collection of pairs of events such that each called-off bet corresponding to a pair is considered fair

yet the sum of the bets pays off no better than the constant gamble with payoff zero and in some states suffers a loss.

Hence, coherence resembles de Finetti’s related requirement of coherence for called-off bets, i.e., bets rendered void if the

conditioning event fails to obtain. The above special case of coherence differs in at least two important respects from de

Finetti’s notion of coherence for events. First, it invokes the expectation function π , whereas de Finetti’s notion does not. De

Finetti’s called-off bets are a special case of our called-off bets whereπ is the identitymap. Second, our notion invokes weak

dominance, whereas de Finetti’s notion invokes strict dominance, according to which an act f strictly dominates an act g if

f (ω) > g(ω) for eachω ∈ �. Like weak dominance, strict dominance has a corresponding principle which demands that an

act f that strictly dominates an act g ought to be preferred to g. Strict dominance is also a plausible principle of rationality

and clearly follows from weak dominance. A variant of condition (6) formulated in terms of strict dominance for monadic

expectation (and so probability) appears in [19].

Interestingly, in the context of the other axioms the principle of weak dominance and coherence are equivalent. In

particular, coherence is a consequence of weak dominance. Coherence is a commitment a decision maker must undertake if

he is also committed to observing weak dominance in the presence of order, additivity, and suppositional price equivalence.

Proposition 6.9. Let D = (�, π) be a decision model. Then D is a dominance-sensitive preference order if and only if D is a

coherent preference order.
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Proof. The proof is straightforward and so omitted. Observe that the proof does not utilize axiom (0) or axiom (3). �

Now recall that the idea behind the strong superiority condition is that any non-empty subset of K strongly dominates,

or is infinitely more expected than, any proposition disjoint from K . Taking this idea seriously, we can express the idea in

terms of preference over acts as follows: any bet paying an arbitrary positive amount on the occurrence of a proposition

entailing that K is true ought to be preferred to any gamble paying a unit on the occurrence of a proposition entailing that

K is false. More precisely, for every nonempty A, B ∈ A , K ∈ C , and α ∈ R such that A ⊆ K and K ∩ B = ∅:
If α > 0, then αIA � IB.

Thus, no matter how small α may be—indeed even below a unit—a bet paying α on A is strictly preferred to a bet paying a

unit on B. This coincides with the idea that everything within K is superior to everything outside of K . The above condition

can also be expressed in terms of the expectation function π associated with the system of cores.

Definition 6.10. We call the pair (�, π) a core preference order if it is a dominance-sensitive preference order satisfying the

following condition:

(7) For every A ∈ A with A ∩ � �= ∅, and α ∈ R :

If α > 0, then αIπ(A) � IA\π(A).

In other words, no rate α is small enough to render a simple bet on the strongest proposition expected under the

supposition that A dispreferred to any simple bet on the weakest proposition inconsistent with A and the decision maker’s

expectations under the supposition that A. We call (7) Strong Dominance.

It is easy to verify that in the context of the other axioms, strong dominance is equivalent to the condition preceding it if

expressed in terms of the associated system of cores, and strong dominance entails the following condition: For every f ∈ A,

A ∈ A with A ∩ � �= ∅, and α ∈ R :

If α > 0, then αIπ(A) � f · IA\π(A).
In fact, it is possible to combine weak dominance and strong dominance into a compact and elegant axiom resembling

the condition of coherence of de Finetti [15]. To see this, let us introduce a new notion of dominance.

Definition 6.11. Let C be a system of cores. and let f , g : W → R be two acts. We say that f weakly core dominates g with

respect to C , written f ≫C g, if there is K ∈ C such that f · IK � g · IK .
Clearlyweakdominance impliesweak core dominance. It is easy to check that the converse does not hold in general.Weak

core dominance naturally exploits the ordering of plausibility given by the system of cores C , applying weak dominance

successively through the tiers for the core system. Of course, we drop the subscript C when the context is clear.

Definition 6.12. We call the pair (�, π) a core-coherent preference order on A if it is a preference ordering satisfying the

following condition:

(6′) There is no collection of acts (fi, gi)i<n ⊆ A such that for every i < n,

fi � gi,

and∑
i<n

fi ≪
∑
i<n

gi.

We call (6′) Core Coherence. Core coherence presupposes yet another plausible principle of rationality, what we will call

the principle of Weak Core Dominance, demanding that if f ≫C g, then f � g. Indeed, as with Proposition 6.9, it can be

shown that weak core dominance is equivalent to core coherence. Let us make this official.

Definition 6.13. We call the pair (�, π) a core dominance-sensitive preference order on A if it is a preference order satisfying

the following condition:

(5′) For every f , g ∈ A:

If f ≫ g, then f � g.
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Of course, we call (5′)weak core dominance. We thereby have the following proposition whose proof we omit for the sake

of brevity.

Proposition 6.14. Let D = (�, π) be a decision model. Then the following are equivalent:

(i) D is a core preference order;

(ii) D is a core coherent preference order;

(iii) D is a core dominance-sensitive preference order.

Now let D = (�, π) be a decision model, and let (πi)i<n be the system of tiers for π . Let us say that suppositional

preference is represented by conditional expected value if there is a finitely additive conditional expectation E[·|·] such that

for every f , g ∈ A and A ∈ A :

f �A g if and only if E[f |A] ≥ E[g|A].
In addition, let us say that D is represented by lexicographic expected value if for every f , g ∈ A:

f � g if and only if E[f |πi] = E[g|πi] for all i < n, or

there is m < n such that for each i < m,

E[f |πi] = E[g|πi] and E[f |πm] > E[g|πm].
More compactly, � is represented by lexicographic expected utility if for every f , g ∈ A:

f � g if and only if for every k < n, if E[g|πi] ≥ E[f |πi] for each i < k,

then E[f |πk] ≥ E[g|πk].
Since we were working in a more general framework, let us define precisely what we mean by conditional expected value.

In the following definition, let A be an arbitrary algebra of sets over W .

Definition 6.15. We say that a mapping E : A × A → R is a finitely additive conditional expectation if it satisfies the

following properties:

(I) For every A ∈ A , either:

(a) E[·|A] has constant value 1, or

(b) E[·|A] satisfies the following conditions:

(b.1) For every f , g ∈ A:

E[f + g|A] = E[f |A] + E[g|A];
(b.2) For every f ∈ A and α ∈ R:

E[α · f |A] = α · E[f |A];
(b.3) For every f ∈ A:

inf
ω∈A

f (ω) ≤ E[f |A] ≤ sup
ω∈A

f (ω);
(II) For every f ∈ A and B, C ∈ A :

E[f · IB|C] = E[IB|C] · E[f |B ∩ C].
Thus, the conception of a finitely additive conditional expectation is an extension of the concept of a two-place conditional

probability, which in turn is a generalization of the standard notion of primitive conditional probability (see, e.g., [20,24]).

Theorem 6.16. Let D = (�, π) be a decision model. Then the following are equivalent:

(i) D is a core coherent preference order;

(ii) There is a finitely additive conditional expectation E[·|·] such that:

(a) π(A) is the support of E[·|A] for each A ∈ A ◦;
(b) D is represented by conditional expected utility;

(c) D is represented by lexicographic expected utility.
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Proof

(i) Suppose thatD is a core coherent preference order. First observe that by (1), (2), (3), (4), and (6′), for every f ∈ Aand

A ∈ A such that A∩� �= ∅, there is an unique cf |A ∈ R such that f ∼A cf |A. Let us therefore defineE : A×A → R
by setting for every f ∈ A and A ∈ A :

E[f |A] :=
{
cf |A if A ∩ � �= ∅
1 otherwise.

We now show that E[·|·] is a finitely additive conditional expectation. First we establish that E[·|A] satisfies prop-
erties (I.b) for all A ∈ A such that A ∩ � �= ∅. We only verify (I.b.2), leaving the proofs for (I.b.1) and (I.b.3) to the

reader.

(I.b.2) If α is a natural number, then on the one hand, if α = 0, then E[0 · f |A] = E[0|A] = 0, and on the other hand,

if α > 0, then by part (I.b.1) it follows that E[α · f |A] = α · E[f |A]. If α > 0 is a rational number of the form m
n
,

wherem, n are natural numbers, then n ·E[m
n

· f |A] = m ·E[f |A] and thereforeE[m
n

· f |A] = m
n

·E[f |A]. Now since

E[f |A] + E[−f |A] = E[f − f |A] = 0 and so E[−f |A] = −E[f |A], it follows that if α < 0 is a rational number,

then E[α · f |A] = α · E[f |A]. Finally, let α ∈ R. First consider E ∈ A . Then by (6′) it follows that:

sup{α∗ · E[IE|A] : α∗ ∈ Q and α∗ < α} ≤ E[α · IE|A]
≤ inf{α∗ · E[IE|A] : α∗ ∈ Q and α < α∗}.

Hence, E[α · IE|A] = α · E[IE|A]. It follows straightforwardly from the foregoing that for every f ∈ A and α ∈ R,

E[α · f |A] = α · E[f |A].
Clearly by definition E[·|A] satisfies property (I.a) for all A ∈ A such that A ∩ � = ∅.

(II) The argument here proceeds along familiar lines, but we provide it for the sake of completeness. First let B, C ∈ A

and f ∈ Abe such that C ∩� �= ∅. For reductio ad absurdum, assume thatE[f · IB|C] �= E[IB|C] ·E[f |B∩C]. Define:

λf ·IB|C :=
⎧⎪⎨
⎪⎩
1 if E[f · IB|C] > E[IB|C] · E[f |B ∩ C];
−1 if E[f · IB|C] < E[IB|C] · E[f |B ∩ C];
0 otherwise.

Also, define λIB|C := −E[f |B ∩ C]λf ·IB|C and λf |B∩C := −λf ·IB|C . Now since E[λf ·IB|C · f · IB|C] = λf ·IB|C · E[f · IB|C]
and E[λIB|C · IB|C] = λIB|C · E[IB|C], it follows by (2) and (3) that:

λf ·IB|C Iπ(C)f · IB ∼ λf ·IB|C Iπ(C)E[f · IB|C]
−E[f |B ∩ C]λf ·IB|C Iπ(C)IB ∼ −E[f |B ∩ C]λf ·IB|C Iπ(C)E[IB|C]

If B ∩ π(C) = ∅, then the sum of the two gambles on the left is ≪ the sum of the gambles on the right. If

B ∩ π(C) �= ∅, then by (2) and (3) it follows that E[λf |B∩C · f |B ∩ C] = λf |B∩C · E[f |B ∩ C] and:
−λf ·IB|C IB∩π(C)f ∼ −λf ·IB|C IB∩π(C)E[f |B ∩ C]
Again, the sum of the three gambles on the left is ≪ the sum of the gambles on the right. If C ∩ � = ∅, then we

immediately have that E[f · IB|C] = E[IB|C] · E[f |B ∩ C].
In light of the foregoing considerations, it follows that E is a finitely additive conditional expectation. Moreover, for

each A ∈ A ,π(A) is the support ofE[·|A] (i.e., the strongest proposition S such thatE[IS|A] = 1), for otherwise (6′)
is violated, as may be verified. We have therefore establish parts (ii.a) and (ii.b) of the theorem.4 We now establish

part (ii.c).

(ii.c) Observe that the system of tiers (πi)i<n partitions � and is such that for every m < n, πm is the support of

E[·|W\(⋃i<m πi)]. In the following, let  := W\�. Now let f , g ∈ A. Then f = (
∑

i<n Iπi
· f ) + I · f and

g = (
∑

i<n Iπi
· g) + I · g. Since E[f |πi] · Iπi

∼ f · Iπi
for each i < n, we have f ∼ (

∑
i<n E[f |πi] · Iπi

) + I · f .
Similarly, g ∼ (

∑
i<n E[g|πi] · Iπi

)+ I · g.
(⇒) Now suppose that f ∼ g. For reductio ad absurdum, assume that E[f |πi] �= E[g|πi] for some i < n, and let k be the

least such i. First consider the case in which E[g|πk] > E[f |πk]. Then by (7) and the other axioms:

4 The astute reader will have observed that we have not used anything beyond axioms (1) - (5). In particular, the full force of weak core dominance has not

been required thus far.
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(E[g|πk] − E[f |πk])Iπk
�

⎡
⎣ ∑
j<n−(k+1)

(E[f |πk+j+1] − E[g|πk+j+1])Iπk+j+1

⎤
⎦ · I(⋃j<n−k πk+j)\πk

.

= ∑
j<n−(k+1)

(E[f |πk+j+1] − E[g|πk+j+1]) · Iπk+j+1
.

It follows that:∑
j<n−k

E[g|πj+k] · Iπj+k
� ∑

j<n−k

E[f |πj+k] · Iπj+k
.

Therefore, since E[f |πi] = E[g|πi] for every i < k, it follows that:

f ∼ (
∑
i<n

E[f |πi] · Iπi
)+ I · f � (

∑
i<n

E[g|πi] · Iπi
)+ I · g ∼ g.

This contradicts our supposition. Similarly, if E[g|πk] < E[f |πk], then another contradiction unravels. Hence,

E[f |πk] = E[g|πk] and so E[f |πi] = E[g|πi] for every i < n, as desired.

(⇐) Suppose that f � g. Of course, if E[f |πi] = E[g|πi] for each i < n, then f ∼ g. So let k be the least natural number

such that E[f |πk] �= E[g|πk]. Now argue as in the ‘only if’ case that if E[g|πk] > E[f |πk] then g � f , yielding a

contradiction. �

Among other things, Theorem 6.16 establishes that the qualitative ideas behind a system of cores naturally gives rise to a

lexicographic decision rule with respect to a system of cores. Such a rule respects the eminently plausible principle of weak

dominance. Shimony [43] has demonstrated that when de Finetti’s definition of conditional probability in terms of betting

odds is subject to the principle ofweak dominance, conditional probabilitymust be regular in the sense that all epistemically

possible events must receive positive probability (and in fact, for all events A, B, if P(A|B) = 1 then A ⊆ B). Yet if one offers

the modified definition of conditional expectation and so conditional probability as exhibited in part (3) of Definition 6.5

(i.e., Suppositional Price Equivalence), one arrives at a plausible notion of coherence underwritten by the principle of weak

dominance, resulting in a notion of conditional expectation and in particular conditional probability admitting epistemically

possible events receiving probability zero. While onemay regard such amodified operational definition as a departure from

the betting framework of de Finetti, it is easily seen that one can reformulate the above definitions and results with respect

to a betting interpretation for vector-valued probability, an interpretation which one may regard as more faithful and less of

a departure. In fact, we regard the vector-valued approach as a promising reorientation of research, offering what appears to

be a more general, and fruitful framework (see [22] for a discussion of the relationships amongst lexicographic probability,

conditional probability, and nonstandard probability).

7. Conclusion and future work

There are a variety of acceptance rules linking qualitative epistemic notions and degrees of belief. Acceptance rules based

on high probability have a special important history in epistemology, and Henry Kyburg focused on such rules to build his

well known version of probabilism. Despite intuitions supporting acceptance rules, it is well known that they engender

paradoxes. Kyburg was a pioneer in the study of these paradoxes, his version of the lottery paradox clarifying that the price

one must pay to adopt high probability rules is the abandonment of classical closure rules such as the rule of Adjunction.

Many versions of acceptance rules abound, somemodal and some non-modal, but in either case one has the feeling that the

use of non-Adjuctive epistemic operators changes themain object of study. Of course, this feeling was not shared by Kyburg.

He thought that we ought to bite the bullet and abandon Adjunction, thereby conceptualizing rational qualitative belief in

a novel way compatible with probabilism. The lottery paradox also appears as a limit case for full belief, which we believe

ought not be conflated with (qualitative) expectation or almost certainty. Infinitary versions of the lottery make this point

clearly.

The seminal work of van Fraassen and the later work of one of us (in collaboration; see [7]) shows that one can indeed

distinguish between the strongest proposition that is almost certain and the strongest proposition that is fully believed. The

notion of a probability core plays a central role in this argument. Moreover, the notion of probability core can be naturally

extended to what we have called a high probability core, which is connected with notions employed in other reductions of

belief in terms of degrees of full belief.

This would suffice to show the importance of the notion of probability core in distilling paradox-free doxastic notions

from probability. But we can go beyond rules based on high probability (or extremely high probability or even probability

one). There are other types of probabilistic rules whose underlying ideas are different in nature, like the ratio rule briefly

discussed above. The core structure emerges again in the study of such rules, providing a sort of unification of a multiplicity

of acceptance rules used in Bayesian epistemology.

In addition, it is possible to show how the qualitative ideas underlying a system of cores naturally gives rise to a decision

theory. Amongother things,we sawthat theguiding ideabehinda systemof cores leads to a lexicographicdecision rulewhich
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respects compelling principles of rationality. We also saw that the notion of coherence due to de Finetti [15], when suitably

reformulated, provides grounds for observing the principles of two-place probability and indeed finitely additive conditional

expectation. Thus, core systems can play a crucial role in the articulation of an unified form of Bayesian epistemology for

which we not only have probability but also the notion of preference, affording an account of rational action.

Our study in the last section focused on standard probability cores rather high probability cores or even ratio cores. These

other notions also naturally give rise to suitable decision theories and decision rules. Precisely formulating these ideas and

results is the subject of ongoing work.

Core systems in their various guises have been used extensively in various branches of conditional non-monotonic

logic, belief revision, as well as other areas. One natural project is to derive a unified theory of belief and conditional

belief which has probabilistic or decision theoretic roots. We have engaged in preliminary work in this direction in a paper

published electronically in FEW ‘10. In addition, probabilistic core systems have interesting connections to work in game

theory, dynamic epistemic logic, and other areas (see, for example, [9,12,13,45], and related literature)which require further

investigation, representing exciting lines of future research.

Finally, as we have indicated, our understanding of rational quantitative belief leaves room for degrees of belief to be

impreciseor indeterminate. Futureworkshall focuson thenotionsofbelief andconditionalbelief arisingwhentheunderlying

probabilities are permitted to be imprecise or indeterminate. In this way, one can retrieve conditional systems weaker than

Lewis’ system V.
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