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DIRECT INFERENCE IN THE MATERIAL THEORY OF INDUCTION 

 

1. Introduction 

 

 John D. Norton’s Material Theory of Induction (MTI) is a notable contemporary 

alternative to Bayesianism. According to Norton, scientists can make an inductive 

inference when they justifiably believe suitable local uniformity principles (which he calls 

“material postulates”) that “licence” the inductive inference. I shall argue that there are 

several significant issues in the MTI, but these could be ameliorated by combining it with a 

theory of direct inference, and ideally one that is more systematic than the MTI. 

 

 In section 1, I describe the MTI. In the next sections, I examine the following 

problems for the MTI: (a) lacunae regarding evidential support, (b) the Problem of 

Induction, and (c) the Problem of the Reference Class. In the final section, I argue that if 

Norton had a suitable theory of direct inference, then he could resolve these problems. 

 

2. The Material Theory of Induction 

 

 I shall begin with some preliminary clarifications. Firstly, I shall use ‘induction’ to 

mean non-deductive inference from observational evidence. This evidence does not have to 

be phenomenal: it need not describe sensations. In the sense I am using the term, 
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‘observational’ evidence consists of descriptions of facts, such as ‘There is a red building 

across the street’, that we can know via observation. This definition of ‘induction’ fits the 

use of this term by both Norton and his critics. (They do not define the term explicitly). 

This definition does not assume the existence of theory-free observation statements. It is 

distinct from Rudolf Carnap’s very broad use of ‘induction’ to mean all non-deductive 

inferences (Carnap, 1962) which has been influential in confirmation theory. My use also 

differs from the understanding of ‘induction’ as inference from the particular to the 

general. Secondly, in accordance with much of the literature, I shall sometimes talk in 

terms of inductive arguments, but the object of our interest is typically scientists’ inductive 

inferences; the former are linguistic entities, whereas the latter are psychological 

phenomena. 

 

 The best means to understand the MTI is by comparison with theories of induction 

in which inductive arguments are licenced by a general uniformity principle or relatively 

small set of such principles. According to Bertrand Russell (1912, Chapter VI), John 

Maynard Keynes (1921, 260), John O. Wisdom (1952, 162), Arthur W. Burks (1953), and 

many other philosophers, inductive arguments are justified due to an implicit premise (or 

premises) that nature is uniform, in some more precise sense of this claim. This premise 

guarantees that inductive inferences are reliable. These principles do not provide deductive 

certainty when they are added to the premises; instead, given a justified belief in the 

inductive evidence and in the absence of defeaters, the addition of a justified belief in the 

uniformity principles can enable a justified belief in the conclusion. 
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 For example, Russell claims that the conclusions of our inductive arguments are 

probable given our beliefs because we assume that: 

 

(1) If A and B are perfectly correlated, n is the number of observed things that are both A 

and B, and c is an unknown individual that is B, then it is (objectively) reliable to infer Ac 

insofar as n is large. 

 

(2) As n approaches infinity under the conditions described above, the objective 

probability of Ac asymptotically approaches 1. (1912, 66.) 

 

 Norton’s MTI is similar: the conclusion of an inductive argument is supported 

given the observational premises if we justifiably believe a suitable uniformity principle. 

(In contrast to Russell’s theory of induction, the MTI is not probabilistic.) The salient 

divergence is that Norton’s uniformity principles have a local scope, rather than describing 

the general uniformity of nature. They operate as implicit premises, akin to ‘If P, then Q’ 

in the enthymematic argument ‘P, therefore Q’ (Norton 2014, 674). And unlike the broad 

uniformity of nature principles, the exact contents of Norton’s licensing principles vary 

from context to context. 

 

 Norton uses the example of the argument: 
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(1) All tested pure samples of the element bismuth melt at 271 C ± ε. 

 

Therefore, (C1) All pure samples of the element bismuth melt at 271 C ± ε. 

 

(Where ε is an appropriately small margin of error. Measurement error is left implicit in 

Norton’s discussion.) 

 

 Norton argues that this inductive argument is rational because we know the 

uniformity principle that ‘Generally, elements are uniform in their melting points’. This 

principle is about elements, not nature in toto. Its explicit addition does not give the 

argument deductive validity, but according to Norton it “licences” the inference from (1) to 

(C1). In contrast, Norton notes that the following argument seems unreasonable: 

 

(1) All observed pure samples of wax melt at 91 C ± ε. 

 

Therefore, (C2) All pure samples of wax melt at 91 C ± ε. 

 

 According to Norton, the difference between the two arguments is that we lack a 

suitable local uniformity principle for wax in our background information. Indeed, we 

know that waxes include a variety of chemically distinct hydrocarbon mixtures. Therefore, 
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even assuming we did not know that different types of wax have heterogeneous melting 

points, we would have some reason to suspect that they would have non-uniform melting 

points. 

 

 These arguments are enumerative inductions (or “universal inductions”) which are 

a limiting case of sample-to-population reasoning, in which one infers a universal 

hypothesis about a population from evidence about a sample. There are other types of 

sample-to-population reasoning: one might infer that “at least a majority” or “almost all 

and maybe every” or “48-52%” of a population have some characteristic, given the 

evidence of a sample. Like some other philosophers (such as D. C. Williams (1947, 

Chapter 5) Norton believes that others forms of induction, including demonstrative 

induction, eliminative induction, and Bayesian conditionalisation, are licensed by 

background knowledge of (1) uniformity principles, (2) universal generalisations, and (3) 

statistical generalisations, which have been inferred by antecedent sample-to-population 

inductions (Norton, 2003, 659-666)1. 

                                                           
1 Norton does not explicitly rule out the possibility that “material facts” other than local 

uniformity principles (which might be something like degrees of naturalness or 

hypothetical causal mechanisms) could licence inductions, but I have not yet located 

example of licensing via such principles in his work. Even naturalness and causality seem 

to be relevant to inductive justification because they might guide us about the uniformities 

and disuniformities in the actual universe or across possible universes. 
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 Norton contrasts the MTI with what he calls “formal” theories of induction. In 

these theories, the rationality of good inductive arguments is determined by their formal 

structure. For instance, on a primitive hypothetico-deductive account of inductive 

inference, an inductive argument supports a hypothesis if the observational evidence can 

be validly deduced from the hypothesis and auxiliary background knowledge. 

 

 To summarise: on Norton’s view, our inductive inferences are rational if and only if 

we have suitable uniformity principles to licence these inferences. These uniformity 

principles are local, not general, in that they describe the uniformity of particular parts of 

nature, rather than all of nature. 

 

 Norton’s account has many strengths, which have been recognised even by critics 

like Thomas Kelly (2010, 758). The MTI fits well with standard descriptive accounts of 

scientific and technological practice. If you are criticising my naïve extrapolations from 

evidence about small subsamples of some political polling data, because you know that 

such subsamples are often unrepresentative of the target population, then you are making a 

local disuniformity claim, not a global disuniformity claim. Additionally, much of good 

experimental practice involves developing laboratory conditions that are sufficiently 

representative of the target populations, because the laboratory technicians believe that 

experimental conditions might differ from the natural phenomena of interest in important 
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ways, even if the scientists do not doubt that (in some sense) nature in general is uniform. 

 

 The MTI also has normative plausibility. Firstly, it is unclear why I should be 

committed to the uniformity of all of nature in order to believe that some parts of it (such 

as observed samples of bismuth and bismuth samples in general) are uniform. Elliott Sober 

has persuasively argued for this point (1988, Chapter 2). Analogously, I do not have to 

believe that all of my family have XY sex chromosomes to believe that all the males do. 

Secondly, Norton has provided case studies of historical cases in which the MTI, in a 

notably unforced manner, licences prima facie good scientific reasoning. (See Norton 

1994, 2003, 2010, 2011b.) 

 

 Norton’s theory also has an appeal for some critics of Bayesianism, because prior 

probabilities and conditionalisation have no fundamental function in his theory of 

induction2. However, despites these attractions, I shall argue that there are still some 

important areas for improvement in Norton’s theory, before proposing how to ameliorate 

them. 

                                                           
2 An anonymous referee notes that MTI might also be compatible with some versions of 

Bayesianism, such as versions that only include the constraints from diachronic Dutch 

Book Arguments. Certainly, ‘Bayesianism’ is a very broad term and there are presumably 

forms of Bayesianism that are compatible with the MTI. Nonetheless, Norton has gone 

very far in developing a theory of induction that does not depend on Bayesianism. 
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3. Evidential Support 

 

 In this section, I shall argue that the MTI lacks answers to two crucial questions 

about evidence. I do not intend these questions as objections to the entirety of the MTI, but 

instead as points for further development. 

 

3.1 Licensing by Uniformity 

 

 Norton makes liberal use of inferences that can be formalised as ‘A are generally B; 

c is A; therefore, c is B’ (Norton, 2014, 674). Such arguments enable us to infer claims 

about sample representativeness from local uniformity principles: given that elements are 

generally uniform in their melting points and bismuth is an element, we can infer that 

bismuth is uniform in its melting point, and therefore observed samples of bismuth are 

representative (with respect to their melting points) of bismuth in general. 

 

 However, despite its essential function in the MTI, Norton does little to justify this 

form of inference. He briefly discusses these inferences in (2014, 674) but mainly to claim 

that ‘A are generally B’ function in an analogous manner to ‘If A, then B’ claims in 

deductive logic. Norton says that, just as we are warranted in making a deductive inference 

from A to B when we accept that ‘If A, then B’, so we are warranted in inferring from A to 
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B when we accept ‘A are generally B’. 

 

 Even when the local uniformity belief is added as a premise to an inductive 

argument, this form of reasoning is still deductively invalid: “… the inference is 

ampliative, even with explicit adoption of the warranting fact as a premise.” (Norton 2014, 

674). This entails that Norton cannot utilise the various justifications of deductive logical 

inferences, such as model-theoretic proofs of metalogical virtues like soundness and 

completeness3. These inferences are also not a subclass of inductive inferences, in the 

sense of ‘induction’ that Norton uses: ‘Ravens can generally fly, the next flock of birds I 

see will be ravens, therefore the next flock of birds I see will be able to fly’ includes a 

premise about ravens as a class, rather than a statement about observed ravens. Thus, their 

rationality is distinct from the issue of the rationality of induction, and consequently 

Norton’s arguments about the latter are not automatically applicable to the rationality of 

inferences from local uniformity principles to the hypothesis that particular samples are 

                                                           
3 One might think that accepting the local uniformity principle itself provides sufficient 

warrant for the inference from the local uniformity principle to the hypothesis that the 

sample is representative (within a margin of error) of the target population. However, it 

will be apparent after section 4 that this is not true: even if accepting an appropriate local 

uniformity principle is necessary to justify inferences of the representativeness of a sample, 

it is not sufficient. 
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representative of the relevant target populations. 

  

 The mirror of this point is that a rich account of induction would give guidance 

about when it is irrational to accept local uniformity principles that can licence an 

inductive inference. Imagine that you are exploring the Antarctic and discover a large 

underground ecosystem. Among the animals are a species of penguins. You observe that 

all of the dozens of penguins that you see are blind and have white feathers. Intuitively, 

you might reasonably infer that almost all of this species are blind, because blindness 

might easily have evolved for the species in their subterranean existence. It would also 

seem to be irrational to infer (without further evidence) that ‘All of this species of penguins 

are white’, because you know that species of birds generally vary in the colour of their 

plumage. However, suppose that you postulated that ‘Subterranean species of penguins are 

generally uniform in their colour.’ Are you entitled to infer that all of the species of 

penguins are white? 

 

 The answer seems to be negative: we cannot just invent local uniformity principles. 

Naturally, Norton would agree, but it would enrich his theory to have an account of when 

we can and cannot make such inferences. (This account need not be a formal theory, in his 

sense of ‘formal’.) It would also help Norton answer critics who have theories of induction 

that have more extensive accounts of this reasoning, such as Bayesians, who can just say 

that we should consult the relevant conditional probabilities in our distribution. 
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3.2 Differences of Support 

 

 Local uniformity principles seem to licence inductive inferences to varying extents. 

Imagine that that you know (a) that 99% of the 200 balls in Urn 1 have the same colour 

and (b) that 50.5% of the 200 balls in Urn 2 have the same colour. Suppose you reach into 

Urn 1 and draw a grey ball, and then reach into Urn 2 and draw a grey ball. Assume that 

you have no background reason to think that the selected balls are unrepresentative (with 

respect to colour) of the class of balls in their respective urns. You seem to have more 

licence to infer that the next ball you draw from Urn 1 is grey than that the next ball you 

draw from Urn 2 is grey. 

 

 However, the MTI does not contain an account of how different sorts of evidence 

provide greater or lesser support for a given hypothesis, relative to different local 

uniformity principles. In the urns example, the differences in evidential support are 

obvious and might even seem to be quantitatively describable, but this transparency is not 

generally the case. This silence in the MTI is a problem, because we are not just interested 

in whether our inductive conclusions are supported by our evidence, but also how well they 

are supported. Perhaps a quantitative theory of evidential support is impossible. Perhaps 

we can only achieve a comparative or qualitative analysis. Perhaps there are multiple 

dimensions of evidential support, such as confirmation by the evidence, the reliability of 

the evidence, and the quantity of total evidence; these dimensions might be 
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incommensurable. We do not know except insofar as we try. Bayesians have extensive 

analyses of these issues, and if the MTI has no alternative, then this is a respect in which 

the MTI currently compares unfavourably to Bayesianism. 

 

 From these gaps in Norton’s theory, it does not follow that any rivals of the MTI do 

better (their accounts might be very flawed) but it does follow that the MTI would be 

enriched by supplementing it with the means of answering these questions. I shall return to 

this issue in section 6, in which I argue for a research programme for these additions. 

 

4. The Problem of Induction 

 

 Many earlier discussions of the MTI criticise its implications for the Problem of 

Induction. In this section, I shall detail the critics’ objection, and explain the dialectical 

position of Norton and his critics. 

 

4.1 The Problem and Norton's Answer 

 

 There are many versions of the Problem of Induction; it would be more accurate to 

talk of the Problems of Induction. There is an interesting historical question of which 

version, if any, should be called the “Humean” Problem of Induction, but that question is 
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beside the point of this article. Instead, I shall focus on the problem that Norton and his 

critics are discussing, which is interesting even if it is not Hume’s problem. 

 

 Philosophers have almost all assumed that the justification of induction must be 

inductive or deductive. However, this presents a dilemma: (1) if we appeal to induction’s 

past successes, then our justification is circular, since our justification involves an 

inductive inference, while (2) if we appeal to some implicit premises that render inductive 

arguments into deductively valid arguments, then our justification is too strong, because 

inductive inference is ampliative rather than deductive4. We have a paradox: we believe 

that induction is reliable, but this belief is very hard to justify. (Norton, 2003, 666). 

 

 Norton’s answer is that each (rational) inductive inference is justified by a local 

uniformity principle, rather than the past successes of induction in general. For our actual 

inductive inferences, he argues that we should take horn (1) of the dilemma: our inductions 

are justified by past inductions, but these antecedent inductions were inferences of local 

uniformities. Obviously, there is a suspicion of a vicious regress. Norton acknowledges 

that there is a regress in his justification, but he denies that it is vicious, because there is no 

                                                           
4 This is how Norton puts the problem for deductive justifications of induction. A more 

typical criticism is the claim that the even the weakest relevant suppressed premises (what 

D. C. Stove calls “validators” (1986, 12) cannot be known a priori, nor a posteriori 

without a justification that assumes induction’s rationality. 
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reason to suppose that its termination must be problematic. In (2003, 668) he argues that 

the “branching trees” of justification might end in “brute facts of experience that do not 

need further justification”. In (2014, 683-687) he argues that the regress might produce a 

benign, coherent circle5. Briefly, according to Norton, our inductions are justified by past 

inductions, but there does not need to be a vicious regress.  

 

4.2 The Regress Problem 

 

 Philosophers of science have mostly been unsympathetic to Norton’s answer to the 

Problem of Induction. For example, Samir Okasha (2005, 250), Thomas Kelly (2010, 760-

763), and John Worrall (2010, 746) have all argue that the regress must be vicious. Their 

arguments assume a first inductive inference, prior to any non-observational knowledge, to 

which all other inductive inferences have an epistemic link. (This was a fair assumption, 

because Norton (2003, 668) accepts the possibility of a first inductive inference.) Their 

implicit argument seems to be: 

 

                                                           
5 Norton does not explain why the circularity of traditional inductive justifications of 

induction is a problem, whereas the potential circularity of the corpus of science in the 

MTI would be benign. 
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(P1) All justified inductive inferences must be licensed by local uniformity principles. 

 

(P2) All local uniformity principles must be justified by earlier inferences.  

 

(P3) Local uniformity principles can only license inductive inferences if these principles 

are justified by antecedent justified inductions.  

 

Therefore, (C1) If there was a first inductive inference and this inference was justified, then 

it would have to be licensed by at least one local uniformity principle, which in turn would 

have to be justified by an inductive inference that was justified. 

 

Therefore, (C2) If there were a first justified inductive inference, then there would be a 

justified inductive inference prior to the first justified induction, but this is contradictory. 

 

Therefore, (C3) There was no first justified inductive inference. 

 

But, (P4) If there are any justified inductive inferences, then there must have been at least 

one first justified inductive inference. (There may have been more than one.) 

 

Therefore, (C4) There are no justified inductive inferences. 
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 If Norton’s critics are correct, then the MTI and some plausible auxiliary premises 

entail inductive scepticism. This entailment would not be entirely surprising: Okasha 

(2005, 249) notes that Sober (1988, Chapter 2) has a theory of induction that is similar to 

Norton’s, but he comes to a sceptical conclusion about induction. Since Norton denies 

inductive scepticism, he needs some way of avoiding C4. Norton commits to P1 from the 

outset of his primary article on the MTI (2003) and it captures much of the MTI’s 

normative core. All parties in the controversy seem to accept P3. However, Norton does 

deny P2 (Norton, 2014, 679-680) and P4 could also be challenged6. 

 

 Norton provides many interesting arguments against this premise, but they stray 

into controversial issues in the philosophy of science and general epistemology. In his 

fuller answer to the Problem of Induction Norton increasingly relies on theses that are 

beyond the MTI (2014), which raises of the question of whether the MTI really requires so 

                                                           
6 An anonymous referee notes that P4 apparently disallows the possibility that an inductive 

inference could be justified by its connections with simultaneous or subsequent inferences. 

Indeed, we might think that the chain of inductive inferences is analogous to theories of 

cosmology in which there is a causal chain but no first cause. Norton’s critics do need 

some premise like P4 to connect C3 with C4, because C3 on its own has little, if any, 

sceptical weight, and bridging principles between these conclusions cannot be much 

weaker than P4. Further critical discussion of P4 and the other premises, aside from P3, is 

beyond the scope of this article. 
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many background assumptions to be tenable. Furthermore, his arguments that the MTI 

does not lead to some form of inductive scepticism have not convinced many philosophers. 

 

 In section 6, I shall argue that Norton has access to an answer to the Problem of 

Induction that requires only the MTI, a plausible emendation to P3, and a theory of direct 

inference. Before I discuss this answer, I shall turn to one final outstanding issue for the 

MTI, partly because addressing this issue is a requirement of the answer in section 6. 

 

5. The Problem of the Reference Class 

 

 As we have seen, Norton makes very considerable use of inferences of the form: 

 

(1) Generally, Φ is Ψ. 

(2) x is Φ. 

Therefore, (3) x is Ψ. 

 

 It is by this form of inference that local uniformity principles “licence” inductions, 

but Norton does not discuss this type of inference in much detail. However, in a recent 

paper he does say that “The general [local uniformity principle] cited above functions both 

as a factual statement and a warrant for an inference... The [local uniformity principle] 
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“Generally, such and such.” warrants the inductive inference to “such and such.”” (Norton, 

2014, 674.) 

 

 Taken literally, this claim is far too permissive. Consider the case of carbon: you 

know that this is an element, and that generally, elements have uniform melting points. 

However, if you also know that carbon is a member of the subset of elements that do not 

have uniform melting points, then you are not warranted in inferring that its melting point 

is uniform, and therefore you are not warranted in inducing from (a) the approximate 

observed melting point of a sample of carbon to (b) the approximate melting point of all 

carbon samples. It is not merely that such inferences are defeasible, but rather that it would 

be useful to know when the defeaters apply. (Bayesians have an account of when the 

defeaters apply.) Similarly, you know that ‘Generally, humans cannot run 100 metres in 

under 15 seconds’, but you are not warranted in inferring that Usain Bolt will be unable to 

run 100 metres in under 15 seconds in his next race, because you know that he is a world-

class sprinter and that they can generally run that fast. When does such background 

knowledge defeat our inferences from (1) ‘Generally, A is B; c is an A’ to (2) ‘c is B’? 

 

 Such inferences are often called “direct inferences”, but their other names include 

“statistical syllogisms” and “proportional syllogisms”. None of these names are perfectly 

apposite, but I shall use “direct inference” in the hope that it is the most felicitous. In a 
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simple direct inference, we reason from (1) a premise about the proportion or measure7 of a 

characteristic in a reference class and (2) a premise that the subject of the conclusion is a 

member of this reference class, to (3) a conclusion that the subject of the conclusion does 

or does not have this characteristic. ‘Generally’ is one possible quantifier in premise (1), 

but we could also use other qualitative terms like ‘Almost always’ or ‘Almost never’, as 

well as numerical terms like 75%, or intervals like ‘5-10%’. For instance: 

 

Example 1 

 

(1) 99% of the time, Φ is Ψ. 

(2) x is Φ. 

Therefore, (3) x is Ψ. 

 

Example 2 

 

                                                           
7 By “measure”, I mean the value of an aleatory probability function (whether additive or 

non-additive) for that event or type of event. Some statistical statements cannot be 

expressed in terms of proportions, because they refer to reference classes of infinite 

cardinality and it does not make sense to speak of proportions in infinite reference classes. 

However, there can be statistical statements that describe measures of these classes. 
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(1) 95-99% of the time, θ is ζ. 

(2) x is θ. 

Therefore, (3) x is ζ. 

 

Example 3 

 

(1) λ is almost never ω. 

(2) x is λ. 

Therefore, (3) x is not ω. 

 

 Critics of the MTI could object that despite his reliance on direct inference, Norton 

has not answered the Problem of the Reference Class, which was first developed in detail 

by Hans Reichenbach (1949, 374). We always know that the subject of a direct inference is 

a member of a variety of reference classes: carbon is an element, but also a non-allotropic 

element; Usain Bolt is a human, but also a world-class sprinter. 

 

 As Alan Hájek (2007) has argued, the Problem of the Reference Class challenges a 

great variety of theories in formal epistemology; it is not merely a flaw of frequentism. 

Furthermore, the Problem of the Reference Class is not just an issue for probabilistic 

theories of support. (The MTI is not a probabilistic theory.) Carl G. Hempel (1965, 53-62) 

develops versions of the problem for a variety of non-probabilistic theories of direct 
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inference, such as Stephen Toulmin’s account8. Hempel notes that an insufficiently 

restricted use of direct inferences enables us, from the same body of data, to infer that: 

 

(1a) The proportion of Roman Catholics among Swedes is less than 2%. 

(2a) Petersen is a Swede. 

Therefore, (C1) Petersen is not a Roman Catholic. 

 

- but also - 

 

(1a) The proportion of non-Roman Catholics who undertake a pilgrimage to Lourdes is 

less than 2%. 

(2b) Petersen underwent a pilgrimage to Lourdes. 

Therefore, (C2) Petersen is a Roman Catholic. 

 

 Thus, different premises can support contrary hypotheses by direct inference, even 

if the premises are true. Even if we interpret the support relation as non-probabilistic, we 

shall have to reckon with the problem of deciding whether C1, C2, or neither is supported 

                                                           
8 Hempel, following Carnap’s use of the word ‘inductive’ to mean non-deductive 

reasoning, labels these problems for direct inference “inductive inconsistencies”. However, 

in the narrow sense of inference from observational premises to non-observational 

premises, direct inferences are not generally ‘inductive’. 
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when our data includes (1a), (2a), (1b), and (2b). More generally, we shall have to reckon 

with adjudicating between conflicting evidence about the reference classes to which the 

target individual belongs: the Problem of the Reference Class. 

 

 Norton does not explain how we should achieve this adjudication. His only detailed 

statement about direct inference, quoted above, is far too permissive: I am sure that he does 

not mean it literally, but that leaves many important points undeveloped. Firstly, it is 

insufficient to add ‘And all you know about bismuth is that it is an element’, because this 

never obtains in any epistemologically significant case. For instance, you know that 

bismuth is an element and that it is a substance, but the frequency of uniform melting 

points among substances is different from the frequency among elements. Additionally, 

you must also have some means of distinguishing bismuth from other substances in order 

to know that bismuth is an element, which requires background knowledge about bismuth. 

Secondly, it is insufficient to add ‘And you do not believe any defeaters for this inference’, 

because this does not explain how to identify the defeaters, nor how to proceed when there 

are defeaters. Finally, the presence or absence of defeaters is not always apparent, which is 

why philosophers can disagree about direct inference. For example, the edited volume 

Bogdan (1982) covers part of a long-running debate between Henry Kyburg and Isaac 

Levi, in which they disagreed about particular direct inferences. 

 

 These are not just hypothetical issues. Suppose you have good reasons to believe 

that bed nets are generally effective at preventing malaria, but not in villages where the 
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inhabitants often use the bed nets for fishing. If you also have good reasons to believe that 

a particular village will use the bed nets in this way, then you cannot infer from the general 

effectiveness of bed nets to the conclusion that bed nets will be effective in that village. 

Similarly, you might have good reasons to believe that class-size reduction is a generally 

effective means of improving average K-3 grade levels, but you might know confounding 

facts about Californian schools that would defeat the inference that adopting this policy 

will improve the state’s average K-3 grade levels. Nancy Cartwright and Jeremy Hardie 

(2012) contains more examples of the use and misuse of direct inference in evidence-based 

policy. 

 

 Despite these disagreements and misuses, it does seem that there are at least some 

norms about direct inference. For example: 

 

(1) Suppose you know that I am about to select a ball from a glass vat. You know that 

almost all the balls in the vat are red. However, you also know that the red balls are larger 

than the purple balls, and my selection mechanism uses an automated suction pump/blower 

that will only allow black or green balls through. The direct inference is blocked by this 

additional knowledge. Intuitively, when hypothesising about a selection from a set, you 

should ignore the evidence about the general proportion in the set and focus on your 

evidence about the frequencies of selections from that set, when these statistics conflict. 

 

(2) Imagine you are wondering whether a student from your logic course can help 
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regarding a problem in integral calculus. You know that almost none of the students in 

your university could help. However, suppose you also know that the student has won 

prizes in several calculus courses. The specific details about the student and her aptitude at 

integral calculus suggest that she might be able to help, although most of the university’s 

students cannot. Intuitively, subset information should be favoured over information about 

the set, when these statistics conflict. 

 

 Something like these intuitions have been shared by a variety of philosophers 

writing about direct inference: for example, (2) seems to motivate Reichenbach’s claim 

that one should use the narrowest reference class for which one has reliable statistics 

(1949, 374) and Wesley Salmon’s claim that one should use the narrowest reference class 

that meets his suitability conditions for statistical inference (1967, 90-94). A similar idea 

can also be found in Kyburg (2006, 45-47). There are agreements as well as disagreements 

about direct inference, so that philosophical theories about them can be evaluated using 

common ground, yet also helpful in resolving disputes. 

 

 Since Norton makes use of the licensing of inductions via information about local 

uniformities in his MTI, it would enrich his account to have an answer to the Problem of 

the Reference Class, and thus leave direct inference less mysterious. Furthermore, critics of 

the MTI might worry about the cogency of the theory as a whole, given that it might 

preclude any answer the Problem of the Reference Class. For instance, he rules out the 
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Bayesian answers, in which the relevant statistics for the intersections of the reference 

classes are derivable from the prior distribution. 

 

6. Direct Inference 

 

 In this section, I shall argue that if an advocate of the MTI had a theory of direct 

inference, then the issues that I raised in the previous sections could be addressed. I shall 

set aside the broad and difficult question of which theory to use, but I shall have motivated 

the search for a supporter of Norton’s theory. Logically, the MTI is consistent with a wide 

range of theories of direct inference. Furthermore, insights from the MTI could help guide 

the choice. The selected theory would not have to be formal, nor would a formal theory of 

direct inference (rather than induction) be inconsistent with the MTI, but I shall argue that 

a systematic theory would be particularly attractive. 

 

6.1 The Problem of the Reference Class 

 

 The most important task of a theory of direct inference is answering the Problem of 

the Reference Class. However, the name of this problem is imperfect: it suggests that the 

theory should identify one statistical statement about one reference class, which can be 

rationally included as the statistical generalisation in the direct inference. As an alternative, 

we might adopt a theory of direct inference in which a direct inference might involve a set 
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of conflicting statistical statements as premises. To avoid begging this question, a good 

theory of direct inference would provide systematic answers to these questions: 

 

(1) When should we exclude statistical statements from the premises? For example, in the 

bismuth example, there seems to be a rough intuition that we should ignore the statistical 

information that substances are not generally uniform in their melting points, in favour of 

the statistical information that elements are generally uniform in their melting points. 

 

(2) If there are conflicting statistical statements and there are no grounds for ignoring some 

of them, then how should we combine them? Bayesians have an account: we should look at 

our full probability distributions and use Bayes’ Theorem. Norton has vigorously argued 

for rejecting Bayesianism as a general theory of the scientific method (Norton, 2011a) but 

that still leaves non-Bayesians like Norton and myself requiring an answer. 

 

 One might wonder why such a theory must be systematic. Perhaps our intuitive 

sense of appropriate or inappropriate uses of reference class data are sufficient. However, 

people’s intuitions (including philosophers’ intuitions) can differ for particular cases of 

direct inference. Setting up clear systems of direct inference enables us to evaluate and 

constructively critique the systems that might embody these divergent intuitions, which 

shifts the dispute onto more promising ground than personal feelings about specific cases. 

Furthermore, we sometimes make bad direct inferences, due to prejudice, wishful thinking, 

fatigue, and so on. A systematic theory can help us identify these mistakes. Finally, as in 
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deductive logic, there could be complex or difficult cases where our intuitions are unclear 

or absent, but a systematic theory can provide definite answers that we have deduced from 

plausible principles. 

 

 The mere fact that a systematic theory would be desirable does not entail that it is 

possible. Perhaps, as with induction, Norton might suspect that context is king: there is 

nothing to say about direct inference that is both very general and very detailed. Certainly, 

there can be more or less contextually focused theories of direct inference, but there do 

seem to be at least some general and plausible normative claims about direct inference. For 

example, many philosophers (like Reichenbach and Kyburg) have endorsed the principle 

that, if there is a conflict between two acceptable statistical statements for a target 

characteristic and a given individual, and one statement describes a reference class that is 

known to be a proper subset of another, then that statement about the proper subset should 

be favoured over its competitor. That is far from a general theory of direct inference, but it 

at least provides some systematic guidance, and implies that at least some degree of 

systematicity is achievable. Furthermore, the claim that induction is highly context-

dependent is logically independent of whether direct inference is highly context-dependent, 

just as both are independent of whether deduction is highly context-dependent. 

 

 How we should decide between rival theories of direct inference? Most of our 

classic metalogical criteria will not be helpful. For example, we know that direct inferences 

can have true premises and false conclusions, and so no theory of them can guarantee 
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truth-preservation. Philosophers who have developed theories of direct inference have 

taken different approaches to their evaluation. One promising example is the approach to 

theory evaluation developed by Kyburg and Choh Man Teng (2001, Chapter 10). They 

propose to evaluate formal theories of direct inference using similar criteria to those used 

for the evaluation of formal deductive logics, such as metalogical soundness. However, 

these metalogical standards are adapted to the specific ambitions we have for our direct 

inferences, in contrast to deductive inferences. For example, one test that Kyburg and Teng 

propose is that, if a system of direct inference says that a conclusion is highly supported 

given the premises, then the conclusion should hold in a high proportion of the models of 

the relevant premises. It seems that we can rationally assess systems of direct inference, 

and choose between better or worse systems. I shall now turn to how such a systematic 

account of direct inference could improve the MTI. 

 

6.2 Evidential Support 

 

 I shall now return to the two gaps concerning evidential support in the MTI that I 

identified in section 2. Firstly, there was the issue of when we can use direct inferences. 

Sometimes, as in Norton’s bismuth case, our background knowledge seems to be suitable 

to infer a local uniformity from a claim like ‘Generally, elements have uniformities in their 

melting points’. Yet we do not want scientists to arbitrarily accept local uniformity data to 

licence just any inductive inference. A theory of direct inference can aide our 
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understanding of illicit inductive reasoning, by both (a) providing standards of when local 

uniformity data is acceptable as licensing background information for an inductive 

inference and (b) providing guidance for when epistemically acceptable local uniformity 

principles can be ignored for inferential purposes. 

 

 Secondly, there was the issue of degrees of support. Take the schema: 

 

(1) To an extent of r, samples with characteristics Φ are representative (within a margin of 

error) of Ψ with respect to a characteristic F. 

 

(2) x is a sample of Φ. 

 

Therefore, (3) x is a representative sample of Ψ with respect to F. 

 

(Where r is either (i) a real or interval value for a proportion or measure, or (ii) some 

qualitative qualifier like ‘generally’ or ‘almost always’. “Representative” here refers to a 

variety of possible senses of the term, such as having a mean value of F that is no more 

than 3% from the population mean.) 

 

 A theory of direct inference should provide an account of when we have warrant to 

use the schema above. Perhaps the value of r provides the relevant information about the 
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degree confirmation for the hypothesis that the observed sample in our evidence is 

representative, given the information in the premises. To the degree that we have warrant 

to believe that our samples are representative, we are warranted in making inductive 

inferences from evidence about the properties of those samples to our target populations. 

Other forms of inductive inference, such as eliminative induction and predictions about 

particular unobserved individuals, would derive their warrant indirectly from these 

generalisations from samples. 

 

 Inevitably, my proposals for addressing these gaps in the MTI are sketchy, because 

we do not have a generally accepted “off-the-shelf” theory of direct inference. However, if 

we could combine a systematic theory with the MTI, then the concomitant account of 

induction would be much richer and less vague. 

 

6.3 The Problem of Induction 

 

 I noted in section 3 that Norton’s claim that his MTI dissolves the Problem of 

Induction was controversial. However, at the end of that section, I suggested that Norton 

was very close to a very promising answer. As a preliminary point, note that both Norton’s 

critics (Okasha, Kelly, Worrall, and others) have not raised any objections to his use of 

direct inferences in the MTI. Even Hume takes a view of direct inference that is 

excessively anti-sceptical: “If you suppose a dye to have any bias, however small, to a 
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particular side, this bias, though it may not appear in a few throws, will certainly prevail in 

a great number.” (Hume, 1793, 112.) Of course, there is no guarantee that even a very 

large finite sample of die rolls will match the long-run actual frequency, hypothetical 

frequency, or propensity of that die. Nonetheless, the quote from Hume illustrates how 

even sceptics about induction may reject scepticism about direct inference. Thus Norton, 

Hume, and contemporary critics of the MTI have common ground in their belief that direct 

inference can be rational. This agreement will be crucial in my arguments in this section. 

 

 Let us return to the original set-up of the Problem of Induction that Norton and his 

critics use. There is a dilemma between a deductive justification of induction (which is too 

strong) and an inductive justification of induction (which is circular). Attention to direct 

inference suggests that this is a false dilemma, because direct inference is neither deductive 

nor inductive9. 

 

 There is no generally accepted name for justifying induction via direct inference, 

but I shall call it the “Combinatorial Justification of Induction” (CJI for short), following 

Marc Lange (2011, 83). This answer to the Problem of Induction was first proposed by D. 

                                                           
9 Except in the Carnapian sense of non-deductive inference. If we adopt Carnap’s usage, 

there is no circularity in an inductive justification of inference from the observed to the 

unobserved, and thus of the Problem of Induction requires considerable rephrasing for its 

power to be apparent. This is one reason not to adopt Carnap’s usage. 
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C. Williams (1947). It has subsequently been defended by a number of philosophers of 

science, including David Stove (1986, Chapter VI), Timothy McGrew (2001), and Scott 

Campbell and James Franklin (2004). 

 

 Norton, his critics, and Hume all grant that, at least under some circumstances, 

contingent local uniformity principles can licence inductive inferences via direct inference. 

This raises the possibility of whether there is a local uniformity principle, knowable a 

priori, that could licence inductive inferences. That would entail that, even in a hyper-

austere evidential state where we have only observational evidence and a priori evidence, 

there could still be justified inductions. 

 

 I shall begin by defining a key term: 

 

ε-representativeness: A subset Z is ε-representative of its superset W with respect to a 

characteristic Φ if and only if the mean of Φ in Z differs by no more than ± ε from the 

mean of Φ in W, where ε is some finite, real, non-zero percentage value, such as 3%. 

 

 From combinatorics, we know that the size of n puts a lower bound on the number 

of ε-representative n-fold subsets of any finite set10. To see the intuition in a simple 

                                                           
10 In particular, proponents of the CJI refer to the (weak) Law of Large Numbers. This is 

correct, if we interpret the Law of Large Numbers as a purely combinatoric principle for 
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example, imagine a million-fold set of soft toys in a glass vat. If all the toys are blue teddy 

bears, then every 1,000-fold subset of soft toys from the vat will be ε-representative with 

respect to being blue teddy bears, because the proportion of blue teddy bears in both the 

subsets and the superset will be 100%. If none of the toys are blue teddy bears, then once 

again every subset will be ε-representative, because both the subset and superset will lack 

blue teddy bears. If 99% or 1% of the toys are blue teddy bears, then there will be a 

significant proportion of 1,000-fold subsets that are not ε-representative, but the number of 

1,000-fold subsets that are ε-representative will still be proportionately high. The 

proportion of subsets that are ε-representative reaches at a minimum if exactly 50% of the 

soft toys are blue teddy bears. Put another way, if the proportion of blue teddy bears among 

toys is the vat in the vat is precisely 50%, then there are the highest possible number of 

subsets of that vat that are not ε-representative. 

 

 Williams, who first developed the CJI, was struck by the combinatorial fact that, 

even when exactly 50% of a finite set have a characteristic Φ, the proportion of large 

subsets of that set which are ε-representative is still extremely high. To adapt an example 

from Stove, if we define ε as 3%, make the anti-inductive assumption that 50% of the soft 

toys in the vat are blue teddy bears, and we use theorems of combinatorics to calculate the 

                                                           

finite subsets and their supersets, rather than as a principle in the probability calculus that 

applies only to independent and identically distributed draws of samples from populations. 

Naturally, it is the latter version of the Law that normally interests practicing statisticians. 
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approximate proportion of ε-representative 3,000-fold subsets of the toys in the vat, the 

answer is 108867.9-0.00087
 ÷ 108867.9

. This proportion is astonishingly high: it is over 99%. 

Even if the subsets have a cardinality in the hundreds, the minimum proportion of ε-

representative subsets can still be over 50%. 

 

 It is important to note that it is not the relative size of the subset to the superset that 

drives this result. Instead, the lower bound for the proportion of subsets that are not ε-

representative is determined by (1) the absolute size of the subsets and (2) the fact that the 

superset is finite. (Infinite supersets might not even have a well-defined mean – for 

example, if its limiting frequency distribution is a Cauchy distribution – so Williams’s 

reasoning does not apply to all of them.) Thus, these combinatoric facts are also true of 

3,000-fold subsets of a googolplex-fold superset, just as they apply to 3,000-fold subsets of 

a million-fold superset11. 

 

 The CJI proceeds as follows: suppose that you are inquiring about a set Z, where Z 

is defined to be a finite set. (To use an extreme example, ‘The nearest group of toys near to 

me that has a cardinality no greater than the square of Graham’s Number’. The entire 

observable universe is far too small to digitally represent the maximum possible cardinality 

                                                           
11 We can estimate a lower bound with a higher value, if we know that the subset is large 

relative to the superset. At the limit, if we know that the subset’s cardinality is equal to its 

superset’s cardinality, then we know (trivially) that the subset is ε-representative. 
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of this set, though the set is still finite.) Suppose that all you know about an observed 

sample S of Z is that it is a large (such as 500-fold or 3,000-fold) subset of Z. By direct 

inference: 

 

(1) Generally, large subsets of Z are ε-representative. 

(2) S is a large subset of Z. 

Therefore, (3) S is ε-representative. 

 

 If you justifiably believe that S is ε-representative of Z, then you can use the 

observed characteristics of S to infer the characteristics of Z, with a margin of error of ε. 

(Obviously, background knowledge can defeat this inference.) Furthermore, the larger the 

cardinality of S, ceteris paribus, the stronger the qualifier that can be inserted in (1). 

Depending on the sample S’s cardinality, one could replace the qualifier “generally” by 

‘almost all’, ‘over 80%’, ‘over 99%’ and so on. Even for small samples, we have the result 

that as n increases from 1 towards infinity, the subset becomes a member of a class of 

subsets with higher and higher proportions of representative subsets of any finite set to 

which they belong. Therefore, even relative to ultra-exiguous background information, one 

can justify some inductive inferences, and identify some cases of inductive evidential 

support. 

 

 The formal similarity to Norton’s bismuth argument is striking. Moreover, direct 

inference and combinatorics are very solid foundations for induction. However, if Norton 
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were to adopt this approach to the Problem of Induction, he would have to give up an 

assumption he (apparently) makes, which is that the licensing local uniformity principles 

are always contingent. The combinatorial principles that Williams and his philosophical 

descendants utilise are mathematical and therefore non-contingent according to most 

philosophies of mathematics. However, they are still local uniformity principles, in the 

sense that they describe uniformities (the proportion of ε-representative samples) in local 

domains of inquiry (the target populations of the inductive inferences). Yet, since both 

Norton and his critics accept direct inference, under appropriate circumstances, it is hard to 

see why Norton would reject direct inference in this case. 

 

 Of course, there are dozens of good extant objections to the CJI. A sharp reader has 

probably already formulated at least three. Some of these objections have proven relatively 

easy for defenders of the CJI to address. For instance, it is tempting to assert (though it is 

very hard to argue rigorously) that samples must be random before we can make an 

inductive inference, but there are detailed responses to this objection (McGrew, 2001 and 

Campbell and Franklin, 2004). The persuasiveness of this objection seems to come from a 

confusion of sets and samples. This confusion is encouraged by many proponents of the 

CJI, who use statistical expressions like “samples” and “populations” rather than set-

theoretic expressions like “sets” and “subsets”. Talking about samples and populations 

naturally raise concerns about sample selections in general and can even lead to 

unwarranted confidence regarding sampling procedures, but it is inessential to the CJI. 
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 The most difficult objection to the CJI seems to be the Problem of the Reference 

Class. We are never in the position where ‘Generally, large subsets of Z are ε-

representative’ is our only information about a sample S. Even to distinguish S and its 

members, we must know some characteristics that differentiate it from other things that we 

have experienced: we need a definite description for our sample to individuate it, such as 

‘That subset of soft toys from the vat that I have in front of me right now’. Therefore, if the 

CJI has any epistemological use, we would also need some means of picking out a 

proposition of the form ‘Generally, large subsets of Z are ε-representative’ as a suitable 

local uniformity principle for a direct inference of a observed sample’s ε-

representativeness. 

 

 This problem is more pressing, a fortiori, if the CJI is to justify of actual science. A 

defender of the CJI would have to combine it with an account of how the beautifully 

complex methods of science can justified by the CJI, and the gigantic corpus of scientific 

knowledge justified in turn by these methods. Perhaps these methodological accounts are 

possible (Williams provides a brief and telegraphic sketch in Chapter 5 of (1947)) but in 

any detailed methodological account, there will be bodies of evidence that provide huge 

masses of statistical data with conflicting messages about members of multiple reference 

classes. Therefore, a defender of the CJI must reckon with the Problem of the Reference 

Class. 

 

 However, if we could have a theory of direct inference that could answer the 
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Problem of the Reference Class, and if we could answer the other objections to the CJI, 

then Norton could deny P3 in the regress argument, that ‘Local uniformity principles can 

only license inductive inferences if these principles are justified by antecedent justified 

inductions.’ I do not know any good arguments for P3, but it seems that philosophers of 

science have often assumed the truth of P3 or something close to it. In practice, almost all 

good inductions would involve antecedently induced local uniformity principles, but there 

could be exceptions. Thus, Norton can adopt the following consistent group of claims: 

 

(1) All justified inductive inferences must be licensed by local uniformity principles. (P1 of 

the regress argument.) 

 

(2) All local uniformity principles must be justified by earlier inferences. (P2 of the regress 

argument.) 

 

(3) Local uniformity principles can only license inductive inferences if these principles are 

justified by antecedent justified inductions or by direct inferences. (The revised version of 

P3 in the regress argument.) 

 

(4) If there are any justified inductive inferences, then there must have been a first justified 

inductive inference. (P4 of the regress argument.) 
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(5) There are some justified inductive inferences. (The denial of inductive scepticism.) 

 

 A sceptic might object that the CJI involves such artificially exiguous background 

knowledge that any relation to real inductive reasoning is absent. In practice, we often have 

reasons (beyond combinatorial considerations) to suspect that our samples are 

unrepresentative: for example, I know that an opinion poll on the Dodd-Frank financial 

regulations, using a sample consisting only of stock traders at the New York Stock 

Exchange, will almost certainly be unrepresentative of US public opinion in general. Yet 

one of the insights from Norton’s studies of induction is that more realistic scenarios can 

be more favourable to inductive reasoning, because we can have background reasons 

(beyond combinatoric reasoning) to think that in some cases our samples are 

representative, as well as evidence to suspect them in other in other cases. For example, we 

might have an opinion poll that has been carefully weighted using pollsters’ background 

knowledge of response rates and other relevant information, such that it is likely to be 

representative. The CJI would be useful for the MTI because it would prove that even if 

such favourable background knowledge were absent, there could still be justified inductive 

reasoning. 

 

 Thus, direct inference is very promising against inductive scepticism in both (1) the 

epistemically rich contexts Norton analyses, where the MTI provides a rationale of 

inductions’ justifications and (2) the exiguous contexts that philosophers like Williams 

contemplated, where the CJI might provide the rationale. However, all this assumes that 
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direct inference is not itself as troubled as induction. That is why a theory of direct 

inference has such value. 

 

 Would Norton consider my arguments to be helpful support in his battle against 

inductive scepticism? The CJI avoids the abstract and sweeping formalistic claims that 

Norton rejects (it uses defeasible direct inferences and the local properties of specific 

populations) while also providing a means of ending the regress of local uniformity 

principles in some contexts. This last qualification is important, because the CJI’s 

dependence on direct inference entails that it is defeasible: additional background 

information can block the relevance of purely combinatoric considerations. However, in 

the hyper-exiguous contexts that the critics of Norton employ in their sceptical arguments, 

it is supposed (by design) that there is no background information available (beyond what 

is knowable via mathematics, logic, and other conceptual reasoning) since his critics aim to 

bar any appeal to contingent background information about samples’ representativeness. 

Ironically, it is the very austerity of the sceptical scenario which makes the CJI so 

promising for a benign termination of the regress in the MTI. The CJI’s usefulness for 

answering the Problem of Induction will depend on how we conceptualise that problem; 

my point is that even if we formulate the challenge in the manner of Norton’s critics, the 

CJI is a promising option within the MTI. 

 

 Additionally, amending P3 as have suggested would put the MTI in a strictly 

stronger dialectical position with respect to the Problem of Induction, because Norton’s 
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present responses to his critics (as well as other criticisms of P2, P3, and P4) would still be 

available, but the CJI would also be available. The CJI might not be viable: as noted, there 

are many objections to it, especially regarding the finer points of direct inference. Still, 

there is nothing in the letter of the MTI that is inconsistent with the CJI, and much that 

could be gained from their concatenation. 

  

7. Conclusion 

 

 I have argued that there are holes in the MTI, but also that a theory of direct 

inference can fill these holes. I have not argued for any particular theory of direct 

inference. I suspect that Norton and other supporters of the MTI could improve on even the 

best options in the literature. As Norton has argued, local uniformity principles are 

crucially important to understanding inductive inference. To understand the role and 

justification of these local uniformity principles, we need a theory of direct inference. 

 

  Norton has developed one of the most propitious non-Bayesian theories of 

induction in many years. If I am correct, then the study of direct inference is an area of 

great pertinence and promise for those of us who share his objectives for the philosophy of 

induction. 

  



43 
 

REFERENCES 

 

Bogdan, Radu J. 1982. Henry E. Kyburg, Jr. & Isaac Levi. Dordrecht, Holland; Boston : D. 

Reidel; Hingham, MA: Kluwer Boston Inc. 

 

Burks, Arthur. W. 1953. “The Presupposition Theory of Induction.” Review of 

Metaphysics, 20 (3): 177-197. 

 

Campbell, Scott and Franklin, James. 2004. “Randomness and the Justification of 

Induction.” Synthese, 138 (1): 79-99. 

 

Carnap, Rudolf. 1962. The Logical Foundations of Probability. London: Routledge & 

Kegan Paul. 

 

Cartwright, Nancy and Hardie, Jeremy. 2012. Evidence-Based Policy: A Practical Guide 

to Doing It Better. Oxford: Oxford University Press. 

 

Hájek, Alan. 2007. “The Reference Class Problem Is Your Problem Too.” Synthese, 156 

(3): 563-585. 

 

Hempel, Carl. G. 1965. Aspects of Scientific Explanation, and Other Essays in the 

Philosophy of Science. New York: Free Press; London: Collier-Macmillan. 



44 
 

 

Hume, David. 1793. Essays and Treatises on Several Subjects, Vol. I: Essays, Moral, 

Political, Literary. Edinburgh and London: T. D. Cadell and Bell & Bradfute and T. 

Duncan. 

 

Kelly, Thomas. 2010. “Hume, Norton, and Induction without Rules.” Philosophy of 

Science, 77 (5): 754-764. 

 

Keynes, John Maynard. 1921. A Treatise on Probability. London: Macmillan. 

 

Kyburg, Henry E. 2006. “Belief, Evidence, and Conditioning.” Philosophy of Science, 73, 

(1): 42-65. 

 

Kyburg, Henry. E. and Teng, Choh. M. 2001. Uncertain Inference. Cambridge: Cambridge 

University Press. 

 

Lange, Marc. 2011. “Hume and the Problem of Induction.” In Handbook of the History of 

Logic. Volume 10: Inductive Logic, eds. Gabbay, Dov. M., Hartmann, Stephan, and 

Woods, John, 43–91. North Holland: Elsevier. 

 

McGrew, Timothy. 2001. “Direct Inference and the Problem of Induction.” The Monist, 

84, (2): 153-178. 



45 
 

 

Norton, John. D. 1994. “Science and Certainty.” Synthese, 99, pp. 3-22. 

 

Norton, John. D. 2003. “A Material Theory of Induction.” Philosophy of Science, 70 (4): 

647-670. 

 

Norton, John. D. 2010. “There Are No Universal Rules for Induction.” Philosophy of 

Science, 77 (5): 765-777. 

 

Norton, John. D. 2011a. “Challenges to Bayesian Confirmation Theory.” In Philosophy of 

Statistics, eds. Prasanta S. Bandyopadhyay and Malcolm R. Forster, 391-440. Oxford: 

Elsevier B. V. 

 

Norton, John. D. 2011b. “History of Science and the Material Theory of Induction: 

Einstein's Quanta, Mercury's Perihelion.” European Journal for Philosophy of Science, 1 

(1): 3-27. 

 

Norton, John. D. 2014. “A Material Dissolution of the Problem of Induction.” Synthese, 

191 (4): 671-690. 

 

Okasha, Samir. 2005. “Does Hume's Argument against Induction Rest on a Quantifier-

Shift Fallacy?” Proceedings of the Aristotelian Society, 105: 237-255. 



46 
 

 

Reichenbach, Hans. 1949. The Theory of Probability. Berkeley: University of California 

Press. 

 

Russell, Bertrand. 1912. The Problems of Philosophy. London: Williams and Norgate. 

 

Salmon, Wesley C. 1967. The Foundations of Scientific Inference. Pittsburgh, PA: 

University of Pittsburgh Press. 

 

Sober, Elliot. 1988. Reconstructing the Past. Cambridge, MA: MIT Press. 

 

Stove, David. C. 1986. The Rationality of Induction. Oxford: Oxford University Press. 

 

Williams, Donald. C. 1947. The Ground of Induction. New York: Russell & Russel, Inc. 

 

Wisdom, John. O. 1952. Foundations of Inference in Natural Science. London: Methuen 

and Company. 

 

Worrall, John. 2010. “For Universal Rules, Against Induction.” Philosophy of Science, 77, 

(5): 740-753. 


