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DOES THE DOME DEFEAT THE MATERIAL 

THEORY OF INDUCTION? 

 

 Critics of John Norton’s Material Theory of Induction (MTI) have mostly focused on 

its relation to the Humean Problem of Induction (Okasha, 2005, p. 250). However, Hume’s 

challenge is just one of many philosophical issues about induction. Thomas Kelly (2010, pp. 

757-758) plausibly argues that the natural place to challenge Norton’s theory is where 

apparently rational inductions occur without background knowledge of local facts, because 

Norton claims that such knowledge is essential for reasonable inductive inference. 

 

 I shall defend the MTI against a notably well-developed criticism along these lines by 

Richard Dawid (2015). He argues that Norton’s theory fails to allow for an intuitively good 

inductive inference. My defence will not be very dependent on particular features of Dawid’s 

example, and thereby it reveals the MTI’s robustness to analogous criticisms. In Section 1, I 

set out Norton’s theory. In Section 2, I outline Dawid’s objection. In Section 3, I adapt an 

attempted justification of induction as such into a justification of the particular induction that 

Dawid discusses. I finish by answering some objections in Section 4. 

 

 

SECTION 1 – The Material Theory of Induction 

 

 

 Norton has presented the MTI in several places (2003, 2010, 2014, unpublished). Its 

core content consists of the following claims: 

 

Ampliative: Inductions are generally ampliative1, in the sense of being non-deductive 

inferences; their conclusions have logical content that extends beyond (“amplifies”) their 

premises2. Inductions are also extrapolative inferences: their premises are about known 

instances of expressions (including simple predications, but also more complex expressions) 

and their conclusions are about unknown instances. Not all ampliative inferences are 

inductive: the argument ‘Most numbers satisfy Goldbach’s Conjecture, 978 is a number, 

therefore 978 satisfies Goldbach’s Conjecture,’3 is ampliative but not inductive, because it 

does not extrapolate beyond the subjects of the premises4. 

 
1 My use of “ampliative” in this article differs from Norton’s. I thank an anonymous referee for pointing this 

out. 

2 The exceptions are demonstrative inductions, which form deductively valid arguments when all our relevant 

assumptions are made explicit: see Norton, 2003b, pp. 665-666).  

3 Throughout, I use “double inverted commas” for quotation and ‘single inverted commas’ for reference to 

words and sentences. 

4 Some philosophers, e.g. Rudolf Carnap (1962, p. 580) use ‘induction’ more broadly and include all ampliative 

inference 
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Implicit Premises: In good inductions5, the evidential support that a statement E provides for 

a hypothesis H is not due to the formal relations of E and H, but rather a fact that can be 

adopted as an implicit premise R in the inference that connects E and H. In accordance with 

Ampliative, R generally does not create a deductive argument, in contrast to what happens if 

we add ‘If P, then Q’ to ‘P, therefore Q’. Instead, when we articulate R, we can see why E 

provides a reason to believe H more strongly (Norton, 2014, pp. 673-674). Nothing in the 

MTI explicitly confines the nature of R, but in Norton’s examples R always asserts a 

uniformity (perhaps in a hypothetical class) such that, if R is true, samples of the type 

described in E will generally be representative (with respect to the induction’s target 

characteristic) of the induction’s target population. The target characteristic could be many 

things: a melting point, reacting in a particular way to the introduction of a magnetic force, 

possessing a colour or smell etc. I shall use the term ‘uniformity principle’ for R. 

 

Local: Unlike many theories of induction along these lines (Hume, 1894, p. 37; Russell, 

1948, Chapter 9), Norton denies that there is any single uniformity principle or small set of 

uniformity principles in science. Instead, many (very many) local uniformity principles that 

operate as “licences” of our good inductions6. 

 

Licencing: This evidential relationship consists in providing a defeasible (and undefeated) 

reason to believe that our observed sample is representative, within a reasonably narrow 

margin of error, of an inductive inference’s target population7. Norton gives the following 

example: we are justified in believing that all samples of bismuth are representative of the 

population of bismuth samples with respect to their melting points, because we know that 

bismuth is a chemical element and that most chemical elements are uniform with respect to 

their melting points. Therefore, we can extrapolate – modulo measurement error – from the 

melting point of one sample of bismuth to the melting point of all samples. Contrariwise, we 

could not make the same inference if we knew the (false) defeater that bismuth is an 

allotropic element and that allotropic elements like carbon and sulphur more or less always 

have multiple melting points among their allotropic states (Norton, 2003b, pp. 650-651)8. In 

short, in Norton’s examples of licencing, there is a background inference about the 

representativeness of a sample from a local uniformity principle. I shall return to the issue of 

licensing on several occasions, but the main point to note is that Norton has not (in print) 

stipulated a randomness requirement: while information about biased sampling is an obvious 

type of defeater for inductions, Norton never explicitly requires that we know that all such 

defeaters are false. 

 
5 In the sense in which we know that the inductions are good, rather than those that merely happen to 

successfully attain true premises. 

6 Richard Whately (1855, pp. 256-260) held a similar view, but also believed that the role of the local uniformity 

principles was always to reformulate the inference as a deductively valid syllogism, and thus disagreed with 

Ampliative. 

7 I focus on the type of licencing relations that are relevant for my discussion in this article. An anonymous 

referee points out that there may be other types of licencing relation, e.g. for inferences to the best explanation, 

which might not be reducible to this sort of licencing. 

8 It is consistent with the definition of ‘allotrope’ that such an element could have the same melting point for all 

its states, but it would be an extremely astonishing coincidence, and not one that is realised in any known 

element. 
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Plurality: The numerous local uniformity principles connecting evidence with hypotheses do 

so in multifarious ways. Consequently, there is no general and abstract account to be given of 

their functions. A very normatively weak account, such as Subjective Bayesianism, might be 

able to accommodate much of good inductive reasoning, but according to Norton even these 

accounts are unable to capture the full richness of induction (Norton, 2003b, p. 662). 

 

 One strength of the MTI is that it seems compatible with both internalist and 

externalist theories of justification (Norton, forthcoming, reply to Job de Grefte). For 

instance, even though Norton’s use of terms like ‘fact’ when describing his theory can 

suggest externalism, he does not depend on externalist premises when they could provide him 

with a quick escape from a problem (Norton, 2014, pp. 682-683). In general, Norton tends to 

avoid reliance on particular epistemological views, like foundationalism or anti-

foundationalism (Norton, 2014, p. 687). This flexibility means that the MTI can appeal to a 

broad variety of philosophers. In considering how the MTI can respond to Dawid’s criticism, 

I shall try to preserve this breadth as much as possible. 

 

SECTION 2 – The Dome 

 

 

2.1 – Norton’s Model 

 

 Dawid criticises the MTI using Norton’s own “Dome” model (Norton, 2007, pp. 166-

167; Norton, 2008.) Imagine a perfectly smooth and symmetrically shaped dome, whose form 

is given by the equation h = (2/3g)r3/2, where h is the distance of a straight line through from 

the apex point of the Dome’s surface to its bottom, r is the surface radial distance coordinate9, 

and g is the acceleration due to gravity for a free unit mass on the surface. 

 

 In the Dome experiment, a point mass is placed atop the Dome at the surface apex 

point. Norton develops a Newtonian model for the Dome set-up and proves that, given the 

experiment’s conditions, the model has multiple solutions for its equations regarding the 

point mass. It might instantly slide down the Dome on one path, but it might take any other 

direction along the surface of the Dome; it might stay still and suddenly (without any 

additional force acting upon it, other than the force which placed it on the Dome) follow a 

path after any of an infinitely extendable number of periods of time; or it might stay atop the 

Dome indefinitely. Therefore, the model underdetermines the point mass’s motion. The 

model also does not specify a probability distribution for different directions, which might 

warrant regarding one direction as most likely (Norton, 2008, pp. 787-788). Nor does the 

model identify a non-trivial disjunction of possible probability distributions for this event. 

The Dome model only states that the point mass will follow one of the directions (or remain 

stationary) described earlier, and rules out the alternatives. To put it mildly, the model is 

uninformative about the Dome experiment. For the Dome’s historical background, see Van 

Strien (2014). 

 

 
9 The Dome’s surface radial distance coordinate is the length of a straight line from its “top” (its surface apex) to 

another straight line running from the centre of its flat surface to its perimeter (its radius). 
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 While Newtonianism is false, the Dome model seems logically consistent and 

conceivable10. We cannot test it directly, since there are no perfectly smooth and 

symmetrically shaped domes, nor can we place point masses atop them. Yet we can 

nonetheless use the Dome to explore and criticise particular the implications of theories of 

induction for circumstances where our background theories are similarly uninformative. 

 

 

2.2 – Dawid and the Dome 

 

 Dawid does not deny that some (even many) inductions are characterised as Norton 

suggests. However, he critcises the MTI thesis that all inductive inferences depend on local 

factual statements (Dawid, 2015, pp. 1103-1104). He asks: what if we were able to 

experiment with the Dome repeatedly and we observed a uniform pattern of behaviour by the 

point mass? For example, imagine that in 20,000 controlled experimental trials of the Dome 

experiment we observe that the point mass remains stationary for 16.8 seconds after it was 

placed on the Dome’s apex11 and then slides down the Dome12. This apparently evinces that, 

in the next experiment, the point mass will also remain stationary for 16.8 seconds and then 

slide down the Dome. I shall call this prediction P1. I interpret Dawid’s argument as follows: 

 
(1) To be justified in inferring P1 we must have inductively inferred a pattern for the time of excitation and 

direction of motion of the point mass in the Dome experiment13. 

 

(2) According to the MTI, all inductions are justified only by local uniformity principles in our relevant 

background information. 

 

(3) In Dawid’s scenario, if there is a licensing local uniformity principle in the inference of the sliding pattern 

for the sliding behaviour of the point mass on the Dome, then it is supplied by the Dome model. 

 

(4) The Dome model does not predict (deterministically or probabilistically) any particular time of excitation or 

direction of motion for the point mass, and thus cannot supply suitable local uniformity principles. 

 

Therefore, (5) If the MTI is a correct theory of induction, then we cannot be justified in inferring P1 in Dawid’s 

scenario. 

 

However, (6) We can be justified in inferring P1 in Dawid’s scenario. 

 

Therefore, (7) The MTI is not a correct theory of induction. 

 
10 I leave aside questions about whether it is “really” Newtonian, e.g. whether Newton’s First Law rules out 

solutions other than the point mass remaining stationary (but see Norton 2003a, pp. 10–11). I shall assume only 

that the Dome is consistent and conceivable, else it does not pose a problem for the MTI. 

11 Like Dawid and Norton, in this article I shall simplify the discussion by disregarding measurement error. 

12 This is a slight adaptation of Dawid’s scenario. I have increased the sample size. (Unlike in real science, 

replications of imaginary experiments are easy to perform.) My arguments could be adapted to the 100-fold 

sample that Dawid considers, but the relevant intuitions would perhaps be weaker, in ways that are inessential to 

the core issues. If his arguments work at all, they work (and better) with very large samples. 

13 Some philosophers might deny (1) and argue for a more horizontal approach to predictive inferences. 

However, even if we can infer P1 by an alternative route, that would still leave the problem that there does not 

seem to be anything wrong (without begging the question in favour of the MTI) with the reasoning that Dawid 

suggests. 
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 Dawid’s argument is valid. It also apparently consist of premises to which Norton is 

committed. Premise (1) is plausible given the MTI, since Nortonians cannot appeal to devices 

such as prior probabilities based on subjective opinions or symmetries to derive a high 

expectation for P1. Premise (2) is an integral thesis of the MTI.  Premise (3) is plausible 

because, in the Dome scenario, there are no other accepted background hypotheses mentioned 

apart from Newtonian mechanics and the other components of the Dome model. Premise (4) 

is a point that Norton has utilised in his own discussions of the Dome. Premise (5) follows 

from the preceding four. Premise (6) seems plausible to some philosophers – though, as we 

shall see below, Norton rejects it under some conditions.  

 

 A Nortonian might reject (3) in the following way: perhaps our intuitions in Dawid’s 

scenario are conditioned (in the psychological sense) by the past reliability of induction in our 

past practice. Either this background knowledge is available in Dawid’s scenario, in which 

case we are able to utilise this general reliability to licence the prediction of P1, or this 

background knowledge is unavailable, in which case the induction is illicit and it is a virtue 

of the MTI that it forbids the inference. In neither case does the MTI deny the possibility of a 

legitimate induction. 

 

 However, there are at least three problems with this response. Firstly, the notion of a 

general “reliability of induction” is opaque. If we interpret this idea in the formal mode (in 

terms of the reliability of a formal schema) we face the problem that there are many types of 

induction: statistical inductions, singular predictions, analogies, inductions involving 

theoretical phenomena etc. Is the “reliability of induction” the reliability of all of these 

schemas or a particular type? Furthermore, any given inductive inference will be an instance 

of indefinitely many inferential schemas. Which schema should be used for assessing a given 

induction’s reliability? Secondly, as Norton argues, meta-inductions about schemas do not 

actually occur in science (Norton, 2003b, p. 667). Indeed, the methodological importance of 

the general reliability of induction is just what the MTI rejects, because one of the most 

interesting features of Norton’s theory is that inductions are justified by local facts. Thirdly, 

if we take the material mode and interpret the “reliability of induction” as the claim that the 

universe is clement to induction, then we lose the distinctiveness of the MTI, since this fact 

about the universe is not a local fact; it would be a return to the sweeping claims of Mill, 

Russell, and so on. I grant that “the reliability of induction” makes sense: we can say that a 

particular natural phenomenon is more or less uniform, so that inductions about it will tend 

to be more or less reliable. Inductions tend to be reliable from the properties of one instance 

of a chemical element to all elements, but unreliable from the psychology of one person to all 

people. Yet induction’s general reliability cannot provide a Nortonian answer to Dawid’s 

example14. 

 

 One might say that Dawid’s criticism concerns a very unusual case. Normally, there is 

at least one (often many) background hypothesis licencing an intuitively reasonable 

induction. Perhaps, in a few special cases, we have to appeal to formal schemas or contingent 

local uniformity claims of a great degree of generality in order to licence intuitively correct 

inductions. That would allow that Norton’s theory is almost always adequate, even if we must 

 
14 The same applies for a response that Norton suggests in correspondence with Dawid (2015, p. 1106) in terms 

of an assumption that such regularities are law-governed: this is exactly the sort of vague and sweeping 

“assumption of induction” that the MTI rightly rejects. 



6  

 

forgo the MTI in this recondite case. 

 

 However, Dawid’s criticism is robust to a wide range of variations, because it is 

principally driven by the lack of informative background information, rather than anything 

particular to the Dome itself. Consider another Newtonian variation: so-called “space 

invaders” (Earman, 2004 pp. 25-26). Imagine a point mass particle x in a universe of finitely 

many particles that conform to Newton’s inverse square law. It is provable that this particle 

could, within this Newtonian universe, accelerate (in a finite period) to spatial infinity, but 

also that that particles might arrive unpredictably from spatial infinity. Let us call particles 

with the latter behaviour “space evaders”. While Earman’s model allows for space evaders, it 

does not tell us under what conditions they would occur, nor provide a stochastic model or 

informatively small family of stochastic models for guiding such predictions. However, if we 

could easily detect space evaders, but we never did in hundreds of years, we might predict 

that we are unlikely to encounter them in the near future, on the grounds that they apparently 

happen to be rare. 

 

 More generally, in science, our background information often does not provide us 

with rich warranting facts. For instance, in economics, the Mundell-Fleming model of a small 

open economy implies that it is possible for governments of such economies to (i) control 

their domestic monetary conditions, (ii) control their currency’s exchange rate with another 

currency, or (iii) allow capital to freely enter or exit the country. The model also says that any 

combination of (i-iii) can be sustainable, except all three together (Fleming 1962, Mundell 

1963). The model does not predict which combinations will actually occur, nor obtain results 

for which combinations are “better” by some standard of social welfare, but it is useful 

because it tells policymakers what circumstances can and cannot be realised in such 

economies. The analogy with the Dome model is imperfect, because the Mundell-Fleming 

model is not intended to be a complete description of the target system. Nonetheless, since 

contexts where our background models only provide us with relatively exiguous background 

knowledge often occur science, it is important to clarify how the MTI can handle them. 

 

 

2.3 – Norton’s Responses 

 

 Norton replies to Dawid’s criticism in Chapter 14 of his unpublished manuscript for 

The Material Theory of Induction (Norton, unpublished, pp. 22-23). He distinguishes two 

possible responses that we might have after the Dome experiments. Firstly, we may become 

uncertain that the Dome model is complete and correct; I shall call this approach the “theory 

change” response. Secondly, we remain certain that it is complete; I shall call this approach 

the “resolute” response. 

 

 If we adopt the theory change response, then we shall expand the Dome model or 

develop an alternative model. Given either expansion or the development of an alternative, 

there will be new theoretical content in our science, and the relevant parts of our new physics 

will be the background information that licences the inference. In this case, we reject premise 

(3), i.e. that only the Dome can provide the licensing principles for the induction he 

describes. I agree that we might expand the Dome model. (We might want to do so anyway, 

given that the model is so uninformative.) However, the evidence does not tell against the 

background physics, because the Dome model is both deductively and probabilistically in 

accordance with the sample data. A heterogeneous pattern in the experiments would be no 
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less consistent (in a broad epistemic sense) with the Dome model. Obviously, the model does 

not predict the sample data, but nor is it disconfirmed15. It is hard to see how a hypothesis can 

be disconfirmed by some data without the hypothesis supporting that data’s negation. If the 

Dome model provided reasons to expect some other pattern or set of patterns was likely to 

occur, then the observed pattern would be evidence against the Dome model. However, the 

model does not provide such reasons in this context, because the model does not say that the 

regular behaviour that Dawid imagines is any less likely than any other behaviour. In general, 

provided that the observed behaviours of the point mass are among those that the model 

deems “possible”, they are evidentially irrelevant to the model. 

 

 One might argue that Newtonianism contains an implicit completeness claim, such 

that any physical uniform pattern that occurs can be predicted by combining statements of the 

initial conditions with Newtonian theory. However, adding this completeness claim (or 

making it explicit) entails that Newtonianism, as Norton and Dawid render it, predicts 

physical disuniformities where it does not predict uniformities. The Dome model would 

predict that, in tens of thousands of iterations of the Dome experiment, we would not see a 

uniform pattern. Yet one point of agreement for Norton and Dawid is that the Dome model 

makes no such prediction. Norton is correct that good scientists would seek a more 

informative theory given the evidence that Dawid describes, but there is nothing in the data 

that would require this search. The scientists’ motivation for their search would be present 

from the start: the pursuit of models with more explanatory and predictive power. (Their 

interest in a better model would have increased.) The experimental data would discipline the 

choice of alternatives, but not disconfirm the model. Therefore, in this part of his response, 

Norton has not incorporated the reasoning that Dawid describes into the MTI. 

 

 If we adopt the resolute response to the pattern in our observations, then we remain 

certain of the Dome model’s completeness. In this case, Norton claims that the sample data 

provides no reason to expect that P1 will occur, because the background physics provides no 

basis for predictions even if we have such uniform sample data. Thus, given the resolute 

response, Norton rejects reject premise (6) – that the induction is actually justified. He does 

not directly argue for this claim, but he provides an analogy to a gambler at a roulette wheel. 

Suppose that the gambler does not doubt their physical model (perhaps a folk-physical 

model) of the roulette wheel and their model provides them with the background knowledge 

that each spin of the roulette wheel is independent. The probability16 of landing ‘black’ is 0.5. 

Due to the known stochastic independence of the roulette spins, even 20,000 spins that all 

land on ‘black’ would not justify adopting the expectation that the 20,001st spin will land on 

‘black’, unless the gambler doubted their physical model of the roulette wheel (Norton, 

unpublished, Chapter 15 “Indeterministic Physical Systems” p. 22)17. 

 

 
15 The reader might be tempted to apply the Principle of Indifference in order to infer that the sample data is 

unlikely given the Dome model: if every possible time of motion is equally probable, then 16.8 seconds is 

maximally improbable, since there are an infinite number of possibilities, but such a priori symmetry principles 

are inconsistent with the MTI. 

16 Assuming that the green pockets, 0 and (in American roulette) 00 have been removed as options. 

17 We are also ignoring the reliability of the description of the initial conditions. Questioning these merely 

relocates the problem, since we would only question them if we have inductively learned something from the 

20,000 trials. 
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 However, this analogy does not work. In the roulette example, the gambler has highly 

informative background knowledge of relevant physical probabilities. The implicit model for 

the roulette wheel tells us that the physical probability of landing in the ‘black’ pocket is 

independent of its past behaviour18. In contrast, the Dome model does not provide a 

conditional probability distribution for events like P1. It just tells us that P1 may occur in the 

20,001st Dome experiment. 

 

 The Dome model is consistent with the inductive inference of a finite relative 

frequency for point mass directions, using the sample data, and this relative frequency could 

(defeasibly) provide warrant for expecting P1
19. In what follows, I shall reject premise (3) – 

that the Dome model offers the only candidate for licencing local uniformity principles. 

Unlike Norton’s response, I shall argue that this rejection is possible even if we do not adopt 

some non-Newtonian physics in response to the evidence that Dawid imagines. (I agree with 

Norton about the case where we adopt a new model or perhaps even a new physics in 

reaction to the experiment.) Thus, I shall argue that Dawid’s argument is valid, but unsound, 

and therefore the Dome does not defeat the MTI.  

 

SECTION 3 – Local Combinatorial Induction 

 

 

3.1 The Structure of the Problem 

 

 Firstly, note that Dawid’s challenge does not concern the justification of induction in 

general within the MTI, but only a particular induction in a scientific context with at least 

some background knowledge. Here, Isaac Levi’s separation of “global induction” and “local 

induction” (Levi, 1967, pp. 3-6) is useful. Global induction is the practice of induction as 

such. A justification of global induction would be what David Hume requested: by what 

reasoning can we justify any use of induction? In contrast, local inductions are inferences in 

particular contexts of scientific inquiry. Dawid’s challenge is a problem of local induction, 

and therefore my argument that the MTI allows for the reasoning he discusses will be 

independent of whether the MTI contains or permits a positive answer to Hume’s problem. 

 

 Secondly, the inductive reasoning that Dawid describes might be outlined in a number 

of ways. However, the following schematic reconstruction is simple and amenable to a 

variety of more detailed analyses: 

 
(E) All of a 20,000-fold sample of trials of the Dome experiment resulted in the point mass sliding down the 

Dome after 16.8 seconds. 

 

 
18 Either for a generic spin (frequentism) or the particular spin (the propensity view). 

19 Some might argue that finite frequencies are insufficient for making scientific predictions and that predictions 

require a causal connection or knowledge of limiting relative frequencies in a (normally hypothetical) infinite 

series of trials. However, the MTI does not require that local uniformity principles describe an infinite series, 

and Norton takes a deflationary view of causation (Norton, 2003a) and my concern is what the MTI allows. 



9  

 

Therefore, defeasibly20: 

 

(H) All, or at least almost all, of the trials of the Dome experiment result in the point mass sliding down the 

Dome after 16.8 seconds. 

 

Therefore, defeasibly: 

 

(P1) The 20,001st trial will result in the point mass sliding down the Dome after 16.8 seconds. 
 

 The inference from H to P1 is ampliative and thus non-monotonic. If an inference is 

non-monotonic, then it is defeasible: it is conceivable that we might accept further 

propositions that are consistent with the premises, but which rule out the inference as rational 

for us. Nonetheless, there seem to be no defeaters in Dawid’s scenario, partly because the 

most pertinent background information (the Dome model) is extremely uninformative about 

the point mass’s behaviour. In general, Nortonians can be sanguine about this part of the 

reasoning, because H can operate as local uniformity principle in the way that Norton has 

described in other examples. In more detail, the inference from H to P1 can be seen as a 

simple inference: 

 
(H) All, or at least almost all, of the trials of the Dome experiment result in the point mass sliding down the 

Dome after 16.8 seconds. 

 

(A) The 20,001st trial will be one of the trials of the Dome experiment. 

 

Therefore, defeasibly, (3) P1 is true. 
 

 Nothing in the MTI rules out this step. Therefore, the difficulty in Dawid’s example is 

just the inference from E to H. In the MTI, this inference cannot be justified via some formal 

relationship between these statements. A local uniformity principle is needed. It must justify 

the belief that the sample described in E is representative of the population described in H, 

i.e. the induction’s target population. 

 

 

3.2 A Local Justification 

 

 To justify this particular induction, I shall adapt a justification of global induction, 

developed by philosophers such as Josiah Royce (1913, pp. 82-88) Donald C. Williams 

(1947) and David Stove (1986, Chapter VI). I shall call this the ‘Combinatorial Justification 

of Induction’ (CJI)21. However, unlike the standard presentation of the CJI, I shall not 

suppose that the scientists involved only possess a very austere quantity of background 

knowledge, because Dawid’s problem is not a global problem of induction where (arguably) 

such evidential exiguity is appropriate. In particular, I shall suppose that they know that the 

categories used to describe the phenomena (seconds, point masses, the Dome itself, and so 

on) are bona fide scientific categories that can be rationally used in inductive inferences. The 

 
20 The qualifier ‘defeasibly’ indicates that I am using ‘therefore’ in the way that Norton uses the word ‘likely’ in 

“the rough and ready sense of ordinary judgement” (Norton, 2011a, p. 10). Note that the conclusions are 

categorical statements, rather than probability statements. 

21 The name is from Marc Lange (2011, p. 83). 
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future existence of the 20,001st trial is also not in question. Thus, what I say will be logically 

independent of the CJI’s viability as a justification of global induction. 

 

 The type of inference from H to P1 has many names: “the statistical syllogism”, “the 

proportional syllogism”, and more. However, the name that seems least likely to mislead is 

“direct inference” (Carnap, 1962, p. 207), since it is a type of inference, whereas “syllogism” 

tends to suggest a form of deductive reasoning. Direct inference is an ampliative inference 

from a premise about a population to a conclusion about some subset of that population. It 

has a crucial function in the MTI, because we must infer (defeasibly) from local uniformity 

principles about general populations in order to know that the samples in our inductions are 

representative of our target populations. (See the bismuth example given earlier.) Thus, direct 

inference is defeasibly permissible according to the MTI. 

 

 For the inference from E to H, the target population is the population of Dome 

experiment trials. One available fact about this population in Dawid’s scenario is that it has a 

finite but unknown cardinality of at least 20,001. We know it by combining E with our 

background knowledge that the 20,001st trial will occur and our background scientific 

knowledge that the Dome experiment will only occur in finitely many trials. This last claim is 

realistic, but not essential, as we could limit the scope of H to a finite set by definition and it 

would still be just as useful for prediction22. Furthermore, we know some mathematical facts 

about such populations from combinatorics. As I shall explain, we know from combinatorics 

that, for a property like ‘slides down the Dome on a particular path after 16.8 seconds’, the 

overwhelming majority (some proportion that must be well over 99%) of 20,000-fold subsets 

of such a finite population will have a proportion that is representative of the population 

proportion within a margin of error of 1%. 

 

 To see why, let us allow for even the least favourable population frequency p for 

representative (in this sense) subsets, which is p = 0.5, i.e. 50%23. Given this population 

frequency, the most common subset among the m-fold subsets will be mp (or round to mp as 

the nearest integer). Let q = (1 – p) and h = mq – n, where n is the number of instances of the 

property in m. Meanwhile, π and e will be the familiar mathematical constants. Then, for 

large subsets, the proportion of m-fold subsets with n will be approximately24: 

 

1

√2𝜋𝑚𝑝𝑞
𝑒

−
ℎ2

2𝑚𝑝𝑞 

 

– which reaches a maximum if h = 0. Then, 0 = mq – n. Therefore, the maximum occurs 

when n = mq. Given that maximum, but recognising that we are only interested (in this case) 

 
22 Assuming that the set is picked out by some suitable scientific description, rather than a set picked out by 

‘grue’ or similar descriptions. 

23 If the population frequency of a property is 0 or 1, then obviously all subsets will be representative. The 

proportion of representative subsets falls as the proportion is further from these extremes, and hence reaches a 

minimum if it is 0.5. 

24 Using Stirling’s approximation (Slomson 1997, Chapter 4) though it is possible to prove the relevant 

mathematical facts without this particular principle (Kneale 1949, pp. 136-142). The combinatoric 

approximations I describe are not the closest possible, but they are relatively easy to understand. 
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in approximate estimates of the population frequency, how can we determine the frequency 

with which a subset will be within some margin of variance? We replace h by a continuous 

variable z. The proportion of subsets that diverge from the maximally common proportion mq 

by z and z + dz (i.e. between z and z plus an infinitesimal of z) is:  

 

     
1

√2𝜋𝑚𝑝𝑞
𝑒

−
𝑧2

2𝑚𝑝𝑞𝑑𝑧 

 

 Finally, to obtain the proportion of subsets whose value of n lies within the range mp 

± a, where t =
𝑧

 √2𝑚𝑝𝑞
, we can use integration: 

 

1

√2𝜋𝑚𝑝𝑞
∫ 𝑒

−
𝑧2

2𝑚𝑝𝑞

𝑎

−𝑎

𝑑𝑧 =
2

√𝜋
∫ 𝑒−𝑡2

𝑎

√2𝑚𝑝𝑞

−0

𝑑𝑡 

 

  If γ = 
𝑎

√2𝑚𝑝𝑞
 and ε = √

2𝑝𝑞

𝑚
 γ, then the proportion of m-fold subsets that are 

representative of the population within a margin of error of ± ε (i.e. the range of n values 

around mq) will be: 

 
2

√𝜋
∫ 𝑒−𝑡2

𝛾

−0

𝑑𝑡 

 

 This proportion increases proportionately to the subset size m. The particular 

implication that advocates of the CJI have exploited is that, if m is large, then the proportion 

of representative subsets of that type will be large25. An intuitive gloss is that while the 

absolute number of unrepresentative subsets can be high even if the subsets are large, the 

proportion of such subsets is bounded by combinatoric principles that are independent of 

either the ratio of the subset to the population or the population size (generally unknown in 

scientific inductions) provided that the latter is finite. Thus, even if the population is 

indefinitely large (but finite) most large subsets that could be formed out of its members will 

be representative, where “representative” becomes definable with a tighter margin of error as 

“large” becomes more demanding. Provided that we are talking about subsets, what I have 

said so far is uncontroversial even among critics of CJIs (e.g. Maher 1996; Lange 2011). 

 

 Note that I have discussed subsets, rather than samples. That a sample is a subset is 

 
25 Unfortunately, advocates of CJIs have rarely explained the role of combinatorics in much detail. My 

exposition draws on John Maynard Keynes’s proofs (Keynes 1921, pp. 383-385) except that he is principally 

interested in the relation of the combinatorics to probabilities. The approach that Keynes uses, via Stirling’s 

approximation, comes from Joseph Bertrand (1889, Chapter IV). The original theorems are due to Jakob 

Bernoulli, whose own proof differed from the Bertrand approach (1713, p. 236). For explanations aimed at 

philosophers, see (Williams 1947, Chapter 4) and (Stove 1986, Chapter VI). Due to the idiosyncrasies of their 

theories of epistemic probability, Williams and Stove think that they are able to infer epistemic probabilities 

from these combinatoric propositions. Since Norton rejects the idea that all direct inferences are probabilistic 

(Norton, 2014, p. 674) I have avoided talking about epistemic probabilities. This is consistent with my use of 

direct inference, which need not be probabilistic (Toulmin 1958, p. 109). 
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not necessarily the most pertinent fact about it with respect to its representativeness, as I 

describe below in my discussion of sampling bias. For instance, (a) the minima of the 

population frequency of representative subsets and (b) the frequency of obtaining 

representative samples with some selection procedure (either in practice or in the limit) can 

diverge. In other words, the frequency with which we draw representative samples can differ 

from the minimum proportion of representative subsets. To take an extreme case, if our 

sampling method is biased, then we might never obtain a representative sample, even though 

the overwhelming majority of large subsets of a finite population are representative.  

 

 Nonetheless, based on Norton’s bismuth example and other instances of reasoning in 

the MTI, I take it that, according to his theory, knowledge of a high minimum population 

frequency of representative samples is a defeasible sufficient condition for direct inference. 

In other words, like advocates of the CJI, Norton believes: 

 

Proportion Direct Inference: That a proportion r% of a population K has the property F (for 

instance, being a representative subset) and that an individual i is a member of K jointly 

constitute a defeasible reason to believe that i is a K, if r% is high. If r% is low, then this fact 

is a defeasible reason to believe that i is not a K. 

 

 What constitutes a defeater, i.e. something such that if we believe it, we would no 

longer have evidence? I shall return to this issue later (especially in the conclusion) as it turns 

out to be an important lacuna in Norton’s theory, but I can give some illustrative intuitive 

examples. Firstly, if we know that i is a member of a proper subset of K such that this 

subset’s proportion s% differs from r%, then intuitively we should reason using s%, which 

could be low/high when r% is high/low. Secondly, we might know that, for the sampling 

procedure we used, the relative frequencies for representative subsets differ from the 

population proportions, i.e. that i was obtained from K by a biased sampling method. 

 

 One might think that it is a necessary condition of direct inference that we know that 

the sampling method is unbiased26. However, this does not seem to be Norton’s view, 

because he does not impose any such condition in his bismuth example or elsewhere. Since 

my defence of the MTI is internal (my aim is that certain inductions are reasonable given the 

MTI, not that the latter is reasonable) I shall not discuss whether Norton is correct in this 

regard. However, perhaps some of unease about Dawid’s reasoning, where biased sampling is 

not excluded, might be a result of recognising that such a defeater is quite plausible, e.g. a 

nefarious laboratory assistant seeking some dramatic result by only recording Dome 

experiments that conform to the regularity in question. 

 

 ‘X is representative of Y’ is a symmetric relation. Consequently, if least 99% of the 

 
26 If the MTI should require this condition, then my reasoning could be interpreted as providing a Nortonian 

explanation of our intuitions in the Dome induction: Dawid does not specify anything about the sampling 

procedure; we tacitly make an assumption of an unbiased sampling procedure, and ignore that this assumption is 

unwarranted in the hyper-austere background knowledge that Dawid does specify. Consequently, premise (6) in 

my set-up of Dawid’s argument in Section 2.2 is false, and it only appears to be true because we are used to 

making that assumption as a default in enumerative induction problems. Therefore, regardless of whether the 

MTI should require antecedent knowledge that the sample selection is unbiased, my arguments offer something 

to the MTI Norton’s theory in responding to Dawid’s criticism. See (Campbell and Franklin, 2004) for a 

criticism of the randomness requirement. 
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subsets are representative of the target population, then the target population is representative 

of at least 99% of its subsets. CJI advocates have the high ambition of answering Hume, but I 

only aim to justify the inference from E to H. I begin with a direct inference: 

 
(B1) Over 99% of the 20,000-fold subsets of the target population (the population of trials of the Dome 

experiment) will be representative27. To be precise, the relative frequency of sliding down the Dome after 16.8 

seconds in 20,000-fold subsets of the population of trials will be representative of the population frequency 

within a margin of error of ±1%. 

 

(B2) The sample reported in E is a 20,000-fold subset of our target population in which 100% of the point 

masses slid down the Dome after 16.8 seconds. 

 

Therefore, defeasibly, (B3) The sample reported in E is representative of our target population within a margin 

of error of ±1%. In 100% of this sample, the point masses slid down the Dome after 16.8 seconds. 

 

 From B3, it deductively follows that 100% ± 1% of the target population will be trials 

in which the point mass slides down the Dome after 16.8 seconds. And, if we interpret ‘all or 

almost all’ as indicating a standard that is no stricter than ‘at least 99%’, then H follows. 

Hence, B1 is a local uniformity principle that warrants the inductive step from E to H. As 

with other paradigmatic inferences in the MTI, the induction to H is licenced by a local 

uniformity principle that gives us a defeasible reason to expect the sample to be 

representative of our target population. From H, the prediction that Dawid proposes, P1, is 

also justified by direct inference28. Consequently, the inductive reasoning that Dawid 

suggests is consistent with the MTI. 

 

 We can use B1 when we know (perhaps only roughly and intuitively) the relevant 

basic combinatoric principles and if there are no defeaters for the direct inference in argument 

B, nor any defeaters for the direct inference from H to P1. For example, we must not know 

that our observations are a member of a subset of Dome experiments that are unrepresentative 

or likely to be unrepresentative. Additionally, background knowledge about bias in the 

sampling procedure can be a defeater. However, in the scenario as Dawid and Norton discuss 

it, we lack such defeaters. In the MTI, direct inferences from proportions have at least a 

presumption in their favour, as in the bismuth case: we might know a defeater for the direct 

inference that bismuth has a uniform melting point from the hypothesis that most elements do 

(for example, if we knew that bismuth was an allotropic element) but without such a defeater, 

Norton allows the inference. 

 

 

 

 
27 This can be obtained directly using the combinatoric principles mentioned earlier, emphasising again that they 

require that the subsets in question are large. In particular, since that reasoning uses the normal distribution as an 

approximation, it is easy to find tables and calculators for the proportions in question. Meanwhile, when the 

subsets are small, the proportions can be calculated, with more computational difficulty, directly using a 

binomial distribution. 

28 We should clarify terms in the MTI like ‘licence’, ‘warrant’, ‘defeaters’, and ‘reason to believe’ in refined 

detail. I return to this point in the conclusion. 
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SECTION 4 - Objections 

 

 

 There are many possible objections to the reasoning that I offered in the previous 

subsection. Many of them utilise premises that are independent of the MTI or even in outright 

contradiction to it. However, the issue in question is whether the reasoning that I have offered 

is available in the MTI. That can be done without proving that justification should be 

acceptable to everyone. Consequently, I shall only discuss criticisms that apply if we take the 

MTI for granted and do not require particularly controversial additional premises. 

 

4.1 B1 is not the Right Sort of Fact 

 

 My argument uses a parallel between the reasoning in the CJI and the direct 

inferences that are typical within the MTI. Yet B1 might seem to be different from the local 

uniformity principles typically used by Norton to exemplify his theory. The aforementioned 

facts about chemical elements’ uniform melting points is a contingent fact that chemists 

discovered empirically. In contrast, B1 might seem to be necessarily true and acquired by a 

priori reasoning. 

 

 These appearances are misleading. In Dawid’s scenario, B1 is true, but it is not true in 

the real world: the Dome experiment can never actually take place, and thus the proportion of 

representative trials of the Dome experiment among the total number of trials would be zero 

divided by zero. B1 is false for the same reason that ‘At least 99% of the 20,000-fold subsets 

of manticores are representative’ is false. No such proportion exists. Thus, B1 can only be 

contingently true or false. 

 

 We know the local uniformity principle B1 in Dawid’s scenario via a posteriori 

reasoning. In detail, we can infer it from the following argument: 

 
(C1) If a population is finite and has at least one 20,000-fold subset, then over 99% of the 20,000-fold subsets of 

that population will be representative. 

 

(C2) The population of trials of the Dome experiment is finite. 

 

(C3) There exists at least one 20,000-fold subset of the population of trials of the Dome experiment. 

 

Therefore, (C4) The population of trials of the Dome experiment is finite and has at least one 20,000-fold subset. 

(From C2 and C3.) 

 

Therefore, (B1) Over 99% of the 20,000-fold subsets of the target population (the population of trials of the 

Dome experiment) will be representative. (From C1 and C4.) 
 

 We know (C2) and (C3) empirically: (C2) via our background knowledge about the 

Dome experiment29, (C3) via our observation of a 20,000-fold sample. Hence, B1 is known a 

posteriori. The appearance to the contrary is perhaps because B1 is a deductive consequence 

of the evidence, obvious background knowledge, and purely mathematical principles of 

combinatorics. This modest evidential basis of B1 from our experience is atypical of scientific 

 
29 Assuming that “the Dome” refers to a particular object in the imaginary scenario, rather than Dome objects in 

general, and that we know that this object will not exist into the infinite future. 
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reasoning in general. When Norton uses the following reasoning: 

 
(D1) Chemical elements are generally uniform in their melting points. 

 

(D2) Bismuth is a chemical element. 

 

Therefore, defeasibly, (D3) The melting points of samples of bismuth are representative of the melting points of 

bismuth in general. 
 

- D1 is only known due to the empirical achievements of generations of chemists. It was 

acquired with much more sweat than B1. (Presumably: remember that the Dome is a thought 

experiment.) Nonetheless, while the reasoning in Section 3.2 differs in some ways from the 

typical reasoning in the MTI, there is no significant epistemic difference between B1 and 

facts like D1. Both of these uniformity principles can only be known a posteriori. 

 

 A Nortonian might also worry about the generality of B1. The use of the purely formal 

principles of combinatorics within the inference of B1 might suggest that we can put this 

reasoning into a universal schema. Yet there are at least two reasons why the inferences in 

Section 3.2 why this schematisation is impossible. Firstly, the requisite local uniformity 

principles such as B1 will not always be epistemically available: not all populations have 

20,000-fold subsets, so such claims about their proportions will be false. A formalist might 

try to abstract away this issue by taking the subset size to be a variable, but this will only 

raise more problems, because if our sample size is 1, then we cannot infer that at least 99% of 

such subsets will be representative of their populations. One might say that the subset size 

could be a partly bounded variable (e.g. restricted to whole numbers greater than 25). 

However, the not all populations will have subsets meeting the minimum bounds, so once 

again the reasoning is only possible if our background knowledge of the material facts is 

suitable. 

 

 Secondly, my reasoning assumes that sliding down the Dome after 16.8 seconds is a 

projectible quality. In this case, my reasoning diverges from the CJI. For example, David 

Armstrong (1983, pp. 57-58) points out that, in Williams’ version, the CJI reasoning 

apparently applies for predicates like ‘grue’30. (Stove’s version of the CJI avoids this 

consequence by an unexplained restriction against ‘grue’ and similar predicates.) I have 

avoided these issues only by assuming we have antecedent scientific grounds to discriminate 

among predicates, because Dawid is not raising the Humean problem. Thus, in conformity 

with the MTI, local background knowledge – i.e. beliefs that are sensitive to the particular 

details of the case – limit the applicability of the reasoning in Section 3.2. However, as an 

anonymous referee points out, what counts as a “local fact” (or a “formalist” theory of 

induction) is open to dispute. If a “formalist” is willing to say that inductions always depend 

on the sort of contingent background knowledge that I have described, then I have no issue 

with formalism in that sense, nor do I see why Norton needs to object to such “formalists”. 

 

 

 
30 Norton has already discussed ‘grue’ and the associated New Riddle of Induction from an MTI perspective. 

(Norton, 2006). 
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4.2 Universal Generalisations 

 

 Even supposing Dawid accepted all my arguments thus far, there are some simple 

ways that he could alter his criticism that would raise analogous new problems. I have argued 

that Nortonians can justify the inductive inference of P1 by adapting the CJI to the local 

induction that Dawid describes. Yet the reasoning in the CJI only directly enables us to infer 

approximate conclusions, not universal generalisations. We can infer H: ‘All or almost all 

trials of the Dome experiment result in the point mass sliding down the Dome after 16.8 

seconds’, but the combinatoric facts involved in my justification of this induction involve an 

unavoidable margin of error, and therefore we cannot use the same reasoning for hypotheses 

like the universal generalisation U: ‘All of the trials of the Dome experiment result in the 

point mass sliding down the Dome after 16.8 seconds’. Dawid could argue that we should be 

able to say that U is evidentially supported in his scenario, but can the MTI accommodate this 

intuition? 

 

 It can. If H is true and we do not believe that there are any counterexamples to U, then 

we know that U is either true or at least approximately true, given our total evidence31. 

Furthermore, if learning some evidence makes it more likely that a hypothesis is true or at 

least approximately true, then it seems that the evidence has confirmed the hypothesis. (This 

is somewhat broader than the standard Bayesian definition of confirmation, which requires 

increasing the probability that the hypothesis is true, not just true or approximately true.) 

Therefore, there is at least one plausible sense of evidential support on which E provides 

evidence for U, as well as for P1. The further question of whether U is the best supported 

hypothesis is beyond my scope; it requires developing a theory of comparative evidential 

support within the MTI, which Norton has not yet done. That would extend my inquiry far 

beyond the Dome. 

 

4.3 Alternative Sampling Distributions 

 

One feature of the CJI is that, in standard Bayesianism, the CJI requires additional 

premises about the relevant prior probabilities. In particular, an orthodox Bayesian must 

assign some prior to the different possible distributions of sample selections, which can 

undermine CJI-style reasoning (Maher, 2001; Lange, 2011, pp. 83–86). For example, it is a 

priori possible that the 20,000 observed trials of the Dome experiment were a highly 

unrepresentative subset of the population of Dome trials. If a Bayesian assumes a uniform 

probability distribution of any subset’s selection, then the CJI reasoning works: it is still 

possible that the sample is unrepresentative, but unlikely, because almost all such samples are 

representative and our sample is no less likely to be unrepresentative. One might think that a 

similar limitation exists for my use of combinatoric reasoning in the MTI. Why should we 

prefer the predictions suggested by direct inference over those suggested by other a priori 

possible sampling distributions? Such a preference might be rationally permissible, but it is 

mandatory? 

 

 Although a similar issue might be raised for e.g. Norton’s use of direct inference in 

 
31 By ‘approximately true’, I mean the relationship between a claim like ‘The relative frequency of F in G is r’ 

and a claim like ‘The relative frequency of F in G is r ± ε%’, not Popperian verisimilitude etc. 
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his bismuth example, he has not yet explicitly discussed this worry. Here is a response that is 

similar to Henry E. Kyburg’s treatment of sampling distributions in his theory of direct 

inference (Kyburg, 2006). It is true that knowledge of more informative sampling 

distributions can undermine those recommended by direct inference from more general 

combinatoric principles. For instance, imagine that you are sampling 20,000 grains of sand 

from a beach to assess the proportion of silicon in the sand. If you are sampling the grains 

using a filter (against other objects on the beach) that with a known statistical bias in favour 

of low-silicon sand, then you ought to favour reasoning that incorporates your knowledge of 

that bias over the purely combinatoric reasoning about 20,000-fold subsets. In any such case, 

where there is a conflict between direct inference from general combinatoric principles and 

direct inference justified beliefs about sampling distributions, then the latter should take 

precedence, because they incorporate more of our relevant evidence. 

 

 However, in the Dome experiment, as it has been discussed thus far, we have no such 

conflict, because we do not have justified beliefs about the sampling distributions. Our only 

useful information for direct inference is that our observed sample is a 20,000-fold subset of 

the Dome trials in general, and that almost all such subsets will be representative. By 

contrast, while there are logically possible sampling distributions where our sample is 

probably (or even certainly) unrepresentative, we do not know if they are true, and thus they 

should not factor into our reasoning. The same is true, mutatis mutandis, for our reasoning 

from our inductively inferred generalisation about Dome trials in general to the particular 

prediction about the 20,001st trial. In brief, the CJI-style reasoning I have described should 

have precedence, because we know that our observed sample is a subset of Dome trials in 

general, whereas direct inference from conflicting sampling distributions is merely 

speculative. 

 

 This point reveals an important difference between the MTI and Subjective 

Bayesianism. In the latter, we are very free to speculate. In the former, it is only antecedently 

justified beliefs about physical probabilities (or local facts in general) that can factor into our 

reasoning. Subjective Bayesians can use something like the reasoning I have described in this 

article to prove that Dawid’s induction is permissible according to their theory, but MTI 

supporters can go one step further and argue that it is mandatory. I regard this as a positive 

consequence of Norton’s more general rejection of a priori science (2003a, p. 3). 

 

 

CONCLUSION 

 

 

 A theory of induction should be able to handle both questions of global induction and 

local induction. Dawid’s adaptation of the Dome scenario into a problem of local induction is 

a very clever objection, because it challenges the capacity of the MTI to handle such 

problems. Norton, in his responses to Dawid, has sometimes drifted from the spirit of the 

MTI, which suggests that it is a tough objection to address. I have argued that the background 

knowledge of local uniformity principles in the Dome scenario is richer than either Dawid or 

Norton have appreciated. Since my answer does not particularly depend on the details of the 

Dome model itself, the MTI emerges as a very robust theory of induction: if it can be 

supplemented with an account of defeaters for direct inference, then the MTI can handle both 
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ordinary scientific situations where licencing local uniformity principles are plentiful and the 

(rarer) situations where we have only extremely austere relevant background information.  

 

 Do my arguments provide a general formula for Nortonians to handle all such cases of 

exiguous background information? Perhaps even an answer Hume’s problem of global 

induction? No. I have liberally drawn on background information that is normally regarded as 

unavailable in Hume’s problem of induction, such as the implicit assumption that directions 

of sliding down the Dome are not ‘gruesome’ properties, and can be projected in inductive 

inferences. 

 

 Finally, my arguments have employed direct inference and the notion of defeaters, but 

the details of their incorporation into the MTI is an outstanding issue for Norton’s theory 

(Peden, 2019). In the absence of clarifications of notions like ‘defeaters’ and the exact details 

of the support provided by direct inference in the MTI, one might reasonably worry that my 

reasoning has been too vague. I agree that Norton’s theory is underdeveloped in this respect. 

However, it is not the Dome in particular, nor even analogous cases of weak background 

theory, which create that problem: it is a general area for expansion in the MTI. If this gap 

could be filled, then Norton’s theory would provide a default presumption in favour of 

inductions with large sample and appropriate reference classes, which means that it would 

hard to argue that it is too narrow. Humeans, Popperians, and others might think that it is too 

broad, but that is another story. If the MTI was developed further in this respect, then it 

would be a tough theory to defeat. 
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