
FRANCIS J.  PELLETIER Identity in Modal Logic 
Theorem Proving 

Abstract.  THINKER is an automated natural deduction first-order theorem proving 
program. This paper reports on how it was adapted so as to prove theorems in modal 
logic. The method employed is an "indirect semantic method", obtained by considering 
the semantic conditions involved in being a valid argument in these modal logics. The 
method is extended from propositional modal logic to predicate modal logic, and issues 
concerning the domain of quantification and "existence in a world's domain" are discussed. 
Finally, we took at the very interesting issues involved with adding identity to the theorem 
prover in the realm of modal predicate logic. Various alternatives are discussed. 

1o I n t r o d u c t i o n  

This paper  is a repor t  on some issues concerning the addition of identi ty to 
m y  au toma ted  theorem proving system, THINKER, in the rea lm of modal  
logic. Al though there is much background mater ia l  which is of  relevance to 
the  overall enterprise (for some of it, see [11], [12]), for tunately not  much  of it 
is crucial for unders tanding the philosophico-logical issues involved with  the  
addit ion of  ident i ty  to modal  logics. In this in t roductory section, I ment ion 
some of  this background without  going into details; in the following sections 
we look at some deeper issues. 

THINKER is an automatic  theorem proving system, employing a natu-  
ral  deduct ion format ,  for the full f irst-order logic with identity. While it is 
not  impor tan t  for the logic of what is to be discussed below that  the  sys- 
tern embodies a na tura l  deduction format,  this perhaps explains why the 
emphasis below is on rules of inference rather  than axioms and ra ther  than  
on resolution-style strategies. The particular system which is implemented  
mirrors  the  Katish & Montague system [3], [4]. The system implements  the 
full f i rs t -order  predicate logic with identity (but without arbi trary function 
symbols). 

A basic distinction can be made between direct and indirect methods 
of (au tomated)  theorem proving in general, and not just  in modal  logic. 
For example,  were one interested in proofs in the simple propositional logic, 
there are numerous proof theories available - -  differing axiomatic develop- 
ments ,  different tableaux methods,  different natura l  deduction formulations, 
and also propositional resolution. A direct method of theorem proving is to 
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construct proofs within one of these proof theories - -  by which I mean both  
that  the result generated would be recognized as a proof in [say] Whitehead 

Russell's axiom system and also that  the "machine internal" strategies 
and methods are applications of what it is legal to do within the proof the- 
ory. (In Whitehead ~ Russell, this amounts to finding substi tut ion instances 
of formulas for propositional variables in the axioms, and applying Modus 
Ponens). Were one directly constructing proofs in Smullyan [14] tableaux 
system, the output  should be a list of subformulas of the original formula, 
each with a "sign" (indicating whether they are "true" or "false"), and ar- 
ranged in such a way that  the "dependencies amongst the decompositions" 
reflect a genuine proofs as defined by the tableaux system. Furthermore,  the 
internal representation of the problem should involve this decomposition and 
dependency formulation, and actually make use of it in determining whether 
the original argument was valid or not. A propositional resolution system 
ought to have an internal representation of clauses each as a representation 
of a disjunction of literals and ought to use this representation in some way 
so as to generate resolvants. The output  should be a listing of the clauses 
with an ordering of which formulas gave rise to the null clause by resolution. 
In this sense, THINKER is a direct theorem proving system for first order 
logic with identity of Kalish ~ Montague. Its internal representation and 
method  of constructing a proof is just like the way a student would construct 
a Kalish & Montague p r o o f -  everything THINKER does internally is a le- 
gitimate Kalish & Montague proof-step; and its output  is straightforwardly 
a proof in Kalish & Montague's system. 

But direct proofs are not the only possibility. An indirect method is to 
use a procedure of one system in order to determine whether there is a proof 
in some other system. In contrast to the direct methods,  it does not construct 
the proof within this other system (except, possibly, by means of a pos t -  
processor) nor is the internal representation and strategy directly isomorphic 
to what  is "legal in the system." For example, rather than  a t t empt  to 
generate proofs directly in Whitehead & Russell's propositional system, one 
could instead construct a t ru th  table for the formula and evaluate it. Should 
the t ru th  table have all "true" in its final column then there is a proof within 
Whitehead 8z Russell's system. 

It is never completely obvious whether a method  is direct or indirect, as 
for example whether semantic tableaux are "direct for the proof theory of 
semantic tableaux" or are indirect in the same way that  t ru th  tables are. 
No doubt the answer has something to do with the intentions of the person 
writing the system. Nevertheless, there are clear cases of indirect meth- 
ods, and two of them stand out: the "syntactic method" and the "semantic 
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method".1 Intuitively, the former method involves an a t tempt  to represent 
the syntactic proof theory within some "more tufiversal logic" - -  such as 
first order predicate logic. All formulas of the original logic are taken to be 
objects in the more universal logic; the structure of complex formulas of the 
original logic is represented by deploying functions within the more universal 
logic; and there is a special monadic predicate of the more universal logic 
which is interpreted as "x is a theorem of the original logic" [let us symbolize 
it as ThmO(~)]. Rules of inference of the original logic are represented as 
saying that  there is a certain relation between two objects of which ThmO 
is true. For example, if the axioms of the original logic included 

-~-~p ~ p 

and the rules of inference included Modus Ponens, the more universal logic 
might represent '-~' as the function 'n '  and ' ~ '  as the function 'i', and 
thereby represent this axiom and the rule as 

(V$)ThmO[i(n(n(~)),~)] 

(Y~)(Vy)[ThmO($) & ThmO(i(~,y)) --* ThmO(y)]. 

All axioms and rules of the original logic would be represented in this manner,  
and whenever a formula ~ is to be checked for theoremhood in the original 
logic, we construct a proof of ThmO(~') in the universal logic (where ~'  is 
the result of representing ~ by functions, constants, and variables) using the 
above representations of the axioms and rules as premises to the argument.  
If we can construct such a proof within more universal logic, then we know 
that  there is a proof in the original logic. And depending on our methods  in 
the universal logic, we can sometimes even postprocess this generated proof 
of the more universal logic to find the proof of the original logic. (As for 
example by the method  mentioned in [9]). 

The second indirect method  again involves using a "more universal logic", 
but  this t ime rather than using first order logic to mirror the syntactic 
metatheory,  we use it to formulate the validity-conditions of the seman- 
tic metalanguage.  To apply this semantic method,  one starts with some 
basic semantic notion in terms of which the notion of validity is defined. 
One translates the object language sentence into one which characterizes it 
in terms of this basic semantic notion, and then one uses the definition of va- 
hdi ty to t ry to prove that  the translation obeys this definition. For example, 

tThe  terms are taken from Morgan [8], who was the first (I believe) to describe the in- 
direct methods as being useful in non-classical theorem proving to the automated theorem 
proving audience. (See also [18]). 
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consider the propositional logic formulated with ~ and &. The fundamental  
semantic notion for this logic is "true in a particular interpretation" (or: 
"true in a row of a t ru th  table"). Validity is "true in all interpretations" 
(or: "true in every row of a t ru th  table"). So our basic semantic concept 
is "true in [row, or interpretation] i". Now we wish to translate every sen- 
tence of the object language into a statement concerning its t ruth.  Here is 
one method: we define the translation function TRANS(A, i) as follows: 

TRANS(A,i): 

if A is a propositional letter p, then TRANS(A,i)  = P(i) ;  

if A has the form -~B, then TRANS(A,i) = ~TRANS(B, i); 

if A has the form (B&C), then TRANS(A,i)  = (TRAN S( B, i) 
& TRANS(C,i)). 

Each sentence gets a unique translation. Note that  "q is t rue at row i of 
the t ru th  table" gets translated as Q(i) ~ meaning, roughly, that  i is one of 
the Q rows. The sentence connectives get "translated" into themselves, but  
that  is just because we were assuming the usual t ru th  tables for the object 
language -~ and &. Had they had different t ru th  conditions from these, we 
would have translated them accordingly. Now, to show a sentence • to be 
a theorem, we wish to show that  it is true at every row of the t ru th  table; 
that  is, we want to prove 

(V~)(TRANS(~,~r)). 

Thus, rather than providing a proof of • within some particular proof theory, 
we have "ascended to the (semantic) metalanguage" and shown that  there 
must  be a proof of the formula within the system. For example, if the object 
language sentence were -~(p &-~p), we would try to prove 

(Vz)-~(P(z) & ~P(z) )  

in our more universal theory, first order logic. 
I think this basic division between direct and indirect proof methods 

will help organize our discussion of proof methods in modal  logic 2, even 
though the distinction between direct and indirect methods can easily blur. 
As remarked above, it is never clear whether a semantic tableaux method  

2Another indirect method would be to construct models of set of sentences. Such a 
method has been explored in the realm of Relevant Logics by Thistlewaite and colleagues. 
See especially [7], but  also [15], [16]. However, we shall not consider this method here. 
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is direct or is an indirect semantic method. There are other philosophical 
issues that  are occasioned by reflection upon the difference between direct 
and indirect proof methods; some of these are discussed in [13]. 

In the realm of modal  logics, almost all presentations of the logic of 
these systems are given in terms of axioms. But no one who is interested in 
providing automated proofs within modal  logic uses an axiomatic system, 
and so it would therefore seem that  all these methods of implementing them 
must  be indirect (on the grounds that  they import  some other methodology 
for proofs over and above what is allowed in the axiom system). However, I 
would prefer to count such developments as 'direct'  if they employ rules of 
inference which directly apply to the formulas of modal  logic, and only call 
the method  'indirect '  when it eliminates the distinctive modal  operators in 
faw3ur of first-order predicates, relations, or models. (On the other hand,  one 
could look at these developments as providing some other, new proof theory 
for the modal  logics - -  e.g., a resolution proof theory for modal  logics or a 
tableaux proof theory for modal  logics.) 

Various authors have developed indirect semantic methods,  for exam- 
ple Jackson & Reichgelt [2] and Ohlbach [10] who treat modal  formulas by 
separating the modal  port ion from the rest of the formula. The modal  in- 
formation (e.g., which worlds are alleged by the formula to be accessible 
from which other worlds) is given a separate representation from the propo- 
sitional letters themselves. They then develop unification and resolution 
methods to show how the negated-conclusion clause form of a modal  sen- 
tence can be treated. The method employed by THINKER is also an indirect 
semantic method,  but  in the context of a natural  deduction system rather 
than  within resolution system. 

2. I n d i r e c t  M o d a l  P r o p o s i t i o n a l  L o g i c  in  THINKER 

Modal logics are formed from classical logic by adding 'L' ("necessarily") and 
' M '  ("possibly") as sentence operators. As is well known, the various systems 
of normal  modal  logics are characterized by validity in a frame, wherein 
the differences amongst the different systems are manifested by different 
restrictions on a binary accessibility relation between possible worlds, R. 
This means that  ff we could convert each formula of a modal  logic into 
a s tatement  that  describes the formula as being true in the correct set of 
possible worlds, then we could use this new statement as a conclusion of an 
argument  whose premises are the particular conditions upon  R which are 
relevant to the specific modal  system in which we are interested. This is the 
method  pursued in THINKER - -  an indirect semantic method.  
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Of course there are direct methods available for natural  deduction sys- 
tems, but  from a practical point of view they have two shortcomings. The 
suggestion would be to expand the inference rules (and the rules of proof 
completion) of the natural  deduction system so as to be correct for the modal  
system under investigation. However, this would require distinct programs 
for different modal systems, since the rules of inference, the proof completion 
rules, and indeed perhaps even the proof strategy itseff would all be different 
in these different systems. The indirect semantic method  only requires one 
program - -  a good first-order logic with identity theorem prover. Differences 
amongst the modal systems is a mat ter  of different premises concerning R. 
Secondly, not every modal system, not even those systems that  are popular  
in the hterature,  has been given a well-defined natural  deduction formula- 
tion; indeed, it is very difficult to see how to accommodate certain logics. 
Better,  then, to go with what is known! 

In all the modal logics under consideration, the deduction theorem holds: 

r , A e B  iff r e ( A - , B ) .  

Therefore, in any such modal system, the claim that  there is a proof of B 
from a finite set of premises can be equivalently represented as claiming that  
a single formula is a theorem: 

A1,A2,. . . ,A,t-  B iff ((AI&A2&...&A~)--* B). 

The first step in THINKER's method of proof of r }- B in an arbitrary modal  
system is to apply the deduction theorem, so that  the task becomes one 
of proving some formula to be a theorem (with no premises). Secondly, 
we "translate" this alleged theorem into a statement about possible worlds. 
This translation comes in two steps. The first is simply the observation that  
a formula A is a theorem of a normal modal  logic just in case it is true at 
every possible world. Letting W be a one-place predicate meaning "~ is a 
possible world", this becomes requirement: 

(V$)(W$-* TRANS(A,z)) 

where TRANS(A, x) is a function that  translates the sentence A into one 
that  says "A is true at (world) x". This function is recursively defined thus: 

TRANS(A,y): 

1. if A is a propositional letter p, then TRANS(A, y) = P(y) 

2. if A has the form -~B, then TRANS(A,y) = -~TRANS(A, y) 
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3. i f A  has the form ( B . C ) ,  where • is one of the binary connectives 
--*, ~ , & ,  V, then 

TRANS(A ,  y) = (TRANS(B,  y) • TRANS(C,y) )  

4. if A has the form LB, then 

TRANS(A ,y )  = (Vz)(Wz&Ryz ~ TRANS(B , z ) )  

5. if A has the form MB, then 

TRANS(A ,y )  = (3z)(Wz& R y z & T R A N S ( B , z ) ) .  

(In steps 4 and 5, z is distinct from any variable occurring in A and from 
y). As can easily be seen from the definition of TRANS(A ,  y), the way we 
represent that  a propositional letter p is true at a possible world y is just  to 
invent a new one-place predicate (which we represent as the upper  case of 
the propositional letter) meaning "p is true at y", P(y). The t ru th  functional 
cormectives (clauses 2 and 3) contribute nothing new to the translation, but  
the modal  connectives L and M (clauses 4 and 5) do. LB is true at a world 
y just  in case B is true at every world related to y; and MB is true at a 
world y just  in case B is true at some world related to y. The function 
T R A N S ( A ,  y) is well-defined and yields a unique translation (up to choice 
of variables) of A given initial y, in a finite number of steps (depending 
fin,early only on the length of A). For example: 

TRANS(L(Lp  ~ Mp),:r)= 

T R A N S ( L M p  ~ p, x) = 

((vy)(wu (3z)(wz Ryz  

TRANS(L(Lp  ~ p) ~ Lp, ~.) = 

Pu)]. 

Such example translations should give the flavour of the operation of 
TRANS(A ,~) .  

In the current implementat ion of THINKER, a user specifies which modal  
system he wishes a proof to be a t tempted  in. THINKER goes to a special 
file in which the semantic conditions on R corresponding to each axiom are 
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stored and adds them as premises to the argument to be proved. 3 As is 
well-known, certain of these premises imply others, certain combinations 
of the premises are equivalent to other combinations, and indeed certain 
combinations are equivalent to other (simpler) formulas. For example, it is 
well-known that  T implies D; so whenever a user happens to specify a system 

by using both  T and D, only T is added. 4 It is also true tha t  G is provable 

in any system with either B or 5; thus any user a t t empt  to specify G in 

combination with B or 5 will just  result in the B or 5 premise being added, 
respectively. System KB4 is the same as system KB5 (which of  course is the 

same as system KB45). In this case it was "empirically" determined tha t  the 
most efficient formulation had all of B, 4, and 5 added as premises for any of 
these combinations entered by the user. The combinations T5, T B 4 ,  T45, 
D B 4 ,  and D B 5  are equivalent ways of specifying system $5. Furthermore,  
it is also well-known tha t  $5 is determined by the class of worlds in which 

3The nomenclature used here follows Ghellas [1]. K is the smallest normal system. It 
is formed from classical logic by adding the interdefinability of L and M plus 

if ~'k (~ then ~-k L~. 

The other systems under consideration here are formed from K by adding combinations 
of these axioms: 

D. L~ ~ M~; 

T. L4~ --~ ~; 

G. MLiI~ --~ L M ~ ;  

B.  ~ ~ L M ~ ;  

4. L~--* LL~;  

5. M ~  ~ L M ~ .  

There are certain dependencies amongst these axioms, so that of the 64 different pos- 
sible combinations of the axioms, only 21 distinct systems are generated. The semantic 
conditions on the accessibility relation R corresponding to the axioms are: 

(d) [seriality] (Vz)(z E W -* (Sy)(V E W & Rzy)); 

(t) [reite~ivity] ( w ) ( ~  ~ w - .  R ~ ) ;  
(b) [symmetry] (Vz)(Vy)(z,y E W --~ (Rzy  --, Ryz)); 

(g) [ineestuality] (V~)(Vy)(Vz)(~,y,~ e W - .  (R~yS~R~z -~ (3~)(~ e W S ~ R ~  
e~ Rzw))); 

(4) [transitivity] (Yz)(¥y)(Vz)(z, y, z C W ~ (Rzy  & Ryz  --* Rzz));  

(5) [euclidean] (Vz)(Vy)(Vz)(z, y, z ~ W -* (Rzy  & R z z  -4 Ryz)) .  
4More xccurately, we should always say "the semantic condition corresponding to T 

is added" (cf. the previous footnote for these conditions), but we will just indifferently 
refer to the axioms and allow context to determine whether we mean the axioms or the 
semantic conditions on the accessibility relation. 
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the relation R is a "universal relation": 

$5 : (w)(vy)(w, wy R,y). 

This premise turns out to be much easier for THINKER to use then any of 
the other, equivalent, combinations of restrictions on R. Thus when any of 
$5, KT5, KT  B4, KT45, K D B4, K D B5 are entered by the user, the formula 
described by $5 is used instead. Also well known is that ,  in the presence of 
T,  G can be reduced to 

V t : 

And so when the user enters some combination of T and G, G t is entered 
rather  then G (T is still entered separately, of course). 

Lastly it should be noted that  the user can specify that  an argument 
should be a t t empted  in a system other than  one of the above, if he knows 
the relevant accessibility relation that  characterizes the system. For example, 
one might  be interested in a proof within the system $4.3. This system is 
$4 plus any one of a large number of axioms, such as [ (MLA&MLB)  -~ 
M(LA ~/;B)]. If one knows that  the addition of 

(4.3) wy (R y v Rye)) 

to T and 4 will describe this system S4.a, then one can merely add this as 
an extra premise within KT4 to any argument that  one wishes to investigate 
the validity of. Overall, then, when a person wishes to prove formula A 
in the modal  systems X,  what is done is to show that  it is provable that  
the translation of A is true at every world, given the semantic accessibility 
conditions corresponding to system X as premises. 

Thus THINKER has the capacity, with no further user input,  to investi- 
gate the validity of arguments of any of these 21 propositional modal  systems: 
K, KD, KT, KB, K4, KG, K5, KDB, KD4, KDG, KG4, KGT, KD5, K45, KB4, 
KTB (Browerische), KT4 (S4), KT4G ($4.2), KT5 ($5), KD45, KDG4. In ad- 
dition, if the user knows the relevant accessibility relation for an extension 
of any of these systems, he can add it as an extra premise and investigate 
proofs in such a new system. 

3. M o d a l  P r e d i c a t e  L o g i c  

The scheme described above for investigating the 21 propositional modal  
systems involves finding a formula of the semantic metalanguage that  has 
the t ru th  conditions relevant to the original sentence. The main idea was 
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that  atomic propositions, p or q etc., were represented as P(x)  or Q(y) etc. 
- -  which said that  "p is true at world z" or "q is true at world y", etc. 
This same idea could be extended to arbitrary predicates: the first-order 
(monadic) sentence F(a) could be represented as F(a,~) m which would 
say that  "F(a)  is true at world ~". More generally, any n-place predicate 
would be represented as an (n + 1)-place predicate whose last argument 
records the world relevant to evaluation. (The treatment  of an object lan- 
guage '= '  will have to be different. For now we restrict our at tent ion to 
first order predicate logic without identity.) To say that  LF(a) is true at 
world ~, one would represent this as (Vy)(W(y)&R(~,y) ~ F(a,y)) in 
precisely the same manner as before. Indeed, this just  is the method  re- 
por ted earlier, if one thinks of propositions as being 0-place predicates. So 
the only new machinery needed concerns n-place predicates and quantifiers: 

TRANS(A, w): 

if A is an n-place predicate F ~ followed by n terms a l , . . . ,  as,  

then TRANS(A, w) = F'~+l(al . . .  a~,w); 

if A has the form (V$)B, 

then TRANS(A, w) = (Vz)TRANS(B, w); 

if A has the form (3x)B, 

then TRANS(A,w) = (3x)TRANS(B, w). 

The semantic postulates or axioms on the accessibility relation remain ex- 
actly the same as before, giving us our 21 modal  predicate logic systems. As 
a mat ter  of form, one would probably wish to restrict the object language not 
to have the monadic predicate R(~), since that  would get translated into the 
binary R(~, w) - -  which could then be confounded with the (metalinguistic) 
accessibility relation R. [We tacitly made a similar restriction in the propo- 
sitional language in not allowing w to be a propositional variable - -  since 
its translation, W(y), might have been confounded with the metalingnistic 
predicate "is a possible world". We maintain that  restriction here.] 

It would be nicest if we had a two--sorted logic so that  there were different 
sets of variables for possible worlds and for "ordinary" individuals in those 
worlds. (THINKER does not have this feature). If not,  we will have to state 
as a special axiom, which is to be used for every argument in every system, 
that  no possible world is an ordinary individual. There are a variety of 
ways this might be done, but one that  fits in well with other features to be 
considered shortly is this. We have another metalinguistic predicate D(~, y) 
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which says that "x is in the domain of world y". (And we correspondingly 
restrict the object language not to have a monadic predicate D.) And in 
place of the translations just given for quantifiers, we use 

TRANS(A,w): 

if A has the form (Vz)B, 

then TRANS(A,w) = (Vz)(D(~,w) ~ TRANS(B,w)); 

if A has the form (3z)B, 

then TRANS(A,w) = (3z)(D(z,w)&TRANS(B,w)). 

We would then have some special "world-domain axioms", to be used as 
premises in all arguments: 

[w - dl] (Yw)(Vz)(W(z) & W(y) --+ ~D(z,y)) ;  

[w - 42] (Vz)(-~W(z) --+ (3w)(W(w) & D(z, w))) 

telling us that  no worlds is in the domain of another world and that every- 
tiring which is not a world is in the domain of some world. We also wish to 
ensure that  no world's domain is empty: 

[w - d3] (Vw)(W(w)--+ (3y)(D(y,w)). 

Thus the formula D(a, w) should be read as saying "a exists in world w". 
As stated so far, neither the Barcan Formula (BF) nor its converse (CBF) 

holds. Indeed, there have been no restrictions of any sort on what the 
relationship is between the entities in the domains of two worlds where one 
is accessible from the other. 

(oF) (V~)LF(x)-+ L(Vz)F($); 

(CBF) L(W)F(~) -+ (W)LF(~). 

(CBF) in effect says that the worlds accessible to w cannot "shrink in do- 
main" - -  i.e., that everything in w's domain is in their domain also. Should 
one wish such an "expanding domain" modal logic, the relevant semantic 
axiom is 

(cbf) (VWl)(Vw2)(W(Wl) ~f. W(w2) ~/~(Wl, w2) 
-+ (Vz)(D(z,wl)-+ D(z,w2))). 
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The (BF) axiom is a "non-expansion" axiom, saying that  if w2 is accessible 
from wl then there are no new items in the domain of w2 than  there were 
in wl. The relevant semantics axiom is 

(b f) (Vwl)(Vw2)(W(wl) ~ W(w2)gz R(wl, w2) 
+ + 

Should one wish a "constant domain" logic, one could add both  (cbf) and 
(bf), but it would probably be easier to work with 

(cd) (Vwl)(Vw2)(W(wl)&W(w2) --+ (Vz)(D(~,wl)  --+ D(~,w2))). 

It might also be noted that  adding one of (cbf) or (bf) to any logic which 
includes symmetry of the accessibility relation (any logic containing the B 
axiom, for example $5) will generate a constant domain logic. 

The extension to modal  predicate logic has not been done for THINKER, 
but  there seems to be no obstacle here - -  all arguments continue to be in 
first order predicate logic, only with some further axioms (premises to each 
argument).  THINKER has already demonstrated that  predicate logic argu- 
ments of this complexity pose no particular problem. We thus can have any 
of the 21 modal  systems, with or without constant, shrinking, or expanding 
domains (so long as it is logically possible - -  Ss cannot have a strictly ex- 
panding domain, for example). 

4. I d e n t i t y .  5 

Modal predicate logic raises a host of philosophically interesting questions. 
(For a classic statement of them see Kripke [5], [6]).We stay here with the 
formal issues raised in adding identity to the framework just  outlined, but  
nonetheless there seem to be places where even this impinges upon  the philo- 
sophical issues. 

There seem to be two different approaches to identity available to us 
using the method of translation into the semantic metalanguage. The one 
is to treat an identity statement just like any predicate, true at a world - -  
that  is, to treat identity as a "world relativized relation". The order is to 
treat identity as a "trans world relation" - -  that  is, an identity s tatement is 
simply true, not merely true in some world. 

~THINKER adds classical identity in first order logic by means of three rules of infer- 
enee: Reflexivity of Identity (which requires no premises), Leibniz's Law, and Negation of 
Identity:  

[REFL] =~ a = a; 
IT.L] + ( a ) , a  = b ~ +(b); 
[NEGID] ~(a),-~,I~(b) =~ a ¢~ b. 
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The world-relativized approach would extend the TRANS(A, w) func- 
tions as follows: 

TRANS(A, w): 

if A is of the form (a = fl), then TRANS(A,w) = I(a,fl,w). 

That is, we replace the object language binary identity relation with the 
world-relativized, ternary relation I ( a ,  fl, w) - -  which says that a and/3 are 
identical in world w. In such an approach, the various Rules of Inference 
concerning identity also need to be relativized. The following three seem 
tmproblematic: For all a, b, and x 

(Idl)  D(a ,~)  ~ I(a,a,~); 

(Id2) D(a,~),D(b,~.), q~(a,x),I(a,b,x) ~ ~(b,z);  

(Id3) D(a,~),D(b,a:),,I~(a,~),~q~(b,~) ~ ~I(a,b,~). 

That is, within the domain of any world z, I(a, b, z) works just like identity. 
But, we might ask, what shall be said about I(a, b, ~) when one or both of 
a and b are not in domain of z? One possibility is to say nothing. This 
has the effect of a~owing such cases to be true in some worlds and false 
in other worlds. (Since the semantic metalanguage is extensional, at any 
particular world w, either I(a, a, w) or -~I(a, a, w) is true [for example] even 
if ~D(a, w) - -  they aren't undefined, nor do they take on some other t ruth 
value. But for different w's it will happen that (~D(a, wl)&I(a,a, wl)) 
and (-~D(a, w2)&~I(a,a, w2)).) This is perhaps the "least philosophically 
loaded" decision to make, since it presumes no special truths in a world 
about "objects. that don't exist in that world." But it is not the only choice 
that  could be made. My own intuitions would have the following 

(Idl ')  ~D(a,z) ~ I(a,a,x); 

(Id2') -~D(a,z),~D(b,a:),I(a,b,~),,I~(a,~) ~ ~(b,~); 

(Id3') ~P(a,~),~D(b,~),q~(a,~),~(b,a:) ~ ~I(a,b,z); 
(Id4') -D(a,~),D(b,~) ~ ~I(a,b,$); 
(Id5') D(a,~),I(a,b,z) ~ D(b,e); 

(Id6 r) ~D(a,a:),I(a,b,z) ~ ~D(b,~). 

In this view, self identities are true in a world even when the object doesn't 
exist in that  world. (Idl ')  can be put together with (Idl) to form world- 
relative reflexivity, a rule with no premises. 

[w-r REFL] ~ I(a, a, ~.). 
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(Id4'), (Id5'), and (Id6') are ra ther  like instances LL and NEGID,  applied to 
exis tence-in-a-world.  My intuitions tell me tha t  if a does not  exist in w but  
/3 does, then a and fl cannot be the same in w; or al ternatively put ,  i f a  exists 
in w and is ident ical- to-f l - in-w,  then fl must  exist in w. This group of rules 
tell us that  if a and fl are ident ical- in-a-world,  then  either they  both  exist in 
tha t  world or bo th  don't  exist in that  world. Tha t  is, ex is tence- in-a-wor ld  
is a property  of that  world in the sense that  LL applies to ex i s t ence - in -a -  
world, that  is, it applies to the property of being in the domain  of a world 

we might call it "domain LL": 

[dom LL] I(a,b,w) ~ D ( a , w ) ~  D(b,w)). 

Now, given tha t  there can be some true identities in a world even if the 
objects involved do not exist in that  world, we need to be able to reason 
about them; (Id2') and (Id3') just mirror  our identity rules LL and NEGID,  
but  in a world relative way, and apply them to things tha t  do not exist in 
the world. Of course once we have [dom LL], then the (Id2) and (Id2') rules 
and the (Id3) and (Id3') rules can be more simply s ta ted as world-relat ive 
rules: 

[w-r LL] I(a,b,x),ff?(a,z) ~ O(b,$); 

[w-r NEGID] ~(a,z),-,O(b,z) :::> -,I(a,b,z). 

Notice that  in this version of world-relative identity, there is no requirement  
to the effect that  there be some terms which "denote the same thing in each 
possible world", or, to weaken it somewhat,  "denote the same thing in each 
possible world in which they exist". It is not  quite clear how this requirement  
might be stated in the language anyway, but  we can at least note tha t  there 
are 11o a and b such that  I(a, b, wl) and -,I(a, b, w2) are mutual ly  inconsistent 
(unless wl = w2 or unless a = b). For any two distinct terms a and fl, an 
expression of identity can be true in one world without being t rue in another  

whether  or not a and/3 exist in the relevant worlds. Of course one could 
add the postulate 

(W, ) (Vy ) [ ( 3w) I (~ , , y ,  ,,,) ~ (V,.,,).r(,,,, y, w) ]  ~. 

Another  opinion would be to restrict the principle just  to hold of certain 
constants - -  "rigid designators" a and b: 

(3w)I(a,b,w) --* (Vw)I(a,b, w) 

SOt, perhaps, the weaker 

(V=)(Vy)[(::lw)I(z, y, w) -* (Vw)(D(x,w) -.-', I(~, y, w))] 

if one wanted to add the quantification "in worlds in which they exists". (And perhaps 
this last principle and these formulas should be restricted to accessible possible worlds.) 
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or the weaker 

(3w)I(a,b,w) -* (Vw)(D(a,w) -* I(a,b,w)) 

(and again, maybe  this should be restr icted to accessible possible worlds). 
But  I see no reason to t ry  to force the notion of "world-bound identi ty" into 
service for "trans world identity".  A bet ter  strategy would be to take the 
other  avenue for identity. 

The second of the two paths one might take for identity in a modal  
predicate  logic is to t reat  identi ty as essentially a "trans world concept" in 
its own right. This means that  

T R A N S ( A ,  ~): 

ff A is of  the form (a  = j3), then TRANS(A ,  x) = (a = fl) 

Ident i ty  s ta tements  are not relativized to a world; they are t rue or false, 
simpliciter. Thus,  f rom the original LL and NEGID rules of classical logic, 
whenever we are given a true identity a = b, we can infer that  every proper ty  
of  a is one of b and conversely - -  and this includes "modal properties",  
since they  are merely expressed as a formula which quantifies over possible 
worlds. Consider then a sentence like '% is necessarily an F " ,  which might 
be represented as LF(a), or in our framework as 

(1) R( I, F(a, 

If  a = b, it follows by LL that  

(2) 

tha t  is to say, given a = b it follow that  b is necessarily an F.  Contraposi- 
tively, if we had  (1) and 

(3) -~(Vwl)(W(wl) --* (Yw2)(W(w~)& R(wl,w2) -* F(b, w2))) 

then  NEGID would conclude a ~ b. (The same would hold t rue if the 
t ranslat ion (1) had  a clause saying that  a and b had  to exist in the relevant 
worlds, such as D(a, w2) or D(a, wl). By LL and NEGID, if a = b then  they  
exist in exact ly the same possible worlds.) 

Perhaps this t rans-world  identity is most suitable to cases in which both  
terms are "right designators",  for it entails that  such an identity implies the 
mu tua l  possession of all qualities including modal  ones. Thus if t ( 'Tully')  
and c ( 'Cicero')  are such terms,  and if ' t  = c' is true, then they share all 
modal  properties. 
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However, the classic test for rigid designat ion is whether  a t rue  ident i ty  
is necessarily true. In the  present framework the  t rans la t ion of such a claim 
would seem to be 

(4) t =  c - .  ( w l ) [ w ( ~ , ) ~  ~ (~ ,  ~1 ) -~  t =  c]. 

But  far f rom being an interesting and controversial claim, as "rigid ident i ty"  
is supposed to be, this is a mere t ru th  funct ional  t au to logy  (almost) ,  and  
seems unlikely to be what  is meant  by the classic test.  Perhaps  the  classic 
test actually mixes the two notions of identity. If  t = c and they are bo th  
rigid terms,  then  the wor ld-bound  ident i ty  holds in each related world. 

(5) t = c -+ ( w l ) [ w ( ~ l )  e R(~, ~1) -* z(t,c, ~1)] 

or if one prefers a formulat ion ment ioning "in worlds in which they  exist",  

(6) t = c  ---*(Ywl)[W(wl)&R(w, wl)&zD(t, wl)---* I(t,c, wl)]. 

This last is still a logical t ru th  (given the two views of I(a, b, w) expressed 
above), but  no longer merely an (almost) t ru th - func t iona l  tau to logy like (4). 
Recall  t ha t  D(a,w) ~ I(a,a,w) [for all w and a] is a rule of inference even 
in the  weaker account of I (i.e., the  account wi th  ( Id l ) ,  (Id2), and  (Id3)). It  
follows then  tha t  

(7) (vwl ) [w(~ l )  ~ R(~, ~1) e D(t , ,o l )  - .  Z(t , t ,  ~1)] 

is logically true. From the logically t rue (7), and  wi th  the a s sumpt ion  of 
t = c, we can infer the consequent of (6); thus (6) i tself  is logically true.  
Note tha t  in this weaker account of I ,  the formula (5) is not  logically true;  
however, in my  preferred, stronger, account of I ,  in which ~ I(a, a, w) [for 
any a and w], formula (5) would be. For, we have 

(8) (Vwl)[W(wl) & R(w, wl) ~ I ( t , t ,  wl)] 

being logically true,  and if a = b we would derive the consequent  of (5) by 
LL, and hence (5) itself must  be logically true. 

My own feeling about the two avenues for t rea t ing  ident i ty  is t ha t  bo th  
' = '  and ' I '  should be used, at least in certain circumstances and for certain 
purposes.  It seem to me tha t  we want ' I '  in order to be able to express "non 
rigid identit ies" such as the inventor of the bifocals = the first postmaster 
general of the US. (I do believe tha t  this really is an identity,  and  no t  some 
other  fo rm of predication.)  Here we would want  to say it is t rue  in some 
possible worlds but  not  in others,  and this calls for using the wo r ld -b o u n d  
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predicate 'I '  in its translation. On the other hand though, for some purposes 
we wish to make "trans world identifications" and this seems to call for some 
relation other than ' I ' .  For example, in the use of modal  logic to analyze 
distr ibuted systems, we sometimes would like to say that  the object (or pro- 
cess or memory  location) that  one processor is working on is the same as 
the one that  another processor is working on (now, or perhaps at a different 
time). This cannot be adequately captured by ' I ' ,  which only "talks about 
identities from the point of view of one processor." So perhaps we would 
wish to use both.  Some terms would be marked as "rigid designators" in the 
underlying logic, and an identity statement between two of them would be 
translated into the semantic metalanguage as ~ = ft. Terms not so marked 
would be translated as I (a , f i ,  z). Although there might be choices, I would 
suppose that  an identity between a rigid term and a non-rigid term would be 
translated with ' I '  (at least that  is how I would to translate Ben Franklin = 
the inventor of the bifocals) It seems to me that  there is considerable promise 
in developing logical systems in which both ' I '  and '= '  play a role. 
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